1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 static void __bio_free(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 247 if (bio_integrity(bio)) 248 bio_integrity_free(bio); 249 } 250 251 static void bio_free(struct bio *bio) 252 { 253 struct bio_set *bs = bio->bi_pool; 254 void *p; 255 256 __bio_free(bio); 257 258 if (bs) { 259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 260 261 /* 262 * If we have front padding, adjust the bio pointer before freeing 263 */ 264 p = bio; 265 p -= bs->front_pad; 266 267 mempool_free(p, bs->bio_pool); 268 } else { 269 /* Bio was allocated by bio_kmalloc() */ 270 kfree(bio); 271 } 272 } 273 274 void bio_init(struct bio *bio, struct bio_vec *table, 275 unsigned short max_vecs) 276 { 277 memset(bio, 0, sizeof(*bio)); 278 atomic_set(&bio->__bi_remaining, 1); 279 atomic_set(&bio->__bi_cnt, 1); 280 281 bio->bi_io_vec = table; 282 bio->bi_max_vecs = max_vecs; 283 } 284 EXPORT_SYMBOL(bio_init); 285 286 /** 287 * bio_reset - reinitialize a bio 288 * @bio: bio to reset 289 * 290 * Description: 291 * After calling bio_reset(), @bio will be in the same state as a freshly 292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 293 * preserved are the ones that are initialized by bio_alloc_bioset(). See 294 * comment in struct bio. 295 */ 296 void bio_reset(struct bio *bio) 297 { 298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 299 300 __bio_free(bio); 301 302 memset(bio, 0, BIO_RESET_BYTES); 303 bio->bi_flags = flags; 304 atomic_set(&bio->__bi_remaining, 1); 305 } 306 EXPORT_SYMBOL(bio_reset); 307 308 static struct bio *__bio_chain_endio(struct bio *bio) 309 { 310 struct bio *parent = bio->bi_private; 311 312 if (!parent->bi_error) 313 parent->bi_error = bio->bi_error; 314 bio_put(bio); 315 return parent; 316 } 317 318 static void bio_chain_endio(struct bio *bio) 319 { 320 bio_endio(__bio_chain_endio(bio)); 321 } 322 323 /** 324 * bio_chain - chain bio completions 325 * @bio: the target bio 326 * @parent: the @bio's parent bio 327 * 328 * The caller won't have a bi_end_io called when @bio completes - instead, 329 * @parent's bi_end_io won't be called until both @parent and @bio have 330 * completed; the chained bio will also be freed when it completes. 331 * 332 * The caller must not set bi_private or bi_end_io in @bio. 333 */ 334 void bio_chain(struct bio *bio, struct bio *parent) 335 { 336 BUG_ON(bio->bi_private || bio->bi_end_io); 337 338 bio->bi_private = parent; 339 bio->bi_end_io = bio_chain_endio; 340 bio_inc_remaining(parent); 341 } 342 EXPORT_SYMBOL(bio_chain); 343 344 static void bio_alloc_rescue(struct work_struct *work) 345 { 346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 347 struct bio *bio; 348 349 while (1) { 350 spin_lock(&bs->rescue_lock); 351 bio = bio_list_pop(&bs->rescue_list); 352 spin_unlock(&bs->rescue_lock); 353 354 if (!bio) 355 break; 356 357 generic_make_request(bio); 358 } 359 } 360 361 static void punt_bios_to_rescuer(struct bio_set *bs) 362 { 363 struct bio_list punt, nopunt; 364 struct bio *bio; 365 366 /* 367 * In order to guarantee forward progress we must punt only bios that 368 * were allocated from this bio_set; otherwise, if there was a bio on 369 * there for a stacking driver higher up in the stack, processing it 370 * could require allocating bios from this bio_set, and doing that from 371 * our own rescuer would be bad. 372 * 373 * Since bio lists are singly linked, pop them all instead of trying to 374 * remove from the middle of the list: 375 */ 376 377 bio_list_init(&punt); 378 bio_list_init(&nopunt); 379 380 while ((bio = bio_list_pop(¤t->bio_list[0]))) 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 382 current->bio_list[0] = nopunt; 383 384 bio_list_init(&nopunt); 385 while ((bio = bio_list_pop(¤t->bio_list[1]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[1] = nopunt; 388 389 spin_lock(&bs->rescue_lock); 390 bio_list_merge(&bs->rescue_list, &punt); 391 spin_unlock(&bs->rescue_lock); 392 393 queue_work(bs->rescue_workqueue, &bs->rescue_work); 394 } 395 396 /** 397 * bio_alloc_bioset - allocate a bio for I/O 398 * @gfp_mask: the GFP_ mask given to the slab allocator 399 * @nr_iovecs: number of iovecs to pre-allocate 400 * @bs: the bio_set to allocate from. 401 * 402 * Description: 403 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 404 * backed by the @bs's mempool. 405 * 406 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 407 * always be able to allocate a bio. This is due to the mempool guarantees. 408 * To make this work, callers must never allocate more than 1 bio at a time 409 * from this pool. Callers that need to allocate more than 1 bio must always 410 * submit the previously allocated bio for IO before attempting to allocate 411 * a new one. Failure to do so can cause deadlocks under memory pressure. 412 * 413 * Note that when running under generic_make_request() (i.e. any block 414 * driver), bios are not submitted until after you return - see the code in 415 * generic_make_request() that converts recursion into iteration, to prevent 416 * stack overflows. 417 * 418 * This would normally mean allocating multiple bios under 419 * generic_make_request() would be susceptible to deadlocks, but we have 420 * deadlock avoidance code that resubmits any blocked bios from a rescuer 421 * thread. 422 * 423 * However, we do not guarantee forward progress for allocations from other 424 * mempools. Doing multiple allocations from the same mempool under 425 * generic_make_request() should be avoided - instead, use bio_set's front_pad 426 * for per bio allocations. 427 * 428 * RETURNS: 429 * Pointer to new bio on success, NULL on failure. 430 */ 431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 432 struct bio_set *bs) 433 { 434 gfp_t saved_gfp = gfp_mask; 435 unsigned front_pad; 436 unsigned inline_vecs; 437 struct bio_vec *bvl = NULL; 438 struct bio *bio; 439 void *p; 440 441 if (!bs) { 442 if (nr_iovecs > UIO_MAXIOV) 443 return NULL; 444 445 p = kmalloc(sizeof(struct bio) + 446 nr_iovecs * sizeof(struct bio_vec), 447 gfp_mask); 448 front_pad = 0; 449 inline_vecs = nr_iovecs; 450 } else { 451 /* should not use nobvec bioset for nr_iovecs > 0 */ 452 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 453 return NULL; 454 /* 455 * generic_make_request() converts recursion to iteration; this 456 * means if we're running beneath it, any bios we allocate and 457 * submit will not be submitted (and thus freed) until after we 458 * return. 459 * 460 * This exposes us to a potential deadlock if we allocate 461 * multiple bios from the same bio_set() while running 462 * underneath generic_make_request(). If we were to allocate 463 * multiple bios (say a stacking block driver that was splitting 464 * bios), we would deadlock if we exhausted the mempool's 465 * reserve. 466 * 467 * We solve this, and guarantee forward progress, with a rescuer 468 * workqueue per bio_set. If we go to allocate and there are 469 * bios on current->bio_list, we first try the allocation 470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 471 * bios we would be blocking to the rescuer workqueue before 472 * we retry with the original gfp_flags. 473 */ 474 475 if (current->bio_list && 476 (!bio_list_empty(¤t->bio_list[0]) || 477 !bio_list_empty(¤t->bio_list[1]))) 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 479 480 p = mempool_alloc(bs->bio_pool, gfp_mask); 481 if (!p && gfp_mask != saved_gfp) { 482 punt_bios_to_rescuer(bs); 483 gfp_mask = saved_gfp; 484 p = mempool_alloc(bs->bio_pool, gfp_mask); 485 } 486 487 front_pad = bs->front_pad; 488 inline_vecs = BIO_INLINE_VECS; 489 } 490 491 if (unlikely(!p)) 492 return NULL; 493 494 bio = p + front_pad; 495 bio_init(bio, NULL, 0); 496 497 if (nr_iovecs > inline_vecs) { 498 unsigned long idx = 0; 499 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 501 if (!bvl && gfp_mask != saved_gfp) { 502 punt_bios_to_rescuer(bs); 503 gfp_mask = saved_gfp; 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 505 } 506 507 if (unlikely(!bvl)) 508 goto err_free; 509 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 511 } else if (nr_iovecs) { 512 bvl = bio->bi_inline_vecs; 513 } 514 515 bio->bi_pool = bs; 516 bio->bi_max_vecs = nr_iovecs; 517 bio->bi_io_vec = bvl; 518 return bio; 519 520 err_free: 521 mempool_free(p, bs->bio_pool); 522 return NULL; 523 } 524 EXPORT_SYMBOL(bio_alloc_bioset); 525 526 void zero_fill_bio(struct bio *bio) 527 { 528 unsigned long flags; 529 struct bio_vec bv; 530 struct bvec_iter iter; 531 532 bio_for_each_segment(bv, bio, iter) { 533 char *data = bvec_kmap_irq(&bv, &flags); 534 memset(data, 0, bv.bv_len); 535 flush_dcache_page(bv.bv_page); 536 bvec_kunmap_irq(data, &flags); 537 } 538 } 539 EXPORT_SYMBOL(zero_fill_bio); 540 541 /** 542 * bio_put - release a reference to a bio 543 * @bio: bio to release reference to 544 * 545 * Description: 546 * Put a reference to a &struct bio, either one you have gotten with 547 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 548 **/ 549 void bio_put(struct bio *bio) 550 { 551 if (!bio_flagged(bio, BIO_REFFED)) 552 bio_free(bio); 553 else { 554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 555 556 /* 557 * last put frees it 558 */ 559 if (atomic_dec_and_test(&bio->__bi_cnt)) 560 bio_free(bio); 561 } 562 } 563 EXPORT_SYMBOL(bio_put); 564 565 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 566 { 567 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 568 blk_recount_segments(q, bio); 569 570 return bio->bi_phys_segments; 571 } 572 EXPORT_SYMBOL(bio_phys_segments); 573 574 /** 575 * __bio_clone_fast - clone a bio that shares the original bio's biovec 576 * @bio: destination bio 577 * @bio_src: bio to clone 578 * 579 * Clone a &bio. Caller will own the returned bio, but not 580 * the actual data it points to. Reference count of returned 581 * bio will be one. 582 * 583 * Caller must ensure that @bio_src is not freed before @bio. 584 */ 585 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 586 { 587 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 588 589 /* 590 * most users will be overriding ->bi_bdev with a new target, 591 * so we don't set nor calculate new physical/hw segment counts here 592 */ 593 bio->bi_bdev = bio_src->bi_bdev; 594 bio_set_flag(bio, BIO_CLONED); 595 bio->bi_opf = bio_src->bi_opf; 596 bio->bi_iter = bio_src->bi_iter; 597 bio->bi_io_vec = bio_src->bi_io_vec; 598 599 bio_clone_blkcg_association(bio, bio_src); 600 } 601 EXPORT_SYMBOL(__bio_clone_fast); 602 603 /** 604 * bio_clone_fast - clone a bio that shares the original bio's biovec 605 * @bio: bio to clone 606 * @gfp_mask: allocation priority 607 * @bs: bio_set to allocate from 608 * 609 * Like __bio_clone_fast, only also allocates the returned bio 610 */ 611 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 612 { 613 struct bio *b; 614 615 b = bio_alloc_bioset(gfp_mask, 0, bs); 616 if (!b) 617 return NULL; 618 619 __bio_clone_fast(b, bio); 620 621 if (bio_integrity(bio)) { 622 int ret; 623 624 ret = bio_integrity_clone(b, bio, gfp_mask); 625 626 if (ret < 0) { 627 bio_put(b); 628 return NULL; 629 } 630 } 631 632 return b; 633 } 634 EXPORT_SYMBOL(bio_clone_fast); 635 636 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 637 struct bio_set *bs, int offset, 638 int size) 639 { 640 struct bvec_iter iter; 641 struct bio_vec bv; 642 struct bio *bio; 643 struct bvec_iter iter_src = bio_src->bi_iter; 644 645 /* for supporting partial clone */ 646 if (offset || size != bio_src->bi_iter.bi_size) { 647 bio_advance_iter(bio_src, &iter_src, offset); 648 iter_src.bi_size = size; 649 } 650 651 /* 652 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 653 * bio_src->bi_io_vec to bio->bi_io_vec. 654 * 655 * We can't do that anymore, because: 656 * 657 * - The point of cloning the biovec is to produce a bio with a biovec 658 * the caller can modify: bi_idx and bi_bvec_done should be 0. 659 * 660 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 661 * we tried to clone the whole thing bio_alloc_bioset() would fail. 662 * But the clone should succeed as long as the number of biovecs we 663 * actually need to allocate is fewer than BIO_MAX_PAGES. 664 * 665 * - Lastly, bi_vcnt should not be looked at or relied upon by code 666 * that does not own the bio - reason being drivers don't use it for 667 * iterating over the biovec anymore, so expecting it to be kept up 668 * to date (i.e. for clones that share the parent biovec) is just 669 * asking for trouble and would force extra work on 670 * __bio_clone_fast() anyways. 671 */ 672 673 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src, 674 &iter_src), bs); 675 if (!bio) 676 return NULL; 677 bio->bi_bdev = bio_src->bi_bdev; 678 bio->bi_opf = bio_src->bi_opf; 679 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 680 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 681 682 switch (bio_op(bio)) { 683 case REQ_OP_DISCARD: 684 case REQ_OP_SECURE_ERASE: 685 case REQ_OP_WRITE_ZEROES: 686 break; 687 case REQ_OP_WRITE_SAME: 688 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 689 break; 690 default: 691 __bio_for_each_segment(bv, bio_src, iter, iter_src) 692 bio->bi_io_vec[bio->bi_vcnt++] = bv; 693 break; 694 } 695 696 if (bio_integrity(bio_src)) { 697 int ret; 698 699 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 700 if (ret < 0) { 701 bio_put(bio); 702 return NULL; 703 } 704 } 705 706 bio_clone_blkcg_association(bio, bio_src); 707 708 return bio; 709 } 710 711 /** 712 * bio_clone_bioset - clone a bio 713 * @bio_src: bio to clone 714 * @gfp_mask: allocation priority 715 * @bs: bio_set to allocate from 716 * 717 * Clone bio. Caller will own the returned bio, but not the actual data it 718 * points to. Reference count of returned bio will be one. 719 */ 720 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 721 struct bio_set *bs) 722 { 723 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0, 724 bio_src->bi_iter.bi_size); 725 } 726 EXPORT_SYMBOL(bio_clone_bioset); 727 728 /** 729 * bio_clone_bioset_partial - clone a partial bio 730 * @bio_src: bio to clone 731 * @gfp_mask: allocation priority 732 * @bs: bio_set to allocate from 733 * @offset: cloned starting from the offset 734 * @size: size for the cloned bio 735 * 736 * Clone bio. Caller will own the returned bio, but not the actual data it 737 * points to. Reference count of returned bio will be one. 738 */ 739 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask, 740 struct bio_set *bs, int offset, 741 int size) 742 { 743 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size); 744 } 745 EXPORT_SYMBOL(bio_clone_bioset_partial); 746 747 /** 748 * bio_add_pc_page - attempt to add page to bio 749 * @q: the target queue 750 * @bio: destination bio 751 * @page: page to add 752 * @len: vec entry length 753 * @offset: vec entry offset 754 * 755 * Attempt to add a page to the bio_vec maplist. This can fail for a 756 * number of reasons, such as the bio being full or target block device 757 * limitations. The target block device must allow bio's up to PAGE_SIZE, 758 * so it is always possible to add a single page to an empty bio. 759 * 760 * This should only be used by REQ_PC bios. 761 */ 762 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 763 *page, unsigned int len, unsigned int offset) 764 { 765 int retried_segments = 0; 766 struct bio_vec *bvec; 767 768 /* 769 * cloned bio must not modify vec list 770 */ 771 if (unlikely(bio_flagged(bio, BIO_CLONED))) 772 return 0; 773 774 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 775 return 0; 776 777 /* 778 * For filesystems with a blocksize smaller than the pagesize 779 * we will often be called with the same page as last time and 780 * a consecutive offset. Optimize this special case. 781 */ 782 if (bio->bi_vcnt > 0) { 783 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 784 785 if (page == prev->bv_page && 786 offset == prev->bv_offset + prev->bv_len) { 787 prev->bv_len += len; 788 bio->bi_iter.bi_size += len; 789 goto done; 790 } 791 792 /* 793 * If the queue doesn't support SG gaps and adding this 794 * offset would create a gap, disallow it. 795 */ 796 if (bvec_gap_to_prev(q, prev, offset)) 797 return 0; 798 } 799 800 if (bio->bi_vcnt >= bio->bi_max_vecs) 801 return 0; 802 803 /* 804 * setup the new entry, we might clear it again later if we 805 * cannot add the page 806 */ 807 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 808 bvec->bv_page = page; 809 bvec->bv_len = len; 810 bvec->bv_offset = offset; 811 bio->bi_vcnt++; 812 bio->bi_phys_segments++; 813 bio->bi_iter.bi_size += len; 814 815 /* 816 * Perform a recount if the number of segments is greater 817 * than queue_max_segments(q). 818 */ 819 820 while (bio->bi_phys_segments > queue_max_segments(q)) { 821 822 if (retried_segments) 823 goto failed; 824 825 retried_segments = 1; 826 blk_recount_segments(q, bio); 827 } 828 829 /* If we may be able to merge these biovecs, force a recount */ 830 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 831 bio_clear_flag(bio, BIO_SEG_VALID); 832 833 done: 834 return len; 835 836 failed: 837 bvec->bv_page = NULL; 838 bvec->bv_len = 0; 839 bvec->bv_offset = 0; 840 bio->bi_vcnt--; 841 bio->bi_iter.bi_size -= len; 842 blk_recount_segments(q, bio); 843 return 0; 844 } 845 EXPORT_SYMBOL(bio_add_pc_page); 846 847 /** 848 * bio_add_page - attempt to add page to bio 849 * @bio: destination bio 850 * @page: page to add 851 * @len: vec entry length 852 * @offset: vec entry offset 853 * 854 * Attempt to add a page to the bio_vec maplist. This will only fail 855 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 856 */ 857 int bio_add_page(struct bio *bio, struct page *page, 858 unsigned int len, unsigned int offset) 859 { 860 struct bio_vec *bv; 861 862 /* 863 * cloned bio must not modify vec list 864 */ 865 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 866 return 0; 867 868 /* 869 * For filesystems with a blocksize smaller than the pagesize 870 * we will often be called with the same page as last time and 871 * a consecutive offset. Optimize this special case. 872 */ 873 if (bio->bi_vcnt > 0) { 874 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 875 876 if (page == bv->bv_page && 877 offset == bv->bv_offset + bv->bv_len) { 878 bv->bv_len += len; 879 goto done; 880 } 881 } 882 883 if (bio->bi_vcnt >= bio->bi_max_vecs) 884 return 0; 885 886 bv = &bio->bi_io_vec[bio->bi_vcnt]; 887 bv->bv_page = page; 888 bv->bv_len = len; 889 bv->bv_offset = offset; 890 891 bio->bi_vcnt++; 892 done: 893 bio->bi_iter.bi_size += len; 894 return len; 895 } 896 EXPORT_SYMBOL(bio_add_page); 897 898 /** 899 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 900 * @bio: bio to add pages to 901 * @iter: iov iterator describing the region to be mapped 902 * 903 * Pins as many pages from *iter and appends them to @bio's bvec array. The 904 * pages will have to be released using put_page() when done. 905 */ 906 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 907 { 908 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 909 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 910 struct page **pages = (struct page **)bv; 911 size_t offset, diff; 912 ssize_t size; 913 914 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 915 if (unlikely(size <= 0)) 916 return size ? size : -EFAULT; 917 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 918 919 /* 920 * Deep magic below: We need to walk the pinned pages backwards 921 * because we are abusing the space allocated for the bio_vecs 922 * for the page array. Because the bio_vecs are larger than the 923 * page pointers by definition this will always work. But it also 924 * means we can't use bio_add_page, so any changes to it's semantics 925 * need to be reflected here as well. 926 */ 927 bio->bi_iter.bi_size += size; 928 bio->bi_vcnt += nr_pages; 929 930 diff = (nr_pages * PAGE_SIZE - offset) - size; 931 while (nr_pages--) { 932 bv[nr_pages].bv_page = pages[nr_pages]; 933 bv[nr_pages].bv_len = PAGE_SIZE; 934 bv[nr_pages].bv_offset = 0; 935 } 936 937 bv[0].bv_offset += offset; 938 bv[0].bv_len -= offset; 939 if (diff) 940 bv[bio->bi_vcnt - 1].bv_len -= diff; 941 942 iov_iter_advance(iter, size); 943 return 0; 944 } 945 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 946 947 struct submit_bio_ret { 948 struct completion event; 949 int error; 950 }; 951 952 static void submit_bio_wait_endio(struct bio *bio) 953 { 954 struct submit_bio_ret *ret = bio->bi_private; 955 956 ret->error = bio->bi_error; 957 complete(&ret->event); 958 } 959 960 /** 961 * submit_bio_wait - submit a bio, and wait until it completes 962 * @bio: The &struct bio which describes the I/O 963 * 964 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 965 * bio_endio() on failure. 966 */ 967 int submit_bio_wait(struct bio *bio) 968 { 969 struct submit_bio_ret ret; 970 971 init_completion(&ret.event); 972 bio->bi_private = &ret; 973 bio->bi_end_io = submit_bio_wait_endio; 974 bio->bi_opf |= REQ_SYNC; 975 submit_bio(bio); 976 wait_for_completion_io(&ret.event); 977 978 return ret.error; 979 } 980 EXPORT_SYMBOL(submit_bio_wait); 981 982 /** 983 * bio_advance - increment/complete a bio by some number of bytes 984 * @bio: bio to advance 985 * @bytes: number of bytes to complete 986 * 987 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 988 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 989 * be updated on the last bvec as well. 990 * 991 * @bio will then represent the remaining, uncompleted portion of the io. 992 */ 993 void bio_advance(struct bio *bio, unsigned bytes) 994 { 995 if (bio_integrity(bio)) 996 bio_integrity_advance(bio, bytes); 997 998 bio_advance_iter(bio, &bio->bi_iter, bytes); 999 } 1000 EXPORT_SYMBOL(bio_advance); 1001 1002 /** 1003 * bio_alloc_pages - allocates a single page for each bvec in a bio 1004 * @bio: bio to allocate pages for 1005 * @gfp_mask: flags for allocation 1006 * 1007 * Allocates pages up to @bio->bi_vcnt. 1008 * 1009 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 1010 * freed. 1011 */ 1012 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 1013 { 1014 int i; 1015 struct bio_vec *bv; 1016 1017 bio_for_each_segment_all(bv, bio, i) { 1018 bv->bv_page = alloc_page(gfp_mask); 1019 if (!bv->bv_page) { 1020 while (--bv >= bio->bi_io_vec) 1021 __free_page(bv->bv_page); 1022 return -ENOMEM; 1023 } 1024 } 1025 1026 return 0; 1027 } 1028 EXPORT_SYMBOL(bio_alloc_pages); 1029 1030 /** 1031 * bio_copy_data - copy contents of data buffers from one chain of bios to 1032 * another 1033 * @src: source bio list 1034 * @dst: destination bio list 1035 * 1036 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1037 * @src and @dst as linked lists of bios. 1038 * 1039 * Stops when it reaches the end of either @src or @dst - that is, copies 1040 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1041 */ 1042 void bio_copy_data(struct bio *dst, struct bio *src) 1043 { 1044 struct bvec_iter src_iter, dst_iter; 1045 struct bio_vec src_bv, dst_bv; 1046 void *src_p, *dst_p; 1047 unsigned bytes; 1048 1049 src_iter = src->bi_iter; 1050 dst_iter = dst->bi_iter; 1051 1052 while (1) { 1053 if (!src_iter.bi_size) { 1054 src = src->bi_next; 1055 if (!src) 1056 break; 1057 1058 src_iter = src->bi_iter; 1059 } 1060 1061 if (!dst_iter.bi_size) { 1062 dst = dst->bi_next; 1063 if (!dst) 1064 break; 1065 1066 dst_iter = dst->bi_iter; 1067 } 1068 1069 src_bv = bio_iter_iovec(src, src_iter); 1070 dst_bv = bio_iter_iovec(dst, dst_iter); 1071 1072 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1073 1074 src_p = kmap_atomic(src_bv.bv_page); 1075 dst_p = kmap_atomic(dst_bv.bv_page); 1076 1077 memcpy(dst_p + dst_bv.bv_offset, 1078 src_p + src_bv.bv_offset, 1079 bytes); 1080 1081 kunmap_atomic(dst_p); 1082 kunmap_atomic(src_p); 1083 1084 bio_advance_iter(src, &src_iter, bytes); 1085 bio_advance_iter(dst, &dst_iter, bytes); 1086 } 1087 } 1088 EXPORT_SYMBOL(bio_copy_data); 1089 1090 struct bio_map_data { 1091 int is_our_pages; 1092 struct iov_iter iter; 1093 struct iovec iov[]; 1094 }; 1095 1096 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, 1097 gfp_t gfp_mask) 1098 { 1099 if (iov_count > UIO_MAXIOV) 1100 return NULL; 1101 1102 return kmalloc(sizeof(struct bio_map_data) + 1103 sizeof(struct iovec) * iov_count, gfp_mask); 1104 } 1105 1106 /** 1107 * bio_copy_from_iter - copy all pages from iov_iter to bio 1108 * @bio: The &struct bio which describes the I/O as destination 1109 * @iter: iov_iter as source 1110 * 1111 * Copy all pages from iov_iter to bio. 1112 * Returns 0 on success, or error on failure. 1113 */ 1114 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) 1115 { 1116 int i; 1117 struct bio_vec *bvec; 1118 1119 bio_for_each_segment_all(bvec, bio, i) { 1120 ssize_t ret; 1121 1122 ret = copy_page_from_iter(bvec->bv_page, 1123 bvec->bv_offset, 1124 bvec->bv_len, 1125 &iter); 1126 1127 if (!iov_iter_count(&iter)) 1128 break; 1129 1130 if (ret < bvec->bv_len) 1131 return -EFAULT; 1132 } 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * bio_copy_to_iter - copy all pages from bio to iov_iter 1139 * @bio: The &struct bio which describes the I/O as source 1140 * @iter: iov_iter as destination 1141 * 1142 * Copy all pages from bio to iov_iter. 1143 * Returns 0 on success, or error on failure. 1144 */ 1145 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1146 { 1147 int i; 1148 struct bio_vec *bvec; 1149 1150 bio_for_each_segment_all(bvec, bio, i) { 1151 ssize_t ret; 1152 1153 ret = copy_page_to_iter(bvec->bv_page, 1154 bvec->bv_offset, 1155 bvec->bv_len, 1156 &iter); 1157 1158 if (!iov_iter_count(&iter)) 1159 break; 1160 1161 if (ret < bvec->bv_len) 1162 return -EFAULT; 1163 } 1164 1165 return 0; 1166 } 1167 1168 void bio_free_pages(struct bio *bio) 1169 { 1170 struct bio_vec *bvec; 1171 int i; 1172 1173 bio_for_each_segment_all(bvec, bio, i) 1174 __free_page(bvec->bv_page); 1175 } 1176 EXPORT_SYMBOL(bio_free_pages); 1177 1178 /** 1179 * bio_uncopy_user - finish previously mapped bio 1180 * @bio: bio being terminated 1181 * 1182 * Free pages allocated from bio_copy_user_iov() and write back data 1183 * to user space in case of a read. 1184 */ 1185 int bio_uncopy_user(struct bio *bio) 1186 { 1187 struct bio_map_data *bmd = bio->bi_private; 1188 int ret = 0; 1189 1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1191 /* 1192 * if we're in a workqueue, the request is orphaned, so 1193 * don't copy into a random user address space, just free 1194 * and return -EINTR so user space doesn't expect any data. 1195 */ 1196 if (!current->mm) 1197 ret = -EINTR; 1198 else if (bio_data_dir(bio) == READ) 1199 ret = bio_copy_to_iter(bio, bmd->iter); 1200 if (bmd->is_our_pages) 1201 bio_free_pages(bio); 1202 } 1203 kfree(bmd); 1204 bio_put(bio); 1205 return ret; 1206 } 1207 1208 /** 1209 * bio_copy_user_iov - copy user data to bio 1210 * @q: destination block queue 1211 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1212 * @iter: iovec iterator 1213 * @gfp_mask: memory allocation flags 1214 * 1215 * Prepares and returns a bio for indirect user io, bouncing data 1216 * to/from kernel pages as necessary. Must be paired with 1217 * call bio_uncopy_user() on io completion. 1218 */ 1219 struct bio *bio_copy_user_iov(struct request_queue *q, 1220 struct rq_map_data *map_data, 1221 const struct iov_iter *iter, 1222 gfp_t gfp_mask) 1223 { 1224 struct bio_map_data *bmd; 1225 struct page *page; 1226 struct bio *bio; 1227 int i, ret; 1228 int nr_pages = 0; 1229 unsigned int len = iter->count; 1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1231 1232 for (i = 0; i < iter->nr_segs; i++) { 1233 unsigned long uaddr; 1234 unsigned long end; 1235 unsigned long start; 1236 1237 uaddr = (unsigned long) iter->iov[i].iov_base; 1238 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) 1239 >> PAGE_SHIFT; 1240 start = uaddr >> PAGE_SHIFT; 1241 1242 /* 1243 * Overflow, abort 1244 */ 1245 if (end < start) 1246 return ERR_PTR(-EINVAL); 1247 1248 nr_pages += end - start; 1249 } 1250 1251 if (offset) 1252 nr_pages++; 1253 1254 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); 1255 if (!bmd) 1256 return ERR_PTR(-ENOMEM); 1257 1258 /* 1259 * We need to do a deep copy of the iov_iter including the iovecs. 1260 * The caller provided iov might point to an on-stack or otherwise 1261 * shortlived one. 1262 */ 1263 bmd->is_our_pages = map_data ? 0 : 1; 1264 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); 1265 iov_iter_init(&bmd->iter, iter->type, bmd->iov, 1266 iter->nr_segs, iter->count); 1267 1268 ret = -ENOMEM; 1269 bio = bio_kmalloc(gfp_mask, nr_pages); 1270 if (!bio) 1271 goto out_bmd; 1272 1273 ret = 0; 1274 1275 if (map_data) { 1276 nr_pages = 1 << map_data->page_order; 1277 i = map_data->offset / PAGE_SIZE; 1278 } 1279 while (len) { 1280 unsigned int bytes = PAGE_SIZE; 1281 1282 bytes -= offset; 1283 1284 if (bytes > len) 1285 bytes = len; 1286 1287 if (map_data) { 1288 if (i == map_data->nr_entries * nr_pages) { 1289 ret = -ENOMEM; 1290 break; 1291 } 1292 1293 page = map_data->pages[i / nr_pages]; 1294 page += (i % nr_pages); 1295 1296 i++; 1297 } else { 1298 page = alloc_page(q->bounce_gfp | gfp_mask); 1299 if (!page) { 1300 ret = -ENOMEM; 1301 break; 1302 } 1303 } 1304 1305 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1306 break; 1307 1308 len -= bytes; 1309 offset = 0; 1310 } 1311 1312 if (ret) 1313 goto cleanup; 1314 1315 /* 1316 * success 1317 */ 1318 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1319 (map_data && map_data->from_user)) { 1320 ret = bio_copy_from_iter(bio, *iter); 1321 if (ret) 1322 goto cleanup; 1323 } 1324 1325 bio->bi_private = bmd; 1326 return bio; 1327 cleanup: 1328 if (!map_data) 1329 bio_free_pages(bio); 1330 bio_put(bio); 1331 out_bmd: 1332 kfree(bmd); 1333 return ERR_PTR(ret); 1334 } 1335 1336 /** 1337 * bio_map_user_iov - map user iovec into bio 1338 * @q: the struct request_queue for the bio 1339 * @iter: iovec iterator 1340 * @gfp_mask: memory allocation flags 1341 * 1342 * Map the user space address into a bio suitable for io to a block 1343 * device. Returns an error pointer in case of error. 1344 */ 1345 struct bio *bio_map_user_iov(struct request_queue *q, 1346 const struct iov_iter *iter, 1347 gfp_t gfp_mask) 1348 { 1349 int j; 1350 int nr_pages = 0; 1351 struct page **pages; 1352 struct bio *bio; 1353 int cur_page = 0; 1354 int ret, offset; 1355 struct iov_iter i; 1356 struct iovec iov; 1357 1358 iov_for_each(iov, i, *iter) { 1359 unsigned long uaddr = (unsigned long) iov.iov_base; 1360 unsigned long len = iov.iov_len; 1361 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1362 unsigned long start = uaddr >> PAGE_SHIFT; 1363 1364 /* 1365 * Overflow, abort 1366 */ 1367 if (end < start) 1368 return ERR_PTR(-EINVAL); 1369 1370 nr_pages += end - start; 1371 /* 1372 * buffer must be aligned to at least logical block size for now 1373 */ 1374 if (uaddr & queue_dma_alignment(q)) 1375 return ERR_PTR(-EINVAL); 1376 } 1377 1378 if (!nr_pages) 1379 return ERR_PTR(-EINVAL); 1380 1381 bio = bio_kmalloc(gfp_mask, nr_pages); 1382 if (!bio) 1383 return ERR_PTR(-ENOMEM); 1384 1385 ret = -ENOMEM; 1386 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 1387 if (!pages) 1388 goto out; 1389 1390 iov_for_each(iov, i, *iter) { 1391 unsigned long uaddr = (unsigned long) iov.iov_base; 1392 unsigned long len = iov.iov_len; 1393 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1394 unsigned long start = uaddr >> PAGE_SHIFT; 1395 const int local_nr_pages = end - start; 1396 const int page_limit = cur_page + local_nr_pages; 1397 1398 ret = get_user_pages_fast(uaddr, local_nr_pages, 1399 (iter->type & WRITE) != WRITE, 1400 &pages[cur_page]); 1401 if (ret < local_nr_pages) { 1402 ret = -EFAULT; 1403 goto out_unmap; 1404 } 1405 1406 offset = offset_in_page(uaddr); 1407 for (j = cur_page; j < page_limit; j++) { 1408 unsigned int bytes = PAGE_SIZE - offset; 1409 1410 if (len <= 0) 1411 break; 1412 1413 if (bytes > len) 1414 bytes = len; 1415 1416 /* 1417 * sorry... 1418 */ 1419 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1420 bytes) 1421 break; 1422 1423 len -= bytes; 1424 offset = 0; 1425 } 1426 1427 cur_page = j; 1428 /* 1429 * release the pages we didn't map into the bio, if any 1430 */ 1431 while (j < page_limit) 1432 put_page(pages[j++]); 1433 } 1434 1435 kfree(pages); 1436 1437 bio_set_flag(bio, BIO_USER_MAPPED); 1438 1439 /* 1440 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1441 * it would normally disappear when its bi_end_io is run. 1442 * however, we need it for the unmap, so grab an extra 1443 * reference to it 1444 */ 1445 bio_get(bio); 1446 return bio; 1447 1448 out_unmap: 1449 for (j = 0; j < nr_pages; j++) { 1450 if (!pages[j]) 1451 break; 1452 put_page(pages[j]); 1453 } 1454 out: 1455 kfree(pages); 1456 bio_put(bio); 1457 return ERR_PTR(ret); 1458 } 1459 1460 static void __bio_unmap_user(struct bio *bio) 1461 { 1462 struct bio_vec *bvec; 1463 int i; 1464 1465 /* 1466 * make sure we dirty pages we wrote to 1467 */ 1468 bio_for_each_segment_all(bvec, bio, i) { 1469 if (bio_data_dir(bio) == READ) 1470 set_page_dirty_lock(bvec->bv_page); 1471 1472 put_page(bvec->bv_page); 1473 } 1474 1475 bio_put(bio); 1476 } 1477 1478 /** 1479 * bio_unmap_user - unmap a bio 1480 * @bio: the bio being unmapped 1481 * 1482 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1483 * process context. 1484 * 1485 * bio_unmap_user() may sleep. 1486 */ 1487 void bio_unmap_user(struct bio *bio) 1488 { 1489 __bio_unmap_user(bio); 1490 bio_put(bio); 1491 } 1492 1493 static void bio_map_kern_endio(struct bio *bio) 1494 { 1495 bio_put(bio); 1496 } 1497 1498 /** 1499 * bio_map_kern - map kernel address into bio 1500 * @q: the struct request_queue for the bio 1501 * @data: pointer to buffer to map 1502 * @len: length in bytes 1503 * @gfp_mask: allocation flags for bio allocation 1504 * 1505 * Map the kernel address into a bio suitable for io to a block 1506 * device. Returns an error pointer in case of error. 1507 */ 1508 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1509 gfp_t gfp_mask) 1510 { 1511 unsigned long kaddr = (unsigned long)data; 1512 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1513 unsigned long start = kaddr >> PAGE_SHIFT; 1514 const int nr_pages = end - start; 1515 int offset, i; 1516 struct bio *bio; 1517 1518 bio = bio_kmalloc(gfp_mask, nr_pages); 1519 if (!bio) 1520 return ERR_PTR(-ENOMEM); 1521 1522 offset = offset_in_page(kaddr); 1523 for (i = 0; i < nr_pages; i++) { 1524 unsigned int bytes = PAGE_SIZE - offset; 1525 1526 if (len <= 0) 1527 break; 1528 1529 if (bytes > len) 1530 bytes = len; 1531 1532 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1533 offset) < bytes) { 1534 /* we don't support partial mappings */ 1535 bio_put(bio); 1536 return ERR_PTR(-EINVAL); 1537 } 1538 1539 data += bytes; 1540 len -= bytes; 1541 offset = 0; 1542 } 1543 1544 bio->bi_end_io = bio_map_kern_endio; 1545 return bio; 1546 } 1547 EXPORT_SYMBOL(bio_map_kern); 1548 1549 static void bio_copy_kern_endio(struct bio *bio) 1550 { 1551 bio_free_pages(bio); 1552 bio_put(bio); 1553 } 1554 1555 static void bio_copy_kern_endio_read(struct bio *bio) 1556 { 1557 char *p = bio->bi_private; 1558 struct bio_vec *bvec; 1559 int i; 1560 1561 bio_for_each_segment_all(bvec, bio, i) { 1562 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1563 p += bvec->bv_len; 1564 } 1565 1566 bio_copy_kern_endio(bio); 1567 } 1568 1569 /** 1570 * bio_copy_kern - copy kernel address into bio 1571 * @q: the struct request_queue for the bio 1572 * @data: pointer to buffer to copy 1573 * @len: length in bytes 1574 * @gfp_mask: allocation flags for bio and page allocation 1575 * @reading: data direction is READ 1576 * 1577 * copy the kernel address into a bio suitable for io to a block 1578 * device. Returns an error pointer in case of error. 1579 */ 1580 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1581 gfp_t gfp_mask, int reading) 1582 { 1583 unsigned long kaddr = (unsigned long)data; 1584 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1585 unsigned long start = kaddr >> PAGE_SHIFT; 1586 struct bio *bio; 1587 void *p = data; 1588 int nr_pages = 0; 1589 1590 /* 1591 * Overflow, abort 1592 */ 1593 if (end < start) 1594 return ERR_PTR(-EINVAL); 1595 1596 nr_pages = end - start; 1597 bio = bio_kmalloc(gfp_mask, nr_pages); 1598 if (!bio) 1599 return ERR_PTR(-ENOMEM); 1600 1601 while (len) { 1602 struct page *page; 1603 unsigned int bytes = PAGE_SIZE; 1604 1605 if (bytes > len) 1606 bytes = len; 1607 1608 page = alloc_page(q->bounce_gfp | gfp_mask); 1609 if (!page) 1610 goto cleanup; 1611 1612 if (!reading) 1613 memcpy(page_address(page), p, bytes); 1614 1615 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1616 break; 1617 1618 len -= bytes; 1619 p += bytes; 1620 } 1621 1622 if (reading) { 1623 bio->bi_end_io = bio_copy_kern_endio_read; 1624 bio->bi_private = data; 1625 } else { 1626 bio->bi_end_io = bio_copy_kern_endio; 1627 } 1628 1629 return bio; 1630 1631 cleanup: 1632 bio_free_pages(bio); 1633 bio_put(bio); 1634 return ERR_PTR(-ENOMEM); 1635 } 1636 1637 /* 1638 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1639 * for performing direct-IO in BIOs. 1640 * 1641 * The problem is that we cannot run set_page_dirty() from interrupt context 1642 * because the required locks are not interrupt-safe. So what we can do is to 1643 * mark the pages dirty _before_ performing IO. And in interrupt context, 1644 * check that the pages are still dirty. If so, fine. If not, redirty them 1645 * in process context. 1646 * 1647 * We special-case compound pages here: normally this means reads into hugetlb 1648 * pages. The logic in here doesn't really work right for compound pages 1649 * because the VM does not uniformly chase down the head page in all cases. 1650 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1651 * handle them at all. So we skip compound pages here at an early stage. 1652 * 1653 * Note that this code is very hard to test under normal circumstances because 1654 * direct-io pins the pages with get_user_pages(). This makes 1655 * is_page_cache_freeable return false, and the VM will not clean the pages. 1656 * But other code (eg, flusher threads) could clean the pages if they are mapped 1657 * pagecache. 1658 * 1659 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1660 * deferred bio dirtying paths. 1661 */ 1662 1663 /* 1664 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1665 */ 1666 void bio_set_pages_dirty(struct bio *bio) 1667 { 1668 struct bio_vec *bvec; 1669 int i; 1670 1671 bio_for_each_segment_all(bvec, bio, i) { 1672 struct page *page = bvec->bv_page; 1673 1674 if (page && !PageCompound(page)) 1675 set_page_dirty_lock(page); 1676 } 1677 } 1678 1679 static void bio_release_pages(struct bio *bio) 1680 { 1681 struct bio_vec *bvec; 1682 int i; 1683 1684 bio_for_each_segment_all(bvec, bio, i) { 1685 struct page *page = bvec->bv_page; 1686 1687 if (page) 1688 put_page(page); 1689 } 1690 } 1691 1692 /* 1693 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1694 * If they are, then fine. If, however, some pages are clean then they must 1695 * have been written out during the direct-IO read. So we take another ref on 1696 * the BIO and the offending pages and re-dirty the pages in process context. 1697 * 1698 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1699 * here on. It will run one put_page() against each page and will run one 1700 * bio_put() against the BIO. 1701 */ 1702 1703 static void bio_dirty_fn(struct work_struct *work); 1704 1705 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1706 static DEFINE_SPINLOCK(bio_dirty_lock); 1707 static struct bio *bio_dirty_list; 1708 1709 /* 1710 * This runs in process context 1711 */ 1712 static void bio_dirty_fn(struct work_struct *work) 1713 { 1714 unsigned long flags; 1715 struct bio *bio; 1716 1717 spin_lock_irqsave(&bio_dirty_lock, flags); 1718 bio = bio_dirty_list; 1719 bio_dirty_list = NULL; 1720 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1721 1722 while (bio) { 1723 struct bio *next = bio->bi_private; 1724 1725 bio_set_pages_dirty(bio); 1726 bio_release_pages(bio); 1727 bio_put(bio); 1728 bio = next; 1729 } 1730 } 1731 1732 void bio_check_pages_dirty(struct bio *bio) 1733 { 1734 struct bio_vec *bvec; 1735 int nr_clean_pages = 0; 1736 int i; 1737 1738 bio_for_each_segment_all(bvec, bio, i) { 1739 struct page *page = bvec->bv_page; 1740 1741 if (PageDirty(page) || PageCompound(page)) { 1742 put_page(page); 1743 bvec->bv_page = NULL; 1744 } else { 1745 nr_clean_pages++; 1746 } 1747 } 1748 1749 if (nr_clean_pages) { 1750 unsigned long flags; 1751 1752 spin_lock_irqsave(&bio_dirty_lock, flags); 1753 bio->bi_private = bio_dirty_list; 1754 bio_dirty_list = bio; 1755 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1756 schedule_work(&bio_dirty_work); 1757 } else { 1758 bio_put(bio); 1759 } 1760 } 1761 1762 void generic_start_io_acct(int rw, unsigned long sectors, 1763 struct hd_struct *part) 1764 { 1765 int cpu = part_stat_lock(); 1766 1767 part_round_stats(cpu, part); 1768 part_stat_inc(cpu, part, ios[rw]); 1769 part_stat_add(cpu, part, sectors[rw], sectors); 1770 part_inc_in_flight(part, rw); 1771 1772 part_stat_unlock(); 1773 } 1774 EXPORT_SYMBOL(generic_start_io_acct); 1775 1776 void generic_end_io_acct(int rw, struct hd_struct *part, 1777 unsigned long start_time) 1778 { 1779 unsigned long duration = jiffies - start_time; 1780 int cpu = part_stat_lock(); 1781 1782 part_stat_add(cpu, part, ticks[rw], duration); 1783 part_round_stats(cpu, part); 1784 part_dec_in_flight(part, rw); 1785 1786 part_stat_unlock(); 1787 } 1788 EXPORT_SYMBOL(generic_end_io_acct); 1789 1790 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1791 void bio_flush_dcache_pages(struct bio *bi) 1792 { 1793 struct bio_vec bvec; 1794 struct bvec_iter iter; 1795 1796 bio_for_each_segment(bvec, bi, iter) 1797 flush_dcache_page(bvec.bv_page); 1798 } 1799 EXPORT_SYMBOL(bio_flush_dcache_pages); 1800 #endif 1801 1802 static inline bool bio_remaining_done(struct bio *bio) 1803 { 1804 /* 1805 * If we're not chaining, then ->__bi_remaining is always 1 and 1806 * we always end io on the first invocation. 1807 */ 1808 if (!bio_flagged(bio, BIO_CHAIN)) 1809 return true; 1810 1811 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1812 1813 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1814 bio_clear_flag(bio, BIO_CHAIN); 1815 return true; 1816 } 1817 1818 return false; 1819 } 1820 1821 /** 1822 * bio_endio - end I/O on a bio 1823 * @bio: bio 1824 * 1825 * Description: 1826 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1827 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1828 * bio unless they own it and thus know that it has an end_io function. 1829 * 1830 * bio_endio() can be called several times on a bio that has been chained 1831 * using bio_chain(). The ->bi_end_io() function will only be called the 1832 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1833 * generated if BIO_TRACE_COMPLETION is set. 1834 **/ 1835 void bio_endio(struct bio *bio) 1836 { 1837 again: 1838 if (!bio_remaining_done(bio)) 1839 return; 1840 1841 /* 1842 * Need to have a real endio function for chained bios, otherwise 1843 * various corner cases will break (like stacking block devices that 1844 * save/restore bi_end_io) - however, we want to avoid unbounded 1845 * recursion and blowing the stack. Tail call optimization would 1846 * handle this, but compiling with frame pointers also disables 1847 * gcc's sibling call optimization. 1848 */ 1849 if (bio->bi_end_io == bio_chain_endio) { 1850 bio = __bio_chain_endio(bio); 1851 goto again; 1852 } 1853 1854 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1855 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), 1856 bio, bio->bi_error); 1857 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1858 } 1859 1860 blk_throtl_bio_endio(bio); 1861 if (bio->bi_end_io) 1862 bio->bi_end_io(bio); 1863 } 1864 EXPORT_SYMBOL(bio_endio); 1865 1866 /** 1867 * bio_split - split a bio 1868 * @bio: bio to split 1869 * @sectors: number of sectors to split from the front of @bio 1870 * @gfp: gfp mask 1871 * @bs: bio set to allocate from 1872 * 1873 * Allocates and returns a new bio which represents @sectors from the start of 1874 * @bio, and updates @bio to represent the remaining sectors. 1875 * 1876 * Unless this is a discard request the newly allocated bio will point 1877 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1878 * @bio is not freed before the split. 1879 */ 1880 struct bio *bio_split(struct bio *bio, int sectors, 1881 gfp_t gfp, struct bio_set *bs) 1882 { 1883 struct bio *split = NULL; 1884 1885 BUG_ON(sectors <= 0); 1886 BUG_ON(sectors >= bio_sectors(bio)); 1887 1888 split = bio_clone_fast(bio, gfp, bs); 1889 if (!split) 1890 return NULL; 1891 1892 split->bi_iter.bi_size = sectors << 9; 1893 1894 if (bio_integrity(split)) 1895 bio_integrity_trim(split, 0, sectors); 1896 1897 bio_advance(bio, split->bi_iter.bi_size); 1898 1899 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1900 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1901 1902 return split; 1903 } 1904 EXPORT_SYMBOL(bio_split); 1905 1906 /** 1907 * bio_trim - trim a bio 1908 * @bio: bio to trim 1909 * @offset: number of sectors to trim from the front of @bio 1910 * @size: size we want to trim @bio to, in sectors 1911 */ 1912 void bio_trim(struct bio *bio, int offset, int size) 1913 { 1914 /* 'bio' is a cloned bio which we need to trim to match 1915 * the given offset and size. 1916 */ 1917 1918 size <<= 9; 1919 if (offset == 0 && size == bio->bi_iter.bi_size) 1920 return; 1921 1922 bio_clear_flag(bio, BIO_SEG_VALID); 1923 1924 bio_advance(bio, offset << 9); 1925 1926 bio->bi_iter.bi_size = size; 1927 } 1928 EXPORT_SYMBOL_GPL(bio_trim); 1929 1930 /* 1931 * create memory pools for biovec's in a bio_set. 1932 * use the global biovec slabs created for general use. 1933 */ 1934 mempool_t *biovec_create_pool(int pool_entries) 1935 { 1936 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1937 1938 return mempool_create_slab_pool(pool_entries, bp->slab); 1939 } 1940 1941 void bioset_free(struct bio_set *bs) 1942 { 1943 if (bs->rescue_workqueue) 1944 destroy_workqueue(bs->rescue_workqueue); 1945 1946 if (bs->bio_pool) 1947 mempool_destroy(bs->bio_pool); 1948 1949 if (bs->bvec_pool) 1950 mempool_destroy(bs->bvec_pool); 1951 1952 bioset_integrity_free(bs); 1953 bio_put_slab(bs); 1954 1955 kfree(bs); 1956 } 1957 EXPORT_SYMBOL(bioset_free); 1958 1959 static struct bio_set *__bioset_create(unsigned int pool_size, 1960 unsigned int front_pad, 1961 bool create_bvec_pool) 1962 { 1963 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1964 struct bio_set *bs; 1965 1966 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1967 if (!bs) 1968 return NULL; 1969 1970 bs->front_pad = front_pad; 1971 1972 spin_lock_init(&bs->rescue_lock); 1973 bio_list_init(&bs->rescue_list); 1974 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1975 1976 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1977 if (!bs->bio_slab) { 1978 kfree(bs); 1979 return NULL; 1980 } 1981 1982 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1983 if (!bs->bio_pool) 1984 goto bad; 1985 1986 if (create_bvec_pool) { 1987 bs->bvec_pool = biovec_create_pool(pool_size); 1988 if (!bs->bvec_pool) 1989 goto bad; 1990 } 1991 1992 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1993 if (!bs->rescue_workqueue) 1994 goto bad; 1995 1996 return bs; 1997 bad: 1998 bioset_free(bs); 1999 return NULL; 2000 } 2001 2002 /** 2003 * bioset_create - Create a bio_set 2004 * @pool_size: Number of bio and bio_vecs to cache in the mempool 2005 * @front_pad: Number of bytes to allocate in front of the returned bio 2006 * 2007 * Description: 2008 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 2009 * to ask for a number of bytes to be allocated in front of the bio. 2010 * Front pad allocation is useful for embedding the bio inside 2011 * another structure, to avoid allocating extra data to go with the bio. 2012 * Note that the bio must be embedded at the END of that structure always, 2013 * or things will break badly. 2014 */ 2015 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 2016 { 2017 return __bioset_create(pool_size, front_pad, true); 2018 } 2019 EXPORT_SYMBOL(bioset_create); 2020 2021 /** 2022 * bioset_create_nobvec - Create a bio_set without bio_vec mempool 2023 * @pool_size: Number of bio to cache in the mempool 2024 * @front_pad: Number of bytes to allocate in front of the returned bio 2025 * 2026 * Description: 2027 * Same functionality as bioset_create() except that mempool is not 2028 * created for bio_vecs. Saving some memory for bio_clone_fast() users. 2029 */ 2030 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) 2031 { 2032 return __bioset_create(pool_size, front_pad, false); 2033 } 2034 EXPORT_SYMBOL(bioset_create_nobvec); 2035 2036 #ifdef CONFIG_BLK_CGROUP 2037 2038 /** 2039 * bio_associate_blkcg - associate a bio with the specified blkcg 2040 * @bio: target bio 2041 * @blkcg_css: css of the blkcg to associate 2042 * 2043 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 2044 * treat @bio as if it were issued by a task which belongs to the blkcg. 2045 * 2046 * This function takes an extra reference of @blkcg_css which will be put 2047 * when @bio is released. The caller must own @bio and is responsible for 2048 * synchronizing calls to this function. 2049 */ 2050 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 2051 { 2052 if (unlikely(bio->bi_css)) 2053 return -EBUSY; 2054 css_get(blkcg_css); 2055 bio->bi_css = blkcg_css; 2056 return 0; 2057 } 2058 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 2059 2060 /** 2061 * bio_associate_current - associate a bio with %current 2062 * @bio: target bio 2063 * 2064 * Associate @bio with %current if it hasn't been associated yet. Block 2065 * layer will treat @bio as if it were issued by %current no matter which 2066 * task actually issues it. 2067 * 2068 * This function takes an extra reference of @task's io_context and blkcg 2069 * which will be put when @bio is released. The caller must own @bio, 2070 * ensure %current->io_context exists, and is responsible for synchronizing 2071 * calls to this function. 2072 */ 2073 int bio_associate_current(struct bio *bio) 2074 { 2075 struct io_context *ioc; 2076 2077 if (bio->bi_css) 2078 return -EBUSY; 2079 2080 ioc = current->io_context; 2081 if (!ioc) 2082 return -ENOENT; 2083 2084 get_io_context_active(ioc); 2085 bio->bi_ioc = ioc; 2086 bio->bi_css = task_get_css(current, io_cgrp_id); 2087 return 0; 2088 } 2089 EXPORT_SYMBOL_GPL(bio_associate_current); 2090 2091 /** 2092 * bio_disassociate_task - undo bio_associate_current() 2093 * @bio: target bio 2094 */ 2095 void bio_disassociate_task(struct bio *bio) 2096 { 2097 if (bio->bi_ioc) { 2098 put_io_context(bio->bi_ioc); 2099 bio->bi_ioc = NULL; 2100 } 2101 if (bio->bi_css) { 2102 css_put(bio->bi_css); 2103 bio->bi_css = NULL; 2104 } 2105 } 2106 2107 /** 2108 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2109 * @dst: destination bio 2110 * @src: source bio 2111 */ 2112 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2113 { 2114 if (src->bi_css) 2115 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2116 } 2117 2118 #endif /* CONFIG_BLK_CGROUP */ 2119 2120 static void __init biovec_init_slabs(void) 2121 { 2122 int i; 2123 2124 for (i = 0; i < BVEC_POOL_NR; i++) { 2125 int size; 2126 struct biovec_slab *bvs = bvec_slabs + i; 2127 2128 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2129 bvs->slab = NULL; 2130 continue; 2131 } 2132 2133 size = bvs->nr_vecs * sizeof(struct bio_vec); 2134 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2135 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2136 } 2137 } 2138 2139 static int __init init_bio(void) 2140 { 2141 bio_slab_max = 2; 2142 bio_slab_nr = 0; 2143 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2144 if (!bio_slabs) 2145 panic("bio: can't allocate bios\n"); 2146 2147 bio_integrity_init(); 2148 biovec_init_slabs(); 2149 2150 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 2151 if (!fs_bio_set) 2152 panic("bio: can't allocate bios\n"); 2153 2154 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2155 panic("bio: can't create integrity pool\n"); 2156 2157 return 0; 2158 } 2159 subsys_initcall(init_bio); 2160