xref: /openbmc/linux/block/bio.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 #include "blk.h"
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 				 SLAB_HWCACHE_ALIGN, NULL);
117 	if (!slab)
118 		goto out_unlock;
119 
120 	bslab->slab = slab;
121 	bslab->slab_ref = 1;
122 	bslab->slab_size = sz;
123 out_unlock:
124 	mutex_unlock(&bio_slab_lock);
125 	return slab;
126 }
127 
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 	struct bio_slab *bslab = NULL;
131 	unsigned int i;
132 
133 	mutex_lock(&bio_slab_lock);
134 
135 	for (i = 0; i < bio_slab_nr; i++) {
136 		if (bs->bio_slab == bio_slabs[i].slab) {
137 			bslab = &bio_slabs[i];
138 			break;
139 		}
140 	}
141 
142 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 		goto out;
144 
145 	WARN_ON(!bslab->slab_ref);
146 
147 	if (--bslab->slab_ref)
148 		goto out;
149 
150 	kmem_cache_destroy(bslab->slab);
151 	bslab->slab = NULL;
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 	return bvec_slabs[idx].nr_vecs;
160 }
161 
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 	if (!idx)
165 		return;
166 	idx--;
167 
168 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
169 
170 	if (idx == BVEC_POOL_MAX) {
171 		mempool_free(bv, pool);
172 	} else {
173 		struct biovec_slab *bvs = bvec_slabs + idx;
174 
175 		kmem_cache_free(bvs->slab, bv);
176 	}
177 }
178 
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 			   mempool_t *pool)
181 {
182 	struct bio_vec *bvl;
183 
184 	/*
185 	 * see comment near bvec_array define!
186 	 */
187 	switch (nr) {
188 	case 1:
189 		*idx = 0;
190 		break;
191 	case 2 ... 4:
192 		*idx = 1;
193 		break;
194 	case 5 ... 16:
195 		*idx = 2;
196 		break;
197 	case 17 ... 64:
198 		*idx = 3;
199 		break;
200 	case 65 ... 128:
201 		*idx = 4;
202 		break;
203 	case 129 ... BIO_MAX_PAGES:
204 		*idx = 5;
205 		break;
206 	default:
207 		return NULL;
208 	}
209 
210 	/*
211 	 * idx now points to the pool we want to allocate from. only the
212 	 * 1-vec entry pool is mempool backed.
213 	 */
214 	if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 		bvl = mempool_alloc(pool, gfp_mask);
217 	} else {
218 		struct biovec_slab *bvs = bvec_slabs + *idx;
219 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220 
221 		/*
222 		 * Make this allocation restricted and don't dump info on
223 		 * allocation failures, since we'll fallback to the mempool
224 		 * in case of failure.
225 		 */
226 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227 
228 		/*
229 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 		 * is set, retry with the 1-entry mempool
231 		 */
232 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 			*idx = BVEC_POOL_MAX;
235 			goto fallback;
236 		}
237 	}
238 
239 	(*idx)++;
240 	return bvl;
241 }
242 
243 static void __bio_free(struct bio *bio)
244 {
245 	bio_disassociate_task(bio);
246 
247 	if (bio_integrity(bio))
248 		bio_integrity_free(bio);
249 }
250 
251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	__bio_free(bio);
257 
258 	if (bs) {
259 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
260 
261 		/*
262 		 * If we have front padding, adjust the bio pointer before freeing
263 		 */
264 		p = bio;
265 		p -= bs->front_pad;
266 
267 		mempool_free(p, bs->bio_pool);
268 	} else {
269 		/* Bio was allocated by bio_kmalloc() */
270 		kfree(bio);
271 	}
272 }
273 
274 void bio_init(struct bio *bio, struct bio_vec *table,
275 	      unsigned short max_vecs)
276 {
277 	memset(bio, 0, sizeof(*bio));
278 	atomic_set(&bio->__bi_remaining, 1);
279 	atomic_set(&bio->__bi_cnt, 1);
280 
281 	bio->bi_io_vec = table;
282 	bio->bi_max_vecs = max_vecs;
283 }
284 EXPORT_SYMBOL(bio_init);
285 
286 /**
287  * bio_reset - reinitialize a bio
288  * @bio:	bio to reset
289  *
290  * Description:
291  *   After calling bio_reset(), @bio will be in the same state as a freshly
292  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
293  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
294  *   comment in struct bio.
295  */
296 void bio_reset(struct bio *bio)
297 {
298 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299 
300 	__bio_free(bio);
301 
302 	memset(bio, 0, BIO_RESET_BYTES);
303 	bio->bi_flags = flags;
304 	atomic_set(&bio->__bi_remaining, 1);
305 }
306 EXPORT_SYMBOL(bio_reset);
307 
308 static struct bio *__bio_chain_endio(struct bio *bio)
309 {
310 	struct bio *parent = bio->bi_private;
311 
312 	if (!parent->bi_error)
313 		parent->bi_error = bio->bi_error;
314 	bio_put(bio);
315 	return parent;
316 }
317 
318 static void bio_chain_endio(struct bio *bio)
319 {
320 	bio_endio(__bio_chain_endio(bio));
321 }
322 
323 /**
324  * bio_chain - chain bio completions
325  * @bio: the target bio
326  * @parent: the @bio's parent bio
327  *
328  * The caller won't have a bi_end_io called when @bio completes - instead,
329  * @parent's bi_end_io won't be called until both @parent and @bio have
330  * completed; the chained bio will also be freed when it completes.
331  *
332  * The caller must not set bi_private or bi_end_io in @bio.
333  */
334 void bio_chain(struct bio *bio, struct bio *parent)
335 {
336 	BUG_ON(bio->bi_private || bio->bi_end_io);
337 
338 	bio->bi_private = parent;
339 	bio->bi_end_io	= bio_chain_endio;
340 	bio_inc_remaining(parent);
341 }
342 EXPORT_SYMBOL(bio_chain);
343 
344 static void bio_alloc_rescue(struct work_struct *work)
345 {
346 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 	struct bio *bio;
348 
349 	while (1) {
350 		spin_lock(&bs->rescue_lock);
351 		bio = bio_list_pop(&bs->rescue_list);
352 		spin_unlock(&bs->rescue_lock);
353 
354 		if (!bio)
355 			break;
356 
357 		generic_make_request(bio);
358 	}
359 }
360 
361 static void punt_bios_to_rescuer(struct bio_set *bs)
362 {
363 	struct bio_list punt, nopunt;
364 	struct bio *bio;
365 
366 	/*
367 	 * In order to guarantee forward progress we must punt only bios that
368 	 * were allocated from this bio_set; otherwise, if there was a bio on
369 	 * there for a stacking driver higher up in the stack, processing it
370 	 * could require allocating bios from this bio_set, and doing that from
371 	 * our own rescuer would be bad.
372 	 *
373 	 * Since bio lists are singly linked, pop them all instead of trying to
374 	 * remove from the middle of the list:
375 	 */
376 
377 	bio_list_init(&punt);
378 	bio_list_init(&nopunt);
379 
380 	while ((bio = bio_list_pop(&current->bio_list[0])))
381 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 	current->bio_list[0] = nopunt;
383 
384 	bio_list_init(&nopunt);
385 	while ((bio = bio_list_pop(&current->bio_list[1])))
386 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 	current->bio_list[1] = nopunt;
388 
389 	spin_lock(&bs->rescue_lock);
390 	bio_list_merge(&bs->rescue_list, &punt);
391 	spin_unlock(&bs->rescue_lock);
392 
393 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
394 }
395 
396 /**
397  * bio_alloc_bioset - allocate a bio for I/O
398  * @gfp_mask:   the GFP_ mask given to the slab allocator
399  * @nr_iovecs:	number of iovecs to pre-allocate
400  * @bs:		the bio_set to allocate from.
401  *
402  * Description:
403  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
404  *   backed by the @bs's mempool.
405  *
406  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
407  *   always be able to allocate a bio. This is due to the mempool guarantees.
408  *   To make this work, callers must never allocate more than 1 bio at a time
409  *   from this pool. Callers that need to allocate more than 1 bio must always
410  *   submit the previously allocated bio for IO before attempting to allocate
411  *   a new one. Failure to do so can cause deadlocks under memory pressure.
412  *
413  *   Note that when running under generic_make_request() (i.e. any block
414  *   driver), bios are not submitted until after you return - see the code in
415  *   generic_make_request() that converts recursion into iteration, to prevent
416  *   stack overflows.
417  *
418  *   This would normally mean allocating multiple bios under
419  *   generic_make_request() would be susceptible to deadlocks, but we have
420  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
421  *   thread.
422  *
423  *   However, we do not guarantee forward progress for allocations from other
424  *   mempools. Doing multiple allocations from the same mempool under
425  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
426  *   for per bio allocations.
427  *
428  *   RETURNS:
429  *   Pointer to new bio on success, NULL on failure.
430  */
431 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
432 			     struct bio_set *bs)
433 {
434 	gfp_t saved_gfp = gfp_mask;
435 	unsigned front_pad;
436 	unsigned inline_vecs;
437 	struct bio_vec *bvl = NULL;
438 	struct bio *bio;
439 	void *p;
440 
441 	if (!bs) {
442 		if (nr_iovecs > UIO_MAXIOV)
443 			return NULL;
444 
445 		p = kmalloc(sizeof(struct bio) +
446 			    nr_iovecs * sizeof(struct bio_vec),
447 			    gfp_mask);
448 		front_pad = 0;
449 		inline_vecs = nr_iovecs;
450 	} else {
451 		/* should not use nobvec bioset for nr_iovecs > 0 */
452 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
453 			return NULL;
454 		/*
455 		 * generic_make_request() converts recursion to iteration; this
456 		 * means if we're running beneath it, any bios we allocate and
457 		 * submit will not be submitted (and thus freed) until after we
458 		 * return.
459 		 *
460 		 * This exposes us to a potential deadlock if we allocate
461 		 * multiple bios from the same bio_set() while running
462 		 * underneath generic_make_request(). If we were to allocate
463 		 * multiple bios (say a stacking block driver that was splitting
464 		 * bios), we would deadlock if we exhausted the mempool's
465 		 * reserve.
466 		 *
467 		 * We solve this, and guarantee forward progress, with a rescuer
468 		 * workqueue per bio_set. If we go to allocate and there are
469 		 * bios on current->bio_list, we first try the allocation
470 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 		 * bios we would be blocking to the rescuer workqueue before
472 		 * we retry with the original gfp_flags.
473 		 */
474 
475 		if (current->bio_list &&
476 		    (!bio_list_empty(&current->bio_list[0]) ||
477 		     !bio_list_empty(&current->bio_list[1])))
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio(struct bio *bio)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	bio_for_each_segment(bv, bio, iter) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio);
540 
541 /**
542  * bio_put - release a reference to a bio
543  * @bio:   bio to release reference to
544  *
545  * Description:
546  *   Put a reference to a &struct bio, either one you have gotten with
547  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
548  **/
549 void bio_put(struct bio *bio)
550 {
551 	if (!bio_flagged(bio, BIO_REFFED))
552 		bio_free(bio);
553 	else {
554 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555 
556 		/*
557 		 * last put frees it
558 		 */
559 		if (atomic_dec_and_test(&bio->__bi_cnt))
560 			bio_free(bio);
561 	}
562 }
563 EXPORT_SYMBOL(bio_put);
564 
565 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
566 {
567 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
568 		blk_recount_segments(q, bio);
569 
570 	return bio->bi_phys_segments;
571 }
572 EXPORT_SYMBOL(bio_phys_segments);
573 
574 /**
575  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
576  * 	@bio: destination bio
577  * 	@bio_src: bio to clone
578  *
579  *	Clone a &bio. Caller will own the returned bio, but not
580  *	the actual data it points to. Reference count of returned
581  * 	bio will be one.
582  *
583  * 	Caller must ensure that @bio_src is not freed before @bio.
584  */
585 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
586 {
587 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
588 
589 	/*
590 	 * most users will be overriding ->bi_bdev with a new target,
591 	 * so we don't set nor calculate new physical/hw segment counts here
592 	 */
593 	bio->bi_bdev = bio_src->bi_bdev;
594 	bio_set_flag(bio, BIO_CLONED);
595 	bio->bi_opf = bio_src->bi_opf;
596 	bio->bi_iter = bio_src->bi_iter;
597 	bio->bi_io_vec = bio_src->bi_io_vec;
598 
599 	bio_clone_blkcg_association(bio, bio_src);
600 }
601 EXPORT_SYMBOL(__bio_clone_fast);
602 
603 /**
604  *	bio_clone_fast - clone a bio that shares the original bio's biovec
605  *	@bio: bio to clone
606  *	@gfp_mask: allocation priority
607  *	@bs: bio_set to allocate from
608  *
609  * 	Like __bio_clone_fast, only also allocates the returned bio
610  */
611 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
612 {
613 	struct bio *b;
614 
615 	b = bio_alloc_bioset(gfp_mask, 0, bs);
616 	if (!b)
617 		return NULL;
618 
619 	__bio_clone_fast(b, bio);
620 
621 	if (bio_integrity(bio)) {
622 		int ret;
623 
624 		ret = bio_integrity_clone(b, bio, gfp_mask);
625 
626 		if (ret < 0) {
627 			bio_put(b);
628 			return NULL;
629 		}
630 	}
631 
632 	return b;
633 }
634 EXPORT_SYMBOL(bio_clone_fast);
635 
636 static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
637 				      struct bio_set *bs, int offset,
638 				      int size)
639 {
640 	struct bvec_iter iter;
641 	struct bio_vec bv;
642 	struct bio *bio;
643 	struct bvec_iter iter_src = bio_src->bi_iter;
644 
645 	/* for supporting partial clone */
646 	if (offset || size != bio_src->bi_iter.bi_size) {
647 		bio_advance_iter(bio_src, &iter_src, offset);
648 		iter_src.bi_size = size;
649 	}
650 
651 	/*
652 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
653 	 * bio_src->bi_io_vec to bio->bi_io_vec.
654 	 *
655 	 * We can't do that anymore, because:
656 	 *
657 	 *  - The point of cloning the biovec is to produce a bio with a biovec
658 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
659 	 *
660 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
661 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
662 	 *    But the clone should succeed as long as the number of biovecs we
663 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
664 	 *
665 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
666 	 *    that does not own the bio - reason being drivers don't use it for
667 	 *    iterating over the biovec anymore, so expecting it to be kept up
668 	 *    to date (i.e. for clones that share the parent biovec) is just
669 	 *    asking for trouble and would force extra work on
670 	 *    __bio_clone_fast() anyways.
671 	 */
672 
673 	bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
674 			       &iter_src), bs);
675 	if (!bio)
676 		return NULL;
677 	bio->bi_bdev		= bio_src->bi_bdev;
678 	bio->bi_opf		= bio_src->bi_opf;
679 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
680 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
681 
682 	switch (bio_op(bio)) {
683 	case REQ_OP_DISCARD:
684 	case REQ_OP_SECURE_ERASE:
685 	case REQ_OP_WRITE_ZEROES:
686 		break;
687 	case REQ_OP_WRITE_SAME:
688 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
689 		break;
690 	default:
691 		__bio_for_each_segment(bv, bio_src, iter, iter_src)
692 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
693 		break;
694 	}
695 
696 	if (bio_integrity(bio_src)) {
697 		int ret;
698 
699 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
700 		if (ret < 0) {
701 			bio_put(bio);
702 			return NULL;
703 		}
704 	}
705 
706 	bio_clone_blkcg_association(bio, bio_src);
707 
708 	return bio;
709 }
710 
711 /**
712  * 	bio_clone_bioset - clone a bio
713  * 	@bio_src: bio to clone
714  *	@gfp_mask: allocation priority
715  *	@bs: bio_set to allocate from
716  *
717  *	Clone bio. Caller will own the returned bio, but not the actual data it
718  *	points to. Reference count of returned bio will be one.
719  */
720 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
721 			     struct bio_set *bs)
722 {
723 	return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
724 				  bio_src->bi_iter.bi_size);
725 }
726 EXPORT_SYMBOL(bio_clone_bioset);
727 
728 /**
729  * 	bio_clone_bioset_partial - clone a partial bio
730  * 	@bio_src: bio to clone
731  *	@gfp_mask: allocation priority
732  *	@bs: bio_set to allocate from
733  *	@offset: cloned starting from the offset
734  *	@size: size for the cloned bio
735  *
736  *	Clone bio. Caller will own the returned bio, but not the actual data it
737  *	points to. Reference count of returned bio will be one.
738  */
739 struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
740 				     struct bio_set *bs, int offset,
741 				     int size)
742 {
743 	return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
744 }
745 EXPORT_SYMBOL(bio_clone_bioset_partial);
746 
747 /**
748  *	bio_add_pc_page	-	attempt to add page to bio
749  *	@q: the target queue
750  *	@bio: destination bio
751  *	@page: page to add
752  *	@len: vec entry length
753  *	@offset: vec entry offset
754  *
755  *	Attempt to add a page to the bio_vec maplist. This can fail for a
756  *	number of reasons, such as the bio being full or target block device
757  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
758  *	so it is always possible to add a single page to an empty bio.
759  *
760  *	This should only be used by REQ_PC bios.
761  */
762 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
763 		    *page, unsigned int len, unsigned int offset)
764 {
765 	int retried_segments = 0;
766 	struct bio_vec *bvec;
767 
768 	/*
769 	 * cloned bio must not modify vec list
770 	 */
771 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
772 		return 0;
773 
774 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
775 		return 0;
776 
777 	/*
778 	 * For filesystems with a blocksize smaller than the pagesize
779 	 * we will often be called with the same page as last time and
780 	 * a consecutive offset.  Optimize this special case.
781 	 */
782 	if (bio->bi_vcnt > 0) {
783 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
784 
785 		if (page == prev->bv_page &&
786 		    offset == prev->bv_offset + prev->bv_len) {
787 			prev->bv_len += len;
788 			bio->bi_iter.bi_size += len;
789 			goto done;
790 		}
791 
792 		/*
793 		 * If the queue doesn't support SG gaps and adding this
794 		 * offset would create a gap, disallow it.
795 		 */
796 		if (bvec_gap_to_prev(q, prev, offset))
797 			return 0;
798 	}
799 
800 	if (bio->bi_vcnt >= bio->bi_max_vecs)
801 		return 0;
802 
803 	/*
804 	 * setup the new entry, we might clear it again later if we
805 	 * cannot add the page
806 	 */
807 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
808 	bvec->bv_page = page;
809 	bvec->bv_len = len;
810 	bvec->bv_offset = offset;
811 	bio->bi_vcnt++;
812 	bio->bi_phys_segments++;
813 	bio->bi_iter.bi_size += len;
814 
815 	/*
816 	 * Perform a recount if the number of segments is greater
817 	 * than queue_max_segments(q).
818 	 */
819 
820 	while (bio->bi_phys_segments > queue_max_segments(q)) {
821 
822 		if (retried_segments)
823 			goto failed;
824 
825 		retried_segments = 1;
826 		blk_recount_segments(q, bio);
827 	}
828 
829 	/* If we may be able to merge these biovecs, force a recount */
830 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
831 		bio_clear_flag(bio, BIO_SEG_VALID);
832 
833  done:
834 	return len;
835 
836  failed:
837 	bvec->bv_page = NULL;
838 	bvec->bv_len = 0;
839 	bvec->bv_offset = 0;
840 	bio->bi_vcnt--;
841 	bio->bi_iter.bi_size -= len;
842 	blk_recount_segments(q, bio);
843 	return 0;
844 }
845 EXPORT_SYMBOL(bio_add_pc_page);
846 
847 /**
848  *	bio_add_page	-	attempt to add page to bio
849  *	@bio: destination bio
850  *	@page: page to add
851  *	@len: vec entry length
852  *	@offset: vec entry offset
853  *
854  *	Attempt to add a page to the bio_vec maplist. This will only fail
855  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
856  */
857 int bio_add_page(struct bio *bio, struct page *page,
858 		 unsigned int len, unsigned int offset)
859 {
860 	struct bio_vec *bv;
861 
862 	/*
863 	 * cloned bio must not modify vec list
864 	 */
865 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
866 		return 0;
867 
868 	/*
869 	 * For filesystems with a blocksize smaller than the pagesize
870 	 * we will often be called with the same page as last time and
871 	 * a consecutive offset.  Optimize this special case.
872 	 */
873 	if (bio->bi_vcnt > 0) {
874 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
875 
876 		if (page == bv->bv_page &&
877 		    offset == bv->bv_offset + bv->bv_len) {
878 			bv->bv_len += len;
879 			goto done;
880 		}
881 	}
882 
883 	if (bio->bi_vcnt >= bio->bi_max_vecs)
884 		return 0;
885 
886 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
887 	bv->bv_page	= page;
888 	bv->bv_len	= len;
889 	bv->bv_offset	= offset;
890 
891 	bio->bi_vcnt++;
892 done:
893 	bio->bi_iter.bi_size += len;
894 	return len;
895 }
896 EXPORT_SYMBOL(bio_add_page);
897 
898 /**
899  * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
900  * @bio: bio to add pages to
901  * @iter: iov iterator describing the region to be mapped
902  *
903  * Pins as many pages from *iter and appends them to @bio's bvec array. The
904  * pages will have to be released using put_page() when done.
905  */
906 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
907 {
908 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
909 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
910 	struct page **pages = (struct page **)bv;
911 	size_t offset, diff;
912 	ssize_t size;
913 
914 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
915 	if (unlikely(size <= 0))
916 		return size ? size : -EFAULT;
917 	nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
918 
919 	/*
920 	 * Deep magic below:  We need to walk the pinned pages backwards
921 	 * because we are abusing the space allocated for the bio_vecs
922 	 * for the page array.  Because the bio_vecs are larger than the
923 	 * page pointers by definition this will always work.  But it also
924 	 * means we can't use bio_add_page, so any changes to it's semantics
925 	 * need to be reflected here as well.
926 	 */
927 	bio->bi_iter.bi_size += size;
928 	bio->bi_vcnt += nr_pages;
929 
930 	diff = (nr_pages * PAGE_SIZE - offset) - size;
931 	while (nr_pages--) {
932 		bv[nr_pages].bv_page = pages[nr_pages];
933 		bv[nr_pages].bv_len = PAGE_SIZE;
934 		bv[nr_pages].bv_offset = 0;
935 	}
936 
937 	bv[0].bv_offset += offset;
938 	bv[0].bv_len -= offset;
939 	if (diff)
940 		bv[bio->bi_vcnt - 1].bv_len -= diff;
941 
942 	iov_iter_advance(iter, size);
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
946 
947 struct submit_bio_ret {
948 	struct completion event;
949 	int error;
950 };
951 
952 static void submit_bio_wait_endio(struct bio *bio)
953 {
954 	struct submit_bio_ret *ret = bio->bi_private;
955 
956 	ret->error = bio->bi_error;
957 	complete(&ret->event);
958 }
959 
960 /**
961  * submit_bio_wait - submit a bio, and wait until it completes
962  * @bio: The &struct bio which describes the I/O
963  *
964  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
965  * bio_endio() on failure.
966  */
967 int submit_bio_wait(struct bio *bio)
968 {
969 	struct submit_bio_ret ret;
970 
971 	init_completion(&ret.event);
972 	bio->bi_private = &ret;
973 	bio->bi_end_io = submit_bio_wait_endio;
974 	bio->bi_opf |= REQ_SYNC;
975 	submit_bio(bio);
976 	wait_for_completion_io(&ret.event);
977 
978 	return ret.error;
979 }
980 EXPORT_SYMBOL(submit_bio_wait);
981 
982 /**
983  * bio_advance - increment/complete a bio by some number of bytes
984  * @bio:	bio to advance
985  * @bytes:	number of bytes to complete
986  *
987  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
988  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
989  * be updated on the last bvec as well.
990  *
991  * @bio will then represent the remaining, uncompleted portion of the io.
992  */
993 void bio_advance(struct bio *bio, unsigned bytes)
994 {
995 	if (bio_integrity(bio))
996 		bio_integrity_advance(bio, bytes);
997 
998 	bio_advance_iter(bio, &bio->bi_iter, bytes);
999 }
1000 EXPORT_SYMBOL(bio_advance);
1001 
1002 /**
1003  * bio_alloc_pages - allocates a single page for each bvec in a bio
1004  * @bio: bio to allocate pages for
1005  * @gfp_mask: flags for allocation
1006  *
1007  * Allocates pages up to @bio->bi_vcnt.
1008  *
1009  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1010  * freed.
1011  */
1012 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1013 {
1014 	int i;
1015 	struct bio_vec *bv;
1016 
1017 	bio_for_each_segment_all(bv, bio, i) {
1018 		bv->bv_page = alloc_page(gfp_mask);
1019 		if (!bv->bv_page) {
1020 			while (--bv >= bio->bi_io_vec)
1021 				__free_page(bv->bv_page);
1022 			return -ENOMEM;
1023 		}
1024 	}
1025 
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL(bio_alloc_pages);
1029 
1030 /**
1031  * bio_copy_data - copy contents of data buffers from one chain of bios to
1032  * another
1033  * @src: source bio list
1034  * @dst: destination bio list
1035  *
1036  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1037  * @src and @dst as linked lists of bios.
1038  *
1039  * Stops when it reaches the end of either @src or @dst - that is, copies
1040  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1041  */
1042 void bio_copy_data(struct bio *dst, struct bio *src)
1043 {
1044 	struct bvec_iter src_iter, dst_iter;
1045 	struct bio_vec src_bv, dst_bv;
1046 	void *src_p, *dst_p;
1047 	unsigned bytes;
1048 
1049 	src_iter = src->bi_iter;
1050 	dst_iter = dst->bi_iter;
1051 
1052 	while (1) {
1053 		if (!src_iter.bi_size) {
1054 			src = src->bi_next;
1055 			if (!src)
1056 				break;
1057 
1058 			src_iter = src->bi_iter;
1059 		}
1060 
1061 		if (!dst_iter.bi_size) {
1062 			dst = dst->bi_next;
1063 			if (!dst)
1064 				break;
1065 
1066 			dst_iter = dst->bi_iter;
1067 		}
1068 
1069 		src_bv = bio_iter_iovec(src, src_iter);
1070 		dst_bv = bio_iter_iovec(dst, dst_iter);
1071 
1072 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1073 
1074 		src_p = kmap_atomic(src_bv.bv_page);
1075 		dst_p = kmap_atomic(dst_bv.bv_page);
1076 
1077 		memcpy(dst_p + dst_bv.bv_offset,
1078 		       src_p + src_bv.bv_offset,
1079 		       bytes);
1080 
1081 		kunmap_atomic(dst_p);
1082 		kunmap_atomic(src_p);
1083 
1084 		bio_advance_iter(src, &src_iter, bytes);
1085 		bio_advance_iter(dst, &dst_iter, bytes);
1086 	}
1087 }
1088 EXPORT_SYMBOL(bio_copy_data);
1089 
1090 struct bio_map_data {
1091 	int is_our_pages;
1092 	struct iov_iter iter;
1093 	struct iovec iov[];
1094 };
1095 
1096 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1097 					       gfp_t gfp_mask)
1098 {
1099 	if (iov_count > UIO_MAXIOV)
1100 		return NULL;
1101 
1102 	return kmalloc(sizeof(struct bio_map_data) +
1103 		       sizeof(struct iovec) * iov_count, gfp_mask);
1104 }
1105 
1106 /**
1107  * bio_copy_from_iter - copy all pages from iov_iter to bio
1108  * @bio: The &struct bio which describes the I/O as destination
1109  * @iter: iov_iter as source
1110  *
1111  * Copy all pages from iov_iter to bio.
1112  * Returns 0 on success, or error on failure.
1113  */
1114 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1115 {
1116 	int i;
1117 	struct bio_vec *bvec;
1118 
1119 	bio_for_each_segment_all(bvec, bio, i) {
1120 		ssize_t ret;
1121 
1122 		ret = copy_page_from_iter(bvec->bv_page,
1123 					  bvec->bv_offset,
1124 					  bvec->bv_len,
1125 					  &iter);
1126 
1127 		if (!iov_iter_count(&iter))
1128 			break;
1129 
1130 		if (ret < bvec->bv_len)
1131 			return -EFAULT;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * bio_copy_to_iter - copy all pages from bio to iov_iter
1139  * @bio: The &struct bio which describes the I/O as source
1140  * @iter: iov_iter as destination
1141  *
1142  * Copy all pages from bio to iov_iter.
1143  * Returns 0 on success, or error on failure.
1144  */
1145 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146 {
1147 	int i;
1148 	struct bio_vec *bvec;
1149 
1150 	bio_for_each_segment_all(bvec, bio, i) {
1151 		ssize_t ret;
1152 
1153 		ret = copy_page_to_iter(bvec->bv_page,
1154 					bvec->bv_offset,
1155 					bvec->bv_len,
1156 					&iter);
1157 
1158 		if (!iov_iter_count(&iter))
1159 			break;
1160 
1161 		if (ret < bvec->bv_len)
1162 			return -EFAULT;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 void bio_free_pages(struct bio *bio)
1169 {
1170 	struct bio_vec *bvec;
1171 	int i;
1172 
1173 	bio_for_each_segment_all(bvec, bio, i)
1174 		__free_page(bvec->bv_page);
1175 }
1176 EXPORT_SYMBOL(bio_free_pages);
1177 
1178 /**
1179  *	bio_uncopy_user	-	finish previously mapped bio
1180  *	@bio: bio being terminated
1181  *
1182  *	Free pages allocated from bio_copy_user_iov() and write back data
1183  *	to user space in case of a read.
1184  */
1185 int bio_uncopy_user(struct bio *bio)
1186 {
1187 	struct bio_map_data *bmd = bio->bi_private;
1188 	int ret = 0;
1189 
1190 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 		/*
1192 		 * if we're in a workqueue, the request is orphaned, so
1193 		 * don't copy into a random user address space, just free
1194 		 * and return -EINTR so user space doesn't expect any data.
1195 		 */
1196 		if (!current->mm)
1197 			ret = -EINTR;
1198 		else if (bio_data_dir(bio) == READ)
1199 			ret = bio_copy_to_iter(bio, bmd->iter);
1200 		if (bmd->is_our_pages)
1201 			bio_free_pages(bio);
1202 	}
1203 	kfree(bmd);
1204 	bio_put(bio);
1205 	return ret;
1206 }
1207 
1208 /**
1209  *	bio_copy_user_iov	-	copy user data to bio
1210  *	@q:		destination block queue
1211  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1212  *	@iter:		iovec iterator
1213  *	@gfp_mask:	memory allocation flags
1214  *
1215  *	Prepares and returns a bio for indirect user io, bouncing data
1216  *	to/from kernel pages as necessary. Must be paired with
1217  *	call bio_uncopy_user() on io completion.
1218  */
1219 struct bio *bio_copy_user_iov(struct request_queue *q,
1220 			      struct rq_map_data *map_data,
1221 			      const struct iov_iter *iter,
1222 			      gfp_t gfp_mask)
1223 {
1224 	struct bio_map_data *bmd;
1225 	struct page *page;
1226 	struct bio *bio;
1227 	int i, ret;
1228 	int nr_pages = 0;
1229 	unsigned int len = iter->count;
1230 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1231 
1232 	for (i = 0; i < iter->nr_segs; i++) {
1233 		unsigned long uaddr;
1234 		unsigned long end;
1235 		unsigned long start;
1236 
1237 		uaddr = (unsigned long) iter->iov[i].iov_base;
1238 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1239 			>> PAGE_SHIFT;
1240 		start = uaddr >> PAGE_SHIFT;
1241 
1242 		/*
1243 		 * Overflow, abort
1244 		 */
1245 		if (end < start)
1246 			return ERR_PTR(-EINVAL);
1247 
1248 		nr_pages += end - start;
1249 	}
1250 
1251 	if (offset)
1252 		nr_pages++;
1253 
1254 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1255 	if (!bmd)
1256 		return ERR_PTR(-ENOMEM);
1257 
1258 	/*
1259 	 * We need to do a deep copy of the iov_iter including the iovecs.
1260 	 * The caller provided iov might point to an on-stack or otherwise
1261 	 * shortlived one.
1262 	 */
1263 	bmd->is_our_pages = map_data ? 0 : 1;
1264 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1265 	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1266 			iter->nr_segs, iter->count);
1267 
1268 	ret = -ENOMEM;
1269 	bio = bio_kmalloc(gfp_mask, nr_pages);
1270 	if (!bio)
1271 		goto out_bmd;
1272 
1273 	ret = 0;
1274 
1275 	if (map_data) {
1276 		nr_pages = 1 << map_data->page_order;
1277 		i = map_data->offset / PAGE_SIZE;
1278 	}
1279 	while (len) {
1280 		unsigned int bytes = PAGE_SIZE;
1281 
1282 		bytes -= offset;
1283 
1284 		if (bytes > len)
1285 			bytes = len;
1286 
1287 		if (map_data) {
1288 			if (i == map_data->nr_entries * nr_pages) {
1289 				ret = -ENOMEM;
1290 				break;
1291 			}
1292 
1293 			page = map_data->pages[i / nr_pages];
1294 			page += (i % nr_pages);
1295 
1296 			i++;
1297 		} else {
1298 			page = alloc_page(q->bounce_gfp | gfp_mask);
1299 			if (!page) {
1300 				ret = -ENOMEM;
1301 				break;
1302 			}
1303 		}
1304 
1305 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1306 			break;
1307 
1308 		len -= bytes;
1309 		offset = 0;
1310 	}
1311 
1312 	if (ret)
1313 		goto cleanup;
1314 
1315 	/*
1316 	 * success
1317 	 */
1318 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1319 	    (map_data && map_data->from_user)) {
1320 		ret = bio_copy_from_iter(bio, *iter);
1321 		if (ret)
1322 			goto cleanup;
1323 	}
1324 
1325 	bio->bi_private = bmd;
1326 	return bio;
1327 cleanup:
1328 	if (!map_data)
1329 		bio_free_pages(bio);
1330 	bio_put(bio);
1331 out_bmd:
1332 	kfree(bmd);
1333 	return ERR_PTR(ret);
1334 }
1335 
1336 /**
1337  *	bio_map_user_iov - map user iovec into bio
1338  *	@q:		the struct request_queue for the bio
1339  *	@iter:		iovec iterator
1340  *	@gfp_mask:	memory allocation flags
1341  *
1342  *	Map the user space address into a bio suitable for io to a block
1343  *	device. Returns an error pointer in case of error.
1344  */
1345 struct bio *bio_map_user_iov(struct request_queue *q,
1346 			     const struct iov_iter *iter,
1347 			     gfp_t gfp_mask)
1348 {
1349 	int j;
1350 	int nr_pages = 0;
1351 	struct page **pages;
1352 	struct bio *bio;
1353 	int cur_page = 0;
1354 	int ret, offset;
1355 	struct iov_iter i;
1356 	struct iovec iov;
1357 
1358 	iov_for_each(iov, i, *iter) {
1359 		unsigned long uaddr = (unsigned long) iov.iov_base;
1360 		unsigned long len = iov.iov_len;
1361 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1362 		unsigned long start = uaddr >> PAGE_SHIFT;
1363 
1364 		/*
1365 		 * Overflow, abort
1366 		 */
1367 		if (end < start)
1368 			return ERR_PTR(-EINVAL);
1369 
1370 		nr_pages += end - start;
1371 		/*
1372 		 * buffer must be aligned to at least logical block size for now
1373 		 */
1374 		if (uaddr & queue_dma_alignment(q))
1375 			return ERR_PTR(-EINVAL);
1376 	}
1377 
1378 	if (!nr_pages)
1379 		return ERR_PTR(-EINVAL);
1380 
1381 	bio = bio_kmalloc(gfp_mask, nr_pages);
1382 	if (!bio)
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	ret = -ENOMEM;
1386 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1387 	if (!pages)
1388 		goto out;
1389 
1390 	iov_for_each(iov, i, *iter) {
1391 		unsigned long uaddr = (unsigned long) iov.iov_base;
1392 		unsigned long len = iov.iov_len;
1393 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1394 		unsigned long start = uaddr >> PAGE_SHIFT;
1395 		const int local_nr_pages = end - start;
1396 		const int page_limit = cur_page + local_nr_pages;
1397 
1398 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1399 				(iter->type & WRITE) != WRITE,
1400 				&pages[cur_page]);
1401 		if (ret < local_nr_pages) {
1402 			ret = -EFAULT;
1403 			goto out_unmap;
1404 		}
1405 
1406 		offset = offset_in_page(uaddr);
1407 		for (j = cur_page; j < page_limit; j++) {
1408 			unsigned int bytes = PAGE_SIZE - offset;
1409 
1410 			if (len <= 0)
1411 				break;
1412 
1413 			if (bytes > len)
1414 				bytes = len;
1415 
1416 			/*
1417 			 * sorry...
1418 			 */
1419 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1420 					    bytes)
1421 				break;
1422 
1423 			len -= bytes;
1424 			offset = 0;
1425 		}
1426 
1427 		cur_page = j;
1428 		/*
1429 		 * release the pages we didn't map into the bio, if any
1430 		 */
1431 		while (j < page_limit)
1432 			put_page(pages[j++]);
1433 	}
1434 
1435 	kfree(pages);
1436 
1437 	bio_set_flag(bio, BIO_USER_MAPPED);
1438 
1439 	/*
1440 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1441 	 * it would normally disappear when its bi_end_io is run.
1442 	 * however, we need it for the unmap, so grab an extra
1443 	 * reference to it
1444 	 */
1445 	bio_get(bio);
1446 	return bio;
1447 
1448  out_unmap:
1449 	for (j = 0; j < nr_pages; j++) {
1450 		if (!pages[j])
1451 			break;
1452 		put_page(pages[j]);
1453 	}
1454  out:
1455 	kfree(pages);
1456 	bio_put(bio);
1457 	return ERR_PTR(ret);
1458 }
1459 
1460 static void __bio_unmap_user(struct bio *bio)
1461 {
1462 	struct bio_vec *bvec;
1463 	int i;
1464 
1465 	/*
1466 	 * make sure we dirty pages we wrote to
1467 	 */
1468 	bio_for_each_segment_all(bvec, bio, i) {
1469 		if (bio_data_dir(bio) == READ)
1470 			set_page_dirty_lock(bvec->bv_page);
1471 
1472 		put_page(bvec->bv_page);
1473 	}
1474 
1475 	bio_put(bio);
1476 }
1477 
1478 /**
1479  *	bio_unmap_user	-	unmap a bio
1480  *	@bio:		the bio being unmapped
1481  *
1482  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1483  *	process context.
1484  *
1485  *	bio_unmap_user() may sleep.
1486  */
1487 void bio_unmap_user(struct bio *bio)
1488 {
1489 	__bio_unmap_user(bio);
1490 	bio_put(bio);
1491 }
1492 
1493 static void bio_map_kern_endio(struct bio *bio)
1494 {
1495 	bio_put(bio);
1496 }
1497 
1498 /**
1499  *	bio_map_kern	-	map kernel address into bio
1500  *	@q: the struct request_queue for the bio
1501  *	@data: pointer to buffer to map
1502  *	@len: length in bytes
1503  *	@gfp_mask: allocation flags for bio allocation
1504  *
1505  *	Map the kernel address into a bio suitable for io to a block
1506  *	device. Returns an error pointer in case of error.
1507  */
1508 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1509 			 gfp_t gfp_mask)
1510 {
1511 	unsigned long kaddr = (unsigned long)data;
1512 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1513 	unsigned long start = kaddr >> PAGE_SHIFT;
1514 	const int nr_pages = end - start;
1515 	int offset, i;
1516 	struct bio *bio;
1517 
1518 	bio = bio_kmalloc(gfp_mask, nr_pages);
1519 	if (!bio)
1520 		return ERR_PTR(-ENOMEM);
1521 
1522 	offset = offset_in_page(kaddr);
1523 	for (i = 0; i < nr_pages; i++) {
1524 		unsigned int bytes = PAGE_SIZE - offset;
1525 
1526 		if (len <= 0)
1527 			break;
1528 
1529 		if (bytes > len)
1530 			bytes = len;
1531 
1532 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1533 				    offset) < bytes) {
1534 			/* we don't support partial mappings */
1535 			bio_put(bio);
1536 			return ERR_PTR(-EINVAL);
1537 		}
1538 
1539 		data += bytes;
1540 		len -= bytes;
1541 		offset = 0;
1542 	}
1543 
1544 	bio->bi_end_io = bio_map_kern_endio;
1545 	return bio;
1546 }
1547 EXPORT_SYMBOL(bio_map_kern);
1548 
1549 static void bio_copy_kern_endio(struct bio *bio)
1550 {
1551 	bio_free_pages(bio);
1552 	bio_put(bio);
1553 }
1554 
1555 static void bio_copy_kern_endio_read(struct bio *bio)
1556 {
1557 	char *p = bio->bi_private;
1558 	struct bio_vec *bvec;
1559 	int i;
1560 
1561 	bio_for_each_segment_all(bvec, bio, i) {
1562 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1563 		p += bvec->bv_len;
1564 	}
1565 
1566 	bio_copy_kern_endio(bio);
1567 }
1568 
1569 /**
1570  *	bio_copy_kern	-	copy kernel address into bio
1571  *	@q: the struct request_queue for the bio
1572  *	@data: pointer to buffer to copy
1573  *	@len: length in bytes
1574  *	@gfp_mask: allocation flags for bio and page allocation
1575  *	@reading: data direction is READ
1576  *
1577  *	copy the kernel address into a bio suitable for io to a block
1578  *	device. Returns an error pointer in case of error.
1579  */
1580 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1581 			  gfp_t gfp_mask, int reading)
1582 {
1583 	unsigned long kaddr = (unsigned long)data;
1584 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585 	unsigned long start = kaddr >> PAGE_SHIFT;
1586 	struct bio *bio;
1587 	void *p = data;
1588 	int nr_pages = 0;
1589 
1590 	/*
1591 	 * Overflow, abort
1592 	 */
1593 	if (end < start)
1594 		return ERR_PTR(-EINVAL);
1595 
1596 	nr_pages = end - start;
1597 	bio = bio_kmalloc(gfp_mask, nr_pages);
1598 	if (!bio)
1599 		return ERR_PTR(-ENOMEM);
1600 
1601 	while (len) {
1602 		struct page *page;
1603 		unsigned int bytes = PAGE_SIZE;
1604 
1605 		if (bytes > len)
1606 			bytes = len;
1607 
1608 		page = alloc_page(q->bounce_gfp | gfp_mask);
1609 		if (!page)
1610 			goto cleanup;
1611 
1612 		if (!reading)
1613 			memcpy(page_address(page), p, bytes);
1614 
1615 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1616 			break;
1617 
1618 		len -= bytes;
1619 		p += bytes;
1620 	}
1621 
1622 	if (reading) {
1623 		bio->bi_end_io = bio_copy_kern_endio_read;
1624 		bio->bi_private = data;
1625 	} else {
1626 		bio->bi_end_io = bio_copy_kern_endio;
1627 	}
1628 
1629 	return bio;
1630 
1631 cleanup:
1632 	bio_free_pages(bio);
1633 	bio_put(bio);
1634 	return ERR_PTR(-ENOMEM);
1635 }
1636 
1637 /*
1638  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1639  * for performing direct-IO in BIOs.
1640  *
1641  * The problem is that we cannot run set_page_dirty() from interrupt context
1642  * because the required locks are not interrupt-safe.  So what we can do is to
1643  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1644  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1645  * in process context.
1646  *
1647  * We special-case compound pages here: normally this means reads into hugetlb
1648  * pages.  The logic in here doesn't really work right for compound pages
1649  * because the VM does not uniformly chase down the head page in all cases.
1650  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1651  * handle them at all.  So we skip compound pages here at an early stage.
1652  *
1653  * Note that this code is very hard to test under normal circumstances because
1654  * direct-io pins the pages with get_user_pages().  This makes
1655  * is_page_cache_freeable return false, and the VM will not clean the pages.
1656  * But other code (eg, flusher threads) could clean the pages if they are mapped
1657  * pagecache.
1658  *
1659  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1660  * deferred bio dirtying paths.
1661  */
1662 
1663 /*
1664  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1665  */
1666 void bio_set_pages_dirty(struct bio *bio)
1667 {
1668 	struct bio_vec *bvec;
1669 	int i;
1670 
1671 	bio_for_each_segment_all(bvec, bio, i) {
1672 		struct page *page = bvec->bv_page;
1673 
1674 		if (page && !PageCompound(page))
1675 			set_page_dirty_lock(page);
1676 	}
1677 }
1678 
1679 static void bio_release_pages(struct bio *bio)
1680 {
1681 	struct bio_vec *bvec;
1682 	int i;
1683 
1684 	bio_for_each_segment_all(bvec, bio, i) {
1685 		struct page *page = bvec->bv_page;
1686 
1687 		if (page)
1688 			put_page(page);
1689 	}
1690 }
1691 
1692 /*
1693  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1694  * If they are, then fine.  If, however, some pages are clean then they must
1695  * have been written out during the direct-IO read.  So we take another ref on
1696  * the BIO and the offending pages and re-dirty the pages in process context.
1697  *
1698  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1699  * here on.  It will run one put_page() against each page and will run one
1700  * bio_put() against the BIO.
1701  */
1702 
1703 static void bio_dirty_fn(struct work_struct *work);
1704 
1705 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1706 static DEFINE_SPINLOCK(bio_dirty_lock);
1707 static struct bio *bio_dirty_list;
1708 
1709 /*
1710  * This runs in process context
1711  */
1712 static void bio_dirty_fn(struct work_struct *work)
1713 {
1714 	unsigned long flags;
1715 	struct bio *bio;
1716 
1717 	spin_lock_irqsave(&bio_dirty_lock, flags);
1718 	bio = bio_dirty_list;
1719 	bio_dirty_list = NULL;
1720 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 
1722 	while (bio) {
1723 		struct bio *next = bio->bi_private;
1724 
1725 		bio_set_pages_dirty(bio);
1726 		bio_release_pages(bio);
1727 		bio_put(bio);
1728 		bio = next;
1729 	}
1730 }
1731 
1732 void bio_check_pages_dirty(struct bio *bio)
1733 {
1734 	struct bio_vec *bvec;
1735 	int nr_clean_pages = 0;
1736 	int i;
1737 
1738 	bio_for_each_segment_all(bvec, bio, i) {
1739 		struct page *page = bvec->bv_page;
1740 
1741 		if (PageDirty(page) || PageCompound(page)) {
1742 			put_page(page);
1743 			bvec->bv_page = NULL;
1744 		} else {
1745 			nr_clean_pages++;
1746 		}
1747 	}
1748 
1749 	if (nr_clean_pages) {
1750 		unsigned long flags;
1751 
1752 		spin_lock_irqsave(&bio_dirty_lock, flags);
1753 		bio->bi_private = bio_dirty_list;
1754 		bio_dirty_list = bio;
1755 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1756 		schedule_work(&bio_dirty_work);
1757 	} else {
1758 		bio_put(bio);
1759 	}
1760 }
1761 
1762 void generic_start_io_acct(int rw, unsigned long sectors,
1763 			   struct hd_struct *part)
1764 {
1765 	int cpu = part_stat_lock();
1766 
1767 	part_round_stats(cpu, part);
1768 	part_stat_inc(cpu, part, ios[rw]);
1769 	part_stat_add(cpu, part, sectors[rw], sectors);
1770 	part_inc_in_flight(part, rw);
1771 
1772 	part_stat_unlock();
1773 }
1774 EXPORT_SYMBOL(generic_start_io_acct);
1775 
1776 void generic_end_io_acct(int rw, struct hd_struct *part,
1777 			 unsigned long start_time)
1778 {
1779 	unsigned long duration = jiffies - start_time;
1780 	int cpu = part_stat_lock();
1781 
1782 	part_stat_add(cpu, part, ticks[rw], duration);
1783 	part_round_stats(cpu, part);
1784 	part_dec_in_flight(part, rw);
1785 
1786 	part_stat_unlock();
1787 }
1788 EXPORT_SYMBOL(generic_end_io_acct);
1789 
1790 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1791 void bio_flush_dcache_pages(struct bio *bi)
1792 {
1793 	struct bio_vec bvec;
1794 	struct bvec_iter iter;
1795 
1796 	bio_for_each_segment(bvec, bi, iter)
1797 		flush_dcache_page(bvec.bv_page);
1798 }
1799 EXPORT_SYMBOL(bio_flush_dcache_pages);
1800 #endif
1801 
1802 static inline bool bio_remaining_done(struct bio *bio)
1803 {
1804 	/*
1805 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1806 	 * we always end io on the first invocation.
1807 	 */
1808 	if (!bio_flagged(bio, BIO_CHAIN))
1809 		return true;
1810 
1811 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1812 
1813 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1814 		bio_clear_flag(bio, BIO_CHAIN);
1815 		return true;
1816 	}
1817 
1818 	return false;
1819 }
1820 
1821 /**
1822  * bio_endio - end I/O on a bio
1823  * @bio:	bio
1824  *
1825  * Description:
1826  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1827  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1828  *   bio unless they own it and thus know that it has an end_io function.
1829  *
1830  *   bio_endio() can be called several times on a bio that has been chained
1831  *   using bio_chain().  The ->bi_end_io() function will only be called the
1832  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1833  *   generated if BIO_TRACE_COMPLETION is set.
1834  **/
1835 void bio_endio(struct bio *bio)
1836 {
1837 again:
1838 	if (!bio_remaining_done(bio))
1839 		return;
1840 
1841 	/*
1842 	 * Need to have a real endio function for chained bios, otherwise
1843 	 * various corner cases will break (like stacking block devices that
1844 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1845 	 * recursion and blowing the stack. Tail call optimization would
1846 	 * handle this, but compiling with frame pointers also disables
1847 	 * gcc's sibling call optimization.
1848 	 */
1849 	if (bio->bi_end_io == bio_chain_endio) {
1850 		bio = __bio_chain_endio(bio);
1851 		goto again;
1852 	}
1853 
1854 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1855 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
1856 					 bio, bio->bi_error);
1857 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1858 	}
1859 
1860 	blk_throtl_bio_endio(bio);
1861 	if (bio->bi_end_io)
1862 		bio->bi_end_io(bio);
1863 }
1864 EXPORT_SYMBOL(bio_endio);
1865 
1866 /**
1867  * bio_split - split a bio
1868  * @bio:	bio to split
1869  * @sectors:	number of sectors to split from the front of @bio
1870  * @gfp:	gfp mask
1871  * @bs:		bio set to allocate from
1872  *
1873  * Allocates and returns a new bio which represents @sectors from the start of
1874  * @bio, and updates @bio to represent the remaining sectors.
1875  *
1876  * Unless this is a discard request the newly allocated bio will point
1877  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1878  * @bio is not freed before the split.
1879  */
1880 struct bio *bio_split(struct bio *bio, int sectors,
1881 		      gfp_t gfp, struct bio_set *bs)
1882 {
1883 	struct bio *split = NULL;
1884 
1885 	BUG_ON(sectors <= 0);
1886 	BUG_ON(sectors >= bio_sectors(bio));
1887 
1888 	split = bio_clone_fast(bio, gfp, bs);
1889 	if (!split)
1890 		return NULL;
1891 
1892 	split->bi_iter.bi_size = sectors << 9;
1893 
1894 	if (bio_integrity(split))
1895 		bio_integrity_trim(split, 0, sectors);
1896 
1897 	bio_advance(bio, split->bi_iter.bi_size);
1898 
1899 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1900 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1901 
1902 	return split;
1903 }
1904 EXPORT_SYMBOL(bio_split);
1905 
1906 /**
1907  * bio_trim - trim a bio
1908  * @bio:	bio to trim
1909  * @offset:	number of sectors to trim from the front of @bio
1910  * @size:	size we want to trim @bio to, in sectors
1911  */
1912 void bio_trim(struct bio *bio, int offset, int size)
1913 {
1914 	/* 'bio' is a cloned bio which we need to trim to match
1915 	 * the given offset and size.
1916 	 */
1917 
1918 	size <<= 9;
1919 	if (offset == 0 && size == bio->bi_iter.bi_size)
1920 		return;
1921 
1922 	bio_clear_flag(bio, BIO_SEG_VALID);
1923 
1924 	bio_advance(bio, offset << 9);
1925 
1926 	bio->bi_iter.bi_size = size;
1927 }
1928 EXPORT_SYMBOL_GPL(bio_trim);
1929 
1930 /*
1931  * create memory pools for biovec's in a bio_set.
1932  * use the global biovec slabs created for general use.
1933  */
1934 mempool_t *biovec_create_pool(int pool_entries)
1935 {
1936 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1937 
1938 	return mempool_create_slab_pool(pool_entries, bp->slab);
1939 }
1940 
1941 void bioset_free(struct bio_set *bs)
1942 {
1943 	if (bs->rescue_workqueue)
1944 		destroy_workqueue(bs->rescue_workqueue);
1945 
1946 	if (bs->bio_pool)
1947 		mempool_destroy(bs->bio_pool);
1948 
1949 	if (bs->bvec_pool)
1950 		mempool_destroy(bs->bvec_pool);
1951 
1952 	bioset_integrity_free(bs);
1953 	bio_put_slab(bs);
1954 
1955 	kfree(bs);
1956 }
1957 EXPORT_SYMBOL(bioset_free);
1958 
1959 static struct bio_set *__bioset_create(unsigned int pool_size,
1960 				       unsigned int front_pad,
1961 				       bool create_bvec_pool)
1962 {
1963 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1964 	struct bio_set *bs;
1965 
1966 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1967 	if (!bs)
1968 		return NULL;
1969 
1970 	bs->front_pad = front_pad;
1971 
1972 	spin_lock_init(&bs->rescue_lock);
1973 	bio_list_init(&bs->rescue_list);
1974 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1975 
1976 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1977 	if (!bs->bio_slab) {
1978 		kfree(bs);
1979 		return NULL;
1980 	}
1981 
1982 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1983 	if (!bs->bio_pool)
1984 		goto bad;
1985 
1986 	if (create_bvec_pool) {
1987 		bs->bvec_pool = biovec_create_pool(pool_size);
1988 		if (!bs->bvec_pool)
1989 			goto bad;
1990 	}
1991 
1992 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1993 	if (!bs->rescue_workqueue)
1994 		goto bad;
1995 
1996 	return bs;
1997 bad:
1998 	bioset_free(bs);
1999 	return NULL;
2000 }
2001 
2002 /**
2003  * bioset_create  - Create a bio_set
2004  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
2005  * @front_pad:	Number of bytes to allocate in front of the returned bio
2006  *
2007  * Description:
2008  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
2009  *    to ask for a number of bytes to be allocated in front of the bio.
2010  *    Front pad allocation is useful for embedding the bio inside
2011  *    another structure, to avoid allocating extra data to go with the bio.
2012  *    Note that the bio must be embedded at the END of that structure always,
2013  *    or things will break badly.
2014  */
2015 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
2016 {
2017 	return __bioset_create(pool_size, front_pad, true);
2018 }
2019 EXPORT_SYMBOL(bioset_create);
2020 
2021 /**
2022  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
2023  * @pool_size:	Number of bio to cache in the mempool
2024  * @front_pad:	Number of bytes to allocate in front of the returned bio
2025  *
2026  * Description:
2027  *    Same functionality as bioset_create() except that mempool is not
2028  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
2029  */
2030 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2031 {
2032 	return __bioset_create(pool_size, front_pad, false);
2033 }
2034 EXPORT_SYMBOL(bioset_create_nobvec);
2035 
2036 #ifdef CONFIG_BLK_CGROUP
2037 
2038 /**
2039  * bio_associate_blkcg - associate a bio with the specified blkcg
2040  * @bio: target bio
2041  * @blkcg_css: css of the blkcg to associate
2042  *
2043  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
2044  * treat @bio as if it were issued by a task which belongs to the blkcg.
2045  *
2046  * This function takes an extra reference of @blkcg_css which will be put
2047  * when @bio is released.  The caller must own @bio and is responsible for
2048  * synchronizing calls to this function.
2049  */
2050 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2051 {
2052 	if (unlikely(bio->bi_css))
2053 		return -EBUSY;
2054 	css_get(blkcg_css);
2055 	bio->bi_css = blkcg_css;
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2059 
2060 /**
2061  * bio_associate_current - associate a bio with %current
2062  * @bio: target bio
2063  *
2064  * Associate @bio with %current if it hasn't been associated yet.  Block
2065  * layer will treat @bio as if it were issued by %current no matter which
2066  * task actually issues it.
2067  *
2068  * This function takes an extra reference of @task's io_context and blkcg
2069  * which will be put when @bio is released.  The caller must own @bio,
2070  * ensure %current->io_context exists, and is responsible for synchronizing
2071  * calls to this function.
2072  */
2073 int bio_associate_current(struct bio *bio)
2074 {
2075 	struct io_context *ioc;
2076 
2077 	if (bio->bi_css)
2078 		return -EBUSY;
2079 
2080 	ioc = current->io_context;
2081 	if (!ioc)
2082 		return -ENOENT;
2083 
2084 	get_io_context_active(ioc);
2085 	bio->bi_ioc = ioc;
2086 	bio->bi_css = task_get_css(current, io_cgrp_id);
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(bio_associate_current);
2090 
2091 /**
2092  * bio_disassociate_task - undo bio_associate_current()
2093  * @bio: target bio
2094  */
2095 void bio_disassociate_task(struct bio *bio)
2096 {
2097 	if (bio->bi_ioc) {
2098 		put_io_context(bio->bi_ioc);
2099 		bio->bi_ioc = NULL;
2100 	}
2101 	if (bio->bi_css) {
2102 		css_put(bio->bi_css);
2103 		bio->bi_css = NULL;
2104 	}
2105 }
2106 
2107 /**
2108  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2109  * @dst: destination bio
2110  * @src: source bio
2111  */
2112 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2113 {
2114 	if (src->bi_css)
2115 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2116 }
2117 
2118 #endif /* CONFIG_BLK_CGROUP */
2119 
2120 static void __init biovec_init_slabs(void)
2121 {
2122 	int i;
2123 
2124 	for (i = 0; i < BVEC_POOL_NR; i++) {
2125 		int size;
2126 		struct biovec_slab *bvs = bvec_slabs + i;
2127 
2128 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2129 			bvs->slab = NULL;
2130 			continue;
2131 		}
2132 
2133 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2134 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2135                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2136 	}
2137 }
2138 
2139 static int __init init_bio(void)
2140 {
2141 	bio_slab_max = 2;
2142 	bio_slab_nr = 0;
2143 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2144 	if (!bio_slabs)
2145 		panic("bio: can't allocate bios\n");
2146 
2147 	bio_integrity_init();
2148 	biovec_init_slabs();
2149 
2150 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2151 	if (!fs_bio_set)
2152 		panic("bio: can't allocate bios\n");
2153 
2154 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2155 		panic("bio: can't create integrity pool\n");
2156 
2157 	return 0;
2158 }
2159 subsys_initcall(init_bio);
2160