xref: /openbmc/linux/block/bio.c (revision 14208b0e)
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h>		/* for struct sg_iovec */
32 
33 #include <trace/events/block.h>
34 
35 /*
36  * Test patch to inline a certain number of bi_io_vec's inside the bio
37  * itself, to shrink a bio data allocation from two mempool calls to one
38  */
39 #define BIO_INLINE_VECS		4
40 
41 /*
42  * if you change this list, also change bvec_alloc or things will
43  * break badly! cannot be bigger than what you can fit into an
44  * unsigned short
45  */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51 
52 /*
53  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54  * IO code that does not need private memory pools.
55  */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab, *new_bio_slabs;
77 	unsigned int new_bio_slab_max;
78 	unsigned int i, entry = -1;
79 
80 	mutex_lock(&bio_slab_lock);
81 
82 	i = 0;
83 	while (i < bio_slab_nr) {
84 		bslab = &bio_slabs[i];
85 
86 		if (!bslab->slab && entry == -1)
87 			entry = i;
88 		else if (bslab->slab_size == sz) {
89 			slab = bslab->slab;
90 			bslab->slab_ref++;
91 			break;
92 		}
93 		i++;
94 	}
95 
96 	if (slab)
97 		goto out_unlock;
98 
99 	if (bio_slab_nr == bio_slab_max && entry == -1) {
100 		new_bio_slab_max = bio_slab_max << 1;
101 		new_bio_slabs = krealloc(bio_slabs,
102 					 new_bio_slab_max * sizeof(struct bio_slab),
103 					 GFP_KERNEL);
104 		if (!new_bio_slabs)
105 			goto out_unlock;
106 		bio_slab_max = new_bio_slab_max;
107 		bio_slabs = new_bio_slabs;
108 	}
109 	if (entry == -1)
110 		entry = bio_slab_nr++;
111 
112 	bslab = &bio_slabs[entry];
113 
114 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164 
165 	if (idx == BIOVEC_MAX_IDX)
166 		mempool_free(bv, pool);
167 	else {
168 		struct biovec_slab *bvs = bvec_slabs + idx;
169 
170 		kmem_cache_free(bvs->slab, bv);
171 	}
172 }
173 
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 			   mempool_t *pool)
176 {
177 	struct bio_vec *bvl;
178 
179 	/*
180 	 * see comment near bvec_array define!
181 	 */
182 	switch (nr) {
183 	case 1:
184 		*idx = 0;
185 		break;
186 	case 2 ... 4:
187 		*idx = 1;
188 		break;
189 	case 5 ... 16:
190 		*idx = 2;
191 		break;
192 	case 17 ... 64:
193 		*idx = 3;
194 		break;
195 	case 65 ... 128:
196 		*idx = 4;
197 		break;
198 	case 129 ... BIO_MAX_PAGES:
199 		*idx = 5;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	/*
206 	 * idx now points to the pool we want to allocate from. only the
207 	 * 1-vec entry pool is mempool backed.
208 	 */
209 	if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 		bvl = mempool_alloc(pool, gfp_mask);
212 	} else {
213 		struct biovec_slab *bvs = bvec_slabs + *idx;
214 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215 
216 		/*
217 		 * Make this allocation restricted and don't dump info on
218 		 * allocation failures, since we'll fallback to the mempool
219 		 * in case of failure.
220 		 */
221 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222 
223 		/*
224 		 * Try a slab allocation. If this fails and __GFP_WAIT
225 		 * is set, retry with the 1-entry mempool
226 		 */
227 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 			*idx = BIOVEC_MAX_IDX;
230 			goto fallback;
231 		}
232 	}
233 
234 	return bvl;
235 }
236 
237 static void __bio_free(struct bio *bio)
238 {
239 	bio_disassociate_task(bio);
240 
241 	if (bio_integrity(bio))
242 		bio_integrity_free(bio);
243 }
244 
245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	__bio_free(bio);
251 
252 	if (bs) {
253 		if (bio_flagged(bio, BIO_OWNS_VEC))
254 			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255 
256 		/*
257 		 * If we have front padding, adjust the bio pointer before freeing
258 		 */
259 		p = bio;
260 		p -= bs->front_pad;
261 
262 		mempool_free(p, bs->bio_pool);
263 	} else {
264 		/* Bio was allocated by bio_kmalloc() */
265 		kfree(bio);
266 	}
267 }
268 
269 void bio_init(struct bio *bio)
270 {
271 	memset(bio, 0, sizeof(*bio));
272 	bio->bi_flags = 1 << BIO_UPTODATE;
273 	atomic_set(&bio->bi_remaining, 1);
274 	atomic_set(&bio->bi_cnt, 1);
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	__bio_free(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags|(1 << BIO_UPTODATE);
296 	atomic_set(&bio->bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static void bio_chain_endio(struct bio *bio, int error)
301 {
302 	bio_endio(bio->bi_private, error);
303 	bio_put(bio);
304 }
305 
306 /**
307  * bio_chain - chain bio completions
308  * @bio: the target bio
309  * @parent: the @bio's parent bio
310  *
311  * The caller won't have a bi_end_io called when @bio completes - instead,
312  * @parent's bi_end_io won't be called until both @parent and @bio have
313  * completed; the chained bio will also be freed when it completes.
314  *
315  * The caller must not set bi_private or bi_end_io in @bio.
316  */
317 void bio_chain(struct bio *bio, struct bio *parent)
318 {
319 	BUG_ON(bio->bi_private || bio->bi_end_io);
320 
321 	bio->bi_private = parent;
322 	bio->bi_end_io	= bio_chain_endio;
323 	atomic_inc(&parent->bi_remaining);
324 }
325 EXPORT_SYMBOL(bio_chain);
326 
327 static void bio_alloc_rescue(struct work_struct *work)
328 {
329 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 	struct bio *bio;
331 
332 	while (1) {
333 		spin_lock(&bs->rescue_lock);
334 		bio = bio_list_pop(&bs->rescue_list);
335 		spin_unlock(&bs->rescue_lock);
336 
337 		if (!bio)
338 			break;
339 
340 		generic_make_request(bio);
341 	}
342 }
343 
344 static void punt_bios_to_rescuer(struct bio_set *bs)
345 {
346 	struct bio_list punt, nopunt;
347 	struct bio *bio;
348 
349 	/*
350 	 * In order to guarantee forward progress we must punt only bios that
351 	 * were allocated from this bio_set; otherwise, if there was a bio on
352 	 * there for a stacking driver higher up in the stack, processing it
353 	 * could require allocating bios from this bio_set, and doing that from
354 	 * our own rescuer would be bad.
355 	 *
356 	 * Since bio lists are singly linked, pop them all instead of trying to
357 	 * remove from the middle of the list:
358 	 */
359 
360 	bio_list_init(&punt);
361 	bio_list_init(&nopunt);
362 
363 	while ((bio = bio_list_pop(current->bio_list)))
364 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
365 
366 	*current->bio_list = nopunt;
367 
368 	spin_lock(&bs->rescue_lock);
369 	bio_list_merge(&bs->rescue_list, &punt);
370 	spin_unlock(&bs->rescue_lock);
371 
372 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
373 }
374 
375 /**
376  * bio_alloc_bioset - allocate a bio for I/O
377  * @gfp_mask:   the GFP_ mask given to the slab allocator
378  * @nr_iovecs:	number of iovecs to pre-allocate
379  * @bs:		the bio_set to allocate from.
380  *
381  * Description:
382  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383  *   backed by the @bs's mempool.
384  *
385  *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386  *   able to allocate a bio. This is due to the mempool guarantees. To make this
387  *   work, callers must never allocate more than 1 bio at a time from this pool.
388  *   Callers that need to allocate more than 1 bio must always submit the
389  *   previously allocated bio for IO before attempting to allocate a new one.
390  *   Failure to do so can cause deadlocks under memory pressure.
391  *
392  *   Note that when running under generic_make_request() (i.e. any block
393  *   driver), bios are not submitted until after you return - see the code in
394  *   generic_make_request() that converts recursion into iteration, to prevent
395  *   stack overflows.
396  *
397  *   This would normally mean allocating multiple bios under
398  *   generic_make_request() would be susceptible to deadlocks, but we have
399  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
400  *   thread.
401  *
402  *   However, we do not guarantee forward progress for allocations from other
403  *   mempools. Doing multiple allocations from the same mempool under
404  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
405  *   for per bio allocations.
406  *
407  *   RETURNS:
408  *   Pointer to new bio on success, NULL on failure.
409  */
410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
411 {
412 	gfp_t saved_gfp = gfp_mask;
413 	unsigned front_pad;
414 	unsigned inline_vecs;
415 	unsigned long idx = BIO_POOL_NONE;
416 	struct bio_vec *bvl = NULL;
417 	struct bio *bio;
418 	void *p;
419 
420 	if (!bs) {
421 		if (nr_iovecs > UIO_MAXIOV)
422 			return NULL;
423 
424 		p = kmalloc(sizeof(struct bio) +
425 			    nr_iovecs * sizeof(struct bio_vec),
426 			    gfp_mask);
427 		front_pad = 0;
428 		inline_vecs = nr_iovecs;
429 	} else {
430 		/*
431 		 * generic_make_request() converts recursion to iteration; this
432 		 * means if we're running beneath it, any bios we allocate and
433 		 * submit will not be submitted (and thus freed) until after we
434 		 * return.
435 		 *
436 		 * This exposes us to a potential deadlock if we allocate
437 		 * multiple bios from the same bio_set() while running
438 		 * underneath generic_make_request(). If we were to allocate
439 		 * multiple bios (say a stacking block driver that was splitting
440 		 * bios), we would deadlock if we exhausted the mempool's
441 		 * reserve.
442 		 *
443 		 * We solve this, and guarantee forward progress, with a rescuer
444 		 * workqueue per bio_set. If we go to allocate and there are
445 		 * bios on current->bio_list, we first try the allocation
446 		 * without __GFP_WAIT; if that fails, we punt those bios we
447 		 * would be blocking to the rescuer workqueue before we retry
448 		 * with the original gfp_flags.
449 		 */
450 
451 		if (current->bio_list && !bio_list_empty(current->bio_list))
452 			gfp_mask &= ~__GFP_WAIT;
453 
454 		p = mempool_alloc(bs->bio_pool, gfp_mask);
455 		if (!p && gfp_mask != saved_gfp) {
456 			punt_bios_to_rescuer(bs);
457 			gfp_mask = saved_gfp;
458 			p = mempool_alloc(bs->bio_pool, gfp_mask);
459 		}
460 
461 		front_pad = bs->front_pad;
462 		inline_vecs = BIO_INLINE_VECS;
463 	}
464 
465 	if (unlikely(!p))
466 		return NULL;
467 
468 	bio = p + front_pad;
469 	bio_init(bio);
470 
471 	if (nr_iovecs > inline_vecs) {
472 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
473 		if (!bvl && gfp_mask != saved_gfp) {
474 			punt_bios_to_rescuer(bs);
475 			gfp_mask = saved_gfp;
476 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
477 		}
478 
479 		if (unlikely(!bvl))
480 			goto err_free;
481 
482 		bio->bi_flags |= 1 << BIO_OWNS_VEC;
483 	} else if (nr_iovecs) {
484 		bvl = bio->bi_inline_vecs;
485 	}
486 
487 	bio->bi_pool = bs;
488 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
489 	bio->bi_max_vecs = nr_iovecs;
490 	bio->bi_io_vec = bvl;
491 	return bio;
492 
493 err_free:
494 	mempool_free(p, bs->bio_pool);
495 	return NULL;
496 }
497 EXPORT_SYMBOL(bio_alloc_bioset);
498 
499 void zero_fill_bio(struct bio *bio)
500 {
501 	unsigned long flags;
502 	struct bio_vec bv;
503 	struct bvec_iter iter;
504 
505 	bio_for_each_segment(bv, bio, iter) {
506 		char *data = bvec_kmap_irq(&bv, &flags);
507 		memset(data, 0, bv.bv_len);
508 		flush_dcache_page(bv.bv_page);
509 		bvec_kunmap_irq(data, &flags);
510 	}
511 }
512 EXPORT_SYMBOL(zero_fill_bio);
513 
514 /**
515  * bio_put - release a reference to a bio
516  * @bio:   bio to release reference to
517  *
518  * Description:
519  *   Put a reference to a &struct bio, either one you have gotten with
520  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
521  **/
522 void bio_put(struct bio *bio)
523 {
524 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
525 
526 	/*
527 	 * last put frees it
528 	 */
529 	if (atomic_dec_and_test(&bio->bi_cnt))
530 		bio_free(bio);
531 }
532 EXPORT_SYMBOL(bio_put);
533 
534 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
535 {
536 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
537 		blk_recount_segments(q, bio);
538 
539 	return bio->bi_phys_segments;
540 }
541 EXPORT_SYMBOL(bio_phys_segments);
542 
543 /**
544  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
545  * 	@bio: destination bio
546  * 	@bio_src: bio to clone
547  *
548  *	Clone a &bio. Caller will own the returned bio, but not
549  *	the actual data it points to. Reference count of returned
550  * 	bio will be one.
551  *
552  * 	Caller must ensure that @bio_src is not freed before @bio.
553  */
554 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
555 {
556 	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
557 
558 	/*
559 	 * most users will be overriding ->bi_bdev with a new target,
560 	 * so we don't set nor calculate new physical/hw segment counts here
561 	 */
562 	bio->bi_bdev = bio_src->bi_bdev;
563 	bio->bi_flags |= 1 << BIO_CLONED;
564 	bio->bi_rw = bio_src->bi_rw;
565 	bio->bi_iter = bio_src->bi_iter;
566 	bio->bi_io_vec = bio_src->bi_io_vec;
567 }
568 EXPORT_SYMBOL(__bio_clone_fast);
569 
570 /**
571  *	bio_clone_fast - clone a bio that shares the original bio's biovec
572  *	@bio: bio to clone
573  *	@gfp_mask: allocation priority
574  *	@bs: bio_set to allocate from
575  *
576  * 	Like __bio_clone_fast, only also allocates the returned bio
577  */
578 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
579 {
580 	struct bio *b;
581 
582 	b = bio_alloc_bioset(gfp_mask, 0, bs);
583 	if (!b)
584 		return NULL;
585 
586 	__bio_clone_fast(b, bio);
587 
588 	if (bio_integrity(bio)) {
589 		int ret;
590 
591 		ret = bio_integrity_clone(b, bio, gfp_mask);
592 
593 		if (ret < 0) {
594 			bio_put(b);
595 			return NULL;
596 		}
597 	}
598 
599 	return b;
600 }
601 EXPORT_SYMBOL(bio_clone_fast);
602 
603 /**
604  * 	bio_clone_bioset - clone a bio
605  * 	@bio_src: bio to clone
606  *	@gfp_mask: allocation priority
607  *	@bs: bio_set to allocate from
608  *
609  *	Clone bio. Caller will own the returned bio, but not the actual data it
610  *	points to. Reference count of returned bio will be one.
611  */
612 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
613 			     struct bio_set *bs)
614 {
615 	struct bvec_iter iter;
616 	struct bio_vec bv;
617 	struct bio *bio;
618 
619 	/*
620 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
621 	 * bio_src->bi_io_vec to bio->bi_io_vec.
622 	 *
623 	 * We can't do that anymore, because:
624 	 *
625 	 *  - The point of cloning the biovec is to produce a bio with a biovec
626 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
627 	 *
628 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
629 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
630 	 *    But the clone should succeed as long as the number of biovecs we
631 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
632 	 *
633 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
634 	 *    that does not own the bio - reason being drivers don't use it for
635 	 *    iterating over the biovec anymore, so expecting it to be kept up
636 	 *    to date (i.e. for clones that share the parent biovec) is just
637 	 *    asking for trouble and would force extra work on
638 	 *    __bio_clone_fast() anyways.
639 	 */
640 
641 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
642 	if (!bio)
643 		return NULL;
644 
645 	bio->bi_bdev		= bio_src->bi_bdev;
646 	bio->bi_rw		= bio_src->bi_rw;
647 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
648 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
649 
650 	if (bio->bi_rw & REQ_DISCARD)
651 		goto integrity_clone;
652 
653 	if (bio->bi_rw & REQ_WRITE_SAME) {
654 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
655 		goto integrity_clone;
656 	}
657 
658 	bio_for_each_segment(bv, bio_src, iter)
659 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
660 
661 integrity_clone:
662 	if (bio_integrity(bio_src)) {
663 		int ret;
664 
665 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
666 		if (ret < 0) {
667 			bio_put(bio);
668 			return NULL;
669 		}
670 	}
671 
672 	return bio;
673 }
674 EXPORT_SYMBOL(bio_clone_bioset);
675 
676 /**
677  *	bio_get_nr_vecs		- return approx number of vecs
678  *	@bdev:  I/O target
679  *
680  *	Return the approximate number of pages we can send to this target.
681  *	There's no guarantee that you will be able to fit this number of pages
682  *	into a bio, it does not account for dynamic restrictions that vary
683  *	on offset.
684  */
685 int bio_get_nr_vecs(struct block_device *bdev)
686 {
687 	struct request_queue *q = bdev_get_queue(bdev);
688 	int nr_pages;
689 
690 	nr_pages = min_t(unsigned,
691 		     queue_max_segments(q),
692 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
693 
694 	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
695 
696 }
697 EXPORT_SYMBOL(bio_get_nr_vecs);
698 
699 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
700 			  *page, unsigned int len, unsigned int offset,
701 			  unsigned int max_sectors)
702 {
703 	int retried_segments = 0;
704 	struct bio_vec *bvec;
705 
706 	/*
707 	 * cloned bio must not modify vec list
708 	 */
709 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
710 		return 0;
711 
712 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
713 		return 0;
714 
715 	/*
716 	 * For filesystems with a blocksize smaller than the pagesize
717 	 * we will often be called with the same page as last time and
718 	 * a consecutive offset.  Optimize this special case.
719 	 */
720 	if (bio->bi_vcnt > 0) {
721 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
722 
723 		if (page == prev->bv_page &&
724 		    offset == prev->bv_offset + prev->bv_len) {
725 			unsigned int prev_bv_len = prev->bv_len;
726 			prev->bv_len += len;
727 
728 			if (q->merge_bvec_fn) {
729 				struct bvec_merge_data bvm = {
730 					/* prev_bvec is already charged in
731 					   bi_size, discharge it in order to
732 					   simulate merging updated prev_bvec
733 					   as new bvec. */
734 					.bi_bdev = bio->bi_bdev,
735 					.bi_sector = bio->bi_iter.bi_sector,
736 					.bi_size = bio->bi_iter.bi_size -
737 						prev_bv_len,
738 					.bi_rw = bio->bi_rw,
739 				};
740 
741 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
742 					prev->bv_len -= len;
743 					return 0;
744 				}
745 			}
746 
747 			goto done;
748 		}
749 	}
750 
751 	if (bio->bi_vcnt >= bio->bi_max_vecs)
752 		return 0;
753 
754 	/*
755 	 * we might lose a segment or two here, but rather that than
756 	 * make this too complex.
757 	 */
758 
759 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
760 
761 		if (retried_segments)
762 			return 0;
763 
764 		retried_segments = 1;
765 		blk_recount_segments(q, bio);
766 	}
767 
768 	/*
769 	 * setup the new entry, we might clear it again later if we
770 	 * cannot add the page
771 	 */
772 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
773 	bvec->bv_page = page;
774 	bvec->bv_len = len;
775 	bvec->bv_offset = offset;
776 
777 	/*
778 	 * if queue has other restrictions (eg varying max sector size
779 	 * depending on offset), it can specify a merge_bvec_fn in the
780 	 * queue to get further control
781 	 */
782 	if (q->merge_bvec_fn) {
783 		struct bvec_merge_data bvm = {
784 			.bi_bdev = bio->bi_bdev,
785 			.bi_sector = bio->bi_iter.bi_sector,
786 			.bi_size = bio->bi_iter.bi_size,
787 			.bi_rw = bio->bi_rw,
788 		};
789 
790 		/*
791 		 * merge_bvec_fn() returns number of bytes it can accept
792 		 * at this offset
793 		 */
794 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
795 			bvec->bv_page = NULL;
796 			bvec->bv_len = 0;
797 			bvec->bv_offset = 0;
798 			return 0;
799 		}
800 	}
801 
802 	/* If we may be able to merge these biovecs, force a recount */
803 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
805 
806 	bio->bi_vcnt++;
807 	bio->bi_phys_segments++;
808  done:
809 	bio->bi_iter.bi_size += len;
810 	return len;
811 }
812 
813 /**
814  *	bio_add_pc_page	-	attempt to add page to bio
815  *	@q: the target queue
816  *	@bio: destination bio
817  *	@page: page to add
818  *	@len: vec entry length
819  *	@offset: vec entry offset
820  *
821  *	Attempt to add a page to the bio_vec maplist. This can fail for a
822  *	number of reasons, such as the bio being full or target block device
823  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
824  *	so it is always possible to add a single page to an empty bio.
825  *
826  *	This should only be used by REQ_PC bios.
827  */
828 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
829 		    unsigned int len, unsigned int offset)
830 {
831 	return __bio_add_page(q, bio, page, len, offset,
832 			      queue_max_hw_sectors(q));
833 }
834 EXPORT_SYMBOL(bio_add_pc_page);
835 
836 /**
837  *	bio_add_page	-	attempt to add page to bio
838  *	@bio: destination bio
839  *	@page: page to add
840  *	@len: vec entry length
841  *	@offset: vec entry offset
842  *
843  *	Attempt to add a page to the bio_vec maplist. This can fail for a
844  *	number of reasons, such as the bio being full or target block device
845  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
846  *	so it is always possible to add a single page to an empty bio.
847  */
848 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
849 		 unsigned int offset)
850 {
851 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
852 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
853 }
854 EXPORT_SYMBOL(bio_add_page);
855 
856 struct submit_bio_ret {
857 	struct completion event;
858 	int error;
859 };
860 
861 static void submit_bio_wait_endio(struct bio *bio, int error)
862 {
863 	struct submit_bio_ret *ret = bio->bi_private;
864 
865 	ret->error = error;
866 	complete(&ret->event);
867 }
868 
869 /**
870  * submit_bio_wait - submit a bio, and wait until it completes
871  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
872  * @bio: The &struct bio which describes the I/O
873  *
874  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
875  * bio_endio() on failure.
876  */
877 int submit_bio_wait(int rw, struct bio *bio)
878 {
879 	struct submit_bio_ret ret;
880 
881 	rw |= REQ_SYNC;
882 	init_completion(&ret.event);
883 	bio->bi_private = &ret;
884 	bio->bi_end_io = submit_bio_wait_endio;
885 	submit_bio(rw, bio);
886 	wait_for_completion(&ret.event);
887 
888 	return ret.error;
889 }
890 EXPORT_SYMBOL(submit_bio_wait);
891 
892 /**
893  * bio_advance - increment/complete a bio by some number of bytes
894  * @bio:	bio to advance
895  * @bytes:	number of bytes to complete
896  *
897  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
898  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
899  * be updated on the last bvec as well.
900  *
901  * @bio will then represent the remaining, uncompleted portion of the io.
902  */
903 void bio_advance(struct bio *bio, unsigned bytes)
904 {
905 	if (bio_integrity(bio))
906 		bio_integrity_advance(bio, bytes);
907 
908 	bio_advance_iter(bio, &bio->bi_iter, bytes);
909 }
910 EXPORT_SYMBOL(bio_advance);
911 
912 /**
913  * bio_alloc_pages - allocates a single page for each bvec in a bio
914  * @bio: bio to allocate pages for
915  * @gfp_mask: flags for allocation
916  *
917  * Allocates pages up to @bio->bi_vcnt.
918  *
919  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
920  * freed.
921  */
922 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
923 {
924 	int i;
925 	struct bio_vec *bv;
926 
927 	bio_for_each_segment_all(bv, bio, i) {
928 		bv->bv_page = alloc_page(gfp_mask);
929 		if (!bv->bv_page) {
930 			while (--bv >= bio->bi_io_vec)
931 				__free_page(bv->bv_page);
932 			return -ENOMEM;
933 		}
934 	}
935 
936 	return 0;
937 }
938 EXPORT_SYMBOL(bio_alloc_pages);
939 
940 /**
941  * bio_copy_data - copy contents of data buffers from one chain of bios to
942  * another
943  * @src: source bio list
944  * @dst: destination bio list
945  *
946  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
947  * @src and @dst as linked lists of bios.
948  *
949  * Stops when it reaches the end of either @src or @dst - that is, copies
950  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
951  */
952 void bio_copy_data(struct bio *dst, struct bio *src)
953 {
954 	struct bvec_iter src_iter, dst_iter;
955 	struct bio_vec src_bv, dst_bv;
956 	void *src_p, *dst_p;
957 	unsigned bytes;
958 
959 	src_iter = src->bi_iter;
960 	dst_iter = dst->bi_iter;
961 
962 	while (1) {
963 		if (!src_iter.bi_size) {
964 			src = src->bi_next;
965 			if (!src)
966 				break;
967 
968 			src_iter = src->bi_iter;
969 		}
970 
971 		if (!dst_iter.bi_size) {
972 			dst = dst->bi_next;
973 			if (!dst)
974 				break;
975 
976 			dst_iter = dst->bi_iter;
977 		}
978 
979 		src_bv = bio_iter_iovec(src, src_iter);
980 		dst_bv = bio_iter_iovec(dst, dst_iter);
981 
982 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
983 
984 		src_p = kmap_atomic(src_bv.bv_page);
985 		dst_p = kmap_atomic(dst_bv.bv_page);
986 
987 		memcpy(dst_p + dst_bv.bv_offset,
988 		       src_p + src_bv.bv_offset,
989 		       bytes);
990 
991 		kunmap_atomic(dst_p);
992 		kunmap_atomic(src_p);
993 
994 		bio_advance_iter(src, &src_iter, bytes);
995 		bio_advance_iter(dst, &dst_iter, bytes);
996 	}
997 }
998 EXPORT_SYMBOL(bio_copy_data);
999 
1000 struct bio_map_data {
1001 	int nr_sgvecs;
1002 	int is_our_pages;
1003 	struct sg_iovec sgvecs[];
1004 };
1005 
1006 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1007 			     const struct sg_iovec *iov, int iov_count,
1008 			     int is_our_pages)
1009 {
1010 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1011 	bmd->nr_sgvecs = iov_count;
1012 	bmd->is_our_pages = is_our_pages;
1013 	bio->bi_private = bmd;
1014 }
1015 
1016 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1017 					       gfp_t gfp_mask)
1018 {
1019 	if (iov_count > UIO_MAXIOV)
1020 		return NULL;
1021 
1022 	return kmalloc(sizeof(struct bio_map_data) +
1023 		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
1024 }
1025 
1026 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1027 			  int to_user, int from_user, int do_free_page)
1028 {
1029 	int ret = 0, i;
1030 	struct bio_vec *bvec;
1031 	int iov_idx = 0;
1032 	unsigned int iov_off = 0;
1033 
1034 	bio_for_each_segment_all(bvec, bio, i) {
1035 		char *bv_addr = page_address(bvec->bv_page);
1036 		unsigned int bv_len = bvec->bv_len;
1037 
1038 		while (bv_len && iov_idx < iov_count) {
1039 			unsigned int bytes;
1040 			char __user *iov_addr;
1041 
1042 			bytes = min_t(unsigned int,
1043 				      iov[iov_idx].iov_len - iov_off, bv_len);
1044 			iov_addr = iov[iov_idx].iov_base + iov_off;
1045 
1046 			if (!ret) {
1047 				if (to_user)
1048 					ret = copy_to_user(iov_addr, bv_addr,
1049 							   bytes);
1050 
1051 				if (from_user)
1052 					ret = copy_from_user(bv_addr, iov_addr,
1053 							     bytes);
1054 
1055 				if (ret)
1056 					ret = -EFAULT;
1057 			}
1058 
1059 			bv_len -= bytes;
1060 			bv_addr += bytes;
1061 			iov_addr += bytes;
1062 			iov_off += bytes;
1063 
1064 			if (iov[iov_idx].iov_len == iov_off) {
1065 				iov_idx++;
1066 				iov_off = 0;
1067 			}
1068 		}
1069 
1070 		if (do_free_page)
1071 			__free_page(bvec->bv_page);
1072 	}
1073 
1074 	return ret;
1075 }
1076 
1077 /**
1078  *	bio_uncopy_user	-	finish previously mapped bio
1079  *	@bio: bio being terminated
1080  *
1081  *	Free pages allocated from bio_copy_user() and write back data
1082  *	to user space in case of a read.
1083  */
1084 int bio_uncopy_user(struct bio *bio)
1085 {
1086 	struct bio_map_data *bmd = bio->bi_private;
1087 	struct bio_vec *bvec;
1088 	int ret = 0, i;
1089 
1090 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1091 		/*
1092 		 * if we're in a workqueue, the request is orphaned, so
1093 		 * don't copy into a random user address space, just free.
1094 		 */
1095 		if (current->mm)
1096 			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1097 					     bio_data_dir(bio) == READ,
1098 					     0, bmd->is_our_pages);
1099 		else if (bmd->is_our_pages)
1100 			bio_for_each_segment_all(bvec, bio, i)
1101 				__free_page(bvec->bv_page);
1102 	}
1103 	kfree(bmd);
1104 	bio_put(bio);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(bio_uncopy_user);
1108 
1109 /**
1110  *	bio_copy_user_iov	-	copy user data to bio
1111  *	@q: destination block queue
1112  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1113  *	@iov:	the iovec.
1114  *	@iov_count: number of elements in the iovec
1115  *	@write_to_vm: bool indicating writing to pages or not
1116  *	@gfp_mask: memory allocation flags
1117  *
1118  *	Prepares and returns a bio for indirect user io, bouncing data
1119  *	to/from kernel pages as necessary. Must be paired with
1120  *	call bio_uncopy_user() on io completion.
1121  */
1122 struct bio *bio_copy_user_iov(struct request_queue *q,
1123 			      struct rq_map_data *map_data,
1124 			      const struct sg_iovec *iov, int iov_count,
1125 			      int write_to_vm, gfp_t gfp_mask)
1126 {
1127 	struct bio_map_data *bmd;
1128 	struct bio_vec *bvec;
1129 	struct page *page;
1130 	struct bio *bio;
1131 	int i, ret;
1132 	int nr_pages = 0;
1133 	unsigned int len = 0;
1134 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1135 
1136 	for (i = 0; i < iov_count; i++) {
1137 		unsigned long uaddr;
1138 		unsigned long end;
1139 		unsigned long start;
1140 
1141 		uaddr = (unsigned long)iov[i].iov_base;
1142 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1143 		start = uaddr >> PAGE_SHIFT;
1144 
1145 		/*
1146 		 * Overflow, abort
1147 		 */
1148 		if (end < start)
1149 			return ERR_PTR(-EINVAL);
1150 
1151 		nr_pages += end - start;
1152 		len += iov[i].iov_len;
1153 	}
1154 
1155 	if (offset)
1156 		nr_pages++;
1157 
1158 	bmd = bio_alloc_map_data(iov_count, gfp_mask);
1159 	if (!bmd)
1160 		return ERR_PTR(-ENOMEM);
1161 
1162 	ret = -ENOMEM;
1163 	bio = bio_kmalloc(gfp_mask, nr_pages);
1164 	if (!bio)
1165 		goto out_bmd;
1166 
1167 	if (!write_to_vm)
1168 		bio->bi_rw |= REQ_WRITE;
1169 
1170 	ret = 0;
1171 
1172 	if (map_data) {
1173 		nr_pages = 1 << map_data->page_order;
1174 		i = map_data->offset / PAGE_SIZE;
1175 	}
1176 	while (len) {
1177 		unsigned int bytes = PAGE_SIZE;
1178 
1179 		bytes -= offset;
1180 
1181 		if (bytes > len)
1182 			bytes = len;
1183 
1184 		if (map_data) {
1185 			if (i == map_data->nr_entries * nr_pages) {
1186 				ret = -ENOMEM;
1187 				break;
1188 			}
1189 
1190 			page = map_data->pages[i / nr_pages];
1191 			page += (i % nr_pages);
1192 
1193 			i++;
1194 		} else {
1195 			page = alloc_page(q->bounce_gfp | gfp_mask);
1196 			if (!page) {
1197 				ret = -ENOMEM;
1198 				break;
1199 			}
1200 		}
1201 
1202 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1203 			break;
1204 
1205 		len -= bytes;
1206 		offset = 0;
1207 	}
1208 
1209 	if (ret)
1210 		goto cleanup;
1211 
1212 	/*
1213 	 * success
1214 	 */
1215 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1216 	    (map_data && map_data->from_user)) {
1217 		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1218 		if (ret)
1219 			goto cleanup;
1220 	}
1221 
1222 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1223 	return bio;
1224 cleanup:
1225 	if (!map_data)
1226 		bio_for_each_segment_all(bvec, bio, i)
1227 			__free_page(bvec->bv_page);
1228 
1229 	bio_put(bio);
1230 out_bmd:
1231 	kfree(bmd);
1232 	return ERR_PTR(ret);
1233 }
1234 
1235 /**
1236  *	bio_copy_user	-	copy user data to bio
1237  *	@q: destination block queue
1238  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1239  *	@uaddr: start of user address
1240  *	@len: length in bytes
1241  *	@write_to_vm: bool indicating writing to pages or not
1242  *	@gfp_mask: memory allocation flags
1243  *
1244  *	Prepares and returns a bio for indirect user io, bouncing data
1245  *	to/from kernel pages as necessary. Must be paired with
1246  *	call bio_uncopy_user() on io completion.
1247  */
1248 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1249 			  unsigned long uaddr, unsigned int len,
1250 			  int write_to_vm, gfp_t gfp_mask)
1251 {
1252 	struct sg_iovec iov;
1253 
1254 	iov.iov_base = (void __user *)uaddr;
1255 	iov.iov_len = len;
1256 
1257 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1258 }
1259 EXPORT_SYMBOL(bio_copy_user);
1260 
1261 static struct bio *__bio_map_user_iov(struct request_queue *q,
1262 				      struct block_device *bdev,
1263 				      const struct sg_iovec *iov, int iov_count,
1264 				      int write_to_vm, gfp_t gfp_mask)
1265 {
1266 	int i, j;
1267 	int nr_pages = 0;
1268 	struct page **pages;
1269 	struct bio *bio;
1270 	int cur_page = 0;
1271 	int ret, offset;
1272 
1273 	for (i = 0; i < iov_count; i++) {
1274 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1275 		unsigned long len = iov[i].iov_len;
1276 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1277 		unsigned long start = uaddr >> PAGE_SHIFT;
1278 
1279 		/*
1280 		 * Overflow, abort
1281 		 */
1282 		if (end < start)
1283 			return ERR_PTR(-EINVAL);
1284 
1285 		nr_pages += end - start;
1286 		/*
1287 		 * buffer must be aligned to at least hardsector size for now
1288 		 */
1289 		if (uaddr & queue_dma_alignment(q))
1290 			return ERR_PTR(-EINVAL);
1291 	}
1292 
1293 	if (!nr_pages)
1294 		return ERR_PTR(-EINVAL);
1295 
1296 	bio = bio_kmalloc(gfp_mask, nr_pages);
1297 	if (!bio)
1298 		return ERR_PTR(-ENOMEM);
1299 
1300 	ret = -ENOMEM;
1301 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1302 	if (!pages)
1303 		goto out;
1304 
1305 	for (i = 0; i < iov_count; i++) {
1306 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1307 		unsigned long len = iov[i].iov_len;
1308 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1309 		unsigned long start = uaddr >> PAGE_SHIFT;
1310 		const int local_nr_pages = end - start;
1311 		const int page_limit = cur_page + local_nr_pages;
1312 
1313 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1314 				write_to_vm, &pages[cur_page]);
1315 		if (ret < local_nr_pages) {
1316 			ret = -EFAULT;
1317 			goto out_unmap;
1318 		}
1319 
1320 		offset = uaddr & ~PAGE_MASK;
1321 		for (j = cur_page; j < page_limit; j++) {
1322 			unsigned int bytes = PAGE_SIZE - offset;
1323 
1324 			if (len <= 0)
1325 				break;
1326 
1327 			if (bytes > len)
1328 				bytes = len;
1329 
1330 			/*
1331 			 * sorry...
1332 			 */
1333 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1334 					    bytes)
1335 				break;
1336 
1337 			len -= bytes;
1338 			offset = 0;
1339 		}
1340 
1341 		cur_page = j;
1342 		/*
1343 		 * release the pages we didn't map into the bio, if any
1344 		 */
1345 		while (j < page_limit)
1346 			page_cache_release(pages[j++]);
1347 	}
1348 
1349 	kfree(pages);
1350 
1351 	/*
1352 	 * set data direction, and check if mapped pages need bouncing
1353 	 */
1354 	if (!write_to_vm)
1355 		bio->bi_rw |= REQ_WRITE;
1356 
1357 	bio->bi_bdev = bdev;
1358 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1359 	return bio;
1360 
1361  out_unmap:
1362 	for (i = 0; i < nr_pages; i++) {
1363 		if(!pages[i])
1364 			break;
1365 		page_cache_release(pages[i]);
1366 	}
1367  out:
1368 	kfree(pages);
1369 	bio_put(bio);
1370 	return ERR_PTR(ret);
1371 }
1372 
1373 /**
1374  *	bio_map_user	-	map user address into bio
1375  *	@q: the struct request_queue for the bio
1376  *	@bdev: destination block device
1377  *	@uaddr: start of user address
1378  *	@len: length in bytes
1379  *	@write_to_vm: bool indicating writing to pages or not
1380  *	@gfp_mask: memory allocation flags
1381  *
1382  *	Map the user space address into a bio suitable for io to a block
1383  *	device. Returns an error pointer in case of error.
1384  */
1385 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1386 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1387 			 gfp_t gfp_mask)
1388 {
1389 	struct sg_iovec iov;
1390 
1391 	iov.iov_base = (void __user *)uaddr;
1392 	iov.iov_len = len;
1393 
1394 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1395 }
1396 EXPORT_SYMBOL(bio_map_user);
1397 
1398 /**
1399  *	bio_map_user_iov - map user sg_iovec table into bio
1400  *	@q: the struct request_queue for the bio
1401  *	@bdev: destination block device
1402  *	@iov:	the iovec.
1403  *	@iov_count: number of elements in the iovec
1404  *	@write_to_vm: bool indicating writing to pages or not
1405  *	@gfp_mask: memory allocation flags
1406  *
1407  *	Map the user space address into a bio suitable for io to a block
1408  *	device. Returns an error pointer in case of error.
1409  */
1410 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1411 			     const struct sg_iovec *iov, int iov_count,
1412 			     int write_to_vm, gfp_t gfp_mask)
1413 {
1414 	struct bio *bio;
1415 
1416 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1417 				 gfp_mask);
1418 	if (IS_ERR(bio))
1419 		return bio;
1420 
1421 	/*
1422 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1423 	 * it would normally disappear when its bi_end_io is run.
1424 	 * however, we need it for the unmap, so grab an extra
1425 	 * reference to it
1426 	 */
1427 	bio_get(bio);
1428 
1429 	return bio;
1430 }
1431 
1432 static void __bio_unmap_user(struct bio *bio)
1433 {
1434 	struct bio_vec *bvec;
1435 	int i;
1436 
1437 	/*
1438 	 * make sure we dirty pages we wrote to
1439 	 */
1440 	bio_for_each_segment_all(bvec, bio, i) {
1441 		if (bio_data_dir(bio) == READ)
1442 			set_page_dirty_lock(bvec->bv_page);
1443 
1444 		page_cache_release(bvec->bv_page);
1445 	}
1446 
1447 	bio_put(bio);
1448 }
1449 
1450 /**
1451  *	bio_unmap_user	-	unmap a bio
1452  *	@bio:		the bio being unmapped
1453  *
1454  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1455  *	a process context.
1456  *
1457  *	bio_unmap_user() may sleep.
1458  */
1459 void bio_unmap_user(struct bio *bio)
1460 {
1461 	__bio_unmap_user(bio);
1462 	bio_put(bio);
1463 }
1464 EXPORT_SYMBOL(bio_unmap_user);
1465 
1466 static void bio_map_kern_endio(struct bio *bio, int err)
1467 {
1468 	bio_put(bio);
1469 }
1470 
1471 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1472 				  unsigned int len, gfp_t gfp_mask)
1473 {
1474 	unsigned long kaddr = (unsigned long)data;
1475 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476 	unsigned long start = kaddr >> PAGE_SHIFT;
1477 	const int nr_pages = end - start;
1478 	int offset, i;
1479 	struct bio *bio;
1480 
1481 	bio = bio_kmalloc(gfp_mask, nr_pages);
1482 	if (!bio)
1483 		return ERR_PTR(-ENOMEM);
1484 
1485 	offset = offset_in_page(kaddr);
1486 	for (i = 0; i < nr_pages; i++) {
1487 		unsigned int bytes = PAGE_SIZE - offset;
1488 
1489 		if (len <= 0)
1490 			break;
1491 
1492 		if (bytes > len)
1493 			bytes = len;
1494 
1495 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1496 				    offset) < bytes)
1497 			break;
1498 
1499 		data += bytes;
1500 		len -= bytes;
1501 		offset = 0;
1502 	}
1503 
1504 	bio->bi_end_io = bio_map_kern_endio;
1505 	return bio;
1506 }
1507 
1508 /**
1509  *	bio_map_kern	-	map kernel address into bio
1510  *	@q: the struct request_queue for the bio
1511  *	@data: pointer to buffer to map
1512  *	@len: length in bytes
1513  *	@gfp_mask: allocation flags for bio allocation
1514  *
1515  *	Map the kernel address into a bio suitable for io to a block
1516  *	device. Returns an error pointer in case of error.
1517  */
1518 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1519 			 gfp_t gfp_mask)
1520 {
1521 	struct bio *bio;
1522 
1523 	bio = __bio_map_kern(q, data, len, gfp_mask);
1524 	if (IS_ERR(bio))
1525 		return bio;
1526 
1527 	if (bio->bi_iter.bi_size == len)
1528 		return bio;
1529 
1530 	/*
1531 	 * Don't support partial mappings.
1532 	 */
1533 	bio_put(bio);
1534 	return ERR_PTR(-EINVAL);
1535 }
1536 EXPORT_SYMBOL(bio_map_kern);
1537 
1538 static void bio_copy_kern_endio(struct bio *bio, int err)
1539 {
1540 	struct bio_vec *bvec;
1541 	const int read = bio_data_dir(bio) == READ;
1542 	struct bio_map_data *bmd = bio->bi_private;
1543 	int i;
1544 	char *p = bmd->sgvecs[0].iov_base;
1545 
1546 	bio_for_each_segment_all(bvec, bio, i) {
1547 		char *addr = page_address(bvec->bv_page);
1548 
1549 		if (read)
1550 			memcpy(p, addr, bvec->bv_len);
1551 
1552 		__free_page(bvec->bv_page);
1553 		p += bvec->bv_len;
1554 	}
1555 
1556 	kfree(bmd);
1557 	bio_put(bio);
1558 }
1559 
1560 /**
1561  *	bio_copy_kern	-	copy kernel address into bio
1562  *	@q: the struct request_queue for the bio
1563  *	@data: pointer to buffer to copy
1564  *	@len: length in bytes
1565  *	@gfp_mask: allocation flags for bio and page allocation
1566  *	@reading: data direction is READ
1567  *
1568  *	copy the kernel address into a bio suitable for io to a block
1569  *	device. Returns an error pointer in case of error.
1570  */
1571 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1572 			  gfp_t gfp_mask, int reading)
1573 {
1574 	struct bio *bio;
1575 	struct bio_vec *bvec;
1576 	int i;
1577 
1578 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1579 	if (IS_ERR(bio))
1580 		return bio;
1581 
1582 	if (!reading) {
1583 		void *p = data;
1584 
1585 		bio_for_each_segment_all(bvec, bio, i) {
1586 			char *addr = page_address(bvec->bv_page);
1587 
1588 			memcpy(addr, p, bvec->bv_len);
1589 			p += bvec->bv_len;
1590 		}
1591 	}
1592 
1593 	bio->bi_end_io = bio_copy_kern_endio;
1594 
1595 	return bio;
1596 }
1597 EXPORT_SYMBOL(bio_copy_kern);
1598 
1599 /*
1600  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1601  * for performing direct-IO in BIOs.
1602  *
1603  * The problem is that we cannot run set_page_dirty() from interrupt context
1604  * because the required locks are not interrupt-safe.  So what we can do is to
1605  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1606  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1607  * in process context.
1608  *
1609  * We special-case compound pages here: normally this means reads into hugetlb
1610  * pages.  The logic in here doesn't really work right for compound pages
1611  * because the VM does not uniformly chase down the head page in all cases.
1612  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1613  * handle them at all.  So we skip compound pages here at an early stage.
1614  *
1615  * Note that this code is very hard to test under normal circumstances because
1616  * direct-io pins the pages with get_user_pages().  This makes
1617  * is_page_cache_freeable return false, and the VM will not clean the pages.
1618  * But other code (eg, flusher threads) could clean the pages if they are mapped
1619  * pagecache.
1620  *
1621  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1622  * deferred bio dirtying paths.
1623  */
1624 
1625 /*
1626  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1627  */
1628 void bio_set_pages_dirty(struct bio *bio)
1629 {
1630 	struct bio_vec *bvec;
1631 	int i;
1632 
1633 	bio_for_each_segment_all(bvec, bio, i) {
1634 		struct page *page = bvec->bv_page;
1635 
1636 		if (page && !PageCompound(page))
1637 			set_page_dirty_lock(page);
1638 	}
1639 }
1640 
1641 static void bio_release_pages(struct bio *bio)
1642 {
1643 	struct bio_vec *bvec;
1644 	int i;
1645 
1646 	bio_for_each_segment_all(bvec, bio, i) {
1647 		struct page *page = bvec->bv_page;
1648 
1649 		if (page)
1650 			put_page(page);
1651 	}
1652 }
1653 
1654 /*
1655  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1656  * If they are, then fine.  If, however, some pages are clean then they must
1657  * have been written out during the direct-IO read.  So we take another ref on
1658  * the BIO and the offending pages and re-dirty the pages in process context.
1659  *
1660  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1661  * here on.  It will run one page_cache_release() against each page and will
1662  * run one bio_put() against the BIO.
1663  */
1664 
1665 static void bio_dirty_fn(struct work_struct *work);
1666 
1667 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1668 static DEFINE_SPINLOCK(bio_dirty_lock);
1669 static struct bio *bio_dirty_list;
1670 
1671 /*
1672  * This runs in process context
1673  */
1674 static void bio_dirty_fn(struct work_struct *work)
1675 {
1676 	unsigned long flags;
1677 	struct bio *bio;
1678 
1679 	spin_lock_irqsave(&bio_dirty_lock, flags);
1680 	bio = bio_dirty_list;
1681 	bio_dirty_list = NULL;
1682 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1683 
1684 	while (bio) {
1685 		struct bio *next = bio->bi_private;
1686 
1687 		bio_set_pages_dirty(bio);
1688 		bio_release_pages(bio);
1689 		bio_put(bio);
1690 		bio = next;
1691 	}
1692 }
1693 
1694 void bio_check_pages_dirty(struct bio *bio)
1695 {
1696 	struct bio_vec *bvec;
1697 	int nr_clean_pages = 0;
1698 	int i;
1699 
1700 	bio_for_each_segment_all(bvec, bio, i) {
1701 		struct page *page = bvec->bv_page;
1702 
1703 		if (PageDirty(page) || PageCompound(page)) {
1704 			page_cache_release(page);
1705 			bvec->bv_page = NULL;
1706 		} else {
1707 			nr_clean_pages++;
1708 		}
1709 	}
1710 
1711 	if (nr_clean_pages) {
1712 		unsigned long flags;
1713 
1714 		spin_lock_irqsave(&bio_dirty_lock, flags);
1715 		bio->bi_private = bio_dirty_list;
1716 		bio_dirty_list = bio;
1717 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1718 		schedule_work(&bio_dirty_work);
1719 	} else {
1720 		bio_put(bio);
1721 	}
1722 }
1723 
1724 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1725 void bio_flush_dcache_pages(struct bio *bi)
1726 {
1727 	struct bio_vec bvec;
1728 	struct bvec_iter iter;
1729 
1730 	bio_for_each_segment(bvec, bi, iter)
1731 		flush_dcache_page(bvec.bv_page);
1732 }
1733 EXPORT_SYMBOL(bio_flush_dcache_pages);
1734 #endif
1735 
1736 /**
1737  * bio_endio - end I/O on a bio
1738  * @bio:	bio
1739  * @error:	error, if any
1740  *
1741  * Description:
1742  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1743  *   preferred way to end I/O on a bio, it takes care of clearing
1744  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1745  *   established -Exxxx (-EIO, for instance) error values in case
1746  *   something went wrong. No one should call bi_end_io() directly on a
1747  *   bio unless they own it and thus know that it has an end_io
1748  *   function.
1749  **/
1750 void bio_endio(struct bio *bio, int error)
1751 {
1752 	while (bio) {
1753 		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1754 
1755 		if (error)
1756 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1757 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1758 			error = -EIO;
1759 
1760 		if (!atomic_dec_and_test(&bio->bi_remaining))
1761 			return;
1762 
1763 		/*
1764 		 * Need to have a real endio function for chained bios,
1765 		 * otherwise various corner cases will break (like stacking
1766 		 * block devices that save/restore bi_end_io) - however, we want
1767 		 * to avoid unbounded recursion and blowing the stack. Tail call
1768 		 * optimization would handle this, but compiling with frame
1769 		 * pointers also disables gcc's sibling call optimization.
1770 		 */
1771 		if (bio->bi_end_io == bio_chain_endio) {
1772 			struct bio *parent = bio->bi_private;
1773 			bio_put(bio);
1774 			bio = parent;
1775 		} else {
1776 			if (bio->bi_end_io)
1777 				bio->bi_end_io(bio, error);
1778 			bio = NULL;
1779 		}
1780 	}
1781 }
1782 EXPORT_SYMBOL(bio_endio);
1783 
1784 /**
1785  * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1786  * @bio:	bio
1787  * @error:	error, if any
1788  *
1789  * For code that has saved and restored bi_end_io; thing hard before using this
1790  * function, probably you should've cloned the entire bio.
1791  **/
1792 void bio_endio_nodec(struct bio *bio, int error)
1793 {
1794 	atomic_inc(&bio->bi_remaining);
1795 	bio_endio(bio, error);
1796 }
1797 EXPORT_SYMBOL(bio_endio_nodec);
1798 
1799 /**
1800  * bio_split - split a bio
1801  * @bio:	bio to split
1802  * @sectors:	number of sectors to split from the front of @bio
1803  * @gfp:	gfp mask
1804  * @bs:		bio set to allocate from
1805  *
1806  * Allocates and returns a new bio which represents @sectors from the start of
1807  * @bio, and updates @bio to represent the remaining sectors.
1808  *
1809  * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1810  * responsibility to ensure that @bio is not freed before the split.
1811  */
1812 struct bio *bio_split(struct bio *bio, int sectors,
1813 		      gfp_t gfp, struct bio_set *bs)
1814 {
1815 	struct bio *split = NULL;
1816 
1817 	BUG_ON(sectors <= 0);
1818 	BUG_ON(sectors >= bio_sectors(bio));
1819 
1820 	split = bio_clone_fast(bio, gfp, bs);
1821 	if (!split)
1822 		return NULL;
1823 
1824 	split->bi_iter.bi_size = sectors << 9;
1825 
1826 	if (bio_integrity(split))
1827 		bio_integrity_trim(split, 0, sectors);
1828 
1829 	bio_advance(bio, split->bi_iter.bi_size);
1830 
1831 	return split;
1832 }
1833 EXPORT_SYMBOL(bio_split);
1834 
1835 /**
1836  * bio_trim - trim a bio
1837  * @bio:	bio to trim
1838  * @offset:	number of sectors to trim from the front of @bio
1839  * @size:	size we want to trim @bio to, in sectors
1840  */
1841 void bio_trim(struct bio *bio, int offset, int size)
1842 {
1843 	/* 'bio' is a cloned bio which we need to trim to match
1844 	 * the given offset and size.
1845 	 */
1846 
1847 	size <<= 9;
1848 	if (offset == 0 && size == bio->bi_iter.bi_size)
1849 		return;
1850 
1851 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1852 
1853 	bio_advance(bio, offset << 9);
1854 
1855 	bio->bi_iter.bi_size = size;
1856 }
1857 EXPORT_SYMBOL_GPL(bio_trim);
1858 
1859 /*
1860  * create memory pools for biovec's in a bio_set.
1861  * use the global biovec slabs created for general use.
1862  */
1863 mempool_t *biovec_create_pool(int pool_entries)
1864 {
1865 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1866 
1867 	return mempool_create_slab_pool(pool_entries, bp->slab);
1868 }
1869 
1870 void bioset_free(struct bio_set *bs)
1871 {
1872 	if (bs->rescue_workqueue)
1873 		destroy_workqueue(bs->rescue_workqueue);
1874 
1875 	if (bs->bio_pool)
1876 		mempool_destroy(bs->bio_pool);
1877 
1878 	if (bs->bvec_pool)
1879 		mempool_destroy(bs->bvec_pool);
1880 
1881 	bioset_integrity_free(bs);
1882 	bio_put_slab(bs);
1883 
1884 	kfree(bs);
1885 }
1886 EXPORT_SYMBOL(bioset_free);
1887 
1888 /**
1889  * bioset_create  - Create a bio_set
1890  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1891  * @front_pad:	Number of bytes to allocate in front of the returned bio
1892  *
1893  * Description:
1894  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1895  *    to ask for a number of bytes to be allocated in front of the bio.
1896  *    Front pad allocation is useful for embedding the bio inside
1897  *    another structure, to avoid allocating extra data to go with the bio.
1898  *    Note that the bio must be embedded at the END of that structure always,
1899  *    or things will break badly.
1900  */
1901 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1902 {
1903 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1904 	struct bio_set *bs;
1905 
1906 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1907 	if (!bs)
1908 		return NULL;
1909 
1910 	bs->front_pad = front_pad;
1911 
1912 	spin_lock_init(&bs->rescue_lock);
1913 	bio_list_init(&bs->rescue_list);
1914 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1915 
1916 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1917 	if (!bs->bio_slab) {
1918 		kfree(bs);
1919 		return NULL;
1920 	}
1921 
1922 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1923 	if (!bs->bio_pool)
1924 		goto bad;
1925 
1926 	bs->bvec_pool = biovec_create_pool(pool_size);
1927 	if (!bs->bvec_pool)
1928 		goto bad;
1929 
1930 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1931 	if (!bs->rescue_workqueue)
1932 		goto bad;
1933 
1934 	return bs;
1935 bad:
1936 	bioset_free(bs);
1937 	return NULL;
1938 }
1939 EXPORT_SYMBOL(bioset_create);
1940 
1941 #ifdef CONFIG_BLK_CGROUP
1942 /**
1943  * bio_associate_current - associate a bio with %current
1944  * @bio: target bio
1945  *
1946  * Associate @bio with %current if it hasn't been associated yet.  Block
1947  * layer will treat @bio as if it were issued by %current no matter which
1948  * task actually issues it.
1949  *
1950  * This function takes an extra reference of @task's io_context and blkcg
1951  * which will be put when @bio is released.  The caller must own @bio,
1952  * ensure %current->io_context exists, and is responsible for synchronizing
1953  * calls to this function.
1954  */
1955 int bio_associate_current(struct bio *bio)
1956 {
1957 	struct io_context *ioc;
1958 	struct cgroup_subsys_state *css;
1959 
1960 	if (bio->bi_ioc)
1961 		return -EBUSY;
1962 
1963 	ioc = current->io_context;
1964 	if (!ioc)
1965 		return -ENOENT;
1966 
1967 	/* acquire active ref on @ioc and associate */
1968 	get_io_context_active(ioc);
1969 	bio->bi_ioc = ioc;
1970 
1971 	/* associate blkcg if exists */
1972 	rcu_read_lock();
1973 	css = task_css(current, blkio_cgrp_id);
1974 	if (css && css_tryget_online(css))
1975 		bio->bi_css = css;
1976 	rcu_read_unlock();
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * bio_disassociate_task - undo bio_associate_current()
1983  * @bio: target bio
1984  */
1985 void bio_disassociate_task(struct bio *bio)
1986 {
1987 	if (bio->bi_ioc) {
1988 		put_io_context(bio->bi_ioc);
1989 		bio->bi_ioc = NULL;
1990 	}
1991 	if (bio->bi_css) {
1992 		css_put(bio->bi_css);
1993 		bio->bi_css = NULL;
1994 	}
1995 }
1996 
1997 #endif /* CONFIG_BLK_CGROUP */
1998 
1999 static void __init biovec_init_slabs(void)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2004 		int size;
2005 		struct biovec_slab *bvs = bvec_slabs + i;
2006 
2007 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2008 			bvs->slab = NULL;
2009 			continue;
2010 		}
2011 
2012 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2013 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2014                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2015 	}
2016 }
2017 
2018 static int __init init_bio(void)
2019 {
2020 	bio_slab_max = 2;
2021 	bio_slab_nr = 0;
2022 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2023 	if (!bio_slabs)
2024 		panic("bio: can't allocate bios\n");
2025 
2026 	bio_integrity_init();
2027 	biovec_init_slabs();
2028 
2029 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2030 	if (!fs_bio_set)
2031 		panic("bio: can't allocate bios\n");
2032 
2033 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2034 		panic("bio: can't create integrity pool\n");
2035 
2036 	return 0;
2037 }
2038 subsys_initcall(init_bio);
2039