1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 4 */ 5 #include <linux/mm.h> 6 #include <linux/swap.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/uio.h> 10 #include <linux/iocontext.h> 11 #include <linux/slab.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/mempool.h> 16 #include <linux/workqueue.h> 17 #include <linux/cgroup.h> 18 #include <linux/blk-cgroup.h> 19 20 #include <trace/events/block.h> 21 #include "blk.h" 22 #include "blk-rq-qos.h" 23 24 /* 25 * Test patch to inline a certain number of bi_io_vec's inside the bio 26 * itself, to shrink a bio data allocation from two mempool calls to one 27 */ 28 #define BIO_INLINE_VECS 4 29 30 /* 31 * if you change this list, also change bvec_alloc or things will 32 * break badly! cannot be bigger than what you can fit into an 33 * unsigned short 34 */ 35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } 36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), 38 }; 39 #undef BV 40 41 /* 42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 43 * IO code that does not need private memory pools. 44 */ 45 struct bio_set fs_bio_set; 46 EXPORT_SYMBOL(fs_bio_set); 47 48 /* 49 * Our slab pool management 50 */ 51 struct bio_slab { 52 struct kmem_cache *slab; 53 unsigned int slab_ref; 54 unsigned int slab_size; 55 char name[8]; 56 }; 57 static DEFINE_MUTEX(bio_slab_lock); 58 static struct bio_slab *bio_slabs; 59 static unsigned int bio_slab_nr, bio_slab_max; 60 61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 62 { 63 unsigned int sz = sizeof(struct bio) + extra_size; 64 struct kmem_cache *slab = NULL; 65 struct bio_slab *bslab, *new_bio_slabs; 66 unsigned int new_bio_slab_max; 67 unsigned int i, entry = -1; 68 69 mutex_lock(&bio_slab_lock); 70 71 i = 0; 72 while (i < bio_slab_nr) { 73 bslab = &bio_slabs[i]; 74 75 if (!bslab->slab && entry == -1) 76 entry = i; 77 else if (bslab->slab_size == sz) { 78 slab = bslab->slab; 79 bslab->slab_ref++; 80 break; 81 } 82 i++; 83 } 84 85 if (slab) 86 goto out_unlock; 87 88 if (bio_slab_nr == bio_slab_max && entry == -1) { 89 new_bio_slab_max = bio_slab_max << 1; 90 new_bio_slabs = krealloc(bio_slabs, 91 new_bio_slab_max * sizeof(struct bio_slab), 92 GFP_KERNEL); 93 if (!new_bio_slabs) 94 goto out_unlock; 95 bio_slab_max = new_bio_slab_max; 96 bio_slabs = new_bio_slabs; 97 } 98 if (entry == -1) 99 entry = bio_slab_nr++; 100 101 bslab = &bio_slabs[entry]; 102 103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 105 SLAB_HWCACHE_ALIGN, NULL); 106 if (!slab) 107 goto out_unlock; 108 109 bslab->slab = slab; 110 bslab->slab_ref = 1; 111 bslab->slab_size = sz; 112 out_unlock: 113 mutex_unlock(&bio_slab_lock); 114 return slab; 115 } 116 117 static void bio_put_slab(struct bio_set *bs) 118 { 119 struct bio_slab *bslab = NULL; 120 unsigned int i; 121 122 mutex_lock(&bio_slab_lock); 123 124 for (i = 0; i < bio_slab_nr; i++) { 125 if (bs->bio_slab == bio_slabs[i].slab) { 126 bslab = &bio_slabs[i]; 127 break; 128 } 129 } 130 131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 132 goto out; 133 134 WARN_ON(!bslab->slab_ref); 135 136 if (--bslab->slab_ref) 137 goto out; 138 139 kmem_cache_destroy(bslab->slab); 140 bslab->slab = NULL; 141 142 out: 143 mutex_unlock(&bio_slab_lock); 144 } 145 146 unsigned int bvec_nr_vecs(unsigned short idx) 147 { 148 return bvec_slabs[--idx].nr_vecs; 149 } 150 151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 152 { 153 if (!idx) 154 return; 155 idx--; 156 157 BIO_BUG_ON(idx >= BVEC_POOL_NR); 158 159 if (idx == BVEC_POOL_MAX) { 160 mempool_free(bv, pool); 161 } else { 162 struct biovec_slab *bvs = bvec_slabs + idx; 163 164 kmem_cache_free(bvs->slab, bv); 165 } 166 } 167 168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 169 mempool_t *pool) 170 { 171 struct bio_vec *bvl; 172 173 /* 174 * see comment near bvec_array define! 175 */ 176 switch (nr) { 177 case 1: 178 *idx = 0; 179 break; 180 case 2 ... 4: 181 *idx = 1; 182 break; 183 case 5 ... 16: 184 *idx = 2; 185 break; 186 case 17 ... 64: 187 *idx = 3; 188 break; 189 case 65 ... 128: 190 *idx = 4; 191 break; 192 case 129 ... BIO_MAX_PAGES: 193 *idx = 5; 194 break; 195 default: 196 return NULL; 197 } 198 199 /* 200 * idx now points to the pool we want to allocate from. only the 201 * 1-vec entry pool is mempool backed. 202 */ 203 if (*idx == BVEC_POOL_MAX) { 204 fallback: 205 bvl = mempool_alloc(pool, gfp_mask); 206 } else { 207 struct biovec_slab *bvs = bvec_slabs + *idx; 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 209 210 /* 211 * Make this allocation restricted and don't dump info on 212 * allocation failures, since we'll fallback to the mempool 213 * in case of failure. 214 */ 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 216 217 /* 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 219 * is set, retry with the 1-entry mempool 220 */ 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 223 *idx = BVEC_POOL_MAX; 224 goto fallback; 225 } 226 } 227 228 (*idx)++; 229 return bvl; 230 } 231 232 void bio_uninit(struct bio *bio) 233 { 234 bio_disassociate_blkg(bio); 235 } 236 EXPORT_SYMBOL(bio_uninit); 237 238 static void bio_free(struct bio *bio) 239 { 240 struct bio_set *bs = bio->bi_pool; 241 void *p; 242 243 bio_uninit(bio); 244 245 if (bs) { 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 247 248 /* 249 * If we have front padding, adjust the bio pointer before freeing 250 */ 251 p = bio; 252 p -= bs->front_pad; 253 254 mempool_free(p, &bs->bio_pool); 255 } else { 256 /* Bio was allocated by bio_kmalloc() */ 257 kfree(bio); 258 } 259 } 260 261 /* 262 * Users of this function have their own bio allocation. Subsequently, 263 * they must remember to pair any call to bio_init() with bio_uninit() 264 * when IO has completed, or when the bio is released. 265 */ 266 void bio_init(struct bio *bio, struct bio_vec *table, 267 unsigned short max_vecs) 268 { 269 memset(bio, 0, sizeof(*bio)); 270 atomic_set(&bio->__bi_remaining, 1); 271 atomic_set(&bio->__bi_cnt, 1); 272 273 bio->bi_io_vec = table; 274 bio->bi_max_vecs = max_vecs; 275 } 276 EXPORT_SYMBOL(bio_init); 277 278 /** 279 * bio_reset - reinitialize a bio 280 * @bio: bio to reset 281 * 282 * Description: 283 * After calling bio_reset(), @bio will be in the same state as a freshly 284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 285 * preserved are the ones that are initialized by bio_alloc_bioset(). See 286 * comment in struct bio. 287 */ 288 void bio_reset(struct bio *bio) 289 { 290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 291 292 bio_uninit(bio); 293 294 memset(bio, 0, BIO_RESET_BYTES); 295 bio->bi_flags = flags; 296 atomic_set(&bio->__bi_remaining, 1); 297 } 298 EXPORT_SYMBOL(bio_reset); 299 300 static struct bio *__bio_chain_endio(struct bio *bio) 301 { 302 struct bio *parent = bio->bi_private; 303 304 if (!parent->bi_status) 305 parent->bi_status = bio->bi_status; 306 bio_put(bio); 307 return parent; 308 } 309 310 static void bio_chain_endio(struct bio *bio) 311 { 312 bio_endio(__bio_chain_endio(bio)); 313 } 314 315 /** 316 * bio_chain - chain bio completions 317 * @bio: the target bio 318 * @parent: the @bio's parent bio 319 * 320 * The caller won't have a bi_end_io called when @bio completes - instead, 321 * @parent's bi_end_io won't be called until both @parent and @bio have 322 * completed; the chained bio will also be freed when it completes. 323 * 324 * The caller must not set bi_private or bi_end_io in @bio. 325 */ 326 void bio_chain(struct bio *bio, struct bio *parent) 327 { 328 BUG_ON(bio->bi_private || bio->bi_end_io); 329 330 bio->bi_private = parent; 331 bio->bi_end_io = bio_chain_endio; 332 bio_inc_remaining(parent); 333 } 334 EXPORT_SYMBOL(bio_chain); 335 336 static void bio_alloc_rescue(struct work_struct *work) 337 { 338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 339 struct bio *bio; 340 341 while (1) { 342 spin_lock(&bs->rescue_lock); 343 bio = bio_list_pop(&bs->rescue_list); 344 spin_unlock(&bs->rescue_lock); 345 346 if (!bio) 347 break; 348 349 generic_make_request(bio); 350 } 351 } 352 353 static void punt_bios_to_rescuer(struct bio_set *bs) 354 { 355 struct bio_list punt, nopunt; 356 struct bio *bio; 357 358 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 359 return; 360 /* 361 * In order to guarantee forward progress we must punt only bios that 362 * were allocated from this bio_set; otherwise, if there was a bio on 363 * there for a stacking driver higher up in the stack, processing it 364 * could require allocating bios from this bio_set, and doing that from 365 * our own rescuer would be bad. 366 * 367 * Since bio lists are singly linked, pop them all instead of trying to 368 * remove from the middle of the list: 369 */ 370 371 bio_list_init(&punt); 372 bio_list_init(&nopunt); 373 374 while ((bio = bio_list_pop(¤t->bio_list[0]))) 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 376 current->bio_list[0] = nopunt; 377 378 bio_list_init(&nopunt); 379 while ((bio = bio_list_pop(¤t->bio_list[1]))) 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 381 current->bio_list[1] = nopunt; 382 383 spin_lock(&bs->rescue_lock); 384 bio_list_merge(&bs->rescue_list, &punt); 385 spin_unlock(&bs->rescue_lock); 386 387 queue_work(bs->rescue_workqueue, &bs->rescue_work); 388 } 389 390 /** 391 * bio_alloc_bioset - allocate a bio for I/O 392 * @gfp_mask: the GFP_* mask given to the slab allocator 393 * @nr_iovecs: number of iovecs to pre-allocate 394 * @bs: the bio_set to allocate from. 395 * 396 * Description: 397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 398 * backed by the @bs's mempool. 399 * 400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 401 * always be able to allocate a bio. This is due to the mempool guarantees. 402 * To make this work, callers must never allocate more than 1 bio at a time 403 * from this pool. Callers that need to allocate more than 1 bio must always 404 * submit the previously allocated bio for IO before attempting to allocate 405 * a new one. Failure to do so can cause deadlocks under memory pressure. 406 * 407 * Note that when running under generic_make_request() (i.e. any block 408 * driver), bios are not submitted until after you return - see the code in 409 * generic_make_request() that converts recursion into iteration, to prevent 410 * stack overflows. 411 * 412 * This would normally mean allocating multiple bios under 413 * generic_make_request() would be susceptible to deadlocks, but we have 414 * deadlock avoidance code that resubmits any blocked bios from a rescuer 415 * thread. 416 * 417 * However, we do not guarantee forward progress for allocations from other 418 * mempools. Doing multiple allocations from the same mempool under 419 * generic_make_request() should be avoided - instead, use bio_set's front_pad 420 * for per bio allocations. 421 * 422 * RETURNS: 423 * Pointer to new bio on success, NULL on failure. 424 */ 425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 426 struct bio_set *bs) 427 { 428 gfp_t saved_gfp = gfp_mask; 429 unsigned front_pad; 430 unsigned inline_vecs; 431 struct bio_vec *bvl = NULL; 432 struct bio *bio; 433 void *p; 434 435 if (!bs) { 436 if (nr_iovecs > UIO_MAXIOV) 437 return NULL; 438 439 p = kmalloc(sizeof(struct bio) + 440 nr_iovecs * sizeof(struct bio_vec), 441 gfp_mask); 442 front_pad = 0; 443 inline_vecs = nr_iovecs; 444 } else { 445 /* should not use nobvec bioset for nr_iovecs > 0 */ 446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && 447 nr_iovecs > 0)) 448 return NULL; 449 /* 450 * generic_make_request() converts recursion to iteration; this 451 * means if we're running beneath it, any bios we allocate and 452 * submit will not be submitted (and thus freed) until after we 453 * return. 454 * 455 * This exposes us to a potential deadlock if we allocate 456 * multiple bios from the same bio_set() while running 457 * underneath generic_make_request(). If we were to allocate 458 * multiple bios (say a stacking block driver that was splitting 459 * bios), we would deadlock if we exhausted the mempool's 460 * reserve. 461 * 462 * We solve this, and guarantee forward progress, with a rescuer 463 * workqueue per bio_set. If we go to allocate and there are 464 * bios on current->bio_list, we first try the allocation 465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 466 * bios we would be blocking to the rescuer workqueue before 467 * we retry with the original gfp_flags. 468 */ 469 470 if (current->bio_list && 471 (!bio_list_empty(¤t->bio_list[0]) || 472 !bio_list_empty(¤t->bio_list[1])) && 473 bs->rescue_workqueue) 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 475 476 p = mempool_alloc(&bs->bio_pool, gfp_mask); 477 if (!p && gfp_mask != saved_gfp) { 478 punt_bios_to_rescuer(bs); 479 gfp_mask = saved_gfp; 480 p = mempool_alloc(&bs->bio_pool, gfp_mask); 481 } 482 483 front_pad = bs->front_pad; 484 inline_vecs = BIO_INLINE_VECS; 485 } 486 487 if (unlikely(!p)) 488 return NULL; 489 490 bio = p + front_pad; 491 bio_init(bio, NULL, 0); 492 493 if (nr_iovecs > inline_vecs) { 494 unsigned long idx = 0; 495 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 497 if (!bvl && gfp_mask != saved_gfp) { 498 punt_bios_to_rescuer(bs); 499 gfp_mask = saved_gfp; 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); 501 } 502 503 if (unlikely(!bvl)) 504 goto err_free; 505 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 507 } else if (nr_iovecs) { 508 bvl = bio->bi_inline_vecs; 509 } 510 511 bio->bi_pool = bs; 512 bio->bi_max_vecs = nr_iovecs; 513 bio->bi_io_vec = bvl; 514 return bio; 515 516 err_free: 517 mempool_free(p, &bs->bio_pool); 518 return NULL; 519 } 520 EXPORT_SYMBOL(bio_alloc_bioset); 521 522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 523 { 524 unsigned long flags; 525 struct bio_vec bv; 526 struct bvec_iter iter; 527 528 __bio_for_each_segment(bv, bio, iter, start) { 529 char *data = bvec_kmap_irq(&bv, &flags); 530 memset(data, 0, bv.bv_len); 531 flush_dcache_page(bv.bv_page); 532 bvec_kunmap_irq(data, &flags); 533 } 534 } 535 EXPORT_SYMBOL(zero_fill_bio_iter); 536 537 /** 538 * bio_put - release a reference to a bio 539 * @bio: bio to release reference to 540 * 541 * Description: 542 * Put a reference to a &struct bio, either one you have gotten with 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 544 **/ 545 void bio_put(struct bio *bio) 546 { 547 if (!bio_flagged(bio, BIO_REFFED)) 548 bio_free(bio); 549 else { 550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 551 552 /* 553 * last put frees it 554 */ 555 if (atomic_dec_and_test(&bio->__bi_cnt)) 556 bio_free(bio); 557 } 558 } 559 EXPORT_SYMBOL(bio_put); 560 561 /** 562 * __bio_clone_fast - clone a bio that shares the original bio's biovec 563 * @bio: destination bio 564 * @bio_src: bio to clone 565 * 566 * Clone a &bio. Caller will own the returned bio, but not 567 * the actual data it points to. Reference count of returned 568 * bio will be one. 569 * 570 * Caller must ensure that @bio_src is not freed before @bio. 571 */ 572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 573 { 574 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 575 576 /* 577 * most users will be overriding ->bi_disk with a new target, 578 * so we don't set nor calculate new physical/hw segment counts here 579 */ 580 bio->bi_disk = bio_src->bi_disk; 581 bio->bi_partno = bio_src->bi_partno; 582 bio_set_flag(bio, BIO_CLONED); 583 if (bio_flagged(bio_src, BIO_THROTTLED)) 584 bio_set_flag(bio, BIO_THROTTLED); 585 bio->bi_opf = bio_src->bi_opf; 586 bio->bi_ioprio = bio_src->bi_ioprio; 587 bio->bi_write_hint = bio_src->bi_write_hint; 588 bio->bi_iter = bio_src->bi_iter; 589 bio->bi_io_vec = bio_src->bi_io_vec; 590 591 bio_clone_blkg_association(bio, bio_src); 592 blkcg_bio_issue_init(bio); 593 } 594 EXPORT_SYMBOL(__bio_clone_fast); 595 596 /** 597 * bio_clone_fast - clone a bio that shares the original bio's biovec 598 * @bio: bio to clone 599 * @gfp_mask: allocation priority 600 * @bs: bio_set to allocate from 601 * 602 * Like __bio_clone_fast, only also allocates the returned bio 603 */ 604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 605 { 606 struct bio *b; 607 608 b = bio_alloc_bioset(gfp_mask, 0, bs); 609 if (!b) 610 return NULL; 611 612 __bio_clone_fast(b, bio); 613 614 if (bio_integrity(bio)) { 615 int ret; 616 617 ret = bio_integrity_clone(b, bio, gfp_mask); 618 619 if (ret < 0) { 620 bio_put(b); 621 return NULL; 622 } 623 } 624 625 return b; 626 } 627 EXPORT_SYMBOL(bio_clone_fast); 628 629 static inline bool page_is_mergeable(const struct bio_vec *bv, 630 struct page *page, unsigned int len, unsigned int off, 631 bool *same_page) 632 { 633 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + 634 bv->bv_offset + bv->bv_len - 1; 635 phys_addr_t page_addr = page_to_phys(page); 636 637 if (vec_end_addr + 1 != page_addr + off) 638 return false; 639 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 640 return false; 641 642 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 643 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) 644 return false; 645 return true; 646 } 647 648 /* 649 * Check if the @page can be added to the current segment(@bv), and make 650 * sure to call it only if page_is_mergeable(@bv, @page) is true 651 */ 652 static bool can_add_page_to_seg(struct request_queue *q, 653 struct bio_vec *bv, struct page *page, unsigned len, 654 unsigned offset) 655 { 656 unsigned long mask = queue_segment_boundary(q); 657 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 658 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 659 660 if ((addr1 | mask) != (addr2 | mask)) 661 return false; 662 663 if (bv->bv_len + len > queue_max_segment_size(q)) 664 return false; 665 666 return true; 667 } 668 669 /** 670 * __bio_add_pc_page - attempt to add page to passthrough bio 671 * @q: the target queue 672 * @bio: destination bio 673 * @page: page to add 674 * @len: vec entry length 675 * @offset: vec entry offset 676 * @put_same_page: put the page if it is same with last added page 677 * 678 * Attempt to add a page to the bio_vec maplist. This can fail for a 679 * number of reasons, such as the bio being full or target block device 680 * limitations. The target block device must allow bio's up to PAGE_SIZE, 681 * so it is always possible to add a single page to an empty bio. 682 * 683 * This should only be used by passthrough bios. 684 */ 685 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio, 686 struct page *page, unsigned int len, unsigned int offset, 687 bool put_same_page) 688 { 689 struct bio_vec *bvec; 690 bool same_page = false; 691 692 /* 693 * cloned bio must not modify vec list 694 */ 695 if (unlikely(bio_flagged(bio, BIO_CLONED))) 696 return 0; 697 698 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 699 return 0; 700 701 if (bio->bi_vcnt > 0) { 702 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 703 704 if (page == bvec->bv_page && 705 offset == bvec->bv_offset + bvec->bv_len) { 706 if (put_same_page) 707 put_page(page); 708 bvec->bv_len += len; 709 goto done; 710 } 711 712 /* 713 * If the queue doesn't support SG gaps and adding this 714 * offset would create a gap, disallow it. 715 */ 716 if (bvec_gap_to_prev(q, bvec, offset)) 717 return 0; 718 719 if (page_is_mergeable(bvec, page, len, offset, &same_page) && 720 can_add_page_to_seg(q, bvec, page, len, offset)) { 721 bvec->bv_len += len; 722 goto done; 723 } 724 } 725 726 if (bio_full(bio, len)) 727 return 0; 728 729 if (bio->bi_vcnt >= queue_max_segments(q)) 730 return 0; 731 732 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 733 bvec->bv_page = page; 734 bvec->bv_len = len; 735 bvec->bv_offset = offset; 736 bio->bi_vcnt++; 737 done: 738 bio->bi_iter.bi_size += len; 739 return len; 740 } 741 742 int bio_add_pc_page(struct request_queue *q, struct bio *bio, 743 struct page *page, unsigned int len, unsigned int offset) 744 { 745 return __bio_add_pc_page(q, bio, page, len, offset, false); 746 } 747 EXPORT_SYMBOL(bio_add_pc_page); 748 749 /** 750 * __bio_try_merge_page - try appending data to an existing bvec. 751 * @bio: destination bio 752 * @page: start page to add 753 * @len: length of the data to add 754 * @off: offset of the data relative to @page 755 * @same_page: return if the segment has been merged inside the same page 756 * 757 * Try to add the data at @page + @off to the last bvec of @bio. This is a 758 * a useful optimisation for file systems with a block size smaller than the 759 * page size. 760 * 761 * Warn if (@len, @off) crosses pages in case that @same_page is true. 762 * 763 * Return %true on success or %false on failure. 764 */ 765 bool __bio_try_merge_page(struct bio *bio, struct page *page, 766 unsigned int len, unsigned int off, bool *same_page) 767 { 768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 769 return false; 770 771 if (bio->bi_vcnt > 0) { 772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 773 774 if (page_is_mergeable(bv, page, len, off, same_page)) { 775 bv->bv_len += len; 776 bio->bi_iter.bi_size += len; 777 return true; 778 } 779 } 780 return false; 781 } 782 EXPORT_SYMBOL_GPL(__bio_try_merge_page); 783 784 /** 785 * __bio_add_page - add page(s) to a bio in a new segment 786 * @bio: destination bio 787 * @page: start page to add 788 * @len: length of the data to add, may cross pages 789 * @off: offset of the data relative to @page, may cross pages 790 * 791 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 792 * that @bio has space for another bvec. 793 */ 794 void __bio_add_page(struct bio *bio, struct page *page, 795 unsigned int len, unsigned int off) 796 { 797 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; 798 799 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 800 WARN_ON_ONCE(bio_full(bio, len)); 801 802 bv->bv_page = page; 803 bv->bv_offset = off; 804 bv->bv_len = len; 805 806 bio->bi_iter.bi_size += len; 807 bio->bi_vcnt++; 808 } 809 EXPORT_SYMBOL_GPL(__bio_add_page); 810 811 /** 812 * bio_add_page - attempt to add page(s) to bio 813 * @bio: destination bio 814 * @page: start page to add 815 * @len: vec entry length, may cross pages 816 * @offset: vec entry offset relative to @page, may cross pages 817 * 818 * Attempt to add page(s) to the bio_vec maplist. This will only fail 819 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 820 */ 821 int bio_add_page(struct bio *bio, struct page *page, 822 unsigned int len, unsigned int offset) 823 { 824 bool same_page = false; 825 826 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { 827 if (bio_full(bio, len)) 828 return 0; 829 __bio_add_page(bio, page, len, offset); 830 } 831 return len; 832 } 833 EXPORT_SYMBOL(bio_add_page); 834 835 void bio_release_pages(struct bio *bio, bool mark_dirty) 836 { 837 struct bvec_iter_all iter_all; 838 struct bio_vec *bvec; 839 840 if (bio_flagged(bio, BIO_NO_PAGE_REF)) 841 return; 842 843 bio_for_each_segment_all(bvec, bio, iter_all) { 844 if (mark_dirty && !PageCompound(bvec->bv_page)) 845 set_page_dirty_lock(bvec->bv_page); 846 put_page(bvec->bv_page); 847 } 848 } 849 850 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) 851 { 852 const struct bio_vec *bv = iter->bvec; 853 unsigned int len; 854 size_t size; 855 856 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) 857 return -EINVAL; 858 859 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); 860 size = bio_add_page(bio, bv->bv_page, len, 861 bv->bv_offset + iter->iov_offset); 862 if (unlikely(size != len)) 863 return -EINVAL; 864 iov_iter_advance(iter, size); 865 return 0; 866 } 867 868 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 869 870 /** 871 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 872 * @bio: bio to add pages to 873 * @iter: iov iterator describing the region to be mapped 874 * 875 * Pins pages from *iter and appends them to @bio's bvec array. The 876 * pages will have to be released using put_page() when done. 877 * For multi-segment *iter, this function only adds pages from the 878 * the next non-empty segment of the iov iterator. 879 */ 880 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 881 { 882 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 883 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 884 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 885 struct page **pages = (struct page **)bv; 886 bool same_page = false; 887 ssize_t size, left; 888 unsigned len, i; 889 size_t offset; 890 891 /* 892 * Move page array up in the allocated memory for the bio vecs as far as 893 * possible so that we can start filling biovecs from the beginning 894 * without overwriting the temporary page array. 895 */ 896 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 897 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 898 899 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 900 if (unlikely(size <= 0)) 901 return size ? size : -EFAULT; 902 903 for (left = size, i = 0; left > 0; left -= len, i++) { 904 struct page *page = pages[i]; 905 906 len = min_t(size_t, PAGE_SIZE - offset, left); 907 908 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { 909 if (same_page) 910 put_page(page); 911 } else { 912 if (WARN_ON_ONCE(bio_full(bio, len))) 913 return -EINVAL; 914 __bio_add_page(bio, page, len, offset); 915 } 916 offset = 0; 917 } 918 919 iov_iter_advance(iter, size); 920 return 0; 921 } 922 923 /** 924 * bio_iov_iter_get_pages - add user or kernel pages to a bio 925 * @bio: bio to add pages to 926 * @iter: iov iterator describing the region to be added 927 * 928 * This takes either an iterator pointing to user memory, or one pointing to 929 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 930 * map them into the kernel. On IO completion, the caller should put those 931 * pages. If we're adding kernel pages, and the caller told us it's safe to 932 * do so, we just have to add the pages to the bio directly. We don't grab an 933 * extra reference to those pages (the user should already have that), and we 934 * don't put the page on IO completion. The caller needs to check if the bio is 935 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be 936 * released. 937 * 938 * The function tries, but does not guarantee, to pin as many pages as 939 * fit into the bio, or are requested in *iter, whatever is smaller. If 940 * MM encounters an error pinning the requested pages, it stops. Error 941 * is returned only if 0 pages could be pinned. 942 */ 943 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 944 { 945 const bool is_bvec = iov_iter_is_bvec(iter); 946 int ret; 947 948 if (WARN_ON_ONCE(bio->bi_vcnt)) 949 return -EINVAL; 950 951 do { 952 if (is_bvec) 953 ret = __bio_iov_bvec_add_pages(bio, iter); 954 else 955 ret = __bio_iov_iter_get_pages(bio, iter); 956 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 957 958 if (is_bvec) 959 bio_set_flag(bio, BIO_NO_PAGE_REF); 960 return bio->bi_vcnt ? 0 : ret; 961 } 962 963 static void submit_bio_wait_endio(struct bio *bio) 964 { 965 complete(bio->bi_private); 966 } 967 968 /** 969 * submit_bio_wait - submit a bio, and wait until it completes 970 * @bio: The &struct bio which describes the I/O 971 * 972 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 973 * bio_endio() on failure. 974 * 975 * WARNING: Unlike to how submit_bio() is usually used, this function does not 976 * result in bio reference to be consumed. The caller must drop the reference 977 * on his own. 978 */ 979 int submit_bio_wait(struct bio *bio) 980 { 981 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 982 983 bio->bi_private = &done; 984 bio->bi_end_io = submit_bio_wait_endio; 985 bio->bi_opf |= REQ_SYNC; 986 submit_bio(bio); 987 wait_for_completion_io(&done); 988 989 return blk_status_to_errno(bio->bi_status); 990 } 991 EXPORT_SYMBOL(submit_bio_wait); 992 993 /** 994 * bio_advance - increment/complete a bio by some number of bytes 995 * @bio: bio to advance 996 * @bytes: number of bytes to complete 997 * 998 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 999 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 1000 * be updated on the last bvec as well. 1001 * 1002 * @bio will then represent the remaining, uncompleted portion of the io. 1003 */ 1004 void bio_advance(struct bio *bio, unsigned bytes) 1005 { 1006 if (bio_integrity(bio)) 1007 bio_integrity_advance(bio, bytes); 1008 1009 bio_advance_iter(bio, &bio->bi_iter, bytes); 1010 } 1011 EXPORT_SYMBOL(bio_advance); 1012 1013 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 1014 struct bio *src, struct bvec_iter *src_iter) 1015 { 1016 struct bio_vec src_bv, dst_bv; 1017 void *src_p, *dst_p; 1018 unsigned bytes; 1019 1020 while (src_iter->bi_size && dst_iter->bi_size) { 1021 src_bv = bio_iter_iovec(src, *src_iter); 1022 dst_bv = bio_iter_iovec(dst, *dst_iter); 1023 1024 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1025 1026 src_p = kmap_atomic(src_bv.bv_page); 1027 dst_p = kmap_atomic(dst_bv.bv_page); 1028 1029 memcpy(dst_p + dst_bv.bv_offset, 1030 src_p + src_bv.bv_offset, 1031 bytes); 1032 1033 kunmap_atomic(dst_p); 1034 kunmap_atomic(src_p); 1035 1036 flush_dcache_page(dst_bv.bv_page); 1037 1038 bio_advance_iter(src, src_iter, bytes); 1039 bio_advance_iter(dst, dst_iter, bytes); 1040 } 1041 } 1042 EXPORT_SYMBOL(bio_copy_data_iter); 1043 1044 /** 1045 * bio_copy_data - copy contents of data buffers from one bio to another 1046 * @src: source bio 1047 * @dst: destination bio 1048 * 1049 * Stops when it reaches the end of either @src or @dst - that is, copies 1050 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1051 */ 1052 void bio_copy_data(struct bio *dst, struct bio *src) 1053 { 1054 struct bvec_iter src_iter = src->bi_iter; 1055 struct bvec_iter dst_iter = dst->bi_iter; 1056 1057 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1058 } 1059 EXPORT_SYMBOL(bio_copy_data); 1060 1061 /** 1062 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1063 * another 1064 * @src: source bio list 1065 * @dst: destination bio list 1066 * 1067 * Stops when it reaches the end of either the @src list or @dst list - that is, 1068 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1069 * bios). 1070 */ 1071 void bio_list_copy_data(struct bio *dst, struct bio *src) 1072 { 1073 struct bvec_iter src_iter = src->bi_iter; 1074 struct bvec_iter dst_iter = dst->bi_iter; 1075 1076 while (1) { 1077 if (!src_iter.bi_size) { 1078 src = src->bi_next; 1079 if (!src) 1080 break; 1081 1082 src_iter = src->bi_iter; 1083 } 1084 1085 if (!dst_iter.bi_size) { 1086 dst = dst->bi_next; 1087 if (!dst) 1088 break; 1089 1090 dst_iter = dst->bi_iter; 1091 } 1092 1093 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1094 } 1095 } 1096 EXPORT_SYMBOL(bio_list_copy_data); 1097 1098 struct bio_map_data { 1099 int is_our_pages; 1100 struct iov_iter iter; 1101 struct iovec iov[]; 1102 }; 1103 1104 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1105 gfp_t gfp_mask) 1106 { 1107 struct bio_map_data *bmd; 1108 if (data->nr_segs > UIO_MAXIOV) 1109 return NULL; 1110 1111 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); 1112 if (!bmd) 1113 return NULL; 1114 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1115 bmd->iter = *data; 1116 bmd->iter.iov = bmd->iov; 1117 return bmd; 1118 } 1119 1120 /** 1121 * bio_copy_from_iter - copy all pages from iov_iter to bio 1122 * @bio: The &struct bio which describes the I/O as destination 1123 * @iter: iov_iter as source 1124 * 1125 * Copy all pages from iov_iter to bio. 1126 * Returns 0 on success, or error on failure. 1127 */ 1128 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1129 { 1130 struct bio_vec *bvec; 1131 struct bvec_iter_all iter_all; 1132 1133 bio_for_each_segment_all(bvec, bio, iter_all) { 1134 ssize_t ret; 1135 1136 ret = copy_page_from_iter(bvec->bv_page, 1137 bvec->bv_offset, 1138 bvec->bv_len, 1139 iter); 1140 1141 if (!iov_iter_count(iter)) 1142 break; 1143 1144 if (ret < bvec->bv_len) 1145 return -EFAULT; 1146 } 1147 1148 return 0; 1149 } 1150 1151 /** 1152 * bio_copy_to_iter - copy all pages from bio to iov_iter 1153 * @bio: The &struct bio which describes the I/O as source 1154 * @iter: iov_iter as destination 1155 * 1156 * Copy all pages from bio to iov_iter. 1157 * Returns 0 on success, or error on failure. 1158 */ 1159 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1160 { 1161 struct bio_vec *bvec; 1162 struct bvec_iter_all iter_all; 1163 1164 bio_for_each_segment_all(bvec, bio, iter_all) { 1165 ssize_t ret; 1166 1167 ret = copy_page_to_iter(bvec->bv_page, 1168 bvec->bv_offset, 1169 bvec->bv_len, 1170 &iter); 1171 1172 if (!iov_iter_count(&iter)) 1173 break; 1174 1175 if (ret < bvec->bv_len) 1176 return -EFAULT; 1177 } 1178 1179 return 0; 1180 } 1181 1182 void bio_free_pages(struct bio *bio) 1183 { 1184 struct bio_vec *bvec; 1185 struct bvec_iter_all iter_all; 1186 1187 bio_for_each_segment_all(bvec, bio, iter_all) 1188 __free_page(bvec->bv_page); 1189 } 1190 EXPORT_SYMBOL(bio_free_pages); 1191 1192 /** 1193 * bio_uncopy_user - finish previously mapped bio 1194 * @bio: bio being terminated 1195 * 1196 * Free pages allocated from bio_copy_user_iov() and write back data 1197 * to user space in case of a read. 1198 */ 1199 int bio_uncopy_user(struct bio *bio) 1200 { 1201 struct bio_map_data *bmd = bio->bi_private; 1202 int ret = 0; 1203 1204 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1205 /* 1206 * if we're in a workqueue, the request is orphaned, so 1207 * don't copy into a random user address space, just free 1208 * and return -EINTR so user space doesn't expect any data. 1209 */ 1210 if (!current->mm) 1211 ret = -EINTR; 1212 else if (bio_data_dir(bio) == READ) 1213 ret = bio_copy_to_iter(bio, bmd->iter); 1214 if (bmd->is_our_pages) 1215 bio_free_pages(bio); 1216 } 1217 kfree(bmd); 1218 bio_put(bio); 1219 return ret; 1220 } 1221 1222 /** 1223 * bio_copy_user_iov - copy user data to bio 1224 * @q: destination block queue 1225 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1226 * @iter: iovec iterator 1227 * @gfp_mask: memory allocation flags 1228 * 1229 * Prepares and returns a bio for indirect user io, bouncing data 1230 * to/from kernel pages as necessary. Must be paired with 1231 * call bio_uncopy_user() on io completion. 1232 */ 1233 struct bio *bio_copy_user_iov(struct request_queue *q, 1234 struct rq_map_data *map_data, 1235 struct iov_iter *iter, 1236 gfp_t gfp_mask) 1237 { 1238 struct bio_map_data *bmd; 1239 struct page *page; 1240 struct bio *bio; 1241 int i = 0, ret; 1242 int nr_pages; 1243 unsigned int len = iter->count; 1244 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1245 1246 bmd = bio_alloc_map_data(iter, gfp_mask); 1247 if (!bmd) 1248 return ERR_PTR(-ENOMEM); 1249 1250 /* 1251 * We need to do a deep copy of the iov_iter including the iovecs. 1252 * The caller provided iov might point to an on-stack or otherwise 1253 * shortlived one. 1254 */ 1255 bmd->is_our_pages = map_data ? 0 : 1; 1256 1257 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1258 if (nr_pages > BIO_MAX_PAGES) 1259 nr_pages = BIO_MAX_PAGES; 1260 1261 ret = -ENOMEM; 1262 bio = bio_kmalloc(gfp_mask, nr_pages); 1263 if (!bio) 1264 goto out_bmd; 1265 1266 ret = 0; 1267 1268 if (map_data) { 1269 nr_pages = 1 << map_data->page_order; 1270 i = map_data->offset / PAGE_SIZE; 1271 } 1272 while (len) { 1273 unsigned int bytes = PAGE_SIZE; 1274 1275 bytes -= offset; 1276 1277 if (bytes > len) 1278 bytes = len; 1279 1280 if (map_data) { 1281 if (i == map_data->nr_entries * nr_pages) { 1282 ret = -ENOMEM; 1283 break; 1284 } 1285 1286 page = map_data->pages[i / nr_pages]; 1287 page += (i % nr_pages); 1288 1289 i++; 1290 } else { 1291 page = alloc_page(q->bounce_gfp | gfp_mask); 1292 if (!page) { 1293 ret = -ENOMEM; 1294 break; 1295 } 1296 } 1297 1298 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { 1299 if (!map_data) 1300 __free_page(page); 1301 break; 1302 } 1303 1304 len -= bytes; 1305 offset = 0; 1306 } 1307 1308 if (ret) 1309 goto cleanup; 1310 1311 if (map_data) 1312 map_data->offset += bio->bi_iter.bi_size; 1313 1314 /* 1315 * success 1316 */ 1317 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) || 1318 (map_data && map_data->from_user)) { 1319 ret = bio_copy_from_iter(bio, iter); 1320 if (ret) 1321 goto cleanup; 1322 } else { 1323 if (bmd->is_our_pages) 1324 zero_fill_bio(bio); 1325 iov_iter_advance(iter, bio->bi_iter.bi_size); 1326 } 1327 1328 bio->bi_private = bmd; 1329 if (map_data && map_data->null_mapped) 1330 bio_set_flag(bio, BIO_NULL_MAPPED); 1331 return bio; 1332 cleanup: 1333 if (!map_data) 1334 bio_free_pages(bio); 1335 bio_put(bio); 1336 out_bmd: 1337 kfree(bmd); 1338 return ERR_PTR(ret); 1339 } 1340 1341 /** 1342 * bio_map_user_iov - map user iovec into bio 1343 * @q: the struct request_queue for the bio 1344 * @iter: iovec iterator 1345 * @gfp_mask: memory allocation flags 1346 * 1347 * Map the user space address into a bio suitable for io to a block 1348 * device. Returns an error pointer in case of error. 1349 */ 1350 struct bio *bio_map_user_iov(struct request_queue *q, 1351 struct iov_iter *iter, 1352 gfp_t gfp_mask) 1353 { 1354 int j; 1355 struct bio *bio; 1356 int ret; 1357 1358 if (!iov_iter_count(iter)) 1359 return ERR_PTR(-EINVAL); 1360 1361 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1362 if (!bio) 1363 return ERR_PTR(-ENOMEM); 1364 1365 while (iov_iter_count(iter)) { 1366 struct page **pages; 1367 ssize_t bytes; 1368 size_t offs, added = 0; 1369 int npages; 1370 1371 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1372 if (unlikely(bytes <= 0)) { 1373 ret = bytes ? bytes : -EFAULT; 1374 goto out_unmap; 1375 } 1376 1377 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1378 1379 if (unlikely(offs & queue_dma_alignment(q))) { 1380 ret = -EINVAL; 1381 j = 0; 1382 } else { 1383 for (j = 0; j < npages; j++) { 1384 struct page *page = pages[j]; 1385 unsigned int n = PAGE_SIZE - offs; 1386 1387 if (n > bytes) 1388 n = bytes; 1389 1390 if (!__bio_add_pc_page(q, bio, page, n, offs, 1391 true)) 1392 break; 1393 1394 added += n; 1395 bytes -= n; 1396 offs = 0; 1397 } 1398 iov_iter_advance(iter, added); 1399 } 1400 /* 1401 * release the pages we didn't map into the bio, if any 1402 */ 1403 while (j < npages) 1404 put_page(pages[j++]); 1405 kvfree(pages); 1406 /* couldn't stuff something into bio? */ 1407 if (bytes) 1408 break; 1409 } 1410 1411 bio_set_flag(bio, BIO_USER_MAPPED); 1412 1413 /* 1414 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1415 * it would normally disappear when its bi_end_io is run. 1416 * however, we need it for the unmap, so grab an extra 1417 * reference to it 1418 */ 1419 bio_get(bio); 1420 return bio; 1421 1422 out_unmap: 1423 bio_release_pages(bio, false); 1424 bio_put(bio); 1425 return ERR_PTR(ret); 1426 } 1427 1428 /** 1429 * bio_unmap_user - unmap a bio 1430 * @bio: the bio being unmapped 1431 * 1432 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1433 * process context. 1434 * 1435 * bio_unmap_user() may sleep. 1436 */ 1437 void bio_unmap_user(struct bio *bio) 1438 { 1439 bio_release_pages(bio, bio_data_dir(bio) == READ); 1440 bio_put(bio); 1441 bio_put(bio); 1442 } 1443 1444 static void bio_map_kern_endio(struct bio *bio) 1445 { 1446 bio_put(bio); 1447 } 1448 1449 /** 1450 * bio_map_kern - map kernel address into bio 1451 * @q: the struct request_queue for the bio 1452 * @data: pointer to buffer to map 1453 * @len: length in bytes 1454 * @gfp_mask: allocation flags for bio allocation 1455 * 1456 * Map the kernel address into a bio suitable for io to a block 1457 * device. Returns an error pointer in case of error. 1458 */ 1459 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1460 gfp_t gfp_mask) 1461 { 1462 unsigned long kaddr = (unsigned long)data; 1463 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1464 unsigned long start = kaddr >> PAGE_SHIFT; 1465 const int nr_pages = end - start; 1466 int offset, i; 1467 struct bio *bio; 1468 1469 bio = bio_kmalloc(gfp_mask, nr_pages); 1470 if (!bio) 1471 return ERR_PTR(-ENOMEM); 1472 1473 offset = offset_in_page(kaddr); 1474 for (i = 0; i < nr_pages; i++) { 1475 unsigned int bytes = PAGE_SIZE - offset; 1476 1477 if (len <= 0) 1478 break; 1479 1480 if (bytes > len) 1481 bytes = len; 1482 1483 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1484 offset) < bytes) { 1485 /* we don't support partial mappings */ 1486 bio_put(bio); 1487 return ERR_PTR(-EINVAL); 1488 } 1489 1490 data += bytes; 1491 len -= bytes; 1492 offset = 0; 1493 } 1494 1495 bio->bi_end_io = bio_map_kern_endio; 1496 return bio; 1497 } 1498 EXPORT_SYMBOL(bio_map_kern); 1499 1500 static void bio_copy_kern_endio(struct bio *bio) 1501 { 1502 bio_free_pages(bio); 1503 bio_put(bio); 1504 } 1505 1506 static void bio_copy_kern_endio_read(struct bio *bio) 1507 { 1508 char *p = bio->bi_private; 1509 struct bio_vec *bvec; 1510 struct bvec_iter_all iter_all; 1511 1512 bio_for_each_segment_all(bvec, bio, iter_all) { 1513 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1514 p += bvec->bv_len; 1515 } 1516 1517 bio_copy_kern_endio(bio); 1518 } 1519 1520 /** 1521 * bio_copy_kern - copy kernel address into bio 1522 * @q: the struct request_queue for the bio 1523 * @data: pointer to buffer to copy 1524 * @len: length in bytes 1525 * @gfp_mask: allocation flags for bio and page allocation 1526 * @reading: data direction is READ 1527 * 1528 * copy the kernel address into a bio suitable for io to a block 1529 * device. Returns an error pointer in case of error. 1530 */ 1531 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1532 gfp_t gfp_mask, int reading) 1533 { 1534 unsigned long kaddr = (unsigned long)data; 1535 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1536 unsigned long start = kaddr >> PAGE_SHIFT; 1537 struct bio *bio; 1538 void *p = data; 1539 int nr_pages = 0; 1540 1541 /* 1542 * Overflow, abort 1543 */ 1544 if (end < start) 1545 return ERR_PTR(-EINVAL); 1546 1547 nr_pages = end - start; 1548 bio = bio_kmalloc(gfp_mask, nr_pages); 1549 if (!bio) 1550 return ERR_PTR(-ENOMEM); 1551 1552 while (len) { 1553 struct page *page; 1554 unsigned int bytes = PAGE_SIZE; 1555 1556 if (bytes > len) 1557 bytes = len; 1558 1559 page = alloc_page(q->bounce_gfp | gfp_mask); 1560 if (!page) 1561 goto cleanup; 1562 1563 if (!reading) 1564 memcpy(page_address(page), p, bytes); 1565 1566 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1567 break; 1568 1569 len -= bytes; 1570 p += bytes; 1571 } 1572 1573 if (reading) { 1574 bio->bi_end_io = bio_copy_kern_endio_read; 1575 bio->bi_private = data; 1576 } else { 1577 bio->bi_end_io = bio_copy_kern_endio; 1578 } 1579 1580 return bio; 1581 1582 cleanup: 1583 bio_free_pages(bio); 1584 bio_put(bio); 1585 return ERR_PTR(-ENOMEM); 1586 } 1587 1588 /* 1589 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1590 * for performing direct-IO in BIOs. 1591 * 1592 * The problem is that we cannot run set_page_dirty() from interrupt context 1593 * because the required locks are not interrupt-safe. So what we can do is to 1594 * mark the pages dirty _before_ performing IO. And in interrupt context, 1595 * check that the pages are still dirty. If so, fine. If not, redirty them 1596 * in process context. 1597 * 1598 * We special-case compound pages here: normally this means reads into hugetlb 1599 * pages. The logic in here doesn't really work right for compound pages 1600 * because the VM does not uniformly chase down the head page in all cases. 1601 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1602 * handle them at all. So we skip compound pages here at an early stage. 1603 * 1604 * Note that this code is very hard to test under normal circumstances because 1605 * direct-io pins the pages with get_user_pages(). This makes 1606 * is_page_cache_freeable return false, and the VM will not clean the pages. 1607 * But other code (eg, flusher threads) could clean the pages if they are mapped 1608 * pagecache. 1609 * 1610 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1611 * deferred bio dirtying paths. 1612 */ 1613 1614 /* 1615 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1616 */ 1617 void bio_set_pages_dirty(struct bio *bio) 1618 { 1619 struct bio_vec *bvec; 1620 struct bvec_iter_all iter_all; 1621 1622 bio_for_each_segment_all(bvec, bio, iter_all) { 1623 if (!PageCompound(bvec->bv_page)) 1624 set_page_dirty_lock(bvec->bv_page); 1625 } 1626 } 1627 1628 /* 1629 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1630 * If they are, then fine. If, however, some pages are clean then they must 1631 * have been written out during the direct-IO read. So we take another ref on 1632 * the BIO and re-dirty the pages in process context. 1633 * 1634 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1635 * here on. It will run one put_page() against each page and will run one 1636 * bio_put() against the BIO. 1637 */ 1638 1639 static void bio_dirty_fn(struct work_struct *work); 1640 1641 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1642 static DEFINE_SPINLOCK(bio_dirty_lock); 1643 static struct bio *bio_dirty_list; 1644 1645 /* 1646 * This runs in process context 1647 */ 1648 static void bio_dirty_fn(struct work_struct *work) 1649 { 1650 struct bio *bio, *next; 1651 1652 spin_lock_irq(&bio_dirty_lock); 1653 next = bio_dirty_list; 1654 bio_dirty_list = NULL; 1655 spin_unlock_irq(&bio_dirty_lock); 1656 1657 while ((bio = next) != NULL) { 1658 next = bio->bi_private; 1659 1660 bio_release_pages(bio, true); 1661 bio_put(bio); 1662 } 1663 } 1664 1665 void bio_check_pages_dirty(struct bio *bio) 1666 { 1667 struct bio_vec *bvec; 1668 unsigned long flags; 1669 struct bvec_iter_all iter_all; 1670 1671 bio_for_each_segment_all(bvec, bio, iter_all) { 1672 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) 1673 goto defer; 1674 } 1675 1676 bio_release_pages(bio, false); 1677 bio_put(bio); 1678 return; 1679 defer: 1680 spin_lock_irqsave(&bio_dirty_lock, flags); 1681 bio->bi_private = bio_dirty_list; 1682 bio_dirty_list = bio; 1683 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1684 schedule_work(&bio_dirty_work); 1685 } 1686 1687 void update_io_ticks(struct hd_struct *part, unsigned long now) 1688 { 1689 unsigned long stamp; 1690 again: 1691 stamp = READ_ONCE(part->stamp); 1692 if (unlikely(stamp != now)) { 1693 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { 1694 __part_stat_add(part, io_ticks, 1); 1695 } 1696 } 1697 if (part->partno) { 1698 part = &part_to_disk(part)->part0; 1699 goto again; 1700 } 1701 } 1702 1703 void generic_start_io_acct(struct request_queue *q, int op, 1704 unsigned long sectors, struct hd_struct *part) 1705 { 1706 const int sgrp = op_stat_group(op); 1707 1708 part_stat_lock(); 1709 1710 update_io_ticks(part, jiffies); 1711 part_stat_inc(part, ios[sgrp]); 1712 part_stat_add(part, sectors[sgrp], sectors); 1713 part_inc_in_flight(q, part, op_is_write(op)); 1714 1715 part_stat_unlock(); 1716 } 1717 EXPORT_SYMBOL(generic_start_io_acct); 1718 1719 void generic_end_io_acct(struct request_queue *q, int req_op, 1720 struct hd_struct *part, unsigned long start_time) 1721 { 1722 unsigned long now = jiffies; 1723 unsigned long duration = now - start_time; 1724 const int sgrp = op_stat_group(req_op); 1725 1726 part_stat_lock(); 1727 1728 update_io_ticks(part, now); 1729 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1730 part_stat_add(part, time_in_queue, duration); 1731 part_dec_in_flight(q, part, op_is_write(req_op)); 1732 1733 part_stat_unlock(); 1734 } 1735 EXPORT_SYMBOL(generic_end_io_acct); 1736 1737 static inline bool bio_remaining_done(struct bio *bio) 1738 { 1739 /* 1740 * If we're not chaining, then ->__bi_remaining is always 1 and 1741 * we always end io on the first invocation. 1742 */ 1743 if (!bio_flagged(bio, BIO_CHAIN)) 1744 return true; 1745 1746 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1747 1748 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1749 bio_clear_flag(bio, BIO_CHAIN); 1750 return true; 1751 } 1752 1753 return false; 1754 } 1755 1756 /** 1757 * bio_endio - end I/O on a bio 1758 * @bio: bio 1759 * 1760 * Description: 1761 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1762 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1763 * bio unless they own it and thus know that it has an end_io function. 1764 * 1765 * bio_endio() can be called several times on a bio that has been chained 1766 * using bio_chain(). The ->bi_end_io() function will only be called the 1767 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1768 * generated if BIO_TRACE_COMPLETION is set. 1769 **/ 1770 void bio_endio(struct bio *bio) 1771 { 1772 again: 1773 if (!bio_remaining_done(bio)) 1774 return; 1775 if (!bio_integrity_endio(bio)) 1776 return; 1777 1778 if (bio->bi_disk) 1779 rq_qos_done_bio(bio->bi_disk->queue, bio); 1780 1781 /* 1782 * Need to have a real endio function for chained bios, otherwise 1783 * various corner cases will break (like stacking block devices that 1784 * save/restore bi_end_io) - however, we want to avoid unbounded 1785 * recursion and blowing the stack. Tail call optimization would 1786 * handle this, but compiling with frame pointers also disables 1787 * gcc's sibling call optimization. 1788 */ 1789 if (bio->bi_end_io == bio_chain_endio) { 1790 bio = __bio_chain_endio(bio); 1791 goto again; 1792 } 1793 1794 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1795 trace_block_bio_complete(bio->bi_disk->queue, bio, 1796 blk_status_to_errno(bio->bi_status)); 1797 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1798 } 1799 1800 blk_throtl_bio_endio(bio); 1801 /* release cgroup info */ 1802 bio_uninit(bio); 1803 if (bio->bi_end_io) 1804 bio->bi_end_io(bio); 1805 } 1806 EXPORT_SYMBOL(bio_endio); 1807 1808 /** 1809 * bio_split - split a bio 1810 * @bio: bio to split 1811 * @sectors: number of sectors to split from the front of @bio 1812 * @gfp: gfp mask 1813 * @bs: bio set to allocate from 1814 * 1815 * Allocates and returns a new bio which represents @sectors from the start of 1816 * @bio, and updates @bio to represent the remaining sectors. 1817 * 1818 * Unless this is a discard request the newly allocated bio will point 1819 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1820 * @bio is not freed before the split. 1821 */ 1822 struct bio *bio_split(struct bio *bio, int sectors, 1823 gfp_t gfp, struct bio_set *bs) 1824 { 1825 struct bio *split; 1826 1827 BUG_ON(sectors <= 0); 1828 BUG_ON(sectors >= bio_sectors(bio)); 1829 1830 split = bio_clone_fast(bio, gfp, bs); 1831 if (!split) 1832 return NULL; 1833 1834 split->bi_iter.bi_size = sectors << 9; 1835 1836 if (bio_integrity(split)) 1837 bio_integrity_trim(split); 1838 1839 bio_advance(bio, split->bi_iter.bi_size); 1840 1841 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1842 bio_set_flag(split, BIO_TRACE_COMPLETION); 1843 1844 return split; 1845 } 1846 EXPORT_SYMBOL(bio_split); 1847 1848 /** 1849 * bio_trim - trim a bio 1850 * @bio: bio to trim 1851 * @offset: number of sectors to trim from the front of @bio 1852 * @size: size we want to trim @bio to, in sectors 1853 */ 1854 void bio_trim(struct bio *bio, int offset, int size) 1855 { 1856 /* 'bio' is a cloned bio which we need to trim to match 1857 * the given offset and size. 1858 */ 1859 1860 size <<= 9; 1861 if (offset == 0 && size == bio->bi_iter.bi_size) 1862 return; 1863 1864 bio_advance(bio, offset << 9); 1865 bio->bi_iter.bi_size = size; 1866 1867 if (bio_integrity(bio)) 1868 bio_integrity_trim(bio); 1869 1870 } 1871 EXPORT_SYMBOL_GPL(bio_trim); 1872 1873 /* 1874 * create memory pools for biovec's in a bio_set. 1875 * use the global biovec slabs created for general use. 1876 */ 1877 int biovec_init_pool(mempool_t *pool, int pool_entries) 1878 { 1879 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1880 1881 return mempool_init_slab_pool(pool, pool_entries, bp->slab); 1882 } 1883 1884 /* 1885 * bioset_exit - exit a bioset initialized with bioset_init() 1886 * 1887 * May be called on a zeroed but uninitialized bioset (i.e. allocated with 1888 * kzalloc()). 1889 */ 1890 void bioset_exit(struct bio_set *bs) 1891 { 1892 if (bs->rescue_workqueue) 1893 destroy_workqueue(bs->rescue_workqueue); 1894 bs->rescue_workqueue = NULL; 1895 1896 mempool_exit(&bs->bio_pool); 1897 mempool_exit(&bs->bvec_pool); 1898 1899 bioset_integrity_free(bs); 1900 if (bs->bio_slab) 1901 bio_put_slab(bs); 1902 bs->bio_slab = NULL; 1903 } 1904 EXPORT_SYMBOL(bioset_exit); 1905 1906 /** 1907 * bioset_init - Initialize a bio_set 1908 * @bs: pool to initialize 1909 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1910 * @front_pad: Number of bytes to allocate in front of the returned bio 1911 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1912 * and %BIOSET_NEED_RESCUER 1913 * 1914 * Description: 1915 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1916 * to ask for a number of bytes to be allocated in front of the bio. 1917 * Front pad allocation is useful for embedding the bio inside 1918 * another structure, to avoid allocating extra data to go with the bio. 1919 * Note that the bio must be embedded at the END of that structure always, 1920 * or things will break badly. 1921 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1922 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1923 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1924 * dispatch queued requests when the mempool runs out of space. 1925 * 1926 */ 1927 int bioset_init(struct bio_set *bs, 1928 unsigned int pool_size, 1929 unsigned int front_pad, 1930 int flags) 1931 { 1932 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1933 1934 bs->front_pad = front_pad; 1935 1936 spin_lock_init(&bs->rescue_lock); 1937 bio_list_init(&bs->rescue_list); 1938 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1939 1940 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1941 if (!bs->bio_slab) 1942 return -ENOMEM; 1943 1944 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 1945 goto bad; 1946 1947 if ((flags & BIOSET_NEED_BVECS) && 1948 biovec_init_pool(&bs->bvec_pool, pool_size)) 1949 goto bad; 1950 1951 if (!(flags & BIOSET_NEED_RESCUER)) 1952 return 0; 1953 1954 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1955 if (!bs->rescue_workqueue) 1956 goto bad; 1957 1958 return 0; 1959 bad: 1960 bioset_exit(bs); 1961 return -ENOMEM; 1962 } 1963 EXPORT_SYMBOL(bioset_init); 1964 1965 /* 1966 * Initialize and setup a new bio_set, based on the settings from 1967 * another bio_set. 1968 */ 1969 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) 1970 { 1971 int flags; 1972 1973 flags = 0; 1974 if (src->bvec_pool.min_nr) 1975 flags |= BIOSET_NEED_BVECS; 1976 if (src->rescue_workqueue) 1977 flags |= BIOSET_NEED_RESCUER; 1978 1979 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); 1980 } 1981 EXPORT_SYMBOL(bioset_init_from_src); 1982 1983 #ifdef CONFIG_BLK_CGROUP 1984 1985 /** 1986 * bio_disassociate_blkg - puts back the blkg reference if associated 1987 * @bio: target bio 1988 * 1989 * Helper to disassociate the blkg from @bio if a blkg is associated. 1990 */ 1991 void bio_disassociate_blkg(struct bio *bio) 1992 { 1993 if (bio->bi_blkg) { 1994 blkg_put(bio->bi_blkg); 1995 bio->bi_blkg = NULL; 1996 } 1997 } 1998 EXPORT_SYMBOL_GPL(bio_disassociate_blkg); 1999 2000 /** 2001 * __bio_associate_blkg - associate a bio with the a blkg 2002 * @bio: target bio 2003 * @blkg: the blkg to associate 2004 * 2005 * This tries to associate @bio with the specified @blkg. Association failure 2006 * is handled by walking up the blkg tree. Therefore, the blkg associated can 2007 * be anything between @blkg and the root_blkg. This situation only happens 2008 * when a cgroup is dying and then the remaining bios will spill to the closest 2009 * alive blkg. 2010 * 2011 * A reference will be taken on the @blkg and will be released when @bio is 2012 * freed. 2013 */ 2014 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) 2015 { 2016 bio_disassociate_blkg(bio); 2017 2018 bio->bi_blkg = blkg_tryget_closest(blkg); 2019 } 2020 2021 /** 2022 * bio_associate_blkg_from_css - associate a bio with a specified css 2023 * @bio: target bio 2024 * @css: target css 2025 * 2026 * Associate @bio with the blkg found by combining the css's blkg and the 2027 * request_queue of the @bio. This falls back to the queue's root_blkg if 2028 * the association fails with the css. 2029 */ 2030 void bio_associate_blkg_from_css(struct bio *bio, 2031 struct cgroup_subsys_state *css) 2032 { 2033 struct request_queue *q = bio->bi_disk->queue; 2034 struct blkcg_gq *blkg; 2035 2036 rcu_read_lock(); 2037 2038 if (!css || !css->parent) 2039 blkg = q->root_blkg; 2040 else 2041 blkg = blkg_lookup_create(css_to_blkcg(css), q); 2042 2043 __bio_associate_blkg(bio, blkg); 2044 2045 rcu_read_unlock(); 2046 } 2047 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2048 2049 #ifdef CONFIG_MEMCG 2050 /** 2051 * bio_associate_blkg_from_page - associate a bio with the page's blkg 2052 * @bio: target bio 2053 * @page: the page to lookup the blkcg from 2054 * 2055 * Associate @bio with the blkg from @page's owning memcg and the respective 2056 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's 2057 * root_blkg. 2058 */ 2059 void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 2060 { 2061 struct cgroup_subsys_state *css; 2062 2063 if (!page->mem_cgroup) 2064 return; 2065 2066 rcu_read_lock(); 2067 2068 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); 2069 bio_associate_blkg_from_css(bio, css); 2070 2071 rcu_read_unlock(); 2072 } 2073 #endif /* CONFIG_MEMCG */ 2074 2075 /** 2076 * bio_associate_blkg - associate a bio with a blkg 2077 * @bio: target bio 2078 * 2079 * Associate @bio with the blkg found from the bio's css and request_queue. 2080 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2081 * already associated, the css is reused and association redone as the 2082 * request_queue may have changed. 2083 */ 2084 void bio_associate_blkg(struct bio *bio) 2085 { 2086 struct cgroup_subsys_state *css; 2087 2088 rcu_read_lock(); 2089 2090 if (bio->bi_blkg) 2091 css = &bio_blkcg(bio)->css; 2092 else 2093 css = blkcg_css(); 2094 2095 bio_associate_blkg_from_css(bio, css); 2096 2097 rcu_read_unlock(); 2098 } 2099 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2100 2101 /** 2102 * bio_clone_blkg_association - clone blkg association from src to dst bio 2103 * @dst: destination bio 2104 * @src: source bio 2105 */ 2106 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2107 { 2108 rcu_read_lock(); 2109 2110 if (src->bi_blkg) 2111 __bio_associate_blkg(dst, src->bi_blkg); 2112 2113 rcu_read_unlock(); 2114 } 2115 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2116 #endif /* CONFIG_BLK_CGROUP */ 2117 2118 static void __init biovec_init_slabs(void) 2119 { 2120 int i; 2121 2122 for (i = 0; i < BVEC_POOL_NR; i++) { 2123 int size; 2124 struct biovec_slab *bvs = bvec_slabs + i; 2125 2126 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2127 bvs->slab = NULL; 2128 continue; 2129 } 2130 2131 size = bvs->nr_vecs * sizeof(struct bio_vec); 2132 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2133 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2134 } 2135 } 2136 2137 static int __init init_bio(void) 2138 { 2139 bio_slab_max = 2; 2140 bio_slab_nr = 0; 2141 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), 2142 GFP_KERNEL); 2143 2144 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); 2145 2146 if (!bio_slabs) 2147 panic("bio: can't allocate bios\n"); 2148 2149 bio_integrity_init(); 2150 biovec_init_slabs(); 2151 2152 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) 2153 panic("bio: can't allocate bios\n"); 2154 2155 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 2156 panic("bio: can't create integrity pool\n"); 2157 2158 return 0; 2159 } 2160 subsys_initcall(init_bio); 2161