xref: /openbmc/linux/block/bio.c (revision 113094f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 
20 #include <trace/events/block.h>
21 #include "blk.h"
22 #include "blk-rq-qos.h"
23 
24 /*
25  * Test patch to inline a certain number of bi_io_vec's inside the bio
26  * itself, to shrink a bio data allocation from two mempool calls to one
27  */
28 #define BIO_INLINE_VECS		4
29 
30 /*
31  * if you change this list, also change bvec_alloc or things will
32  * break badly! cannot be bigger than what you can fit into an
33  * unsigned short
34  */
35 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
36 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
37 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
38 };
39 #undef BV
40 
41 /*
42  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43  * IO code that does not need private memory pools.
44  */
45 struct bio_set fs_bio_set;
46 EXPORT_SYMBOL(fs_bio_set);
47 
48 /*
49  * Our slab pool management
50  */
51 struct bio_slab {
52 	struct kmem_cache *slab;
53 	unsigned int slab_ref;
54 	unsigned int slab_size;
55 	char name[8];
56 };
57 static DEFINE_MUTEX(bio_slab_lock);
58 static struct bio_slab *bio_slabs;
59 static unsigned int bio_slab_nr, bio_slab_max;
60 
61 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62 {
63 	unsigned int sz = sizeof(struct bio) + extra_size;
64 	struct kmem_cache *slab = NULL;
65 	struct bio_slab *bslab, *new_bio_slabs;
66 	unsigned int new_bio_slab_max;
67 	unsigned int i, entry = -1;
68 
69 	mutex_lock(&bio_slab_lock);
70 
71 	i = 0;
72 	while (i < bio_slab_nr) {
73 		bslab = &bio_slabs[i];
74 
75 		if (!bslab->slab && entry == -1)
76 			entry = i;
77 		else if (bslab->slab_size == sz) {
78 			slab = bslab->slab;
79 			bslab->slab_ref++;
80 			break;
81 		}
82 		i++;
83 	}
84 
85 	if (slab)
86 		goto out_unlock;
87 
88 	if (bio_slab_nr == bio_slab_max && entry == -1) {
89 		new_bio_slab_max = bio_slab_max << 1;
90 		new_bio_slabs = krealloc(bio_slabs,
91 					 new_bio_slab_max * sizeof(struct bio_slab),
92 					 GFP_KERNEL);
93 		if (!new_bio_slabs)
94 			goto out_unlock;
95 		bio_slab_max = new_bio_slab_max;
96 		bio_slabs = new_bio_slabs;
97 	}
98 	if (entry == -1)
99 		entry = bio_slab_nr++;
100 
101 	bslab = &bio_slabs[entry];
102 
103 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
104 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 				 SLAB_HWCACHE_ALIGN, NULL);
106 	if (!slab)
107 		goto out_unlock;
108 
109 	bslab->slab = slab;
110 	bslab->slab_ref = 1;
111 	bslab->slab_size = sz;
112 out_unlock:
113 	mutex_unlock(&bio_slab_lock);
114 	return slab;
115 }
116 
117 static void bio_put_slab(struct bio_set *bs)
118 {
119 	struct bio_slab *bslab = NULL;
120 	unsigned int i;
121 
122 	mutex_lock(&bio_slab_lock);
123 
124 	for (i = 0; i < bio_slab_nr; i++) {
125 		if (bs->bio_slab == bio_slabs[i].slab) {
126 			bslab = &bio_slabs[i];
127 			break;
128 		}
129 	}
130 
131 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 		goto out;
133 
134 	WARN_ON(!bslab->slab_ref);
135 
136 	if (--bslab->slab_ref)
137 		goto out;
138 
139 	kmem_cache_destroy(bslab->slab);
140 	bslab->slab = NULL;
141 
142 out:
143 	mutex_unlock(&bio_slab_lock);
144 }
145 
146 unsigned int bvec_nr_vecs(unsigned short idx)
147 {
148 	return bvec_slabs[--idx].nr_vecs;
149 }
150 
151 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
152 {
153 	if (!idx)
154 		return;
155 	idx--;
156 
157 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
158 
159 	if (idx == BVEC_POOL_MAX) {
160 		mempool_free(bv, pool);
161 	} else {
162 		struct biovec_slab *bvs = bvec_slabs + idx;
163 
164 		kmem_cache_free(bvs->slab, bv);
165 	}
166 }
167 
168 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 			   mempool_t *pool)
170 {
171 	struct bio_vec *bvl;
172 
173 	/*
174 	 * see comment near bvec_array define!
175 	 */
176 	switch (nr) {
177 	case 1:
178 		*idx = 0;
179 		break;
180 	case 2 ... 4:
181 		*idx = 1;
182 		break;
183 	case 5 ... 16:
184 		*idx = 2;
185 		break;
186 	case 17 ... 64:
187 		*idx = 3;
188 		break;
189 	case 65 ... 128:
190 		*idx = 4;
191 		break;
192 	case 129 ... BIO_MAX_PAGES:
193 		*idx = 5;
194 		break;
195 	default:
196 		return NULL;
197 	}
198 
199 	/*
200 	 * idx now points to the pool we want to allocate from. only the
201 	 * 1-vec entry pool is mempool backed.
202 	 */
203 	if (*idx == BVEC_POOL_MAX) {
204 fallback:
205 		bvl = mempool_alloc(pool, gfp_mask);
206 	} else {
207 		struct biovec_slab *bvs = bvec_slabs + *idx;
208 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
209 
210 		/*
211 		 * Make this allocation restricted and don't dump info on
212 		 * allocation failures, since we'll fallback to the mempool
213 		 * in case of failure.
214 		 */
215 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
216 
217 		/*
218 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
219 		 * is set, retry with the 1-entry mempool
220 		 */
221 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
222 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
223 			*idx = BVEC_POOL_MAX;
224 			goto fallback;
225 		}
226 	}
227 
228 	(*idx)++;
229 	return bvl;
230 }
231 
232 void bio_uninit(struct bio *bio)
233 {
234 	bio_disassociate_blkg(bio);
235 }
236 EXPORT_SYMBOL(bio_uninit);
237 
238 static void bio_free(struct bio *bio)
239 {
240 	struct bio_set *bs = bio->bi_pool;
241 	void *p;
242 
243 	bio_uninit(bio);
244 
245 	if (bs) {
246 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
247 
248 		/*
249 		 * If we have front padding, adjust the bio pointer before freeing
250 		 */
251 		p = bio;
252 		p -= bs->front_pad;
253 
254 		mempool_free(p, &bs->bio_pool);
255 	} else {
256 		/* Bio was allocated by bio_kmalloc() */
257 		kfree(bio);
258 	}
259 }
260 
261 /*
262  * Users of this function have their own bio allocation. Subsequently,
263  * they must remember to pair any call to bio_init() with bio_uninit()
264  * when IO has completed, or when the bio is released.
265  */
266 void bio_init(struct bio *bio, struct bio_vec *table,
267 	      unsigned short max_vecs)
268 {
269 	memset(bio, 0, sizeof(*bio));
270 	atomic_set(&bio->__bi_remaining, 1);
271 	atomic_set(&bio->__bi_cnt, 1);
272 
273 	bio->bi_io_vec = table;
274 	bio->bi_max_vecs = max_vecs;
275 }
276 EXPORT_SYMBOL(bio_init);
277 
278 /**
279  * bio_reset - reinitialize a bio
280  * @bio:	bio to reset
281  *
282  * Description:
283  *   After calling bio_reset(), @bio will be in the same state as a freshly
284  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
285  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
286  *   comment in struct bio.
287  */
288 void bio_reset(struct bio *bio)
289 {
290 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291 
292 	bio_uninit(bio);
293 
294 	memset(bio, 0, BIO_RESET_BYTES);
295 	bio->bi_flags = flags;
296 	atomic_set(&bio->__bi_remaining, 1);
297 }
298 EXPORT_SYMBOL(bio_reset);
299 
300 static struct bio *__bio_chain_endio(struct bio *bio)
301 {
302 	struct bio *parent = bio->bi_private;
303 
304 	if (!parent->bi_status)
305 		parent->bi_status = bio->bi_status;
306 	bio_put(bio);
307 	return parent;
308 }
309 
310 static void bio_chain_endio(struct bio *bio)
311 {
312 	bio_endio(__bio_chain_endio(bio));
313 }
314 
315 /**
316  * bio_chain - chain bio completions
317  * @bio: the target bio
318  * @parent: the @bio's parent bio
319  *
320  * The caller won't have a bi_end_io called when @bio completes - instead,
321  * @parent's bi_end_io won't be called until both @parent and @bio have
322  * completed; the chained bio will also be freed when it completes.
323  *
324  * The caller must not set bi_private or bi_end_io in @bio.
325  */
326 void bio_chain(struct bio *bio, struct bio *parent)
327 {
328 	BUG_ON(bio->bi_private || bio->bi_end_io);
329 
330 	bio->bi_private = parent;
331 	bio->bi_end_io	= bio_chain_endio;
332 	bio_inc_remaining(parent);
333 }
334 EXPORT_SYMBOL(bio_chain);
335 
336 static void bio_alloc_rescue(struct work_struct *work)
337 {
338 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 	struct bio *bio;
340 
341 	while (1) {
342 		spin_lock(&bs->rescue_lock);
343 		bio = bio_list_pop(&bs->rescue_list);
344 		spin_unlock(&bs->rescue_lock);
345 
346 		if (!bio)
347 			break;
348 
349 		generic_make_request(bio);
350 	}
351 }
352 
353 static void punt_bios_to_rescuer(struct bio_set *bs)
354 {
355 	struct bio_list punt, nopunt;
356 	struct bio *bio;
357 
358 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 		return;
360 	/*
361 	 * In order to guarantee forward progress we must punt only bios that
362 	 * were allocated from this bio_set; otherwise, if there was a bio on
363 	 * there for a stacking driver higher up in the stack, processing it
364 	 * could require allocating bios from this bio_set, and doing that from
365 	 * our own rescuer would be bad.
366 	 *
367 	 * Since bio lists are singly linked, pop them all instead of trying to
368 	 * remove from the middle of the list:
369 	 */
370 
371 	bio_list_init(&punt);
372 	bio_list_init(&nopunt);
373 
374 	while ((bio = bio_list_pop(&current->bio_list[0])))
375 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
376 	current->bio_list[0] = nopunt;
377 
378 	bio_list_init(&nopunt);
379 	while ((bio = bio_list_pop(&current->bio_list[1])))
380 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 	current->bio_list[1] = nopunt;
382 
383 	spin_lock(&bs->rescue_lock);
384 	bio_list_merge(&bs->rescue_list, &punt);
385 	spin_unlock(&bs->rescue_lock);
386 
387 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
388 }
389 
390 /**
391  * bio_alloc_bioset - allocate a bio for I/O
392  * @gfp_mask:   the GFP_* mask given to the slab allocator
393  * @nr_iovecs:	number of iovecs to pre-allocate
394  * @bs:		the bio_set to allocate from.
395  *
396  * Description:
397  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398  *   backed by the @bs's mempool.
399  *
400  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401  *   always be able to allocate a bio. This is due to the mempool guarantees.
402  *   To make this work, callers must never allocate more than 1 bio at a time
403  *   from this pool. Callers that need to allocate more than 1 bio must always
404  *   submit the previously allocated bio for IO before attempting to allocate
405  *   a new one. Failure to do so can cause deadlocks under memory pressure.
406  *
407  *   Note that when running under generic_make_request() (i.e. any block
408  *   driver), bios are not submitted until after you return - see the code in
409  *   generic_make_request() that converts recursion into iteration, to prevent
410  *   stack overflows.
411  *
412  *   This would normally mean allocating multiple bios under
413  *   generic_make_request() would be susceptible to deadlocks, but we have
414  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
415  *   thread.
416  *
417  *   However, we do not guarantee forward progress for allocations from other
418  *   mempools. Doing multiple allocations from the same mempool under
419  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
420  *   for per bio allocations.
421  *
422  *   RETURNS:
423  *   Pointer to new bio on success, NULL on failure.
424  */
425 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 			     struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 				 nr_iovecs > 0))
448 			return NULL;
449 		/*
450 		 * generic_make_request() converts recursion to iteration; this
451 		 * means if we're running beneath it, any bios we allocate and
452 		 * submit will not be submitted (and thus freed) until after we
453 		 * return.
454 		 *
455 		 * This exposes us to a potential deadlock if we allocate
456 		 * multiple bios from the same bio_set() while running
457 		 * underneath generic_make_request(). If we were to allocate
458 		 * multiple bios (say a stacking block driver that was splitting
459 		 * bios), we would deadlock if we exhausted the mempool's
460 		 * reserve.
461 		 *
462 		 * We solve this, and guarantee forward progress, with a rescuer
463 		 * workqueue per bio_set. If we go to allocate and there are
464 		 * bios on current->bio_list, we first try the allocation
465 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 		 * bios we would be blocking to the rescuer workqueue before
467 		 * we retry with the original gfp_flags.
468 		 */
469 
470 		if (current->bio_list &&
471 		    (!bio_list_empty(&current->bio_list[0]) ||
472 		     !bio_list_empty(&current->bio_list[1])) &&
473 		    bs->rescue_workqueue)
474 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475 
476 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
477 		if (!p && gfp_mask != saved_gfp) {
478 			punt_bios_to_rescuer(bs);
479 			gfp_mask = saved_gfp;
480 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		}
482 
483 		front_pad = bs->front_pad;
484 		inline_vecs = BIO_INLINE_VECS;
485 	}
486 
487 	if (unlikely(!p))
488 		return NULL;
489 
490 	bio = p + front_pad;
491 	bio_init(bio, NULL, 0);
492 
493 	if (nr_iovecs > inline_vecs) {
494 		unsigned long idx = 0;
495 
496 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
497 		if (!bvl && gfp_mask != saved_gfp) {
498 			punt_bios_to_rescuer(bs);
499 			gfp_mask = saved_gfp;
500 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		}
502 
503 		if (unlikely(!bvl))
504 			goto err_free;
505 
506 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
507 	} else if (nr_iovecs) {
508 		bvl = bio->bi_inline_vecs;
509 	}
510 
511 	bio->bi_pool = bs;
512 	bio->bi_max_vecs = nr_iovecs;
513 	bio->bi_io_vec = bvl;
514 	return bio;
515 
516 err_free:
517 	mempool_free(p, &bs->bio_pool);
518 	return NULL;
519 }
520 EXPORT_SYMBOL(bio_alloc_bioset);
521 
522 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
523 {
524 	unsigned long flags;
525 	struct bio_vec bv;
526 	struct bvec_iter iter;
527 
528 	__bio_for_each_segment(bv, bio, iter, start) {
529 		char *data = bvec_kmap_irq(&bv, &flags);
530 		memset(data, 0, bv.bv_len);
531 		flush_dcache_page(bv.bv_page);
532 		bvec_kunmap_irq(data, &flags);
533 	}
534 }
535 EXPORT_SYMBOL(zero_fill_bio_iter);
536 
537 /**
538  * bio_put - release a reference to a bio
539  * @bio:   bio to release reference to
540  *
541  * Description:
542  *   Put a reference to a &struct bio, either one you have gotten with
543  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
544  **/
545 void bio_put(struct bio *bio)
546 {
547 	if (!bio_flagged(bio, BIO_REFFED))
548 		bio_free(bio);
549 	else {
550 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551 
552 		/*
553 		 * last put frees it
554 		 */
555 		if (atomic_dec_and_test(&bio->__bi_cnt))
556 			bio_free(bio);
557 	}
558 }
559 EXPORT_SYMBOL(bio_put);
560 
561 /**
562  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
563  * 	@bio: destination bio
564  * 	@bio_src: bio to clone
565  *
566  *	Clone a &bio. Caller will own the returned bio, but not
567  *	the actual data it points to. Reference count of returned
568  * 	bio will be one.
569  *
570  * 	Caller must ensure that @bio_src is not freed before @bio.
571  */
572 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
573 {
574 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
575 
576 	/*
577 	 * most users will be overriding ->bi_disk with a new target,
578 	 * so we don't set nor calculate new physical/hw segment counts here
579 	 */
580 	bio->bi_disk = bio_src->bi_disk;
581 	bio->bi_partno = bio_src->bi_partno;
582 	bio_set_flag(bio, BIO_CLONED);
583 	if (bio_flagged(bio_src, BIO_THROTTLED))
584 		bio_set_flag(bio, BIO_THROTTLED);
585 	bio->bi_opf = bio_src->bi_opf;
586 	bio->bi_ioprio = bio_src->bi_ioprio;
587 	bio->bi_write_hint = bio_src->bi_write_hint;
588 	bio->bi_iter = bio_src->bi_iter;
589 	bio->bi_io_vec = bio_src->bi_io_vec;
590 
591 	bio_clone_blkg_association(bio, bio_src);
592 	blkcg_bio_issue_init(bio);
593 }
594 EXPORT_SYMBOL(__bio_clone_fast);
595 
596 /**
597  *	bio_clone_fast - clone a bio that shares the original bio's biovec
598  *	@bio: bio to clone
599  *	@gfp_mask: allocation priority
600  *	@bs: bio_set to allocate from
601  *
602  * 	Like __bio_clone_fast, only also allocates the returned bio
603  */
604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605 {
606 	struct bio *b;
607 
608 	b = bio_alloc_bioset(gfp_mask, 0, bs);
609 	if (!b)
610 		return NULL;
611 
612 	__bio_clone_fast(b, bio);
613 
614 	if (bio_integrity(bio)) {
615 		int ret;
616 
617 		ret = bio_integrity_clone(b, bio, gfp_mask);
618 
619 		if (ret < 0) {
620 			bio_put(b);
621 			return NULL;
622 		}
623 	}
624 
625 	return b;
626 }
627 EXPORT_SYMBOL(bio_clone_fast);
628 
629 static inline bool page_is_mergeable(const struct bio_vec *bv,
630 		struct page *page, unsigned int len, unsigned int off,
631 		bool *same_page)
632 {
633 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
634 		bv->bv_offset + bv->bv_len - 1;
635 	phys_addr_t page_addr = page_to_phys(page);
636 
637 	if (vec_end_addr + 1 != page_addr + off)
638 		return false;
639 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
640 		return false;
641 
642 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
643 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
644 		return false;
645 	return true;
646 }
647 
648 /*
649  * Check if the @page can be added to the current segment(@bv), and make
650  * sure to call it only if page_is_mergeable(@bv, @page) is true
651  */
652 static bool can_add_page_to_seg(struct request_queue *q,
653 		struct bio_vec *bv, struct page *page, unsigned len,
654 		unsigned offset)
655 {
656 	unsigned long mask = queue_segment_boundary(q);
657 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
658 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
659 
660 	if ((addr1 | mask) != (addr2 | mask))
661 		return false;
662 
663 	if (bv->bv_len + len > queue_max_segment_size(q))
664 		return false;
665 
666 	return true;
667 }
668 
669 /**
670  *	__bio_add_pc_page	- attempt to add page to passthrough bio
671  *	@q: the target queue
672  *	@bio: destination bio
673  *	@page: page to add
674  *	@len: vec entry length
675  *	@offset: vec entry offset
676  *	@put_same_page: put the page if it is same with last added page
677  *
678  *	Attempt to add a page to the bio_vec maplist. This can fail for a
679  *	number of reasons, such as the bio being full or target block device
680  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
681  *	so it is always possible to add a single page to an empty bio.
682  *
683  *	This should only be used by passthrough bios.
684  */
685 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
686 		struct page *page, unsigned int len, unsigned int offset,
687 		bool put_same_page)
688 {
689 	struct bio_vec *bvec;
690 	bool same_page = false;
691 
692 	/*
693 	 * cloned bio must not modify vec list
694 	 */
695 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
696 		return 0;
697 
698 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
699 		return 0;
700 
701 	if (bio->bi_vcnt > 0) {
702 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
703 
704 		if (page == bvec->bv_page &&
705 		    offset == bvec->bv_offset + bvec->bv_len) {
706 			if (put_same_page)
707 				put_page(page);
708 			bvec->bv_len += len;
709 			goto done;
710 		}
711 
712 		/*
713 		 * If the queue doesn't support SG gaps and adding this
714 		 * offset would create a gap, disallow it.
715 		 */
716 		if (bvec_gap_to_prev(q, bvec, offset))
717 			return 0;
718 
719 		if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
720 		    can_add_page_to_seg(q, bvec, page, len, offset)) {
721 			bvec->bv_len += len;
722 			goto done;
723 		}
724 	}
725 
726 	if (bio_full(bio, len))
727 		return 0;
728 
729 	if (bio->bi_vcnt >= queue_max_segments(q))
730 		return 0;
731 
732 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
733 	bvec->bv_page = page;
734 	bvec->bv_len = len;
735 	bvec->bv_offset = offset;
736 	bio->bi_vcnt++;
737  done:
738 	bio->bi_iter.bi_size += len;
739 	return len;
740 }
741 
742 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
743 		struct page *page, unsigned int len, unsigned int offset)
744 {
745 	return __bio_add_pc_page(q, bio, page, len, offset, false);
746 }
747 EXPORT_SYMBOL(bio_add_pc_page);
748 
749 /**
750  * __bio_try_merge_page - try appending data to an existing bvec.
751  * @bio: destination bio
752  * @page: start page to add
753  * @len: length of the data to add
754  * @off: offset of the data relative to @page
755  * @same_page: return if the segment has been merged inside the same page
756  *
757  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
758  * a useful optimisation for file systems with a block size smaller than the
759  * page size.
760  *
761  * Warn if (@len, @off) crosses pages in case that @same_page is true.
762  *
763  * Return %true on success or %false on failure.
764  */
765 bool __bio_try_merge_page(struct bio *bio, struct page *page,
766 		unsigned int len, unsigned int off, bool *same_page)
767 {
768 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
769 		return false;
770 
771 	if (bio->bi_vcnt > 0) {
772 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
773 
774 		if (page_is_mergeable(bv, page, len, off, same_page)) {
775 			bv->bv_len += len;
776 			bio->bi_iter.bi_size += len;
777 			return true;
778 		}
779 	}
780 	return false;
781 }
782 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
783 
784 /**
785  * __bio_add_page - add page(s) to a bio in a new segment
786  * @bio: destination bio
787  * @page: start page to add
788  * @len: length of the data to add, may cross pages
789  * @off: offset of the data relative to @page, may cross pages
790  *
791  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
792  * that @bio has space for another bvec.
793  */
794 void __bio_add_page(struct bio *bio, struct page *page,
795 		unsigned int len, unsigned int off)
796 {
797 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
798 
799 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
800 	WARN_ON_ONCE(bio_full(bio, len));
801 
802 	bv->bv_page = page;
803 	bv->bv_offset = off;
804 	bv->bv_len = len;
805 
806 	bio->bi_iter.bi_size += len;
807 	bio->bi_vcnt++;
808 }
809 EXPORT_SYMBOL_GPL(__bio_add_page);
810 
811 /**
812  *	bio_add_page	-	attempt to add page(s) to bio
813  *	@bio: destination bio
814  *	@page: start page to add
815  *	@len: vec entry length, may cross pages
816  *	@offset: vec entry offset relative to @page, may cross pages
817  *
818  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
819  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
820  */
821 int bio_add_page(struct bio *bio, struct page *page,
822 		 unsigned int len, unsigned int offset)
823 {
824 	bool same_page = false;
825 
826 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
827 		if (bio_full(bio, len))
828 			return 0;
829 		__bio_add_page(bio, page, len, offset);
830 	}
831 	return len;
832 }
833 EXPORT_SYMBOL(bio_add_page);
834 
835 void bio_release_pages(struct bio *bio, bool mark_dirty)
836 {
837 	struct bvec_iter_all iter_all;
838 	struct bio_vec *bvec;
839 
840 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
841 		return;
842 
843 	bio_for_each_segment_all(bvec, bio, iter_all) {
844 		if (mark_dirty && !PageCompound(bvec->bv_page))
845 			set_page_dirty_lock(bvec->bv_page);
846 		put_page(bvec->bv_page);
847 	}
848 }
849 
850 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
851 {
852 	const struct bio_vec *bv = iter->bvec;
853 	unsigned int len;
854 	size_t size;
855 
856 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
857 		return -EINVAL;
858 
859 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
860 	size = bio_add_page(bio, bv->bv_page, len,
861 				bv->bv_offset + iter->iov_offset);
862 	if (unlikely(size != len))
863 		return -EINVAL;
864 	iov_iter_advance(iter, size);
865 	return 0;
866 }
867 
868 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
869 
870 /**
871  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
872  * @bio: bio to add pages to
873  * @iter: iov iterator describing the region to be mapped
874  *
875  * Pins pages from *iter and appends them to @bio's bvec array. The
876  * pages will have to be released using put_page() when done.
877  * For multi-segment *iter, this function only adds pages from the
878  * the next non-empty segment of the iov iterator.
879  */
880 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
881 {
882 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
883 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
884 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
885 	struct page **pages = (struct page **)bv;
886 	bool same_page = false;
887 	ssize_t size, left;
888 	unsigned len, i;
889 	size_t offset;
890 
891 	/*
892 	 * Move page array up in the allocated memory for the bio vecs as far as
893 	 * possible so that we can start filling biovecs from the beginning
894 	 * without overwriting the temporary page array.
895 	*/
896 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
897 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
898 
899 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
900 	if (unlikely(size <= 0))
901 		return size ? size : -EFAULT;
902 
903 	for (left = size, i = 0; left > 0; left -= len, i++) {
904 		struct page *page = pages[i];
905 
906 		len = min_t(size_t, PAGE_SIZE - offset, left);
907 
908 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
909 			if (same_page)
910 				put_page(page);
911 		} else {
912 			if (WARN_ON_ONCE(bio_full(bio, len)))
913                                 return -EINVAL;
914 			__bio_add_page(bio, page, len, offset);
915 		}
916 		offset = 0;
917 	}
918 
919 	iov_iter_advance(iter, size);
920 	return 0;
921 }
922 
923 /**
924  * bio_iov_iter_get_pages - add user or kernel pages to a bio
925  * @bio: bio to add pages to
926  * @iter: iov iterator describing the region to be added
927  *
928  * This takes either an iterator pointing to user memory, or one pointing to
929  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
930  * map them into the kernel. On IO completion, the caller should put those
931  * pages. If we're adding kernel pages, and the caller told us it's safe to
932  * do so, we just have to add the pages to the bio directly. We don't grab an
933  * extra reference to those pages (the user should already have that), and we
934  * don't put the page on IO completion. The caller needs to check if the bio is
935  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
936  * released.
937  *
938  * The function tries, but does not guarantee, to pin as many pages as
939  * fit into the bio, or are requested in *iter, whatever is smaller. If
940  * MM encounters an error pinning the requested pages, it stops. Error
941  * is returned only if 0 pages could be pinned.
942  */
943 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
944 {
945 	const bool is_bvec = iov_iter_is_bvec(iter);
946 	int ret;
947 
948 	if (WARN_ON_ONCE(bio->bi_vcnt))
949 		return -EINVAL;
950 
951 	do {
952 		if (is_bvec)
953 			ret = __bio_iov_bvec_add_pages(bio, iter);
954 		else
955 			ret = __bio_iov_iter_get_pages(bio, iter);
956 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
957 
958 	if (is_bvec)
959 		bio_set_flag(bio, BIO_NO_PAGE_REF);
960 	return bio->bi_vcnt ? 0 : ret;
961 }
962 
963 static void submit_bio_wait_endio(struct bio *bio)
964 {
965 	complete(bio->bi_private);
966 }
967 
968 /**
969  * submit_bio_wait - submit a bio, and wait until it completes
970  * @bio: The &struct bio which describes the I/O
971  *
972  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
973  * bio_endio() on failure.
974  *
975  * WARNING: Unlike to how submit_bio() is usually used, this function does not
976  * result in bio reference to be consumed. The caller must drop the reference
977  * on his own.
978  */
979 int submit_bio_wait(struct bio *bio)
980 {
981 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
982 
983 	bio->bi_private = &done;
984 	bio->bi_end_io = submit_bio_wait_endio;
985 	bio->bi_opf |= REQ_SYNC;
986 	submit_bio(bio);
987 	wait_for_completion_io(&done);
988 
989 	return blk_status_to_errno(bio->bi_status);
990 }
991 EXPORT_SYMBOL(submit_bio_wait);
992 
993 /**
994  * bio_advance - increment/complete a bio by some number of bytes
995  * @bio:	bio to advance
996  * @bytes:	number of bytes to complete
997  *
998  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
999  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1000  * be updated on the last bvec as well.
1001  *
1002  * @bio will then represent the remaining, uncompleted portion of the io.
1003  */
1004 void bio_advance(struct bio *bio, unsigned bytes)
1005 {
1006 	if (bio_integrity(bio))
1007 		bio_integrity_advance(bio, bytes);
1008 
1009 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1010 }
1011 EXPORT_SYMBOL(bio_advance);
1012 
1013 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1014 			struct bio *src, struct bvec_iter *src_iter)
1015 {
1016 	struct bio_vec src_bv, dst_bv;
1017 	void *src_p, *dst_p;
1018 	unsigned bytes;
1019 
1020 	while (src_iter->bi_size && dst_iter->bi_size) {
1021 		src_bv = bio_iter_iovec(src, *src_iter);
1022 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1023 
1024 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1025 
1026 		src_p = kmap_atomic(src_bv.bv_page);
1027 		dst_p = kmap_atomic(dst_bv.bv_page);
1028 
1029 		memcpy(dst_p + dst_bv.bv_offset,
1030 		       src_p + src_bv.bv_offset,
1031 		       bytes);
1032 
1033 		kunmap_atomic(dst_p);
1034 		kunmap_atomic(src_p);
1035 
1036 		flush_dcache_page(dst_bv.bv_page);
1037 
1038 		bio_advance_iter(src, src_iter, bytes);
1039 		bio_advance_iter(dst, dst_iter, bytes);
1040 	}
1041 }
1042 EXPORT_SYMBOL(bio_copy_data_iter);
1043 
1044 /**
1045  * bio_copy_data - copy contents of data buffers from one bio to another
1046  * @src: source bio
1047  * @dst: destination bio
1048  *
1049  * Stops when it reaches the end of either @src or @dst - that is, copies
1050  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1051  */
1052 void bio_copy_data(struct bio *dst, struct bio *src)
1053 {
1054 	struct bvec_iter src_iter = src->bi_iter;
1055 	struct bvec_iter dst_iter = dst->bi_iter;
1056 
1057 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1058 }
1059 EXPORT_SYMBOL(bio_copy_data);
1060 
1061 /**
1062  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1063  * another
1064  * @src: source bio list
1065  * @dst: destination bio list
1066  *
1067  * Stops when it reaches the end of either the @src list or @dst list - that is,
1068  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1069  * bios).
1070  */
1071 void bio_list_copy_data(struct bio *dst, struct bio *src)
1072 {
1073 	struct bvec_iter src_iter = src->bi_iter;
1074 	struct bvec_iter dst_iter = dst->bi_iter;
1075 
1076 	while (1) {
1077 		if (!src_iter.bi_size) {
1078 			src = src->bi_next;
1079 			if (!src)
1080 				break;
1081 
1082 			src_iter = src->bi_iter;
1083 		}
1084 
1085 		if (!dst_iter.bi_size) {
1086 			dst = dst->bi_next;
1087 			if (!dst)
1088 				break;
1089 
1090 			dst_iter = dst->bi_iter;
1091 		}
1092 
1093 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1094 	}
1095 }
1096 EXPORT_SYMBOL(bio_list_copy_data);
1097 
1098 struct bio_map_data {
1099 	int is_our_pages;
1100 	struct iov_iter iter;
1101 	struct iovec iov[];
1102 };
1103 
1104 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1105 					       gfp_t gfp_mask)
1106 {
1107 	struct bio_map_data *bmd;
1108 	if (data->nr_segs > UIO_MAXIOV)
1109 		return NULL;
1110 
1111 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1112 	if (!bmd)
1113 		return NULL;
1114 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1115 	bmd->iter = *data;
1116 	bmd->iter.iov = bmd->iov;
1117 	return bmd;
1118 }
1119 
1120 /**
1121  * bio_copy_from_iter - copy all pages from iov_iter to bio
1122  * @bio: The &struct bio which describes the I/O as destination
1123  * @iter: iov_iter as source
1124  *
1125  * Copy all pages from iov_iter to bio.
1126  * Returns 0 on success, or error on failure.
1127  */
1128 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1129 {
1130 	struct bio_vec *bvec;
1131 	struct bvec_iter_all iter_all;
1132 
1133 	bio_for_each_segment_all(bvec, bio, iter_all) {
1134 		ssize_t ret;
1135 
1136 		ret = copy_page_from_iter(bvec->bv_page,
1137 					  bvec->bv_offset,
1138 					  bvec->bv_len,
1139 					  iter);
1140 
1141 		if (!iov_iter_count(iter))
1142 			break;
1143 
1144 		if (ret < bvec->bv_len)
1145 			return -EFAULT;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 /**
1152  * bio_copy_to_iter - copy all pages from bio to iov_iter
1153  * @bio: The &struct bio which describes the I/O as source
1154  * @iter: iov_iter as destination
1155  *
1156  * Copy all pages from bio to iov_iter.
1157  * Returns 0 on success, or error on failure.
1158  */
1159 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1160 {
1161 	struct bio_vec *bvec;
1162 	struct bvec_iter_all iter_all;
1163 
1164 	bio_for_each_segment_all(bvec, bio, iter_all) {
1165 		ssize_t ret;
1166 
1167 		ret = copy_page_to_iter(bvec->bv_page,
1168 					bvec->bv_offset,
1169 					bvec->bv_len,
1170 					&iter);
1171 
1172 		if (!iov_iter_count(&iter))
1173 			break;
1174 
1175 		if (ret < bvec->bv_len)
1176 			return -EFAULT;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 void bio_free_pages(struct bio *bio)
1183 {
1184 	struct bio_vec *bvec;
1185 	struct bvec_iter_all iter_all;
1186 
1187 	bio_for_each_segment_all(bvec, bio, iter_all)
1188 		__free_page(bvec->bv_page);
1189 }
1190 EXPORT_SYMBOL(bio_free_pages);
1191 
1192 /**
1193  *	bio_uncopy_user	-	finish previously mapped bio
1194  *	@bio: bio being terminated
1195  *
1196  *	Free pages allocated from bio_copy_user_iov() and write back data
1197  *	to user space in case of a read.
1198  */
1199 int bio_uncopy_user(struct bio *bio)
1200 {
1201 	struct bio_map_data *bmd = bio->bi_private;
1202 	int ret = 0;
1203 
1204 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 		/*
1206 		 * if we're in a workqueue, the request is orphaned, so
1207 		 * don't copy into a random user address space, just free
1208 		 * and return -EINTR so user space doesn't expect any data.
1209 		 */
1210 		if (!current->mm)
1211 			ret = -EINTR;
1212 		else if (bio_data_dir(bio) == READ)
1213 			ret = bio_copy_to_iter(bio, bmd->iter);
1214 		if (bmd->is_our_pages)
1215 			bio_free_pages(bio);
1216 	}
1217 	kfree(bmd);
1218 	bio_put(bio);
1219 	return ret;
1220 }
1221 
1222 /**
1223  *	bio_copy_user_iov	-	copy user data to bio
1224  *	@q:		destination block queue
1225  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1226  *	@iter:		iovec iterator
1227  *	@gfp_mask:	memory allocation flags
1228  *
1229  *	Prepares and returns a bio for indirect user io, bouncing data
1230  *	to/from kernel pages as necessary. Must be paired with
1231  *	call bio_uncopy_user() on io completion.
1232  */
1233 struct bio *bio_copy_user_iov(struct request_queue *q,
1234 			      struct rq_map_data *map_data,
1235 			      struct iov_iter *iter,
1236 			      gfp_t gfp_mask)
1237 {
1238 	struct bio_map_data *bmd;
1239 	struct page *page;
1240 	struct bio *bio;
1241 	int i = 0, ret;
1242 	int nr_pages;
1243 	unsigned int len = iter->count;
1244 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1245 
1246 	bmd = bio_alloc_map_data(iter, gfp_mask);
1247 	if (!bmd)
1248 		return ERR_PTR(-ENOMEM);
1249 
1250 	/*
1251 	 * We need to do a deep copy of the iov_iter including the iovecs.
1252 	 * The caller provided iov might point to an on-stack or otherwise
1253 	 * shortlived one.
1254 	 */
1255 	bmd->is_our_pages = map_data ? 0 : 1;
1256 
1257 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 	if (nr_pages > BIO_MAX_PAGES)
1259 		nr_pages = BIO_MAX_PAGES;
1260 
1261 	ret = -ENOMEM;
1262 	bio = bio_kmalloc(gfp_mask, nr_pages);
1263 	if (!bio)
1264 		goto out_bmd;
1265 
1266 	ret = 0;
1267 
1268 	if (map_data) {
1269 		nr_pages = 1 << map_data->page_order;
1270 		i = map_data->offset / PAGE_SIZE;
1271 	}
1272 	while (len) {
1273 		unsigned int bytes = PAGE_SIZE;
1274 
1275 		bytes -= offset;
1276 
1277 		if (bytes > len)
1278 			bytes = len;
1279 
1280 		if (map_data) {
1281 			if (i == map_data->nr_entries * nr_pages) {
1282 				ret = -ENOMEM;
1283 				break;
1284 			}
1285 
1286 			page = map_data->pages[i / nr_pages];
1287 			page += (i % nr_pages);
1288 
1289 			i++;
1290 		} else {
1291 			page = alloc_page(q->bounce_gfp | gfp_mask);
1292 			if (!page) {
1293 				ret = -ENOMEM;
1294 				break;
1295 			}
1296 		}
1297 
1298 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1299 			if (!map_data)
1300 				__free_page(page);
1301 			break;
1302 		}
1303 
1304 		len -= bytes;
1305 		offset = 0;
1306 	}
1307 
1308 	if (ret)
1309 		goto cleanup;
1310 
1311 	if (map_data)
1312 		map_data->offset += bio->bi_iter.bi_size;
1313 
1314 	/*
1315 	 * success
1316 	 */
1317 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1318 	    (map_data && map_data->from_user)) {
1319 		ret = bio_copy_from_iter(bio, iter);
1320 		if (ret)
1321 			goto cleanup;
1322 	} else {
1323 		if (bmd->is_our_pages)
1324 			zero_fill_bio(bio);
1325 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1326 	}
1327 
1328 	bio->bi_private = bmd;
1329 	if (map_data && map_data->null_mapped)
1330 		bio_set_flag(bio, BIO_NULL_MAPPED);
1331 	return bio;
1332 cleanup:
1333 	if (!map_data)
1334 		bio_free_pages(bio);
1335 	bio_put(bio);
1336 out_bmd:
1337 	kfree(bmd);
1338 	return ERR_PTR(ret);
1339 }
1340 
1341 /**
1342  *	bio_map_user_iov - map user iovec into bio
1343  *	@q:		the struct request_queue for the bio
1344  *	@iter:		iovec iterator
1345  *	@gfp_mask:	memory allocation flags
1346  *
1347  *	Map the user space address into a bio suitable for io to a block
1348  *	device. Returns an error pointer in case of error.
1349  */
1350 struct bio *bio_map_user_iov(struct request_queue *q,
1351 			     struct iov_iter *iter,
1352 			     gfp_t gfp_mask)
1353 {
1354 	int j;
1355 	struct bio *bio;
1356 	int ret;
1357 
1358 	if (!iov_iter_count(iter))
1359 		return ERR_PTR(-EINVAL);
1360 
1361 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1362 	if (!bio)
1363 		return ERR_PTR(-ENOMEM);
1364 
1365 	while (iov_iter_count(iter)) {
1366 		struct page **pages;
1367 		ssize_t bytes;
1368 		size_t offs, added = 0;
1369 		int npages;
1370 
1371 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1372 		if (unlikely(bytes <= 0)) {
1373 			ret = bytes ? bytes : -EFAULT;
1374 			goto out_unmap;
1375 		}
1376 
1377 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1378 
1379 		if (unlikely(offs & queue_dma_alignment(q))) {
1380 			ret = -EINVAL;
1381 			j = 0;
1382 		} else {
1383 			for (j = 0; j < npages; j++) {
1384 				struct page *page = pages[j];
1385 				unsigned int n = PAGE_SIZE - offs;
1386 
1387 				if (n > bytes)
1388 					n = bytes;
1389 
1390 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1391 							true))
1392 					break;
1393 
1394 				added += n;
1395 				bytes -= n;
1396 				offs = 0;
1397 			}
1398 			iov_iter_advance(iter, added);
1399 		}
1400 		/*
1401 		 * release the pages we didn't map into the bio, if any
1402 		 */
1403 		while (j < npages)
1404 			put_page(pages[j++]);
1405 		kvfree(pages);
1406 		/* couldn't stuff something into bio? */
1407 		if (bytes)
1408 			break;
1409 	}
1410 
1411 	bio_set_flag(bio, BIO_USER_MAPPED);
1412 
1413 	/*
1414 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1415 	 * it would normally disappear when its bi_end_io is run.
1416 	 * however, we need it for the unmap, so grab an extra
1417 	 * reference to it
1418 	 */
1419 	bio_get(bio);
1420 	return bio;
1421 
1422  out_unmap:
1423 	bio_release_pages(bio, false);
1424 	bio_put(bio);
1425 	return ERR_PTR(ret);
1426 }
1427 
1428 /**
1429  *	bio_unmap_user	-	unmap a bio
1430  *	@bio:		the bio being unmapped
1431  *
1432  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1433  *	process context.
1434  *
1435  *	bio_unmap_user() may sleep.
1436  */
1437 void bio_unmap_user(struct bio *bio)
1438 {
1439 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1440 	bio_put(bio);
1441 	bio_put(bio);
1442 }
1443 
1444 static void bio_map_kern_endio(struct bio *bio)
1445 {
1446 	bio_put(bio);
1447 }
1448 
1449 /**
1450  *	bio_map_kern	-	map kernel address into bio
1451  *	@q: the struct request_queue for the bio
1452  *	@data: pointer to buffer to map
1453  *	@len: length in bytes
1454  *	@gfp_mask: allocation flags for bio allocation
1455  *
1456  *	Map the kernel address into a bio suitable for io to a block
1457  *	device. Returns an error pointer in case of error.
1458  */
1459 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1460 			 gfp_t gfp_mask)
1461 {
1462 	unsigned long kaddr = (unsigned long)data;
1463 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1464 	unsigned long start = kaddr >> PAGE_SHIFT;
1465 	const int nr_pages = end - start;
1466 	int offset, i;
1467 	struct bio *bio;
1468 
1469 	bio = bio_kmalloc(gfp_mask, nr_pages);
1470 	if (!bio)
1471 		return ERR_PTR(-ENOMEM);
1472 
1473 	offset = offset_in_page(kaddr);
1474 	for (i = 0; i < nr_pages; i++) {
1475 		unsigned int bytes = PAGE_SIZE - offset;
1476 
1477 		if (len <= 0)
1478 			break;
1479 
1480 		if (bytes > len)
1481 			bytes = len;
1482 
1483 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1484 				    offset) < bytes) {
1485 			/* we don't support partial mappings */
1486 			bio_put(bio);
1487 			return ERR_PTR(-EINVAL);
1488 		}
1489 
1490 		data += bytes;
1491 		len -= bytes;
1492 		offset = 0;
1493 	}
1494 
1495 	bio->bi_end_io = bio_map_kern_endio;
1496 	return bio;
1497 }
1498 EXPORT_SYMBOL(bio_map_kern);
1499 
1500 static void bio_copy_kern_endio(struct bio *bio)
1501 {
1502 	bio_free_pages(bio);
1503 	bio_put(bio);
1504 }
1505 
1506 static void bio_copy_kern_endio_read(struct bio *bio)
1507 {
1508 	char *p = bio->bi_private;
1509 	struct bio_vec *bvec;
1510 	struct bvec_iter_all iter_all;
1511 
1512 	bio_for_each_segment_all(bvec, bio, iter_all) {
1513 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1514 		p += bvec->bv_len;
1515 	}
1516 
1517 	bio_copy_kern_endio(bio);
1518 }
1519 
1520 /**
1521  *	bio_copy_kern	-	copy kernel address into bio
1522  *	@q: the struct request_queue for the bio
1523  *	@data: pointer to buffer to copy
1524  *	@len: length in bytes
1525  *	@gfp_mask: allocation flags for bio and page allocation
1526  *	@reading: data direction is READ
1527  *
1528  *	copy the kernel address into a bio suitable for io to a block
1529  *	device. Returns an error pointer in case of error.
1530  */
1531 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1532 			  gfp_t gfp_mask, int reading)
1533 {
1534 	unsigned long kaddr = (unsigned long)data;
1535 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1536 	unsigned long start = kaddr >> PAGE_SHIFT;
1537 	struct bio *bio;
1538 	void *p = data;
1539 	int nr_pages = 0;
1540 
1541 	/*
1542 	 * Overflow, abort
1543 	 */
1544 	if (end < start)
1545 		return ERR_PTR(-EINVAL);
1546 
1547 	nr_pages = end - start;
1548 	bio = bio_kmalloc(gfp_mask, nr_pages);
1549 	if (!bio)
1550 		return ERR_PTR(-ENOMEM);
1551 
1552 	while (len) {
1553 		struct page *page;
1554 		unsigned int bytes = PAGE_SIZE;
1555 
1556 		if (bytes > len)
1557 			bytes = len;
1558 
1559 		page = alloc_page(q->bounce_gfp | gfp_mask);
1560 		if (!page)
1561 			goto cleanup;
1562 
1563 		if (!reading)
1564 			memcpy(page_address(page), p, bytes);
1565 
1566 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1567 			break;
1568 
1569 		len -= bytes;
1570 		p += bytes;
1571 	}
1572 
1573 	if (reading) {
1574 		bio->bi_end_io = bio_copy_kern_endio_read;
1575 		bio->bi_private = data;
1576 	} else {
1577 		bio->bi_end_io = bio_copy_kern_endio;
1578 	}
1579 
1580 	return bio;
1581 
1582 cleanup:
1583 	bio_free_pages(bio);
1584 	bio_put(bio);
1585 	return ERR_PTR(-ENOMEM);
1586 }
1587 
1588 /*
1589  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1590  * for performing direct-IO in BIOs.
1591  *
1592  * The problem is that we cannot run set_page_dirty() from interrupt context
1593  * because the required locks are not interrupt-safe.  So what we can do is to
1594  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1595  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1596  * in process context.
1597  *
1598  * We special-case compound pages here: normally this means reads into hugetlb
1599  * pages.  The logic in here doesn't really work right for compound pages
1600  * because the VM does not uniformly chase down the head page in all cases.
1601  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1602  * handle them at all.  So we skip compound pages here at an early stage.
1603  *
1604  * Note that this code is very hard to test under normal circumstances because
1605  * direct-io pins the pages with get_user_pages().  This makes
1606  * is_page_cache_freeable return false, and the VM will not clean the pages.
1607  * But other code (eg, flusher threads) could clean the pages if they are mapped
1608  * pagecache.
1609  *
1610  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1611  * deferred bio dirtying paths.
1612  */
1613 
1614 /*
1615  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1616  */
1617 void bio_set_pages_dirty(struct bio *bio)
1618 {
1619 	struct bio_vec *bvec;
1620 	struct bvec_iter_all iter_all;
1621 
1622 	bio_for_each_segment_all(bvec, bio, iter_all) {
1623 		if (!PageCompound(bvec->bv_page))
1624 			set_page_dirty_lock(bvec->bv_page);
1625 	}
1626 }
1627 
1628 /*
1629  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1630  * If they are, then fine.  If, however, some pages are clean then they must
1631  * have been written out during the direct-IO read.  So we take another ref on
1632  * the BIO and re-dirty the pages in process context.
1633  *
1634  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1635  * here on.  It will run one put_page() against each page and will run one
1636  * bio_put() against the BIO.
1637  */
1638 
1639 static void bio_dirty_fn(struct work_struct *work);
1640 
1641 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1642 static DEFINE_SPINLOCK(bio_dirty_lock);
1643 static struct bio *bio_dirty_list;
1644 
1645 /*
1646  * This runs in process context
1647  */
1648 static void bio_dirty_fn(struct work_struct *work)
1649 {
1650 	struct bio *bio, *next;
1651 
1652 	spin_lock_irq(&bio_dirty_lock);
1653 	next = bio_dirty_list;
1654 	bio_dirty_list = NULL;
1655 	spin_unlock_irq(&bio_dirty_lock);
1656 
1657 	while ((bio = next) != NULL) {
1658 		next = bio->bi_private;
1659 
1660 		bio_release_pages(bio, true);
1661 		bio_put(bio);
1662 	}
1663 }
1664 
1665 void bio_check_pages_dirty(struct bio *bio)
1666 {
1667 	struct bio_vec *bvec;
1668 	unsigned long flags;
1669 	struct bvec_iter_all iter_all;
1670 
1671 	bio_for_each_segment_all(bvec, bio, iter_all) {
1672 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1673 			goto defer;
1674 	}
1675 
1676 	bio_release_pages(bio, false);
1677 	bio_put(bio);
1678 	return;
1679 defer:
1680 	spin_lock_irqsave(&bio_dirty_lock, flags);
1681 	bio->bi_private = bio_dirty_list;
1682 	bio_dirty_list = bio;
1683 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1684 	schedule_work(&bio_dirty_work);
1685 }
1686 
1687 void update_io_ticks(struct hd_struct *part, unsigned long now)
1688 {
1689 	unsigned long stamp;
1690 again:
1691 	stamp = READ_ONCE(part->stamp);
1692 	if (unlikely(stamp != now)) {
1693 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1694 			__part_stat_add(part, io_ticks, 1);
1695 		}
1696 	}
1697 	if (part->partno) {
1698 		part = &part_to_disk(part)->part0;
1699 		goto again;
1700 	}
1701 }
1702 
1703 void generic_start_io_acct(struct request_queue *q, int op,
1704 			   unsigned long sectors, struct hd_struct *part)
1705 {
1706 	const int sgrp = op_stat_group(op);
1707 
1708 	part_stat_lock();
1709 
1710 	update_io_ticks(part, jiffies);
1711 	part_stat_inc(part, ios[sgrp]);
1712 	part_stat_add(part, sectors[sgrp], sectors);
1713 	part_inc_in_flight(q, part, op_is_write(op));
1714 
1715 	part_stat_unlock();
1716 }
1717 EXPORT_SYMBOL(generic_start_io_acct);
1718 
1719 void generic_end_io_acct(struct request_queue *q, int req_op,
1720 			 struct hd_struct *part, unsigned long start_time)
1721 {
1722 	unsigned long now = jiffies;
1723 	unsigned long duration = now - start_time;
1724 	const int sgrp = op_stat_group(req_op);
1725 
1726 	part_stat_lock();
1727 
1728 	update_io_ticks(part, now);
1729 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1730 	part_stat_add(part, time_in_queue, duration);
1731 	part_dec_in_flight(q, part, op_is_write(req_op));
1732 
1733 	part_stat_unlock();
1734 }
1735 EXPORT_SYMBOL(generic_end_io_acct);
1736 
1737 static inline bool bio_remaining_done(struct bio *bio)
1738 {
1739 	/*
1740 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1741 	 * we always end io on the first invocation.
1742 	 */
1743 	if (!bio_flagged(bio, BIO_CHAIN))
1744 		return true;
1745 
1746 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1747 
1748 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1749 		bio_clear_flag(bio, BIO_CHAIN);
1750 		return true;
1751 	}
1752 
1753 	return false;
1754 }
1755 
1756 /**
1757  * bio_endio - end I/O on a bio
1758  * @bio:	bio
1759  *
1760  * Description:
1761  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1762  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1763  *   bio unless they own it and thus know that it has an end_io function.
1764  *
1765  *   bio_endio() can be called several times on a bio that has been chained
1766  *   using bio_chain().  The ->bi_end_io() function will only be called the
1767  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1768  *   generated if BIO_TRACE_COMPLETION is set.
1769  **/
1770 void bio_endio(struct bio *bio)
1771 {
1772 again:
1773 	if (!bio_remaining_done(bio))
1774 		return;
1775 	if (!bio_integrity_endio(bio))
1776 		return;
1777 
1778 	if (bio->bi_disk)
1779 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1780 
1781 	/*
1782 	 * Need to have a real endio function for chained bios, otherwise
1783 	 * various corner cases will break (like stacking block devices that
1784 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1785 	 * recursion and blowing the stack. Tail call optimization would
1786 	 * handle this, but compiling with frame pointers also disables
1787 	 * gcc's sibling call optimization.
1788 	 */
1789 	if (bio->bi_end_io == bio_chain_endio) {
1790 		bio = __bio_chain_endio(bio);
1791 		goto again;
1792 	}
1793 
1794 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1795 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1796 					 blk_status_to_errno(bio->bi_status));
1797 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1798 	}
1799 
1800 	blk_throtl_bio_endio(bio);
1801 	/* release cgroup info */
1802 	bio_uninit(bio);
1803 	if (bio->bi_end_io)
1804 		bio->bi_end_io(bio);
1805 }
1806 EXPORT_SYMBOL(bio_endio);
1807 
1808 /**
1809  * bio_split - split a bio
1810  * @bio:	bio to split
1811  * @sectors:	number of sectors to split from the front of @bio
1812  * @gfp:	gfp mask
1813  * @bs:		bio set to allocate from
1814  *
1815  * Allocates and returns a new bio which represents @sectors from the start of
1816  * @bio, and updates @bio to represent the remaining sectors.
1817  *
1818  * Unless this is a discard request the newly allocated bio will point
1819  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1820  * @bio is not freed before the split.
1821  */
1822 struct bio *bio_split(struct bio *bio, int sectors,
1823 		      gfp_t gfp, struct bio_set *bs)
1824 {
1825 	struct bio *split;
1826 
1827 	BUG_ON(sectors <= 0);
1828 	BUG_ON(sectors >= bio_sectors(bio));
1829 
1830 	split = bio_clone_fast(bio, gfp, bs);
1831 	if (!split)
1832 		return NULL;
1833 
1834 	split->bi_iter.bi_size = sectors << 9;
1835 
1836 	if (bio_integrity(split))
1837 		bio_integrity_trim(split);
1838 
1839 	bio_advance(bio, split->bi_iter.bi_size);
1840 
1841 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1842 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1843 
1844 	return split;
1845 }
1846 EXPORT_SYMBOL(bio_split);
1847 
1848 /**
1849  * bio_trim - trim a bio
1850  * @bio:	bio to trim
1851  * @offset:	number of sectors to trim from the front of @bio
1852  * @size:	size we want to trim @bio to, in sectors
1853  */
1854 void bio_trim(struct bio *bio, int offset, int size)
1855 {
1856 	/* 'bio' is a cloned bio which we need to trim to match
1857 	 * the given offset and size.
1858 	 */
1859 
1860 	size <<= 9;
1861 	if (offset == 0 && size == bio->bi_iter.bi_size)
1862 		return;
1863 
1864 	bio_advance(bio, offset << 9);
1865 	bio->bi_iter.bi_size = size;
1866 
1867 	if (bio_integrity(bio))
1868 		bio_integrity_trim(bio);
1869 
1870 }
1871 EXPORT_SYMBOL_GPL(bio_trim);
1872 
1873 /*
1874  * create memory pools for biovec's in a bio_set.
1875  * use the global biovec slabs created for general use.
1876  */
1877 int biovec_init_pool(mempool_t *pool, int pool_entries)
1878 {
1879 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1880 
1881 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1882 }
1883 
1884 /*
1885  * bioset_exit - exit a bioset initialized with bioset_init()
1886  *
1887  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1888  * kzalloc()).
1889  */
1890 void bioset_exit(struct bio_set *bs)
1891 {
1892 	if (bs->rescue_workqueue)
1893 		destroy_workqueue(bs->rescue_workqueue);
1894 	bs->rescue_workqueue = NULL;
1895 
1896 	mempool_exit(&bs->bio_pool);
1897 	mempool_exit(&bs->bvec_pool);
1898 
1899 	bioset_integrity_free(bs);
1900 	if (bs->bio_slab)
1901 		bio_put_slab(bs);
1902 	bs->bio_slab = NULL;
1903 }
1904 EXPORT_SYMBOL(bioset_exit);
1905 
1906 /**
1907  * bioset_init - Initialize a bio_set
1908  * @bs:		pool to initialize
1909  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1910  * @front_pad:	Number of bytes to allocate in front of the returned bio
1911  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1912  *              and %BIOSET_NEED_RESCUER
1913  *
1914  * Description:
1915  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1916  *    to ask for a number of bytes to be allocated in front of the bio.
1917  *    Front pad allocation is useful for embedding the bio inside
1918  *    another structure, to avoid allocating extra data to go with the bio.
1919  *    Note that the bio must be embedded at the END of that structure always,
1920  *    or things will break badly.
1921  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1922  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1923  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1924  *    dispatch queued requests when the mempool runs out of space.
1925  *
1926  */
1927 int bioset_init(struct bio_set *bs,
1928 		unsigned int pool_size,
1929 		unsigned int front_pad,
1930 		int flags)
1931 {
1932 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1933 
1934 	bs->front_pad = front_pad;
1935 
1936 	spin_lock_init(&bs->rescue_lock);
1937 	bio_list_init(&bs->rescue_list);
1938 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1939 
1940 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1941 	if (!bs->bio_slab)
1942 		return -ENOMEM;
1943 
1944 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1945 		goto bad;
1946 
1947 	if ((flags & BIOSET_NEED_BVECS) &&
1948 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1949 		goto bad;
1950 
1951 	if (!(flags & BIOSET_NEED_RESCUER))
1952 		return 0;
1953 
1954 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1955 	if (!bs->rescue_workqueue)
1956 		goto bad;
1957 
1958 	return 0;
1959 bad:
1960 	bioset_exit(bs);
1961 	return -ENOMEM;
1962 }
1963 EXPORT_SYMBOL(bioset_init);
1964 
1965 /*
1966  * Initialize and setup a new bio_set, based on the settings from
1967  * another bio_set.
1968  */
1969 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1970 {
1971 	int flags;
1972 
1973 	flags = 0;
1974 	if (src->bvec_pool.min_nr)
1975 		flags |= BIOSET_NEED_BVECS;
1976 	if (src->rescue_workqueue)
1977 		flags |= BIOSET_NEED_RESCUER;
1978 
1979 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1980 }
1981 EXPORT_SYMBOL(bioset_init_from_src);
1982 
1983 #ifdef CONFIG_BLK_CGROUP
1984 
1985 /**
1986  * bio_disassociate_blkg - puts back the blkg reference if associated
1987  * @bio: target bio
1988  *
1989  * Helper to disassociate the blkg from @bio if a blkg is associated.
1990  */
1991 void bio_disassociate_blkg(struct bio *bio)
1992 {
1993 	if (bio->bi_blkg) {
1994 		blkg_put(bio->bi_blkg);
1995 		bio->bi_blkg = NULL;
1996 	}
1997 }
1998 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
1999 
2000 /**
2001  * __bio_associate_blkg - associate a bio with the a blkg
2002  * @bio: target bio
2003  * @blkg: the blkg to associate
2004  *
2005  * This tries to associate @bio with the specified @blkg.  Association failure
2006  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2007  * be anything between @blkg and the root_blkg.  This situation only happens
2008  * when a cgroup is dying and then the remaining bios will spill to the closest
2009  * alive blkg.
2010  *
2011  * A reference will be taken on the @blkg and will be released when @bio is
2012  * freed.
2013  */
2014 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2015 {
2016 	bio_disassociate_blkg(bio);
2017 
2018 	bio->bi_blkg = blkg_tryget_closest(blkg);
2019 }
2020 
2021 /**
2022  * bio_associate_blkg_from_css - associate a bio with a specified css
2023  * @bio: target bio
2024  * @css: target css
2025  *
2026  * Associate @bio with the blkg found by combining the css's blkg and the
2027  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2028  * the association fails with the css.
2029  */
2030 void bio_associate_blkg_from_css(struct bio *bio,
2031 				 struct cgroup_subsys_state *css)
2032 {
2033 	struct request_queue *q = bio->bi_disk->queue;
2034 	struct blkcg_gq *blkg;
2035 
2036 	rcu_read_lock();
2037 
2038 	if (!css || !css->parent)
2039 		blkg = q->root_blkg;
2040 	else
2041 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2042 
2043 	__bio_associate_blkg(bio, blkg);
2044 
2045 	rcu_read_unlock();
2046 }
2047 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2048 
2049 #ifdef CONFIG_MEMCG
2050 /**
2051  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2052  * @bio: target bio
2053  * @page: the page to lookup the blkcg from
2054  *
2055  * Associate @bio with the blkg from @page's owning memcg and the respective
2056  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2057  * root_blkg.
2058  */
2059 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2060 {
2061 	struct cgroup_subsys_state *css;
2062 
2063 	if (!page->mem_cgroup)
2064 		return;
2065 
2066 	rcu_read_lock();
2067 
2068 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2069 	bio_associate_blkg_from_css(bio, css);
2070 
2071 	rcu_read_unlock();
2072 }
2073 #endif /* CONFIG_MEMCG */
2074 
2075 /**
2076  * bio_associate_blkg - associate a bio with a blkg
2077  * @bio: target bio
2078  *
2079  * Associate @bio with the blkg found from the bio's css and request_queue.
2080  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2081  * already associated, the css is reused and association redone as the
2082  * request_queue may have changed.
2083  */
2084 void bio_associate_blkg(struct bio *bio)
2085 {
2086 	struct cgroup_subsys_state *css;
2087 
2088 	rcu_read_lock();
2089 
2090 	if (bio->bi_blkg)
2091 		css = &bio_blkcg(bio)->css;
2092 	else
2093 		css = blkcg_css();
2094 
2095 	bio_associate_blkg_from_css(bio, css);
2096 
2097 	rcu_read_unlock();
2098 }
2099 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2100 
2101 /**
2102  * bio_clone_blkg_association - clone blkg association from src to dst bio
2103  * @dst: destination bio
2104  * @src: source bio
2105  */
2106 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2107 {
2108 	rcu_read_lock();
2109 
2110 	if (src->bi_blkg)
2111 		__bio_associate_blkg(dst, src->bi_blkg);
2112 
2113 	rcu_read_unlock();
2114 }
2115 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2116 #endif /* CONFIG_BLK_CGROUP */
2117 
2118 static void __init biovec_init_slabs(void)
2119 {
2120 	int i;
2121 
2122 	for (i = 0; i < BVEC_POOL_NR; i++) {
2123 		int size;
2124 		struct biovec_slab *bvs = bvec_slabs + i;
2125 
2126 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2127 			bvs->slab = NULL;
2128 			continue;
2129 		}
2130 
2131 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2132 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2133                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2134 	}
2135 }
2136 
2137 static int __init init_bio(void)
2138 {
2139 	bio_slab_max = 2;
2140 	bio_slab_nr = 0;
2141 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2142 			    GFP_KERNEL);
2143 
2144 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2145 
2146 	if (!bio_slabs)
2147 		panic("bio: can't allocate bios\n");
2148 
2149 	bio_integrity_init();
2150 	biovec_init_slabs();
2151 
2152 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2153 		panic("bio: can't allocate bios\n");
2154 
2155 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2156 		panic("bio: can't create integrity pool\n");
2157 
2158 	return 0;
2159 }
2160 subsys_initcall(init_bio);
2161