1 /* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/uio.h> 23 #include <linux/iocontext.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/mempool.h> 29 #include <linux/workqueue.h> 30 #include <linux/cgroup.h> 31 32 #include <trace/events/block.h> 33 #include "blk.h" 34 35 /* 36 * Test patch to inline a certain number of bi_io_vec's inside the bio 37 * itself, to shrink a bio data allocation from two mempool calls to one 38 */ 39 #define BIO_INLINE_VECS 4 40 41 /* 42 * if you change this list, also change bvec_alloc or things will 43 * break badly! cannot be bigger than what you can fit into an 44 * unsigned short 45 */ 46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { 48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 49 }; 50 #undef BV 51 52 /* 53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 54 * IO code that does not need private memory pools. 55 */ 56 struct bio_set *fs_bio_set; 57 EXPORT_SYMBOL(fs_bio_set); 58 59 /* 60 * Our slab pool management 61 */ 62 struct bio_slab { 63 struct kmem_cache *slab; 64 unsigned int slab_ref; 65 unsigned int slab_size; 66 char name[8]; 67 }; 68 static DEFINE_MUTEX(bio_slab_lock); 69 static struct bio_slab *bio_slabs; 70 static unsigned int bio_slab_nr, bio_slab_max; 71 72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 73 { 74 unsigned int sz = sizeof(struct bio) + extra_size; 75 struct kmem_cache *slab = NULL; 76 struct bio_slab *bslab, *new_bio_slabs; 77 unsigned int new_bio_slab_max; 78 unsigned int i, entry = -1; 79 80 mutex_lock(&bio_slab_lock); 81 82 i = 0; 83 while (i < bio_slab_nr) { 84 bslab = &bio_slabs[i]; 85 86 if (!bslab->slab && entry == -1) 87 entry = i; 88 else if (bslab->slab_size == sz) { 89 slab = bslab->slab; 90 bslab->slab_ref++; 91 break; 92 } 93 i++; 94 } 95 96 if (slab) 97 goto out_unlock; 98 99 if (bio_slab_nr == bio_slab_max && entry == -1) { 100 new_bio_slab_max = bio_slab_max << 1; 101 new_bio_slabs = krealloc(bio_slabs, 102 new_bio_slab_max * sizeof(struct bio_slab), 103 GFP_KERNEL); 104 if (!new_bio_slabs) 105 goto out_unlock; 106 bio_slab_max = new_bio_slab_max; 107 bio_slabs = new_bio_slabs; 108 } 109 if (entry == -1) 110 entry = bio_slab_nr++; 111 112 bslab = &bio_slabs[entry]; 113 114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, 116 SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 bslab->slab = slab; 121 bslab->slab_ref = 1; 122 bslab->slab_size = sz; 123 out_unlock: 124 mutex_unlock(&bio_slab_lock); 125 return slab; 126 } 127 128 static void bio_put_slab(struct bio_set *bs) 129 { 130 struct bio_slab *bslab = NULL; 131 unsigned int i; 132 133 mutex_lock(&bio_slab_lock); 134 135 for (i = 0; i < bio_slab_nr; i++) { 136 if (bs->bio_slab == bio_slabs[i].slab) { 137 bslab = &bio_slabs[i]; 138 break; 139 } 140 } 141 142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 143 goto out; 144 145 WARN_ON(!bslab->slab_ref); 146 147 if (--bslab->slab_ref) 148 goto out; 149 150 kmem_cache_destroy(bslab->slab); 151 bslab->slab = NULL; 152 153 out: 154 mutex_unlock(&bio_slab_lock); 155 } 156 157 unsigned int bvec_nr_vecs(unsigned short idx) 158 { 159 return bvec_slabs[idx].nr_vecs; 160 } 161 162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) 163 { 164 if (!idx) 165 return; 166 idx--; 167 168 BIO_BUG_ON(idx >= BVEC_POOL_NR); 169 170 if (idx == BVEC_POOL_MAX) { 171 mempool_free(bv, pool); 172 } else { 173 struct biovec_slab *bvs = bvec_slabs + idx; 174 175 kmem_cache_free(bvs->slab, bv); 176 } 177 } 178 179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, 180 mempool_t *pool) 181 { 182 struct bio_vec *bvl; 183 184 /* 185 * see comment near bvec_array define! 186 */ 187 switch (nr) { 188 case 1: 189 *idx = 0; 190 break; 191 case 2 ... 4: 192 *idx = 1; 193 break; 194 case 5 ... 16: 195 *idx = 2; 196 break; 197 case 17 ... 64: 198 *idx = 3; 199 break; 200 case 65 ... 128: 201 *idx = 4; 202 break; 203 case 129 ... BIO_MAX_PAGES: 204 *idx = 5; 205 break; 206 default: 207 return NULL; 208 } 209 210 /* 211 * idx now points to the pool we want to allocate from. only the 212 * 1-vec entry pool is mempool backed. 213 */ 214 if (*idx == BVEC_POOL_MAX) { 215 fallback: 216 bvl = mempool_alloc(pool, gfp_mask); 217 } else { 218 struct biovec_slab *bvs = bvec_slabs + *idx; 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 220 221 /* 222 * Make this allocation restricted and don't dump info on 223 * allocation failures, since we'll fallback to the mempool 224 * in case of failure. 225 */ 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 227 228 /* 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM 230 * is set, retry with the 1-entry mempool 231 */ 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { 234 *idx = BVEC_POOL_MAX; 235 goto fallback; 236 } 237 } 238 239 (*idx)++; 240 return bvl; 241 } 242 243 void bio_uninit(struct bio *bio) 244 { 245 bio_disassociate_task(bio); 246 } 247 EXPORT_SYMBOL(bio_uninit); 248 249 static void bio_free(struct bio *bio) 250 { 251 struct bio_set *bs = bio->bi_pool; 252 void *p; 253 254 bio_uninit(bio); 255 256 if (bs) { 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); 258 259 /* 260 * If we have front padding, adjust the bio pointer before freeing 261 */ 262 p = bio; 263 p -= bs->front_pad; 264 265 mempool_free(p, bs->bio_pool); 266 } else { 267 /* Bio was allocated by bio_kmalloc() */ 268 kfree(bio); 269 } 270 } 271 272 /* 273 * Users of this function have their own bio allocation. Subsequently, 274 * they must remember to pair any call to bio_init() with bio_uninit() 275 * when IO has completed, or when the bio is released. 276 */ 277 void bio_init(struct bio *bio, struct bio_vec *table, 278 unsigned short max_vecs) 279 { 280 memset(bio, 0, sizeof(*bio)); 281 atomic_set(&bio->__bi_remaining, 1); 282 atomic_set(&bio->__bi_cnt, 1); 283 284 bio->bi_io_vec = table; 285 bio->bi_max_vecs = max_vecs; 286 } 287 EXPORT_SYMBOL(bio_init); 288 289 /** 290 * bio_reset - reinitialize a bio 291 * @bio: bio to reset 292 * 293 * Description: 294 * After calling bio_reset(), @bio will be in the same state as a freshly 295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 296 * preserved are the ones that are initialized by bio_alloc_bioset(). See 297 * comment in struct bio. 298 */ 299 void bio_reset(struct bio *bio) 300 { 301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 302 303 bio_uninit(bio); 304 305 memset(bio, 0, BIO_RESET_BYTES); 306 bio->bi_flags = flags; 307 atomic_set(&bio->__bi_remaining, 1); 308 } 309 EXPORT_SYMBOL(bio_reset); 310 311 static struct bio *__bio_chain_endio(struct bio *bio) 312 { 313 struct bio *parent = bio->bi_private; 314 315 if (!parent->bi_status) 316 parent->bi_status = bio->bi_status; 317 bio_put(bio); 318 return parent; 319 } 320 321 static void bio_chain_endio(struct bio *bio) 322 { 323 bio_endio(__bio_chain_endio(bio)); 324 } 325 326 /** 327 * bio_chain - chain bio completions 328 * @bio: the target bio 329 * @parent: the @bio's parent bio 330 * 331 * The caller won't have a bi_end_io called when @bio completes - instead, 332 * @parent's bi_end_io won't be called until both @parent and @bio have 333 * completed; the chained bio will also be freed when it completes. 334 * 335 * The caller must not set bi_private or bi_end_io in @bio. 336 */ 337 void bio_chain(struct bio *bio, struct bio *parent) 338 { 339 BUG_ON(bio->bi_private || bio->bi_end_io); 340 341 bio->bi_private = parent; 342 bio->bi_end_io = bio_chain_endio; 343 bio_inc_remaining(parent); 344 } 345 EXPORT_SYMBOL(bio_chain); 346 347 static void bio_alloc_rescue(struct work_struct *work) 348 { 349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 350 struct bio *bio; 351 352 while (1) { 353 spin_lock(&bs->rescue_lock); 354 bio = bio_list_pop(&bs->rescue_list); 355 spin_unlock(&bs->rescue_lock); 356 357 if (!bio) 358 break; 359 360 generic_make_request(bio); 361 } 362 } 363 364 static void punt_bios_to_rescuer(struct bio_set *bs) 365 { 366 struct bio_list punt, nopunt; 367 struct bio *bio; 368 369 if (WARN_ON_ONCE(!bs->rescue_workqueue)) 370 return; 371 /* 372 * In order to guarantee forward progress we must punt only bios that 373 * were allocated from this bio_set; otherwise, if there was a bio on 374 * there for a stacking driver higher up in the stack, processing it 375 * could require allocating bios from this bio_set, and doing that from 376 * our own rescuer would be bad. 377 * 378 * Since bio lists are singly linked, pop them all instead of trying to 379 * remove from the middle of the list: 380 */ 381 382 bio_list_init(&punt); 383 bio_list_init(&nopunt); 384 385 while ((bio = bio_list_pop(¤t->bio_list[0]))) 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 387 current->bio_list[0] = nopunt; 388 389 bio_list_init(&nopunt); 390 while ((bio = bio_list_pop(¤t->bio_list[1]))) 391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 392 current->bio_list[1] = nopunt; 393 394 spin_lock(&bs->rescue_lock); 395 bio_list_merge(&bs->rescue_list, &punt); 396 spin_unlock(&bs->rescue_lock); 397 398 queue_work(bs->rescue_workqueue, &bs->rescue_work); 399 } 400 401 /** 402 * bio_alloc_bioset - allocate a bio for I/O 403 * @gfp_mask: the GFP_* mask given to the slab allocator 404 * @nr_iovecs: number of iovecs to pre-allocate 405 * @bs: the bio_set to allocate from. 406 * 407 * Description: 408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 409 * backed by the @bs's mempool. 410 * 411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will 412 * always be able to allocate a bio. This is due to the mempool guarantees. 413 * To make this work, callers must never allocate more than 1 bio at a time 414 * from this pool. Callers that need to allocate more than 1 bio must always 415 * submit the previously allocated bio for IO before attempting to allocate 416 * a new one. Failure to do so can cause deadlocks under memory pressure. 417 * 418 * Note that when running under generic_make_request() (i.e. any block 419 * driver), bios are not submitted until after you return - see the code in 420 * generic_make_request() that converts recursion into iteration, to prevent 421 * stack overflows. 422 * 423 * This would normally mean allocating multiple bios under 424 * generic_make_request() would be susceptible to deadlocks, but we have 425 * deadlock avoidance code that resubmits any blocked bios from a rescuer 426 * thread. 427 * 428 * However, we do not guarantee forward progress for allocations from other 429 * mempools. Doing multiple allocations from the same mempool under 430 * generic_make_request() should be avoided - instead, use bio_set's front_pad 431 * for per bio allocations. 432 * 433 * RETURNS: 434 * Pointer to new bio on success, NULL on failure. 435 */ 436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, 437 struct bio_set *bs) 438 { 439 gfp_t saved_gfp = gfp_mask; 440 unsigned front_pad; 441 unsigned inline_vecs; 442 struct bio_vec *bvl = NULL; 443 struct bio *bio; 444 void *p; 445 446 if (!bs) { 447 if (nr_iovecs > UIO_MAXIOV) 448 return NULL; 449 450 p = kmalloc(sizeof(struct bio) + 451 nr_iovecs * sizeof(struct bio_vec), 452 gfp_mask); 453 front_pad = 0; 454 inline_vecs = nr_iovecs; 455 } else { 456 /* should not use nobvec bioset for nr_iovecs > 0 */ 457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) 458 return NULL; 459 /* 460 * generic_make_request() converts recursion to iteration; this 461 * means if we're running beneath it, any bios we allocate and 462 * submit will not be submitted (and thus freed) until after we 463 * return. 464 * 465 * This exposes us to a potential deadlock if we allocate 466 * multiple bios from the same bio_set() while running 467 * underneath generic_make_request(). If we were to allocate 468 * multiple bios (say a stacking block driver that was splitting 469 * bios), we would deadlock if we exhausted the mempool's 470 * reserve. 471 * 472 * We solve this, and guarantee forward progress, with a rescuer 473 * workqueue per bio_set. If we go to allocate and there are 474 * bios on current->bio_list, we first try the allocation 475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those 476 * bios we would be blocking to the rescuer workqueue before 477 * we retry with the original gfp_flags. 478 */ 479 480 if (current->bio_list && 481 (!bio_list_empty(¤t->bio_list[0]) || 482 !bio_list_empty(¤t->bio_list[1])) && 483 bs->rescue_workqueue) 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM; 485 486 p = mempool_alloc(bs->bio_pool, gfp_mask); 487 if (!p && gfp_mask != saved_gfp) { 488 punt_bios_to_rescuer(bs); 489 gfp_mask = saved_gfp; 490 p = mempool_alloc(bs->bio_pool, gfp_mask); 491 } 492 493 front_pad = bs->front_pad; 494 inline_vecs = BIO_INLINE_VECS; 495 } 496 497 if (unlikely(!p)) 498 return NULL; 499 500 bio = p + front_pad; 501 bio_init(bio, NULL, 0); 502 503 if (nr_iovecs > inline_vecs) { 504 unsigned long idx = 0; 505 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 507 if (!bvl && gfp_mask != saved_gfp) { 508 punt_bios_to_rescuer(bs); 509 gfp_mask = saved_gfp; 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); 511 } 512 513 if (unlikely(!bvl)) 514 goto err_free; 515 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET; 517 } else if (nr_iovecs) { 518 bvl = bio->bi_inline_vecs; 519 } 520 521 bio->bi_pool = bs; 522 bio->bi_max_vecs = nr_iovecs; 523 bio->bi_io_vec = bvl; 524 return bio; 525 526 err_free: 527 mempool_free(p, bs->bio_pool); 528 return NULL; 529 } 530 EXPORT_SYMBOL(bio_alloc_bioset); 531 532 void zero_fill_bio(struct bio *bio) 533 { 534 unsigned long flags; 535 struct bio_vec bv; 536 struct bvec_iter iter; 537 538 bio_for_each_segment(bv, bio, iter) { 539 char *data = bvec_kmap_irq(&bv, &flags); 540 memset(data, 0, bv.bv_len); 541 flush_dcache_page(bv.bv_page); 542 bvec_kunmap_irq(data, &flags); 543 } 544 } 545 EXPORT_SYMBOL(zero_fill_bio); 546 547 /** 548 * bio_put - release a reference to a bio 549 * @bio: bio to release reference to 550 * 551 * Description: 552 * Put a reference to a &struct bio, either one you have gotten with 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 554 **/ 555 void bio_put(struct bio *bio) 556 { 557 if (!bio_flagged(bio, BIO_REFFED)) 558 bio_free(bio); 559 else { 560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); 561 562 /* 563 * last put frees it 564 */ 565 if (atomic_dec_and_test(&bio->__bi_cnt)) 566 bio_free(bio); 567 } 568 } 569 EXPORT_SYMBOL(bio_put); 570 571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 572 { 573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 574 blk_recount_segments(q, bio); 575 576 return bio->bi_phys_segments; 577 } 578 EXPORT_SYMBOL(bio_phys_segments); 579 580 /** 581 * __bio_clone_fast - clone a bio that shares the original bio's biovec 582 * @bio: destination bio 583 * @bio_src: bio to clone 584 * 585 * Clone a &bio. Caller will own the returned bio, but not 586 * the actual data it points to. Reference count of returned 587 * bio will be one. 588 * 589 * Caller must ensure that @bio_src is not freed before @bio. 590 */ 591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src) 592 { 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); 594 595 /* 596 * most users will be overriding ->bi_disk with a new target, 597 * so we don't set nor calculate new physical/hw segment counts here 598 */ 599 bio->bi_disk = bio_src->bi_disk; 600 bio->bi_partno = bio_src->bi_partno; 601 bio_set_flag(bio, BIO_CLONED); 602 bio->bi_opf = bio_src->bi_opf; 603 bio->bi_write_hint = bio_src->bi_write_hint; 604 bio->bi_iter = bio_src->bi_iter; 605 bio->bi_io_vec = bio_src->bi_io_vec; 606 607 bio_clone_blkcg_association(bio, bio_src); 608 } 609 EXPORT_SYMBOL(__bio_clone_fast); 610 611 /** 612 * bio_clone_fast - clone a bio that shares the original bio's biovec 613 * @bio: bio to clone 614 * @gfp_mask: allocation priority 615 * @bs: bio_set to allocate from 616 * 617 * Like __bio_clone_fast, only also allocates the returned bio 618 */ 619 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) 620 { 621 struct bio *b; 622 623 b = bio_alloc_bioset(gfp_mask, 0, bs); 624 if (!b) 625 return NULL; 626 627 __bio_clone_fast(b, bio); 628 629 if (bio_integrity(bio)) { 630 int ret; 631 632 ret = bio_integrity_clone(b, bio, gfp_mask); 633 634 if (ret < 0) { 635 bio_put(b); 636 return NULL; 637 } 638 } 639 640 return b; 641 } 642 EXPORT_SYMBOL(bio_clone_fast); 643 644 /** 645 * bio_clone_bioset - clone a bio 646 * @bio_src: bio to clone 647 * @gfp_mask: allocation priority 648 * @bs: bio_set to allocate from 649 * 650 * Clone bio. Caller will own the returned bio, but not the actual data it 651 * points to. Reference count of returned bio will be one. 652 */ 653 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, 654 struct bio_set *bs) 655 { 656 struct bvec_iter iter; 657 struct bio_vec bv; 658 struct bio *bio; 659 660 /* 661 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from 662 * bio_src->bi_io_vec to bio->bi_io_vec. 663 * 664 * We can't do that anymore, because: 665 * 666 * - The point of cloning the biovec is to produce a bio with a biovec 667 * the caller can modify: bi_idx and bi_bvec_done should be 0. 668 * 669 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if 670 * we tried to clone the whole thing bio_alloc_bioset() would fail. 671 * But the clone should succeed as long as the number of biovecs we 672 * actually need to allocate is fewer than BIO_MAX_PAGES. 673 * 674 * - Lastly, bi_vcnt should not be looked at or relied upon by code 675 * that does not own the bio - reason being drivers don't use it for 676 * iterating over the biovec anymore, so expecting it to be kept up 677 * to date (i.e. for clones that share the parent biovec) is just 678 * asking for trouble and would force extra work on 679 * __bio_clone_fast() anyways. 680 */ 681 682 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); 683 if (!bio) 684 return NULL; 685 bio->bi_disk = bio_src->bi_disk; 686 bio->bi_opf = bio_src->bi_opf; 687 bio->bi_write_hint = bio_src->bi_write_hint; 688 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 689 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 690 691 switch (bio_op(bio)) { 692 case REQ_OP_DISCARD: 693 case REQ_OP_SECURE_ERASE: 694 case REQ_OP_WRITE_ZEROES: 695 break; 696 case REQ_OP_WRITE_SAME: 697 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; 698 break; 699 default: 700 bio_for_each_segment(bv, bio_src, iter) 701 bio->bi_io_vec[bio->bi_vcnt++] = bv; 702 break; 703 } 704 705 if (bio_integrity(bio_src)) { 706 int ret; 707 708 ret = bio_integrity_clone(bio, bio_src, gfp_mask); 709 if (ret < 0) { 710 bio_put(bio); 711 return NULL; 712 } 713 } 714 715 bio_clone_blkcg_association(bio, bio_src); 716 717 return bio; 718 } 719 EXPORT_SYMBOL(bio_clone_bioset); 720 721 /** 722 * bio_add_pc_page - attempt to add page to bio 723 * @q: the target queue 724 * @bio: destination bio 725 * @page: page to add 726 * @len: vec entry length 727 * @offset: vec entry offset 728 * 729 * Attempt to add a page to the bio_vec maplist. This can fail for a 730 * number of reasons, such as the bio being full or target block device 731 * limitations. The target block device must allow bio's up to PAGE_SIZE, 732 * so it is always possible to add a single page to an empty bio. 733 * 734 * This should only be used by REQ_PC bios. 735 */ 736 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page 737 *page, unsigned int len, unsigned int offset) 738 { 739 int retried_segments = 0; 740 struct bio_vec *bvec; 741 742 /* 743 * cloned bio must not modify vec list 744 */ 745 if (unlikely(bio_flagged(bio, BIO_CLONED))) 746 return 0; 747 748 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) 749 return 0; 750 751 /* 752 * For filesystems with a blocksize smaller than the pagesize 753 * we will often be called with the same page as last time and 754 * a consecutive offset. Optimize this special case. 755 */ 756 if (bio->bi_vcnt > 0) { 757 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 758 759 if (page == prev->bv_page && 760 offset == prev->bv_offset + prev->bv_len) { 761 prev->bv_len += len; 762 bio->bi_iter.bi_size += len; 763 goto done; 764 } 765 766 /* 767 * If the queue doesn't support SG gaps and adding this 768 * offset would create a gap, disallow it. 769 */ 770 if (bvec_gap_to_prev(q, prev, offset)) 771 return 0; 772 } 773 774 if (bio->bi_vcnt >= bio->bi_max_vecs) 775 return 0; 776 777 /* 778 * setup the new entry, we might clear it again later if we 779 * cannot add the page 780 */ 781 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 782 bvec->bv_page = page; 783 bvec->bv_len = len; 784 bvec->bv_offset = offset; 785 bio->bi_vcnt++; 786 bio->bi_phys_segments++; 787 bio->bi_iter.bi_size += len; 788 789 /* 790 * Perform a recount if the number of segments is greater 791 * than queue_max_segments(q). 792 */ 793 794 while (bio->bi_phys_segments > queue_max_segments(q)) { 795 796 if (retried_segments) 797 goto failed; 798 799 retried_segments = 1; 800 blk_recount_segments(q, bio); 801 } 802 803 /* If we may be able to merge these biovecs, force a recount */ 804 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 805 bio_clear_flag(bio, BIO_SEG_VALID); 806 807 done: 808 return len; 809 810 failed: 811 bvec->bv_page = NULL; 812 bvec->bv_len = 0; 813 bvec->bv_offset = 0; 814 bio->bi_vcnt--; 815 bio->bi_iter.bi_size -= len; 816 blk_recount_segments(q, bio); 817 return 0; 818 } 819 EXPORT_SYMBOL(bio_add_pc_page); 820 821 /** 822 * bio_add_page - attempt to add page to bio 823 * @bio: destination bio 824 * @page: page to add 825 * @len: vec entry length 826 * @offset: vec entry offset 827 * 828 * Attempt to add a page to the bio_vec maplist. This will only fail 829 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 830 */ 831 int bio_add_page(struct bio *bio, struct page *page, 832 unsigned int len, unsigned int offset) 833 { 834 struct bio_vec *bv; 835 836 /* 837 * cloned bio must not modify vec list 838 */ 839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 840 return 0; 841 842 /* 843 * For filesystems with a blocksize smaller than the pagesize 844 * we will often be called with the same page as last time and 845 * a consecutive offset. Optimize this special case. 846 */ 847 if (bio->bi_vcnt > 0) { 848 bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 849 850 if (page == bv->bv_page && 851 offset == bv->bv_offset + bv->bv_len) { 852 bv->bv_len += len; 853 goto done; 854 } 855 } 856 857 if (bio->bi_vcnt >= bio->bi_max_vecs) 858 return 0; 859 860 bv = &bio->bi_io_vec[bio->bi_vcnt]; 861 bv->bv_page = page; 862 bv->bv_len = len; 863 bv->bv_offset = offset; 864 865 bio->bi_vcnt++; 866 done: 867 bio->bi_iter.bi_size += len; 868 return len; 869 } 870 EXPORT_SYMBOL(bio_add_page); 871 872 /** 873 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 874 * @bio: bio to add pages to 875 * @iter: iov iterator describing the region to be mapped 876 * 877 * Pins as many pages from *iter and appends them to @bio's bvec array. The 878 * pages will have to be released using put_page() when done. 879 */ 880 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 881 { 882 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 883 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 884 struct page **pages = (struct page **)bv; 885 size_t offset, diff; 886 ssize_t size; 887 888 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); 889 if (unlikely(size <= 0)) 890 return size ? size : -EFAULT; 891 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; 892 893 /* 894 * Deep magic below: We need to walk the pinned pages backwards 895 * because we are abusing the space allocated for the bio_vecs 896 * for the page array. Because the bio_vecs are larger than the 897 * page pointers by definition this will always work. But it also 898 * means we can't use bio_add_page, so any changes to it's semantics 899 * need to be reflected here as well. 900 */ 901 bio->bi_iter.bi_size += size; 902 bio->bi_vcnt += nr_pages; 903 904 diff = (nr_pages * PAGE_SIZE - offset) - size; 905 while (nr_pages--) { 906 bv[nr_pages].bv_page = pages[nr_pages]; 907 bv[nr_pages].bv_len = PAGE_SIZE; 908 bv[nr_pages].bv_offset = 0; 909 } 910 911 bv[0].bv_offset += offset; 912 bv[0].bv_len -= offset; 913 if (diff) 914 bv[bio->bi_vcnt - 1].bv_len -= diff; 915 916 iov_iter_advance(iter, size); 917 return 0; 918 } 919 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 920 921 static void submit_bio_wait_endio(struct bio *bio) 922 { 923 complete(bio->bi_private); 924 } 925 926 /** 927 * submit_bio_wait - submit a bio, and wait until it completes 928 * @bio: The &struct bio which describes the I/O 929 * 930 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 931 * bio_endio() on failure. 932 * 933 * WARNING: Unlike to how submit_bio() is usually used, this function does not 934 * result in bio reference to be consumed. The caller must drop the reference 935 * on his own. 936 */ 937 int submit_bio_wait(struct bio *bio) 938 { 939 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); 940 941 bio->bi_private = &done; 942 bio->bi_end_io = submit_bio_wait_endio; 943 bio->bi_opf |= REQ_SYNC; 944 submit_bio(bio); 945 wait_for_completion_io(&done); 946 947 return blk_status_to_errno(bio->bi_status); 948 } 949 EXPORT_SYMBOL(submit_bio_wait); 950 951 /** 952 * bio_advance - increment/complete a bio by some number of bytes 953 * @bio: bio to advance 954 * @bytes: number of bytes to complete 955 * 956 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 957 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 958 * be updated on the last bvec as well. 959 * 960 * @bio will then represent the remaining, uncompleted portion of the io. 961 */ 962 void bio_advance(struct bio *bio, unsigned bytes) 963 { 964 if (bio_integrity(bio)) 965 bio_integrity_advance(bio, bytes); 966 967 bio_advance_iter(bio, &bio->bi_iter, bytes); 968 } 969 EXPORT_SYMBOL(bio_advance); 970 971 /** 972 * bio_alloc_pages - allocates a single page for each bvec in a bio 973 * @bio: bio to allocate pages for 974 * @gfp_mask: flags for allocation 975 * 976 * Allocates pages up to @bio->bi_vcnt. 977 * 978 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are 979 * freed. 980 */ 981 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) 982 { 983 int i; 984 struct bio_vec *bv; 985 986 bio_for_each_segment_all(bv, bio, i) { 987 bv->bv_page = alloc_page(gfp_mask); 988 if (!bv->bv_page) { 989 while (--bv >= bio->bi_io_vec) 990 __free_page(bv->bv_page); 991 return -ENOMEM; 992 } 993 } 994 995 return 0; 996 } 997 EXPORT_SYMBOL(bio_alloc_pages); 998 999 /** 1000 * bio_copy_data - copy contents of data buffers from one chain of bios to 1001 * another 1002 * @src: source bio list 1003 * @dst: destination bio list 1004 * 1005 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats 1006 * @src and @dst as linked lists of bios. 1007 * 1008 * Stops when it reaches the end of either @src or @dst - that is, copies 1009 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 1010 */ 1011 void bio_copy_data(struct bio *dst, struct bio *src) 1012 { 1013 struct bvec_iter src_iter, dst_iter; 1014 struct bio_vec src_bv, dst_bv; 1015 void *src_p, *dst_p; 1016 unsigned bytes; 1017 1018 src_iter = src->bi_iter; 1019 dst_iter = dst->bi_iter; 1020 1021 while (1) { 1022 if (!src_iter.bi_size) { 1023 src = src->bi_next; 1024 if (!src) 1025 break; 1026 1027 src_iter = src->bi_iter; 1028 } 1029 1030 if (!dst_iter.bi_size) { 1031 dst = dst->bi_next; 1032 if (!dst) 1033 break; 1034 1035 dst_iter = dst->bi_iter; 1036 } 1037 1038 src_bv = bio_iter_iovec(src, src_iter); 1039 dst_bv = bio_iter_iovec(dst, dst_iter); 1040 1041 bytes = min(src_bv.bv_len, dst_bv.bv_len); 1042 1043 src_p = kmap_atomic(src_bv.bv_page); 1044 dst_p = kmap_atomic(dst_bv.bv_page); 1045 1046 memcpy(dst_p + dst_bv.bv_offset, 1047 src_p + src_bv.bv_offset, 1048 bytes); 1049 1050 kunmap_atomic(dst_p); 1051 kunmap_atomic(src_p); 1052 1053 bio_advance_iter(src, &src_iter, bytes); 1054 bio_advance_iter(dst, &dst_iter, bytes); 1055 } 1056 } 1057 EXPORT_SYMBOL(bio_copy_data); 1058 1059 struct bio_map_data { 1060 int is_our_pages; 1061 struct iov_iter iter; 1062 struct iovec iov[]; 1063 }; 1064 1065 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, 1066 gfp_t gfp_mask) 1067 { 1068 struct bio_map_data *bmd; 1069 if (data->nr_segs > UIO_MAXIOV) 1070 return NULL; 1071 1072 bmd = kmalloc(sizeof(struct bio_map_data) + 1073 sizeof(struct iovec) * data->nr_segs, gfp_mask); 1074 if (!bmd) 1075 return NULL; 1076 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs); 1077 bmd->iter = *data; 1078 bmd->iter.iov = bmd->iov; 1079 return bmd; 1080 } 1081 1082 /** 1083 * bio_copy_from_iter - copy all pages from iov_iter to bio 1084 * @bio: The &struct bio which describes the I/O as destination 1085 * @iter: iov_iter as source 1086 * 1087 * Copy all pages from iov_iter to bio. 1088 * Returns 0 on success, or error on failure. 1089 */ 1090 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) 1091 { 1092 int i; 1093 struct bio_vec *bvec; 1094 1095 bio_for_each_segment_all(bvec, bio, i) { 1096 ssize_t ret; 1097 1098 ret = copy_page_from_iter(bvec->bv_page, 1099 bvec->bv_offset, 1100 bvec->bv_len, 1101 iter); 1102 1103 if (!iov_iter_count(iter)) 1104 break; 1105 1106 if (ret < bvec->bv_len) 1107 return -EFAULT; 1108 } 1109 1110 return 0; 1111 } 1112 1113 /** 1114 * bio_copy_to_iter - copy all pages from bio to iov_iter 1115 * @bio: The &struct bio which describes the I/O as source 1116 * @iter: iov_iter as destination 1117 * 1118 * Copy all pages from bio to iov_iter. 1119 * Returns 0 on success, or error on failure. 1120 */ 1121 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) 1122 { 1123 int i; 1124 struct bio_vec *bvec; 1125 1126 bio_for_each_segment_all(bvec, bio, i) { 1127 ssize_t ret; 1128 1129 ret = copy_page_to_iter(bvec->bv_page, 1130 bvec->bv_offset, 1131 bvec->bv_len, 1132 &iter); 1133 1134 if (!iov_iter_count(&iter)) 1135 break; 1136 1137 if (ret < bvec->bv_len) 1138 return -EFAULT; 1139 } 1140 1141 return 0; 1142 } 1143 1144 void bio_free_pages(struct bio *bio) 1145 { 1146 struct bio_vec *bvec; 1147 int i; 1148 1149 bio_for_each_segment_all(bvec, bio, i) 1150 __free_page(bvec->bv_page); 1151 } 1152 EXPORT_SYMBOL(bio_free_pages); 1153 1154 /** 1155 * bio_uncopy_user - finish previously mapped bio 1156 * @bio: bio being terminated 1157 * 1158 * Free pages allocated from bio_copy_user_iov() and write back data 1159 * to user space in case of a read. 1160 */ 1161 int bio_uncopy_user(struct bio *bio) 1162 { 1163 struct bio_map_data *bmd = bio->bi_private; 1164 int ret = 0; 1165 1166 if (!bio_flagged(bio, BIO_NULL_MAPPED)) { 1167 /* 1168 * if we're in a workqueue, the request is orphaned, so 1169 * don't copy into a random user address space, just free 1170 * and return -EINTR so user space doesn't expect any data. 1171 */ 1172 if (!current->mm) 1173 ret = -EINTR; 1174 else if (bio_data_dir(bio) == READ) 1175 ret = bio_copy_to_iter(bio, bmd->iter); 1176 if (bmd->is_our_pages) 1177 bio_free_pages(bio); 1178 } 1179 kfree(bmd); 1180 bio_put(bio); 1181 return ret; 1182 } 1183 1184 /** 1185 * bio_copy_user_iov - copy user data to bio 1186 * @q: destination block queue 1187 * @map_data: pointer to the rq_map_data holding pages (if necessary) 1188 * @iter: iovec iterator 1189 * @gfp_mask: memory allocation flags 1190 * 1191 * Prepares and returns a bio for indirect user io, bouncing data 1192 * to/from kernel pages as necessary. Must be paired with 1193 * call bio_uncopy_user() on io completion. 1194 */ 1195 struct bio *bio_copy_user_iov(struct request_queue *q, 1196 struct rq_map_data *map_data, 1197 struct iov_iter *iter, 1198 gfp_t gfp_mask) 1199 { 1200 struct bio_map_data *bmd; 1201 struct page *page; 1202 struct bio *bio; 1203 int i = 0, ret; 1204 int nr_pages; 1205 unsigned int len = iter->count; 1206 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; 1207 1208 bmd = bio_alloc_map_data(iter, gfp_mask); 1209 if (!bmd) 1210 return ERR_PTR(-ENOMEM); 1211 1212 /* 1213 * We need to do a deep copy of the iov_iter including the iovecs. 1214 * The caller provided iov might point to an on-stack or otherwise 1215 * shortlived one. 1216 */ 1217 bmd->is_our_pages = map_data ? 0 : 1; 1218 1219 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); 1220 if (nr_pages > BIO_MAX_PAGES) 1221 nr_pages = BIO_MAX_PAGES; 1222 1223 ret = -ENOMEM; 1224 bio = bio_kmalloc(gfp_mask, nr_pages); 1225 if (!bio) 1226 goto out_bmd; 1227 1228 ret = 0; 1229 1230 if (map_data) { 1231 nr_pages = 1 << map_data->page_order; 1232 i = map_data->offset / PAGE_SIZE; 1233 } 1234 while (len) { 1235 unsigned int bytes = PAGE_SIZE; 1236 1237 bytes -= offset; 1238 1239 if (bytes > len) 1240 bytes = len; 1241 1242 if (map_data) { 1243 if (i == map_data->nr_entries * nr_pages) { 1244 ret = -ENOMEM; 1245 break; 1246 } 1247 1248 page = map_data->pages[i / nr_pages]; 1249 page += (i % nr_pages); 1250 1251 i++; 1252 } else { 1253 page = alloc_page(q->bounce_gfp | gfp_mask); 1254 if (!page) { 1255 ret = -ENOMEM; 1256 break; 1257 } 1258 } 1259 1260 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 1261 break; 1262 1263 len -= bytes; 1264 offset = 0; 1265 } 1266 1267 if (ret) 1268 goto cleanup; 1269 1270 if (map_data) 1271 map_data->offset += bio->bi_iter.bi_size; 1272 1273 /* 1274 * success 1275 */ 1276 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || 1277 (map_data && map_data->from_user)) { 1278 ret = bio_copy_from_iter(bio, iter); 1279 if (ret) 1280 goto cleanup; 1281 } else { 1282 iov_iter_advance(iter, bio->bi_iter.bi_size); 1283 } 1284 1285 bio->bi_private = bmd; 1286 if (map_data && map_data->null_mapped) 1287 bio_set_flag(bio, BIO_NULL_MAPPED); 1288 return bio; 1289 cleanup: 1290 if (!map_data) 1291 bio_free_pages(bio); 1292 bio_put(bio); 1293 out_bmd: 1294 kfree(bmd); 1295 return ERR_PTR(ret); 1296 } 1297 1298 /** 1299 * bio_map_user_iov - map user iovec into bio 1300 * @q: the struct request_queue for the bio 1301 * @iter: iovec iterator 1302 * @gfp_mask: memory allocation flags 1303 * 1304 * Map the user space address into a bio suitable for io to a block 1305 * device. Returns an error pointer in case of error. 1306 */ 1307 struct bio *bio_map_user_iov(struct request_queue *q, 1308 struct iov_iter *iter, 1309 gfp_t gfp_mask) 1310 { 1311 int j; 1312 struct bio *bio; 1313 int ret; 1314 struct bio_vec *bvec; 1315 1316 if (!iov_iter_count(iter)) 1317 return ERR_PTR(-EINVAL); 1318 1319 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES)); 1320 if (!bio) 1321 return ERR_PTR(-ENOMEM); 1322 1323 while (iov_iter_count(iter)) { 1324 struct page **pages; 1325 ssize_t bytes; 1326 size_t offs, added = 0; 1327 int npages; 1328 1329 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs); 1330 if (unlikely(bytes <= 0)) { 1331 ret = bytes ? bytes : -EFAULT; 1332 goto out_unmap; 1333 } 1334 1335 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); 1336 1337 if (unlikely(offs & queue_dma_alignment(q))) { 1338 ret = -EINVAL; 1339 j = 0; 1340 } else { 1341 for (j = 0; j < npages; j++) { 1342 struct page *page = pages[j]; 1343 unsigned int n = PAGE_SIZE - offs; 1344 unsigned short prev_bi_vcnt = bio->bi_vcnt; 1345 1346 if (n > bytes) 1347 n = bytes; 1348 1349 if (!bio_add_pc_page(q, bio, page, n, offs)) 1350 break; 1351 1352 /* 1353 * check if vector was merged with previous 1354 * drop page reference if needed 1355 */ 1356 if (bio->bi_vcnt == prev_bi_vcnt) 1357 put_page(page); 1358 1359 added += n; 1360 bytes -= n; 1361 offs = 0; 1362 } 1363 iov_iter_advance(iter, added); 1364 } 1365 /* 1366 * release the pages we didn't map into the bio, if any 1367 */ 1368 while (j < npages) 1369 put_page(pages[j++]); 1370 kvfree(pages); 1371 /* couldn't stuff something into bio? */ 1372 if (bytes) 1373 break; 1374 } 1375 1376 bio_set_flag(bio, BIO_USER_MAPPED); 1377 1378 /* 1379 * subtle -- if bio_map_user_iov() ended up bouncing a bio, 1380 * it would normally disappear when its bi_end_io is run. 1381 * however, we need it for the unmap, so grab an extra 1382 * reference to it 1383 */ 1384 bio_get(bio); 1385 return bio; 1386 1387 out_unmap: 1388 bio_for_each_segment_all(bvec, bio, j) { 1389 put_page(bvec->bv_page); 1390 } 1391 bio_put(bio); 1392 return ERR_PTR(ret); 1393 } 1394 1395 static void __bio_unmap_user(struct bio *bio) 1396 { 1397 struct bio_vec *bvec; 1398 int i; 1399 1400 /* 1401 * make sure we dirty pages we wrote to 1402 */ 1403 bio_for_each_segment_all(bvec, bio, i) { 1404 if (bio_data_dir(bio) == READ) 1405 set_page_dirty_lock(bvec->bv_page); 1406 1407 put_page(bvec->bv_page); 1408 } 1409 1410 bio_put(bio); 1411 } 1412 1413 /** 1414 * bio_unmap_user - unmap a bio 1415 * @bio: the bio being unmapped 1416 * 1417 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from 1418 * process context. 1419 * 1420 * bio_unmap_user() may sleep. 1421 */ 1422 void bio_unmap_user(struct bio *bio) 1423 { 1424 __bio_unmap_user(bio); 1425 bio_put(bio); 1426 } 1427 1428 static void bio_map_kern_endio(struct bio *bio) 1429 { 1430 bio_put(bio); 1431 } 1432 1433 /** 1434 * bio_map_kern - map kernel address into bio 1435 * @q: the struct request_queue for the bio 1436 * @data: pointer to buffer to map 1437 * @len: length in bytes 1438 * @gfp_mask: allocation flags for bio allocation 1439 * 1440 * Map the kernel address into a bio suitable for io to a block 1441 * device. Returns an error pointer in case of error. 1442 */ 1443 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1444 gfp_t gfp_mask) 1445 { 1446 unsigned long kaddr = (unsigned long)data; 1447 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1448 unsigned long start = kaddr >> PAGE_SHIFT; 1449 const int nr_pages = end - start; 1450 int offset, i; 1451 struct bio *bio; 1452 1453 bio = bio_kmalloc(gfp_mask, nr_pages); 1454 if (!bio) 1455 return ERR_PTR(-ENOMEM); 1456 1457 offset = offset_in_page(kaddr); 1458 for (i = 0; i < nr_pages; i++) { 1459 unsigned int bytes = PAGE_SIZE - offset; 1460 1461 if (len <= 0) 1462 break; 1463 1464 if (bytes > len) 1465 bytes = len; 1466 1467 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1468 offset) < bytes) { 1469 /* we don't support partial mappings */ 1470 bio_put(bio); 1471 return ERR_PTR(-EINVAL); 1472 } 1473 1474 data += bytes; 1475 len -= bytes; 1476 offset = 0; 1477 } 1478 1479 bio->bi_end_io = bio_map_kern_endio; 1480 return bio; 1481 } 1482 EXPORT_SYMBOL(bio_map_kern); 1483 1484 static void bio_copy_kern_endio(struct bio *bio) 1485 { 1486 bio_free_pages(bio); 1487 bio_put(bio); 1488 } 1489 1490 static void bio_copy_kern_endio_read(struct bio *bio) 1491 { 1492 char *p = bio->bi_private; 1493 struct bio_vec *bvec; 1494 int i; 1495 1496 bio_for_each_segment_all(bvec, bio, i) { 1497 memcpy(p, page_address(bvec->bv_page), bvec->bv_len); 1498 p += bvec->bv_len; 1499 } 1500 1501 bio_copy_kern_endio(bio); 1502 } 1503 1504 /** 1505 * bio_copy_kern - copy kernel address into bio 1506 * @q: the struct request_queue for the bio 1507 * @data: pointer to buffer to copy 1508 * @len: length in bytes 1509 * @gfp_mask: allocation flags for bio and page allocation 1510 * @reading: data direction is READ 1511 * 1512 * copy the kernel address into a bio suitable for io to a block 1513 * device. Returns an error pointer in case of error. 1514 */ 1515 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1516 gfp_t gfp_mask, int reading) 1517 { 1518 unsigned long kaddr = (unsigned long)data; 1519 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1520 unsigned long start = kaddr >> PAGE_SHIFT; 1521 struct bio *bio; 1522 void *p = data; 1523 int nr_pages = 0; 1524 1525 /* 1526 * Overflow, abort 1527 */ 1528 if (end < start) 1529 return ERR_PTR(-EINVAL); 1530 1531 nr_pages = end - start; 1532 bio = bio_kmalloc(gfp_mask, nr_pages); 1533 if (!bio) 1534 return ERR_PTR(-ENOMEM); 1535 1536 while (len) { 1537 struct page *page; 1538 unsigned int bytes = PAGE_SIZE; 1539 1540 if (bytes > len) 1541 bytes = len; 1542 1543 page = alloc_page(q->bounce_gfp | gfp_mask); 1544 if (!page) 1545 goto cleanup; 1546 1547 if (!reading) 1548 memcpy(page_address(page), p, bytes); 1549 1550 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) 1551 break; 1552 1553 len -= bytes; 1554 p += bytes; 1555 } 1556 1557 if (reading) { 1558 bio->bi_end_io = bio_copy_kern_endio_read; 1559 bio->bi_private = data; 1560 } else { 1561 bio->bi_end_io = bio_copy_kern_endio; 1562 } 1563 1564 return bio; 1565 1566 cleanup: 1567 bio_free_pages(bio); 1568 bio_put(bio); 1569 return ERR_PTR(-ENOMEM); 1570 } 1571 1572 /* 1573 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1574 * for performing direct-IO in BIOs. 1575 * 1576 * The problem is that we cannot run set_page_dirty() from interrupt context 1577 * because the required locks are not interrupt-safe. So what we can do is to 1578 * mark the pages dirty _before_ performing IO. And in interrupt context, 1579 * check that the pages are still dirty. If so, fine. If not, redirty them 1580 * in process context. 1581 * 1582 * We special-case compound pages here: normally this means reads into hugetlb 1583 * pages. The logic in here doesn't really work right for compound pages 1584 * because the VM does not uniformly chase down the head page in all cases. 1585 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1586 * handle them at all. So we skip compound pages here at an early stage. 1587 * 1588 * Note that this code is very hard to test under normal circumstances because 1589 * direct-io pins the pages with get_user_pages(). This makes 1590 * is_page_cache_freeable return false, and the VM will not clean the pages. 1591 * But other code (eg, flusher threads) could clean the pages if they are mapped 1592 * pagecache. 1593 * 1594 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1595 * deferred bio dirtying paths. 1596 */ 1597 1598 /* 1599 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1600 */ 1601 void bio_set_pages_dirty(struct bio *bio) 1602 { 1603 struct bio_vec *bvec; 1604 int i; 1605 1606 bio_for_each_segment_all(bvec, bio, i) { 1607 struct page *page = bvec->bv_page; 1608 1609 if (page && !PageCompound(page)) 1610 set_page_dirty_lock(page); 1611 } 1612 } 1613 1614 static void bio_release_pages(struct bio *bio) 1615 { 1616 struct bio_vec *bvec; 1617 int i; 1618 1619 bio_for_each_segment_all(bvec, bio, i) { 1620 struct page *page = bvec->bv_page; 1621 1622 if (page) 1623 put_page(page); 1624 } 1625 } 1626 1627 /* 1628 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1629 * If they are, then fine. If, however, some pages are clean then they must 1630 * have been written out during the direct-IO read. So we take another ref on 1631 * the BIO and the offending pages and re-dirty the pages in process context. 1632 * 1633 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1634 * here on. It will run one put_page() against each page and will run one 1635 * bio_put() against the BIO. 1636 */ 1637 1638 static void bio_dirty_fn(struct work_struct *work); 1639 1640 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1641 static DEFINE_SPINLOCK(bio_dirty_lock); 1642 static struct bio *bio_dirty_list; 1643 1644 /* 1645 * This runs in process context 1646 */ 1647 static void bio_dirty_fn(struct work_struct *work) 1648 { 1649 unsigned long flags; 1650 struct bio *bio; 1651 1652 spin_lock_irqsave(&bio_dirty_lock, flags); 1653 bio = bio_dirty_list; 1654 bio_dirty_list = NULL; 1655 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1656 1657 while (bio) { 1658 struct bio *next = bio->bi_private; 1659 1660 bio_set_pages_dirty(bio); 1661 bio_release_pages(bio); 1662 bio_put(bio); 1663 bio = next; 1664 } 1665 } 1666 1667 void bio_check_pages_dirty(struct bio *bio) 1668 { 1669 struct bio_vec *bvec; 1670 int nr_clean_pages = 0; 1671 int i; 1672 1673 bio_for_each_segment_all(bvec, bio, i) { 1674 struct page *page = bvec->bv_page; 1675 1676 if (PageDirty(page) || PageCompound(page)) { 1677 put_page(page); 1678 bvec->bv_page = NULL; 1679 } else { 1680 nr_clean_pages++; 1681 } 1682 } 1683 1684 if (nr_clean_pages) { 1685 unsigned long flags; 1686 1687 spin_lock_irqsave(&bio_dirty_lock, flags); 1688 bio->bi_private = bio_dirty_list; 1689 bio_dirty_list = bio; 1690 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1691 schedule_work(&bio_dirty_work); 1692 } else { 1693 bio_put(bio); 1694 } 1695 } 1696 1697 void generic_start_io_acct(struct request_queue *q, int rw, 1698 unsigned long sectors, struct hd_struct *part) 1699 { 1700 int cpu = part_stat_lock(); 1701 1702 part_round_stats(q, cpu, part); 1703 part_stat_inc(cpu, part, ios[rw]); 1704 part_stat_add(cpu, part, sectors[rw], sectors); 1705 part_inc_in_flight(q, part, rw); 1706 1707 part_stat_unlock(); 1708 } 1709 EXPORT_SYMBOL(generic_start_io_acct); 1710 1711 void generic_end_io_acct(struct request_queue *q, int rw, 1712 struct hd_struct *part, unsigned long start_time) 1713 { 1714 unsigned long duration = jiffies - start_time; 1715 int cpu = part_stat_lock(); 1716 1717 part_stat_add(cpu, part, ticks[rw], duration); 1718 part_round_stats(q, cpu, part); 1719 part_dec_in_flight(q, part, rw); 1720 1721 part_stat_unlock(); 1722 } 1723 EXPORT_SYMBOL(generic_end_io_acct); 1724 1725 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1726 void bio_flush_dcache_pages(struct bio *bi) 1727 { 1728 struct bio_vec bvec; 1729 struct bvec_iter iter; 1730 1731 bio_for_each_segment(bvec, bi, iter) 1732 flush_dcache_page(bvec.bv_page); 1733 } 1734 EXPORT_SYMBOL(bio_flush_dcache_pages); 1735 #endif 1736 1737 static inline bool bio_remaining_done(struct bio *bio) 1738 { 1739 /* 1740 * If we're not chaining, then ->__bi_remaining is always 1 and 1741 * we always end io on the first invocation. 1742 */ 1743 if (!bio_flagged(bio, BIO_CHAIN)) 1744 return true; 1745 1746 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 1747 1748 if (atomic_dec_and_test(&bio->__bi_remaining)) { 1749 bio_clear_flag(bio, BIO_CHAIN); 1750 return true; 1751 } 1752 1753 return false; 1754 } 1755 1756 /** 1757 * bio_endio - end I/O on a bio 1758 * @bio: bio 1759 * 1760 * Description: 1761 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 1762 * way to end I/O on a bio. No one should call bi_end_io() directly on a 1763 * bio unless they own it and thus know that it has an end_io function. 1764 * 1765 * bio_endio() can be called several times on a bio that has been chained 1766 * using bio_chain(). The ->bi_end_io() function will only be called the 1767 * last time. At this point the BLK_TA_COMPLETE tracing event will be 1768 * generated if BIO_TRACE_COMPLETION is set. 1769 **/ 1770 void bio_endio(struct bio *bio) 1771 { 1772 again: 1773 if (!bio_remaining_done(bio)) 1774 return; 1775 if (!bio_integrity_endio(bio)) 1776 return; 1777 1778 /* 1779 * Need to have a real endio function for chained bios, otherwise 1780 * various corner cases will break (like stacking block devices that 1781 * save/restore bi_end_io) - however, we want to avoid unbounded 1782 * recursion and blowing the stack. Tail call optimization would 1783 * handle this, but compiling with frame pointers also disables 1784 * gcc's sibling call optimization. 1785 */ 1786 if (bio->bi_end_io == bio_chain_endio) { 1787 bio = __bio_chain_endio(bio); 1788 goto again; 1789 } 1790 1791 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1792 trace_block_bio_complete(bio->bi_disk->queue, bio, 1793 blk_status_to_errno(bio->bi_status)); 1794 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1795 } 1796 1797 blk_throtl_bio_endio(bio); 1798 /* release cgroup info */ 1799 bio_uninit(bio); 1800 if (bio->bi_end_io) 1801 bio->bi_end_io(bio); 1802 } 1803 EXPORT_SYMBOL(bio_endio); 1804 1805 /** 1806 * bio_split - split a bio 1807 * @bio: bio to split 1808 * @sectors: number of sectors to split from the front of @bio 1809 * @gfp: gfp mask 1810 * @bs: bio set to allocate from 1811 * 1812 * Allocates and returns a new bio which represents @sectors from the start of 1813 * @bio, and updates @bio to represent the remaining sectors. 1814 * 1815 * Unless this is a discard request the newly allocated bio will point 1816 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that 1817 * @bio is not freed before the split. 1818 */ 1819 struct bio *bio_split(struct bio *bio, int sectors, 1820 gfp_t gfp, struct bio_set *bs) 1821 { 1822 struct bio *split = NULL; 1823 1824 BUG_ON(sectors <= 0); 1825 BUG_ON(sectors >= bio_sectors(bio)); 1826 1827 split = bio_clone_fast(bio, gfp, bs); 1828 if (!split) 1829 return NULL; 1830 1831 split->bi_iter.bi_size = sectors << 9; 1832 1833 if (bio_integrity(split)) 1834 bio_integrity_trim(split); 1835 1836 bio_advance(bio, split->bi_iter.bi_size); 1837 1838 if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 1839 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1840 1841 return split; 1842 } 1843 EXPORT_SYMBOL(bio_split); 1844 1845 /** 1846 * bio_trim - trim a bio 1847 * @bio: bio to trim 1848 * @offset: number of sectors to trim from the front of @bio 1849 * @size: size we want to trim @bio to, in sectors 1850 */ 1851 void bio_trim(struct bio *bio, int offset, int size) 1852 { 1853 /* 'bio' is a cloned bio which we need to trim to match 1854 * the given offset and size. 1855 */ 1856 1857 size <<= 9; 1858 if (offset == 0 && size == bio->bi_iter.bi_size) 1859 return; 1860 1861 bio_clear_flag(bio, BIO_SEG_VALID); 1862 1863 bio_advance(bio, offset << 9); 1864 1865 bio->bi_iter.bi_size = size; 1866 1867 if (bio_integrity(bio)) 1868 bio_integrity_trim(bio); 1869 1870 } 1871 EXPORT_SYMBOL_GPL(bio_trim); 1872 1873 /* 1874 * create memory pools for biovec's in a bio_set. 1875 * use the global biovec slabs created for general use. 1876 */ 1877 mempool_t *biovec_create_pool(int pool_entries) 1878 { 1879 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; 1880 1881 return mempool_create_slab_pool(pool_entries, bp->slab); 1882 } 1883 1884 void bioset_free(struct bio_set *bs) 1885 { 1886 if (bs->rescue_workqueue) 1887 destroy_workqueue(bs->rescue_workqueue); 1888 1889 mempool_destroy(bs->bio_pool); 1890 mempool_destroy(bs->bvec_pool); 1891 1892 bioset_integrity_free(bs); 1893 bio_put_slab(bs); 1894 1895 kfree(bs); 1896 } 1897 EXPORT_SYMBOL(bioset_free); 1898 1899 /** 1900 * bioset_create - Create a bio_set 1901 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1902 * @front_pad: Number of bytes to allocate in front of the returned bio 1903 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 1904 * and %BIOSET_NEED_RESCUER 1905 * 1906 * Description: 1907 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1908 * to ask for a number of bytes to be allocated in front of the bio. 1909 * Front pad allocation is useful for embedding the bio inside 1910 * another structure, to avoid allocating extra data to go with the bio. 1911 * Note that the bio must be embedded at the END of that structure always, 1912 * or things will break badly. 1913 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 1914 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). 1915 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to 1916 * dispatch queued requests when the mempool runs out of space. 1917 * 1918 */ 1919 struct bio_set *bioset_create(unsigned int pool_size, 1920 unsigned int front_pad, 1921 int flags) 1922 { 1923 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1924 struct bio_set *bs; 1925 1926 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1927 if (!bs) 1928 return NULL; 1929 1930 bs->front_pad = front_pad; 1931 1932 spin_lock_init(&bs->rescue_lock); 1933 bio_list_init(&bs->rescue_list); 1934 INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 1935 1936 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1937 if (!bs->bio_slab) { 1938 kfree(bs); 1939 return NULL; 1940 } 1941 1942 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1943 if (!bs->bio_pool) 1944 goto bad; 1945 1946 if (flags & BIOSET_NEED_BVECS) { 1947 bs->bvec_pool = biovec_create_pool(pool_size); 1948 if (!bs->bvec_pool) 1949 goto bad; 1950 } 1951 1952 if (!(flags & BIOSET_NEED_RESCUER)) 1953 return bs; 1954 1955 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); 1956 if (!bs->rescue_workqueue) 1957 goto bad; 1958 1959 return bs; 1960 bad: 1961 bioset_free(bs); 1962 return NULL; 1963 } 1964 EXPORT_SYMBOL(bioset_create); 1965 1966 #ifdef CONFIG_BLK_CGROUP 1967 1968 /** 1969 * bio_associate_blkcg - associate a bio with the specified blkcg 1970 * @bio: target bio 1971 * @blkcg_css: css of the blkcg to associate 1972 * 1973 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will 1974 * treat @bio as if it were issued by a task which belongs to the blkcg. 1975 * 1976 * This function takes an extra reference of @blkcg_css which will be put 1977 * when @bio is released. The caller must own @bio and is responsible for 1978 * synchronizing calls to this function. 1979 */ 1980 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) 1981 { 1982 if (unlikely(bio->bi_css)) 1983 return -EBUSY; 1984 css_get(blkcg_css); 1985 bio->bi_css = blkcg_css; 1986 return 0; 1987 } 1988 EXPORT_SYMBOL_GPL(bio_associate_blkcg); 1989 1990 /** 1991 * bio_disassociate_task - undo bio_associate_current() 1992 * @bio: target bio 1993 */ 1994 void bio_disassociate_task(struct bio *bio) 1995 { 1996 if (bio->bi_ioc) { 1997 put_io_context(bio->bi_ioc); 1998 bio->bi_ioc = NULL; 1999 } 2000 if (bio->bi_css) { 2001 css_put(bio->bi_css); 2002 bio->bi_css = NULL; 2003 } 2004 } 2005 2006 /** 2007 * bio_clone_blkcg_association - clone blkcg association from src to dst bio 2008 * @dst: destination bio 2009 * @src: source bio 2010 */ 2011 void bio_clone_blkcg_association(struct bio *dst, struct bio *src) 2012 { 2013 if (src->bi_css) 2014 WARN_ON(bio_associate_blkcg(dst, src->bi_css)); 2015 } 2016 EXPORT_SYMBOL_GPL(bio_clone_blkcg_association); 2017 #endif /* CONFIG_BLK_CGROUP */ 2018 2019 static void __init biovec_init_slabs(void) 2020 { 2021 int i; 2022 2023 for (i = 0; i < BVEC_POOL_NR; i++) { 2024 int size; 2025 struct biovec_slab *bvs = bvec_slabs + i; 2026 2027 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 2028 bvs->slab = NULL; 2029 continue; 2030 } 2031 2032 size = bvs->nr_vecs * sizeof(struct bio_vec); 2033 bvs->slab = kmem_cache_create(bvs->name, size, 0, 2034 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2035 } 2036 } 2037 2038 static int __init init_bio(void) 2039 { 2040 bio_slab_max = 2; 2041 bio_slab_nr = 0; 2042 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 2043 if (!bio_slabs) 2044 panic("bio: can't allocate bios\n"); 2045 2046 bio_integrity_init(); 2047 biovec_init_slabs(); 2048 2049 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 2050 if (!fs_bio_set) 2051 panic("bio: can't allocate bios\n"); 2052 2053 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 2054 panic("bio: can't create integrity pool\n"); 2055 2056 return 0; 2057 } 2058 subsys_initcall(init_bio); 2059