xref: /openbmc/linux/block/bio.c (revision 0898a16a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 
237 	if (bio_integrity(bio))
238 		bio_integrity_free(bio);
239 }
240 EXPORT_SYMBOL(bio_uninit);
241 
242 static void bio_free(struct bio *bio)
243 {
244 	struct bio_set *bs = bio->bi_pool;
245 	void *p;
246 
247 	bio_uninit(bio);
248 
249 	if (bs) {
250 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
251 
252 		/*
253 		 * If we have front padding, adjust the bio pointer before freeing
254 		 */
255 		p = bio;
256 		p -= bs->front_pad;
257 
258 		mempool_free(p, &bs->bio_pool);
259 	} else {
260 		/* Bio was allocated by bio_kmalloc() */
261 		kfree(bio);
262 	}
263 }
264 
265 /*
266  * Users of this function have their own bio allocation. Subsequently,
267  * they must remember to pair any call to bio_init() with bio_uninit()
268  * when IO has completed, or when the bio is released.
269  */
270 void bio_init(struct bio *bio, struct bio_vec *table,
271 	      unsigned short max_vecs)
272 {
273 	memset(bio, 0, sizeof(*bio));
274 	atomic_set(&bio->__bi_remaining, 1);
275 	atomic_set(&bio->__bi_cnt, 1);
276 
277 	bio->bi_io_vec = table;
278 	bio->bi_max_vecs = max_vecs;
279 }
280 EXPORT_SYMBOL(bio_init);
281 
282 /**
283  * bio_reset - reinitialize a bio
284  * @bio:	bio to reset
285  *
286  * Description:
287  *   After calling bio_reset(), @bio will be in the same state as a freshly
288  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
289  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
290  *   comment in struct bio.
291  */
292 void bio_reset(struct bio *bio)
293 {
294 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295 
296 	bio_uninit(bio);
297 
298 	memset(bio, 0, BIO_RESET_BYTES);
299 	bio->bi_flags = flags;
300 	atomic_set(&bio->__bi_remaining, 1);
301 }
302 EXPORT_SYMBOL(bio_reset);
303 
304 static struct bio *__bio_chain_endio(struct bio *bio)
305 {
306 	struct bio *parent = bio->bi_private;
307 
308 	if (!parent->bi_status)
309 		parent->bi_status = bio->bi_status;
310 	bio_put(bio);
311 	return parent;
312 }
313 
314 static void bio_chain_endio(struct bio *bio)
315 {
316 	bio_endio(__bio_chain_endio(bio));
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 		return;
364 	/*
365 	 * In order to guarantee forward progress we must punt only bios that
366 	 * were allocated from this bio_set; otherwise, if there was a bio on
367 	 * there for a stacking driver higher up in the stack, processing it
368 	 * could require allocating bios from this bio_set, and doing that from
369 	 * our own rescuer would be bad.
370 	 *
371 	 * Since bio lists are singly linked, pop them all instead of trying to
372 	 * remove from the middle of the list:
373 	 */
374 
375 	bio_list_init(&punt);
376 	bio_list_init(&nopunt);
377 
378 	while ((bio = bio_list_pop(&current->bio_list[0])))
379 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 	current->bio_list[0] = nopunt;
381 
382 	bio_list_init(&nopunt);
383 	while ((bio = bio_list_pop(&current->bio_list[1])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[1] = nopunt;
386 
387 	spin_lock(&bs->rescue_lock);
388 	bio_list_merge(&bs->rescue_list, &punt);
389 	spin_unlock(&bs->rescue_lock);
390 
391 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393 
394 /**
395  * bio_alloc_bioset - allocate a bio for I/O
396  * @gfp_mask:   the GFP_* mask given to the slab allocator
397  * @nr_iovecs:	number of iovecs to pre-allocate
398  * @bs:		the bio_set to allocate from.
399  *
400  * Description:
401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402  *   backed by the @bs's mempool.
403  *
404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405  *   always be able to allocate a bio. This is due to the mempool guarantees.
406  *   To make this work, callers must never allocate more than 1 bio at a time
407  *   from this pool. Callers that need to allocate more than 1 bio must always
408  *   submit the previously allocated bio for IO before attempting to allocate
409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
410  *
411  *   Note that when running under generic_make_request() (i.e. any block
412  *   driver), bios are not submitted until after you return - see the code in
413  *   generic_make_request() that converts recursion into iteration, to prevent
414  *   stack overflows.
415  *
416  *   This would normally mean allocating multiple bios under
417  *   generic_make_request() would be susceptible to deadlocks, but we have
418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
419  *   thread.
420  *
421  *   However, we do not guarantee forward progress for allocations from other
422  *   mempools. Doing multiple allocations from the same mempool under
423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
424  *   for per bio allocations.
425  *
426  *   RETURNS:
427  *   Pointer to new bio on success, NULL on failure.
428  */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 			     struct bio_set *bs)
431 {
432 	gfp_t saved_gfp = gfp_mask;
433 	unsigned front_pad;
434 	unsigned inline_vecs;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 				 nr_iovecs > 0))
452 			return NULL;
453 		/*
454 		 * generic_make_request() converts recursion to iteration; this
455 		 * means if we're running beneath it, any bios we allocate and
456 		 * submit will not be submitted (and thus freed) until after we
457 		 * return.
458 		 *
459 		 * This exposes us to a potential deadlock if we allocate
460 		 * multiple bios from the same bio_set() while running
461 		 * underneath generic_make_request(). If we were to allocate
462 		 * multiple bios (say a stacking block driver that was splitting
463 		 * bios), we would deadlock if we exhausted the mempool's
464 		 * reserve.
465 		 *
466 		 * We solve this, and guarantee forward progress, with a rescuer
467 		 * workqueue per bio_set. If we go to allocate and there are
468 		 * bios on current->bio_list, we first try the allocation
469 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 		 * bios we would be blocking to the rescuer workqueue before
471 		 * we retry with the original gfp_flags.
472 		 */
473 
474 		if (current->bio_list &&
475 		    (!bio_list_empty(&current->bio_list[0]) ||
476 		     !bio_list_empty(&current->bio_list[1])) &&
477 		    bs->rescue_workqueue)
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, &bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	__bio_for_each_segment(bv, bio, iter, start) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio_iter);
540 
541 void bio_truncate(struct bio *bio, unsigned new_size)
542 {
543 	struct bio_vec bv;
544 	struct bvec_iter iter;
545 	unsigned int done = 0;
546 	bool truncated = false;
547 
548 	if (new_size >= bio->bi_iter.bi_size)
549 		return;
550 
551 	if (bio_data_dir(bio) != READ)
552 		goto exit;
553 
554 	bio_for_each_segment(bv, bio, iter) {
555 		if (done + bv.bv_len > new_size) {
556 			unsigned offset;
557 
558 			if (!truncated)
559 				offset = new_size - done;
560 			else
561 				offset = 0;
562 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
563 			truncated = true;
564 		}
565 		done += bv.bv_len;
566 	}
567 
568  exit:
569 	/*
570 	 * Don't touch bvec table here and make it really immutable, since
571 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
572 	 * in its .end_bio() callback.
573 	 *
574 	 * It is enough to truncate bio by updating .bi_size since we can make
575 	 * correct bvec with the updated .bi_size for drivers.
576 	 */
577 	bio->bi_iter.bi_size = new_size;
578 }
579 
580 /**
581  * bio_put - release a reference to a bio
582  * @bio:   bio to release reference to
583  *
584  * Description:
585  *   Put a reference to a &struct bio, either one you have gotten with
586  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
587  **/
588 void bio_put(struct bio *bio)
589 {
590 	if (!bio_flagged(bio, BIO_REFFED))
591 		bio_free(bio);
592 	else {
593 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
594 
595 		/*
596 		 * last put frees it
597 		 */
598 		if (atomic_dec_and_test(&bio->__bi_cnt))
599 			bio_free(bio);
600 	}
601 }
602 EXPORT_SYMBOL(bio_put);
603 
604 /**
605  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
606  * 	@bio: destination bio
607  * 	@bio_src: bio to clone
608  *
609  *	Clone a &bio. Caller will own the returned bio, but not
610  *	the actual data it points to. Reference count of returned
611  * 	bio will be one.
612  *
613  * 	Caller must ensure that @bio_src is not freed before @bio.
614  */
615 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
616 {
617 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
618 
619 	/*
620 	 * most users will be overriding ->bi_disk with a new target,
621 	 * so we don't set nor calculate new physical/hw segment counts here
622 	 */
623 	bio->bi_disk = bio_src->bi_disk;
624 	bio->bi_partno = bio_src->bi_partno;
625 	bio_set_flag(bio, BIO_CLONED);
626 	if (bio_flagged(bio_src, BIO_THROTTLED))
627 		bio_set_flag(bio, BIO_THROTTLED);
628 	bio->bi_opf = bio_src->bi_opf;
629 	bio->bi_ioprio = bio_src->bi_ioprio;
630 	bio->bi_write_hint = bio_src->bi_write_hint;
631 	bio->bi_iter = bio_src->bi_iter;
632 	bio->bi_io_vec = bio_src->bi_io_vec;
633 
634 	bio_clone_blkg_association(bio, bio_src);
635 	blkcg_bio_issue_init(bio);
636 }
637 EXPORT_SYMBOL(__bio_clone_fast);
638 
639 /**
640  *	bio_clone_fast - clone a bio that shares the original bio's biovec
641  *	@bio: bio to clone
642  *	@gfp_mask: allocation priority
643  *	@bs: bio_set to allocate from
644  *
645  * 	Like __bio_clone_fast, only also allocates the returned bio
646  */
647 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
648 {
649 	struct bio *b;
650 
651 	b = bio_alloc_bioset(gfp_mask, 0, bs);
652 	if (!b)
653 		return NULL;
654 
655 	__bio_clone_fast(b, bio);
656 
657 	if (bio_integrity(bio)) {
658 		int ret;
659 
660 		ret = bio_integrity_clone(b, bio, gfp_mask);
661 
662 		if (ret < 0) {
663 			bio_put(b);
664 			return NULL;
665 		}
666 	}
667 
668 	return b;
669 }
670 EXPORT_SYMBOL(bio_clone_fast);
671 
672 static inline bool page_is_mergeable(const struct bio_vec *bv,
673 		struct page *page, unsigned int len, unsigned int off,
674 		bool *same_page)
675 {
676 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
677 		bv->bv_offset + bv->bv_len - 1;
678 	phys_addr_t page_addr = page_to_phys(page);
679 
680 	if (vec_end_addr + 1 != page_addr + off)
681 		return false;
682 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
683 		return false;
684 
685 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
686 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
687 		return false;
688 	return true;
689 }
690 
691 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
692 		struct page *page, unsigned len, unsigned offset,
693 		bool *same_page)
694 {
695 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
696 	unsigned long mask = queue_segment_boundary(q);
697 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
698 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
699 
700 	if ((addr1 | mask) != (addr2 | mask))
701 		return false;
702 	if (bv->bv_len + len > queue_max_segment_size(q))
703 		return false;
704 	return __bio_try_merge_page(bio, page, len, offset, same_page);
705 }
706 
707 /**
708  *	__bio_add_pc_page	- attempt to add page to passthrough bio
709  *	@q: the target queue
710  *	@bio: destination bio
711  *	@page: page to add
712  *	@len: vec entry length
713  *	@offset: vec entry offset
714  *	@same_page: return if the merge happen inside the same page
715  *
716  *	Attempt to add a page to the bio_vec maplist. This can fail for a
717  *	number of reasons, such as the bio being full or target block device
718  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
719  *	so it is always possible to add a single page to an empty bio.
720  *
721  *	This should only be used by passthrough bios.
722  */
723 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
724 		struct page *page, unsigned int len, unsigned int offset,
725 		bool *same_page)
726 {
727 	struct bio_vec *bvec;
728 
729 	/*
730 	 * cloned bio must not modify vec list
731 	 */
732 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
733 		return 0;
734 
735 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
736 		return 0;
737 
738 	if (bio->bi_vcnt > 0) {
739 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
740 			return len;
741 
742 		/*
743 		 * If the queue doesn't support SG gaps and adding this segment
744 		 * would create a gap, disallow it.
745 		 */
746 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
747 		if (bvec_gap_to_prev(q, bvec, offset))
748 			return 0;
749 	}
750 
751 	if (bio_full(bio, len))
752 		return 0;
753 
754 	if (bio->bi_vcnt >= queue_max_segments(q))
755 		return 0;
756 
757 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
758 	bvec->bv_page = page;
759 	bvec->bv_len = len;
760 	bvec->bv_offset = offset;
761 	bio->bi_vcnt++;
762 	bio->bi_iter.bi_size += len;
763 	return len;
764 }
765 
766 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
767 		struct page *page, unsigned int len, unsigned int offset)
768 {
769 	bool same_page = false;
770 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
771 }
772 EXPORT_SYMBOL(bio_add_pc_page);
773 
774 /**
775  * __bio_try_merge_page - try appending data to an existing bvec.
776  * @bio: destination bio
777  * @page: start page to add
778  * @len: length of the data to add
779  * @off: offset of the data relative to @page
780  * @same_page: return if the segment has been merged inside the same page
781  *
782  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
783  * a useful optimisation for file systems with a block size smaller than the
784  * page size.
785  *
786  * Warn if (@len, @off) crosses pages in case that @same_page is true.
787  *
788  * Return %true on success or %false on failure.
789  */
790 bool __bio_try_merge_page(struct bio *bio, struct page *page,
791 		unsigned int len, unsigned int off, bool *same_page)
792 {
793 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
794 		return false;
795 
796 	if (bio->bi_vcnt > 0) {
797 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
798 
799 		if (page_is_mergeable(bv, page, len, off, same_page)) {
800 			if (bio->bi_iter.bi_size > UINT_MAX - len)
801 				return false;
802 			bv->bv_len += len;
803 			bio->bi_iter.bi_size += len;
804 			return true;
805 		}
806 	}
807 	return false;
808 }
809 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
810 
811 /**
812  * __bio_add_page - add page(s) to a bio in a new segment
813  * @bio: destination bio
814  * @page: start page to add
815  * @len: length of the data to add, may cross pages
816  * @off: offset of the data relative to @page, may cross pages
817  *
818  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
819  * that @bio has space for another bvec.
820  */
821 void __bio_add_page(struct bio *bio, struct page *page,
822 		unsigned int len, unsigned int off)
823 {
824 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
825 
826 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
827 	WARN_ON_ONCE(bio_full(bio, len));
828 
829 	bv->bv_page = page;
830 	bv->bv_offset = off;
831 	bv->bv_len = len;
832 
833 	bio->bi_iter.bi_size += len;
834 	bio->bi_vcnt++;
835 
836 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
837 		bio_set_flag(bio, BIO_WORKINGSET);
838 }
839 EXPORT_SYMBOL_GPL(__bio_add_page);
840 
841 /**
842  *	bio_add_page	-	attempt to add page(s) to bio
843  *	@bio: destination bio
844  *	@page: start page to add
845  *	@len: vec entry length, may cross pages
846  *	@offset: vec entry offset relative to @page, may cross pages
847  *
848  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
849  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
850  */
851 int bio_add_page(struct bio *bio, struct page *page,
852 		 unsigned int len, unsigned int offset)
853 {
854 	bool same_page = false;
855 
856 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
857 		if (bio_full(bio, len))
858 			return 0;
859 		__bio_add_page(bio, page, len, offset);
860 	}
861 	return len;
862 }
863 EXPORT_SYMBOL(bio_add_page);
864 
865 void bio_release_pages(struct bio *bio, bool mark_dirty)
866 {
867 	struct bvec_iter_all iter_all;
868 	struct bio_vec *bvec;
869 
870 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
871 		return;
872 
873 	bio_for_each_segment_all(bvec, bio, iter_all) {
874 		if (mark_dirty && !PageCompound(bvec->bv_page))
875 			set_page_dirty_lock(bvec->bv_page);
876 		put_page(bvec->bv_page);
877 	}
878 }
879 
880 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
881 {
882 	const struct bio_vec *bv = iter->bvec;
883 	unsigned int len;
884 	size_t size;
885 
886 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
887 		return -EINVAL;
888 
889 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
890 	size = bio_add_page(bio, bv->bv_page, len,
891 				bv->bv_offset + iter->iov_offset);
892 	if (unlikely(size != len))
893 		return -EINVAL;
894 	iov_iter_advance(iter, size);
895 	return 0;
896 }
897 
898 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
899 
900 /**
901  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
902  * @bio: bio to add pages to
903  * @iter: iov iterator describing the region to be mapped
904  *
905  * Pins pages from *iter and appends them to @bio's bvec array. The
906  * pages will have to be released using put_page() when done.
907  * For multi-segment *iter, this function only adds pages from the
908  * the next non-empty segment of the iov iterator.
909  */
910 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
911 {
912 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
913 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
914 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
915 	struct page **pages = (struct page **)bv;
916 	bool same_page = false;
917 	ssize_t size, left;
918 	unsigned len, i;
919 	size_t offset;
920 
921 	/*
922 	 * Move page array up in the allocated memory for the bio vecs as far as
923 	 * possible so that we can start filling biovecs from the beginning
924 	 * without overwriting the temporary page array.
925 	*/
926 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
927 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
928 
929 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
930 	if (unlikely(size <= 0))
931 		return size ? size : -EFAULT;
932 
933 	for (left = size, i = 0; left > 0; left -= len, i++) {
934 		struct page *page = pages[i];
935 
936 		len = min_t(size_t, PAGE_SIZE - offset, left);
937 
938 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
939 			if (same_page)
940 				put_page(page);
941 		} else {
942 			if (WARN_ON_ONCE(bio_full(bio, len)))
943                                 return -EINVAL;
944 			__bio_add_page(bio, page, len, offset);
945 		}
946 		offset = 0;
947 	}
948 
949 	iov_iter_advance(iter, size);
950 	return 0;
951 }
952 
953 /**
954  * bio_iov_iter_get_pages - add user or kernel pages to a bio
955  * @bio: bio to add pages to
956  * @iter: iov iterator describing the region to be added
957  *
958  * This takes either an iterator pointing to user memory, or one pointing to
959  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
960  * map them into the kernel. On IO completion, the caller should put those
961  * pages. If we're adding kernel pages, and the caller told us it's safe to
962  * do so, we just have to add the pages to the bio directly. We don't grab an
963  * extra reference to those pages (the user should already have that), and we
964  * don't put the page on IO completion. The caller needs to check if the bio is
965  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
966  * released.
967  *
968  * The function tries, but does not guarantee, to pin as many pages as
969  * fit into the bio, or are requested in *iter, whatever is smaller. If
970  * MM encounters an error pinning the requested pages, it stops. Error
971  * is returned only if 0 pages could be pinned.
972  */
973 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
974 {
975 	const bool is_bvec = iov_iter_is_bvec(iter);
976 	int ret;
977 
978 	if (WARN_ON_ONCE(bio->bi_vcnt))
979 		return -EINVAL;
980 
981 	do {
982 		if (is_bvec)
983 			ret = __bio_iov_bvec_add_pages(bio, iter);
984 		else
985 			ret = __bio_iov_iter_get_pages(bio, iter);
986 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
987 
988 	if (is_bvec)
989 		bio_set_flag(bio, BIO_NO_PAGE_REF);
990 	return bio->bi_vcnt ? 0 : ret;
991 }
992 
993 static void submit_bio_wait_endio(struct bio *bio)
994 {
995 	complete(bio->bi_private);
996 }
997 
998 /**
999  * submit_bio_wait - submit a bio, and wait until it completes
1000  * @bio: The &struct bio which describes the I/O
1001  *
1002  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1003  * bio_endio() on failure.
1004  *
1005  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1006  * result in bio reference to be consumed. The caller must drop the reference
1007  * on his own.
1008  */
1009 int submit_bio_wait(struct bio *bio)
1010 {
1011 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1012 
1013 	bio->bi_private = &done;
1014 	bio->bi_end_io = submit_bio_wait_endio;
1015 	bio->bi_opf |= REQ_SYNC;
1016 	submit_bio(bio);
1017 	wait_for_completion_io(&done);
1018 
1019 	return blk_status_to_errno(bio->bi_status);
1020 }
1021 EXPORT_SYMBOL(submit_bio_wait);
1022 
1023 /**
1024  * bio_advance - increment/complete a bio by some number of bytes
1025  * @bio:	bio to advance
1026  * @bytes:	number of bytes to complete
1027  *
1028  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1029  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1030  * be updated on the last bvec as well.
1031  *
1032  * @bio will then represent the remaining, uncompleted portion of the io.
1033  */
1034 void bio_advance(struct bio *bio, unsigned bytes)
1035 {
1036 	if (bio_integrity(bio))
1037 		bio_integrity_advance(bio, bytes);
1038 
1039 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1040 }
1041 EXPORT_SYMBOL(bio_advance);
1042 
1043 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1044 			struct bio *src, struct bvec_iter *src_iter)
1045 {
1046 	struct bio_vec src_bv, dst_bv;
1047 	void *src_p, *dst_p;
1048 	unsigned bytes;
1049 
1050 	while (src_iter->bi_size && dst_iter->bi_size) {
1051 		src_bv = bio_iter_iovec(src, *src_iter);
1052 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1053 
1054 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1055 
1056 		src_p = kmap_atomic(src_bv.bv_page);
1057 		dst_p = kmap_atomic(dst_bv.bv_page);
1058 
1059 		memcpy(dst_p + dst_bv.bv_offset,
1060 		       src_p + src_bv.bv_offset,
1061 		       bytes);
1062 
1063 		kunmap_atomic(dst_p);
1064 		kunmap_atomic(src_p);
1065 
1066 		flush_dcache_page(dst_bv.bv_page);
1067 
1068 		bio_advance_iter(src, src_iter, bytes);
1069 		bio_advance_iter(dst, dst_iter, bytes);
1070 	}
1071 }
1072 EXPORT_SYMBOL(bio_copy_data_iter);
1073 
1074 /**
1075  * bio_copy_data - copy contents of data buffers from one bio to another
1076  * @src: source bio
1077  * @dst: destination bio
1078  *
1079  * Stops when it reaches the end of either @src or @dst - that is, copies
1080  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1081  */
1082 void bio_copy_data(struct bio *dst, struct bio *src)
1083 {
1084 	struct bvec_iter src_iter = src->bi_iter;
1085 	struct bvec_iter dst_iter = dst->bi_iter;
1086 
1087 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1088 }
1089 EXPORT_SYMBOL(bio_copy_data);
1090 
1091 /**
1092  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1093  * another
1094  * @src: source bio list
1095  * @dst: destination bio list
1096  *
1097  * Stops when it reaches the end of either the @src list or @dst list - that is,
1098  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1099  * bios).
1100  */
1101 void bio_list_copy_data(struct bio *dst, struct bio *src)
1102 {
1103 	struct bvec_iter src_iter = src->bi_iter;
1104 	struct bvec_iter dst_iter = dst->bi_iter;
1105 
1106 	while (1) {
1107 		if (!src_iter.bi_size) {
1108 			src = src->bi_next;
1109 			if (!src)
1110 				break;
1111 
1112 			src_iter = src->bi_iter;
1113 		}
1114 
1115 		if (!dst_iter.bi_size) {
1116 			dst = dst->bi_next;
1117 			if (!dst)
1118 				break;
1119 
1120 			dst_iter = dst->bi_iter;
1121 		}
1122 
1123 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1124 	}
1125 }
1126 EXPORT_SYMBOL(bio_list_copy_data);
1127 
1128 struct bio_map_data {
1129 	int is_our_pages;
1130 	struct iov_iter iter;
1131 	struct iovec iov[];
1132 };
1133 
1134 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1135 					       gfp_t gfp_mask)
1136 {
1137 	struct bio_map_data *bmd;
1138 	if (data->nr_segs > UIO_MAXIOV)
1139 		return NULL;
1140 
1141 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1142 	if (!bmd)
1143 		return NULL;
1144 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1145 	bmd->iter = *data;
1146 	bmd->iter.iov = bmd->iov;
1147 	return bmd;
1148 }
1149 
1150 /**
1151  * bio_copy_from_iter - copy all pages from iov_iter to bio
1152  * @bio: The &struct bio which describes the I/O as destination
1153  * @iter: iov_iter as source
1154  *
1155  * Copy all pages from iov_iter to bio.
1156  * Returns 0 on success, or error on failure.
1157  */
1158 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1159 {
1160 	struct bio_vec *bvec;
1161 	struct bvec_iter_all iter_all;
1162 
1163 	bio_for_each_segment_all(bvec, bio, iter_all) {
1164 		ssize_t ret;
1165 
1166 		ret = copy_page_from_iter(bvec->bv_page,
1167 					  bvec->bv_offset,
1168 					  bvec->bv_len,
1169 					  iter);
1170 
1171 		if (!iov_iter_count(iter))
1172 			break;
1173 
1174 		if (ret < bvec->bv_len)
1175 			return -EFAULT;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * bio_copy_to_iter - copy all pages from bio to iov_iter
1183  * @bio: The &struct bio which describes the I/O as source
1184  * @iter: iov_iter as destination
1185  *
1186  * Copy all pages from bio to iov_iter.
1187  * Returns 0 on success, or error on failure.
1188  */
1189 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1190 {
1191 	struct bio_vec *bvec;
1192 	struct bvec_iter_all iter_all;
1193 
1194 	bio_for_each_segment_all(bvec, bio, iter_all) {
1195 		ssize_t ret;
1196 
1197 		ret = copy_page_to_iter(bvec->bv_page,
1198 					bvec->bv_offset,
1199 					bvec->bv_len,
1200 					&iter);
1201 
1202 		if (!iov_iter_count(&iter))
1203 			break;
1204 
1205 		if (ret < bvec->bv_len)
1206 			return -EFAULT;
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 void bio_free_pages(struct bio *bio)
1213 {
1214 	struct bio_vec *bvec;
1215 	struct bvec_iter_all iter_all;
1216 
1217 	bio_for_each_segment_all(bvec, bio, iter_all)
1218 		__free_page(bvec->bv_page);
1219 }
1220 EXPORT_SYMBOL(bio_free_pages);
1221 
1222 /**
1223  *	bio_uncopy_user	-	finish previously mapped bio
1224  *	@bio: bio being terminated
1225  *
1226  *	Free pages allocated from bio_copy_user_iov() and write back data
1227  *	to user space in case of a read.
1228  */
1229 int bio_uncopy_user(struct bio *bio)
1230 {
1231 	struct bio_map_data *bmd = bio->bi_private;
1232 	int ret = 0;
1233 
1234 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1235 		/*
1236 		 * if we're in a workqueue, the request is orphaned, so
1237 		 * don't copy into a random user address space, just free
1238 		 * and return -EINTR so user space doesn't expect any data.
1239 		 */
1240 		if (!current->mm)
1241 			ret = -EINTR;
1242 		else if (bio_data_dir(bio) == READ)
1243 			ret = bio_copy_to_iter(bio, bmd->iter);
1244 		if (bmd->is_our_pages)
1245 			bio_free_pages(bio);
1246 	}
1247 	kfree(bmd);
1248 	bio_put(bio);
1249 	return ret;
1250 }
1251 
1252 /**
1253  *	bio_copy_user_iov	-	copy user data to bio
1254  *	@q:		destination block queue
1255  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1256  *	@iter:		iovec iterator
1257  *	@gfp_mask:	memory allocation flags
1258  *
1259  *	Prepares and returns a bio for indirect user io, bouncing data
1260  *	to/from kernel pages as necessary. Must be paired with
1261  *	call bio_uncopy_user() on io completion.
1262  */
1263 struct bio *bio_copy_user_iov(struct request_queue *q,
1264 			      struct rq_map_data *map_data,
1265 			      struct iov_iter *iter,
1266 			      gfp_t gfp_mask)
1267 {
1268 	struct bio_map_data *bmd;
1269 	struct page *page;
1270 	struct bio *bio;
1271 	int i = 0, ret;
1272 	int nr_pages;
1273 	unsigned int len = iter->count;
1274 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1275 
1276 	bmd = bio_alloc_map_data(iter, gfp_mask);
1277 	if (!bmd)
1278 		return ERR_PTR(-ENOMEM);
1279 
1280 	/*
1281 	 * We need to do a deep copy of the iov_iter including the iovecs.
1282 	 * The caller provided iov might point to an on-stack or otherwise
1283 	 * shortlived one.
1284 	 */
1285 	bmd->is_our_pages = map_data ? 0 : 1;
1286 
1287 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1288 	if (nr_pages > BIO_MAX_PAGES)
1289 		nr_pages = BIO_MAX_PAGES;
1290 
1291 	ret = -ENOMEM;
1292 	bio = bio_kmalloc(gfp_mask, nr_pages);
1293 	if (!bio)
1294 		goto out_bmd;
1295 
1296 	ret = 0;
1297 
1298 	if (map_data) {
1299 		nr_pages = 1 << map_data->page_order;
1300 		i = map_data->offset / PAGE_SIZE;
1301 	}
1302 	while (len) {
1303 		unsigned int bytes = PAGE_SIZE;
1304 
1305 		bytes -= offset;
1306 
1307 		if (bytes > len)
1308 			bytes = len;
1309 
1310 		if (map_data) {
1311 			if (i == map_data->nr_entries * nr_pages) {
1312 				ret = -ENOMEM;
1313 				break;
1314 			}
1315 
1316 			page = map_data->pages[i / nr_pages];
1317 			page += (i % nr_pages);
1318 
1319 			i++;
1320 		} else {
1321 			page = alloc_page(q->bounce_gfp | gfp_mask);
1322 			if (!page) {
1323 				ret = -ENOMEM;
1324 				break;
1325 			}
1326 		}
1327 
1328 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1329 			if (!map_data)
1330 				__free_page(page);
1331 			break;
1332 		}
1333 
1334 		len -= bytes;
1335 		offset = 0;
1336 	}
1337 
1338 	if (ret)
1339 		goto cleanup;
1340 
1341 	if (map_data)
1342 		map_data->offset += bio->bi_iter.bi_size;
1343 
1344 	/*
1345 	 * success
1346 	 */
1347 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1348 	    (map_data && map_data->from_user)) {
1349 		ret = bio_copy_from_iter(bio, iter);
1350 		if (ret)
1351 			goto cleanup;
1352 	} else {
1353 		if (bmd->is_our_pages)
1354 			zero_fill_bio(bio);
1355 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1356 	}
1357 
1358 	bio->bi_private = bmd;
1359 	if (map_data && map_data->null_mapped)
1360 		bio_set_flag(bio, BIO_NULL_MAPPED);
1361 	return bio;
1362 cleanup:
1363 	if (!map_data)
1364 		bio_free_pages(bio);
1365 	bio_put(bio);
1366 out_bmd:
1367 	kfree(bmd);
1368 	return ERR_PTR(ret);
1369 }
1370 
1371 /**
1372  *	bio_map_user_iov - map user iovec into bio
1373  *	@q:		the struct request_queue for the bio
1374  *	@iter:		iovec iterator
1375  *	@gfp_mask:	memory allocation flags
1376  *
1377  *	Map the user space address into a bio suitable for io to a block
1378  *	device. Returns an error pointer in case of error.
1379  */
1380 struct bio *bio_map_user_iov(struct request_queue *q,
1381 			     struct iov_iter *iter,
1382 			     gfp_t gfp_mask)
1383 {
1384 	int j;
1385 	struct bio *bio;
1386 	int ret;
1387 
1388 	if (!iov_iter_count(iter))
1389 		return ERR_PTR(-EINVAL);
1390 
1391 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1392 	if (!bio)
1393 		return ERR_PTR(-ENOMEM);
1394 
1395 	while (iov_iter_count(iter)) {
1396 		struct page **pages;
1397 		ssize_t bytes;
1398 		size_t offs, added = 0;
1399 		int npages;
1400 
1401 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1402 		if (unlikely(bytes <= 0)) {
1403 			ret = bytes ? bytes : -EFAULT;
1404 			goto out_unmap;
1405 		}
1406 
1407 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1408 
1409 		if (unlikely(offs & queue_dma_alignment(q))) {
1410 			ret = -EINVAL;
1411 			j = 0;
1412 		} else {
1413 			for (j = 0; j < npages; j++) {
1414 				struct page *page = pages[j];
1415 				unsigned int n = PAGE_SIZE - offs;
1416 				bool same_page = false;
1417 
1418 				if (n > bytes)
1419 					n = bytes;
1420 
1421 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1422 						&same_page)) {
1423 					if (same_page)
1424 						put_page(page);
1425 					break;
1426 				}
1427 
1428 				added += n;
1429 				bytes -= n;
1430 				offs = 0;
1431 			}
1432 			iov_iter_advance(iter, added);
1433 		}
1434 		/*
1435 		 * release the pages we didn't map into the bio, if any
1436 		 */
1437 		while (j < npages)
1438 			put_page(pages[j++]);
1439 		kvfree(pages);
1440 		/* couldn't stuff something into bio? */
1441 		if (bytes)
1442 			break;
1443 	}
1444 
1445 	bio_set_flag(bio, BIO_USER_MAPPED);
1446 
1447 	/*
1448 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1449 	 * it would normally disappear when its bi_end_io is run.
1450 	 * however, we need it for the unmap, so grab an extra
1451 	 * reference to it
1452 	 */
1453 	bio_get(bio);
1454 	return bio;
1455 
1456  out_unmap:
1457 	bio_release_pages(bio, false);
1458 	bio_put(bio);
1459 	return ERR_PTR(ret);
1460 }
1461 
1462 /**
1463  *	bio_unmap_user	-	unmap a bio
1464  *	@bio:		the bio being unmapped
1465  *
1466  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1467  *	process context.
1468  *
1469  *	bio_unmap_user() may sleep.
1470  */
1471 void bio_unmap_user(struct bio *bio)
1472 {
1473 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1474 	bio_put(bio);
1475 	bio_put(bio);
1476 }
1477 
1478 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1479 {
1480 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1481 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1482 		unsigned long i, len = 0;
1483 
1484 		for (i = 0; i < bio->bi_vcnt; i++)
1485 			len += bio->bi_io_vec[i].bv_len;
1486 		invalidate_kernel_vmap_range(bio->bi_private, len);
1487 	}
1488 #endif
1489 }
1490 
1491 static void bio_map_kern_endio(struct bio *bio)
1492 {
1493 	bio_invalidate_vmalloc_pages(bio);
1494 	bio_put(bio);
1495 }
1496 
1497 /**
1498  *	bio_map_kern	-	map kernel address into bio
1499  *	@q: the struct request_queue for the bio
1500  *	@data: pointer to buffer to map
1501  *	@len: length in bytes
1502  *	@gfp_mask: allocation flags for bio allocation
1503  *
1504  *	Map the kernel address into a bio suitable for io to a block
1505  *	device. Returns an error pointer in case of error.
1506  */
1507 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1508 			 gfp_t gfp_mask)
1509 {
1510 	unsigned long kaddr = (unsigned long)data;
1511 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 	unsigned long start = kaddr >> PAGE_SHIFT;
1513 	const int nr_pages = end - start;
1514 	bool is_vmalloc = is_vmalloc_addr(data);
1515 	struct page *page;
1516 	int offset, i;
1517 	struct bio *bio;
1518 
1519 	bio = bio_kmalloc(gfp_mask, nr_pages);
1520 	if (!bio)
1521 		return ERR_PTR(-ENOMEM);
1522 
1523 	if (is_vmalloc) {
1524 		flush_kernel_vmap_range(data, len);
1525 		bio->bi_private = data;
1526 	}
1527 
1528 	offset = offset_in_page(kaddr);
1529 	for (i = 0; i < nr_pages; i++) {
1530 		unsigned int bytes = PAGE_SIZE - offset;
1531 
1532 		if (len <= 0)
1533 			break;
1534 
1535 		if (bytes > len)
1536 			bytes = len;
1537 
1538 		if (!is_vmalloc)
1539 			page = virt_to_page(data);
1540 		else
1541 			page = vmalloc_to_page(data);
1542 		if (bio_add_pc_page(q, bio, page, bytes,
1543 				    offset) < bytes) {
1544 			/* we don't support partial mappings */
1545 			bio_put(bio);
1546 			return ERR_PTR(-EINVAL);
1547 		}
1548 
1549 		data += bytes;
1550 		len -= bytes;
1551 		offset = 0;
1552 	}
1553 
1554 	bio->bi_end_io = bio_map_kern_endio;
1555 	return bio;
1556 }
1557 
1558 static void bio_copy_kern_endio(struct bio *bio)
1559 {
1560 	bio_free_pages(bio);
1561 	bio_put(bio);
1562 }
1563 
1564 static void bio_copy_kern_endio_read(struct bio *bio)
1565 {
1566 	char *p = bio->bi_private;
1567 	struct bio_vec *bvec;
1568 	struct bvec_iter_all iter_all;
1569 
1570 	bio_for_each_segment_all(bvec, bio, iter_all) {
1571 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1572 		p += bvec->bv_len;
1573 	}
1574 
1575 	bio_copy_kern_endio(bio);
1576 }
1577 
1578 /**
1579  *	bio_copy_kern	-	copy kernel address into bio
1580  *	@q: the struct request_queue for the bio
1581  *	@data: pointer to buffer to copy
1582  *	@len: length in bytes
1583  *	@gfp_mask: allocation flags for bio and page allocation
1584  *	@reading: data direction is READ
1585  *
1586  *	copy the kernel address into a bio suitable for io to a block
1587  *	device. Returns an error pointer in case of error.
1588  */
1589 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1590 			  gfp_t gfp_mask, int reading)
1591 {
1592 	unsigned long kaddr = (unsigned long)data;
1593 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1594 	unsigned long start = kaddr >> PAGE_SHIFT;
1595 	struct bio *bio;
1596 	void *p = data;
1597 	int nr_pages = 0;
1598 
1599 	/*
1600 	 * Overflow, abort
1601 	 */
1602 	if (end < start)
1603 		return ERR_PTR(-EINVAL);
1604 
1605 	nr_pages = end - start;
1606 	bio = bio_kmalloc(gfp_mask, nr_pages);
1607 	if (!bio)
1608 		return ERR_PTR(-ENOMEM);
1609 
1610 	while (len) {
1611 		struct page *page;
1612 		unsigned int bytes = PAGE_SIZE;
1613 
1614 		if (bytes > len)
1615 			bytes = len;
1616 
1617 		page = alloc_page(q->bounce_gfp | gfp_mask);
1618 		if (!page)
1619 			goto cleanup;
1620 
1621 		if (!reading)
1622 			memcpy(page_address(page), p, bytes);
1623 
1624 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1625 			break;
1626 
1627 		len -= bytes;
1628 		p += bytes;
1629 	}
1630 
1631 	if (reading) {
1632 		bio->bi_end_io = bio_copy_kern_endio_read;
1633 		bio->bi_private = data;
1634 	} else {
1635 		bio->bi_end_io = bio_copy_kern_endio;
1636 	}
1637 
1638 	return bio;
1639 
1640 cleanup:
1641 	bio_free_pages(bio);
1642 	bio_put(bio);
1643 	return ERR_PTR(-ENOMEM);
1644 }
1645 
1646 /*
1647  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1648  * for performing direct-IO in BIOs.
1649  *
1650  * The problem is that we cannot run set_page_dirty() from interrupt context
1651  * because the required locks are not interrupt-safe.  So what we can do is to
1652  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1653  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1654  * in process context.
1655  *
1656  * We special-case compound pages here: normally this means reads into hugetlb
1657  * pages.  The logic in here doesn't really work right for compound pages
1658  * because the VM does not uniformly chase down the head page in all cases.
1659  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1660  * handle them at all.  So we skip compound pages here at an early stage.
1661  *
1662  * Note that this code is very hard to test under normal circumstances because
1663  * direct-io pins the pages with get_user_pages().  This makes
1664  * is_page_cache_freeable return false, and the VM will not clean the pages.
1665  * But other code (eg, flusher threads) could clean the pages if they are mapped
1666  * pagecache.
1667  *
1668  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1669  * deferred bio dirtying paths.
1670  */
1671 
1672 /*
1673  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1674  */
1675 void bio_set_pages_dirty(struct bio *bio)
1676 {
1677 	struct bio_vec *bvec;
1678 	struct bvec_iter_all iter_all;
1679 
1680 	bio_for_each_segment_all(bvec, bio, iter_all) {
1681 		if (!PageCompound(bvec->bv_page))
1682 			set_page_dirty_lock(bvec->bv_page);
1683 	}
1684 }
1685 
1686 /*
1687  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1688  * If they are, then fine.  If, however, some pages are clean then they must
1689  * have been written out during the direct-IO read.  So we take another ref on
1690  * the BIO and re-dirty the pages in process context.
1691  *
1692  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1693  * here on.  It will run one put_page() against each page and will run one
1694  * bio_put() against the BIO.
1695  */
1696 
1697 static void bio_dirty_fn(struct work_struct *work);
1698 
1699 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1700 static DEFINE_SPINLOCK(bio_dirty_lock);
1701 static struct bio *bio_dirty_list;
1702 
1703 /*
1704  * This runs in process context
1705  */
1706 static void bio_dirty_fn(struct work_struct *work)
1707 {
1708 	struct bio *bio, *next;
1709 
1710 	spin_lock_irq(&bio_dirty_lock);
1711 	next = bio_dirty_list;
1712 	bio_dirty_list = NULL;
1713 	spin_unlock_irq(&bio_dirty_lock);
1714 
1715 	while ((bio = next) != NULL) {
1716 		next = bio->bi_private;
1717 
1718 		bio_release_pages(bio, true);
1719 		bio_put(bio);
1720 	}
1721 }
1722 
1723 void bio_check_pages_dirty(struct bio *bio)
1724 {
1725 	struct bio_vec *bvec;
1726 	unsigned long flags;
1727 	struct bvec_iter_all iter_all;
1728 
1729 	bio_for_each_segment_all(bvec, bio, iter_all) {
1730 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1731 			goto defer;
1732 	}
1733 
1734 	bio_release_pages(bio, false);
1735 	bio_put(bio);
1736 	return;
1737 defer:
1738 	spin_lock_irqsave(&bio_dirty_lock, flags);
1739 	bio->bi_private = bio_dirty_list;
1740 	bio_dirty_list = bio;
1741 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1742 	schedule_work(&bio_dirty_work);
1743 }
1744 
1745 void update_io_ticks(struct hd_struct *part, unsigned long now)
1746 {
1747 	unsigned long stamp;
1748 again:
1749 	stamp = READ_ONCE(part->stamp);
1750 	if (unlikely(stamp != now)) {
1751 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1752 			__part_stat_add(part, io_ticks, 1);
1753 		}
1754 	}
1755 	if (part->partno) {
1756 		part = &part_to_disk(part)->part0;
1757 		goto again;
1758 	}
1759 }
1760 
1761 void generic_start_io_acct(struct request_queue *q, int op,
1762 			   unsigned long sectors, struct hd_struct *part)
1763 {
1764 	const int sgrp = op_stat_group(op);
1765 
1766 	part_stat_lock();
1767 
1768 	update_io_ticks(part, jiffies);
1769 	part_stat_inc(part, ios[sgrp]);
1770 	part_stat_add(part, sectors[sgrp], sectors);
1771 	part_inc_in_flight(q, part, op_is_write(op));
1772 
1773 	part_stat_unlock();
1774 }
1775 EXPORT_SYMBOL(generic_start_io_acct);
1776 
1777 void generic_end_io_acct(struct request_queue *q, int req_op,
1778 			 struct hd_struct *part, unsigned long start_time)
1779 {
1780 	unsigned long now = jiffies;
1781 	unsigned long duration = now - start_time;
1782 	const int sgrp = op_stat_group(req_op);
1783 
1784 	part_stat_lock();
1785 
1786 	update_io_ticks(part, now);
1787 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1788 	part_stat_add(part, time_in_queue, duration);
1789 	part_dec_in_flight(q, part, op_is_write(req_op));
1790 
1791 	part_stat_unlock();
1792 }
1793 EXPORT_SYMBOL(generic_end_io_acct);
1794 
1795 static inline bool bio_remaining_done(struct bio *bio)
1796 {
1797 	/*
1798 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1799 	 * we always end io on the first invocation.
1800 	 */
1801 	if (!bio_flagged(bio, BIO_CHAIN))
1802 		return true;
1803 
1804 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1805 
1806 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1807 		bio_clear_flag(bio, BIO_CHAIN);
1808 		return true;
1809 	}
1810 
1811 	return false;
1812 }
1813 
1814 /**
1815  * bio_endio - end I/O on a bio
1816  * @bio:	bio
1817  *
1818  * Description:
1819  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1820  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1821  *   bio unless they own it and thus know that it has an end_io function.
1822  *
1823  *   bio_endio() can be called several times on a bio that has been chained
1824  *   using bio_chain().  The ->bi_end_io() function will only be called the
1825  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1826  *   generated if BIO_TRACE_COMPLETION is set.
1827  **/
1828 void bio_endio(struct bio *bio)
1829 {
1830 again:
1831 	if (!bio_remaining_done(bio))
1832 		return;
1833 	if (!bio_integrity_endio(bio))
1834 		return;
1835 
1836 	if (bio->bi_disk)
1837 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1838 
1839 	/*
1840 	 * Need to have a real endio function for chained bios, otherwise
1841 	 * various corner cases will break (like stacking block devices that
1842 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1843 	 * recursion and blowing the stack. Tail call optimization would
1844 	 * handle this, but compiling with frame pointers also disables
1845 	 * gcc's sibling call optimization.
1846 	 */
1847 	if (bio->bi_end_io == bio_chain_endio) {
1848 		bio = __bio_chain_endio(bio);
1849 		goto again;
1850 	}
1851 
1852 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1853 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1854 					 blk_status_to_errno(bio->bi_status));
1855 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1856 	}
1857 
1858 	blk_throtl_bio_endio(bio);
1859 	/* release cgroup info */
1860 	bio_uninit(bio);
1861 	if (bio->bi_end_io)
1862 		bio->bi_end_io(bio);
1863 }
1864 EXPORT_SYMBOL(bio_endio);
1865 
1866 /**
1867  * bio_split - split a bio
1868  * @bio:	bio to split
1869  * @sectors:	number of sectors to split from the front of @bio
1870  * @gfp:	gfp mask
1871  * @bs:		bio set to allocate from
1872  *
1873  * Allocates and returns a new bio which represents @sectors from the start of
1874  * @bio, and updates @bio to represent the remaining sectors.
1875  *
1876  * Unless this is a discard request the newly allocated bio will point
1877  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1878  * neither @bio nor @bs are freed before the split bio.
1879  */
1880 struct bio *bio_split(struct bio *bio, int sectors,
1881 		      gfp_t gfp, struct bio_set *bs)
1882 {
1883 	struct bio *split;
1884 
1885 	BUG_ON(sectors <= 0);
1886 	BUG_ON(sectors >= bio_sectors(bio));
1887 
1888 	split = bio_clone_fast(bio, gfp, bs);
1889 	if (!split)
1890 		return NULL;
1891 
1892 	split->bi_iter.bi_size = sectors << 9;
1893 
1894 	if (bio_integrity(split))
1895 		bio_integrity_trim(split);
1896 
1897 	bio_advance(bio, split->bi_iter.bi_size);
1898 
1899 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1900 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1901 
1902 	return split;
1903 }
1904 EXPORT_SYMBOL(bio_split);
1905 
1906 /**
1907  * bio_trim - trim a bio
1908  * @bio:	bio to trim
1909  * @offset:	number of sectors to trim from the front of @bio
1910  * @size:	size we want to trim @bio to, in sectors
1911  */
1912 void bio_trim(struct bio *bio, int offset, int size)
1913 {
1914 	/* 'bio' is a cloned bio which we need to trim to match
1915 	 * the given offset and size.
1916 	 */
1917 
1918 	size <<= 9;
1919 	if (offset == 0 && size == bio->bi_iter.bi_size)
1920 		return;
1921 
1922 	bio_advance(bio, offset << 9);
1923 	bio->bi_iter.bi_size = size;
1924 
1925 	if (bio_integrity(bio))
1926 		bio_integrity_trim(bio);
1927 
1928 }
1929 EXPORT_SYMBOL_GPL(bio_trim);
1930 
1931 /*
1932  * create memory pools for biovec's in a bio_set.
1933  * use the global biovec slabs created for general use.
1934  */
1935 int biovec_init_pool(mempool_t *pool, int pool_entries)
1936 {
1937 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1938 
1939 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1940 }
1941 
1942 /*
1943  * bioset_exit - exit a bioset initialized with bioset_init()
1944  *
1945  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1946  * kzalloc()).
1947  */
1948 void bioset_exit(struct bio_set *bs)
1949 {
1950 	if (bs->rescue_workqueue)
1951 		destroy_workqueue(bs->rescue_workqueue);
1952 	bs->rescue_workqueue = NULL;
1953 
1954 	mempool_exit(&bs->bio_pool);
1955 	mempool_exit(&bs->bvec_pool);
1956 
1957 	bioset_integrity_free(bs);
1958 	if (bs->bio_slab)
1959 		bio_put_slab(bs);
1960 	bs->bio_slab = NULL;
1961 }
1962 EXPORT_SYMBOL(bioset_exit);
1963 
1964 /**
1965  * bioset_init - Initialize a bio_set
1966  * @bs:		pool to initialize
1967  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1968  * @front_pad:	Number of bytes to allocate in front of the returned bio
1969  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1970  *              and %BIOSET_NEED_RESCUER
1971  *
1972  * Description:
1973  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1974  *    to ask for a number of bytes to be allocated in front of the bio.
1975  *    Front pad allocation is useful for embedding the bio inside
1976  *    another structure, to avoid allocating extra data to go with the bio.
1977  *    Note that the bio must be embedded at the END of that structure always,
1978  *    or things will break badly.
1979  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1980  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1981  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1982  *    dispatch queued requests when the mempool runs out of space.
1983  *
1984  */
1985 int bioset_init(struct bio_set *bs,
1986 		unsigned int pool_size,
1987 		unsigned int front_pad,
1988 		int flags)
1989 {
1990 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1991 
1992 	bs->front_pad = front_pad;
1993 
1994 	spin_lock_init(&bs->rescue_lock);
1995 	bio_list_init(&bs->rescue_list);
1996 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1997 
1998 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1999 	if (!bs->bio_slab)
2000 		return -ENOMEM;
2001 
2002 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2003 		goto bad;
2004 
2005 	if ((flags & BIOSET_NEED_BVECS) &&
2006 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2007 		goto bad;
2008 
2009 	if (!(flags & BIOSET_NEED_RESCUER))
2010 		return 0;
2011 
2012 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2013 	if (!bs->rescue_workqueue)
2014 		goto bad;
2015 
2016 	return 0;
2017 bad:
2018 	bioset_exit(bs);
2019 	return -ENOMEM;
2020 }
2021 EXPORT_SYMBOL(bioset_init);
2022 
2023 /*
2024  * Initialize and setup a new bio_set, based on the settings from
2025  * another bio_set.
2026  */
2027 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2028 {
2029 	int flags;
2030 
2031 	flags = 0;
2032 	if (src->bvec_pool.min_nr)
2033 		flags |= BIOSET_NEED_BVECS;
2034 	if (src->rescue_workqueue)
2035 		flags |= BIOSET_NEED_RESCUER;
2036 
2037 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2038 }
2039 EXPORT_SYMBOL(bioset_init_from_src);
2040 
2041 #ifdef CONFIG_BLK_CGROUP
2042 
2043 /**
2044  * bio_disassociate_blkg - puts back the blkg reference if associated
2045  * @bio: target bio
2046  *
2047  * Helper to disassociate the blkg from @bio if a blkg is associated.
2048  */
2049 void bio_disassociate_blkg(struct bio *bio)
2050 {
2051 	if (bio->bi_blkg) {
2052 		blkg_put(bio->bi_blkg);
2053 		bio->bi_blkg = NULL;
2054 	}
2055 }
2056 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2057 
2058 /**
2059  * __bio_associate_blkg - associate a bio with the a blkg
2060  * @bio: target bio
2061  * @blkg: the blkg to associate
2062  *
2063  * This tries to associate @bio with the specified @blkg.  Association failure
2064  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2065  * be anything between @blkg and the root_blkg.  This situation only happens
2066  * when a cgroup is dying and then the remaining bios will spill to the closest
2067  * alive blkg.
2068  *
2069  * A reference will be taken on the @blkg and will be released when @bio is
2070  * freed.
2071  */
2072 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2073 {
2074 	bio_disassociate_blkg(bio);
2075 
2076 	bio->bi_blkg = blkg_tryget_closest(blkg);
2077 }
2078 
2079 /**
2080  * bio_associate_blkg_from_css - associate a bio with a specified css
2081  * @bio: target bio
2082  * @css: target css
2083  *
2084  * Associate @bio with the blkg found by combining the css's blkg and the
2085  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2086  * the association fails with the css.
2087  */
2088 void bio_associate_blkg_from_css(struct bio *bio,
2089 				 struct cgroup_subsys_state *css)
2090 {
2091 	struct request_queue *q = bio->bi_disk->queue;
2092 	struct blkcg_gq *blkg;
2093 
2094 	rcu_read_lock();
2095 
2096 	if (!css || !css->parent)
2097 		blkg = q->root_blkg;
2098 	else
2099 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2100 
2101 	__bio_associate_blkg(bio, blkg);
2102 
2103 	rcu_read_unlock();
2104 }
2105 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2106 
2107 #ifdef CONFIG_MEMCG
2108 /**
2109  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2110  * @bio: target bio
2111  * @page: the page to lookup the blkcg from
2112  *
2113  * Associate @bio with the blkg from @page's owning memcg and the respective
2114  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2115  * root_blkg.
2116  */
2117 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2118 {
2119 	struct cgroup_subsys_state *css;
2120 
2121 	if (!page->mem_cgroup)
2122 		return;
2123 
2124 	rcu_read_lock();
2125 
2126 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2127 	bio_associate_blkg_from_css(bio, css);
2128 
2129 	rcu_read_unlock();
2130 }
2131 #endif /* CONFIG_MEMCG */
2132 
2133 /**
2134  * bio_associate_blkg - associate a bio with a blkg
2135  * @bio: target bio
2136  *
2137  * Associate @bio with the blkg found from the bio's css and request_queue.
2138  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2139  * already associated, the css is reused and association redone as the
2140  * request_queue may have changed.
2141  */
2142 void bio_associate_blkg(struct bio *bio)
2143 {
2144 	struct cgroup_subsys_state *css;
2145 
2146 	rcu_read_lock();
2147 
2148 	if (bio->bi_blkg)
2149 		css = &bio_blkcg(bio)->css;
2150 	else
2151 		css = blkcg_css();
2152 
2153 	bio_associate_blkg_from_css(bio, css);
2154 
2155 	rcu_read_unlock();
2156 }
2157 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2158 
2159 /**
2160  * bio_clone_blkg_association - clone blkg association from src to dst bio
2161  * @dst: destination bio
2162  * @src: source bio
2163  */
2164 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2165 {
2166 	rcu_read_lock();
2167 
2168 	if (src->bi_blkg)
2169 		__bio_associate_blkg(dst, src->bi_blkg);
2170 
2171 	rcu_read_unlock();
2172 }
2173 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2174 #endif /* CONFIG_BLK_CGROUP */
2175 
2176 static void __init biovec_init_slabs(void)
2177 {
2178 	int i;
2179 
2180 	for (i = 0; i < BVEC_POOL_NR; i++) {
2181 		int size;
2182 		struct biovec_slab *bvs = bvec_slabs + i;
2183 
2184 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2185 			bvs->slab = NULL;
2186 			continue;
2187 		}
2188 
2189 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2190 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2191                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2192 	}
2193 }
2194 
2195 static int __init init_bio(void)
2196 {
2197 	bio_slab_max = 2;
2198 	bio_slab_nr = 0;
2199 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2200 			    GFP_KERNEL);
2201 
2202 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2203 
2204 	if (!bio_slabs)
2205 		panic("bio: can't allocate bios\n");
2206 
2207 	bio_integrity_init();
2208 	biovec_init_slabs();
2209 
2210 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2211 		panic("bio: can't allocate bios\n");
2212 
2213 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2214 		panic("bio: can't create integrity pool\n");
2215 
2216 	return 0;
2217 }
2218 subsys_initcall(init_bio);
2219