xref: /openbmc/linux/block/bio.c (revision 015d239a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 
21 #include <trace/events/block.h>
22 #include "blk.h"
23 #include "blk-rq-qos.h"
24 
25 /*
26  * Test patch to inline a certain number of bi_io_vec's inside the bio
27  * itself, to shrink a bio data allocation from two mempool calls to one
28  */
29 #define BIO_INLINE_VECS		4
30 
31 /*
32  * if you change this list, also change bvec_alloc or things will
33  * break badly! cannot be bigger than what you can fit into an
34  * unsigned short
35  */
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
38 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
39 };
40 #undef BV
41 
42 /*
43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44  * IO code that does not need private memory pools.
45  */
46 struct bio_set fs_bio_set;
47 EXPORT_SYMBOL(fs_bio_set);
48 
49 /*
50  * Our slab pool management
51  */
52 struct bio_slab {
53 	struct kmem_cache *slab;
54 	unsigned int slab_ref;
55 	unsigned int slab_size;
56 	char name[8];
57 };
58 static DEFINE_MUTEX(bio_slab_lock);
59 static struct bio_slab *bio_slabs;
60 static unsigned int bio_slab_nr, bio_slab_max;
61 
62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
63 {
64 	unsigned int sz = sizeof(struct bio) + extra_size;
65 	struct kmem_cache *slab = NULL;
66 	struct bio_slab *bslab, *new_bio_slabs;
67 	unsigned int new_bio_slab_max;
68 	unsigned int i, entry = -1;
69 
70 	mutex_lock(&bio_slab_lock);
71 
72 	i = 0;
73 	while (i < bio_slab_nr) {
74 		bslab = &bio_slabs[i];
75 
76 		if (!bslab->slab && entry == -1)
77 			entry = i;
78 		else if (bslab->slab_size == sz) {
79 			slab = bslab->slab;
80 			bslab->slab_ref++;
81 			break;
82 		}
83 		i++;
84 	}
85 
86 	if (slab)
87 		goto out_unlock;
88 
89 	if (bio_slab_nr == bio_slab_max && entry == -1) {
90 		new_bio_slab_max = bio_slab_max << 1;
91 		new_bio_slabs = krealloc(bio_slabs,
92 					 new_bio_slab_max * sizeof(struct bio_slab),
93 					 GFP_KERNEL);
94 		if (!new_bio_slabs)
95 			goto out_unlock;
96 		bio_slab_max = new_bio_slab_max;
97 		bio_slabs = new_bio_slabs;
98 	}
99 	if (entry == -1)
100 		entry = bio_slab_nr++;
101 
102 	bslab = &bio_slabs[entry];
103 
104 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
105 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
106 				 SLAB_HWCACHE_ALIGN, NULL);
107 	if (!slab)
108 		goto out_unlock;
109 
110 	bslab->slab = slab;
111 	bslab->slab_ref = 1;
112 	bslab->slab_size = sz;
113 out_unlock:
114 	mutex_unlock(&bio_slab_lock);
115 	return slab;
116 }
117 
118 static void bio_put_slab(struct bio_set *bs)
119 {
120 	struct bio_slab *bslab = NULL;
121 	unsigned int i;
122 
123 	mutex_lock(&bio_slab_lock);
124 
125 	for (i = 0; i < bio_slab_nr; i++) {
126 		if (bs->bio_slab == bio_slabs[i].slab) {
127 			bslab = &bio_slabs[i];
128 			break;
129 		}
130 	}
131 
132 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
133 		goto out;
134 
135 	WARN_ON(!bslab->slab_ref);
136 
137 	if (--bslab->slab_ref)
138 		goto out;
139 
140 	kmem_cache_destroy(bslab->slab);
141 	bslab->slab = NULL;
142 
143 out:
144 	mutex_unlock(&bio_slab_lock);
145 }
146 
147 unsigned int bvec_nr_vecs(unsigned short idx)
148 {
149 	return bvec_slabs[--idx].nr_vecs;
150 }
151 
152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
153 {
154 	if (!idx)
155 		return;
156 	idx--;
157 
158 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
159 
160 	if (idx == BVEC_POOL_MAX) {
161 		mempool_free(bv, pool);
162 	} else {
163 		struct biovec_slab *bvs = bvec_slabs + idx;
164 
165 		kmem_cache_free(bvs->slab, bv);
166 	}
167 }
168 
169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
170 			   mempool_t *pool)
171 {
172 	struct bio_vec *bvl;
173 
174 	/*
175 	 * see comment near bvec_array define!
176 	 */
177 	switch (nr) {
178 	case 1:
179 		*idx = 0;
180 		break;
181 	case 2 ... 4:
182 		*idx = 1;
183 		break;
184 	case 5 ... 16:
185 		*idx = 2;
186 		break;
187 	case 17 ... 64:
188 		*idx = 3;
189 		break;
190 	case 65 ... 128:
191 		*idx = 4;
192 		break;
193 	case 129 ... BIO_MAX_PAGES:
194 		*idx = 5;
195 		break;
196 	default:
197 		return NULL;
198 	}
199 
200 	/*
201 	 * idx now points to the pool we want to allocate from. only the
202 	 * 1-vec entry pool is mempool backed.
203 	 */
204 	if (*idx == BVEC_POOL_MAX) {
205 fallback:
206 		bvl = mempool_alloc(pool, gfp_mask);
207 	} else {
208 		struct biovec_slab *bvs = bvec_slabs + *idx;
209 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
210 
211 		/*
212 		 * Make this allocation restricted and don't dump info on
213 		 * allocation failures, since we'll fallback to the mempool
214 		 * in case of failure.
215 		 */
216 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
217 
218 		/*
219 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 		 * is set, retry with the 1-entry mempool
221 		 */
222 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
223 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
224 			*idx = BVEC_POOL_MAX;
225 			goto fallback;
226 		}
227 	}
228 
229 	(*idx)++;
230 	return bvl;
231 }
232 
233 void bio_uninit(struct bio *bio)
234 {
235 	bio_disassociate_blkg(bio);
236 
237 	if (bio_integrity(bio))
238 		bio_integrity_free(bio);
239 }
240 EXPORT_SYMBOL(bio_uninit);
241 
242 static void bio_free(struct bio *bio)
243 {
244 	struct bio_set *bs = bio->bi_pool;
245 	void *p;
246 
247 	bio_uninit(bio);
248 
249 	if (bs) {
250 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
251 
252 		/*
253 		 * If we have front padding, adjust the bio pointer before freeing
254 		 */
255 		p = bio;
256 		p -= bs->front_pad;
257 
258 		mempool_free(p, &bs->bio_pool);
259 	} else {
260 		/* Bio was allocated by bio_kmalloc() */
261 		kfree(bio);
262 	}
263 }
264 
265 /*
266  * Users of this function have their own bio allocation. Subsequently,
267  * they must remember to pair any call to bio_init() with bio_uninit()
268  * when IO has completed, or when the bio is released.
269  */
270 void bio_init(struct bio *bio, struct bio_vec *table,
271 	      unsigned short max_vecs)
272 {
273 	memset(bio, 0, sizeof(*bio));
274 	atomic_set(&bio->__bi_remaining, 1);
275 	atomic_set(&bio->__bi_cnt, 1);
276 
277 	bio->bi_io_vec = table;
278 	bio->bi_max_vecs = max_vecs;
279 }
280 EXPORT_SYMBOL(bio_init);
281 
282 /**
283  * bio_reset - reinitialize a bio
284  * @bio:	bio to reset
285  *
286  * Description:
287  *   After calling bio_reset(), @bio will be in the same state as a freshly
288  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
289  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
290  *   comment in struct bio.
291  */
292 void bio_reset(struct bio *bio)
293 {
294 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
295 
296 	bio_uninit(bio);
297 
298 	memset(bio, 0, BIO_RESET_BYTES);
299 	bio->bi_flags = flags;
300 	atomic_set(&bio->__bi_remaining, 1);
301 }
302 EXPORT_SYMBOL(bio_reset);
303 
304 static struct bio *__bio_chain_endio(struct bio *bio)
305 {
306 	struct bio *parent = bio->bi_private;
307 
308 	if (!parent->bi_status)
309 		parent->bi_status = bio->bi_status;
310 	bio_put(bio);
311 	return parent;
312 }
313 
314 static void bio_chain_endio(struct bio *bio)
315 {
316 	bio_endio(__bio_chain_endio(bio));
317 }
318 
319 /**
320  * bio_chain - chain bio completions
321  * @bio: the target bio
322  * @parent: the @bio's parent bio
323  *
324  * The caller won't have a bi_end_io called when @bio completes - instead,
325  * @parent's bi_end_io won't be called until both @parent and @bio have
326  * completed; the chained bio will also be freed when it completes.
327  *
328  * The caller must not set bi_private or bi_end_io in @bio.
329  */
330 void bio_chain(struct bio *bio, struct bio *parent)
331 {
332 	BUG_ON(bio->bi_private || bio->bi_end_io);
333 
334 	bio->bi_private = parent;
335 	bio->bi_end_io	= bio_chain_endio;
336 	bio_inc_remaining(parent);
337 }
338 EXPORT_SYMBOL(bio_chain);
339 
340 static void bio_alloc_rescue(struct work_struct *work)
341 {
342 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
343 	struct bio *bio;
344 
345 	while (1) {
346 		spin_lock(&bs->rescue_lock);
347 		bio = bio_list_pop(&bs->rescue_list);
348 		spin_unlock(&bs->rescue_lock);
349 
350 		if (!bio)
351 			break;
352 
353 		generic_make_request(bio);
354 	}
355 }
356 
357 static void punt_bios_to_rescuer(struct bio_set *bs)
358 {
359 	struct bio_list punt, nopunt;
360 	struct bio *bio;
361 
362 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
363 		return;
364 	/*
365 	 * In order to guarantee forward progress we must punt only bios that
366 	 * were allocated from this bio_set; otherwise, if there was a bio on
367 	 * there for a stacking driver higher up in the stack, processing it
368 	 * could require allocating bios from this bio_set, and doing that from
369 	 * our own rescuer would be bad.
370 	 *
371 	 * Since bio lists are singly linked, pop them all instead of trying to
372 	 * remove from the middle of the list:
373 	 */
374 
375 	bio_list_init(&punt);
376 	bio_list_init(&nopunt);
377 
378 	while ((bio = bio_list_pop(&current->bio_list[0])))
379 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
380 	current->bio_list[0] = nopunt;
381 
382 	bio_list_init(&nopunt);
383 	while ((bio = bio_list_pop(&current->bio_list[1])))
384 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
385 	current->bio_list[1] = nopunt;
386 
387 	spin_lock(&bs->rescue_lock);
388 	bio_list_merge(&bs->rescue_list, &punt);
389 	spin_unlock(&bs->rescue_lock);
390 
391 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393 
394 /**
395  * bio_alloc_bioset - allocate a bio for I/O
396  * @gfp_mask:   the GFP_* mask given to the slab allocator
397  * @nr_iovecs:	number of iovecs to pre-allocate
398  * @bs:		the bio_set to allocate from.
399  *
400  * Description:
401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402  *   backed by the @bs's mempool.
403  *
404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405  *   always be able to allocate a bio. This is due to the mempool guarantees.
406  *   To make this work, callers must never allocate more than 1 bio at a time
407  *   from this pool. Callers that need to allocate more than 1 bio must always
408  *   submit the previously allocated bio for IO before attempting to allocate
409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
410  *
411  *   Note that when running under generic_make_request() (i.e. any block
412  *   driver), bios are not submitted until after you return - see the code in
413  *   generic_make_request() that converts recursion into iteration, to prevent
414  *   stack overflows.
415  *
416  *   This would normally mean allocating multiple bios under
417  *   generic_make_request() would be susceptible to deadlocks, but we have
418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
419  *   thread.
420  *
421  *   However, we do not guarantee forward progress for allocations from other
422  *   mempools. Doing multiple allocations from the same mempool under
423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
424  *   for per bio allocations.
425  *
426  *   RETURNS:
427  *   Pointer to new bio on success, NULL on failure.
428  */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
430 			     struct bio_set *bs)
431 {
432 	gfp_t saved_gfp = gfp_mask;
433 	unsigned front_pad;
434 	unsigned inline_vecs;
435 	struct bio_vec *bvl = NULL;
436 	struct bio *bio;
437 	void *p;
438 
439 	if (!bs) {
440 		if (nr_iovecs > UIO_MAXIOV)
441 			return NULL;
442 
443 		p = kmalloc(sizeof(struct bio) +
444 			    nr_iovecs * sizeof(struct bio_vec),
445 			    gfp_mask);
446 		front_pad = 0;
447 		inline_vecs = nr_iovecs;
448 	} else {
449 		/* should not use nobvec bioset for nr_iovecs > 0 */
450 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
451 				 nr_iovecs > 0))
452 			return NULL;
453 		/*
454 		 * generic_make_request() converts recursion to iteration; this
455 		 * means if we're running beneath it, any bios we allocate and
456 		 * submit will not be submitted (and thus freed) until after we
457 		 * return.
458 		 *
459 		 * This exposes us to a potential deadlock if we allocate
460 		 * multiple bios from the same bio_set() while running
461 		 * underneath generic_make_request(). If we were to allocate
462 		 * multiple bios (say a stacking block driver that was splitting
463 		 * bios), we would deadlock if we exhausted the mempool's
464 		 * reserve.
465 		 *
466 		 * We solve this, and guarantee forward progress, with a rescuer
467 		 * workqueue per bio_set. If we go to allocate and there are
468 		 * bios on current->bio_list, we first try the allocation
469 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
470 		 * bios we would be blocking to the rescuer workqueue before
471 		 * we retry with the original gfp_flags.
472 		 */
473 
474 		if (current->bio_list &&
475 		    (!bio_list_empty(&current->bio_list[0]) ||
476 		     !bio_list_empty(&current->bio_list[1])) &&
477 		    bs->rescue_workqueue)
478 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
479 
480 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
481 		if (!p && gfp_mask != saved_gfp) {
482 			punt_bios_to_rescuer(bs);
483 			gfp_mask = saved_gfp;
484 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
485 		}
486 
487 		front_pad = bs->front_pad;
488 		inline_vecs = BIO_INLINE_VECS;
489 	}
490 
491 	if (unlikely(!p))
492 		return NULL;
493 
494 	bio = p + front_pad;
495 	bio_init(bio, NULL, 0);
496 
497 	if (nr_iovecs > inline_vecs) {
498 		unsigned long idx = 0;
499 
500 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
501 		if (!bvl && gfp_mask != saved_gfp) {
502 			punt_bios_to_rescuer(bs);
503 			gfp_mask = saved_gfp;
504 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
505 		}
506 
507 		if (unlikely(!bvl))
508 			goto err_free;
509 
510 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
511 	} else if (nr_iovecs) {
512 		bvl = bio->bi_inline_vecs;
513 	}
514 
515 	bio->bi_pool = bs;
516 	bio->bi_max_vecs = nr_iovecs;
517 	bio->bi_io_vec = bvl;
518 	return bio;
519 
520 err_free:
521 	mempool_free(p, &bs->bio_pool);
522 	return NULL;
523 }
524 EXPORT_SYMBOL(bio_alloc_bioset);
525 
526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
527 {
528 	unsigned long flags;
529 	struct bio_vec bv;
530 	struct bvec_iter iter;
531 
532 	__bio_for_each_segment(bv, bio, iter, start) {
533 		char *data = bvec_kmap_irq(&bv, &flags);
534 		memset(data, 0, bv.bv_len);
535 		flush_dcache_page(bv.bv_page);
536 		bvec_kunmap_irq(data, &flags);
537 	}
538 }
539 EXPORT_SYMBOL(zero_fill_bio_iter);
540 
541 /**
542  * bio_truncate - truncate the bio to small size of @new_size
543  * @bio:	the bio to be truncated
544  * @new_size:	new size for truncating the bio
545  *
546  * Description:
547  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
548  *   REQ_OP_READ, zero the truncated part. This function should only
549  *   be used for handling corner cases, such as bio eod.
550  */
551 void bio_truncate(struct bio *bio, unsigned new_size)
552 {
553 	struct bio_vec bv;
554 	struct bvec_iter iter;
555 	unsigned int done = 0;
556 	bool truncated = false;
557 
558 	if (new_size >= bio->bi_iter.bi_size)
559 		return;
560 
561 	if (bio_op(bio) != REQ_OP_READ)
562 		goto exit;
563 
564 	bio_for_each_segment(bv, bio, iter) {
565 		if (done + bv.bv_len > new_size) {
566 			unsigned offset;
567 
568 			if (!truncated)
569 				offset = new_size - done;
570 			else
571 				offset = 0;
572 			zero_user(bv.bv_page, offset, bv.bv_len - offset);
573 			truncated = true;
574 		}
575 		done += bv.bv_len;
576 	}
577 
578  exit:
579 	/*
580 	 * Don't touch bvec table here and make it really immutable, since
581 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
582 	 * in its .end_bio() callback.
583 	 *
584 	 * It is enough to truncate bio by updating .bi_size since we can make
585 	 * correct bvec with the updated .bi_size for drivers.
586 	 */
587 	bio->bi_iter.bi_size = new_size;
588 }
589 
590 /**
591  * bio_put - release a reference to a bio
592  * @bio:   bio to release reference to
593  *
594  * Description:
595  *   Put a reference to a &struct bio, either one you have gotten with
596  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
597  **/
598 void bio_put(struct bio *bio)
599 {
600 	if (!bio_flagged(bio, BIO_REFFED))
601 		bio_free(bio);
602 	else {
603 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
604 
605 		/*
606 		 * last put frees it
607 		 */
608 		if (atomic_dec_and_test(&bio->__bi_cnt))
609 			bio_free(bio);
610 	}
611 }
612 EXPORT_SYMBOL(bio_put);
613 
614 /**
615  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
616  * 	@bio: destination bio
617  * 	@bio_src: bio to clone
618  *
619  *	Clone a &bio. Caller will own the returned bio, but not
620  *	the actual data it points to. Reference count of returned
621  * 	bio will be one.
622  *
623  * 	Caller must ensure that @bio_src is not freed before @bio.
624  */
625 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
626 {
627 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
628 
629 	/*
630 	 * most users will be overriding ->bi_disk with a new target,
631 	 * so we don't set nor calculate new physical/hw segment counts here
632 	 */
633 	bio->bi_disk = bio_src->bi_disk;
634 	bio->bi_partno = bio_src->bi_partno;
635 	bio_set_flag(bio, BIO_CLONED);
636 	if (bio_flagged(bio_src, BIO_THROTTLED))
637 		bio_set_flag(bio, BIO_THROTTLED);
638 	bio->bi_opf = bio_src->bi_opf;
639 	bio->bi_ioprio = bio_src->bi_ioprio;
640 	bio->bi_write_hint = bio_src->bi_write_hint;
641 	bio->bi_iter = bio_src->bi_iter;
642 	bio->bi_io_vec = bio_src->bi_io_vec;
643 
644 	bio_clone_blkg_association(bio, bio_src);
645 	blkcg_bio_issue_init(bio);
646 }
647 EXPORT_SYMBOL(__bio_clone_fast);
648 
649 /**
650  *	bio_clone_fast - clone a bio that shares the original bio's biovec
651  *	@bio: bio to clone
652  *	@gfp_mask: allocation priority
653  *	@bs: bio_set to allocate from
654  *
655  * 	Like __bio_clone_fast, only also allocates the returned bio
656  */
657 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
658 {
659 	struct bio *b;
660 
661 	b = bio_alloc_bioset(gfp_mask, 0, bs);
662 	if (!b)
663 		return NULL;
664 
665 	__bio_clone_fast(b, bio);
666 
667 	if (bio_integrity(bio)) {
668 		int ret;
669 
670 		ret = bio_integrity_clone(b, bio, gfp_mask);
671 
672 		if (ret < 0) {
673 			bio_put(b);
674 			return NULL;
675 		}
676 	}
677 
678 	return b;
679 }
680 EXPORT_SYMBOL(bio_clone_fast);
681 
682 static inline bool page_is_mergeable(const struct bio_vec *bv,
683 		struct page *page, unsigned int len, unsigned int off,
684 		bool *same_page)
685 {
686 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
687 		bv->bv_offset + bv->bv_len - 1;
688 	phys_addr_t page_addr = page_to_phys(page);
689 
690 	if (vec_end_addr + 1 != page_addr + off)
691 		return false;
692 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
693 		return false;
694 
695 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
696 	if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
697 		return false;
698 	return true;
699 }
700 
701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
702 		struct page *page, unsigned len, unsigned offset,
703 		bool *same_page)
704 {
705 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
706 	unsigned long mask = queue_segment_boundary(q);
707 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
708 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
709 
710 	if ((addr1 | mask) != (addr2 | mask))
711 		return false;
712 	if (bv->bv_len + len > queue_max_segment_size(q))
713 		return false;
714 	return __bio_try_merge_page(bio, page, len, offset, same_page);
715 }
716 
717 /**
718  *	__bio_add_pc_page	- attempt to add page to passthrough bio
719  *	@q: the target queue
720  *	@bio: destination bio
721  *	@page: page to add
722  *	@len: vec entry length
723  *	@offset: vec entry offset
724  *	@same_page: return if the merge happen inside the same page
725  *
726  *	Attempt to add a page to the bio_vec maplist. This can fail for a
727  *	number of reasons, such as the bio being full or target block device
728  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
729  *	so it is always possible to add a single page to an empty bio.
730  *
731  *	This should only be used by passthrough bios.
732  */
733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
734 		struct page *page, unsigned int len, unsigned int offset,
735 		bool *same_page)
736 {
737 	struct bio_vec *bvec;
738 
739 	/*
740 	 * cloned bio must not modify vec list
741 	 */
742 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
743 		return 0;
744 
745 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
746 		return 0;
747 
748 	if (bio->bi_vcnt > 0) {
749 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
750 			return len;
751 
752 		/*
753 		 * If the queue doesn't support SG gaps and adding this segment
754 		 * would create a gap, disallow it.
755 		 */
756 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
757 		if (bvec_gap_to_prev(q, bvec, offset))
758 			return 0;
759 	}
760 
761 	if (bio_full(bio, len))
762 		return 0;
763 
764 	if (bio->bi_vcnt >= queue_max_segments(q))
765 		return 0;
766 
767 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
768 	bvec->bv_page = page;
769 	bvec->bv_len = len;
770 	bvec->bv_offset = offset;
771 	bio->bi_vcnt++;
772 	bio->bi_iter.bi_size += len;
773 	return len;
774 }
775 
776 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
777 		struct page *page, unsigned int len, unsigned int offset)
778 {
779 	bool same_page = false;
780 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
781 }
782 EXPORT_SYMBOL(bio_add_pc_page);
783 
784 /**
785  * __bio_try_merge_page - try appending data to an existing bvec.
786  * @bio: destination bio
787  * @page: start page to add
788  * @len: length of the data to add
789  * @off: offset of the data relative to @page
790  * @same_page: return if the segment has been merged inside the same page
791  *
792  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
793  * a useful optimisation for file systems with a block size smaller than the
794  * page size.
795  *
796  * Warn if (@len, @off) crosses pages in case that @same_page is true.
797  *
798  * Return %true on success or %false on failure.
799  */
800 bool __bio_try_merge_page(struct bio *bio, struct page *page,
801 		unsigned int len, unsigned int off, bool *same_page)
802 {
803 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
804 		return false;
805 
806 	if (bio->bi_vcnt > 0) {
807 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
808 
809 		if (page_is_mergeable(bv, page, len, off, same_page)) {
810 			if (bio->bi_iter.bi_size > UINT_MAX - len)
811 				return false;
812 			bv->bv_len += len;
813 			bio->bi_iter.bi_size += len;
814 			return true;
815 		}
816 	}
817 	return false;
818 }
819 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
820 
821 /**
822  * __bio_add_page - add page(s) to a bio in a new segment
823  * @bio: destination bio
824  * @page: start page to add
825  * @len: length of the data to add, may cross pages
826  * @off: offset of the data relative to @page, may cross pages
827  *
828  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
829  * that @bio has space for another bvec.
830  */
831 void __bio_add_page(struct bio *bio, struct page *page,
832 		unsigned int len, unsigned int off)
833 {
834 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
835 
836 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
837 	WARN_ON_ONCE(bio_full(bio, len));
838 
839 	bv->bv_page = page;
840 	bv->bv_offset = off;
841 	bv->bv_len = len;
842 
843 	bio->bi_iter.bi_size += len;
844 	bio->bi_vcnt++;
845 
846 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
847 		bio_set_flag(bio, BIO_WORKINGSET);
848 }
849 EXPORT_SYMBOL_GPL(__bio_add_page);
850 
851 /**
852  *	bio_add_page	-	attempt to add page(s) to bio
853  *	@bio: destination bio
854  *	@page: start page to add
855  *	@len: vec entry length, may cross pages
856  *	@offset: vec entry offset relative to @page, may cross pages
857  *
858  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
859  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
860  */
861 int bio_add_page(struct bio *bio, struct page *page,
862 		 unsigned int len, unsigned int offset)
863 {
864 	bool same_page = false;
865 
866 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
867 		if (bio_full(bio, len))
868 			return 0;
869 		__bio_add_page(bio, page, len, offset);
870 	}
871 	return len;
872 }
873 EXPORT_SYMBOL(bio_add_page);
874 
875 void bio_release_pages(struct bio *bio, bool mark_dirty)
876 {
877 	struct bvec_iter_all iter_all;
878 	struct bio_vec *bvec;
879 
880 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
881 		return;
882 
883 	bio_for_each_segment_all(bvec, bio, iter_all) {
884 		if (mark_dirty && !PageCompound(bvec->bv_page))
885 			set_page_dirty_lock(bvec->bv_page);
886 		put_page(bvec->bv_page);
887 	}
888 }
889 
890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
891 {
892 	const struct bio_vec *bv = iter->bvec;
893 	unsigned int len;
894 	size_t size;
895 
896 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
897 		return -EINVAL;
898 
899 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
900 	size = bio_add_page(bio, bv->bv_page, len,
901 				bv->bv_offset + iter->iov_offset);
902 	if (unlikely(size != len))
903 		return -EINVAL;
904 	iov_iter_advance(iter, size);
905 	return 0;
906 }
907 
908 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
909 
910 /**
911  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
912  * @bio: bio to add pages to
913  * @iter: iov iterator describing the region to be mapped
914  *
915  * Pins pages from *iter and appends them to @bio's bvec array. The
916  * pages will have to be released using put_page() when done.
917  * For multi-segment *iter, this function only adds pages from the
918  * the next non-empty segment of the iov iterator.
919  */
920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
921 {
922 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
923 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
924 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
925 	struct page **pages = (struct page **)bv;
926 	bool same_page = false;
927 	ssize_t size, left;
928 	unsigned len, i;
929 	size_t offset;
930 
931 	/*
932 	 * Move page array up in the allocated memory for the bio vecs as far as
933 	 * possible so that we can start filling biovecs from the beginning
934 	 * without overwriting the temporary page array.
935 	*/
936 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
937 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
938 
939 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
940 	if (unlikely(size <= 0))
941 		return size ? size : -EFAULT;
942 
943 	for (left = size, i = 0; left > 0; left -= len, i++) {
944 		struct page *page = pages[i];
945 
946 		len = min_t(size_t, PAGE_SIZE - offset, left);
947 
948 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
949 			if (same_page)
950 				put_page(page);
951 		} else {
952 			if (WARN_ON_ONCE(bio_full(bio, len)))
953                                 return -EINVAL;
954 			__bio_add_page(bio, page, len, offset);
955 		}
956 		offset = 0;
957 	}
958 
959 	iov_iter_advance(iter, size);
960 	return 0;
961 }
962 
963 /**
964  * bio_iov_iter_get_pages - add user or kernel pages to a bio
965  * @bio: bio to add pages to
966  * @iter: iov iterator describing the region to be added
967  *
968  * This takes either an iterator pointing to user memory, or one pointing to
969  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
970  * map them into the kernel. On IO completion, the caller should put those
971  * pages. If we're adding kernel pages, and the caller told us it's safe to
972  * do so, we just have to add the pages to the bio directly. We don't grab an
973  * extra reference to those pages (the user should already have that), and we
974  * don't put the page on IO completion. The caller needs to check if the bio is
975  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
976  * released.
977  *
978  * The function tries, but does not guarantee, to pin as many pages as
979  * fit into the bio, or are requested in *iter, whatever is smaller. If
980  * MM encounters an error pinning the requested pages, it stops. Error
981  * is returned only if 0 pages could be pinned.
982  */
983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
984 {
985 	const bool is_bvec = iov_iter_is_bvec(iter);
986 	int ret;
987 
988 	if (WARN_ON_ONCE(bio->bi_vcnt))
989 		return -EINVAL;
990 
991 	do {
992 		if (is_bvec)
993 			ret = __bio_iov_bvec_add_pages(bio, iter);
994 		else
995 			ret = __bio_iov_iter_get_pages(bio, iter);
996 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
997 
998 	if (is_bvec)
999 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1000 	return bio->bi_vcnt ? 0 : ret;
1001 }
1002 
1003 static void submit_bio_wait_endio(struct bio *bio)
1004 {
1005 	complete(bio->bi_private);
1006 }
1007 
1008 /**
1009  * submit_bio_wait - submit a bio, and wait until it completes
1010  * @bio: The &struct bio which describes the I/O
1011  *
1012  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013  * bio_endio() on failure.
1014  *
1015  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016  * result in bio reference to be consumed. The caller must drop the reference
1017  * on his own.
1018  */
1019 int submit_bio_wait(struct bio *bio)
1020 {
1021 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022 
1023 	bio->bi_private = &done;
1024 	bio->bi_end_io = submit_bio_wait_endio;
1025 	bio->bi_opf |= REQ_SYNC;
1026 	submit_bio(bio);
1027 	wait_for_completion_io(&done);
1028 
1029 	return blk_status_to_errno(bio->bi_status);
1030 }
1031 EXPORT_SYMBOL(submit_bio_wait);
1032 
1033 /**
1034  * bio_advance - increment/complete a bio by some number of bytes
1035  * @bio:	bio to advance
1036  * @bytes:	number of bytes to complete
1037  *
1038  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040  * be updated on the last bvec as well.
1041  *
1042  * @bio will then represent the remaining, uncompleted portion of the io.
1043  */
1044 void bio_advance(struct bio *bio, unsigned bytes)
1045 {
1046 	if (bio_integrity(bio))
1047 		bio_integrity_advance(bio, bytes);
1048 
1049 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1050 }
1051 EXPORT_SYMBOL(bio_advance);
1052 
1053 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1054 			struct bio *src, struct bvec_iter *src_iter)
1055 {
1056 	struct bio_vec src_bv, dst_bv;
1057 	void *src_p, *dst_p;
1058 	unsigned bytes;
1059 
1060 	while (src_iter->bi_size && dst_iter->bi_size) {
1061 		src_bv = bio_iter_iovec(src, *src_iter);
1062 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1063 
1064 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065 
1066 		src_p = kmap_atomic(src_bv.bv_page);
1067 		dst_p = kmap_atomic(dst_bv.bv_page);
1068 
1069 		memcpy(dst_p + dst_bv.bv_offset,
1070 		       src_p + src_bv.bv_offset,
1071 		       bytes);
1072 
1073 		kunmap_atomic(dst_p);
1074 		kunmap_atomic(src_p);
1075 
1076 		flush_dcache_page(dst_bv.bv_page);
1077 
1078 		bio_advance_iter(src, src_iter, bytes);
1079 		bio_advance_iter(dst, dst_iter, bytes);
1080 	}
1081 }
1082 EXPORT_SYMBOL(bio_copy_data_iter);
1083 
1084 /**
1085  * bio_copy_data - copy contents of data buffers from one bio to another
1086  * @src: source bio
1087  * @dst: destination bio
1088  *
1089  * Stops when it reaches the end of either @src or @dst - that is, copies
1090  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1091  */
1092 void bio_copy_data(struct bio *dst, struct bio *src)
1093 {
1094 	struct bvec_iter src_iter = src->bi_iter;
1095 	struct bvec_iter dst_iter = dst->bi_iter;
1096 
1097 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1098 }
1099 EXPORT_SYMBOL(bio_copy_data);
1100 
1101 /**
1102  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1103  * another
1104  * @src: source bio list
1105  * @dst: destination bio list
1106  *
1107  * Stops when it reaches the end of either the @src list or @dst list - that is,
1108  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1109  * bios).
1110  */
1111 void bio_list_copy_data(struct bio *dst, struct bio *src)
1112 {
1113 	struct bvec_iter src_iter = src->bi_iter;
1114 	struct bvec_iter dst_iter = dst->bi_iter;
1115 
1116 	while (1) {
1117 		if (!src_iter.bi_size) {
1118 			src = src->bi_next;
1119 			if (!src)
1120 				break;
1121 
1122 			src_iter = src->bi_iter;
1123 		}
1124 
1125 		if (!dst_iter.bi_size) {
1126 			dst = dst->bi_next;
1127 			if (!dst)
1128 				break;
1129 
1130 			dst_iter = dst->bi_iter;
1131 		}
1132 
1133 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1134 	}
1135 }
1136 EXPORT_SYMBOL(bio_list_copy_data);
1137 
1138 struct bio_map_data {
1139 	int is_our_pages;
1140 	struct iov_iter iter;
1141 	struct iovec iov[];
1142 };
1143 
1144 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1145 					       gfp_t gfp_mask)
1146 {
1147 	struct bio_map_data *bmd;
1148 	if (data->nr_segs > UIO_MAXIOV)
1149 		return NULL;
1150 
1151 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1152 	if (!bmd)
1153 		return NULL;
1154 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1155 	bmd->iter = *data;
1156 	bmd->iter.iov = bmd->iov;
1157 	return bmd;
1158 }
1159 
1160 /**
1161  * bio_copy_from_iter - copy all pages from iov_iter to bio
1162  * @bio: The &struct bio which describes the I/O as destination
1163  * @iter: iov_iter as source
1164  *
1165  * Copy all pages from iov_iter to bio.
1166  * Returns 0 on success, or error on failure.
1167  */
1168 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1169 {
1170 	struct bio_vec *bvec;
1171 	struct bvec_iter_all iter_all;
1172 
1173 	bio_for_each_segment_all(bvec, bio, iter_all) {
1174 		ssize_t ret;
1175 
1176 		ret = copy_page_from_iter(bvec->bv_page,
1177 					  bvec->bv_offset,
1178 					  bvec->bv_len,
1179 					  iter);
1180 
1181 		if (!iov_iter_count(iter))
1182 			break;
1183 
1184 		if (ret < bvec->bv_len)
1185 			return -EFAULT;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 /**
1192  * bio_copy_to_iter - copy all pages from bio to iov_iter
1193  * @bio: The &struct bio which describes the I/O as source
1194  * @iter: iov_iter as destination
1195  *
1196  * Copy all pages from bio to iov_iter.
1197  * Returns 0 on success, or error on failure.
1198  */
1199 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1200 {
1201 	struct bio_vec *bvec;
1202 	struct bvec_iter_all iter_all;
1203 
1204 	bio_for_each_segment_all(bvec, bio, iter_all) {
1205 		ssize_t ret;
1206 
1207 		ret = copy_page_to_iter(bvec->bv_page,
1208 					bvec->bv_offset,
1209 					bvec->bv_len,
1210 					&iter);
1211 
1212 		if (!iov_iter_count(&iter))
1213 			break;
1214 
1215 		if (ret < bvec->bv_len)
1216 			return -EFAULT;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 void bio_free_pages(struct bio *bio)
1223 {
1224 	struct bio_vec *bvec;
1225 	struct bvec_iter_all iter_all;
1226 
1227 	bio_for_each_segment_all(bvec, bio, iter_all)
1228 		__free_page(bvec->bv_page);
1229 }
1230 EXPORT_SYMBOL(bio_free_pages);
1231 
1232 /**
1233  *	bio_uncopy_user	-	finish previously mapped bio
1234  *	@bio: bio being terminated
1235  *
1236  *	Free pages allocated from bio_copy_user_iov() and write back data
1237  *	to user space in case of a read.
1238  */
1239 int bio_uncopy_user(struct bio *bio)
1240 {
1241 	struct bio_map_data *bmd = bio->bi_private;
1242 	int ret = 0;
1243 
1244 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1245 		/*
1246 		 * if we're in a workqueue, the request is orphaned, so
1247 		 * don't copy into a random user address space, just free
1248 		 * and return -EINTR so user space doesn't expect any data.
1249 		 */
1250 		if (!current->mm)
1251 			ret = -EINTR;
1252 		else if (bio_data_dir(bio) == READ)
1253 			ret = bio_copy_to_iter(bio, bmd->iter);
1254 		if (bmd->is_our_pages)
1255 			bio_free_pages(bio);
1256 	}
1257 	kfree(bmd);
1258 	bio_put(bio);
1259 	return ret;
1260 }
1261 
1262 /**
1263  *	bio_copy_user_iov	-	copy user data to bio
1264  *	@q:		destination block queue
1265  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1266  *	@iter:		iovec iterator
1267  *	@gfp_mask:	memory allocation flags
1268  *
1269  *	Prepares and returns a bio for indirect user io, bouncing data
1270  *	to/from kernel pages as necessary. Must be paired with
1271  *	call bio_uncopy_user() on io completion.
1272  */
1273 struct bio *bio_copy_user_iov(struct request_queue *q,
1274 			      struct rq_map_data *map_data,
1275 			      struct iov_iter *iter,
1276 			      gfp_t gfp_mask)
1277 {
1278 	struct bio_map_data *bmd;
1279 	struct page *page;
1280 	struct bio *bio;
1281 	int i = 0, ret;
1282 	int nr_pages;
1283 	unsigned int len = iter->count;
1284 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1285 
1286 	bmd = bio_alloc_map_data(iter, gfp_mask);
1287 	if (!bmd)
1288 		return ERR_PTR(-ENOMEM);
1289 
1290 	/*
1291 	 * We need to do a deep copy of the iov_iter including the iovecs.
1292 	 * The caller provided iov might point to an on-stack or otherwise
1293 	 * shortlived one.
1294 	 */
1295 	bmd->is_our_pages = map_data ? 0 : 1;
1296 
1297 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1298 	if (nr_pages > BIO_MAX_PAGES)
1299 		nr_pages = BIO_MAX_PAGES;
1300 
1301 	ret = -ENOMEM;
1302 	bio = bio_kmalloc(gfp_mask, nr_pages);
1303 	if (!bio)
1304 		goto out_bmd;
1305 
1306 	ret = 0;
1307 
1308 	if (map_data) {
1309 		nr_pages = 1 << map_data->page_order;
1310 		i = map_data->offset / PAGE_SIZE;
1311 	}
1312 	while (len) {
1313 		unsigned int bytes = PAGE_SIZE;
1314 
1315 		bytes -= offset;
1316 
1317 		if (bytes > len)
1318 			bytes = len;
1319 
1320 		if (map_data) {
1321 			if (i == map_data->nr_entries * nr_pages) {
1322 				ret = -ENOMEM;
1323 				break;
1324 			}
1325 
1326 			page = map_data->pages[i / nr_pages];
1327 			page += (i % nr_pages);
1328 
1329 			i++;
1330 		} else {
1331 			page = alloc_page(q->bounce_gfp | gfp_mask);
1332 			if (!page) {
1333 				ret = -ENOMEM;
1334 				break;
1335 			}
1336 		}
1337 
1338 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1339 			if (!map_data)
1340 				__free_page(page);
1341 			break;
1342 		}
1343 
1344 		len -= bytes;
1345 		offset = 0;
1346 	}
1347 
1348 	if (ret)
1349 		goto cleanup;
1350 
1351 	if (map_data)
1352 		map_data->offset += bio->bi_iter.bi_size;
1353 
1354 	/*
1355 	 * success
1356 	 */
1357 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1358 	    (map_data && map_data->from_user)) {
1359 		ret = bio_copy_from_iter(bio, iter);
1360 		if (ret)
1361 			goto cleanup;
1362 	} else {
1363 		if (bmd->is_our_pages)
1364 			zero_fill_bio(bio);
1365 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1366 	}
1367 
1368 	bio->bi_private = bmd;
1369 	if (map_data && map_data->null_mapped)
1370 		bio_set_flag(bio, BIO_NULL_MAPPED);
1371 	return bio;
1372 cleanup:
1373 	if (!map_data)
1374 		bio_free_pages(bio);
1375 	bio_put(bio);
1376 out_bmd:
1377 	kfree(bmd);
1378 	return ERR_PTR(ret);
1379 }
1380 
1381 /**
1382  *	bio_map_user_iov - map user iovec into bio
1383  *	@q:		the struct request_queue for the bio
1384  *	@iter:		iovec iterator
1385  *	@gfp_mask:	memory allocation flags
1386  *
1387  *	Map the user space address into a bio suitable for io to a block
1388  *	device. Returns an error pointer in case of error.
1389  */
1390 struct bio *bio_map_user_iov(struct request_queue *q,
1391 			     struct iov_iter *iter,
1392 			     gfp_t gfp_mask)
1393 {
1394 	int j;
1395 	struct bio *bio;
1396 	int ret;
1397 
1398 	if (!iov_iter_count(iter))
1399 		return ERR_PTR(-EINVAL);
1400 
1401 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1402 	if (!bio)
1403 		return ERR_PTR(-ENOMEM);
1404 
1405 	while (iov_iter_count(iter)) {
1406 		struct page **pages;
1407 		ssize_t bytes;
1408 		size_t offs, added = 0;
1409 		int npages;
1410 
1411 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1412 		if (unlikely(bytes <= 0)) {
1413 			ret = bytes ? bytes : -EFAULT;
1414 			goto out_unmap;
1415 		}
1416 
1417 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1418 
1419 		if (unlikely(offs & queue_dma_alignment(q))) {
1420 			ret = -EINVAL;
1421 			j = 0;
1422 		} else {
1423 			for (j = 0; j < npages; j++) {
1424 				struct page *page = pages[j];
1425 				unsigned int n = PAGE_SIZE - offs;
1426 				bool same_page = false;
1427 
1428 				if (n > bytes)
1429 					n = bytes;
1430 
1431 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1432 						&same_page)) {
1433 					if (same_page)
1434 						put_page(page);
1435 					break;
1436 				}
1437 
1438 				added += n;
1439 				bytes -= n;
1440 				offs = 0;
1441 			}
1442 			iov_iter_advance(iter, added);
1443 		}
1444 		/*
1445 		 * release the pages we didn't map into the bio, if any
1446 		 */
1447 		while (j < npages)
1448 			put_page(pages[j++]);
1449 		kvfree(pages);
1450 		/* couldn't stuff something into bio? */
1451 		if (bytes)
1452 			break;
1453 	}
1454 
1455 	bio_set_flag(bio, BIO_USER_MAPPED);
1456 
1457 	/*
1458 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1459 	 * it would normally disappear when its bi_end_io is run.
1460 	 * however, we need it for the unmap, so grab an extra
1461 	 * reference to it
1462 	 */
1463 	bio_get(bio);
1464 	return bio;
1465 
1466  out_unmap:
1467 	bio_release_pages(bio, false);
1468 	bio_put(bio);
1469 	return ERR_PTR(ret);
1470 }
1471 
1472 /**
1473  *	bio_unmap_user	-	unmap a bio
1474  *	@bio:		the bio being unmapped
1475  *
1476  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477  *	process context.
1478  *
1479  *	bio_unmap_user() may sleep.
1480  */
1481 void bio_unmap_user(struct bio *bio)
1482 {
1483 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1484 	bio_put(bio);
1485 	bio_put(bio);
1486 }
1487 
1488 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1489 {
1490 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1491 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1492 		unsigned long i, len = 0;
1493 
1494 		for (i = 0; i < bio->bi_vcnt; i++)
1495 			len += bio->bi_io_vec[i].bv_len;
1496 		invalidate_kernel_vmap_range(bio->bi_private, len);
1497 	}
1498 #endif
1499 }
1500 
1501 static void bio_map_kern_endio(struct bio *bio)
1502 {
1503 	bio_invalidate_vmalloc_pages(bio);
1504 	bio_put(bio);
1505 }
1506 
1507 /**
1508  *	bio_map_kern	-	map kernel address into bio
1509  *	@q: the struct request_queue for the bio
1510  *	@data: pointer to buffer to map
1511  *	@len: length in bytes
1512  *	@gfp_mask: allocation flags for bio allocation
1513  *
1514  *	Map the kernel address into a bio suitable for io to a block
1515  *	device. Returns an error pointer in case of error.
1516  */
1517 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518 			 gfp_t gfp_mask)
1519 {
1520 	unsigned long kaddr = (unsigned long)data;
1521 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522 	unsigned long start = kaddr >> PAGE_SHIFT;
1523 	const int nr_pages = end - start;
1524 	bool is_vmalloc = is_vmalloc_addr(data);
1525 	struct page *page;
1526 	int offset, i;
1527 	struct bio *bio;
1528 
1529 	bio = bio_kmalloc(gfp_mask, nr_pages);
1530 	if (!bio)
1531 		return ERR_PTR(-ENOMEM);
1532 
1533 	if (is_vmalloc) {
1534 		flush_kernel_vmap_range(data, len);
1535 		bio->bi_private = data;
1536 	}
1537 
1538 	offset = offset_in_page(kaddr);
1539 	for (i = 0; i < nr_pages; i++) {
1540 		unsigned int bytes = PAGE_SIZE - offset;
1541 
1542 		if (len <= 0)
1543 			break;
1544 
1545 		if (bytes > len)
1546 			bytes = len;
1547 
1548 		if (!is_vmalloc)
1549 			page = virt_to_page(data);
1550 		else
1551 			page = vmalloc_to_page(data);
1552 		if (bio_add_pc_page(q, bio, page, bytes,
1553 				    offset) < bytes) {
1554 			/* we don't support partial mappings */
1555 			bio_put(bio);
1556 			return ERR_PTR(-EINVAL);
1557 		}
1558 
1559 		data += bytes;
1560 		len -= bytes;
1561 		offset = 0;
1562 	}
1563 
1564 	bio->bi_end_io = bio_map_kern_endio;
1565 	return bio;
1566 }
1567 
1568 static void bio_copy_kern_endio(struct bio *bio)
1569 {
1570 	bio_free_pages(bio);
1571 	bio_put(bio);
1572 }
1573 
1574 static void bio_copy_kern_endio_read(struct bio *bio)
1575 {
1576 	char *p = bio->bi_private;
1577 	struct bio_vec *bvec;
1578 	struct bvec_iter_all iter_all;
1579 
1580 	bio_for_each_segment_all(bvec, bio, iter_all) {
1581 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1582 		p += bvec->bv_len;
1583 	}
1584 
1585 	bio_copy_kern_endio(bio);
1586 }
1587 
1588 /**
1589  *	bio_copy_kern	-	copy kernel address into bio
1590  *	@q: the struct request_queue for the bio
1591  *	@data: pointer to buffer to copy
1592  *	@len: length in bytes
1593  *	@gfp_mask: allocation flags for bio and page allocation
1594  *	@reading: data direction is READ
1595  *
1596  *	copy the kernel address into a bio suitable for io to a block
1597  *	device. Returns an error pointer in case of error.
1598  */
1599 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1600 			  gfp_t gfp_mask, int reading)
1601 {
1602 	unsigned long kaddr = (unsigned long)data;
1603 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1604 	unsigned long start = kaddr >> PAGE_SHIFT;
1605 	struct bio *bio;
1606 	void *p = data;
1607 	int nr_pages = 0;
1608 
1609 	/*
1610 	 * Overflow, abort
1611 	 */
1612 	if (end < start)
1613 		return ERR_PTR(-EINVAL);
1614 
1615 	nr_pages = end - start;
1616 	bio = bio_kmalloc(gfp_mask, nr_pages);
1617 	if (!bio)
1618 		return ERR_PTR(-ENOMEM);
1619 
1620 	while (len) {
1621 		struct page *page;
1622 		unsigned int bytes = PAGE_SIZE;
1623 
1624 		if (bytes > len)
1625 			bytes = len;
1626 
1627 		page = alloc_page(q->bounce_gfp | gfp_mask);
1628 		if (!page)
1629 			goto cleanup;
1630 
1631 		if (!reading)
1632 			memcpy(page_address(page), p, bytes);
1633 
1634 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1635 			break;
1636 
1637 		len -= bytes;
1638 		p += bytes;
1639 	}
1640 
1641 	if (reading) {
1642 		bio->bi_end_io = bio_copy_kern_endio_read;
1643 		bio->bi_private = data;
1644 	} else {
1645 		bio->bi_end_io = bio_copy_kern_endio;
1646 	}
1647 
1648 	return bio;
1649 
1650 cleanup:
1651 	bio_free_pages(bio);
1652 	bio_put(bio);
1653 	return ERR_PTR(-ENOMEM);
1654 }
1655 
1656 /*
1657  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1658  * for performing direct-IO in BIOs.
1659  *
1660  * The problem is that we cannot run set_page_dirty() from interrupt context
1661  * because the required locks are not interrupt-safe.  So what we can do is to
1662  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1663  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1664  * in process context.
1665  *
1666  * We special-case compound pages here: normally this means reads into hugetlb
1667  * pages.  The logic in here doesn't really work right for compound pages
1668  * because the VM does not uniformly chase down the head page in all cases.
1669  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1670  * handle them at all.  So we skip compound pages here at an early stage.
1671  *
1672  * Note that this code is very hard to test under normal circumstances because
1673  * direct-io pins the pages with get_user_pages().  This makes
1674  * is_page_cache_freeable return false, and the VM will not clean the pages.
1675  * But other code (eg, flusher threads) could clean the pages if they are mapped
1676  * pagecache.
1677  *
1678  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1679  * deferred bio dirtying paths.
1680  */
1681 
1682 /*
1683  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1684  */
1685 void bio_set_pages_dirty(struct bio *bio)
1686 {
1687 	struct bio_vec *bvec;
1688 	struct bvec_iter_all iter_all;
1689 
1690 	bio_for_each_segment_all(bvec, bio, iter_all) {
1691 		if (!PageCompound(bvec->bv_page))
1692 			set_page_dirty_lock(bvec->bv_page);
1693 	}
1694 }
1695 
1696 /*
1697  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1698  * If they are, then fine.  If, however, some pages are clean then they must
1699  * have been written out during the direct-IO read.  So we take another ref on
1700  * the BIO and re-dirty the pages in process context.
1701  *
1702  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1703  * here on.  It will run one put_page() against each page and will run one
1704  * bio_put() against the BIO.
1705  */
1706 
1707 static void bio_dirty_fn(struct work_struct *work);
1708 
1709 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1710 static DEFINE_SPINLOCK(bio_dirty_lock);
1711 static struct bio *bio_dirty_list;
1712 
1713 /*
1714  * This runs in process context
1715  */
1716 static void bio_dirty_fn(struct work_struct *work)
1717 {
1718 	struct bio *bio, *next;
1719 
1720 	spin_lock_irq(&bio_dirty_lock);
1721 	next = bio_dirty_list;
1722 	bio_dirty_list = NULL;
1723 	spin_unlock_irq(&bio_dirty_lock);
1724 
1725 	while ((bio = next) != NULL) {
1726 		next = bio->bi_private;
1727 
1728 		bio_release_pages(bio, true);
1729 		bio_put(bio);
1730 	}
1731 }
1732 
1733 void bio_check_pages_dirty(struct bio *bio)
1734 {
1735 	struct bio_vec *bvec;
1736 	unsigned long flags;
1737 	struct bvec_iter_all iter_all;
1738 
1739 	bio_for_each_segment_all(bvec, bio, iter_all) {
1740 		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1741 			goto defer;
1742 	}
1743 
1744 	bio_release_pages(bio, false);
1745 	bio_put(bio);
1746 	return;
1747 defer:
1748 	spin_lock_irqsave(&bio_dirty_lock, flags);
1749 	bio->bi_private = bio_dirty_list;
1750 	bio_dirty_list = bio;
1751 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1752 	schedule_work(&bio_dirty_work);
1753 }
1754 
1755 void update_io_ticks(struct hd_struct *part, unsigned long now)
1756 {
1757 	unsigned long stamp;
1758 again:
1759 	stamp = READ_ONCE(part->stamp);
1760 	if (unlikely(stamp != now)) {
1761 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1762 			__part_stat_add(part, io_ticks, 1);
1763 		}
1764 	}
1765 	if (part->partno) {
1766 		part = &part_to_disk(part)->part0;
1767 		goto again;
1768 	}
1769 }
1770 
1771 void generic_start_io_acct(struct request_queue *q, int op,
1772 			   unsigned long sectors, struct hd_struct *part)
1773 {
1774 	const int sgrp = op_stat_group(op);
1775 
1776 	part_stat_lock();
1777 
1778 	update_io_ticks(part, jiffies);
1779 	part_stat_inc(part, ios[sgrp]);
1780 	part_stat_add(part, sectors[sgrp], sectors);
1781 	part_inc_in_flight(q, part, op_is_write(op));
1782 
1783 	part_stat_unlock();
1784 }
1785 EXPORT_SYMBOL(generic_start_io_acct);
1786 
1787 void generic_end_io_acct(struct request_queue *q, int req_op,
1788 			 struct hd_struct *part, unsigned long start_time)
1789 {
1790 	unsigned long now = jiffies;
1791 	unsigned long duration = now - start_time;
1792 	const int sgrp = op_stat_group(req_op);
1793 
1794 	part_stat_lock();
1795 
1796 	update_io_ticks(part, now);
1797 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1798 	part_stat_add(part, time_in_queue, duration);
1799 	part_dec_in_flight(q, part, op_is_write(req_op));
1800 
1801 	part_stat_unlock();
1802 }
1803 EXPORT_SYMBOL(generic_end_io_acct);
1804 
1805 static inline bool bio_remaining_done(struct bio *bio)
1806 {
1807 	/*
1808 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1809 	 * we always end io on the first invocation.
1810 	 */
1811 	if (!bio_flagged(bio, BIO_CHAIN))
1812 		return true;
1813 
1814 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1815 
1816 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1817 		bio_clear_flag(bio, BIO_CHAIN);
1818 		return true;
1819 	}
1820 
1821 	return false;
1822 }
1823 
1824 /**
1825  * bio_endio - end I/O on a bio
1826  * @bio:	bio
1827  *
1828  * Description:
1829  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1830  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1831  *   bio unless they own it and thus know that it has an end_io function.
1832  *
1833  *   bio_endio() can be called several times on a bio that has been chained
1834  *   using bio_chain().  The ->bi_end_io() function will only be called the
1835  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1836  *   generated if BIO_TRACE_COMPLETION is set.
1837  **/
1838 void bio_endio(struct bio *bio)
1839 {
1840 again:
1841 	if (!bio_remaining_done(bio))
1842 		return;
1843 	if (!bio_integrity_endio(bio))
1844 		return;
1845 
1846 	if (bio->bi_disk)
1847 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1848 
1849 	/*
1850 	 * Need to have a real endio function for chained bios, otherwise
1851 	 * various corner cases will break (like stacking block devices that
1852 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1853 	 * recursion and blowing the stack. Tail call optimization would
1854 	 * handle this, but compiling with frame pointers also disables
1855 	 * gcc's sibling call optimization.
1856 	 */
1857 	if (bio->bi_end_io == bio_chain_endio) {
1858 		bio = __bio_chain_endio(bio);
1859 		goto again;
1860 	}
1861 
1862 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1863 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1864 					 blk_status_to_errno(bio->bi_status));
1865 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1866 	}
1867 
1868 	blk_throtl_bio_endio(bio);
1869 	/* release cgroup info */
1870 	bio_uninit(bio);
1871 	if (bio->bi_end_io)
1872 		bio->bi_end_io(bio);
1873 }
1874 EXPORT_SYMBOL(bio_endio);
1875 
1876 /**
1877  * bio_split - split a bio
1878  * @bio:	bio to split
1879  * @sectors:	number of sectors to split from the front of @bio
1880  * @gfp:	gfp mask
1881  * @bs:		bio set to allocate from
1882  *
1883  * Allocates and returns a new bio which represents @sectors from the start of
1884  * @bio, and updates @bio to represent the remaining sectors.
1885  *
1886  * Unless this is a discard request the newly allocated bio will point
1887  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1888  * neither @bio nor @bs are freed before the split bio.
1889  */
1890 struct bio *bio_split(struct bio *bio, int sectors,
1891 		      gfp_t gfp, struct bio_set *bs)
1892 {
1893 	struct bio *split;
1894 
1895 	BUG_ON(sectors <= 0);
1896 	BUG_ON(sectors >= bio_sectors(bio));
1897 
1898 	split = bio_clone_fast(bio, gfp, bs);
1899 	if (!split)
1900 		return NULL;
1901 
1902 	split->bi_iter.bi_size = sectors << 9;
1903 
1904 	if (bio_integrity(split))
1905 		bio_integrity_trim(split);
1906 
1907 	bio_advance(bio, split->bi_iter.bi_size);
1908 
1909 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1910 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1911 
1912 	return split;
1913 }
1914 EXPORT_SYMBOL(bio_split);
1915 
1916 /**
1917  * bio_trim - trim a bio
1918  * @bio:	bio to trim
1919  * @offset:	number of sectors to trim from the front of @bio
1920  * @size:	size we want to trim @bio to, in sectors
1921  */
1922 void bio_trim(struct bio *bio, int offset, int size)
1923 {
1924 	/* 'bio' is a cloned bio which we need to trim to match
1925 	 * the given offset and size.
1926 	 */
1927 
1928 	size <<= 9;
1929 	if (offset == 0 && size == bio->bi_iter.bi_size)
1930 		return;
1931 
1932 	bio_advance(bio, offset << 9);
1933 	bio->bi_iter.bi_size = size;
1934 
1935 	if (bio_integrity(bio))
1936 		bio_integrity_trim(bio);
1937 
1938 }
1939 EXPORT_SYMBOL_GPL(bio_trim);
1940 
1941 /*
1942  * create memory pools for biovec's in a bio_set.
1943  * use the global biovec slabs created for general use.
1944  */
1945 int biovec_init_pool(mempool_t *pool, int pool_entries)
1946 {
1947 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1948 
1949 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1950 }
1951 
1952 /*
1953  * bioset_exit - exit a bioset initialized with bioset_init()
1954  *
1955  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1956  * kzalloc()).
1957  */
1958 void bioset_exit(struct bio_set *bs)
1959 {
1960 	if (bs->rescue_workqueue)
1961 		destroy_workqueue(bs->rescue_workqueue);
1962 	bs->rescue_workqueue = NULL;
1963 
1964 	mempool_exit(&bs->bio_pool);
1965 	mempool_exit(&bs->bvec_pool);
1966 
1967 	bioset_integrity_free(bs);
1968 	if (bs->bio_slab)
1969 		bio_put_slab(bs);
1970 	bs->bio_slab = NULL;
1971 }
1972 EXPORT_SYMBOL(bioset_exit);
1973 
1974 /**
1975  * bioset_init - Initialize a bio_set
1976  * @bs:		pool to initialize
1977  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1978  * @front_pad:	Number of bytes to allocate in front of the returned bio
1979  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1980  *              and %BIOSET_NEED_RESCUER
1981  *
1982  * Description:
1983  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1984  *    to ask for a number of bytes to be allocated in front of the bio.
1985  *    Front pad allocation is useful for embedding the bio inside
1986  *    another structure, to avoid allocating extra data to go with the bio.
1987  *    Note that the bio must be embedded at the END of that structure always,
1988  *    or things will break badly.
1989  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1990  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1991  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1992  *    dispatch queued requests when the mempool runs out of space.
1993  *
1994  */
1995 int bioset_init(struct bio_set *bs,
1996 		unsigned int pool_size,
1997 		unsigned int front_pad,
1998 		int flags)
1999 {
2000 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2001 
2002 	bs->front_pad = front_pad;
2003 
2004 	spin_lock_init(&bs->rescue_lock);
2005 	bio_list_init(&bs->rescue_list);
2006 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2007 
2008 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2009 	if (!bs->bio_slab)
2010 		return -ENOMEM;
2011 
2012 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2013 		goto bad;
2014 
2015 	if ((flags & BIOSET_NEED_BVECS) &&
2016 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2017 		goto bad;
2018 
2019 	if (!(flags & BIOSET_NEED_RESCUER))
2020 		return 0;
2021 
2022 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2023 	if (!bs->rescue_workqueue)
2024 		goto bad;
2025 
2026 	return 0;
2027 bad:
2028 	bioset_exit(bs);
2029 	return -ENOMEM;
2030 }
2031 EXPORT_SYMBOL(bioset_init);
2032 
2033 /*
2034  * Initialize and setup a new bio_set, based on the settings from
2035  * another bio_set.
2036  */
2037 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2038 {
2039 	int flags;
2040 
2041 	flags = 0;
2042 	if (src->bvec_pool.min_nr)
2043 		flags |= BIOSET_NEED_BVECS;
2044 	if (src->rescue_workqueue)
2045 		flags |= BIOSET_NEED_RESCUER;
2046 
2047 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2048 }
2049 EXPORT_SYMBOL(bioset_init_from_src);
2050 
2051 #ifdef CONFIG_BLK_CGROUP
2052 
2053 /**
2054  * bio_disassociate_blkg - puts back the blkg reference if associated
2055  * @bio: target bio
2056  *
2057  * Helper to disassociate the blkg from @bio if a blkg is associated.
2058  */
2059 void bio_disassociate_blkg(struct bio *bio)
2060 {
2061 	if (bio->bi_blkg) {
2062 		blkg_put(bio->bi_blkg);
2063 		bio->bi_blkg = NULL;
2064 	}
2065 }
2066 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2067 
2068 /**
2069  * __bio_associate_blkg - associate a bio with the a blkg
2070  * @bio: target bio
2071  * @blkg: the blkg to associate
2072  *
2073  * This tries to associate @bio with the specified @blkg.  Association failure
2074  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2075  * be anything between @blkg and the root_blkg.  This situation only happens
2076  * when a cgroup is dying and then the remaining bios will spill to the closest
2077  * alive blkg.
2078  *
2079  * A reference will be taken on the @blkg and will be released when @bio is
2080  * freed.
2081  */
2082 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2083 {
2084 	bio_disassociate_blkg(bio);
2085 
2086 	bio->bi_blkg = blkg_tryget_closest(blkg);
2087 }
2088 
2089 /**
2090  * bio_associate_blkg_from_css - associate a bio with a specified css
2091  * @bio: target bio
2092  * @css: target css
2093  *
2094  * Associate @bio with the blkg found by combining the css's blkg and the
2095  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2096  * the association fails with the css.
2097  */
2098 void bio_associate_blkg_from_css(struct bio *bio,
2099 				 struct cgroup_subsys_state *css)
2100 {
2101 	struct request_queue *q = bio->bi_disk->queue;
2102 	struct blkcg_gq *blkg;
2103 
2104 	rcu_read_lock();
2105 
2106 	if (!css || !css->parent)
2107 		blkg = q->root_blkg;
2108 	else
2109 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2110 
2111 	__bio_associate_blkg(bio, blkg);
2112 
2113 	rcu_read_unlock();
2114 }
2115 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2116 
2117 #ifdef CONFIG_MEMCG
2118 /**
2119  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2120  * @bio: target bio
2121  * @page: the page to lookup the blkcg from
2122  *
2123  * Associate @bio with the blkg from @page's owning memcg and the respective
2124  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2125  * root_blkg.
2126  */
2127 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2128 {
2129 	struct cgroup_subsys_state *css;
2130 
2131 	if (!page->mem_cgroup)
2132 		return;
2133 
2134 	rcu_read_lock();
2135 
2136 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2137 	bio_associate_blkg_from_css(bio, css);
2138 
2139 	rcu_read_unlock();
2140 }
2141 #endif /* CONFIG_MEMCG */
2142 
2143 /**
2144  * bio_associate_blkg - associate a bio with a blkg
2145  * @bio: target bio
2146  *
2147  * Associate @bio with the blkg found from the bio's css and request_queue.
2148  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2149  * already associated, the css is reused and association redone as the
2150  * request_queue may have changed.
2151  */
2152 void bio_associate_blkg(struct bio *bio)
2153 {
2154 	struct cgroup_subsys_state *css;
2155 
2156 	rcu_read_lock();
2157 
2158 	if (bio->bi_blkg)
2159 		css = &bio_blkcg(bio)->css;
2160 	else
2161 		css = blkcg_css();
2162 
2163 	bio_associate_blkg_from_css(bio, css);
2164 
2165 	rcu_read_unlock();
2166 }
2167 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2168 
2169 /**
2170  * bio_clone_blkg_association - clone blkg association from src to dst bio
2171  * @dst: destination bio
2172  * @src: source bio
2173  */
2174 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2175 {
2176 	rcu_read_lock();
2177 
2178 	if (src->bi_blkg)
2179 		__bio_associate_blkg(dst, src->bi_blkg);
2180 
2181 	rcu_read_unlock();
2182 }
2183 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2184 #endif /* CONFIG_BLK_CGROUP */
2185 
2186 static void __init biovec_init_slabs(void)
2187 {
2188 	int i;
2189 
2190 	for (i = 0; i < BVEC_POOL_NR; i++) {
2191 		int size;
2192 		struct biovec_slab *bvs = bvec_slabs + i;
2193 
2194 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2195 			bvs->slab = NULL;
2196 			continue;
2197 		}
2198 
2199 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2200 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2201                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2202 	}
2203 }
2204 
2205 static int __init init_bio(void)
2206 {
2207 	bio_slab_max = 2;
2208 	bio_slab_nr = 0;
2209 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2210 			    GFP_KERNEL);
2211 
2212 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2213 
2214 	if (!bio_slabs)
2215 		panic("bio: can't allocate bios\n");
2216 
2217 	bio_integrity_init();
2218 	biovec_init_slabs();
2219 
2220 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2221 		panic("bio: can't allocate bios\n");
2222 
2223 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2224 		panic("bio: can't create integrity pool\n");
2225 
2226 	return 0;
2227 }
2228 subsys_initcall(init_bio);
2229