1 /* 2 * bio-integrity.c - bio data integrity extensions 3 * 4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 5 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License version 9 * 2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; see the file COPYING. If not, write to 18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, 19 * USA. 20 * 21 */ 22 23 #include <linux/blkdev.h> 24 #include <linux/mempool.h> 25 #include <linux/export.h> 26 #include <linux/bio.h> 27 #include <linux/workqueue.h> 28 #include <linux/slab.h> 29 30 #define BIP_INLINE_VECS 4 31 32 static struct kmem_cache *bip_slab; 33 static struct workqueue_struct *kintegrityd_wq; 34 35 /** 36 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 37 * @bio: bio to attach integrity metadata to 38 * @gfp_mask: Memory allocation mask 39 * @nr_vecs: Number of integrity metadata scatter-gather elements 40 * 41 * Description: This function prepares a bio for attaching integrity 42 * metadata. nr_vecs specifies the maximum number of pages containing 43 * integrity metadata that can be attached. 44 */ 45 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 46 gfp_t gfp_mask, 47 unsigned int nr_vecs) 48 { 49 struct bio_integrity_payload *bip; 50 struct bio_set *bs = bio->bi_pool; 51 unsigned long idx = BIO_POOL_NONE; 52 unsigned inline_vecs; 53 54 if (!bs) { 55 bip = kmalloc(sizeof(struct bio_integrity_payload) + 56 sizeof(struct bio_vec) * nr_vecs, gfp_mask); 57 inline_vecs = nr_vecs; 58 } else { 59 bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask); 60 inline_vecs = BIP_INLINE_VECS; 61 } 62 63 if (unlikely(!bip)) 64 return NULL; 65 66 memset(bip, 0, sizeof(*bip)); 67 68 if (nr_vecs > inline_vecs) { 69 bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx, 70 bs->bvec_integrity_pool); 71 if (!bip->bip_vec) 72 goto err; 73 } else { 74 bip->bip_vec = bip->bip_inline_vecs; 75 } 76 77 bip->bip_slab = idx; 78 bip->bip_bio = bio; 79 bio->bi_integrity = bip; 80 81 return bip; 82 err: 83 mempool_free(bip, bs->bio_integrity_pool); 84 return NULL; 85 } 86 EXPORT_SYMBOL(bio_integrity_alloc); 87 88 /** 89 * bio_integrity_free - Free bio integrity payload 90 * @bio: bio containing bip to be freed 91 * 92 * Description: Used to free the integrity portion of a bio. Usually 93 * called from bio_free(). 94 */ 95 void bio_integrity_free(struct bio *bio) 96 { 97 struct bio_integrity_payload *bip = bio->bi_integrity; 98 struct bio_set *bs = bio->bi_pool; 99 100 if (bip->bip_owns_buf) 101 kfree(bip->bip_buf); 102 103 if (bs) { 104 if (bip->bip_slab != BIO_POOL_NONE) 105 bvec_free(bs->bvec_integrity_pool, bip->bip_vec, 106 bip->bip_slab); 107 108 mempool_free(bip, bs->bio_integrity_pool); 109 } else { 110 kfree(bip); 111 } 112 113 bio->bi_integrity = NULL; 114 } 115 EXPORT_SYMBOL(bio_integrity_free); 116 117 static inline unsigned int bip_integrity_vecs(struct bio_integrity_payload *bip) 118 { 119 if (bip->bip_slab == BIO_POOL_NONE) 120 return BIP_INLINE_VECS; 121 122 return bvec_nr_vecs(bip->bip_slab); 123 } 124 125 /** 126 * bio_integrity_add_page - Attach integrity metadata 127 * @bio: bio to update 128 * @page: page containing integrity metadata 129 * @len: number of bytes of integrity metadata in page 130 * @offset: start offset within page 131 * 132 * Description: Attach a page containing integrity metadata to bio. 133 */ 134 int bio_integrity_add_page(struct bio *bio, struct page *page, 135 unsigned int len, unsigned int offset) 136 { 137 struct bio_integrity_payload *bip = bio->bi_integrity; 138 struct bio_vec *iv; 139 140 if (bip->bip_vcnt >= bip_integrity_vecs(bip)) { 141 printk(KERN_ERR "%s: bip_vec full\n", __func__); 142 return 0; 143 } 144 145 iv = bip->bip_vec + bip->bip_vcnt; 146 147 iv->bv_page = page; 148 iv->bv_len = len; 149 iv->bv_offset = offset; 150 bip->bip_vcnt++; 151 152 return len; 153 } 154 EXPORT_SYMBOL(bio_integrity_add_page); 155 156 static int bdev_integrity_enabled(struct block_device *bdev, int rw) 157 { 158 struct blk_integrity *bi = bdev_get_integrity(bdev); 159 160 if (bi == NULL) 161 return 0; 162 163 if (rw == READ && bi->verify_fn != NULL && 164 (bi->flags & INTEGRITY_FLAG_READ)) 165 return 1; 166 167 if (rw == WRITE && bi->generate_fn != NULL && 168 (bi->flags & INTEGRITY_FLAG_WRITE)) 169 return 1; 170 171 return 0; 172 } 173 174 /** 175 * bio_integrity_enabled - Check whether integrity can be passed 176 * @bio: bio to check 177 * 178 * Description: Determines whether bio_integrity_prep() can be called 179 * on this bio or not. bio data direction and target device must be 180 * set prior to calling. The functions honors the write_generate and 181 * read_verify flags in sysfs. 182 */ 183 int bio_integrity_enabled(struct bio *bio) 184 { 185 if (!bio_is_rw(bio)) 186 return 0; 187 188 /* Already protected? */ 189 if (bio_integrity(bio)) 190 return 0; 191 192 return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio)); 193 } 194 EXPORT_SYMBOL(bio_integrity_enabled); 195 196 /** 197 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto 198 * @bi: blk_integrity profile for device 199 * @sectors: Number of 512 sectors to convert 200 * 201 * Description: The block layer calculates everything in 512 byte 202 * sectors but integrity metadata is done in terms of the hardware 203 * sector size of the storage device. Convert the block layer sectors 204 * to physical sectors. 205 */ 206 static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi, 207 unsigned int sectors) 208 { 209 /* At this point there are only 512b or 4096b DIF/EPP devices */ 210 if (bi->sector_size == 4096) 211 return sectors >>= 3; 212 213 return sectors; 214 } 215 216 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 217 unsigned int sectors) 218 { 219 return bio_integrity_hw_sectors(bi, sectors) * bi->tuple_size; 220 } 221 222 /** 223 * bio_integrity_tag_size - Retrieve integrity tag space 224 * @bio: bio to inspect 225 * 226 * Description: Returns the maximum number of tag bytes that can be 227 * attached to this bio. Filesystems can use this to determine how 228 * much metadata to attach to an I/O. 229 */ 230 unsigned int bio_integrity_tag_size(struct bio *bio) 231 { 232 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 233 234 BUG_ON(bio->bi_iter.bi_size == 0); 235 236 return bi->tag_size * (bio->bi_iter.bi_size / bi->sector_size); 237 } 238 EXPORT_SYMBOL(bio_integrity_tag_size); 239 240 static int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, 241 int set) 242 { 243 struct bio_integrity_payload *bip = bio->bi_integrity; 244 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 245 unsigned int nr_sectors; 246 247 BUG_ON(bip->bip_buf == NULL); 248 249 if (bi->tag_size == 0) 250 return -1; 251 252 nr_sectors = bio_integrity_hw_sectors(bi, 253 DIV_ROUND_UP(len, bi->tag_size)); 254 255 if (nr_sectors * bi->tuple_size > bip->bip_iter.bi_size) { 256 printk(KERN_ERR "%s: tag too big for bio: %u > %u\n", __func__, 257 nr_sectors * bi->tuple_size, bip->bip_iter.bi_size); 258 return -1; 259 } 260 261 if (set) 262 bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors); 263 else 264 bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors); 265 266 return 0; 267 } 268 269 /** 270 * bio_integrity_set_tag - Attach a tag buffer to a bio 271 * @bio: bio to attach buffer to 272 * @tag_buf: Pointer to a buffer containing tag data 273 * @len: Length of the included buffer 274 * 275 * Description: Use this function to tag a bio by leveraging the extra 276 * space provided by devices formatted with integrity protection. The 277 * size of the integrity buffer must be <= to the size reported by 278 * bio_integrity_tag_size(). 279 */ 280 int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len) 281 { 282 BUG_ON(bio_data_dir(bio) != WRITE); 283 284 return bio_integrity_tag(bio, tag_buf, len, 1); 285 } 286 EXPORT_SYMBOL(bio_integrity_set_tag); 287 288 /** 289 * bio_integrity_get_tag - Retrieve a tag buffer from a bio 290 * @bio: bio to retrieve buffer from 291 * @tag_buf: Pointer to a buffer for the tag data 292 * @len: Length of the target buffer 293 * 294 * Description: Use this function to retrieve the tag buffer from a 295 * completed I/O. The size of the integrity buffer must be <= to the 296 * size reported by bio_integrity_tag_size(). 297 */ 298 int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len) 299 { 300 BUG_ON(bio_data_dir(bio) != READ); 301 302 return bio_integrity_tag(bio, tag_buf, len, 0); 303 } 304 EXPORT_SYMBOL(bio_integrity_get_tag); 305 306 /** 307 * bio_integrity_generate_verify - Generate/verify integrity metadata for a bio 308 * @bio: bio to generate/verify integrity metadata for 309 * @operate: operate number, 1 for generate, 0 for verify 310 */ 311 static int bio_integrity_generate_verify(struct bio *bio, int operate) 312 { 313 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 314 struct blk_integrity_exchg bix; 315 struct bio_vec *bv; 316 sector_t sector; 317 unsigned int sectors, ret = 0, i; 318 void *prot_buf = bio->bi_integrity->bip_buf; 319 320 if (operate) 321 sector = bio->bi_iter.bi_sector; 322 else 323 sector = bio->bi_integrity->bip_iter.bi_sector; 324 325 bix.disk_name = bio->bi_bdev->bd_disk->disk_name; 326 bix.sector_size = bi->sector_size; 327 328 bio_for_each_segment_all(bv, bio, i) { 329 void *kaddr = kmap_atomic(bv->bv_page); 330 bix.data_buf = kaddr + bv->bv_offset; 331 bix.data_size = bv->bv_len; 332 bix.prot_buf = prot_buf; 333 bix.sector = sector; 334 335 if (operate) 336 bi->generate_fn(&bix); 337 else { 338 ret = bi->verify_fn(&bix); 339 if (ret) { 340 kunmap_atomic(kaddr); 341 return ret; 342 } 343 } 344 345 sectors = bv->bv_len / bi->sector_size; 346 sector += sectors; 347 prot_buf += sectors * bi->tuple_size; 348 349 kunmap_atomic(kaddr); 350 } 351 return ret; 352 } 353 354 /** 355 * bio_integrity_generate - Generate integrity metadata for a bio 356 * @bio: bio to generate integrity metadata for 357 * 358 * Description: Generates integrity metadata for a bio by calling the 359 * block device's generation callback function. The bio must have a 360 * bip attached with enough room to accommodate the generated 361 * integrity metadata. 362 */ 363 static void bio_integrity_generate(struct bio *bio) 364 { 365 bio_integrity_generate_verify(bio, 1); 366 } 367 368 static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi) 369 { 370 if (bi) 371 return bi->tuple_size; 372 373 return 0; 374 } 375 376 /** 377 * bio_integrity_prep - Prepare bio for integrity I/O 378 * @bio: bio to prepare 379 * 380 * Description: Allocates a buffer for integrity metadata, maps the 381 * pages and attaches them to a bio. The bio must have data 382 * direction, target device and start sector set priot to calling. In 383 * the WRITE case, integrity metadata will be generated using the 384 * block device's integrity function. In the READ case, the buffer 385 * will be prepared for DMA and a suitable end_io handler set up. 386 */ 387 int bio_integrity_prep(struct bio *bio) 388 { 389 struct bio_integrity_payload *bip; 390 struct blk_integrity *bi; 391 struct request_queue *q; 392 void *buf; 393 unsigned long start, end; 394 unsigned int len, nr_pages; 395 unsigned int bytes, offset, i; 396 unsigned int sectors; 397 398 bi = bdev_get_integrity(bio->bi_bdev); 399 q = bdev_get_queue(bio->bi_bdev); 400 BUG_ON(bi == NULL); 401 BUG_ON(bio_integrity(bio)); 402 403 sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio)); 404 405 /* Allocate kernel buffer for protection data */ 406 len = sectors * blk_integrity_tuple_size(bi); 407 buf = kmalloc(len, GFP_NOIO | q->bounce_gfp); 408 if (unlikely(buf == NULL)) { 409 printk(KERN_ERR "could not allocate integrity buffer\n"); 410 return -ENOMEM; 411 } 412 413 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 414 start = ((unsigned long) buf) >> PAGE_SHIFT; 415 nr_pages = end - start; 416 417 /* Allocate bio integrity payload and integrity vectors */ 418 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 419 if (unlikely(bip == NULL)) { 420 printk(KERN_ERR "could not allocate data integrity bioset\n"); 421 kfree(buf); 422 return -EIO; 423 } 424 425 bip->bip_owns_buf = 1; 426 bip->bip_buf = buf; 427 bip->bip_iter.bi_size = len; 428 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 429 430 /* Map it */ 431 offset = offset_in_page(buf); 432 for (i = 0 ; i < nr_pages ; i++) { 433 int ret; 434 bytes = PAGE_SIZE - offset; 435 436 if (len <= 0) 437 break; 438 439 if (bytes > len) 440 bytes = len; 441 442 ret = bio_integrity_add_page(bio, virt_to_page(buf), 443 bytes, offset); 444 445 if (ret == 0) 446 return 0; 447 448 if (ret < bytes) 449 break; 450 451 buf += bytes; 452 len -= bytes; 453 offset = 0; 454 } 455 456 /* Install custom I/O completion handler if read verify is enabled */ 457 if (bio_data_dir(bio) == READ) { 458 bip->bip_end_io = bio->bi_end_io; 459 bio->bi_end_io = bio_integrity_endio; 460 } 461 462 /* Auto-generate integrity metadata if this is a write */ 463 if (bio_data_dir(bio) == WRITE) 464 bio_integrity_generate(bio); 465 466 return 0; 467 } 468 EXPORT_SYMBOL(bio_integrity_prep); 469 470 /** 471 * bio_integrity_verify - Verify integrity metadata for a bio 472 * @bio: bio to verify 473 * 474 * Description: This function is called to verify the integrity of a 475 * bio. The data in the bio io_vec is compared to the integrity 476 * metadata returned by the HBA. 477 */ 478 static int bio_integrity_verify(struct bio *bio) 479 { 480 return bio_integrity_generate_verify(bio, 0); 481 } 482 483 /** 484 * bio_integrity_verify_fn - Integrity I/O completion worker 485 * @work: Work struct stored in bio to be verified 486 * 487 * Description: This workqueue function is called to complete a READ 488 * request. The function verifies the transferred integrity metadata 489 * and then calls the original bio end_io function. 490 */ 491 static void bio_integrity_verify_fn(struct work_struct *work) 492 { 493 struct bio_integrity_payload *bip = 494 container_of(work, struct bio_integrity_payload, bip_work); 495 struct bio *bio = bip->bip_bio; 496 int error; 497 498 error = bio_integrity_verify(bio); 499 500 /* Restore original bio completion handler */ 501 bio->bi_end_io = bip->bip_end_io; 502 bio_endio_nodec(bio, error); 503 } 504 505 /** 506 * bio_integrity_endio - Integrity I/O completion function 507 * @bio: Protected bio 508 * @error: Pointer to errno 509 * 510 * Description: Completion for integrity I/O 511 * 512 * Normally I/O completion is done in interrupt context. However, 513 * verifying I/O integrity is a time-consuming task which must be run 514 * in process context. This function postpones completion 515 * accordingly. 516 */ 517 void bio_integrity_endio(struct bio *bio, int error) 518 { 519 struct bio_integrity_payload *bip = bio->bi_integrity; 520 521 BUG_ON(bip->bip_bio != bio); 522 523 /* In case of an I/O error there is no point in verifying the 524 * integrity metadata. Restore original bio end_io handler 525 * and run it. 526 */ 527 if (error) { 528 bio->bi_end_io = bip->bip_end_io; 529 bio_endio(bio, error); 530 531 return; 532 } 533 534 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 535 queue_work(kintegrityd_wq, &bip->bip_work); 536 } 537 EXPORT_SYMBOL(bio_integrity_endio); 538 539 /** 540 * bio_integrity_advance - Advance integrity vector 541 * @bio: bio whose integrity vector to update 542 * @bytes_done: number of data bytes that have been completed 543 * 544 * Description: This function calculates how many integrity bytes the 545 * number of completed data bytes correspond to and advances the 546 * integrity vector accordingly. 547 */ 548 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 549 { 550 struct bio_integrity_payload *bip = bio->bi_integrity; 551 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 552 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 553 554 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 555 } 556 EXPORT_SYMBOL(bio_integrity_advance); 557 558 /** 559 * bio_integrity_trim - Trim integrity vector 560 * @bio: bio whose integrity vector to update 561 * @offset: offset to first data sector 562 * @sectors: number of data sectors 563 * 564 * Description: Used to trim the integrity vector in a cloned bio. 565 * The ivec will be advanced corresponding to 'offset' data sectors 566 * and the length will be truncated corresponding to 'len' data 567 * sectors. 568 */ 569 void bio_integrity_trim(struct bio *bio, unsigned int offset, 570 unsigned int sectors) 571 { 572 struct bio_integrity_payload *bip = bio->bi_integrity; 573 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 574 575 bio_integrity_advance(bio, offset << 9); 576 bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors); 577 } 578 EXPORT_SYMBOL(bio_integrity_trim); 579 580 /** 581 * bio_integrity_clone - Callback for cloning bios with integrity metadata 582 * @bio: New bio 583 * @bio_src: Original bio 584 * @gfp_mask: Memory allocation mask 585 * 586 * Description: Called to allocate a bip when cloning a bio 587 */ 588 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 589 gfp_t gfp_mask) 590 { 591 struct bio_integrity_payload *bip_src = bio_src->bi_integrity; 592 struct bio_integrity_payload *bip; 593 594 BUG_ON(bip_src == NULL); 595 596 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 597 598 if (bip == NULL) 599 return -EIO; 600 601 memcpy(bip->bip_vec, bip_src->bip_vec, 602 bip_src->bip_vcnt * sizeof(struct bio_vec)); 603 604 bip->bip_vcnt = bip_src->bip_vcnt; 605 bip->bip_iter = bip_src->bip_iter; 606 607 return 0; 608 } 609 EXPORT_SYMBOL(bio_integrity_clone); 610 611 int bioset_integrity_create(struct bio_set *bs, int pool_size) 612 { 613 if (bs->bio_integrity_pool) 614 return 0; 615 616 bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab); 617 if (!bs->bio_integrity_pool) 618 return -1; 619 620 bs->bvec_integrity_pool = biovec_create_pool(pool_size); 621 if (!bs->bvec_integrity_pool) { 622 mempool_destroy(bs->bio_integrity_pool); 623 return -1; 624 } 625 626 return 0; 627 } 628 EXPORT_SYMBOL(bioset_integrity_create); 629 630 void bioset_integrity_free(struct bio_set *bs) 631 { 632 if (bs->bio_integrity_pool) 633 mempool_destroy(bs->bio_integrity_pool); 634 635 if (bs->bvec_integrity_pool) 636 mempool_destroy(bs->bvec_integrity_pool); 637 } 638 EXPORT_SYMBOL(bioset_integrity_free); 639 640 void __init bio_integrity_init(void) 641 { 642 /* 643 * kintegrityd won't block much but may burn a lot of CPU cycles. 644 * Make it highpri CPU intensive wq with max concurrency of 1. 645 */ 646 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 647 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 648 if (!kintegrityd_wq) 649 panic("Failed to create kintegrityd\n"); 650 651 bip_slab = kmem_cache_create("bio_integrity_payload", 652 sizeof(struct bio_integrity_payload) + 653 sizeof(struct bio_vec) * BIP_INLINE_VECS, 654 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 655 if (!bip_slab) 656 panic("Failed to create slab\n"); 657 } 658