1 /* 2 * bio-integrity.c - bio data integrity extensions 3 * 4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 5 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License version 9 * 2 as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; see the file COPYING. If not, write to 18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, 19 * USA. 20 * 21 */ 22 23 #include <linux/blkdev.h> 24 #include <linux/mempool.h> 25 #include <linux/export.h> 26 #include <linux/bio.h> 27 #include <linux/workqueue.h> 28 #include <linux/slab.h> 29 #include "blk.h" 30 31 #define BIP_INLINE_VECS 4 32 33 static struct kmem_cache *bip_slab; 34 static struct workqueue_struct *kintegrityd_wq; 35 36 void blk_flush_integrity(void) 37 { 38 flush_workqueue(kintegrityd_wq); 39 } 40 41 /** 42 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 43 * @bio: bio to attach integrity metadata to 44 * @gfp_mask: Memory allocation mask 45 * @nr_vecs: Number of integrity metadata scatter-gather elements 46 * 47 * Description: This function prepares a bio for attaching integrity 48 * metadata. nr_vecs specifies the maximum number of pages containing 49 * integrity metadata that can be attached. 50 */ 51 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 52 gfp_t gfp_mask, 53 unsigned int nr_vecs) 54 { 55 struct bio_integrity_payload *bip; 56 struct bio_set *bs = bio->bi_pool; 57 unsigned inline_vecs; 58 59 if (!bs || !bs->bio_integrity_pool) { 60 bip = kmalloc(sizeof(struct bio_integrity_payload) + 61 sizeof(struct bio_vec) * nr_vecs, gfp_mask); 62 inline_vecs = nr_vecs; 63 } else { 64 bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask); 65 inline_vecs = BIP_INLINE_VECS; 66 } 67 68 if (unlikely(!bip)) 69 return ERR_PTR(-ENOMEM); 70 71 memset(bip, 0, sizeof(*bip)); 72 73 if (nr_vecs > inline_vecs) { 74 unsigned long idx = 0; 75 76 bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx, 77 bs->bvec_integrity_pool); 78 if (!bip->bip_vec) 79 goto err; 80 bip->bip_max_vcnt = bvec_nr_vecs(idx); 81 bip->bip_slab = idx; 82 } else { 83 bip->bip_vec = bip->bip_inline_vecs; 84 bip->bip_max_vcnt = inline_vecs; 85 } 86 87 bip->bip_bio = bio; 88 bio->bi_integrity = bip; 89 bio->bi_opf |= REQ_INTEGRITY; 90 91 return bip; 92 err: 93 mempool_free(bip, bs->bio_integrity_pool); 94 return ERR_PTR(-ENOMEM); 95 } 96 EXPORT_SYMBOL(bio_integrity_alloc); 97 98 /** 99 * bio_integrity_free - Free bio integrity payload 100 * @bio: bio containing bip to be freed 101 * 102 * Description: Used to free the integrity portion of a bio. Usually 103 * called from bio_free(). 104 */ 105 static void bio_integrity_free(struct bio *bio) 106 { 107 struct bio_integrity_payload *bip = bio_integrity(bio); 108 struct bio_set *bs = bio->bi_pool; 109 110 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 111 kfree(page_address(bip->bip_vec->bv_page) + 112 bip->bip_vec->bv_offset); 113 114 if (bs && bs->bio_integrity_pool) { 115 bvec_free(bs->bvec_integrity_pool, bip->bip_vec, bip->bip_slab); 116 117 mempool_free(bip, bs->bio_integrity_pool); 118 } else { 119 kfree(bip); 120 } 121 122 bio->bi_integrity = NULL; 123 bio->bi_opf &= ~REQ_INTEGRITY; 124 } 125 126 /** 127 * bio_integrity_add_page - Attach integrity metadata 128 * @bio: bio to update 129 * @page: page containing integrity metadata 130 * @len: number of bytes of integrity metadata in page 131 * @offset: start offset within page 132 * 133 * Description: Attach a page containing integrity metadata to bio. 134 */ 135 int bio_integrity_add_page(struct bio *bio, struct page *page, 136 unsigned int len, unsigned int offset) 137 { 138 struct bio_integrity_payload *bip = bio_integrity(bio); 139 struct bio_vec *iv; 140 141 if (bip->bip_vcnt >= bip->bip_max_vcnt) { 142 printk(KERN_ERR "%s: bip_vec full\n", __func__); 143 return 0; 144 } 145 146 iv = bip->bip_vec + bip->bip_vcnt; 147 148 if (bip->bip_vcnt && 149 bvec_gap_to_prev(bdev_get_queue(bio->bi_bdev), 150 &bip->bip_vec[bip->bip_vcnt - 1], offset)) 151 return 0; 152 153 iv->bv_page = page; 154 iv->bv_len = len; 155 iv->bv_offset = offset; 156 bip->bip_vcnt++; 157 158 return len; 159 } 160 EXPORT_SYMBOL(bio_integrity_add_page); 161 162 /** 163 * bio_integrity_intervals - Return number of integrity intervals for a bio 164 * @bi: blk_integrity profile for device 165 * @sectors: Size of the bio in 512-byte sectors 166 * 167 * Description: The block layer calculates everything in 512 byte 168 * sectors but integrity metadata is done in terms of the data integrity 169 * interval size of the storage device. Convert the block layer sectors 170 * to the appropriate number of integrity intervals. 171 */ 172 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 173 unsigned int sectors) 174 { 175 return sectors >> (bi->interval_exp - 9); 176 } 177 178 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 179 unsigned int sectors) 180 { 181 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 182 } 183 184 /** 185 * bio_integrity_process - Process integrity metadata for a bio 186 * @bio: bio to generate/verify integrity metadata for 187 * @proc_iter: iterator to process 188 * @proc_fn: Pointer to the relevant processing function 189 */ 190 static blk_status_t bio_integrity_process(struct bio *bio, 191 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 192 { 193 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 194 struct blk_integrity_iter iter; 195 struct bvec_iter bviter; 196 struct bio_vec bv; 197 struct bio_integrity_payload *bip = bio_integrity(bio); 198 blk_status_t ret = BLK_STS_OK; 199 void *prot_buf = page_address(bip->bip_vec->bv_page) + 200 bip->bip_vec->bv_offset; 201 202 iter.disk_name = bio->bi_bdev->bd_disk->disk_name; 203 iter.interval = 1 << bi->interval_exp; 204 iter.seed = proc_iter->bi_sector; 205 iter.prot_buf = prot_buf; 206 207 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 208 void *kaddr = kmap_atomic(bv.bv_page); 209 210 iter.data_buf = kaddr + bv.bv_offset; 211 iter.data_size = bv.bv_len; 212 213 ret = proc_fn(&iter); 214 if (ret) { 215 kunmap_atomic(kaddr); 216 return ret; 217 } 218 219 kunmap_atomic(kaddr); 220 } 221 return ret; 222 } 223 224 /** 225 * bio_integrity_prep - Prepare bio for integrity I/O 226 * @bio: bio to prepare 227 * 228 * Description: Checks if the bio already has an integrity payload attached. 229 * If it does, the payload has been generated by another kernel subsystem, 230 * and we just pass it through. Otherwise allocates integrity payload. 231 * The bio must have data direction, target device and start sector set priot 232 * to calling. In the WRITE case, integrity metadata will be generated using 233 * the block device's integrity function. In the READ case, the buffer 234 * will be prepared for DMA and a suitable end_io handler set up. 235 */ 236 bool bio_integrity_prep(struct bio *bio) 237 { 238 struct bio_integrity_payload *bip; 239 struct blk_integrity *bi; 240 struct request_queue *q; 241 void *buf; 242 unsigned long start, end; 243 unsigned int len, nr_pages; 244 unsigned int bytes, offset, i; 245 unsigned int intervals; 246 blk_status_t status; 247 248 bi = bdev_get_integrity(bio->bi_bdev); 249 q = bdev_get_queue(bio->bi_bdev); 250 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 251 return true; 252 253 if (!bio_sectors(bio)) 254 return true; 255 256 /* Already protected? */ 257 if (bio_integrity(bio)) 258 return true; 259 260 if (bi == NULL) 261 return true; 262 263 if (bio_data_dir(bio) == READ) { 264 if (!bi->profile->verify_fn || 265 !(bi->flags & BLK_INTEGRITY_VERIFY)) 266 return true; 267 } else { 268 if (!bi->profile->generate_fn || 269 !(bi->flags & BLK_INTEGRITY_GENERATE)) 270 return true; 271 } 272 intervals = bio_integrity_intervals(bi, bio_sectors(bio)); 273 274 /* Allocate kernel buffer for protection data */ 275 len = intervals * bi->tuple_size; 276 buf = kmalloc(len, GFP_NOIO | q->bounce_gfp); 277 status = BLK_STS_RESOURCE; 278 if (unlikely(buf == NULL)) { 279 printk(KERN_ERR "could not allocate integrity buffer\n"); 280 goto err_end_io; 281 } 282 283 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 284 start = ((unsigned long) buf) >> PAGE_SHIFT; 285 nr_pages = end - start; 286 287 /* Allocate bio integrity payload and integrity vectors */ 288 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 289 if (IS_ERR(bip)) { 290 printk(KERN_ERR "could not allocate data integrity bioset\n"); 291 kfree(buf); 292 status = BLK_STS_RESOURCE; 293 goto err_end_io; 294 } 295 296 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 297 bip->bip_iter.bi_size = len; 298 bip_set_seed(bip, bio->bi_iter.bi_sector); 299 300 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 301 bip->bip_flags |= BIP_IP_CHECKSUM; 302 303 /* Map it */ 304 offset = offset_in_page(buf); 305 for (i = 0 ; i < nr_pages ; i++) { 306 int ret; 307 bytes = PAGE_SIZE - offset; 308 309 if (len <= 0) 310 break; 311 312 if (bytes > len) 313 bytes = len; 314 315 ret = bio_integrity_add_page(bio, virt_to_page(buf), 316 bytes, offset); 317 318 if (ret == 0) 319 return false; 320 321 if (ret < bytes) 322 break; 323 324 buf += bytes; 325 len -= bytes; 326 offset = 0; 327 } 328 329 /* Auto-generate integrity metadata if this is a write */ 330 if (bio_data_dir(bio) == WRITE) { 331 bio_integrity_process(bio, &bio->bi_iter, 332 bi->profile->generate_fn); 333 } 334 return true; 335 336 err_end_io: 337 bio->bi_status = status; 338 bio_endio(bio); 339 return false; 340 341 } 342 EXPORT_SYMBOL(bio_integrity_prep); 343 344 /** 345 * bio_integrity_verify_fn - Integrity I/O completion worker 346 * @work: Work struct stored in bio to be verified 347 * 348 * Description: This workqueue function is called to complete a READ 349 * request. The function verifies the transferred integrity metadata 350 * and then calls the original bio end_io function. 351 */ 352 static void bio_integrity_verify_fn(struct work_struct *work) 353 { 354 struct bio_integrity_payload *bip = 355 container_of(work, struct bio_integrity_payload, bip_work); 356 struct bio *bio = bip->bip_bio; 357 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 358 struct bvec_iter iter = bio->bi_iter; 359 360 /* 361 * At the moment verify is called bio's iterator was advanced 362 * during split and completion, we need to rewind iterator to 363 * it's original position. 364 */ 365 if (bio_rewind_iter(bio, &iter, iter.bi_done)) { 366 bio->bi_status = bio_integrity_process(bio, &iter, 367 bi->profile->verify_fn); 368 } else { 369 bio->bi_status = BLK_STS_IOERR; 370 } 371 372 bio_integrity_free(bio); 373 bio_endio(bio); 374 } 375 376 /** 377 * __bio_integrity_endio - Integrity I/O completion function 378 * @bio: Protected bio 379 * @error: Pointer to errno 380 * 381 * Description: Completion for integrity I/O 382 * 383 * Normally I/O completion is done in interrupt context. However, 384 * verifying I/O integrity is a time-consuming task which must be run 385 * in process context. This function postpones completion 386 * accordingly. 387 */ 388 bool __bio_integrity_endio(struct bio *bio) 389 { 390 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status) { 391 struct bio_integrity_payload *bip = bio_integrity(bio); 392 393 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 394 queue_work(kintegrityd_wq, &bip->bip_work); 395 return false; 396 } 397 398 bio_integrity_free(bio); 399 return true; 400 } 401 402 /** 403 * bio_integrity_advance - Advance integrity vector 404 * @bio: bio whose integrity vector to update 405 * @bytes_done: number of data bytes that have been completed 406 * 407 * Description: This function calculates how many integrity bytes the 408 * number of completed data bytes correspond to and advances the 409 * integrity vector accordingly. 410 */ 411 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 412 { 413 struct bio_integrity_payload *bip = bio_integrity(bio); 414 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 415 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 416 417 bip->bip_iter.bi_sector += bytes_done >> 9; 418 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 419 } 420 EXPORT_SYMBOL(bio_integrity_advance); 421 422 /** 423 * bio_integrity_trim - Trim integrity vector 424 * @bio: bio whose integrity vector to update 425 * 426 * Description: Used to trim the integrity vector in a cloned bio. 427 */ 428 void bio_integrity_trim(struct bio *bio) 429 { 430 struct bio_integrity_payload *bip = bio_integrity(bio); 431 struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); 432 433 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 434 } 435 EXPORT_SYMBOL(bio_integrity_trim); 436 437 /** 438 * bio_integrity_clone - Callback for cloning bios with integrity metadata 439 * @bio: New bio 440 * @bio_src: Original bio 441 * @gfp_mask: Memory allocation mask 442 * 443 * Description: Called to allocate a bip when cloning a bio 444 */ 445 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 446 gfp_t gfp_mask) 447 { 448 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 449 struct bio_integrity_payload *bip; 450 451 BUG_ON(bip_src == NULL); 452 453 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 454 if (IS_ERR(bip)) 455 return PTR_ERR(bip); 456 457 memcpy(bip->bip_vec, bip_src->bip_vec, 458 bip_src->bip_vcnt * sizeof(struct bio_vec)); 459 460 bip->bip_vcnt = bip_src->bip_vcnt; 461 bip->bip_iter = bip_src->bip_iter; 462 463 return 0; 464 } 465 EXPORT_SYMBOL(bio_integrity_clone); 466 467 int bioset_integrity_create(struct bio_set *bs, int pool_size) 468 { 469 if (bs->bio_integrity_pool) 470 return 0; 471 472 bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab); 473 if (!bs->bio_integrity_pool) 474 return -1; 475 476 bs->bvec_integrity_pool = biovec_create_pool(pool_size); 477 if (!bs->bvec_integrity_pool) { 478 mempool_destroy(bs->bio_integrity_pool); 479 return -1; 480 } 481 482 return 0; 483 } 484 EXPORT_SYMBOL(bioset_integrity_create); 485 486 void bioset_integrity_free(struct bio_set *bs) 487 { 488 if (bs->bio_integrity_pool) 489 mempool_destroy(bs->bio_integrity_pool); 490 491 if (bs->bvec_integrity_pool) 492 mempool_destroy(bs->bvec_integrity_pool); 493 } 494 EXPORT_SYMBOL(bioset_integrity_free); 495 496 void __init bio_integrity_init(void) 497 { 498 /* 499 * kintegrityd won't block much but may burn a lot of CPU cycles. 500 * Make it highpri CPU intensive wq with max concurrency of 1. 501 */ 502 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 503 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 504 if (!kintegrityd_wq) 505 panic("Failed to create kintegrityd\n"); 506 507 bip_slab = kmem_cache_create("bio_integrity_payload", 508 sizeof(struct bio_integrity_payload) + 509 sizeof(struct bio_vec) * BIP_INLINE_VECS, 510 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 511 } 512