1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mempool.h> 11 #include <linux/export.h> 12 #include <linux/bio.h> 13 #include <linux/workqueue.h> 14 #include <linux/slab.h> 15 #include "blk.h" 16 17 #define BIP_INLINE_VECS 4 18 19 static struct kmem_cache *bip_slab; 20 static struct workqueue_struct *kintegrityd_wq; 21 22 void blk_flush_integrity(void) 23 { 24 flush_workqueue(kintegrityd_wq); 25 } 26 27 /** 28 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 29 * @bio: bio to attach integrity metadata to 30 * @gfp_mask: Memory allocation mask 31 * @nr_vecs: Number of integrity metadata scatter-gather elements 32 * 33 * Description: This function prepares a bio for attaching integrity 34 * metadata. nr_vecs specifies the maximum number of pages containing 35 * integrity metadata that can be attached. 36 */ 37 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 38 gfp_t gfp_mask, 39 unsigned int nr_vecs) 40 { 41 struct bio_integrity_payload *bip; 42 struct bio_set *bs = bio->bi_pool; 43 unsigned inline_vecs; 44 45 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 46 bip = kmalloc(sizeof(struct bio_integrity_payload) + 47 sizeof(struct bio_vec) * nr_vecs, gfp_mask); 48 inline_vecs = nr_vecs; 49 } else { 50 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 51 inline_vecs = BIP_INLINE_VECS; 52 } 53 54 if (unlikely(!bip)) 55 return ERR_PTR(-ENOMEM); 56 57 memset(bip, 0, sizeof(*bip)); 58 59 if (nr_vecs > inline_vecs) { 60 unsigned long idx = 0; 61 62 bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx, 63 &bs->bvec_integrity_pool); 64 if (!bip->bip_vec) 65 goto err; 66 bip->bip_max_vcnt = bvec_nr_vecs(idx); 67 bip->bip_slab = idx; 68 } else { 69 bip->bip_vec = bip->bip_inline_vecs; 70 bip->bip_max_vcnt = inline_vecs; 71 } 72 73 bip->bip_bio = bio; 74 bio->bi_integrity = bip; 75 bio->bi_opf |= REQ_INTEGRITY; 76 77 return bip; 78 err: 79 mempool_free(bip, &bs->bio_integrity_pool); 80 return ERR_PTR(-ENOMEM); 81 } 82 EXPORT_SYMBOL(bio_integrity_alloc); 83 84 /** 85 * bio_integrity_free - Free bio integrity payload 86 * @bio: bio containing bip to be freed 87 * 88 * Description: Used to free the integrity portion of a bio. Usually 89 * called from bio_free(). 90 */ 91 static void bio_integrity_free(struct bio *bio) 92 { 93 struct bio_integrity_payload *bip = bio_integrity(bio); 94 struct bio_set *bs = bio->bi_pool; 95 96 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 97 kfree(page_address(bip->bip_vec->bv_page) + 98 bip->bip_vec->bv_offset); 99 100 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 101 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, bip->bip_slab); 102 103 mempool_free(bip, &bs->bio_integrity_pool); 104 } else { 105 kfree(bip); 106 } 107 108 bio->bi_integrity = NULL; 109 bio->bi_opf &= ~REQ_INTEGRITY; 110 } 111 112 /** 113 * bio_integrity_add_page - Attach integrity metadata 114 * @bio: bio to update 115 * @page: page containing integrity metadata 116 * @len: number of bytes of integrity metadata in page 117 * @offset: start offset within page 118 * 119 * Description: Attach a page containing integrity metadata to bio. 120 */ 121 int bio_integrity_add_page(struct bio *bio, struct page *page, 122 unsigned int len, unsigned int offset) 123 { 124 struct bio_integrity_payload *bip = bio_integrity(bio); 125 struct bio_vec *iv; 126 127 if (bip->bip_vcnt >= bip->bip_max_vcnt) { 128 printk(KERN_ERR "%s: bip_vec full\n", __func__); 129 return 0; 130 } 131 132 iv = bip->bip_vec + bip->bip_vcnt; 133 134 if (bip->bip_vcnt && 135 bvec_gap_to_prev(bio->bi_disk->queue, 136 &bip->bip_vec[bip->bip_vcnt - 1], offset)) 137 return 0; 138 139 iv->bv_page = page; 140 iv->bv_len = len; 141 iv->bv_offset = offset; 142 bip->bip_vcnt++; 143 144 return len; 145 } 146 EXPORT_SYMBOL(bio_integrity_add_page); 147 148 /** 149 * bio_integrity_process - Process integrity metadata for a bio 150 * @bio: bio to generate/verify integrity metadata for 151 * @proc_iter: iterator to process 152 * @proc_fn: Pointer to the relevant processing function 153 */ 154 static blk_status_t bio_integrity_process(struct bio *bio, 155 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 156 { 157 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 158 struct blk_integrity_iter iter; 159 struct bvec_iter bviter; 160 struct bio_vec bv; 161 struct bio_integrity_payload *bip = bio_integrity(bio); 162 blk_status_t ret = BLK_STS_OK; 163 void *prot_buf = page_address(bip->bip_vec->bv_page) + 164 bip->bip_vec->bv_offset; 165 166 iter.disk_name = bio->bi_disk->disk_name; 167 iter.interval = 1 << bi->interval_exp; 168 iter.seed = proc_iter->bi_sector; 169 iter.prot_buf = prot_buf; 170 171 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 172 void *kaddr = kmap_atomic(bv.bv_page); 173 174 iter.data_buf = kaddr + bv.bv_offset; 175 iter.data_size = bv.bv_len; 176 177 ret = proc_fn(&iter); 178 if (ret) { 179 kunmap_atomic(kaddr); 180 return ret; 181 } 182 183 kunmap_atomic(kaddr); 184 } 185 return ret; 186 } 187 188 /** 189 * bio_integrity_prep - Prepare bio for integrity I/O 190 * @bio: bio to prepare 191 * 192 * Description: Checks if the bio already has an integrity payload attached. 193 * If it does, the payload has been generated by another kernel subsystem, 194 * and we just pass it through. Otherwise allocates integrity payload. 195 * The bio must have data direction, target device and start sector set priot 196 * to calling. In the WRITE case, integrity metadata will be generated using 197 * the block device's integrity function. In the READ case, the buffer 198 * will be prepared for DMA and a suitable end_io handler set up. 199 */ 200 bool bio_integrity_prep(struct bio *bio) 201 { 202 struct bio_integrity_payload *bip; 203 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 204 struct request_queue *q = bio->bi_disk->queue; 205 void *buf; 206 unsigned long start, end; 207 unsigned int len, nr_pages; 208 unsigned int bytes, offset, i; 209 unsigned int intervals; 210 blk_status_t status; 211 212 if (!bi) 213 return true; 214 215 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 216 return true; 217 218 if (!bio_sectors(bio)) 219 return true; 220 221 /* Already protected? */ 222 if (bio_integrity(bio)) 223 return true; 224 225 if (bio_data_dir(bio) == READ) { 226 if (!bi->profile->verify_fn || 227 !(bi->flags & BLK_INTEGRITY_VERIFY)) 228 return true; 229 } else { 230 if (!bi->profile->generate_fn || 231 !(bi->flags & BLK_INTEGRITY_GENERATE)) 232 return true; 233 } 234 intervals = bio_integrity_intervals(bi, bio_sectors(bio)); 235 236 /* Allocate kernel buffer for protection data */ 237 len = intervals * bi->tuple_size; 238 buf = kmalloc(len, GFP_NOIO | q->bounce_gfp); 239 status = BLK_STS_RESOURCE; 240 if (unlikely(buf == NULL)) { 241 printk(KERN_ERR "could not allocate integrity buffer\n"); 242 goto err_end_io; 243 } 244 245 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 246 start = ((unsigned long) buf) >> PAGE_SHIFT; 247 nr_pages = end - start; 248 249 /* Allocate bio integrity payload and integrity vectors */ 250 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 251 if (IS_ERR(bip)) { 252 printk(KERN_ERR "could not allocate data integrity bioset\n"); 253 kfree(buf); 254 status = BLK_STS_RESOURCE; 255 goto err_end_io; 256 } 257 258 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 259 bip->bip_iter.bi_size = len; 260 bip_set_seed(bip, bio->bi_iter.bi_sector); 261 262 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 263 bip->bip_flags |= BIP_IP_CHECKSUM; 264 265 /* Map it */ 266 offset = offset_in_page(buf); 267 for (i = 0 ; i < nr_pages ; i++) { 268 int ret; 269 bytes = PAGE_SIZE - offset; 270 271 if (len <= 0) 272 break; 273 274 if (bytes > len) 275 bytes = len; 276 277 ret = bio_integrity_add_page(bio, virt_to_page(buf), 278 bytes, offset); 279 280 if (ret == 0) 281 return false; 282 283 if (ret < bytes) 284 break; 285 286 buf += bytes; 287 len -= bytes; 288 offset = 0; 289 } 290 291 /* Auto-generate integrity metadata if this is a write */ 292 if (bio_data_dir(bio) == WRITE) { 293 bio_integrity_process(bio, &bio->bi_iter, 294 bi->profile->generate_fn); 295 } else { 296 bip->bio_iter = bio->bi_iter; 297 } 298 return true; 299 300 err_end_io: 301 bio->bi_status = status; 302 bio_endio(bio); 303 return false; 304 305 } 306 EXPORT_SYMBOL(bio_integrity_prep); 307 308 /** 309 * bio_integrity_verify_fn - Integrity I/O completion worker 310 * @work: Work struct stored in bio to be verified 311 * 312 * Description: This workqueue function is called to complete a READ 313 * request. The function verifies the transferred integrity metadata 314 * and then calls the original bio end_io function. 315 */ 316 static void bio_integrity_verify_fn(struct work_struct *work) 317 { 318 struct bio_integrity_payload *bip = 319 container_of(work, struct bio_integrity_payload, bip_work); 320 struct bio *bio = bip->bip_bio; 321 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 322 323 /* 324 * At the moment verify is called bio's iterator was advanced 325 * during split and completion, we need to rewind iterator to 326 * it's original position. 327 */ 328 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 329 bi->profile->verify_fn); 330 bio_integrity_free(bio); 331 bio_endio(bio); 332 } 333 334 /** 335 * __bio_integrity_endio - Integrity I/O completion function 336 * @bio: Protected bio 337 * 338 * Description: Completion for integrity I/O 339 * 340 * Normally I/O completion is done in interrupt context. However, 341 * verifying I/O integrity is a time-consuming task which must be run 342 * in process context. This function postpones completion 343 * accordingly. 344 */ 345 bool __bio_integrity_endio(struct bio *bio) 346 { 347 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 348 struct bio_integrity_payload *bip = bio_integrity(bio); 349 350 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 351 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 352 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 353 queue_work(kintegrityd_wq, &bip->bip_work); 354 return false; 355 } 356 357 bio_integrity_free(bio); 358 return true; 359 } 360 361 /** 362 * bio_integrity_advance - Advance integrity vector 363 * @bio: bio whose integrity vector to update 364 * @bytes_done: number of data bytes that have been completed 365 * 366 * Description: This function calculates how many integrity bytes the 367 * number of completed data bytes correspond to and advances the 368 * integrity vector accordingly. 369 */ 370 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 371 { 372 struct bio_integrity_payload *bip = bio_integrity(bio); 373 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 374 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 375 376 bip->bip_iter.bi_sector += bytes_done >> 9; 377 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 378 } 379 380 /** 381 * bio_integrity_trim - Trim integrity vector 382 * @bio: bio whose integrity vector to update 383 * 384 * Description: Used to trim the integrity vector in a cloned bio. 385 */ 386 void bio_integrity_trim(struct bio *bio) 387 { 388 struct bio_integrity_payload *bip = bio_integrity(bio); 389 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 390 391 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 392 } 393 EXPORT_SYMBOL(bio_integrity_trim); 394 395 /** 396 * bio_integrity_clone - Callback for cloning bios with integrity metadata 397 * @bio: New bio 398 * @bio_src: Original bio 399 * @gfp_mask: Memory allocation mask 400 * 401 * Description: Called to allocate a bip when cloning a bio 402 */ 403 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 404 gfp_t gfp_mask) 405 { 406 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 407 struct bio_integrity_payload *bip; 408 409 BUG_ON(bip_src == NULL); 410 411 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 412 if (IS_ERR(bip)) 413 return PTR_ERR(bip); 414 415 memcpy(bip->bip_vec, bip_src->bip_vec, 416 bip_src->bip_vcnt * sizeof(struct bio_vec)); 417 418 bip->bip_vcnt = bip_src->bip_vcnt; 419 bip->bip_iter = bip_src->bip_iter; 420 421 return 0; 422 } 423 EXPORT_SYMBOL(bio_integrity_clone); 424 425 int bioset_integrity_create(struct bio_set *bs, int pool_size) 426 { 427 if (mempool_initialized(&bs->bio_integrity_pool)) 428 return 0; 429 430 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 431 pool_size, bip_slab)) 432 return -1; 433 434 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 435 mempool_exit(&bs->bio_integrity_pool); 436 return -1; 437 } 438 439 return 0; 440 } 441 EXPORT_SYMBOL(bioset_integrity_create); 442 443 void bioset_integrity_free(struct bio_set *bs) 444 { 445 mempool_exit(&bs->bio_integrity_pool); 446 mempool_exit(&bs->bvec_integrity_pool); 447 } 448 449 void __init bio_integrity_init(void) 450 { 451 /* 452 * kintegrityd won't block much but may burn a lot of CPU cycles. 453 * Make it highpri CPU intensive wq with max concurrency of 1. 454 */ 455 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 456 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 457 if (!kintegrityd_wq) 458 panic("Failed to create kintegrityd\n"); 459 460 bip_slab = kmem_cache_create("bio_integrity_payload", 461 sizeof(struct bio_integrity_payload) + 462 sizeof(struct bio_vec) * BIP_INLINE_VECS, 463 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 464 } 465