xref: /openbmc/linux/block/bio-integrity.c (revision 7211ec63)
1 /*
2  * bio-integrity.c - bio data integrity extensions
3  *
4  * Copyright (C) 2007, 2008, 2009 Oracle Corporation
5  * Written by: Martin K. Petersen <martin.petersen@oracle.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License version
9  * 2 as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; see the file COPYING.  If not, write to
18  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
19  * USA.
20  *
21  */
22 
23 #include <linux/blkdev.h>
24 #include <linux/mempool.h>
25 #include <linux/export.h>
26 #include <linux/bio.h>
27 #include <linux/workqueue.h>
28 #include <linux/slab.h>
29 #include "blk.h"
30 
31 #define BIP_INLINE_VECS	4
32 
33 static struct kmem_cache *bip_slab;
34 static struct workqueue_struct *kintegrityd_wq;
35 
36 void blk_flush_integrity(void)
37 {
38 	flush_workqueue(kintegrityd_wq);
39 }
40 
41 /**
42  * bio_integrity_alloc - Allocate integrity payload and attach it to bio
43  * @bio:	bio to attach integrity metadata to
44  * @gfp_mask:	Memory allocation mask
45  * @nr_vecs:	Number of integrity metadata scatter-gather elements
46  *
47  * Description: This function prepares a bio for attaching integrity
48  * metadata.  nr_vecs specifies the maximum number of pages containing
49  * integrity metadata that can be attached.
50  */
51 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
52 						  gfp_t gfp_mask,
53 						  unsigned int nr_vecs)
54 {
55 	struct bio_integrity_payload *bip;
56 	struct bio_set *bs = bio->bi_pool;
57 	unsigned inline_vecs;
58 
59 	if (!bs || !bs->bio_integrity_pool) {
60 		bip = kmalloc(sizeof(struct bio_integrity_payload) +
61 			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
62 		inline_vecs = nr_vecs;
63 	} else {
64 		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
65 		inline_vecs = BIP_INLINE_VECS;
66 	}
67 
68 	if (unlikely(!bip))
69 		return ERR_PTR(-ENOMEM);
70 
71 	memset(bip, 0, sizeof(*bip));
72 
73 	if (nr_vecs > inline_vecs) {
74 		unsigned long idx = 0;
75 
76 		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
77 					  bs->bvec_integrity_pool);
78 		if (!bip->bip_vec)
79 			goto err;
80 		bip->bip_max_vcnt = bvec_nr_vecs(idx);
81 		bip->bip_slab = idx;
82 	} else {
83 		bip->bip_vec = bip->bip_inline_vecs;
84 		bip->bip_max_vcnt = inline_vecs;
85 	}
86 
87 	bip->bip_bio = bio;
88 	bio->bi_integrity = bip;
89 	bio->bi_opf |= REQ_INTEGRITY;
90 
91 	return bip;
92 err:
93 	mempool_free(bip, bs->bio_integrity_pool);
94 	return ERR_PTR(-ENOMEM);
95 }
96 EXPORT_SYMBOL(bio_integrity_alloc);
97 
98 /**
99  * bio_integrity_free - Free bio integrity payload
100  * @bio:	bio containing bip to be freed
101  *
102  * Description: Used to free the integrity portion of a bio. Usually
103  * called from bio_free().
104  */
105 static void bio_integrity_free(struct bio *bio)
106 {
107 	struct bio_integrity_payload *bip = bio_integrity(bio);
108 	struct bio_set *bs = bio->bi_pool;
109 
110 	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
111 		kfree(page_address(bip->bip_vec->bv_page) +
112 		      bip->bip_vec->bv_offset);
113 
114 	if (bs && bs->bio_integrity_pool) {
115 		bvec_free(bs->bvec_integrity_pool, bip->bip_vec, bip->bip_slab);
116 
117 		mempool_free(bip, bs->bio_integrity_pool);
118 	} else {
119 		kfree(bip);
120 	}
121 
122 	bio->bi_integrity = NULL;
123 	bio->bi_opf &= ~REQ_INTEGRITY;
124 }
125 
126 /**
127  * bio_integrity_add_page - Attach integrity metadata
128  * @bio:	bio to update
129  * @page:	page containing integrity metadata
130  * @len:	number of bytes of integrity metadata in page
131  * @offset:	start offset within page
132  *
133  * Description: Attach a page containing integrity metadata to bio.
134  */
135 int bio_integrity_add_page(struct bio *bio, struct page *page,
136 			   unsigned int len, unsigned int offset)
137 {
138 	struct bio_integrity_payload *bip = bio_integrity(bio);
139 	struct bio_vec *iv;
140 
141 	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
142 		printk(KERN_ERR "%s: bip_vec full\n", __func__);
143 		return 0;
144 	}
145 
146 	iv = bip->bip_vec + bip->bip_vcnt;
147 
148 	if (bip->bip_vcnt &&
149 	    bvec_gap_to_prev(bio->bi_disk->queue,
150 			     &bip->bip_vec[bip->bip_vcnt - 1], offset))
151 		return 0;
152 
153 	iv->bv_page = page;
154 	iv->bv_len = len;
155 	iv->bv_offset = offset;
156 	bip->bip_vcnt++;
157 
158 	return len;
159 }
160 EXPORT_SYMBOL(bio_integrity_add_page);
161 
162 /**
163  * bio_integrity_intervals - Return number of integrity intervals for a bio
164  * @bi:		blk_integrity profile for device
165  * @sectors:	Size of the bio in 512-byte sectors
166  *
167  * Description: The block layer calculates everything in 512 byte
168  * sectors but integrity metadata is done in terms of the data integrity
169  * interval size of the storage device.  Convert the block layer sectors
170  * to the appropriate number of integrity intervals.
171  */
172 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
173 						   unsigned int sectors)
174 {
175 	return sectors >> (bi->interval_exp - 9);
176 }
177 
178 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
179 					       unsigned int sectors)
180 {
181 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
182 }
183 
184 /**
185  * bio_integrity_process - Process integrity metadata for a bio
186  * @bio:	bio to generate/verify integrity metadata for
187  * @proc_iter:  iterator to process
188  * @proc_fn:	Pointer to the relevant processing function
189  */
190 static blk_status_t bio_integrity_process(struct bio *bio,
191 		struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
192 {
193 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
194 	struct blk_integrity_iter iter;
195 	struct bvec_iter bviter;
196 	struct bio_vec bv;
197 	struct bio_integrity_payload *bip = bio_integrity(bio);
198 	blk_status_t ret = BLK_STS_OK;
199 	void *prot_buf = page_address(bip->bip_vec->bv_page) +
200 		bip->bip_vec->bv_offset;
201 
202 	iter.disk_name = bio->bi_disk->disk_name;
203 	iter.interval = 1 << bi->interval_exp;
204 	iter.seed = proc_iter->bi_sector;
205 	iter.prot_buf = prot_buf;
206 
207 	__bio_for_each_segment(bv, bio, bviter, *proc_iter) {
208 		void *kaddr = kmap_atomic(bv.bv_page);
209 
210 		iter.data_buf = kaddr + bv.bv_offset;
211 		iter.data_size = bv.bv_len;
212 
213 		ret = proc_fn(&iter);
214 		if (ret) {
215 			kunmap_atomic(kaddr);
216 			return ret;
217 		}
218 
219 		kunmap_atomic(kaddr);
220 	}
221 	return ret;
222 }
223 
224 /**
225  * bio_integrity_prep - Prepare bio for integrity I/O
226  * @bio:	bio to prepare
227  *
228  * Description:  Checks if the bio already has an integrity payload attached.
229  * If it does, the payload has been generated by another kernel subsystem,
230  * and we just pass it through. Otherwise allocates integrity payload.
231  * The bio must have data direction, target device and start sector set priot
232  * to calling.  In the WRITE case, integrity metadata will be generated using
233  * the block device's integrity function.  In the READ case, the buffer
234  * will be prepared for DMA and a suitable end_io handler set up.
235  */
236 bool bio_integrity_prep(struct bio *bio)
237 {
238 	struct bio_integrity_payload *bip;
239 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
240 	struct request_queue *q = bio->bi_disk->queue;
241 	void *buf;
242 	unsigned long start, end;
243 	unsigned int len, nr_pages;
244 	unsigned int bytes, offset, i;
245 	unsigned int intervals;
246 	blk_status_t status;
247 
248 	if (!bi)
249 		return true;
250 
251 	if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
252 		return true;
253 
254 	if (!bio_sectors(bio))
255 		return true;
256 
257 	/* Already protected? */
258 	if (bio_integrity(bio))
259 		return true;
260 
261 	if (bio_data_dir(bio) == READ) {
262 		if (!bi->profile->verify_fn ||
263 		    !(bi->flags & BLK_INTEGRITY_VERIFY))
264 			return true;
265 	} else {
266 		if (!bi->profile->generate_fn ||
267 		    !(bi->flags & BLK_INTEGRITY_GENERATE))
268 			return true;
269 	}
270 	intervals = bio_integrity_intervals(bi, bio_sectors(bio));
271 
272 	/* Allocate kernel buffer for protection data */
273 	len = intervals * bi->tuple_size;
274 	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
275 	status = BLK_STS_RESOURCE;
276 	if (unlikely(buf == NULL)) {
277 		printk(KERN_ERR "could not allocate integrity buffer\n");
278 		goto err_end_io;
279 	}
280 
281 	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
282 	start = ((unsigned long) buf) >> PAGE_SHIFT;
283 	nr_pages = end - start;
284 
285 	/* Allocate bio integrity payload and integrity vectors */
286 	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
287 	if (IS_ERR(bip)) {
288 		printk(KERN_ERR "could not allocate data integrity bioset\n");
289 		kfree(buf);
290 		status = BLK_STS_RESOURCE;
291 		goto err_end_io;
292 	}
293 
294 	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
295 	bip->bip_iter.bi_size = len;
296 	bip_set_seed(bip, bio->bi_iter.bi_sector);
297 
298 	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
299 		bip->bip_flags |= BIP_IP_CHECKSUM;
300 
301 	/* Map it */
302 	offset = offset_in_page(buf);
303 	for (i = 0 ; i < nr_pages ; i++) {
304 		int ret;
305 		bytes = PAGE_SIZE - offset;
306 
307 		if (len <= 0)
308 			break;
309 
310 		if (bytes > len)
311 			bytes = len;
312 
313 		ret = bio_integrity_add_page(bio, virt_to_page(buf),
314 					     bytes, offset);
315 
316 		if (ret == 0)
317 			return false;
318 
319 		if (ret < bytes)
320 			break;
321 
322 		buf += bytes;
323 		len -= bytes;
324 		offset = 0;
325 	}
326 
327 	/* Auto-generate integrity metadata if this is a write */
328 	if (bio_data_dir(bio) == WRITE) {
329 		bio_integrity_process(bio, &bio->bi_iter,
330 				      bi->profile->generate_fn);
331 	}
332 	return true;
333 
334 err_end_io:
335 	bio->bi_status = status;
336 	bio_endio(bio);
337 	return false;
338 
339 }
340 EXPORT_SYMBOL(bio_integrity_prep);
341 
342 /**
343  * bio_integrity_verify_fn - Integrity I/O completion worker
344  * @work:	Work struct stored in bio to be verified
345  *
346  * Description: This workqueue function is called to complete a READ
347  * request.  The function verifies the transferred integrity metadata
348  * and then calls the original bio end_io function.
349  */
350 static void bio_integrity_verify_fn(struct work_struct *work)
351 {
352 	struct bio_integrity_payload *bip =
353 		container_of(work, struct bio_integrity_payload, bip_work);
354 	struct bio *bio = bip->bip_bio;
355 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
356 	struct bvec_iter iter = bio->bi_iter;
357 
358 	/*
359 	 * At the moment verify is called bio's iterator was advanced
360 	 * during split and completion, we need to rewind iterator to
361 	 * it's original position.
362 	 */
363 	if (bio_rewind_iter(bio, &iter, iter.bi_done)) {
364 		bio->bi_status = bio_integrity_process(bio, &iter,
365 						       bi->profile->verify_fn);
366 	} else {
367 		bio->bi_status = BLK_STS_IOERR;
368 	}
369 
370 	bio_integrity_free(bio);
371 	bio_endio(bio);
372 }
373 
374 /**
375  * __bio_integrity_endio - Integrity I/O completion function
376  * @bio:	Protected bio
377  * @error:	Pointer to errno
378  *
379  * Description: Completion for integrity I/O
380  *
381  * Normally I/O completion is done in interrupt context.  However,
382  * verifying I/O integrity is a time-consuming task which must be run
383  * in process context.	This function postpones completion
384  * accordingly.
385  */
386 bool __bio_integrity_endio(struct bio *bio)
387 {
388 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
389 	struct bio_integrity_payload *bip = bio_integrity(bio);
390 
391 	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
392 	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
393 		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
394 		queue_work(kintegrityd_wq, &bip->bip_work);
395 		return false;
396 	}
397 
398 	bio_integrity_free(bio);
399 	return true;
400 }
401 
402 /**
403  * bio_integrity_advance - Advance integrity vector
404  * @bio:	bio whose integrity vector to update
405  * @bytes_done:	number of data bytes that have been completed
406  *
407  * Description: This function calculates how many integrity bytes the
408  * number of completed data bytes correspond to and advances the
409  * integrity vector accordingly.
410  */
411 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
412 {
413 	struct bio_integrity_payload *bip = bio_integrity(bio);
414 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
415 	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
416 
417 	bip->bip_iter.bi_sector += bytes_done >> 9;
418 	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
419 }
420 EXPORT_SYMBOL(bio_integrity_advance);
421 
422 /**
423  * bio_integrity_trim - Trim integrity vector
424  * @bio:	bio whose integrity vector to update
425  *
426  * Description: Used to trim the integrity vector in a cloned bio.
427  */
428 void bio_integrity_trim(struct bio *bio)
429 {
430 	struct bio_integrity_payload *bip = bio_integrity(bio);
431 	struct blk_integrity *bi = blk_get_integrity(bio->bi_disk);
432 
433 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
434 }
435 EXPORT_SYMBOL(bio_integrity_trim);
436 
437 /**
438  * bio_integrity_clone - Callback for cloning bios with integrity metadata
439  * @bio:	New bio
440  * @bio_src:	Original bio
441  * @gfp_mask:	Memory allocation mask
442  *
443  * Description:	Called to allocate a bip when cloning a bio
444  */
445 int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
446 			gfp_t gfp_mask)
447 {
448 	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
449 	struct bio_integrity_payload *bip;
450 
451 	BUG_ON(bip_src == NULL);
452 
453 	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
454 	if (IS_ERR(bip))
455 		return PTR_ERR(bip);
456 
457 	memcpy(bip->bip_vec, bip_src->bip_vec,
458 	       bip_src->bip_vcnt * sizeof(struct bio_vec));
459 
460 	bip->bip_vcnt = bip_src->bip_vcnt;
461 	bip->bip_iter = bip_src->bip_iter;
462 
463 	return 0;
464 }
465 EXPORT_SYMBOL(bio_integrity_clone);
466 
467 int bioset_integrity_create(struct bio_set *bs, int pool_size)
468 {
469 	if (bs->bio_integrity_pool)
470 		return 0;
471 
472 	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
473 	if (!bs->bio_integrity_pool)
474 		return -1;
475 
476 	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
477 	if (!bs->bvec_integrity_pool) {
478 		mempool_destroy(bs->bio_integrity_pool);
479 		return -1;
480 	}
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL(bioset_integrity_create);
485 
486 void bioset_integrity_free(struct bio_set *bs)
487 {
488 	if (bs->bio_integrity_pool)
489 		mempool_destroy(bs->bio_integrity_pool);
490 
491 	if (bs->bvec_integrity_pool)
492 		mempool_destroy(bs->bvec_integrity_pool);
493 }
494 EXPORT_SYMBOL(bioset_integrity_free);
495 
496 void __init bio_integrity_init(void)
497 {
498 	/*
499 	 * kintegrityd won't block much but may burn a lot of CPU cycles.
500 	 * Make it highpri CPU intensive wq with max concurrency of 1.
501 	 */
502 	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
503 					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
504 	if (!kintegrityd_wq)
505 		panic("Failed to create kintegrityd\n");
506 
507 	bip_slab = kmem_cache_create("bio_integrity_payload",
508 				     sizeof(struct bio_integrity_payload) +
509 				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
510 				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
511 }
512