1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mempool.h> 11 #include <linux/export.h> 12 #include <linux/bio.h> 13 #include <linux/workqueue.h> 14 #include <linux/slab.h> 15 #include "blk.h" 16 17 static struct kmem_cache *bip_slab; 18 static struct workqueue_struct *kintegrityd_wq; 19 20 void blk_flush_integrity(void) 21 { 22 flush_workqueue(kintegrityd_wq); 23 } 24 25 static void __bio_integrity_free(struct bio_set *bs, 26 struct bio_integrity_payload *bip) 27 { 28 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 29 if (bip->bip_vec) 30 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, 31 bip->bip_max_vcnt); 32 mempool_free(bip, &bs->bio_integrity_pool); 33 } else { 34 kfree(bip); 35 } 36 } 37 38 /** 39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 40 * @bio: bio to attach integrity metadata to 41 * @gfp_mask: Memory allocation mask 42 * @nr_vecs: Number of integrity metadata scatter-gather elements 43 * 44 * Description: This function prepares a bio for attaching integrity 45 * metadata. nr_vecs specifies the maximum number of pages containing 46 * integrity metadata that can be attached. 47 */ 48 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 49 gfp_t gfp_mask, 50 unsigned int nr_vecs) 51 { 52 struct bio_integrity_payload *bip; 53 struct bio_set *bs = bio->bi_pool; 54 unsigned inline_vecs; 55 56 if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) 57 return ERR_PTR(-EOPNOTSUPP); 58 59 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 60 bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); 61 inline_vecs = nr_vecs; 62 } else { 63 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 64 inline_vecs = BIO_INLINE_VECS; 65 } 66 67 if (unlikely(!bip)) 68 return ERR_PTR(-ENOMEM); 69 70 memset(bip, 0, sizeof(*bip)); 71 72 if (nr_vecs > inline_vecs) { 73 bip->bip_max_vcnt = nr_vecs; 74 bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool, 75 &bip->bip_max_vcnt, gfp_mask); 76 if (!bip->bip_vec) 77 goto err; 78 } else { 79 bip->bip_vec = bip->bip_inline_vecs; 80 bip->bip_max_vcnt = inline_vecs; 81 } 82 83 bip->bip_bio = bio; 84 bio->bi_integrity = bip; 85 bio->bi_opf |= REQ_INTEGRITY; 86 87 return bip; 88 err: 89 __bio_integrity_free(bs, bip); 90 return ERR_PTR(-ENOMEM); 91 } 92 EXPORT_SYMBOL(bio_integrity_alloc); 93 94 /** 95 * bio_integrity_free - Free bio integrity payload 96 * @bio: bio containing bip to be freed 97 * 98 * Description: Used to free the integrity portion of a bio. Usually 99 * called from bio_free(). 100 */ 101 void bio_integrity_free(struct bio *bio) 102 { 103 struct bio_integrity_payload *bip = bio_integrity(bio); 104 struct bio_set *bs = bio->bi_pool; 105 106 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 107 kfree(bvec_virt(bip->bip_vec)); 108 109 __bio_integrity_free(bs, bip); 110 bio->bi_integrity = NULL; 111 bio->bi_opf &= ~REQ_INTEGRITY; 112 } 113 114 /** 115 * bio_integrity_add_page - Attach integrity metadata 116 * @bio: bio to update 117 * @page: page containing integrity metadata 118 * @len: number of bytes of integrity metadata in page 119 * @offset: start offset within page 120 * 121 * Description: Attach a page containing integrity metadata to bio. 122 */ 123 int bio_integrity_add_page(struct bio *bio, struct page *page, 124 unsigned int len, unsigned int offset) 125 { 126 struct bio_integrity_payload *bip = bio_integrity(bio); 127 struct bio_vec *iv; 128 129 if (bip->bip_vcnt >= bip->bip_max_vcnt) { 130 printk(KERN_ERR "%s: bip_vec full\n", __func__); 131 return 0; 132 } 133 134 iv = bip->bip_vec + bip->bip_vcnt; 135 136 if (bip->bip_vcnt && 137 bvec_gap_to_prev(bio->bi_bdev->bd_disk->queue, 138 &bip->bip_vec[bip->bip_vcnt - 1], offset)) 139 return 0; 140 141 iv->bv_page = page; 142 iv->bv_len = len; 143 iv->bv_offset = offset; 144 bip->bip_vcnt++; 145 146 return len; 147 } 148 EXPORT_SYMBOL(bio_integrity_add_page); 149 150 /** 151 * bio_integrity_process - Process integrity metadata for a bio 152 * @bio: bio to generate/verify integrity metadata for 153 * @proc_iter: iterator to process 154 * @proc_fn: Pointer to the relevant processing function 155 */ 156 static blk_status_t bio_integrity_process(struct bio *bio, 157 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 158 { 159 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 160 struct blk_integrity_iter iter; 161 struct bvec_iter bviter; 162 struct bio_vec bv; 163 struct bio_integrity_payload *bip = bio_integrity(bio); 164 blk_status_t ret = BLK_STS_OK; 165 166 iter.disk_name = bio->bi_bdev->bd_disk->disk_name; 167 iter.interval = 1 << bi->interval_exp; 168 iter.seed = proc_iter->bi_sector; 169 iter.prot_buf = bvec_virt(bip->bip_vec); 170 171 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 172 void *kaddr = bvec_kmap_local(&bv); 173 174 iter.data_buf = kaddr; 175 iter.data_size = bv.bv_len; 176 ret = proc_fn(&iter); 177 kunmap_local(kaddr); 178 179 if (ret) 180 break; 181 182 } 183 return ret; 184 } 185 186 /** 187 * bio_integrity_prep - Prepare bio for integrity I/O 188 * @bio: bio to prepare 189 * 190 * Description: Checks if the bio already has an integrity payload attached. 191 * If it does, the payload has been generated by another kernel subsystem, 192 * and we just pass it through. Otherwise allocates integrity payload. 193 * The bio must have data direction, target device and start sector set priot 194 * to calling. In the WRITE case, integrity metadata will be generated using 195 * the block device's integrity function. In the READ case, the buffer 196 * will be prepared for DMA and a suitable end_io handler set up. 197 */ 198 bool bio_integrity_prep(struct bio *bio) 199 { 200 struct bio_integrity_payload *bip; 201 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 202 void *buf; 203 unsigned long start, end; 204 unsigned int len, nr_pages; 205 unsigned int bytes, offset, i; 206 unsigned int intervals; 207 blk_status_t status; 208 209 if (!bi) 210 return true; 211 212 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 213 return true; 214 215 if (!bio_sectors(bio)) 216 return true; 217 218 /* Already protected? */ 219 if (bio_integrity(bio)) 220 return true; 221 222 if (bio_data_dir(bio) == READ) { 223 if (!bi->profile->verify_fn || 224 !(bi->flags & BLK_INTEGRITY_VERIFY)) 225 return true; 226 } else { 227 if (!bi->profile->generate_fn || 228 !(bi->flags & BLK_INTEGRITY_GENERATE)) 229 return true; 230 } 231 intervals = bio_integrity_intervals(bi, bio_sectors(bio)); 232 233 /* Allocate kernel buffer for protection data */ 234 len = intervals * bi->tuple_size; 235 buf = kmalloc(len, GFP_NOIO); 236 status = BLK_STS_RESOURCE; 237 if (unlikely(buf == NULL)) { 238 printk(KERN_ERR "could not allocate integrity buffer\n"); 239 goto err_end_io; 240 } 241 242 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 243 start = ((unsigned long) buf) >> PAGE_SHIFT; 244 nr_pages = end - start; 245 246 /* Allocate bio integrity payload and integrity vectors */ 247 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 248 if (IS_ERR(bip)) { 249 printk(KERN_ERR "could not allocate data integrity bioset\n"); 250 kfree(buf); 251 status = BLK_STS_RESOURCE; 252 goto err_end_io; 253 } 254 255 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 256 bip->bip_iter.bi_size = len; 257 bip_set_seed(bip, bio->bi_iter.bi_sector); 258 259 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 260 bip->bip_flags |= BIP_IP_CHECKSUM; 261 262 /* Map it */ 263 offset = offset_in_page(buf); 264 for (i = 0 ; i < nr_pages ; i++) { 265 int ret; 266 bytes = PAGE_SIZE - offset; 267 268 if (len <= 0) 269 break; 270 271 if (bytes > len) 272 bytes = len; 273 274 ret = bio_integrity_add_page(bio, virt_to_page(buf), 275 bytes, offset); 276 277 if (ret == 0) { 278 printk(KERN_ERR "could not attach integrity payload\n"); 279 status = BLK_STS_RESOURCE; 280 goto err_end_io; 281 } 282 283 if (ret < bytes) 284 break; 285 286 buf += bytes; 287 len -= bytes; 288 offset = 0; 289 } 290 291 /* Auto-generate integrity metadata if this is a write */ 292 if (bio_data_dir(bio) == WRITE) { 293 bio_integrity_process(bio, &bio->bi_iter, 294 bi->profile->generate_fn); 295 } else { 296 bip->bio_iter = bio->bi_iter; 297 } 298 return true; 299 300 err_end_io: 301 bio->bi_status = status; 302 bio_endio(bio); 303 return false; 304 305 } 306 EXPORT_SYMBOL(bio_integrity_prep); 307 308 /** 309 * bio_integrity_verify_fn - Integrity I/O completion worker 310 * @work: Work struct stored in bio to be verified 311 * 312 * Description: This workqueue function is called to complete a READ 313 * request. The function verifies the transferred integrity metadata 314 * and then calls the original bio end_io function. 315 */ 316 static void bio_integrity_verify_fn(struct work_struct *work) 317 { 318 struct bio_integrity_payload *bip = 319 container_of(work, struct bio_integrity_payload, bip_work); 320 struct bio *bio = bip->bip_bio; 321 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 322 323 /* 324 * At the moment verify is called bio's iterator was advanced 325 * during split and completion, we need to rewind iterator to 326 * it's original position. 327 */ 328 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 329 bi->profile->verify_fn); 330 bio_integrity_free(bio); 331 bio_endio(bio); 332 } 333 334 /** 335 * __bio_integrity_endio - Integrity I/O completion function 336 * @bio: Protected bio 337 * 338 * Description: Completion for integrity I/O 339 * 340 * Normally I/O completion is done in interrupt context. However, 341 * verifying I/O integrity is a time-consuming task which must be run 342 * in process context. This function postpones completion 343 * accordingly. 344 */ 345 bool __bio_integrity_endio(struct bio *bio) 346 { 347 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 348 struct bio_integrity_payload *bip = bio_integrity(bio); 349 350 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 351 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 352 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 353 queue_work(kintegrityd_wq, &bip->bip_work); 354 return false; 355 } 356 357 bio_integrity_free(bio); 358 return true; 359 } 360 361 /** 362 * bio_integrity_advance - Advance integrity vector 363 * @bio: bio whose integrity vector to update 364 * @bytes_done: number of data bytes that have been completed 365 * 366 * Description: This function calculates how many integrity bytes the 367 * number of completed data bytes correspond to and advances the 368 * integrity vector accordingly. 369 */ 370 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 371 { 372 struct bio_integrity_payload *bip = bio_integrity(bio); 373 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 374 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 375 376 bip->bip_iter.bi_sector += bytes_done >> 9; 377 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 378 } 379 380 /** 381 * bio_integrity_trim - Trim integrity vector 382 * @bio: bio whose integrity vector to update 383 * 384 * Description: Used to trim the integrity vector in a cloned bio. 385 */ 386 void bio_integrity_trim(struct bio *bio) 387 { 388 struct bio_integrity_payload *bip = bio_integrity(bio); 389 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 390 391 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 392 } 393 EXPORT_SYMBOL(bio_integrity_trim); 394 395 /** 396 * bio_integrity_clone - Callback for cloning bios with integrity metadata 397 * @bio: New bio 398 * @bio_src: Original bio 399 * @gfp_mask: Memory allocation mask 400 * 401 * Description: Called to allocate a bip when cloning a bio 402 */ 403 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 404 gfp_t gfp_mask) 405 { 406 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 407 struct bio_integrity_payload *bip; 408 409 BUG_ON(bip_src == NULL); 410 411 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 412 if (IS_ERR(bip)) 413 return PTR_ERR(bip); 414 415 memcpy(bip->bip_vec, bip_src->bip_vec, 416 bip_src->bip_vcnt * sizeof(struct bio_vec)); 417 418 bip->bip_vcnt = bip_src->bip_vcnt; 419 bip->bip_iter = bip_src->bip_iter; 420 421 return 0; 422 } 423 EXPORT_SYMBOL(bio_integrity_clone); 424 425 int bioset_integrity_create(struct bio_set *bs, int pool_size) 426 { 427 if (mempool_initialized(&bs->bio_integrity_pool)) 428 return 0; 429 430 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 431 pool_size, bip_slab)) 432 return -1; 433 434 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 435 mempool_exit(&bs->bio_integrity_pool); 436 return -1; 437 } 438 439 return 0; 440 } 441 EXPORT_SYMBOL(bioset_integrity_create); 442 443 void bioset_integrity_free(struct bio_set *bs) 444 { 445 mempool_exit(&bs->bio_integrity_pool); 446 mempool_exit(&bs->bvec_integrity_pool); 447 } 448 449 void __init bio_integrity_init(void) 450 { 451 /* 452 * kintegrityd won't block much but may burn a lot of CPU cycles. 453 * Make it highpri CPU intensive wq with max concurrency of 1. 454 */ 455 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 456 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 457 if (!kintegrityd_wq) 458 panic("Failed to create kintegrityd\n"); 459 460 bip_slab = kmem_cache_create("bio_integrity_payload", 461 sizeof(struct bio_integrity_payload) + 462 sizeof(struct bio_vec) * BIO_INLINE_VECS, 463 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 464 } 465