1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mempool.h> 11 #include <linux/export.h> 12 #include <linux/bio.h> 13 #include <linux/workqueue.h> 14 #include <linux/slab.h> 15 #include "blk.h" 16 17 #define BIP_INLINE_VECS 4 18 19 static struct kmem_cache *bip_slab; 20 static struct workqueue_struct *kintegrityd_wq; 21 22 void blk_flush_integrity(void) 23 { 24 flush_workqueue(kintegrityd_wq); 25 } 26 27 /** 28 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 29 * @bio: bio to attach integrity metadata to 30 * @gfp_mask: Memory allocation mask 31 * @nr_vecs: Number of integrity metadata scatter-gather elements 32 * 33 * Description: This function prepares a bio for attaching integrity 34 * metadata. nr_vecs specifies the maximum number of pages containing 35 * integrity metadata that can be attached. 36 */ 37 struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 38 gfp_t gfp_mask, 39 unsigned int nr_vecs) 40 { 41 struct bio_integrity_payload *bip; 42 struct bio_set *bs = bio->bi_pool; 43 unsigned inline_vecs; 44 45 if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) 46 return ERR_PTR(-EOPNOTSUPP); 47 48 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 49 bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); 50 inline_vecs = nr_vecs; 51 } else { 52 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 53 inline_vecs = BIP_INLINE_VECS; 54 } 55 56 if (unlikely(!bip)) 57 return ERR_PTR(-ENOMEM); 58 59 memset(bip, 0, sizeof(*bip)); 60 61 if (nr_vecs > inline_vecs) { 62 unsigned long idx = 0; 63 64 bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx, 65 &bs->bvec_integrity_pool); 66 if (!bip->bip_vec) 67 goto err; 68 bip->bip_max_vcnt = bvec_nr_vecs(idx); 69 bip->bip_slab = idx; 70 } else { 71 bip->bip_vec = bip->bip_inline_vecs; 72 bip->bip_max_vcnt = inline_vecs; 73 } 74 75 bip->bip_bio = bio; 76 bio->bi_integrity = bip; 77 bio->bi_opf |= REQ_INTEGRITY; 78 79 return bip; 80 err: 81 mempool_free(bip, &bs->bio_integrity_pool); 82 return ERR_PTR(-ENOMEM); 83 } 84 EXPORT_SYMBOL(bio_integrity_alloc); 85 86 /** 87 * bio_integrity_free - Free bio integrity payload 88 * @bio: bio containing bip to be freed 89 * 90 * Description: Used to free the integrity portion of a bio. Usually 91 * called from bio_free(). 92 */ 93 void bio_integrity_free(struct bio *bio) 94 { 95 struct bio_integrity_payload *bip = bio_integrity(bio); 96 struct bio_set *bs = bio->bi_pool; 97 98 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 99 kfree(page_address(bip->bip_vec->bv_page) + 100 bip->bip_vec->bv_offset); 101 102 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 103 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, bip->bip_slab); 104 105 mempool_free(bip, &bs->bio_integrity_pool); 106 } else { 107 kfree(bip); 108 } 109 110 bio->bi_integrity = NULL; 111 bio->bi_opf &= ~REQ_INTEGRITY; 112 } 113 114 /** 115 * bio_integrity_add_page - Attach integrity metadata 116 * @bio: bio to update 117 * @page: page containing integrity metadata 118 * @len: number of bytes of integrity metadata in page 119 * @offset: start offset within page 120 * 121 * Description: Attach a page containing integrity metadata to bio. 122 */ 123 int bio_integrity_add_page(struct bio *bio, struct page *page, 124 unsigned int len, unsigned int offset) 125 { 126 struct bio_integrity_payload *bip = bio_integrity(bio); 127 struct bio_vec *iv; 128 129 if (bip->bip_vcnt >= bip->bip_max_vcnt) { 130 printk(KERN_ERR "%s: bip_vec full\n", __func__); 131 return 0; 132 } 133 134 iv = bip->bip_vec + bip->bip_vcnt; 135 136 if (bip->bip_vcnt && 137 bvec_gap_to_prev(bio->bi_disk->queue, 138 &bip->bip_vec[bip->bip_vcnt - 1], offset)) 139 return 0; 140 141 iv->bv_page = page; 142 iv->bv_len = len; 143 iv->bv_offset = offset; 144 bip->bip_vcnt++; 145 146 return len; 147 } 148 EXPORT_SYMBOL(bio_integrity_add_page); 149 150 /** 151 * bio_integrity_process - Process integrity metadata for a bio 152 * @bio: bio to generate/verify integrity metadata for 153 * @proc_iter: iterator to process 154 * @proc_fn: Pointer to the relevant processing function 155 */ 156 static blk_status_t bio_integrity_process(struct bio *bio, 157 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 158 { 159 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 160 struct blk_integrity_iter iter; 161 struct bvec_iter bviter; 162 struct bio_vec bv; 163 struct bio_integrity_payload *bip = bio_integrity(bio); 164 blk_status_t ret = BLK_STS_OK; 165 void *prot_buf = page_address(bip->bip_vec->bv_page) + 166 bip->bip_vec->bv_offset; 167 168 iter.disk_name = bio->bi_disk->disk_name; 169 iter.interval = 1 << bi->interval_exp; 170 iter.seed = proc_iter->bi_sector; 171 iter.prot_buf = prot_buf; 172 173 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 174 void *kaddr = kmap_atomic(bv.bv_page); 175 176 iter.data_buf = kaddr + bv.bv_offset; 177 iter.data_size = bv.bv_len; 178 179 ret = proc_fn(&iter); 180 if (ret) { 181 kunmap_atomic(kaddr); 182 return ret; 183 } 184 185 kunmap_atomic(kaddr); 186 } 187 return ret; 188 } 189 190 /** 191 * bio_integrity_prep - Prepare bio for integrity I/O 192 * @bio: bio to prepare 193 * 194 * Description: Checks if the bio already has an integrity payload attached. 195 * If it does, the payload has been generated by another kernel subsystem, 196 * and we just pass it through. Otherwise allocates integrity payload. 197 * The bio must have data direction, target device and start sector set priot 198 * to calling. In the WRITE case, integrity metadata will be generated using 199 * the block device's integrity function. In the READ case, the buffer 200 * will be prepared for DMA and a suitable end_io handler set up. 201 */ 202 bool bio_integrity_prep(struct bio *bio) 203 { 204 struct bio_integrity_payload *bip; 205 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 206 struct request_queue *q = bio->bi_disk->queue; 207 void *buf; 208 unsigned long start, end; 209 unsigned int len, nr_pages; 210 unsigned int bytes, offset, i; 211 unsigned int intervals; 212 blk_status_t status; 213 214 if (!bi) 215 return true; 216 217 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 218 return true; 219 220 if (!bio_sectors(bio)) 221 return true; 222 223 /* Already protected? */ 224 if (bio_integrity(bio)) 225 return true; 226 227 if (bio_data_dir(bio) == READ) { 228 if (!bi->profile->verify_fn || 229 !(bi->flags & BLK_INTEGRITY_VERIFY)) 230 return true; 231 } else { 232 if (!bi->profile->generate_fn || 233 !(bi->flags & BLK_INTEGRITY_GENERATE)) 234 return true; 235 } 236 intervals = bio_integrity_intervals(bi, bio_sectors(bio)); 237 238 /* Allocate kernel buffer for protection data */ 239 len = intervals * bi->tuple_size; 240 buf = kmalloc(len, GFP_NOIO | q->bounce_gfp); 241 status = BLK_STS_RESOURCE; 242 if (unlikely(buf == NULL)) { 243 printk(KERN_ERR "could not allocate integrity buffer\n"); 244 goto err_end_io; 245 } 246 247 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 248 start = ((unsigned long) buf) >> PAGE_SHIFT; 249 nr_pages = end - start; 250 251 /* Allocate bio integrity payload and integrity vectors */ 252 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 253 if (IS_ERR(bip)) { 254 printk(KERN_ERR "could not allocate data integrity bioset\n"); 255 kfree(buf); 256 status = BLK_STS_RESOURCE; 257 goto err_end_io; 258 } 259 260 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 261 bip->bip_iter.bi_size = len; 262 bip_set_seed(bip, bio->bi_iter.bi_sector); 263 264 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 265 bip->bip_flags |= BIP_IP_CHECKSUM; 266 267 /* Map it */ 268 offset = offset_in_page(buf); 269 for (i = 0 ; i < nr_pages ; i++) { 270 int ret; 271 bytes = PAGE_SIZE - offset; 272 273 if (len <= 0) 274 break; 275 276 if (bytes > len) 277 bytes = len; 278 279 ret = bio_integrity_add_page(bio, virt_to_page(buf), 280 bytes, offset); 281 282 if (ret == 0) { 283 printk(KERN_ERR "could not attach integrity payload\n"); 284 status = BLK_STS_RESOURCE; 285 goto err_end_io; 286 } 287 288 if (ret < bytes) 289 break; 290 291 buf += bytes; 292 len -= bytes; 293 offset = 0; 294 } 295 296 /* Auto-generate integrity metadata if this is a write */ 297 if (bio_data_dir(bio) == WRITE) { 298 bio_integrity_process(bio, &bio->bi_iter, 299 bi->profile->generate_fn); 300 } else { 301 bip->bio_iter = bio->bi_iter; 302 } 303 return true; 304 305 err_end_io: 306 bio->bi_status = status; 307 bio_endio(bio); 308 return false; 309 310 } 311 EXPORT_SYMBOL(bio_integrity_prep); 312 313 /** 314 * bio_integrity_verify_fn - Integrity I/O completion worker 315 * @work: Work struct stored in bio to be verified 316 * 317 * Description: This workqueue function is called to complete a READ 318 * request. The function verifies the transferred integrity metadata 319 * and then calls the original bio end_io function. 320 */ 321 static void bio_integrity_verify_fn(struct work_struct *work) 322 { 323 struct bio_integrity_payload *bip = 324 container_of(work, struct bio_integrity_payload, bip_work); 325 struct bio *bio = bip->bip_bio; 326 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 327 328 /* 329 * At the moment verify is called bio's iterator was advanced 330 * during split and completion, we need to rewind iterator to 331 * it's original position. 332 */ 333 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 334 bi->profile->verify_fn); 335 bio_integrity_free(bio); 336 bio_endio(bio); 337 } 338 339 /** 340 * __bio_integrity_endio - Integrity I/O completion function 341 * @bio: Protected bio 342 * 343 * Description: Completion for integrity I/O 344 * 345 * Normally I/O completion is done in interrupt context. However, 346 * verifying I/O integrity is a time-consuming task which must be run 347 * in process context. This function postpones completion 348 * accordingly. 349 */ 350 bool __bio_integrity_endio(struct bio *bio) 351 { 352 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 353 struct bio_integrity_payload *bip = bio_integrity(bio); 354 355 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 356 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 357 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 358 queue_work(kintegrityd_wq, &bip->bip_work); 359 return false; 360 } 361 362 bio_integrity_free(bio); 363 return true; 364 } 365 366 /** 367 * bio_integrity_advance - Advance integrity vector 368 * @bio: bio whose integrity vector to update 369 * @bytes_done: number of data bytes that have been completed 370 * 371 * Description: This function calculates how many integrity bytes the 372 * number of completed data bytes correspond to and advances the 373 * integrity vector accordingly. 374 */ 375 void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 376 { 377 struct bio_integrity_payload *bip = bio_integrity(bio); 378 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 379 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 380 381 bip->bip_iter.bi_sector += bytes_done >> 9; 382 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 383 } 384 385 /** 386 * bio_integrity_trim - Trim integrity vector 387 * @bio: bio whose integrity vector to update 388 * 389 * Description: Used to trim the integrity vector in a cloned bio. 390 */ 391 void bio_integrity_trim(struct bio *bio) 392 { 393 struct bio_integrity_payload *bip = bio_integrity(bio); 394 struct blk_integrity *bi = blk_get_integrity(bio->bi_disk); 395 396 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 397 } 398 EXPORT_SYMBOL(bio_integrity_trim); 399 400 /** 401 * bio_integrity_clone - Callback for cloning bios with integrity metadata 402 * @bio: New bio 403 * @bio_src: Original bio 404 * @gfp_mask: Memory allocation mask 405 * 406 * Description: Called to allocate a bip when cloning a bio 407 */ 408 int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 409 gfp_t gfp_mask) 410 { 411 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 412 struct bio_integrity_payload *bip; 413 414 BUG_ON(bip_src == NULL); 415 416 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 417 if (IS_ERR(bip)) 418 return PTR_ERR(bip); 419 420 memcpy(bip->bip_vec, bip_src->bip_vec, 421 bip_src->bip_vcnt * sizeof(struct bio_vec)); 422 423 bip->bip_vcnt = bip_src->bip_vcnt; 424 bip->bip_iter = bip_src->bip_iter; 425 426 return 0; 427 } 428 EXPORT_SYMBOL(bio_integrity_clone); 429 430 int bioset_integrity_create(struct bio_set *bs, int pool_size) 431 { 432 if (mempool_initialized(&bs->bio_integrity_pool)) 433 return 0; 434 435 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 436 pool_size, bip_slab)) 437 return -1; 438 439 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 440 mempool_exit(&bs->bio_integrity_pool); 441 return -1; 442 } 443 444 return 0; 445 } 446 EXPORT_SYMBOL(bioset_integrity_create); 447 448 void bioset_integrity_free(struct bio_set *bs) 449 { 450 mempool_exit(&bs->bio_integrity_pool); 451 mempool_exit(&bs->bvec_integrity_pool); 452 } 453 454 void __init bio_integrity_init(void) 455 { 456 /* 457 * kintegrityd won't block much but may burn a lot of CPU cycles. 458 * Make it highpri CPU intensive wq with max concurrency of 1. 459 */ 460 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 461 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 462 if (!kintegrityd_wq) 463 panic("Failed to create kintegrityd\n"); 464 465 bip_slab = kmem_cache_create("bio_integrity_payload", 466 sizeof(struct bio_integrity_payload) + 467 sizeof(struct bio_vec) * BIP_INLINE_VECS, 468 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 469 } 470