xref: /openbmc/linux/block/bfq-wf2q.c (revision 5d0e4d78)
1 /*
2  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
3  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
4  * scheduler schedules generic entities. The latter can represent
5  * either single bfq queues (associated with processes) or groups of
6  * bfq queues (associated with cgroups).
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License as
10  *  published by the Free Software Foundation; either version 2 of the
11  *  License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  */
18 #include "bfq-iosched.h"
19 
20 /**
21  * bfq_gt - compare two timestamps.
22  * @a: first ts.
23  * @b: second ts.
24  *
25  * Return @a > @b, dealing with wrapping correctly.
26  */
27 static int bfq_gt(u64 a, u64 b)
28 {
29 	return (s64)(a - b) > 0;
30 }
31 
32 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
33 {
34 	struct rb_node *node = tree->rb_node;
35 
36 	return rb_entry(node, struct bfq_entity, rb_node);
37 }
38 
39 static unsigned int bfq_class_idx(struct bfq_entity *entity)
40 {
41 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
42 
43 	return bfqq ? bfqq->ioprio_class - 1 :
44 		BFQ_DEFAULT_GRP_CLASS - 1;
45 }
46 
47 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
48 
49 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
50 
51 /**
52  * bfq_update_next_in_service - update sd->next_in_service
53  * @sd: sched_data for which to perform the update.
54  * @new_entity: if not NULL, pointer to the entity whose activation,
55  *		requeueing or repositionig triggered the invocation of
56  *		this function.
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity)
76 {
77 	struct bfq_entity *next_in_service = sd->next_in_service;
78 	bool parent_sched_may_change = false;
79 
80 	/*
81 	 * If this update is triggered by the activation, requeueing
82 	 * or repositiong of an entity that does not coincide with
83 	 * sd->next_in_service, then a full lookup in the active tree
84 	 * can be avoided. In fact, it is enough to check whether the
85 	 * just-modified entity has a higher priority than
86 	 * sd->next_in_service, or, even if it has the same priority
87 	 * as sd->next_in_service, is eligible and has a lower virtual
88 	 * finish time than sd->next_in_service. If this compound
89 	 * condition holds, then the new entity becomes the new
90 	 * next_in_service. Otherwise no change is needed.
91 	 */
92 	if (new_entity && new_entity != sd->next_in_service) {
93 		/*
94 		 * Flag used to decide whether to replace
95 		 * sd->next_in_service with new_entity. Tentatively
96 		 * set to true, and left as true if
97 		 * sd->next_in_service is NULL.
98 		 */
99 		bool replace_next = true;
100 
101 		/*
102 		 * If there is already a next_in_service candidate
103 		 * entity, then compare class priorities or timestamps
104 		 * to decide whether to replace sd->service_tree with
105 		 * new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			/*
114 			 * For efficiency, evaluate the most likely
115 			 * sub-condition first.
116 			 */
117 			replace_next =
118 				(new_entity_class_idx ==
119 				 bfq_class_idx(next_in_service)
120 				 &&
121 				 !bfq_gt(new_entity->start, st->vtime)
122 				 &&
123 				 bfq_gt(next_in_service->finish,
124 					new_entity->finish))
125 				||
126 				new_entity_class_idx <
127 				bfq_class_idx(next_in_service);
128 		}
129 
130 		if (replace_next)
131 			next_in_service = new_entity;
132 	} else /* invoked because of a deactivation: lookup needed */
133 		next_in_service = bfq_lookup_next_entity(sd);
134 
135 	if (next_in_service) {
136 		parent_sched_may_change = !sd->next_in_service ||
137 			bfq_update_parent_budget(next_in_service);
138 	}
139 
140 	sd->next_in_service = next_in_service;
141 
142 	if (!next_in_service)
143 		return parent_sched_may_change;
144 
145 	return parent_sched_may_change;
146 }
147 
148 #ifdef CONFIG_BFQ_GROUP_IOSCHED
149 
150 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
151 {
152 	struct bfq_entity *group_entity = bfqq->entity.parent;
153 
154 	if (!group_entity)
155 		group_entity = &bfqq->bfqd->root_group->entity;
156 
157 	return container_of(group_entity, struct bfq_group, entity);
158 }
159 
160 /*
161  * Returns true if this budget changes may let next_in_service->parent
162  * become the next_in_service entity for its parent entity.
163  */
164 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
165 {
166 	struct bfq_entity *bfqg_entity;
167 	struct bfq_group *bfqg;
168 	struct bfq_sched_data *group_sd;
169 	bool ret = false;
170 
171 	group_sd = next_in_service->sched_data;
172 
173 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
174 	/*
175 	 * bfq_group's my_entity field is not NULL only if the group
176 	 * is not the root group. We must not touch the root entity
177 	 * as it must never become an in-service entity.
178 	 */
179 	bfqg_entity = bfqg->my_entity;
180 	if (bfqg_entity) {
181 		if (bfqg_entity->budget > next_in_service->budget)
182 			ret = true;
183 		bfqg_entity->budget = next_in_service->budget;
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * This function tells whether entity stops being a candidate for next
191  * service, according to the following logic.
192  *
193  * This function is invoked for an entity that is about to be set in
194  * service. If such an entity is a queue, then the entity is no longer
195  * a candidate for next service (i.e, a candidate entity to serve
196  * after the in-service entity is expired). The function then returns
197  * true.
198  *
199  * In contrast, the entity could stil be a candidate for next service
200  * if it is not a queue, and has more than one child. In fact, even if
201  * one of its children is about to be set in service, other children
202  * may still be the next to serve. As a consequence, a non-queue
203  * entity is not a candidate for next-service only if it has only one
204  * child. And only if this condition holds, then the function returns
205  * true for a non-queue entity.
206  */
207 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
208 {
209 	struct bfq_group *bfqg;
210 
211 	if (bfq_entity_to_bfqq(entity))
212 		return true;
213 
214 	bfqg = container_of(entity, struct bfq_group, entity);
215 
216 	if (bfqg->active_entities == 1)
217 		return true;
218 
219 	return false;
220 }
221 
222 #else /* CONFIG_BFQ_GROUP_IOSCHED */
223 
224 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
225 {
226 	return bfqq->bfqd->root_group;
227 }
228 
229 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
230 {
231 	return false;
232 }
233 
234 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
235 {
236 	return true;
237 }
238 
239 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
240 
241 /*
242  * Shift for timestamp calculations.  This actually limits the maximum
243  * service allowed in one timestamp delta (small shift values increase it),
244  * the maximum total weight that can be used for the queues in the system
245  * (big shift values increase it), and the period of virtual time
246  * wraparounds.
247  */
248 #define WFQ_SERVICE_SHIFT	22
249 
250 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
251 {
252 	struct bfq_queue *bfqq = NULL;
253 
254 	if (!entity->my_sched_data)
255 		bfqq = container_of(entity, struct bfq_queue, entity);
256 
257 	return bfqq;
258 }
259 
260 
261 /**
262  * bfq_delta - map service into the virtual time domain.
263  * @service: amount of service.
264  * @weight: scale factor (weight of an entity or weight sum).
265  */
266 static u64 bfq_delta(unsigned long service, unsigned long weight)
267 {
268 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
269 
270 	do_div(d, weight);
271 	return d;
272 }
273 
274 /**
275  * bfq_calc_finish - assign the finish time to an entity.
276  * @entity: the entity to act upon.
277  * @service: the service to be charged to the entity.
278  */
279 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
280 {
281 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
282 
283 	entity->finish = entity->start +
284 		bfq_delta(service, entity->weight);
285 
286 	if (bfqq) {
287 		bfq_log_bfqq(bfqq->bfqd, bfqq,
288 			"calc_finish: serv %lu, w %d",
289 			service, entity->weight);
290 		bfq_log_bfqq(bfqq->bfqd, bfqq,
291 			"calc_finish: start %llu, finish %llu, delta %llu",
292 			entity->start, entity->finish,
293 			bfq_delta(service, entity->weight));
294 	}
295 }
296 
297 /**
298  * bfq_entity_of - get an entity from a node.
299  * @node: the node field of the entity.
300  *
301  * Convert a node pointer to the relative entity.  This is used only
302  * to simplify the logic of some functions and not as the generic
303  * conversion mechanism because, e.g., in the tree walking functions,
304  * the check for a %NULL value would be redundant.
305  */
306 struct bfq_entity *bfq_entity_of(struct rb_node *node)
307 {
308 	struct bfq_entity *entity = NULL;
309 
310 	if (node)
311 		entity = rb_entry(node, struct bfq_entity, rb_node);
312 
313 	return entity;
314 }
315 
316 /**
317  * bfq_extract - remove an entity from a tree.
318  * @root: the tree root.
319  * @entity: the entity to remove.
320  */
321 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
322 {
323 	entity->tree = NULL;
324 	rb_erase(&entity->rb_node, root);
325 }
326 
327 /**
328  * bfq_idle_extract - extract an entity from the idle tree.
329  * @st: the service tree of the owning @entity.
330  * @entity: the entity being removed.
331  */
332 static void bfq_idle_extract(struct bfq_service_tree *st,
333 			     struct bfq_entity *entity)
334 {
335 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
336 	struct rb_node *next;
337 
338 	if (entity == st->first_idle) {
339 		next = rb_next(&entity->rb_node);
340 		st->first_idle = bfq_entity_of(next);
341 	}
342 
343 	if (entity == st->last_idle) {
344 		next = rb_prev(&entity->rb_node);
345 		st->last_idle = bfq_entity_of(next);
346 	}
347 
348 	bfq_extract(&st->idle, entity);
349 
350 	if (bfqq)
351 		list_del(&bfqq->bfqq_list);
352 }
353 
354 /**
355  * bfq_insert - generic tree insertion.
356  * @root: tree root.
357  * @entity: entity to insert.
358  *
359  * This is used for the idle and the active tree, since they are both
360  * ordered by finish time.
361  */
362 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
363 {
364 	struct bfq_entity *entry;
365 	struct rb_node **node = &root->rb_node;
366 	struct rb_node *parent = NULL;
367 
368 	while (*node) {
369 		parent = *node;
370 		entry = rb_entry(parent, struct bfq_entity, rb_node);
371 
372 		if (bfq_gt(entry->finish, entity->finish))
373 			node = &parent->rb_left;
374 		else
375 			node = &parent->rb_right;
376 	}
377 
378 	rb_link_node(&entity->rb_node, parent, node);
379 	rb_insert_color(&entity->rb_node, root);
380 
381 	entity->tree = root;
382 }
383 
384 /**
385  * bfq_update_min - update the min_start field of a entity.
386  * @entity: the entity to update.
387  * @node: one of its children.
388  *
389  * This function is called when @entity may store an invalid value for
390  * min_start due to updates to the active tree.  The function  assumes
391  * that the subtree rooted at @node (which may be its left or its right
392  * child) has a valid min_start value.
393  */
394 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
395 {
396 	struct bfq_entity *child;
397 
398 	if (node) {
399 		child = rb_entry(node, struct bfq_entity, rb_node);
400 		if (bfq_gt(entity->min_start, child->min_start))
401 			entity->min_start = child->min_start;
402 	}
403 }
404 
405 /**
406  * bfq_update_active_node - recalculate min_start.
407  * @node: the node to update.
408  *
409  * @node may have changed position or one of its children may have moved,
410  * this function updates its min_start value.  The left and right subtrees
411  * are assumed to hold a correct min_start value.
412  */
413 static void bfq_update_active_node(struct rb_node *node)
414 {
415 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
416 
417 	entity->min_start = entity->start;
418 	bfq_update_min(entity, node->rb_right);
419 	bfq_update_min(entity, node->rb_left);
420 }
421 
422 /**
423  * bfq_update_active_tree - update min_start for the whole active tree.
424  * @node: the starting node.
425  *
426  * @node must be the deepest modified node after an update.  This function
427  * updates its min_start using the values held by its children, assuming
428  * that they did not change, and then updates all the nodes that may have
429  * changed in the path to the root.  The only nodes that may have changed
430  * are the ones in the path or their siblings.
431  */
432 static void bfq_update_active_tree(struct rb_node *node)
433 {
434 	struct rb_node *parent;
435 
436 up:
437 	bfq_update_active_node(node);
438 
439 	parent = rb_parent(node);
440 	if (!parent)
441 		return;
442 
443 	if (node == parent->rb_left && parent->rb_right)
444 		bfq_update_active_node(parent->rb_right);
445 	else if (parent->rb_left)
446 		bfq_update_active_node(parent->rb_left);
447 
448 	node = parent;
449 	goto up;
450 }
451 
452 /**
453  * bfq_active_insert - insert an entity in the active tree of its
454  *                     group/device.
455  * @st: the service tree of the entity.
456  * @entity: the entity being inserted.
457  *
458  * The active tree is ordered by finish time, but an extra key is kept
459  * per each node, containing the minimum value for the start times of
460  * its children (and the node itself), so it's possible to search for
461  * the eligible node with the lowest finish time in logarithmic time.
462  */
463 static void bfq_active_insert(struct bfq_service_tree *st,
464 			      struct bfq_entity *entity)
465 {
466 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
467 	struct rb_node *node = &entity->rb_node;
468 #ifdef CONFIG_BFQ_GROUP_IOSCHED
469 	struct bfq_sched_data *sd = NULL;
470 	struct bfq_group *bfqg = NULL;
471 	struct bfq_data *bfqd = NULL;
472 #endif
473 
474 	bfq_insert(&st->active, entity);
475 
476 	if (node->rb_left)
477 		node = node->rb_left;
478 	else if (node->rb_right)
479 		node = node->rb_right;
480 
481 	bfq_update_active_tree(node);
482 
483 #ifdef CONFIG_BFQ_GROUP_IOSCHED
484 	sd = entity->sched_data;
485 	bfqg = container_of(sd, struct bfq_group, sched_data);
486 	bfqd = (struct bfq_data *)bfqg->bfqd;
487 #endif
488 	if (bfqq)
489 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
490 #ifdef CONFIG_BFQ_GROUP_IOSCHED
491 	else /* bfq_group */
492 		bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
493 
494 	if (bfqg != bfqd->root_group)
495 		bfqg->active_entities++;
496 #endif
497 }
498 
499 /**
500  * bfq_ioprio_to_weight - calc a weight from an ioprio.
501  * @ioprio: the ioprio value to convert.
502  */
503 unsigned short bfq_ioprio_to_weight(int ioprio)
504 {
505 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
506 }
507 
508 /**
509  * bfq_weight_to_ioprio - calc an ioprio from a weight.
510  * @weight: the weight value to convert.
511  *
512  * To preserve as much as possible the old only-ioprio user interface,
513  * 0 is used as an escape ioprio value for weights (numerically) equal or
514  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
515  */
516 static unsigned short bfq_weight_to_ioprio(int weight)
517 {
518 	return max_t(int, 0,
519 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
520 }
521 
522 static void bfq_get_entity(struct bfq_entity *entity)
523 {
524 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
525 
526 	if (bfqq) {
527 		bfqq->ref++;
528 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
529 			     bfqq, bfqq->ref);
530 	}
531 }
532 
533 /**
534  * bfq_find_deepest - find the deepest node that an extraction can modify.
535  * @node: the node being removed.
536  *
537  * Do the first step of an extraction in an rb tree, looking for the
538  * node that will replace @node, and returning the deepest node that
539  * the following modifications to the tree can touch.  If @node is the
540  * last node in the tree return %NULL.
541  */
542 static struct rb_node *bfq_find_deepest(struct rb_node *node)
543 {
544 	struct rb_node *deepest;
545 
546 	if (!node->rb_right && !node->rb_left)
547 		deepest = rb_parent(node);
548 	else if (!node->rb_right)
549 		deepest = node->rb_left;
550 	else if (!node->rb_left)
551 		deepest = node->rb_right;
552 	else {
553 		deepest = rb_next(node);
554 		if (deepest->rb_right)
555 			deepest = deepest->rb_right;
556 		else if (rb_parent(deepest) != node)
557 			deepest = rb_parent(deepest);
558 	}
559 
560 	return deepest;
561 }
562 
563 /**
564  * bfq_active_extract - remove an entity from the active tree.
565  * @st: the service_tree containing the tree.
566  * @entity: the entity being removed.
567  */
568 static void bfq_active_extract(struct bfq_service_tree *st,
569 			       struct bfq_entity *entity)
570 {
571 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
572 	struct rb_node *node;
573 #ifdef CONFIG_BFQ_GROUP_IOSCHED
574 	struct bfq_sched_data *sd = NULL;
575 	struct bfq_group *bfqg = NULL;
576 	struct bfq_data *bfqd = NULL;
577 #endif
578 
579 	node = bfq_find_deepest(&entity->rb_node);
580 	bfq_extract(&st->active, entity);
581 
582 	if (node)
583 		bfq_update_active_tree(node);
584 
585 #ifdef CONFIG_BFQ_GROUP_IOSCHED
586 	sd = entity->sched_data;
587 	bfqg = container_of(sd, struct bfq_group, sched_data);
588 	bfqd = (struct bfq_data *)bfqg->bfqd;
589 #endif
590 	if (bfqq)
591 		list_del(&bfqq->bfqq_list);
592 #ifdef CONFIG_BFQ_GROUP_IOSCHED
593 	else /* bfq_group */
594 		bfq_weights_tree_remove(bfqd, entity,
595 					&bfqd->group_weights_tree);
596 
597 	if (bfqg != bfqd->root_group)
598 		bfqg->active_entities--;
599 #endif
600 }
601 
602 /**
603  * bfq_idle_insert - insert an entity into the idle tree.
604  * @st: the service tree containing the tree.
605  * @entity: the entity to insert.
606  */
607 static void bfq_idle_insert(struct bfq_service_tree *st,
608 			    struct bfq_entity *entity)
609 {
610 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
611 	struct bfq_entity *first_idle = st->first_idle;
612 	struct bfq_entity *last_idle = st->last_idle;
613 
614 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
615 		st->first_idle = entity;
616 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
617 		st->last_idle = entity;
618 
619 	bfq_insert(&st->idle, entity);
620 
621 	if (bfqq)
622 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
623 }
624 
625 /**
626  * bfq_forget_entity - do not consider entity any longer for scheduling
627  * @st: the service tree.
628  * @entity: the entity being removed.
629  * @is_in_service: true if entity is currently the in-service entity.
630  *
631  * Forget everything about @entity. In addition, if entity represents
632  * a queue, and the latter is not in service, then release the service
633  * reference to the queue (the one taken through bfq_get_entity). In
634  * fact, in this case, there is really no more service reference to
635  * the queue, as the latter is also outside any service tree. If,
636  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
637  * will take care of putting the reference when the queue finally
638  * stops being served.
639  */
640 static void bfq_forget_entity(struct bfq_service_tree *st,
641 			      struct bfq_entity *entity,
642 			      bool is_in_service)
643 {
644 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
645 
646 	entity->on_st = false;
647 	st->wsum -= entity->weight;
648 	if (bfqq && !is_in_service)
649 		bfq_put_queue(bfqq);
650 }
651 
652 /**
653  * bfq_put_idle_entity - release the idle tree ref of an entity.
654  * @st: service tree for the entity.
655  * @entity: the entity being released.
656  */
657 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
658 {
659 	bfq_idle_extract(st, entity);
660 	bfq_forget_entity(st, entity,
661 			  entity == entity->sched_data->in_service_entity);
662 }
663 
664 /**
665  * bfq_forget_idle - update the idle tree if necessary.
666  * @st: the service tree to act upon.
667  *
668  * To preserve the global O(log N) complexity we only remove one entry here;
669  * as the idle tree will not grow indefinitely this can be done safely.
670  */
671 static void bfq_forget_idle(struct bfq_service_tree *st)
672 {
673 	struct bfq_entity *first_idle = st->first_idle;
674 	struct bfq_entity *last_idle = st->last_idle;
675 
676 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
677 	    !bfq_gt(last_idle->finish, st->vtime)) {
678 		/*
679 		 * Forget the whole idle tree, increasing the vtime past
680 		 * the last finish time of idle entities.
681 		 */
682 		st->vtime = last_idle->finish;
683 	}
684 
685 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
686 		bfq_put_idle_entity(st, first_idle);
687 }
688 
689 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
690 {
691 	struct bfq_sched_data *sched_data = entity->sched_data;
692 	unsigned int idx = bfq_class_idx(entity);
693 
694 	return sched_data->service_tree + idx;
695 }
696 
697 /*
698  * Update weight and priority of entity. If update_class_too is true,
699  * then update the ioprio_class of entity too.
700  *
701  * The reason why the update of ioprio_class is controlled through the
702  * last parameter is as follows. Changing the ioprio class of an
703  * entity implies changing the destination service trees for that
704  * entity. If such a change occurred when the entity is already on one
705  * of the service trees for its previous class, then the state of the
706  * entity would become more complex: none of the new possible service
707  * trees for the entity, according to bfq_entity_service_tree(), would
708  * match any of the possible service trees on which the entity
709  * is. Complex operations involving these trees, such as entity
710  * activations and deactivations, should take into account this
711  * additional complexity.  To avoid this issue, this function is
712  * invoked with update_class_too unset in the points in the code where
713  * entity may happen to be on some tree.
714  */
715 struct bfq_service_tree *
716 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
717 				struct bfq_entity *entity,
718 				bool update_class_too)
719 {
720 	struct bfq_service_tree *new_st = old_st;
721 
722 	if (entity->prio_changed) {
723 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
724 		unsigned int prev_weight, new_weight;
725 		struct bfq_data *bfqd = NULL;
726 		struct rb_root *root;
727 #ifdef CONFIG_BFQ_GROUP_IOSCHED
728 		struct bfq_sched_data *sd;
729 		struct bfq_group *bfqg;
730 #endif
731 
732 		if (bfqq)
733 			bfqd = bfqq->bfqd;
734 #ifdef CONFIG_BFQ_GROUP_IOSCHED
735 		else {
736 			sd = entity->my_sched_data;
737 			bfqg = container_of(sd, struct bfq_group, sched_data);
738 			bfqd = (struct bfq_data *)bfqg->bfqd;
739 		}
740 #endif
741 
742 		old_st->wsum -= entity->weight;
743 
744 		if (entity->new_weight != entity->orig_weight) {
745 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
746 			    entity->new_weight > BFQ_MAX_WEIGHT) {
747 				pr_crit("update_weight_prio: new_weight %d\n",
748 					entity->new_weight);
749 				if (entity->new_weight < BFQ_MIN_WEIGHT)
750 					entity->new_weight = BFQ_MIN_WEIGHT;
751 				else
752 					entity->new_weight = BFQ_MAX_WEIGHT;
753 			}
754 			entity->orig_weight = entity->new_weight;
755 			if (bfqq)
756 				bfqq->ioprio =
757 				  bfq_weight_to_ioprio(entity->orig_weight);
758 		}
759 
760 		if (bfqq && update_class_too)
761 			bfqq->ioprio_class = bfqq->new_ioprio_class;
762 
763 		/*
764 		 * Reset prio_changed only if the ioprio_class change
765 		 * is not pending any longer.
766 		 */
767 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
768 			entity->prio_changed = 0;
769 
770 		/*
771 		 * NOTE: here we may be changing the weight too early,
772 		 * this will cause unfairness.  The correct approach
773 		 * would have required additional complexity to defer
774 		 * weight changes to the proper time instants (i.e.,
775 		 * when entity->finish <= old_st->vtime).
776 		 */
777 		new_st = bfq_entity_service_tree(entity);
778 
779 		prev_weight = entity->weight;
780 		new_weight = entity->orig_weight *
781 			     (bfqq ? bfqq->wr_coeff : 1);
782 		/*
783 		 * If the weight of the entity changes, remove the entity
784 		 * from its old weight counter (if there is a counter
785 		 * associated with the entity), and add it to the counter
786 		 * associated with its new weight.
787 		 */
788 		if (prev_weight != new_weight) {
789 			root = bfqq ? &bfqd->queue_weights_tree :
790 				      &bfqd->group_weights_tree;
791 			bfq_weights_tree_remove(bfqd, entity, root);
792 		}
793 		entity->weight = new_weight;
794 		/*
795 		 * Add the entity to its weights tree only if it is
796 		 * not associated with a weight-raised queue.
797 		 */
798 		if (prev_weight != new_weight &&
799 		    (bfqq ? bfqq->wr_coeff == 1 : 1))
800 			/* If we get here, root has been initialized. */
801 			bfq_weights_tree_add(bfqd, entity, root);
802 
803 		new_st->wsum += entity->weight;
804 
805 		if (new_st != old_st)
806 			entity->start = new_st->vtime;
807 	}
808 
809 	return new_st;
810 }
811 
812 /**
813  * bfq_bfqq_served - update the scheduler status after selection for
814  *                   service.
815  * @bfqq: the queue being served.
816  * @served: bytes to transfer.
817  *
818  * NOTE: this can be optimized, as the timestamps of upper level entities
819  * are synchronized every time a new bfqq is selected for service.  By now,
820  * we keep it to better check consistency.
821  */
822 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
823 {
824 	struct bfq_entity *entity = &bfqq->entity;
825 	struct bfq_service_tree *st;
826 
827 	for_each_entity(entity) {
828 		st = bfq_entity_service_tree(entity);
829 
830 		entity->service += served;
831 
832 		st->vtime += bfq_delta(served, st->wsum);
833 		bfq_forget_idle(st);
834 	}
835 	bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
836 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
837 }
838 
839 /**
840  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
841  *			  of the time interval during which bfqq has been in
842  *			  service.
843  * @bfqd: the device
844  * @bfqq: the queue that needs a service update.
845  * @time_ms: the amount of time during which the queue has received service
846  *
847  * If a queue does not consume its budget fast enough, then providing
848  * the queue with service fairness may impair throughput, more or less
849  * severely. For this reason, queues that consume their budget slowly
850  * are provided with time fairness instead of service fairness. This
851  * goal is achieved through the BFQ scheduling engine, even if such an
852  * engine works in the service, and not in the time domain. The trick
853  * is charging these queues with an inflated amount of service, equal
854  * to the amount of service that they would have received during their
855  * service slot if they had been fast, i.e., if their requests had
856  * been dispatched at a rate equal to the estimated peak rate.
857  *
858  * It is worth noting that time fairness can cause important
859  * distortions in terms of bandwidth distribution, on devices with
860  * internal queueing. The reason is that I/O requests dispatched
861  * during the service slot of a queue may be served after that service
862  * slot is finished, and may have a total processing time loosely
863  * correlated with the duration of the service slot. This is
864  * especially true for short service slots.
865  */
866 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
867 			  unsigned long time_ms)
868 {
869 	struct bfq_entity *entity = &bfqq->entity;
870 	int tot_serv_to_charge = entity->service;
871 	unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
872 
873 	if (time_ms > 0 && time_ms < timeout_ms)
874 		tot_serv_to_charge =
875 			(bfqd->bfq_max_budget * time_ms) / timeout_ms;
876 
877 	if (tot_serv_to_charge < entity->service)
878 		tot_serv_to_charge = entity->service;
879 
880 	/* Increase budget to avoid inconsistencies */
881 	if (tot_serv_to_charge > entity->budget)
882 		entity->budget = tot_serv_to_charge;
883 
884 	bfq_bfqq_served(bfqq,
885 			max_t(int, 0, tot_serv_to_charge - entity->service));
886 }
887 
888 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
889 					struct bfq_service_tree *st,
890 					bool backshifted)
891 {
892 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
893 
894 	/*
895 	 * When this function is invoked, entity is not in any service
896 	 * tree, then it is safe to invoke next function with the last
897 	 * parameter set (see the comments on the function).
898 	 */
899 	st = __bfq_entity_update_weight_prio(st, entity, true);
900 	bfq_calc_finish(entity, entity->budget);
901 
902 	/*
903 	 * If some queues enjoy backshifting for a while, then their
904 	 * (virtual) finish timestamps may happen to become lower and
905 	 * lower than the system virtual time.	In particular, if
906 	 * these queues often happen to be idle for short time
907 	 * periods, and during such time periods other queues with
908 	 * higher timestamps happen to be busy, then the backshifted
909 	 * timestamps of the former queues can become much lower than
910 	 * the system virtual time. In fact, to serve the queues with
911 	 * higher timestamps while the ones with lower timestamps are
912 	 * idle, the system virtual time may be pushed-up to much
913 	 * higher values than the finish timestamps of the idle
914 	 * queues. As a consequence, the finish timestamps of all new
915 	 * or newly activated queues may end up being much larger than
916 	 * those of lucky queues with backshifted timestamps. The
917 	 * latter queues may then monopolize the device for a lot of
918 	 * time. This would simply break service guarantees.
919 	 *
920 	 * To reduce this problem, push up a little bit the
921 	 * backshifted timestamps of the queue associated with this
922 	 * entity (only a queue can happen to have the backshifted
923 	 * flag set): just enough to let the finish timestamp of the
924 	 * queue be equal to the current value of the system virtual
925 	 * time. This may introduce a little unfairness among queues
926 	 * with backshifted timestamps, but it does not break
927 	 * worst-case fairness guarantees.
928 	 *
929 	 * As a special case, if bfqq is weight-raised, push up
930 	 * timestamps much less, to keep very low the probability that
931 	 * this push up causes the backshifted finish timestamps of
932 	 * weight-raised queues to become higher than the backshifted
933 	 * finish timestamps of non weight-raised queues.
934 	 */
935 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
936 		unsigned long delta = st->vtime - entity->finish;
937 
938 		if (bfqq)
939 			delta /= bfqq->wr_coeff;
940 
941 		entity->start += delta;
942 		entity->finish += delta;
943 	}
944 
945 	bfq_active_insert(st, entity);
946 }
947 
948 /**
949  * __bfq_activate_entity - handle activation of entity.
950  * @entity: the entity being activated.
951  * @non_blocking_wait_rq: true if entity was waiting for a request
952  *
953  * Called for a 'true' activation, i.e., if entity is not active and
954  * one of its children receives a new request.
955  *
956  * Basically, this function updates the timestamps of entity and
957  * inserts entity into its active tree, ater possible extracting it
958  * from its idle tree.
959  */
960 static void __bfq_activate_entity(struct bfq_entity *entity,
961 				  bool non_blocking_wait_rq)
962 {
963 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
964 	bool backshifted = false;
965 	unsigned long long min_vstart;
966 
967 	/* See comments on bfq_fqq_update_budg_for_activation */
968 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
969 		backshifted = true;
970 		min_vstart = entity->finish;
971 	} else
972 		min_vstart = st->vtime;
973 
974 	if (entity->tree == &st->idle) {
975 		/*
976 		 * Must be on the idle tree, bfq_idle_extract() will
977 		 * check for that.
978 		 */
979 		bfq_idle_extract(st, entity);
980 		entity->start = bfq_gt(min_vstart, entity->finish) ?
981 			min_vstart : entity->finish;
982 	} else {
983 		/*
984 		 * The finish time of the entity may be invalid, and
985 		 * it is in the past for sure, otherwise the queue
986 		 * would have been on the idle tree.
987 		 */
988 		entity->start = min_vstart;
989 		st->wsum += entity->weight;
990 		/*
991 		 * entity is about to be inserted into a service tree,
992 		 * and then set in service: get a reference to make
993 		 * sure entity does not disappear until it is no
994 		 * longer in service or scheduled for service.
995 		 */
996 		bfq_get_entity(entity);
997 
998 		entity->on_st = true;
999 	}
1000 
1001 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1002 }
1003 
1004 /**
1005  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1006  * @entity: the entity being requeued or repositioned.
1007  *
1008  * Requeueing is needed if this entity stops being served, which
1009  * happens if a leaf descendant entity has expired. On the other hand,
1010  * repositioning is needed if the next_inservice_entity for the child
1011  * entity has changed. See the comments inside the function for
1012  * details.
1013  *
1014  * Basically, this function: 1) removes entity from its active tree if
1015  * present there, 2) updates the timestamps of entity and 3) inserts
1016  * entity back into its active tree (in the new, right position for
1017  * the new values of the timestamps).
1018  */
1019 static void __bfq_requeue_entity(struct bfq_entity *entity)
1020 {
1021 	struct bfq_sched_data *sd = entity->sched_data;
1022 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1023 
1024 	if (entity == sd->in_service_entity) {
1025 		/*
1026 		 * We are requeueing the current in-service entity,
1027 		 * which may have to be done for one of the following
1028 		 * reasons:
1029 		 * - entity represents the in-service queue, and the
1030 		 *   in-service queue is being requeued after an
1031 		 *   expiration;
1032 		 * - entity represents a group, and its budget has
1033 		 *   changed because one of its child entities has
1034 		 *   just been either activated or requeued for some
1035 		 *   reason; the timestamps of the entity need then to
1036 		 *   be updated, and the entity needs to be enqueued
1037 		 *   or repositioned accordingly.
1038 		 *
1039 		 * In particular, before requeueing, the start time of
1040 		 * the entity must be moved forward to account for the
1041 		 * service that the entity has received while in
1042 		 * service. This is done by the next instructions. The
1043 		 * finish time will then be updated according to this
1044 		 * new value of the start time, and to the budget of
1045 		 * the entity.
1046 		 */
1047 		bfq_calc_finish(entity, entity->service);
1048 		entity->start = entity->finish;
1049 		/*
1050 		 * In addition, if the entity had more than one child
1051 		 * when set in service, then was not extracted from
1052 		 * the active tree. This implies that the position of
1053 		 * the entity in the active tree may need to be
1054 		 * changed now, because we have just updated the start
1055 		 * time of the entity, and we will update its finish
1056 		 * time in a moment (the requeueing is then, more
1057 		 * precisely, a repositioning in this case). To
1058 		 * implement this repositioning, we: 1) dequeue the
1059 		 * entity here, 2) update the finish time and
1060 		 * requeue the entity according to the new
1061 		 * timestamps below.
1062 		 */
1063 		if (entity->tree)
1064 			bfq_active_extract(st, entity);
1065 	} else { /* The entity is already active, and not in service */
1066 		/*
1067 		 * In this case, this function gets called only if the
1068 		 * next_in_service entity below this entity has
1069 		 * changed, and this change has caused the budget of
1070 		 * this entity to change, which, finally implies that
1071 		 * the finish time of this entity must be
1072 		 * updated. Such an update may cause the scheduling,
1073 		 * i.e., the position in the active tree, of this
1074 		 * entity to change. We handle this change by: 1)
1075 		 * dequeueing the entity here, 2) updating the finish
1076 		 * time and requeueing the entity according to the new
1077 		 * timestamps below. This is the same approach as the
1078 		 * non-extracted-entity sub-case above.
1079 		 */
1080 		bfq_active_extract(st, entity);
1081 	}
1082 
1083 	bfq_update_fin_time_enqueue(entity, st, false);
1084 }
1085 
1086 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1087 					  struct bfq_sched_data *sd,
1088 					  bool non_blocking_wait_rq)
1089 {
1090 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1091 
1092 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1093 		 /*
1094 		  * in service or already queued on the active tree,
1095 		  * requeue or reposition
1096 		  */
1097 		__bfq_requeue_entity(entity);
1098 	else
1099 		/*
1100 		 * Not in service and not queued on its active tree:
1101 		 * the activity is idle and this is a true activation.
1102 		 */
1103 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1104 }
1105 
1106 
1107 /**
1108  * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
1109  *			 and activate, requeue or reposition all ancestors
1110  *			 for which such an update becomes necessary.
1111  * @entity: the entity to activate.
1112  * @non_blocking_wait_rq: true if this entity was waiting for a request
1113  * @requeue: true if this is a requeue, which implies that bfqq is
1114  *	     being expired; thus ALL its ancestors stop being served and must
1115  *	     therefore be requeued
1116  */
1117 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1118 					bool non_blocking_wait_rq,
1119 					bool requeue)
1120 {
1121 	struct bfq_sched_data *sd;
1122 
1123 	for_each_entity(entity) {
1124 		sd = entity->sched_data;
1125 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1126 
1127 		if (!bfq_update_next_in_service(sd, entity) && !requeue)
1128 			break;
1129 	}
1130 }
1131 
1132 /**
1133  * __bfq_deactivate_entity - deactivate an entity from its service tree.
1134  * @entity: the entity to deactivate.
1135  * @ins_into_idle_tree: if false, the entity will not be put into the
1136  *			idle tree.
1137  *
1138  * Deactivates an entity, independently from its previous state.  Must
1139  * be invoked only if entity is on a service tree. Extracts the entity
1140  * from that tree, and if necessary and allowed, puts it on the idle
1141  * tree.
1142  */
1143 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1144 {
1145 	struct bfq_sched_data *sd = entity->sched_data;
1146 	struct bfq_service_tree *st;
1147 	bool is_in_service;
1148 
1149 	if (!entity->on_st) /* entity never activated, or already inactive */
1150 		return false;
1151 
1152 	/*
1153 	 * If we get here, then entity is active, which implies that
1154 	 * bfq_group_set_parent has already been invoked for the group
1155 	 * represented by entity. Therefore, the field
1156 	 * entity->sched_data has been set, and we can safely use it.
1157 	 */
1158 	st = bfq_entity_service_tree(entity);
1159 	is_in_service = entity == sd->in_service_entity;
1160 
1161 	if (is_in_service)
1162 		bfq_calc_finish(entity, entity->service);
1163 
1164 	if (entity->tree == &st->active)
1165 		bfq_active_extract(st, entity);
1166 	else if (!is_in_service && entity->tree == &st->idle)
1167 		bfq_idle_extract(st, entity);
1168 
1169 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1170 		bfq_forget_entity(st, entity, is_in_service);
1171 	else
1172 		bfq_idle_insert(st, entity);
1173 
1174 	return true;
1175 }
1176 
1177 /**
1178  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1179  * @entity: the entity to deactivate.
1180  * @ins_into_idle_tree: true if the entity can be put on the idle tree
1181  */
1182 static void bfq_deactivate_entity(struct bfq_entity *entity,
1183 				  bool ins_into_idle_tree,
1184 				  bool expiration)
1185 {
1186 	struct bfq_sched_data *sd;
1187 	struct bfq_entity *parent = NULL;
1188 
1189 	for_each_entity_safe(entity, parent) {
1190 		sd = entity->sched_data;
1191 
1192 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1193 			/*
1194 			 * entity is not in any tree any more, so
1195 			 * this deactivation is a no-op, and there is
1196 			 * nothing to change for upper-level entities
1197 			 * (in case of expiration, this can never
1198 			 * happen).
1199 			 */
1200 			return;
1201 		}
1202 
1203 		if (sd->next_in_service == entity)
1204 			/*
1205 			 * entity was the next_in_service entity,
1206 			 * then, since entity has just been
1207 			 * deactivated, a new one must be found.
1208 			 */
1209 			bfq_update_next_in_service(sd, NULL);
1210 
1211 		if (sd->next_in_service)
1212 			/*
1213 			 * The parent entity is still backlogged,
1214 			 * because next_in_service is not NULL. So, no
1215 			 * further upwards deactivation must be
1216 			 * performed.  Yet, next_in_service has
1217 			 * changed.  Then the schedule does need to be
1218 			 * updated upwards.
1219 			 */
1220 			break;
1221 
1222 		/*
1223 		 * If we get here, then the parent is no more
1224 		 * backlogged and we need to propagate the
1225 		 * deactivation upwards. Thus let the loop go on.
1226 		 */
1227 
1228 		/*
1229 		 * Also let parent be queued into the idle tree on
1230 		 * deactivation, to preserve service guarantees, and
1231 		 * assuming that who invoked this function does not
1232 		 * need parent entities too to be removed completely.
1233 		 */
1234 		ins_into_idle_tree = true;
1235 	}
1236 
1237 	/*
1238 	 * If the deactivation loop is fully executed, then there are
1239 	 * no more entities to touch and next loop is not executed at
1240 	 * all. Otherwise, requeue remaining entities if they are
1241 	 * about to stop receiving service, or reposition them if this
1242 	 * is not the case.
1243 	 */
1244 	entity = parent;
1245 	for_each_entity(entity) {
1246 		/*
1247 		 * Invoke __bfq_requeue_entity on entity, even if
1248 		 * already active, to requeue/reposition it in the
1249 		 * active tree (because sd->next_in_service has
1250 		 * changed)
1251 		 */
1252 		__bfq_requeue_entity(entity);
1253 
1254 		sd = entity->sched_data;
1255 		if (!bfq_update_next_in_service(sd, entity) &&
1256 		    !expiration)
1257 			/*
1258 			 * next_in_service unchanged or not causing
1259 			 * any change in entity->parent->sd, and no
1260 			 * requeueing needed for expiration: stop
1261 			 * here.
1262 			 */
1263 			break;
1264 	}
1265 }
1266 
1267 /**
1268  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1269  *                       if needed, to have at least one entity eligible.
1270  * @st: the service tree to act upon.
1271  *
1272  * Assumes that st is not empty.
1273  */
1274 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1275 {
1276 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1277 
1278 	if (bfq_gt(root_entity->min_start, st->vtime))
1279 		return root_entity->min_start;
1280 
1281 	return st->vtime;
1282 }
1283 
1284 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1285 {
1286 	if (new_value > st->vtime) {
1287 		st->vtime = new_value;
1288 		bfq_forget_idle(st);
1289 	}
1290 }
1291 
1292 /**
1293  * bfq_first_active_entity - find the eligible entity with
1294  *                           the smallest finish time
1295  * @st: the service tree to select from.
1296  * @vtime: the system virtual to use as a reference for eligibility
1297  *
1298  * This function searches the first schedulable entity, starting from the
1299  * root of the tree and going on the left every time on this side there is
1300  * a subtree with at least one eligible (start <= vtime) entity. The path on
1301  * the right is followed only if a) the left subtree contains no eligible
1302  * entities and b) no eligible entity has been found yet.
1303  */
1304 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1305 						  u64 vtime)
1306 {
1307 	struct bfq_entity *entry, *first = NULL;
1308 	struct rb_node *node = st->active.rb_node;
1309 
1310 	while (node) {
1311 		entry = rb_entry(node, struct bfq_entity, rb_node);
1312 left:
1313 		if (!bfq_gt(entry->start, vtime))
1314 			first = entry;
1315 
1316 		if (node->rb_left) {
1317 			entry = rb_entry(node->rb_left,
1318 					 struct bfq_entity, rb_node);
1319 			if (!bfq_gt(entry->min_start, vtime)) {
1320 				node = node->rb_left;
1321 				goto left;
1322 			}
1323 		}
1324 		if (first)
1325 			break;
1326 		node = node->rb_right;
1327 	}
1328 
1329 	return first;
1330 }
1331 
1332 /**
1333  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1334  * @st: the service tree.
1335  *
1336  * If there is no in-service entity for the sched_data st belongs to,
1337  * then return the entity that will be set in service if:
1338  * 1) the parent entity this st belongs to is set in service;
1339  * 2) no entity belonging to such parent entity undergoes a state change
1340  * that would influence the timestamps of the entity (e.g., becomes idle,
1341  * becomes backlogged, changes its budget, ...).
1342  *
1343  * In this first case, update the virtual time in @st too (see the
1344  * comments on this update inside the function).
1345  *
1346  * In constrast, if there is an in-service entity, then return the
1347  * entity that would be set in service if not only the above
1348  * conditions, but also the next one held true: the currently
1349  * in-service entity, on expiration,
1350  * 1) gets a finish time equal to the current one, or
1351  * 2) is not eligible any more, or
1352  * 3) is idle.
1353  */
1354 static struct bfq_entity *
1355 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1356 {
1357 	struct bfq_entity *entity;
1358 	u64 new_vtime;
1359 
1360 	if (RB_EMPTY_ROOT(&st->active))
1361 		return NULL;
1362 
1363 	/*
1364 	 * Get the value of the system virtual time for which at
1365 	 * least one entity is eligible.
1366 	 */
1367 	new_vtime = bfq_calc_vtime_jump(st);
1368 
1369 	/*
1370 	 * If there is no in-service entity for the sched_data this
1371 	 * active tree belongs to, then push the system virtual time
1372 	 * up to the value that guarantees that at least one entity is
1373 	 * eligible. If, instead, there is an in-service entity, then
1374 	 * do not make any such update, because there is already an
1375 	 * eligible entity, namely the in-service one (even if the
1376 	 * entity is not on st, because it was extracted when set in
1377 	 * service).
1378 	 */
1379 	if (!in_service)
1380 		bfq_update_vtime(st, new_vtime);
1381 
1382 	entity = bfq_first_active_entity(st, new_vtime);
1383 
1384 	return entity;
1385 }
1386 
1387 /**
1388  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1389  * @sd: the sched_data.
1390  *
1391  * This function is invoked when there has been a change in the trees
1392  * for sd, and we need know what is the new next entity after this
1393  * change.
1394  */
1395 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
1396 {
1397 	struct bfq_service_tree *st = sd->service_tree;
1398 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1399 	struct bfq_entity *entity = NULL;
1400 	int class_idx = 0;
1401 
1402 	/*
1403 	 * Choose from idle class, if needed to guarantee a minimum
1404 	 * bandwidth to this class (and if there is some active entity
1405 	 * in idle class). This should also mitigate
1406 	 * priority-inversion problems in case a low priority task is
1407 	 * holding file system resources.
1408 	 */
1409 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1410 				   BFQ_CL_IDLE_TIMEOUT)) {
1411 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1412 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1413 		/* About to be served if backlogged, or not yet backlogged */
1414 		sd->bfq_class_idle_last_service = jiffies;
1415 	}
1416 
1417 	/*
1418 	 * Find the next entity to serve for the highest-priority
1419 	 * class, unless the idle class needs to be served.
1420 	 */
1421 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1422 		entity = __bfq_lookup_next_entity(st + class_idx,
1423 						  sd->in_service_entity);
1424 
1425 		if (entity)
1426 			break;
1427 	}
1428 
1429 	if (!entity)
1430 		return NULL;
1431 
1432 	return entity;
1433 }
1434 
1435 bool next_queue_may_preempt(struct bfq_data *bfqd)
1436 {
1437 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1438 
1439 	return sd->next_in_service != sd->in_service_entity;
1440 }
1441 
1442 /*
1443  * Get next queue for service.
1444  */
1445 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1446 {
1447 	struct bfq_entity *entity = NULL;
1448 	struct bfq_sched_data *sd;
1449 	struct bfq_queue *bfqq;
1450 
1451 	if (bfqd->busy_queues == 0)
1452 		return NULL;
1453 
1454 	/*
1455 	 * Traverse the path from the root to the leaf entity to
1456 	 * serve. Set in service all the entities visited along the
1457 	 * way.
1458 	 */
1459 	sd = &bfqd->root_group->sched_data;
1460 	for (; sd ; sd = entity->my_sched_data) {
1461 		/*
1462 		 * WARNING. We are about to set the in-service entity
1463 		 * to sd->next_in_service, i.e., to the (cached) value
1464 		 * returned by bfq_lookup_next_entity(sd) the last
1465 		 * time it was invoked, i.e., the last time when the
1466 		 * service order in sd changed as a consequence of the
1467 		 * activation or deactivation of an entity. In this
1468 		 * respect, if we execute bfq_lookup_next_entity(sd)
1469 		 * in this very moment, it may, although with low
1470 		 * probability, yield a different entity than that
1471 		 * pointed to by sd->next_in_service. This rare event
1472 		 * happens in case there was no CLASS_IDLE entity to
1473 		 * serve for sd when bfq_lookup_next_entity(sd) was
1474 		 * invoked for the last time, while there is now one
1475 		 * such entity.
1476 		 *
1477 		 * If the above event happens, then the scheduling of
1478 		 * such entity in CLASS_IDLE is postponed until the
1479 		 * service of the sd->next_in_service entity
1480 		 * finishes. In fact, when the latter is expired,
1481 		 * bfq_lookup_next_entity(sd) gets called again,
1482 		 * exactly to update sd->next_in_service.
1483 		 */
1484 
1485 		/* Make next_in_service entity become in_service_entity */
1486 		entity = sd->next_in_service;
1487 		sd->in_service_entity = entity;
1488 
1489 		/*
1490 		 * Reset the accumulator of the amount of service that
1491 		 * the entity is about to receive.
1492 		 */
1493 		entity->service = 0;
1494 
1495 		/*
1496 		 * If entity is no longer a candidate for next
1497 		 * service, then we extract it from its active tree,
1498 		 * for the following reason. To further boost the
1499 		 * throughput in some special case, BFQ needs to know
1500 		 * which is the next candidate entity to serve, while
1501 		 * there is already an entity in service. In this
1502 		 * respect, to make it easy to compute/update the next
1503 		 * candidate entity to serve after the current
1504 		 * candidate has been set in service, there is a case
1505 		 * where it is necessary to extract the current
1506 		 * candidate from its service tree. Such a case is
1507 		 * when the entity just set in service cannot be also
1508 		 * a candidate for next service. Details about when
1509 		 * this conditions holds are reported in the comments
1510 		 * on the function bfq_no_longer_next_in_service()
1511 		 * invoked below.
1512 		 */
1513 		if (bfq_no_longer_next_in_service(entity))
1514 			bfq_active_extract(bfq_entity_service_tree(entity),
1515 					   entity);
1516 
1517 		/*
1518 		 * For the same reason why we may have just extracted
1519 		 * entity from its active tree, we may need to update
1520 		 * next_in_service for the sched_data of entity too,
1521 		 * regardless of whether entity has been extracted.
1522 		 * In fact, even if entity has not been extracted, a
1523 		 * descendant entity may get extracted. Such an event
1524 		 * would cause a change in next_in_service for the
1525 		 * level of the descendant entity, and thus possibly
1526 		 * back to upper levels.
1527 		 *
1528 		 * We cannot perform the resulting needed update
1529 		 * before the end of this loop, because, to know which
1530 		 * is the correct next-to-serve candidate entity for
1531 		 * each level, we need first to find the leaf entity
1532 		 * to set in service. In fact, only after we know
1533 		 * which is the next-to-serve leaf entity, we can
1534 		 * discover whether the parent entity of the leaf
1535 		 * entity becomes the next-to-serve, and so on.
1536 		 */
1537 
1538 	}
1539 
1540 	bfqq = bfq_entity_to_bfqq(entity);
1541 
1542 	/*
1543 	 * We can finally update all next-to-serve entities along the
1544 	 * path from the leaf entity just set in service to the root.
1545 	 */
1546 	for_each_entity(entity) {
1547 		struct bfq_sched_data *sd = entity->sched_data;
1548 
1549 		if (!bfq_update_next_in_service(sd, NULL))
1550 			break;
1551 	}
1552 
1553 	return bfqq;
1554 }
1555 
1556 void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1557 {
1558 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1559 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1560 	struct bfq_entity *entity = in_serv_entity;
1561 
1562 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1563 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1564 	bfqd->in_service_queue = NULL;
1565 
1566 	/*
1567 	 * When this function is called, all in-service entities have
1568 	 * been properly deactivated or requeued, so we can safely
1569 	 * execute the final step: reset in_service_entity along the
1570 	 * path from entity to the root.
1571 	 */
1572 	for_each_entity(entity)
1573 		entity->sched_data->in_service_entity = NULL;
1574 
1575 	/*
1576 	 * in_serv_entity is no longer in service, so, if it is in no
1577 	 * service tree either, then release the service reference to
1578 	 * the queue it represents (taken with bfq_get_entity).
1579 	 */
1580 	if (!in_serv_entity->on_st)
1581 		bfq_put_queue(in_serv_bfqq);
1582 }
1583 
1584 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1585 			 bool ins_into_idle_tree, bool expiration)
1586 {
1587 	struct bfq_entity *entity = &bfqq->entity;
1588 
1589 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1590 }
1591 
1592 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1593 {
1594 	struct bfq_entity *entity = &bfqq->entity;
1595 
1596 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1597 				    false);
1598 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1599 }
1600 
1601 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1602 {
1603 	struct bfq_entity *entity = &bfqq->entity;
1604 
1605 	bfq_activate_requeue_entity(entity, false,
1606 				    bfqq == bfqd->in_service_queue);
1607 }
1608 
1609 /*
1610  * Called when the bfqq no longer has requests pending, remove it from
1611  * the service tree. As a special case, it can be invoked during an
1612  * expiration.
1613  */
1614 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1615 		       bool expiration)
1616 {
1617 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1618 
1619 	bfq_clear_bfqq_busy(bfqq);
1620 
1621 	bfqd->busy_queues--;
1622 
1623 	if (!bfqq->dispatched)
1624 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
1625 					&bfqd->queue_weights_tree);
1626 
1627 	if (bfqq->wr_coeff > 1)
1628 		bfqd->wr_busy_queues--;
1629 
1630 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1631 
1632 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1633 }
1634 
1635 /*
1636  * Called when an inactive queue receives a new request.
1637  */
1638 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1639 {
1640 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1641 
1642 	bfq_activate_bfqq(bfqd, bfqq);
1643 
1644 	bfq_mark_bfqq_busy(bfqq);
1645 	bfqd->busy_queues++;
1646 
1647 	if (!bfqq->dispatched)
1648 		if (bfqq->wr_coeff == 1)
1649 			bfq_weights_tree_add(bfqd, &bfqq->entity,
1650 					     &bfqd->queue_weights_tree);
1651 
1652 	if (bfqq->wr_coeff > 1)
1653 		bfqd->wr_busy_queues++;
1654 }
1655