xref: /openbmc/linux/block/bfq-wf2q.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5  * scheduler schedules generic entities. The latter can represent
6  * either single bfq queues (associated with processes) or groups of
7  * bfq queues (associated with cgroups).
8  */
9 #include "bfq-iosched.h"
10 
11 /**
12  * bfq_gt - compare two timestamps.
13  * @a: first ts.
14  * @b: second ts.
15  *
16  * Return @a > @b, dealing with wrapping correctly.
17  */
18 static int bfq_gt(u64 a, u64 b)
19 {
20 	return (s64)(a - b) > 0;
21 }
22 
23 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24 {
25 	struct rb_node *node = tree->rb_node;
26 
27 	return rb_entry(node, struct bfq_entity, rb_node);
28 }
29 
30 static unsigned int bfq_class_idx(struct bfq_entity *entity)
31 {
32 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33 
34 	return bfqq ? bfqq->ioprio_class - 1 :
35 		BFQ_DEFAULT_GRP_CLASS - 1;
36 }
37 
38 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39 {
40 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 		bfqd->busy_queues[2];
42 }
43 
44 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 						 bool expiration);
46 
47 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48 
49 /**
50  * bfq_update_next_in_service - update sd->next_in_service
51  * @sd: sched_data for which to perform the update.
52  * @new_entity: if not NULL, pointer to the entity whose activation,
53  *		requeueing or repositioning triggered the invocation of
54  *		this function.
55  * @expiration: id true, this function is being invoked after the
56  *             expiration of the in-service entity
57  *
58  * This function is called to update sd->next_in_service, which, in
59  * its turn, may change as a consequence of the insertion or
60  * extraction of an entity into/from one of the active trees of
61  * sd. These insertions/extractions occur as a consequence of
62  * activations/deactivations of entities, with some activations being
63  * 'true' activations, and other activations being requeueings (i.e.,
64  * implementing the second, requeueing phase of the mechanism used to
65  * reposition an entity in its active tree; see comments on
66  * __bfq_activate_entity and __bfq_requeue_entity for details). In
67  * both the last two activation sub-cases, new_entity points to the
68  * just activated or requeued entity.
69  *
70  * Returns true if sd->next_in_service changes in such a way that
71  * entity->parent may become the next_in_service for its parent
72  * entity.
73  */
74 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
75 				       struct bfq_entity *new_entity,
76 				       bool expiration)
77 {
78 	struct bfq_entity *next_in_service = sd->next_in_service;
79 	bool parent_sched_may_change = false;
80 	bool change_without_lookup = false;
81 
82 	/*
83 	 * If this update is triggered by the activation, requeueing
84 	 * or repositioning of an entity that does not coincide with
85 	 * sd->next_in_service, then a full lookup in the active tree
86 	 * can be avoided. In fact, it is enough to check whether the
87 	 * just-modified entity has the same priority as
88 	 * sd->next_in_service, is eligible and has a lower virtual
89 	 * finish time than sd->next_in_service. If this compound
90 	 * condition holds, then the new entity becomes the new
91 	 * next_in_service. Otherwise no change is needed.
92 	 */
93 	if (new_entity && new_entity != sd->next_in_service) {
94 		/*
95 		 * Flag used to decide whether to replace
96 		 * sd->next_in_service with new_entity. Tentatively
97 		 * set to true, and left as true if
98 		 * sd->next_in_service is NULL.
99 		 */
100 		change_without_lookup = true;
101 
102 		/*
103 		 * If there is already a next_in_service candidate
104 		 * entity, then compare timestamps to decide whether
105 		 * to replace sd->service_tree with new_entity.
106 		 */
107 		if (next_in_service) {
108 			unsigned int new_entity_class_idx =
109 				bfq_class_idx(new_entity);
110 			struct bfq_service_tree *st =
111 				sd->service_tree + new_entity_class_idx;
112 
113 			change_without_lookup =
114 				(new_entity_class_idx ==
115 				 bfq_class_idx(next_in_service)
116 				 &&
117 				 !bfq_gt(new_entity->start, st->vtime)
118 				 &&
119 				 bfq_gt(next_in_service->finish,
120 					new_entity->finish));
121 		}
122 
123 		if (change_without_lookup)
124 			next_in_service = new_entity;
125 	}
126 
127 	if (!change_without_lookup) /* lookup needed */
128 		next_in_service = bfq_lookup_next_entity(sd, expiration);
129 
130 	if (next_in_service) {
131 		bool new_budget_triggers_change =
132 			bfq_update_parent_budget(next_in_service);
133 
134 		parent_sched_may_change = !sd->next_in_service ||
135 			new_budget_triggers_change;
136 	}
137 
138 	sd->next_in_service = next_in_service;
139 
140 	return parent_sched_may_change;
141 }
142 
143 #ifdef CONFIG_BFQ_GROUP_IOSCHED
144 
145 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
146 {
147 	struct bfq_entity *group_entity = bfqq->entity.parent;
148 
149 	if (!group_entity)
150 		group_entity = &bfqq->bfqd->root_group->entity;
151 
152 	return container_of(group_entity, struct bfq_group, entity);
153 }
154 
155 /*
156  * Returns true if this budget changes may let next_in_service->parent
157  * become the next_in_service entity for its parent entity.
158  */
159 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
160 {
161 	struct bfq_entity *bfqg_entity;
162 	struct bfq_group *bfqg;
163 	struct bfq_sched_data *group_sd;
164 	bool ret = false;
165 
166 	group_sd = next_in_service->sched_data;
167 
168 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
169 	/*
170 	 * bfq_group's my_entity field is not NULL only if the group
171 	 * is not the root group. We must not touch the root entity
172 	 * as it must never become an in-service entity.
173 	 */
174 	bfqg_entity = bfqg->my_entity;
175 	if (bfqg_entity) {
176 		if (bfqg_entity->budget > next_in_service->budget)
177 			ret = true;
178 		bfqg_entity->budget = next_in_service->budget;
179 	}
180 
181 	return ret;
182 }
183 
184 /*
185  * This function tells whether entity stops being a candidate for next
186  * service, according to the restrictive definition of the field
187  * next_in_service. In particular, this function is invoked for an
188  * entity that is about to be set in service.
189  *
190  * If entity is a queue, then the entity is no longer a candidate for
191  * next service according to the that definition, because entity is
192  * about to become the in-service queue. This function then returns
193  * true if entity is a queue.
194  *
195  * In contrast, entity could still be a candidate for next service if
196  * it is not a queue, and has more than one active child. In fact,
197  * even if one of its children is about to be set in service, other
198  * active children may still be the next to serve, for the parent
199  * entity, even according to the above definition. As a consequence, a
200  * non-queue entity is not a candidate for next-service only if it has
201  * only one active child. And only if this condition holds, then this
202  * function returns true for a non-queue entity.
203  */
204 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
205 {
206 	struct bfq_group *bfqg;
207 
208 	if (bfq_entity_to_bfqq(entity))
209 		return true;
210 
211 	bfqg = container_of(entity, struct bfq_group, entity);
212 
213 	/*
214 	 * The field active_entities does not always contain the
215 	 * actual number of active children entities: it happens to
216 	 * not account for the in-service entity in case the latter is
217 	 * removed from its active tree (which may get done after
218 	 * invoking the function bfq_no_longer_next_in_service in
219 	 * bfq_get_next_queue). Fortunately, here, i.e., while
220 	 * bfq_no_longer_next_in_service is not yet completed in
221 	 * bfq_get_next_queue, bfq_active_extract has not yet been
222 	 * invoked, and thus active_entities still coincides with the
223 	 * actual number of active entities.
224 	 */
225 	if (bfqg->active_entities == 1)
226 		return true;
227 
228 	return false;
229 }
230 
231 #else /* CONFIG_BFQ_GROUP_IOSCHED */
232 
233 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
234 {
235 	return bfqq->bfqd->root_group;
236 }
237 
238 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
239 {
240 	return false;
241 }
242 
243 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
244 {
245 	return true;
246 }
247 
248 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
249 
250 /*
251  * Shift for timestamp calculations.  This actually limits the maximum
252  * service allowed in one timestamp delta (small shift values increase it),
253  * the maximum total weight that can be used for the queues in the system
254  * (big shift values increase it), and the period of virtual time
255  * wraparounds.
256  */
257 #define WFQ_SERVICE_SHIFT	22
258 
259 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
260 {
261 	struct bfq_queue *bfqq = NULL;
262 
263 	if (!entity->my_sched_data)
264 		bfqq = container_of(entity, struct bfq_queue, entity);
265 
266 	return bfqq;
267 }
268 
269 
270 /**
271  * bfq_delta - map service into the virtual time domain.
272  * @service: amount of service.
273  * @weight: scale factor (weight of an entity or weight sum).
274  */
275 static u64 bfq_delta(unsigned long service, unsigned long weight)
276 {
277 	return div64_ul((u64)service << WFQ_SERVICE_SHIFT, weight);
278 }
279 
280 /**
281  * bfq_calc_finish - assign the finish time to an entity.
282  * @entity: the entity to act upon.
283  * @service: the service to be charged to the entity.
284  */
285 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
286 {
287 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
288 
289 	entity->finish = entity->start +
290 		bfq_delta(service, entity->weight);
291 
292 	if (bfqq) {
293 		bfq_log_bfqq(bfqq->bfqd, bfqq,
294 			"calc_finish: serv %lu, w %d",
295 			service, entity->weight);
296 		bfq_log_bfqq(bfqq->bfqd, bfqq,
297 			"calc_finish: start %llu, finish %llu, delta %llu",
298 			entity->start, entity->finish,
299 			bfq_delta(service, entity->weight));
300 	}
301 }
302 
303 /**
304  * bfq_entity_of - get an entity from a node.
305  * @node: the node field of the entity.
306  *
307  * Convert a node pointer to the relative entity.  This is used only
308  * to simplify the logic of some functions and not as the generic
309  * conversion mechanism because, e.g., in the tree walking functions,
310  * the check for a %NULL value would be redundant.
311  */
312 struct bfq_entity *bfq_entity_of(struct rb_node *node)
313 {
314 	struct bfq_entity *entity = NULL;
315 
316 	if (node)
317 		entity = rb_entry(node, struct bfq_entity, rb_node);
318 
319 	return entity;
320 }
321 
322 /**
323  * bfq_extract - remove an entity from a tree.
324  * @root: the tree root.
325  * @entity: the entity to remove.
326  */
327 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
328 {
329 	entity->tree = NULL;
330 	rb_erase(&entity->rb_node, root);
331 }
332 
333 /**
334  * bfq_idle_extract - extract an entity from the idle tree.
335  * @st: the service tree of the owning @entity.
336  * @entity: the entity being removed.
337  */
338 static void bfq_idle_extract(struct bfq_service_tree *st,
339 			     struct bfq_entity *entity)
340 {
341 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
342 	struct rb_node *next;
343 
344 	if (entity == st->first_idle) {
345 		next = rb_next(&entity->rb_node);
346 		st->first_idle = bfq_entity_of(next);
347 	}
348 
349 	if (entity == st->last_idle) {
350 		next = rb_prev(&entity->rb_node);
351 		st->last_idle = bfq_entity_of(next);
352 	}
353 
354 	bfq_extract(&st->idle, entity);
355 
356 	if (bfqq)
357 		list_del(&bfqq->bfqq_list);
358 }
359 
360 /**
361  * bfq_insert - generic tree insertion.
362  * @root: tree root.
363  * @entity: entity to insert.
364  *
365  * This is used for the idle and the active tree, since they are both
366  * ordered by finish time.
367  */
368 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
369 {
370 	struct bfq_entity *entry;
371 	struct rb_node **node = &root->rb_node;
372 	struct rb_node *parent = NULL;
373 
374 	while (*node) {
375 		parent = *node;
376 		entry = rb_entry(parent, struct bfq_entity, rb_node);
377 
378 		if (bfq_gt(entry->finish, entity->finish))
379 			node = &parent->rb_left;
380 		else
381 			node = &parent->rb_right;
382 	}
383 
384 	rb_link_node(&entity->rb_node, parent, node);
385 	rb_insert_color(&entity->rb_node, root);
386 
387 	entity->tree = root;
388 }
389 
390 /**
391  * bfq_update_min - update the min_start field of a entity.
392  * @entity: the entity to update.
393  * @node: one of its children.
394  *
395  * This function is called when @entity may store an invalid value for
396  * min_start due to updates to the active tree.  The function  assumes
397  * that the subtree rooted at @node (which may be its left or its right
398  * child) has a valid min_start value.
399  */
400 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
401 {
402 	struct bfq_entity *child;
403 
404 	if (node) {
405 		child = rb_entry(node, struct bfq_entity, rb_node);
406 		if (bfq_gt(entity->min_start, child->min_start))
407 			entity->min_start = child->min_start;
408 	}
409 }
410 
411 /**
412  * bfq_update_active_node - recalculate min_start.
413  * @node: the node to update.
414  *
415  * @node may have changed position or one of its children may have moved,
416  * this function updates its min_start value.  The left and right subtrees
417  * are assumed to hold a correct min_start value.
418  */
419 static void bfq_update_active_node(struct rb_node *node)
420 {
421 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
422 
423 	entity->min_start = entity->start;
424 	bfq_update_min(entity, node->rb_right);
425 	bfq_update_min(entity, node->rb_left);
426 }
427 
428 /**
429  * bfq_update_active_tree - update min_start for the whole active tree.
430  * @node: the starting node.
431  *
432  * @node must be the deepest modified node after an update.  This function
433  * updates its min_start using the values held by its children, assuming
434  * that they did not change, and then updates all the nodes that may have
435  * changed in the path to the root.  The only nodes that may have changed
436  * are the ones in the path or their siblings.
437  */
438 static void bfq_update_active_tree(struct rb_node *node)
439 {
440 	struct rb_node *parent;
441 
442 up:
443 	bfq_update_active_node(node);
444 
445 	parent = rb_parent(node);
446 	if (!parent)
447 		return;
448 
449 	if (node == parent->rb_left && parent->rb_right)
450 		bfq_update_active_node(parent->rb_right);
451 	else if (parent->rb_left)
452 		bfq_update_active_node(parent->rb_left);
453 
454 	node = parent;
455 	goto up;
456 }
457 
458 /**
459  * bfq_active_insert - insert an entity in the active tree of its
460  *                     group/device.
461  * @st: the service tree of the entity.
462  * @entity: the entity being inserted.
463  *
464  * The active tree is ordered by finish time, but an extra key is kept
465  * per each node, containing the minimum value for the start times of
466  * its children (and the node itself), so it's possible to search for
467  * the eligible node with the lowest finish time in logarithmic time.
468  */
469 static void bfq_active_insert(struct bfq_service_tree *st,
470 			      struct bfq_entity *entity)
471 {
472 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
473 	struct rb_node *node = &entity->rb_node;
474 #ifdef CONFIG_BFQ_GROUP_IOSCHED
475 	struct bfq_sched_data *sd = NULL;
476 	struct bfq_group *bfqg = NULL;
477 	struct bfq_data *bfqd = NULL;
478 #endif
479 
480 	bfq_insert(&st->active, entity);
481 
482 	if (node->rb_left)
483 		node = node->rb_left;
484 	else if (node->rb_right)
485 		node = node->rb_right;
486 
487 	bfq_update_active_tree(node);
488 
489 #ifdef CONFIG_BFQ_GROUP_IOSCHED
490 	sd = entity->sched_data;
491 	bfqg = container_of(sd, struct bfq_group, sched_data);
492 	bfqd = (struct bfq_data *)bfqg->bfqd;
493 #endif
494 	if (bfqq)
495 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
496 #ifdef CONFIG_BFQ_GROUP_IOSCHED
497 	if (bfqg != bfqd->root_group)
498 		bfqg->active_entities++;
499 #endif
500 }
501 
502 /**
503  * bfq_ioprio_to_weight - calc a weight from an ioprio.
504  * @ioprio: the ioprio value to convert.
505  */
506 unsigned short bfq_ioprio_to_weight(int ioprio)
507 {
508 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
509 }
510 
511 /**
512  * bfq_weight_to_ioprio - calc an ioprio from a weight.
513  * @weight: the weight value to convert.
514  *
515  * To preserve as much as possible the old only-ioprio user interface,
516  * 0 is used as an escape ioprio value for weights (numerically) equal or
517  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
518  */
519 static unsigned short bfq_weight_to_ioprio(int weight)
520 {
521 	return max_t(int, 0,
522 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
523 }
524 
525 static void bfq_get_entity(struct bfq_entity *entity)
526 {
527 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
528 
529 	if (bfqq) {
530 		bfqq->ref++;
531 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
532 			     bfqq, bfqq->ref);
533 	}
534 }
535 
536 /**
537  * bfq_find_deepest - find the deepest node that an extraction can modify.
538  * @node: the node being removed.
539  *
540  * Do the first step of an extraction in an rb tree, looking for the
541  * node that will replace @node, and returning the deepest node that
542  * the following modifications to the tree can touch.  If @node is the
543  * last node in the tree return %NULL.
544  */
545 static struct rb_node *bfq_find_deepest(struct rb_node *node)
546 {
547 	struct rb_node *deepest;
548 
549 	if (!node->rb_right && !node->rb_left)
550 		deepest = rb_parent(node);
551 	else if (!node->rb_right)
552 		deepest = node->rb_left;
553 	else if (!node->rb_left)
554 		deepest = node->rb_right;
555 	else {
556 		deepest = rb_next(node);
557 		if (deepest->rb_right)
558 			deepest = deepest->rb_right;
559 		else if (rb_parent(deepest) != node)
560 			deepest = rb_parent(deepest);
561 	}
562 
563 	return deepest;
564 }
565 
566 /**
567  * bfq_active_extract - remove an entity from the active tree.
568  * @st: the service_tree containing the tree.
569  * @entity: the entity being removed.
570  */
571 static void bfq_active_extract(struct bfq_service_tree *st,
572 			       struct bfq_entity *entity)
573 {
574 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
575 	struct rb_node *node;
576 #ifdef CONFIG_BFQ_GROUP_IOSCHED
577 	struct bfq_sched_data *sd = NULL;
578 	struct bfq_group *bfqg = NULL;
579 	struct bfq_data *bfqd = NULL;
580 #endif
581 
582 	node = bfq_find_deepest(&entity->rb_node);
583 	bfq_extract(&st->active, entity);
584 
585 	if (node)
586 		bfq_update_active_tree(node);
587 
588 #ifdef CONFIG_BFQ_GROUP_IOSCHED
589 	sd = entity->sched_data;
590 	bfqg = container_of(sd, struct bfq_group, sched_data);
591 	bfqd = (struct bfq_data *)bfqg->bfqd;
592 #endif
593 	if (bfqq)
594 		list_del(&bfqq->bfqq_list);
595 #ifdef CONFIG_BFQ_GROUP_IOSCHED
596 	if (bfqg != bfqd->root_group)
597 		bfqg->active_entities--;
598 #endif
599 }
600 
601 /**
602  * bfq_idle_insert - insert an entity into the idle tree.
603  * @st: the service tree containing the tree.
604  * @entity: the entity to insert.
605  */
606 static void bfq_idle_insert(struct bfq_service_tree *st,
607 			    struct bfq_entity *entity)
608 {
609 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
610 	struct bfq_entity *first_idle = st->first_idle;
611 	struct bfq_entity *last_idle = st->last_idle;
612 
613 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
614 		st->first_idle = entity;
615 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
616 		st->last_idle = entity;
617 
618 	bfq_insert(&st->idle, entity);
619 
620 	if (bfqq)
621 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
622 }
623 
624 /**
625  * bfq_forget_entity - do not consider entity any longer for scheduling
626  * @st: the service tree.
627  * @entity: the entity being removed.
628  * @is_in_service: true if entity is currently the in-service entity.
629  *
630  * Forget everything about @entity. In addition, if entity represents
631  * a queue, and the latter is not in service, then release the service
632  * reference to the queue (the one taken through bfq_get_entity). In
633  * fact, in this case, there is really no more service reference to
634  * the queue, as the latter is also outside any service tree. If,
635  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
636  * will take care of putting the reference when the queue finally
637  * stops being served.
638  */
639 static void bfq_forget_entity(struct bfq_service_tree *st,
640 			      struct bfq_entity *entity,
641 			      bool is_in_service)
642 {
643 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
644 
645 	entity->on_st_or_in_serv = false;
646 	st->wsum -= entity->weight;
647 	if (bfqq && !is_in_service)
648 		bfq_put_queue(bfqq);
649 }
650 
651 /**
652  * bfq_put_idle_entity - release the idle tree ref of an entity.
653  * @st: service tree for the entity.
654  * @entity: the entity being released.
655  */
656 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
657 {
658 	bfq_idle_extract(st, entity);
659 	bfq_forget_entity(st, entity,
660 			  entity == entity->sched_data->in_service_entity);
661 }
662 
663 /**
664  * bfq_forget_idle - update the idle tree if necessary.
665  * @st: the service tree to act upon.
666  *
667  * To preserve the global O(log N) complexity we only remove one entry here;
668  * as the idle tree will not grow indefinitely this can be done safely.
669  */
670 static void bfq_forget_idle(struct bfq_service_tree *st)
671 {
672 	struct bfq_entity *first_idle = st->first_idle;
673 	struct bfq_entity *last_idle = st->last_idle;
674 
675 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
676 	    !bfq_gt(last_idle->finish, st->vtime)) {
677 		/*
678 		 * Forget the whole idle tree, increasing the vtime past
679 		 * the last finish time of idle entities.
680 		 */
681 		st->vtime = last_idle->finish;
682 	}
683 
684 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
685 		bfq_put_idle_entity(st, first_idle);
686 }
687 
688 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
689 {
690 	struct bfq_sched_data *sched_data = entity->sched_data;
691 	unsigned int idx = bfq_class_idx(entity);
692 
693 	return sched_data->service_tree + idx;
694 }
695 
696 /*
697  * Update weight and priority of entity. If update_class_too is true,
698  * then update the ioprio_class of entity too.
699  *
700  * The reason why the update of ioprio_class is controlled through the
701  * last parameter is as follows. Changing the ioprio class of an
702  * entity implies changing the destination service trees for that
703  * entity. If such a change occurred when the entity is already on one
704  * of the service trees for its previous class, then the state of the
705  * entity would become more complex: none of the new possible service
706  * trees for the entity, according to bfq_entity_service_tree(), would
707  * match any of the possible service trees on which the entity
708  * is. Complex operations involving these trees, such as entity
709  * activations and deactivations, should take into account this
710  * additional complexity.  To avoid this issue, this function is
711  * invoked with update_class_too unset in the points in the code where
712  * entity may happen to be on some tree.
713  */
714 struct bfq_service_tree *
715 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
716 				struct bfq_entity *entity,
717 				bool update_class_too)
718 {
719 	struct bfq_service_tree *new_st = old_st;
720 
721 	if (entity->prio_changed) {
722 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
723 		unsigned int prev_weight, new_weight;
724 		struct bfq_data *bfqd = NULL;
725 		struct rb_root_cached *root;
726 #ifdef CONFIG_BFQ_GROUP_IOSCHED
727 		struct bfq_sched_data *sd;
728 		struct bfq_group *bfqg;
729 #endif
730 
731 		if (bfqq)
732 			bfqd = bfqq->bfqd;
733 #ifdef CONFIG_BFQ_GROUP_IOSCHED
734 		else {
735 			sd = entity->my_sched_data;
736 			bfqg = container_of(sd, struct bfq_group, sched_data);
737 			bfqd = (struct bfq_data *)bfqg->bfqd;
738 		}
739 #endif
740 
741 		/* Matches the smp_wmb() in bfq_group_set_weight. */
742 		smp_rmb();
743 		old_st->wsum -= entity->weight;
744 
745 		if (entity->new_weight != entity->orig_weight) {
746 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
747 			    entity->new_weight > BFQ_MAX_WEIGHT) {
748 				pr_crit("update_weight_prio: new_weight %d\n",
749 					entity->new_weight);
750 				if (entity->new_weight < BFQ_MIN_WEIGHT)
751 					entity->new_weight = BFQ_MIN_WEIGHT;
752 				else
753 					entity->new_weight = BFQ_MAX_WEIGHT;
754 			}
755 			entity->orig_weight = entity->new_weight;
756 			if (bfqq)
757 				bfqq->ioprio =
758 				  bfq_weight_to_ioprio(entity->orig_weight);
759 		}
760 
761 		if (bfqq && update_class_too)
762 			bfqq->ioprio_class = bfqq->new_ioprio_class;
763 
764 		/*
765 		 * Reset prio_changed only if the ioprio_class change
766 		 * is not pending any longer.
767 		 */
768 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
769 			entity->prio_changed = 0;
770 
771 		/*
772 		 * NOTE: here we may be changing the weight too early,
773 		 * this will cause unfairness.  The correct approach
774 		 * would have required additional complexity to defer
775 		 * weight changes to the proper time instants (i.e.,
776 		 * when entity->finish <= old_st->vtime).
777 		 */
778 		new_st = bfq_entity_service_tree(entity);
779 
780 		prev_weight = entity->weight;
781 		new_weight = entity->orig_weight *
782 			     (bfqq ? bfqq->wr_coeff : 1);
783 		/*
784 		 * If the weight of the entity changes, and the entity is a
785 		 * queue, remove the entity from its old weight counter (if
786 		 * there is a counter associated with the entity).
787 		 */
788 		if (prev_weight != new_weight && bfqq) {
789 			root = &bfqd->queue_weights_tree;
790 			__bfq_weights_tree_remove(bfqd, bfqq, root);
791 		}
792 		entity->weight = new_weight;
793 		/*
794 		 * Add the entity, if it is not a weight-raised queue,
795 		 * to the counter associated with its new weight.
796 		 */
797 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
798 			/* If we get here, root has been initialized. */
799 			bfq_weights_tree_add(bfqd, bfqq, root);
800 		}
801 
802 		new_st->wsum += entity->weight;
803 
804 		if (new_st != old_st)
805 			entity->start = new_st->vtime;
806 	}
807 
808 	return new_st;
809 }
810 
811 /**
812  * bfq_bfqq_served - update the scheduler status after selection for
813  *                   service.
814  * @bfqq: the queue being served.
815  * @served: bytes to transfer.
816  *
817  * NOTE: this can be optimized, as the timestamps of upper level entities
818  * are synchronized every time a new bfqq is selected for service.  By now,
819  * we keep it to better check consistency.
820  */
821 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
822 {
823 	struct bfq_entity *entity = &bfqq->entity;
824 	struct bfq_service_tree *st;
825 
826 	if (!bfqq->service_from_backlogged)
827 		bfqq->first_IO_time = jiffies;
828 
829 	if (bfqq->wr_coeff > 1)
830 		bfqq->service_from_wr += served;
831 
832 	bfqq->service_from_backlogged += served;
833 	for_each_entity(entity) {
834 		st = bfq_entity_service_tree(entity);
835 
836 		entity->service += served;
837 
838 		st->vtime += bfq_delta(served, st->wsum);
839 		bfq_forget_idle(st);
840 	}
841 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
842 }
843 
844 /**
845  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
846  *			  of the time interval during which bfqq has been in
847  *			  service.
848  * @bfqd: the device
849  * @bfqq: the queue that needs a service update.
850  * @time_ms: the amount of time during which the queue has received service
851  *
852  * If a queue does not consume its budget fast enough, then providing
853  * the queue with service fairness may impair throughput, more or less
854  * severely. For this reason, queues that consume their budget slowly
855  * are provided with time fairness instead of service fairness. This
856  * goal is achieved through the BFQ scheduling engine, even if such an
857  * engine works in the service, and not in the time domain. The trick
858  * is charging these queues with an inflated amount of service, equal
859  * to the amount of service that they would have received during their
860  * service slot if they had been fast, i.e., if their requests had
861  * been dispatched at a rate equal to the estimated peak rate.
862  *
863  * It is worth noting that time fairness can cause important
864  * distortions in terms of bandwidth distribution, on devices with
865  * internal queueing. The reason is that I/O requests dispatched
866  * during the service slot of a queue may be served after that service
867  * slot is finished, and may have a total processing time loosely
868  * correlated with the duration of the service slot. This is
869  * especially true for short service slots.
870  */
871 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
872 			  unsigned long time_ms)
873 {
874 	struct bfq_entity *entity = &bfqq->entity;
875 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
876 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
877 	int serv_to_charge_for_time =
878 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
879 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
880 
881 	/* Increase budget to avoid inconsistencies */
882 	if (tot_serv_to_charge > entity->budget)
883 		entity->budget = tot_serv_to_charge;
884 
885 	bfq_bfqq_served(bfqq,
886 			max_t(int, 0, tot_serv_to_charge - entity->service));
887 }
888 
889 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
890 					struct bfq_service_tree *st,
891 					bool backshifted)
892 {
893 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
894 
895 	/*
896 	 * When this function is invoked, entity is not in any service
897 	 * tree, then it is safe to invoke next function with the last
898 	 * parameter set (see the comments on the function).
899 	 */
900 	st = __bfq_entity_update_weight_prio(st, entity, true);
901 	bfq_calc_finish(entity, entity->budget);
902 
903 	/*
904 	 * If some queues enjoy backshifting for a while, then their
905 	 * (virtual) finish timestamps may happen to become lower and
906 	 * lower than the system virtual time.	In particular, if
907 	 * these queues often happen to be idle for short time
908 	 * periods, and during such time periods other queues with
909 	 * higher timestamps happen to be busy, then the backshifted
910 	 * timestamps of the former queues can become much lower than
911 	 * the system virtual time. In fact, to serve the queues with
912 	 * higher timestamps while the ones with lower timestamps are
913 	 * idle, the system virtual time may be pushed-up to much
914 	 * higher values than the finish timestamps of the idle
915 	 * queues. As a consequence, the finish timestamps of all new
916 	 * or newly activated queues may end up being much larger than
917 	 * those of lucky queues with backshifted timestamps. The
918 	 * latter queues may then monopolize the device for a lot of
919 	 * time. This would simply break service guarantees.
920 	 *
921 	 * To reduce this problem, push up a little bit the
922 	 * backshifted timestamps of the queue associated with this
923 	 * entity (only a queue can happen to have the backshifted
924 	 * flag set): just enough to let the finish timestamp of the
925 	 * queue be equal to the current value of the system virtual
926 	 * time. This may introduce a little unfairness among queues
927 	 * with backshifted timestamps, but it does not break
928 	 * worst-case fairness guarantees.
929 	 *
930 	 * As a special case, if bfqq is weight-raised, push up
931 	 * timestamps much less, to keep very low the probability that
932 	 * this push up causes the backshifted finish timestamps of
933 	 * weight-raised queues to become higher than the backshifted
934 	 * finish timestamps of non weight-raised queues.
935 	 */
936 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
937 		unsigned long delta = st->vtime - entity->finish;
938 
939 		if (bfqq)
940 			delta /= bfqq->wr_coeff;
941 
942 		entity->start += delta;
943 		entity->finish += delta;
944 	}
945 
946 	bfq_active_insert(st, entity);
947 }
948 
949 /**
950  * __bfq_activate_entity - handle activation of entity.
951  * @entity: the entity being activated.
952  * @non_blocking_wait_rq: true if entity was waiting for a request
953  *
954  * Called for a 'true' activation, i.e., if entity is not active and
955  * one of its children receives a new request.
956  *
957  * Basically, this function updates the timestamps of entity and
958  * inserts entity into its active tree, after possibly extracting it
959  * from its idle tree.
960  */
961 static void __bfq_activate_entity(struct bfq_entity *entity,
962 				  bool non_blocking_wait_rq)
963 {
964 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
965 	bool backshifted = false;
966 	unsigned long long min_vstart;
967 
968 	/* See comments on bfq_fqq_update_budg_for_activation */
969 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
970 		backshifted = true;
971 		min_vstart = entity->finish;
972 	} else
973 		min_vstart = st->vtime;
974 
975 	if (entity->tree == &st->idle) {
976 		/*
977 		 * Must be on the idle tree, bfq_idle_extract() will
978 		 * check for that.
979 		 */
980 		bfq_idle_extract(st, entity);
981 		entity->start = bfq_gt(min_vstart, entity->finish) ?
982 			min_vstart : entity->finish;
983 	} else {
984 		/*
985 		 * The finish time of the entity may be invalid, and
986 		 * it is in the past for sure, otherwise the queue
987 		 * would have been on the idle tree.
988 		 */
989 		entity->start = min_vstart;
990 		st->wsum += entity->weight;
991 		/*
992 		 * entity is about to be inserted into a service tree,
993 		 * and then set in service: get a reference to make
994 		 * sure entity does not disappear until it is no
995 		 * longer in service or scheduled for service.
996 		 */
997 		bfq_get_entity(entity);
998 
999 		entity->on_st_or_in_serv = true;
1000 	}
1001 
1002 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1003 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1004 		struct bfq_group *bfqg =
1005 			container_of(entity, struct bfq_group, entity);
1006 		struct bfq_data *bfqd = bfqg->bfqd;
1007 
1008 		if (!entity->in_groups_with_pending_reqs) {
1009 			entity->in_groups_with_pending_reqs = true;
1010 			bfqd->num_groups_with_pending_reqs++;
1011 		}
1012 	}
1013 #endif
1014 
1015 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1016 }
1017 
1018 /**
1019  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1020  * @entity: the entity being requeued or repositioned.
1021  *
1022  * Requeueing is needed if this entity stops being served, which
1023  * happens if a leaf descendant entity has expired. On the other hand,
1024  * repositioning is needed if the next_inservice_entity for the child
1025  * entity has changed. See the comments inside the function for
1026  * details.
1027  *
1028  * Basically, this function: 1) removes entity from its active tree if
1029  * present there, 2) updates the timestamps of entity and 3) inserts
1030  * entity back into its active tree (in the new, right position for
1031  * the new values of the timestamps).
1032  */
1033 static void __bfq_requeue_entity(struct bfq_entity *entity)
1034 {
1035 	struct bfq_sched_data *sd = entity->sched_data;
1036 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1037 
1038 	if (entity == sd->in_service_entity) {
1039 		/*
1040 		 * We are requeueing the current in-service entity,
1041 		 * which may have to be done for one of the following
1042 		 * reasons:
1043 		 * - entity represents the in-service queue, and the
1044 		 *   in-service queue is being requeued after an
1045 		 *   expiration;
1046 		 * - entity represents a group, and its budget has
1047 		 *   changed because one of its child entities has
1048 		 *   just been either activated or requeued for some
1049 		 *   reason; the timestamps of the entity need then to
1050 		 *   be updated, and the entity needs to be enqueued
1051 		 *   or repositioned accordingly.
1052 		 *
1053 		 * In particular, before requeueing, the start time of
1054 		 * the entity must be moved forward to account for the
1055 		 * service that the entity has received while in
1056 		 * service. This is done by the next instructions. The
1057 		 * finish time will then be updated according to this
1058 		 * new value of the start time, and to the budget of
1059 		 * the entity.
1060 		 */
1061 		bfq_calc_finish(entity, entity->service);
1062 		entity->start = entity->finish;
1063 		/*
1064 		 * In addition, if the entity had more than one child
1065 		 * when set in service, then it was not extracted from
1066 		 * the active tree. This implies that the position of
1067 		 * the entity in the active tree may need to be
1068 		 * changed now, because we have just updated the start
1069 		 * time of the entity, and we will update its finish
1070 		 * time in a moment (the requeueing is then, more
1071 		 * precisely, a repositioning in this case). To
1072 		 * implement this repositioning, we: 1) dequeue the
1073 		 * entity here, 2) update the finish time and requeue
1074 		 * the entity according to the new timestamps below.
1075 		 */
1076 		if (entity->tree)
1077 			bfq_active_extract(st, entity);
1078 	} else { /* The entity is already active, and not in service */
1079 		/*
1080 		 * In this case, this function gets called only if the
1081 		 * next_in_service entity below this entity has
1082 		 * changed, and this change has caused the budget of
1083 		 * this entity to change, which, finally implies that
1084 		 * the finish time of this entity must be
1085 		 * updated. Such an update may cause the scheduling,
1086 		 * i.e., the position in the active tree, of this
1087 		 * entity to change. We handle this change by: 1)
1088 		 * dequeueing the entity here, 2) updating the finish
1089 		 * time and requeueing the entity according to the new
1090 		 * timestamps below. This is the same approach as the
1091 		 * non-extracted-entity sub-case above.
1092 		 */
1093 		bfq_active_extract(st, entity);
1094 	}
1095 
1096 	bfq_update_fin_time_enqueue(entity, st, false);
1097 }
1098 
1099 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1100 					  struct bfq_sched_data *sd,
1101 					  bool non_blocking_wait_rq)
1102 {
1103 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1104 
1105 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1106 		 /*
1107 		  * in service or already queued on the active tree,
1108 		  * requeue or reposition
1109 		  */
1110 		__bfq_requeue_entity(entity);
1111 	else
1112 		/*
1113 		 * Not in service and not queued on its active tree:
1114 		 * the activity is idle and this is a true activation.
1115 		 */
1116 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1117 }
1118 
1119 
1120 /**
1121  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1122  *				 bfq_queue, and activate, requeue or reposition
1123  *				 all ancestors for which such an update becomes
1124  *				 necessary.
1125  * @entity: the entity to activate.
1126  * @non_blocking_wait_rq: true if this entity was waiting for a request
1127  * @requeue: true if this is a requeue, which implies that bfqq is
1128  *	     being expired; thus ALL its ancestors stop being served and must
1129  *	     therefore be requeued
1130  * @expiration: true if this function is being invoked in the expiration path
1131  *             of the in-service queue
1132  */
1133 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1134 					bool non_blocking_wait_rq,
1135 					bool requeue, bool expiration)
1136 {
1137 	struct bfq_sched_data *sd;
1138 
1139 	for_each_entity(entity) {
1140 		sd = entity->sched_data;
1141 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1142 
1143 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1144 		    !requeue)
1145 			break;
1146 	}
1147 }
1148 
1149 /**
1150  * __bfq_deactivate_entity - update sched_data and service trees for
1151  * entity, so as to represent entity as inactive
1152  * @entity: the entity being deactivated.
1153  * @ins_into_idle_tree: if false, the entity will not be put into the
1154  *			idle tree.
1155  *
1156  * If necessary and allowed, puts entity into the idle tree. NOTE:
1157  * entity may be on no tree if in service.
1158  */
1159 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1160 {
1161 	struct bfq_sched_data *sd = entity->sched_data;
1162 	struct bfq_service_tree *st;
1163 	bool is_in_service;
1164 
1165 	if (!entity->on_st_or_in_serv) /*
1166 					* entity never activated, or
1167 					* already inactive
1168 					*/
1169 		return false;
1170 
1171 	/*
1172 	 * If we get here, then entity is active, which implies that
1173 	 * bfq_group_set_parent has already been invoked for the group
1174 	 * represented by entity. Therefore, the field
1175 	 * entity->sched_data has been set, and we can safely use it.
1176 	 */
1177 	st = bfq_entity_service_tree(entity);
1178 	is_in_service = entity == sd->in_service_entity;
1179 
1180 	bfq_calc_finish(entity, entity->service);
1181 
1182 	if (is_in_service)
1183 		sd->in_service_entity = NULL;
1184 	else
1185 		/*
1186 		 * Non in-service entity: nobody will take care of
1187 		 * resetting its service counter on expiration. Do it
1188 		 * now.
1189 		 */
1190 		entity->service = 0;
1191 
1192 	if (entity->tree == &st->active)
1193 		bfq_active_extract(st, entity);
1194 	else if (!is_in_service && entity->tree == &st->idle)
1195 		bfq_idle_extract(st, entity);
1196 
1197 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1198 		bfq_forget_entity(st, entity, is_in_service);
1199 	else
1200 		bfq_idle_insert(st, entity);
1201 
1202 	return true;
1203 }
1204 
1205 /**
1206  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1207  * @entity: the entity to deactivate.
1208  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1209  * @expiration: true if this function is being invoked in the expiration path
1210  *             of the in-service queue
1211  */
1212 static void bfq_deactivate_entity(struct bfq_entity *entity,
1213 				  bool ins_into_idle_tree,
1214 				  bool expiration)
1215 {
1216 	struct bfq_sched_data *sd;
1217 	struct bfq_entity *parent = NULL;
1218 
1219 	for_each_entity_safe(entity, parent) {
1220 		sd = entity->sched_data;
1221 
1222 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1223 			/*
1224 			 * entity is not in any tree any more, so
1225 			 * this deactivation is a no-op, and there is
1226 			 * nothing to change for upper-level entities
1227 			 * (in case of expiration, this can never
1228 			 * happen).
1229 			 */
1230 			return;
1231 		}
1232 
1233 		if (sd->next_in_service == entity)
1234 			/*
1235 			 * entity was the next_in_service entity,
1236 			 * then, since entity has just been
1237 			 * deactivated, a new one must be found.
1238 			 */
1239 			bfq_update_next_in_service(sd, NULL, expiration);
1240 
1241 		if (sd->next_in_service || sd->in_service_entity) {
1242 			/*
1243 			 * The parent entity is still active, because
1244 			 * either next_in_service or in_service_entity
1245 			 * is not NULL. So, no further upwards
1246 			 * deactivation must be performed.  Yet,
1247 			 * next_in_service has changed.	Then the
1248 			 * schedule does need to be updated upwards.
1249 			 *
1250 			 * NOTE If in_service_entity is not NULL, then
1251 			 * next_in_service may happen to be NULL,
1252 			 * although the parent entity is evidently
1253 			 * active. This happens if 1) the entity
1254 			 * pointed by in_service_entity is the only
1255 			 * active entity in the parent entity, and 2)
1256 			 * according to the definition of
1257 			 * next_in_service, the in_service_entity
1258 			 * cannot be considered as
1259 			 * next_in_service. See the comments on the
1260 			 * definition of next_in_service for details.
1261 			 */
1262 			break;
1263 		}
1264 
1265 		/*
1266 		 * If we get here, then the parent is no more
1267 		 * backlogged and we need to propagate the
1268 		 * deactivation upwards. Thus let the loop go on.
1269 		 */
1270 
1271 		/*
1272 		 * Also let parent be queued into the idle tree on
1273 		 * deactivation, to preserve service guarantees, and
1274 		 * assuming that who invoked this function does not
1275 		 * need parent entities too to be removed completely.
1276 		 */
1277 		ins_into_idle_tree = true;
1278 	}
1279 
1280 	/*
1281 	 * If the deactivation loop is fully executed, then there are
1282 	 * no more entities to touch and next loop is not executed at
1283 	 * all. Otherwise, requeue remaining entities if they are
1284 	 * about to stop receiving service, or reposition them if this
1285 	 * is not the case.
1286 	 */
1287 	entity = parent;
1288 	for_each_entity(entity) {
1289 		/*
1290 		 * Invoke __bfq_requeue_entity on entity, even if
1291 		 * already active, to requeue/reposition it in the
1292 		 * active tree (because sd->next_in_service has
1293 		 * changed)
1294 		 */
1295 		__bfq_requeue_entity(entity);
1296 
1297 		sd = entity->sched_data;
1298 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1299 		    !expiration)
1300 			/*
1301 			 * next_in_service unchanged or not causing
1302 			 * any change in entity->parent->sd, and no
1303 			 * requeueing needed for expiration: stop
1304 			 * here.
1305 			 */
1306 			break;
1307 	}
1308 }
1309 
1310 /**
1311  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1312  *                       if needed, to have at least one entity eligible.
1313  * @st: the service tree to act upon.
1314  *
1315  * Assumes that st is not empty.
1316  */
1317 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1318 {
1319 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1320 
1321 	if (bfq_gt(root_entity->min_start, st->vtime))
1322 		return root_entity->min_start;
1323 
1324 	return st->vtime;
1325 }
1326 
1327 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1328 {
1329 	if (new_value > st->vtime) {
1330 		st->vtime = new_value;
1331 		bfq_forget_idle(st);
1332 	}
1333 }
1334 
1335 /**
1336  * bfq_first_active_entity - find the eligible entity with
1337  *                           the smallest finish time
1338  * @st: the service tree to select from.
1339  * @vtime: the system virtual to use as a reference for eligibility
1340  *
1341  * This function searches the first schedulable entity, starting from the
1342  * root of the tree and going on the left every time on this side there is
1343  * a subtree with at least one eligible (start <= vtime) entity. The path on
1344  * the right is followed only if a) the left subtree contains no eligible
1345  * entities and b) no eligible entity has been found yet.
1346  */
1347 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1348 						  u64 vtime)
1349 {
1350 	struct bfq_entity *entry, *first = NULL;
1351 	struct rb_node *node = st->active.rb_node;
1352 
1353 	while (node) {
1354 		entry = rb_entry(node, struct bfq_entity, rb_node);
1355 left:
1356 		if (!bfq_gt(entry->start, vtime))
1357 			first = entry;
1358 
1359 		if (node->rb_left) {
1360 			entry = rb_entry(node->rb_left,
1361 					 struct bfq_entity, rb_node);
1362 			if (!bfq_gt(entry->min_start, vtime)) {
1363 				node = node->rb_left;
1364 				goto left;
1365 			}
1366 		}
1367 		if (first)
1368 			break;
1369 		node = node->rb_right;
1370 	}
1371 
1372 	return first;
1373 }
1374 
1375 /**
1376  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1377  * @st: the service tree.
1378  *
1379  * If there is no in-service entity for the sched_data st belongs to,
1380  * then return the entity that will be set in service if:
1381  * 1) the parent entity this st belongs to is set in service;
1382  * 2) no entity belonging to such parent entity undergoes a state change
1383  * that would influence the timestamps of the entity (e.g., becomes idle,
1384  * becomes backlogged, changes its budget, ...).
1385  *
1386  * In this first case, update the virtual time in @st too (see the
1387  * comments on this update inside the function).
1388  *
1389  * In contrast, if there is an in-service entity, then return the
1390  * entity that would be set in service if not only the above
1391  * conditions, but also the next one held true: the currently
1392  * in-service entity, on expiration,
1393  * 1) gets a finish time equal to the current one, or
1394  * 2) is not eligible any more, or
1395  * 3) is idle.
1396  */
1397 static struct bfq_entity *
1398 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1399 {
1400 	struct bfq_entity *entity;
1401 	u64 new_vtime;
1402 
1403 	if (RB_EMPTY_ROOT(&st->active))
1404 		return NULL;
1405 
1406 	/*
1407 	 * Get the value of the system virtual time for which at
1408 	 * least one entity is eligible.
1409 	 */
1410 	new_vtime = bfq_calc_vtime_jump(st);
1411 
1412 	/*
1413 	 * If there is no in-service entity for the sched_data this
1414 	 * active tree belongs to, then push the system virtual time
1415 	 * up to the value that guarantees that at least one entity is
1416 	 * eligible. If, instead, there is an in-service entity, then
1417 	 * do not make any such update, because there is already an
1418 	 * eligible entity, namely the in-service one (even if the
1419 	 * entity is not on st, because it was extracted when set in
1420 	 * service).
1421 	 */
1422 	if (!in_service)
1423 		bfq_update_vtime(st, new_vtime);
1424 
1425 	entity = bfq_first_active_entity(st, new_vtime);
1426 
1427 	return entity;
1428 }
1429 
1430 /**
1431  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1432  * @sd: the sched_data.
1433  * @expiration: true if we are on the expiration path of the in-service queue
1434  *
1435  * This function is invoked when there has been a change in the trees
1436  * for sd, and we need to know what is the new next entity to serve
1437  * after this change.
1438  */
1439 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1440 						 bool expiration)
1441 {
1442 	struct bfq_service_tree *st = sd->service_tree;
1443 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1444 	struct bfq_entity *entity = NULL;
1445 	int class_idx = 0;
1446 
1447 	/*
1448 	 * Choose from idle class, if needed to guarantee a minimum
1449 	 * bandwidth to this class (and if there is some active entity
1450 	 * in idle class). This should also mitigate
1451 	 * priority-inversion problems in case a low priority task is
1452 	 * holding file system resources.
1453 	 */
1454 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1455 				   BFQ_CL_IDLE_TIMEOUT)) {
1456 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1457 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1458 		/* About to be served if backlogged, or not yet backlogged */
1459 		sd->bfq_class_idle_last_service = jiffies;
1460 	}
1461 
1462 	/*
1463 	 * Find the next entity to serve for the highest-priority
1464 	 * class, unless the idle class needs to be served.
1465 	 */
1466 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1467 		/*
1468 		 * If expiration is true, then bfq_lookup_next_entity
1469 		 * is being invoked as a part of the expiration path
1470 		 * of the in-service queue. In this case, even if
1471 		 * sd->in_service_entity is not NULL,
1472 		 * sd->in_service_entity at this point is actually not
1473 		 * in service any more, and, if needed, has already
1474 		 * been properly queued or requeued into the right
1475 		 * tree. The reason why sd->in_service_entity is still
1476 		 * not NULL here, even if expiration is true, is that
1477 		 * sd->in_service_entity is reset as a last step in the
1478 		 * expiration path. So, if expiration is true, tell
1479 		 * __bfq_lookup_next_entity that there is no
1480 		 * sd->in_service_entity.
1481 		 */
1482 		entity = __bfq_lookup_next_entity(st + class_idx,
1483 						  sd->in_service_entity &&
1484 						  !expiration);
1485 
1486 		if (entity)
1487 			break;
1488 	}
1489 
1490 	if (!entity)
1491 		return NULL;
1492 
1493 	return entity;
1494 }
1495 
1496 bool next_queue_may_preempt(struct bfq_data *bfqd)
1497 {
1498 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1499 
1500 	return sd->next_in_service != sd->in_service_entity;
1501 }
1502 
1503 /*
1504  * Get next queue for service.
1505  */
1506 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1507 {
1508 	struct bfq_entity *entity = NULL;
1509 	struct bfq_sched_data *sd;
1510 	struct bfq_queue *bfqq;
1511 
1512 	if (bfq_tot_busy_queues(bfqd) == 0)
1513 		return NULL;
1514 
1515 	/*
1516 	 * Traverse the path from the root to the leaf entity to
1517 	 * serve. Set in service all the entities visited along the
1518 	 * way.
1519 	 */
1520 	sd = &bfqd->root_group->sched_data;
1521 	for (; sd ; sd = entity->my_sched_data) {
1522 		/*
1523 		 * WARNING. We are about to set the in-service entity
1524 		 * to sd->next_in_service, i.e., to the (cached) value
1525 		 * returned by bfq_lookup_next_entity(sd) the last
1526 		 * time it was invoked, i.e., the last time when the
1527 		 * service order in sd changed as a consequence of the
1528 		 * activation or deactivation of an entity. In this
1529 		 * respect, if we execute bfq_lookup_next_entity(sd)
1530 		 * in this very moment, it may, although with low
1531 		 * probability, yield a different entity than that
1532 		 * pointed to by sd->next_in_service. This rare event
1533 		 * happens in case there was no CLASS_IDLE entity to
1534 		 * serve for sd when bfq_lookup_next_entity(sd) was
1535 		 * invoked for the last time, while there is now one
1536 		 * such entity.
1537 		 *
1538 		 * If the above event happens, then the scheduling of
1539 		 * such entity in CLASS_IDLE is postponed until the
1540 		 * service of the sd->next_in_service entity
1541 		 * finishes. In fact, when the latter is expired,
1542 		 * bfq_lookup_next_entity(sd) gets called again,
1543 		 * exactly to update sd->next_in_service.
1544 		 */
1545 
1546 		/* Make next_in_service entity become in_service_entity */
1547 		entity = sd->next_in_service;
1548 		sd->in_service_entity = entity;
1549 
1550 		/*
1551 		 * If entity is no longer a candidate for next
1552 		 * service, then it must be extracted from its active
1553 		 * tree, so as to make sure that it won't be
1554 		 * considered when computing next_in_service. See the
1555 		 * comments on the function
1556 		 * bfq_no_longer_next_in_service() for details.
1557 		 */
1558 		if (bfq_no_longer_next_in_service(entity))
1559 			bfq_active_extract(bfq_entity_service_tree(entity),
1560 					   entity);
1561 
1562 		/*
1563 		 * Even if entity is not to be extracted according to
1564 		 * the above check, a descendant entity may get
1565 		 * extracted in one of the next iterations of this
1566 		 * loop. Such an event could cause a change in
1567 		 * next_in_service for the level of the descendant
1568 		 * entity, and thus possibly back to this level.
1569 		 *
1570 		 * However, we cannot perform the resulting needed
1571 		 * update of next_in_service for this level before the
1572 		 * end of the whole loop, because, to know which is
1573 		 * the correct next-to-serve candidate entity for each
1574 		 * level, we need first to find the leaf entity to set
1575 		 * in service. In fact, only after we know which is
1576 		 * the next-to-serve leaf entity, we can discover
1577 		 * whether the parent entity of the leaf entity
1578 		 * becomes the next-to-serve, and so on.
1579 		 */
1580 	}
1581 
1582 	bfqq = bfq_entity_to_bfqq(entity);
1583 
1584 	/*
1585 	 * We can finally update all next-to-serve entities along the
1586 	 * path from the leaf entity just set in service to the root.
1587 	 */
1588 	for_each_entity(entity) {
1589 		struct bfq_sched_data *sd = entity->sched_data;
1590 
1591 		if (!bfq_update_next_in_service(sd, NULL, false))
1592 			break;
1593 	}
1594 
1595 	return bfqq;
1596 }
1597 
1598 /* returns true if the in-service queue gets freed */
1599 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1600 {
1601 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1602 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1603 	struct bfq_entity *entity = in_serv_entity;
1604 
1605 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1606 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1607 	bfqd->in_service_queue = NULL;
1608 
1609 	/*
1610 	 * When this function is called, all in-service entities have
1611 	 * been properly deactivated or requeued, so we can safely
1612 	 * execute the final step: reset in_service_entity along the
1613 	 * path from entity to the root.
1614 	 */
1615 	for_each_entity(entity)
1616 		entity->sched_data->in_service_entity = NULL;
1617 
1618 	/*
1619 	 * in_serv_entity is no longer in service, so, if it is in no
1620 	 * service tree either, then release the service reference to
1621 	 * the queue it represents (taken with bfq_get_entity).
1622 	 */
1623 	if (!in_serv_entity->on_st_or_in_serv) {
1624 		/*
1625 		 * If no process is referencing in_serv_bfqq any
1626 		 * longer, then the service reference may be the only
1627 		 * reference to the queue. If this is the case, then
1628 		 * bfqq gets freed here.
1629 		 */
1630 		int ref = in_serv_bfqq->ref;
1631 		bfq_put_queue(in_serv_bfqq);
1632 		if (ref == 1)
1633 			return true;
1634 	}
1635 
1636 	return false;
1637 }
1638 
1639 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1640 			 bool ins_into_idle_tree, bool expiration)
1641 {
1642 	struct bfq_entity *entity = &bfqq->entity;
1643 
1644 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1645 }
1646 
1647 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1648 {
1649 	struct bfq_entity *entity = &bfqq->entity;
1650 
1651 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1652 				    false, false);
1653 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1654 }
1655 
1656 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1657 		      bool expiration)
1658 {
1659 	struct bfq_entity *entity = &bfqq->entity;
1660 
1661 	bfq_activate_requeue_entity(entity, false,
1662 				    bfqq == bfqd->in_service_queue, expiration);
1663 }
1664 
1665 /*
1666  * Called when the bfqq no longer has requests pending, remove it from
1667  * the service tree. As a special case, it can be invoked during an
1668  * expiration.
1669  */
1670 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1671 		       bool expiration)
1672 {
1673 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1674 
1675 	bfq_clear_bfqq_busy(bfqq);
1676 
1677 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1678 
1679 	if (bfqq->wr_coeff > 1)
1680 		bfqd->wr_busy_queues--;
1681 
1682 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1683 
1684 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1685 
1686 	if (!bfqq->dispatched)
1687 		bfq_weights_tree_remove(bfqd, bfqq);
1688 }
1689 
1690 /*
1691  * Called when an inactive queue receives a new request.
1692  */
1693 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1694 {
1695 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1696 
1697 	bfq_activate_bfqq(bfqd, bfqq);
1698 
1699 	bfq_mark_bfqq_busy(bfqq);
1700 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1701 
1702 	if (!bfqq->dispatched)
1703 		if (bfqq->wr_coeff == 1)
1704 			bfq_weights_tree_add(bfqd, bfqq,
1705 					     &bfqd->queue_weights_tree);
1706 
1707 	if (bfqq->wr_coeff > 1)
1708 		bfqd->wr_busy_queues++;
1709 }
1710