xref: /openbmc/linux/block/bfq-wf2q.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
3  * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
4  * scheduler schedules generic entities. The latter can represent
5  * either single bfq queues (associated with processes) or groups of
6  * bfq queues (associated with cgroups).
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License as
10  *  published by the Free Software Foundation; either version 2 of the
11  *  License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  */
18 #include "bfq-iosched.h"
19 
20 /**
21  * bfq_gt - compare two timestamps.
22  * @a: first ts.
23  * @b: second ts.
24  *
25  * Return @a > @b, dealing with wrapping correctly.
26  */
27 static int bfq_gt(u64 a, u64 b)
28 {
29 	return (s64)(a - b) > 0;
30 }
31 
32 static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
33 {
34 	struct rb_node *node = tree->rb_node;
35 
36 	return rb_entry(node, struct bfq_entity, rb_node);
37 }
38 
39 static unsigned int bfq_class_idx(struct bfq_entity *entity)
40 {
41 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
42 
43 	return bfqq ? bfqq->ioprio_class - 1 :
44 		BFQ_DEFAULT_GRP_CLASS - 1;
45 }
46 
47 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
48 {
49 	return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
50 		bfqd->busy_queues[2];
51 }
52 
53 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
54 						 bool expiration);
55 
56 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
57 
58 /**
59  * bfq_update_next_in_service - update sd->next_in_service
60  * @sd: sched_data for which to perform the update.
61  * @new_entity: if not NULL, pointer to the entity whose activation,
62  *		requeueing or repositionig triggered the invocation of
63  *		this function.
64  * @expiration: id true, this function is being invoked after the
65  *             expiration of the in-service entity
66  *
67  * This function is called to update sd->next_in_service, which, in
68  * its turn, may change as a consequence of the insertion or
69  * extraction of an entity into/from one of the active trees of
70  * sd. These insertions/extractions occur as a consequence of
71  * activations/deactivations of entities, with some activations being
72  * 'true' activations, and other activations being requeueings (i.e.,
73  * implementing the second, requeueing phase of the mechanism used to
74  * reposition an entity in its active tree; see comments on
75  * __bfq_activate_entity and __bfq_requeue_entity for details). In
76  * both the last two activation sub-cases, new_entity points to the
77  * just activated or requeued entity.
78  *
79  * Returns true if sd->next_in_service changes in such a way that
80  * entity->parent may become the next_in_service for its parent
81  * entity.
82  */
83 static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
84 				       struct bfq_entity *new_entity,
85 				       bool expiration)
86 {
87 	struct bfq_entity *next_in_service = sd->next_in_service;
88 	bool parent_sched_may_change = false;
89 	bool change_without_lookup = false;
90 
91 	/*
92 	 * If this update is triggered by the activation, requeueing
93 	 * or repositiong of an entity that does not coincide with
94 	 * sd->next_in_service, then a full lookup in the active tree
95 	 * can be avoided. In fact, it is enough to check whether the
96 	 * just-modified entity has the same priority as
97 	 * sd->next_in_service, is eligible and has a lower virtual
98 	 * finish time than sd->next_in_service. If this compound
99 	 * condition holds, then the new entity becomes the new
100 	 * next_in_service. Otherwise no change is needed.
101 	 */
102 	if (new_entity && new_entity != sd->next_in_service) {
103 		/*
104 		 * Flag used to decide whether to replace
105 		 * sd->next_in_service with new_entity. Tentatively
106 		 * set to true, and left as true if
107 		 * sd->next_in_service is NULL.
108 		 */
109 		change_without_lookup = true;
110 
111 		/*
112 		 * If there is already a next_in_service candidate
113 		 * entity, then compare timestamps to decide whether
114 		 * to replace sd->service_tree with new_entity.
115 		 */
116 		if (next_in_service) {
117 			unsigned int new_entity_class_idx =
118 				bfq_class_idx(new_entity);
119 			struct bfq_service_tree *st =
120 				sd->service_tree + new_entity_class_idx;
121 
122 			change_without_lookup =
123 				(new_entity_class_idx ==
124 				 bfq_class_idx(next_in_service)
125 				 &&
126 				 !bfq_gt(new_entity->start, st->vtime)
127 				 &&
128 				 bfq_gt(next_in_service->finish,
129 					new_entity->finish));
130 		}
131 
132 		if (change_without_lookup)
133 			next_in_service = new_entity;
134 	}
135 
136 	if (!change_without_lookup) /* lookup needed */
137 		next_in_service = bfq_lookup_next_entity(sd, expiration);
138 
139 	if (next_in_service) {
140 		bool new_budget_triggers_change =
141 			bfq_update_parent_budget(next_in_service);
142 
143 		parent_sched_may_change = !sd->next_in_service ||
144 			new_budget_triggers_change;
145 	}
146 
147 	sd->next_in_service = next_in_service;
148 
149 	if (!next_in_service)
150 		return parent_sched_may_change;
151 
152 	return parent_sched_may_change;
153 }
154 
155 #ifdef CONFIG_BFQ_GROUP_IOSCHED
156 
157 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
158 {
159 	struct bfq_entity *group_entity = bfqq->entity.parent;
160 
161 	if (!group_entity)
162 		group_entity = &bfqq->bfqd->root_group->entity;
163 
164 	return container_of(group_entity, struct bfq_group, entity);
165 }
166 
167 /*
168  * Returns true if this budget changes may let next_in_service->parent
169  * become the next_in_service entity for its parent entity.
170  */
171 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
172 {
173 	struct bfq_entity *bfqg_entity;
174 	struct bfq_group *bfqg;
175 	struct bfq_sched_data *group_sd;
176 	bool ret = false;
177 
178 	group_sd = next_in_service->sched_data;
179 
180 	bfqg = container_of(group_sd, struct bfq_group, sched_data);
181 	/*
182 	 * bfq_group's my_entity field is not NULL only if the group
183 	 * is not the root group. We must not touch the root entity
184 	 * as it must never become an in-service entity.
185 	 */
186 	bfqg_entity = bfqg->my_entity;
187 	if (bfqg_entity) {
188 		if (bfqg_entity->budget > next_in_service->budget)
189 			ret = true;
190 		bfqg_entity->budget = next_in_service->budget;
191 	}
192 
193 	return ret;
194 }
195 
196 /*
197  * This function tells whether entity stops being a candidate for next
198  * service, according to the restrictive definition of the field
199  * next_in_service. In particular, this function is invoked for an
200  * entity that is about to be set in service.
201  *
202  * If entity is a queue, then the entity is no longer a candidate for
203  * next service according to the that definition, because entity is
204  * about to become the in-service queue. This function then returns
205  * true if entity is a queue.
206  *
207  * In contrast, entity could still be a candidate for next service if
208  * it is not a queue, and has more than one active child. In fact,
209  * even if one of its children is about to be set in service, other
210  * active children may still be the next to serve, for the parent
211  * entity, even according to the above definition. As a consequence, a
212  * non-queue entity is not a candidate for next-service only if it has
213  * only one active child. And only if this condition holds, then this
214  * function returns true for a non-queue entity.
215  */
216 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
217 {
218 	struct bfq_group *bfqg;
219 
220 	if (bfq_entity_to_bfqq(entity))
221 		return true;
222 
223 	bfqg = container_of(entity, struct bfq_group, entity);
224 
225 	/*
226 	 * The field active_entities does not always contain the
227 	 * actual number of active children entities: it happens to
228 	 * not account for the in-service entity in case the latter is
229 	 * removed from its active tree (which may get done after
230 	 * invoking the function bfq_no_longer_next_in_service in
231 	 * bfq_get_next_queue). Fortunately, here, i.e., while
232 	 * bfq_no_longer_next_in_service is not yet completed in
233 	 * bfq_get_next_queue, bfq_active_extract has not yet been
234 	 * invoked, and thus active_entities still coincides with the
235 	 * actual number of active entities.
236 	 */
237 	if (bfqg->active_entities == 1)
238 		return true;
239 
240 	return false;
241 }
242 
243 #else /* CONFIG_BFQ_GROUP_IOSCHED */
244 
245 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
246 {
247 	return bfqq->bfqd->root_group;
248 }
249 
250 static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
251 {
252 	return false;
253 }
254 
255 static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
256 {
257 	return true;
258 }
259 
260 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
261 
262 /*
263  * Shift for timestamp calculations.  This actually limits the maximum
264  * service allowed in one timestamp delta (small shift values increase it),
265  * the maximum total weight that can be used for the queues in the system
266  * (big shift values increase it), and the period of virtual time
267  * wraparounds.
268  */
269 #define WFQ_SERVICE_SHIFT	22
270 
271 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
272 {
273 	struct bfq_queue *bfqq = NULL;
274 
275 	if (!entity->my_sched_data)
276 		bfqq = container_of(entity, struct bfq_queue, entity);
277 
278 	return bfqq;
279 }
280 
281 
282 /**
283  * bfq_delta - map service into the virtual time domain.
284  * @service: amount of service.
285  * @weight: scale factor (weight of an entity or weight sum).
286  */
287 static u64 bfq_delta(unsigned long service, unsigned long weight)
288 {
289 	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
290 
291 	do_div(d, weight);
292 	return d;
293 }
294 
295 /**
296  * bfq_calc_finish - assign the finish time to an entity.
297  * @entity: the entity to act upon.
298  * @service: the service to be charged to the entity.
299  */
300 static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
301 {
302 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
303 
304 	entity->finish = entity->start +
305 		bfq_delta(service, entity->weight);
306 
307 	if (bfqq) {
308 		bfq_log_bfqq(bfqq->bfqd, bfqq,
309 			"calc_finish: serv %lu, w %d",
310 			service, entity->weight);
311 		bfq_log_bfqq(bfqq->bfqd, bfqq,
312 			"calc_finish: start %llu, finish %llu, delta %llu",
313 			entity->start, entity->finish,
314 			bfq_delta(service, entity->weight));
315 	}
316 }
317 
318 /**
319  * bfq_entity_of - get an entity from a node.
320  * @node: the node field of the entity.
321  *
322  * Convert a node pointer to the relative entity.  This is used only
323  * to simplify the logic of some functions and not as the generic
324  * conversion mechanism because, e.g., in the tree walking functions,
325  * the check for a %NULL value would be redundant.
326  */
327 struct bfq_entity *bfq_entity_of(struct rb_node *node)
328 {
329 	struct bfq_entity *entity = NULL;
330 
331 	if (node)
332 		entity = rb_entry(node, struct bfq_entity, rb_node);
333 
334 	return entity;
335 }
336 
337 /**
338  * bfq_extract - remove an entity from a tree.
339  * @root: the tree root.
340  * @entity: the entity to remove.
341  */
342 static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
343 {
344 	entity->tree = NULL;
345 	rb_erase(&entity->rb_node, root);
346 }
347 
348 /**
349  * bfq_idle_extract - extract an entity from the idle tree.
350  * @st: the service tree of the owning @entity.
351  * @entity: the entity being removed.
352  */
353 static void bfq_idle_extract(struct bfq_service_tree *st,
354 			     struct bfq_entity *entity)
355 {
356 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
357 	struct rb_node *next;
358 
359 	if (entity == st->first_idle) {
360 		next = rb_next(&entity->rb_node);
361 		st->first_idle = bfq_entity_of(next);
362 	}
363 
364 	if (entity == st->last_idle) {
365 		next = rb_prev(&entity->rb_node);
366 		st->last_idle = bfq_entity_of(next);
367 	}
368 
369 	bfq_extract(&st->idle, entity);
370 
371 	if (bfqq)
372 		list_del(&bfqq->bfqq_list);
373 }
374 
375 /**
376  * bfq_insert - generic tree insertion.
377  * @root: tree root.
378  * @entity: entity to insert.
379  *
380  * This is used for the idle and the active tree, since they are both
381  * ordered by finish time.
382  */
383 static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
384 {
385 	struct bfq_entity *entry;
386 	struct rb_node **node = &root->rb_node;
387 	struct rb_node *parent = NULL;
388 
389 	while (*node) {
390 		parent = *node;
391 		entry = rb_entry(parent, struct bfq_entity, rb_node);
392 
393 		if (bfq_gt(entry->finish, entity->finish))
394 			node = &parent->rb_left;
395 		else
396 			node = &parent->rb_right;
397 	}
398 
399 	rb_link_node(&entity->rb_node, parent, node);
400 	rb_insert_color(&entity->rb_node, root);
401 
402 	entity->tree = root;
403 }
404 
405 /**
406  * bfq_update_min - update the min_start field of a entity.
407  * @entity: the entity to update.
408  * @node: one of its children.
409  *
410  * This function is called when @entity may store an invalid value for
411  * min_start due to updates to the active tree.  The function  assumes
412  * that the subtree rooted at @node (which may be its left or its right
413  * child) has a valid min_start value.
414  */
415 static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
416 {
417 	struct bfq_entity *child;
418 
419 	if (node) {
420 		child = rb_entry(node, struct bfq_entity, rb_node);
421 		if (bfq_gt(entity->min_start, child->min_start))
422 			entity->min_start = child->min_start;
423 	}
424 }
425 
426 /**
427  * bfq_update_active_node - recalculate min_start.
428  * @node: the node to update.
429  *
430  * @node may have changed position or one of its children may have moved,
431  * this function updates its min_start value.  The left and right subtrees
432  * are assumed to hold a correct min_start value.
433  */
434 static void bfq_update_active_node(struct rb_node *node)
435 {
436 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
437 
438 	entity->min_start = entity->start;
439 	bfq_update_min(entity, node->rb_right);
440 	bfq_update_min(entity, node->rb_left);
441 }
442 
443 /**
444  * bfq_update_active_tree - update min_start for the whole active tree.
445  * @node: the starting node.
446  *
447  * @node must be the deepest modified node after an update.  This function
448  * updates its min_start using the values held by its children, assuming
449  * that they did not change, and then updates all the nodes that may have
450  * changed in the path to the root.  The only nodes that may have changed
451  * are the ones in the path or their siblings.
452  */
453 static void bfq_update_active_tree(struct rb_node *node)
454 {
455 	struct rb_node *parent;
456 
457 up:
458 	bfq_update_active_node(node);
459 
460 	parent = rb_parent(node);
461 	if (!parent)
462 		return;
463 
464 	if (node == parent->rb_left && parent->rb_right)
465 		bfq_update_active_node(parent->rb_right);
466 	else if (parent->rb_left)
467 		bfq_update_active_node(parent->rb_left);
468 
469 	node = parent;
470 	goto up;
471 }
472 
473 /**
474  * bfq_active_insert - insert an entity in the active tree of its
475  *                     group/device.
476  * @st: the service tree of the entity.
477  * @entity: the entity being inserted.
478  *
479  * The active tree is ordered by finish time, but an extra key is kept
480  * per each node, containing the minimum value for the start times of
481  * its children (and the node itself), so it's possible to search for
482  * the eligible node with the lowest finish time in logarithmic time.
483  */
484 static void bfq_active_insert(struct bfq_service_tree *st,
485 			      struct bfq_entity *entity)
486 {
487 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
488 	struct rb_node *node = &entity->rb_node;
489 #ifdef CONFIG_BFQ_GROUP_IOSCHED
490 	struct bfq_sched_data *sd = NULL;
491 	struct bfq_group *bfqg = NULL;
492 	struct bfq_data *bfqd = NULL;
493 #endif
494 
495 	bfq_insert(&st->active, entity);
496 
497 	if (node->rb_left)
498 		node = node->rb_left;
499 	else if (node->rb_right)
500 		node = node->rb_right;
501 
502 	bfq_update_active_tree(node);
503 
504 #ifdef CONFIG_BFQ_GROUP_IOSCHED
505 	sd = entity->sched_data;
506 	bfqg = container_of(sd, struct bfq_group, sched_data);
507 	bfqd = (struct bfq_data *)bfqg->bfqd;
508 #endif
509 	if (bfqq)
510 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
511 #ifdef CONFIG_BFQ_GROUP_IOSCHED
512 	if (bfqg != bfqd->root_group)
513 		bfqg->active_entities++;
514 #endif
515 }
516 
517 /**
518  * bfq_ioprio_to_weight - calc a weight from an ioprio.
519  * @ioprio: the ioprio value to convert.
520  */
521 unsigned short bfq_ioprio_to_weight(int ioprio)
522 {
523 	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
524 }
525 
526 /**
527  * bfq_weight_to_ioprio - calc an ioprio from a weight.
528  * @weight: the weight value to convert.
529  *
530  * To preserve as much as possible the old only-ioprio user interface,
531  * 0 is used as an escape ioprio value for weights (numerically) equal or
532  * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
533  */
534 static unsigned short bfq_weight_to_ioprio(int weight)
535 {
536 	return max_t(int, 0,
537 		     IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
538 }
539 
540 static void bfq_get_entity(struct bfq_entity *entity)
541 {
542 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
543 
544 	if (bfqq) {
545 		bfqq->ref++;
546 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
547 			     bfqq, bfqq->ref);
548 	}
549 }
550 
551 /**
552  * bfq_find_deepest - find the deepest node that an extraction can modify.
553  * @node: the node being removed.
554  *
555  * Do the first step of an extraction in an rb tree, looking for the
556  * node that will replace @node, and returning the deepest node that
557  * the following modifications to the tree can touch.  If @node is the
558  * last node in the tree return %NULL.
559  */
560 static struct rb_node *bfq_find_deepest(struct rb_node *node)
561 {
562 	struct rb_node *deepest;
563 
564 	if (!node->rb_right && !node->rb_left)
565 		deepest = rb_parent(node);
566 	else if (!node->rb_right)
567 		deepest = node->rb_left;
568 	else if (!node->rb_left)
569 		deepest = node->rb_right;
570 	else {
571 		deepest = rb_next(node);
572 		if (deepest->rb_right)
573 			deepest = deepest->rb_right;
574 		else if (rb_parent(deepest) != node)
575 			deepest = rb_parent(deepest);
576 	}
577 
578 	return deepest;
579 }
580 
581 /**
582  * bfq_active_extract - remove an entity from the active tree.
583  * @st: the service_tree containing the tree.
584  * @entity: the entity being removed.
585  */
586 static void bfq_active_extract(struct bfq_service_tree *st,
587 			       struct bfq_entity *entity)
588 {
589 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
590 	struct rb_node *node;
591 #ifdef CONFIG_BFQ_GROUP_IOSCHED
592 	struct bfq_sched_data *sd = NULL;
593 	struct bfq_group *bfqg = NULL;
594 	struct bfq_data *bfqd = NULL;
595 #endif
596 
597 	node = bfq_find_deepest(&entity->rb_node);
598 	bfq_extract(&st->active, entity);
599 
600 	if (node)
601 		bfq_update_active_tree(node);
602 
603 #ifdef CONFIG_BFQ_GROUP_IOSCHED
604 	sd = entity->sched_data;
605 	bfqg = container_of(sd, struct bfq_group, sched_data);
606 	bfqd = (struct bfq_data *)bfqg->bfqd;
607 #endif
608 	if (bfqq)
609 		list_del(&bfqq->bfqq_list);
610 #ifdef CONFIG_BFQ_GROUP_IOSCHED
611 	if (bfqg != bfqd->root_group)
612 		bfqg->active_entities--;
613 #endif
614 }
615 
616 /**
617  * bfq_idle_insert - insert an entity into the idle tree.
618  * @st: the service tree containing the tree.
619  * @entity: the entity to insert.
620  */
621 static void bfq_idle_insert(struct bfq_service_tree *st,
622 			    struct bfq_entity *entity)
623 {
624 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
625 	struct bfq_entity *first_idle = st->first_idle;
626 	struct bfq_entity *last_idle = st->last_idle;
627 
628 	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
629 		st->first_idle = entity;
630 	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
631 		st->last_idle = entity;
632 
633 	bfq_insert(&st->idle, entity);
634 
635 	if (bfqq)
636 		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
637 }
638 
639 /**
640  * bfq_forget_entity - do not consider entity any longer for scheduling
641  * @st: the service tree.
642  * @entity: the entity being removed.
643  * @is_in_service: true if entity is currently the in-service entity.
644  *
645  * Forget everything about @entity. In addition, if entity represents
646  * a queue, and the latter is not in service, then release the service
647  * reference to the queue (the one taken through bfq_get_entity). In
648  * fact, in this case, there is really no more service reference to
649  * the queue, as the latter is also outside any service tree. If,
650  * instead, the queue is in service, then __bfq_bfqd_reset_in_service
651  * will take care of putting the reference when the queue finally
652  * stops being served.
653  */
654 static void bfq_forget_entity(struct bfq_service_tree *st,
655 			      struct bfq_entity *entity,
656 			      bool is_in_service)
657 {
658 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
659 
660 	entity->on_st = false;
661 	st->wsum -= entity->weight;
662 	if (bfqq && !is_in_service)
663 		bfq_put_queue(bfqq);
664 }
665 
666 /**
667  * bfq_put_idle_entity - release the idle tree ref of an entity.
668  * @st: service tree for the entity.
669  * @entity: the entity being released.
670  */
671 void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
672 {
673 	bfq_idle_extract(st, entity);
674 	bfq_forget_entity(st, entity,
675 			  entity == entity->sched_data->in_service_entity);
676 }
677 
678 /**
679  * bfq_forget_idle - update the idle tree if necessary.
680  * @st: the service tree to act upon.
681  *
682  * To preserve the global O(log N) complexity we only remove one entry here;
683  * as the idle tree will not grow indefinitely this can be done safely.
684  */
685 static void bfq_forget_idle(struct bfq_service_tree *st)
686 {
687 	struct bfq_entity *first_idle = st->first_idle;
688 	struct bfq_entity *last_idle = st->last_idle;
689 
690 	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
691 	    !bfq_gt(last_idle->finish, st->vtime)) {
692 		/*
693 		 * Forget the whole idle tree, increasing the vtime past
694 		 * the last finish time of idle entities.
695 		 */
696 		st->vtime = last_idle->finish;
697 	}
698 
699 	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
700 		bfq_put_idle_entity(st, first_idle);
701 }
702 
703 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
704 {
705 	struct bfq_sched_data *sched_data = entity->sched_data;
706 	unsigned int idx = bfq_class_idx(entity);
707 
708 	return sched_data->service_tree + idx;
709 }
710 
711 /*
712  * Update weight and priority of entity. If update_class_too is true,
713  * then update the ioprio_class of entity too.
714  *
715  * The reason why the update of ioprio_class is controlled through the
716  * last parameter is as follows. Changing the ioprio class of an
717  * entity implies changing the destination service trees for that
718  * entity. If such a change occurred when the entity is already on one
719  * of the service trees for its previous class, then the state of the
720  * entity would become more complex: none of the new possible service
721  * trees for the entity, according to bfq_entity_service_tree(), would
722  * match any of the possible service trees on which the entity
723  * is. Complex operations involving these trees, such as entity
724  * activations and deactivations, should take into account this
725  * additional complexity.  To avoid this issue, this function is
726  * invoked with update_class_too unset in the points in the code where
727  * entity may happen to be on some tree.
728  */
729 struct bfq_service_tree *
730 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
731 				struct bfq_entity *entity,
732 				bool update_class_too)
733 {
734 	struct bfq_service_tree *new_st = old_st;
735 
736 	if (entity->prio_changed) {
737 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
738 		unsigned int prev_weight, new_weight;
739 		struct bfq_data *bfqd = NULL;
740 		struct rb_root *root;
741 #ifdef CONFIG_BFQ_GROUP_IOSCHED
742 		struct bfq_sched_data *sd;
743 		struct bfq_group *bfqg;
744 #endif
745 
746 		if (bfqq)
747 			bfqd = bfqq->bfqd;
748 #ifdef CONFIG_BFQ_GROUP_IOSCHED
749 		else {
750 			sd = entity->my_sched_data;
751 			bfqg = container_of(sd, struct bfq_group, sched_data);
752 			bfqd = (struct bfq_data *)bfqg->bfqd;
753 		}
754 #endif
755 
756 		old_st->wsum -= entity->weight;
757 
758 		if (entity->new_weight != entity->orig_weight) {
759 			if (entity->new_weight < BFQ_MIN_WEIGHT ||
760 			    entity->new_weight > BFQ_MAX_WEIGHT) {
761 				pr_crit("update_weight_prio: new_weight %d\n",
762 					entity->new_weight);
763 				if (entity->new_weight < BFQ_MIN_WEIGHT)
764 					entity->new_weight = BFQ_MIN_WEIGHT;
765 				else
766 					entity->new_weight = BFQ_MAX_WEIGHT;
767 			}
768 			entity->orig_weight = entity->new_weight;
769 			if (bfqq)
770 				bfqq->ioprio =
771 				  bfq_weight_to_ioprio(entity->orig_weight);
772 		}
773 
774 		if (bfqq && update_class_too)
775 			bfqq->ioprio_class = bfqq->new_ioprio_class;
776 
777 		/*
778 		 * Reset prio_changed only if the ioprio_class change
779 		 * is not pending any longer.
780 		 */
781 		if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
782 			entity->prio_changed = 0;
783 
784 		/*
785 		 * NOTE: here we may be changing the weight too early,
786 		 * this will cause unfairness.  The correct approach
787 		 * would have required additional complexity to defer
788 		 * weight changes to the proper time instants (i.e.,
789 		 * when entity->finish <= old_st->vtime).
790 		 */
791 		new_st = bfq_entity_service_tree(entity);
792 
793 		prev_weight = entity->weight;
794 		new_weight = entity->orig_weight *
795 			     (bfqq ? bfqq->wr_coeff : 1);
796 		/*
797 		 * If the weight of the entity changes, and the entity is a
798 		 * queue, remove the entity from its old weight counter (if
799 		 * there is a counter associated with the entity).
800 		 */
801 		if (prev_weight != new_weight && bfqq) {
802 			root = &bfqd->queue_weights_tree;
803 			__bfq_weights_tree_remove(bfqd, bfqq, root);
804 		}
805 		entity->weight = new_weight;
806 		/*
807 		 * Add the entity, if it is not a weight-raised queue,
808 		 * to the counter associated with its new weight.
809 		 */
810 		if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
811 			/* If we get here, root has been initialized. */
812 			bfq_weights_tree_add(bfqd, bfqq, root);
813 		}
814 
815 		new_st->wsum += entity->weight;
816 
817 		if (new_st != old_st)
818 			entity->start = new_st->vtime;
819 	}
820 
821 	return new_st;
822 }
823 
824 /**
825  * bfq_bfqq_served - update the scheduler status after selection for
826  *                   service.
827  * @bfqq: the queue being served.
828  * @served: bytes to transfer.
829  *
830  * NOTE: this can be optimized, as the timestamps of upper level entities
831  * are synchronized every time a new bfqq is selected for service.  By now,
832  * we keep it to better check consistency.
833  */
834 void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
835 {
836 	struct bfq_entity *entity = &bfqq->entity;
837 	struct bfq_service_tree *st;
838 
839 	if (!bfqq->service_from_backlogged)
840 		bfqq->first_IO_time = jiffies;
841 
842 	if (bfqq->wr_coeff > 1)
843 		bfqq->service_from_wr += served;
844 
845 	bfqq->service_from_backlogged += served;
846 	for_each_entity(entity) {
847 		st = bfq_entity_service_tree(entity);
848 
849 		entity->service += served;
850 
851 		st->vtime += bfq_delta(served, st->wsum);
852 		bfq_forget_idle(st);
853 	}
854 	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
855 }
856 
857 /**
858  * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
859  *			  of the time interval during which bfqq has been in
860  *			  service.
861  * @bfqd: the device
862  * @bfqq: the queue that needs a service update.
863  * @time_ms: the amount of time during which the queue has received service
864  *
865  * If a queue does not consume its budget fast enough, then providing
866  * the queue with service fairness may impair throughput, more or less
867  * severely. For this reason, queues that consume their budget slowly
868  * are provided with time fairness instead of service fairness. This
869  * goal is achieved through the BFQ scheduling engine, even if such an
870  * engine works in the service, and not in the time domain. The trick
871  * is charging these queues with an inflated amount of service, equal
872  * to the amount of service that they would have received during their
873  * service slot if they had been fast, i.e., if their requests had
874  * been dispatched at a rate equal to the estimated peak rate.
875  *
876  * It is worth noting that time fairness can cause important
877  * distortions in terms of bandwidth distribution, on devices with
878  * internal queueing. The reason is that I/O requests dispatched
879  * during the service slot of a queue may be served after that service
880  * slot is finished, and may have a total processing time loosely
881  * correlated with the duration of the service slot. This is
882  * especially true for short service slots.
883  */
884 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
885 			  unsigned long time_ms)
886 {
887 	struct bfq_entity *entity = &bfqq->entity;
888 	unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
889 	unsigned long bounded_time_ms = min(time_ms, timeout_ms);
890 	int serv_to_charge_for_time =
891 		(bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
892 	int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
893 
894 	/* Increase budget to avoid inconsistencies */
895 	if (tot_serv_to_charge > entity->budget)
896 		entity->budget = tot_serv_to_charge;
897 
898 	bfq_bfqq_served(bfqq,
899 			max_t(int, 0, tot_serv_to_charge - entity->service));
900 }
901 
902 static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
903 					struct bfq_service_tree *st,
904 					bool backshifted)
905 {
906 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
907 
908 	/*
909 	 * When this function is invoked, entity is not in any service
910 	 * tree, then it is safe to invoke next function with the last
911 	 * parameter set (see the comments on the function).
912 	 */
913 	st = __bfq_entity_update_weight_prio(st, entity, true);
914 	bfq_calc_finish(entity, entity->budget);
915 
916 	/*
917 	 * If some queues enjoy backshifting for a while, then their
918 	 * (virtual) finish timestamps may happen to become lower and
919 	 * lower than the system virtual time.	In particular, if
920 	 * these queues often happen to be idle for short time
921 	 * periods, and during such time periods other queues with
922 	 * higher timestamps happen to be busy, then the backshifted
923 	 * timestamps of the former queues can become much lower than
924 	 * the system virtual time. In fact, to serve the queues with
925 	 * higher timestamps while the ones with lower timestamps are
926 	 * idle, the system virtual time may be pushed-up to much
927 	 * higher values than the finish timestamps of the idle
928 	 * queues. As a consequence, the finish timestamps of all new
929 	 * or newly activated queues may end up being much larger than
930 	 * those of lucky queues with backshifted timestamps. The
931 	 * latter queues may then monopolize the device for a lot of
932 	 * time. This would simply break service guarantees.
933 	 *
934 	 * To reduce this problem, push up a little bit the
935 	 * backshifted timestamps of the queue associated with this
936 	 * entity (only a queue can happen to have the backshifted
937 	 * flag set): just enough to let the finish timestamp of the
938 	 * queue be equal to the current value of the system virtual
939 	 * time. This may introduce a little unfairness among queues
940 	 * with backshifted timestamps, but it does not break
941 	 * worst-case fairness guarantees.
942 	 *
943 	 * As a special case, if bfqq is weight-raised, push up
944 	 * timestamps much less, to keep very low the probability that
945 	 * this push up causes the backshifted finish timestamps of
946 	 * weight-raised queues to become higher than the backshifted
947 	 * finish timestamps of non weight-raised queues.
948 	 */
949 	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
950 		unsigned long delta = st->vtime - entity->finish;
951 
952 		if (bfqq)
953 			delta /= bfqq->wr_coeff;
954 
955 		entity->start += delta;
956 		entity->finish += delta;
957 	}
958 
959 	bfq_active_insert(st, entity);
960 }
961 
962 /**
963  * __bfq_activate_entity - handle activation of entity.
964  * @entity: the entity being activated.
965  * @non_blocking_wait_rq: true if entity was waiting for a request
966  *
967  * Called for a 'true' activation, i.e., if entity is not active and
968  * one of its children receives a new request.
969  *
970  * Basically, this function updates the timestamps of entity and
971  * inserts entity into its active tree, after possibly extracting it
972  * from its idle tree.
973  */
974 static void __bfq_activate_entity(struct bfq_entity *entity,
975 				  bool non_blocking_wait_rq)
976 {
977 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
978 	bool backshifted = false;
979 	unsigned long long min_vstart;
980 
981 	/* See comments on bfq_fqq_update_budg_for_activation */
982 	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
983 		backshifted = true;
984 		min_vstart = entity->finish;
985 	} else
986 		min_vstart = st->vtime;
987 
988 	if (entity->tree == &st->idle) {
989 		/*
990 		 * Must be on the idle tree, bfq_idle_extract() will
991 		 * check for that.
992 		 */
993 		bfq_idle_extract(st, entity);
994 		entity->start = bfq_gt(min_vstart, entity->finish) ?
995 			min_vstart : entity->finish;
996 	} else {
997 		/*
998 		 * The finish time of the entity may be invalid, and
999 		 * it is in the past for sure, otherwise the queue
1000 		 * would have been on the idle tree.
1001 		 */
1002 		entity->start = min_vstart;
1003 		st->wsum += entity->weight;
1004 		/*
1005 		 * entity is about to be inserted into a service tree,
1006 		 * and then set in service: get a reference to make
1007 		 * sure entity does not disappear until it is no
1008 		 * longer in service or scheduled for service.
1009 		 */
1010 		bfq_get_entity(entity);
1011 
1012 		entity->on_st = true;
1013 	}
1014 
1015 #ifdef BFQ_GROUP_IOSCHED_ENABLED
1016 	if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
1017 		struct bfq_group *bfqg =
1018 			container_of(entity, struct bfq_group, entity);
1019 		struct bfq_data *bfqd = bfqg->bfqd;
1020 
1021 		if (!entity->in_groups_with_pending_reqs) {
1022 			entity->in_groups_with_pending_reqs = true;
1023 			bfqd->num_groups_with_pending_reqs++;
1024 		}
1025 	}
1026 #endif
1027 
1028 	bfq_update_fin_time_enqueue(entity, st, backshifted);
1029 }
1030 
1031 /**
1032  * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
1033  * @entity: the entity being requeued or repositioned.
1034  *
1035  * Requeueing is needed if this entity stops being served, which
1036  * happens if a leaf descendant entity has expired. On the other hand,
1037  * repositioning is needed if the next_inservice_entity for the child
1038  * entity has changed. See the comments inside the function for
1039  * details.
1040  *
1041  * Basically, this function: 1) removes entity from its active tree if
1042  * present there, 2) updates the timestamps of entity and 3) inserts
1043  * entity back into its active tree (in the new, right position for
1044  * the new values of the timestamps).
1045  */
1046 static void __bfq_requeue_entity(struct bfq_entity *entity)
1047 {
1048 	struct bfq_sched_data *sd = entity->sched_data;
1049 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1050 
1051 	if (entity == sd->in_service_entity) {
1052 		/*
1053 		 * We are requeueing the current in-service entity,
1054 		 * which may have to be done for one of the following
1055 		 * reasons:
1056 		 * - entity represents the in-service queue, and the
1057 		 *   in-service queue is being requeued after an
1058 		 *   expiration;
1059 		 * - entity represents a group, and its budget has
1060 		 *   changed because one of its child entities has
1061 		 *   just been either activated or requeued for some
1062 		 *   reason; the timestamps of the entity need then to
1063 		 *   be updated, and the entity needs to be enqueued
1064 		 *   or repositioned accordingly.
1065 		 *
1066 		 * In particular, before requeueing, the start time of
1067 		 * the entity must be moved forward to account for the
1068 		 * service that the entity has received while in
1069 		 * service. This is done by the next instructions. The
1070 		 * finish time will then be updated according to this
1071 		 * new value of the start time, and to the budget of
1072 		 * the entity.
1073 		 */
1074 		bfq_calc_finish(entity, entity->service);
1075 		entity->start = entity->finish;
1076 		/*
1077 		 * In addition, if the entity had more than one child
1078 		 * when set in service, then it was not extracted from
1079 		 * the active tree. This implies that the position of
1080 		 * the entity in the active tree may need to be
1081 		 * changed now, because we have just updated the start
1082 		 * time of the entity, and we will update its finish
1083 		 * time in a moment (the requeueing is then, more
1084 		 * precisely, a repositioning in this case). To
1085 		 * implement this repositioning, we: 1) dequeue the
1086 		 * entity here, 2) update the finish time and requeue
1087 		 * the entity according to the new timestamps below.
1088 		 */
1089 		if (entity->tree)
1090 			bfq_active_extract(st, entity);
1091 	} else { /* The entity is already active, and not in service */
1092 		/*
1093 		 * In this case, this function gets called only if the
1094 		 * next_in_service entity below this entity has
1095 		 * changed, and this change has caused the budget of
1096 		 * this entity to change, which, finally implies that
1097 		 * the finish time of this entity must be
1098 		 * updated. Such an update may cause the scheduling,
1099 		 * i.e., the position in the active tree, of this
1100 		 * entity to change. We handle this change by: 1)
1101 		 * dequeueing the entity here, 2) updating the finish
1102 		 * time and requeueing the entity according to the new
1103 		 * timestamps below. This is the same approach as the
1104 		 * non-extracted-entity sub-case above.
1105 		 */
1106 		bfq_active_extract(st, entity);
1107 	}
1108 
1109 	bfq_update_fin_time_enqueue(entity, st, false);
1110 }
1111 
1112 static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1113 					  struct bfq_sched_data *sd,
1114 					  bool non_blocking_wait_rq)
1115 {
1116 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1117 
1118 	if (sd->in_service_entity == entity || entity->tree == &st->active)
1119 		 /*
1120 		  * in service or already queued on the active tree,
1121 		  * requeue or reposition
1122 		  */
1123 		__bfq_requeue_entity(entity);
1124 	else
1125 		/*
1126 		 * Not in service and not queued on its active tree:
1127 		 * the activity is idle and this is a true activation.
1128 		 */
1129 		__bfq_activate_entity(entity, non_blocking_wait_rq);
1130 }
1131 
1132 
1133 /**
1134  * bfq_activate_requeue_entity - activate or requeue an entity representing a
1135  *				 bfq_queue, and activate, requeue or reposition
1136  *				 all ancestors for which such an update becomes
1137  *				 necessary.
1138  * @entity: the entity to activate.
1139  * @non_blocking_wait_rq: true if this entity was waiting for a request
1140  * @requeue: true if this is a requeue, which implies that bfqq is
1141  *	     being expired; thus ALL its ancestors stop being served and must
1142  *	     therefore be requeued
1143  * @expiration: true if this function is being invoked in the expiration path
1144  *             of the in-service queue
1145  */
1146 static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1147 					bool non_blocking_wait_rq,
1148 					bool requeue, bool expiration)
1149 {
1150 	struct bfq_sched_data *sd;
1151 
1152 	for_each_entity(entity) {
1153 		sd = entity->sched_data;
1154 		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1155 
1156 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1157 		    !requeue)
1158 			break;
1159 	}
1160 }
1161 
1162 /**
1163  * __bfq_deactivate_entity - update sched_data and service trees for
1164  * entity, so as to represent entity as inactive
1165  * @entity: the entity being deactivated.
1166  * @ins_into_idle_tree: if false, the entity will not be put into the
1167  *			idle tree.
1168  *
1169  * If necessary and allowed, puts entity into the idle tree. NOTE:
1170  * entity may be on no tree if in service.
1171  */
1172 bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1173 {
1174 	struct bfq_sched_data *sd = entity->sched_data;
1175 	struct bfq_service_tree *st;
1176 	bool is_in_service;
1177 
1178 	if (!entity->on_st) /* entity never activated, or already inactive */
1179 		return false;
1180 
1181 	/*
1182 	 * If we get here, then entity is active, which implies that
1183 	 * bfq_group_set_parent has already been invoked for the group
1184 	 * represented by entity. Therefore, the field
1185 	 * entity->sched_data has been set, and we can safely use it.
1186 	 */
1187 	st = bfq_entity_service_tree(entity);
1188 	is_in_service = entity == sd->in_service_entity;
1189 
1190 	bfq_calc_finish(entity, entity->service);
1191 
1192 	if (is_in_service)
1193 		sd->in_service_entity = NULL;
1194 	else
1195 		/*
1196 		 * Non in-service entity: nobody will take care of
1197 		 * resetting its service counter on expiration. Do it
1198 		 * now.
1199 		 */
1200 		entity->service = 0;
1201 
1202 	if (entity->tree == &st->active)
1203 		bfq_active_extract(st, entity);
1204 	else if (!is_in_service && entity->tree == &st->idle)
1205 		bfq_idle_extract(st, entity);
1206 
1207 	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1208 		bfq_forget_entity(st, entity, is_in_service);
1209 	else
1210 		bfq_idle_insert(st, entity);
1211 
1212 	return true;
1213 }
1214 
1215 /**
1216  * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1217  * @entity: the entity to deactivate.
1218  * @ins_into_idle_tree: true if the entity can be put into the idle tree
1219  * @expiration: true if this function is being invoked in the expiration path
1220  *             of the in-service queue
1221  */
1222 static void bfq_deactivate_entity(struct bfq_entity *entity,
1223 				  bool ins_into_idle_tree,
1224 				  bool expiration)
1225 {
1226 	struct bfq_sched_data *sd;
1227 	struct bfq_entity *parent = NULL;
1228 
1229 	for_each_entity_safe(entity, parent) {
1230 		sd = entity->sched_data;
1231 
1232 		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1233 			/*
1234 			 * entity is not in any tree any more, so
1235 			 * this deactivation is a no-op, and there is
1236 			 * nothing to change for upper-level entities
1237 			 * (in case of expiration, this can never
1238 			 * happen).
1239 			 */
1240 			return;
1241 		}
1242 
1243 		if (sd->next_in_service == entity)
1244 			/*
1245 			 * entity was the next_in_service entity,
1246 			 * then, since entity has just been
1247 			 * deactivated, a new one must be found.
1248 			 */
1249 			bfq_update_next_in_service(sd, NULL, expiration);
1250 
1251 		if (sd->next_in_service || sd->in_service_entity) {
1252 			/*
1253 			 * The parent entity is still active, because
1254 			 * either next_in_service or in_service_entity
1255 			 * is not NULL. So, no further upwards
1256 			 * deactivation must be performed.  Yet,
1257 			 * next_in_service has changed.	Then the
1258 			 * schedule does need to be updated upwards.
1259 			 *
1260 			 * NOTE If in_service_entity is not NULL, then
1261 			 * next_in_service may happen to be NULL,
1262 			 * although the parent entity is evidently
1263 			 * active. This happens if 1) the entity
1264 			 * pointed by in_service_entity is the only
1265 			 * active entity in the parent entity, and 2)
1266 			 * according to the definition of
1267 			 * next_in_service, the in_service_entity
1268 			 * cannot be considered as
1269 			 * next_in_service. See the comments on the
1270 			 * definition of next_in_service for details.
1271 			 */
1272 			break;
1273 		}
1274 
1275 		/*
1276 		 * If we get here, then the parent is no more
1277 		 * backlogged and we need to propagate the
1278 		 * deactivation upwards. Thus let the loop go on.
1279 		 */
1280 
1281 		/*
1282 		 * Also let parent be queued into the idle tree on
1283 		 * deactivation, to preserve service guarantees, and
1284 		 * assuming that who invoked this function does not
1285 		 * need parent entities too to be removed completely.
1286 		 */
1287 		ins_into_idle_tree = true;
1288 	}
1289 
1290 	/*
1291 	 * If the deactivation loop is fully executed, then there are
1292 	 * no more entities to touch and next loop is not executed at
1293 	 * all. Otherwise, requeue remaining entities if they are
1294 	 * about to stop receiving service, or reposition them if this
1295 	 * is not the case.
1296 	 */
1297 	entity = parent;
1298 	for_each_entity(entity) {
1299 		/*
1300 		 * Invoke __bfq_requeue_entity on entity, even if
1301 		 * already active, to requeue/reposition it in the
1302 		 * active tree (because sd->next_in_service has
1303 		 * changed)
1304 		 */
1305 		__bfq_requeue_entity(entity);
1306 
1307 		sd = entity->sched_data;
1308 		if (!bfq_update_next_in_service(sd, entity, expiration) &&
1309 		    !expiration)
1310 			/*
1311 			 * next_in_service unchanged or not causing
1312 			 * any change in entity->parent->sd, and no
1313 			 * requeueing needed for expiration: stop
1314 			 * here.
1315 			 */
1316 			break;
1317 	}
1318 }
1319 
1320 /**
1321  * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1322  *                       if needed, to have at least one entity eligible.
1323  * @st: the service tree to act upon.
1324  *
1325  * Assumes that st is not empty.
1326  */
1327 static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1328 {
1329 	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1330 
1331 	if (bfq_gt(root_entity->min_start, st->vtime))
1332 		return root_entity->min_start;
1333 
1334 	return st->vtime;
1335 }
1336 
1337 static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1338 {
1339 	if (new_value > st->vtime) {
1340 		st->vtime = new_value;
1341 		bfq_forget_idle(st);
1342 	}
1343 }
1344 
1345 /**
1346  * bfq_first_active_entity - find the eligible entity with
1347  *                           the smallest finish time
1348  * @st: the service tree to select from.
1349  * @vtime: the system virtual to use as a reference for eligibility
1350  *
1351  * This function searches the first schedulable entity, starting from the
1352  * root of the tree and going on the left every time on this side there is
1353  * a subtree with at least one eligible (start <= vtime) entity. The path on
1354  * the right is followed only if a) the left subtree contains no eligible
1355  * entities and b) no eligible entity has been found yet.
1356  */
1357 static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1358 						  u64 vtime)
1359 {
1360 	struct bfq_entity *entry, *first = NULL;
1361 	struct rb_node *node = st->active.rb_node;
1362 
1363 	while (node) {
1364 		entry = rb_entry(node, struct bfq_entity, rb_node);
1365 left:
1366 		if (!bfq_gt(entry->start, vtime))
1367 			first = entry;
1368 
1369 		if (node->rb_left) {
1370 			entry = rb_entry(node->rb_left,
1371 					 struct bfq_entity, rb_node);
1372 			if (!bfq_gt(entry->min_start, vtime)) {
1373 				node = node->rb_left;
1374 				goto left;
1375 			}
1376 		}
1377 		if (first)
1378 			break;
1379 		node = node->rb_right;
1380 	}
1381 
1382 	return first;
1383 }
1384 
1385 /**
1386  * __bfq_lookup_next_entity - return the first eligible entity in @st.
1387  * @st: the service tree.
1388  *
1389  * If there is no in-service entity for the sched_data st belongs to,
1390  * then return the entity that will be set in service if:
1391  * 1) the parent entity this st belongs to is set in service;
1392  * 2) no entity belonging to such parent entity undergoes a state change
1393  * that would influence the timestamps of the entity (e.g., becomes idle,
1394  * becomes backlogged, changes its budget, ...).
1395  *
1396  * In this first case, update the virtual time in @st too (see the
1397  * comments on this update inside the function).
1398  *
1399  * In constrast, if there is an in-service entity, then return the
1400  * entity that would be set in service if not only the above
1401  * conditions, but also the next one held true: the currently
1402  * in-service entity, on expiration,
1403  * 1) gets a finish time equal to the current one, or
1404  * 2) is not eligible any more, or
1405  * 3) is idle.
1406  */
1407 static struct bfq_entity *
1408 __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1409 {
1410 	struct bfq_entity *entity;
1411 	u64 new_vtime;
1412 
1413 	if (RB_EMPTY_ROOT(&st->active))
1414 		return NULL;
1415 
1416 	/*
1417 	 * Get the value of the system virtual time for which at
1418 	 * least one entity is eligible.
1419 	 */
1420 	new_vtime = bfq_calc_vtime_jump(st);
1421 
1422 	/*
1423 	 * If there is no in-service entity for the sched_data this
1424 	 * active tree belongs to, then push the system virtual time
1425 	 * up to the value that guarantees that at least one entity is
1426 	 * eligible. If, instead, there is an in-service entity, then
1427 	 * do not make any such update, because there is already an
1428 	 * eligible entity, namely the in-service one (even if the
1429 	 * entity is not on st, because it was extracted when set in
1430 	 * service).
1431 	 */
1432 	if (!in_service)
1433 		bfq_update_vtime(st, new_vtime);
1434 
1435 	entity = bfq_first_active_entity(st, new_vtime);
1436 
1437 	return entity;
1438 }
1439 
1440 /**
1441  * bfq_lookup_next_entity - return the first eligible entity in @sd.
1442  * @sd: the sched_data.
1443  * @expiration: true if we are on the expiration path of the in-service queue
1444  *
1445  * This function is invoked when there has been a change in the trees
1446  * for sd, and we need to know what is the new next entity to serve
1447  * after this change.
1448  */
1449 static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1450 						 bool expiration)
1451 {
1452 	struct bfq_service_tree *st = sd->service_tree;
1453 	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1454 	struct bfq_entity *entity = NULL;
1455 	int class_idx = 0;
1456 
1457 	/*
1458 	 * Choose from idle class, if needed to guarantee a minimum
1459 	 * bandwidth to this class (and if there is some active entity
1460 	 * in idle class). This should also mitigate
1461 	 * priority-inversion problems in case a low priority task is
1462 	 * holding file system resources.
1463 	 */
1464 	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1465 				   BFQ_CL_IDLE_TIMEOUT)) {
1466 		if (!RB_EMPTY_ROOT(&idle_class_st->active))
1467 			class_idx = BFQ_IOPRIO_CLASSES - 1;
1468 		/* About to be served if backlogged, or not yet backlogged */
1469 		sd->bfq_class_idle_last_service = jiffies;
1470 	}
1471 
1472 	/*
1473 	 * Find the next entity to serve for the highest-priority
1474 	 * class, unless the idle class needs to be served.
1475 	 */
1476 	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
1477 		/*
1478 		 * If expiration is true, then bfq_lookup_next_entity
1479 		 * is being invoked as a part of the expiration path
1480 		 * of the in-service queue. In this case, even if
1481 		 * sd->in_service_entity is not NULL,
1482 		 * sd->in_service_entiy at this point is actually not
1483 		 * in service any more, and, if needed, has already
1484 		 * been properly queued or requeued into the right
1485 		 * tree. The reason why sd->in_service_entity is still
1486 		 * not NULL here, even if expiration is true, is that
1487 		 * sd->in_service_entiy is reset as a last step in the
1488 		 * expiration path. So, if expiration is true, tell
1489 		 * __bfq_lookup_next_entity that there is no
1490 		 * sd->in_service_entity.
1491 		 */
1492 		entity = __bfq_lookup_next_entity(st + class_idx,
1493 						  sd->in_service_entity &&
1494 						  !expiration);
1495 
1496 		if (entity)
1497 			break;
1498 	}
1499 
1500 	if (!entity)
1501 		return NULL;
1502 
1503 	return entity;
1504 }
1505 
1506 bool next_queue_may_preempt(struct bfq_data *bfqd)
1507 {
1508 	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1509 
1510 	return sd->next_in_service != sd->in_service_entity;
1511 }
1512 
1513 /*
1514  * Get next queue for service.
1515  */
1516 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1517 {
1518 	struct bfq_entity *entity = NULL;
1519 	struct bfq_sched_data *sd;
1520 	struct bfq_queue *bfqq;
1521 
1522 	if (bfq_tot_busy_queues(bfqd) == 0)
1523 		return NULL;
1524 
1525 	/*
1526 	 * Traverse the path from the root to the leaf entity to
1527 	 * serve. Set in service all the entities visited along the
1528 	 * way.
1529 	 */
1530 	sd = &bfqd->root_group->sched_data;
1531 	for (; sd ; sd = entity->my_sched_data) {
1532 		/*
1533 		 * WARNING. We are about to set the in-service entity
1534 		 * to sd->next_in_service, i.e., to the (cached) value
1535 		 * returned by bfq_lookup_next_entity(sd) the last
1536 		 * time it was invoked, i.e., the last time when the
1537 		 * service order in sd changed as a consequence of the
1538 		 * activation or deactivation of an entity. In this
1539 		 * respect, if we execute bfq_lookup_next_entity(sd)
1540 		 * in this very moment, it may, although with low
1541 		 * probability, yield a different entity than that
1542 		 * pointed to by sd->next_in_service. This rare event
1543 		 * happens in case there was no CLASS_IDLE entity to
1544 		 * serve for sd when bfq_lookup_next_entity(sd) was
1545 		 * invoked for the last time, while there is now one
1546 		 * such entity.
1547 		 *
1548 		 * If the above event happens, then the scheduling of
1549 		 * such entity in CLASS_IDLE is postponed until the
1550 		 * service of the sd->next_in_service entity
1551 		 * finishes. In fact, when the latter is expired,
1552 		 * bfq_lookup_next_entity(sd) gets called again,
1553 		 * exactly to update sd->next_in_service.
1554 		 */
1555 
1556 		/* Make next_in_service entity become in_service_entity */
1557 		entity = sd->next_in_service;
1558 		sd->in_service_entity = entity;
1559 
1560 		/*
1561 		 * If entity is no longer a candidate for next
1562 		 * service, then it must be extracted from its active
1563 		 * tree, so as to make sure that it won't be
1564 		 * considered when computing next_in_service. See the
1565 		 * comments on the function
1566 		 * bfq_no_longer_next_in_service() for details.
1567 		 */
1568 		if (bfq_no_longer_next_in_service(entity))
1569 			bfq_active_extract(bfq_entity_service_tree(entity),
1570 					   entity);
1571 
1572 		/*
1573 		 * Even if entity is not to be extracted according to
1574 		 * the above check, a descendant entity may get
1575 		 * extracted in one of the next iterations of this
1576 		 * loop. Such an event could cause a change in
1577 		 * next_in_service for the level of the descendant
1578 		 * entity, and thus possibly back to this level.
1579 		 *
1580 		 * However, we cannot perform the resulting needed
1581 		 * update of next_in_service for this level before the
1582 		 * end of the whole loop, because, to know which is
1583 		 * the correct next-to-serve candidate entity for each
1584 		 * level, we need first to find the leaf entity to set
1585 		 * in service. In fact, only after we know which is
1586 		 * the next-to-serve leaf entity, we can discover
1587 		 * whether the parent entity of the leaf entity
1588 		 * becomes the next-to-serve, and so on.
1589 		 */
1590 	}
1591 
1592 	bfqq = bfq_entity_to_bfqq(entity);
1593 
1594 	/*
1595 	 * We can finally update all next-to-serve entities along the
1596 	 * path from the leaf entity just set in service to the root.
1597 	 */
1598 	for_each_entity(entity) {
1599 		struct bfq_sched_data *sd = entity->sched_data;
1600 
1601 		if (!bfq_update_next_in_service(sd, NULL, false))
1602 			break;
1603 	}
1604 
1605 	return bfqq;
1606 }
1607 
1608 void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
1609 {
1610 	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1611 	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1612 	struct bfq_entity *entity = in_serv_entity;
1613 
1614 	bfq_clear_bfqq_wait_request(in_serv_bfqq);
1615 	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1616 	bfqd->in_service_queue = NULL;
1617 
1618 	/*
1619 	 * When this function is called, all in-service entities have
1620 	 * been properly deactivated or requeued, so we can safely
1621 	 * execute the final step: reset in_service_entity along the
1622 	 * path from entity to the root.
1623 	 */
1624 	for_each_entity(entity)
1625 		entity->sched_data->in_service_entity = NULL;
1626 
1627 	/*
1628 	 * in_serv_entity is no longer in service, so, if it is in no
1629 	 * service tree either, then release the service reference to
1630 	 * the queue it represents (taken with bfq_get_entity).
1631 	 */
1632 	if (!in_serv_entity->on_st)
1633 		bfq_put_queue(in_serv_bfqq);
1634 }
1635 
1636 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1637 			 bool ins_into_idle_tree, bool expiration)
1638 {
1639 	struct bfq_entity *entity = &bfqq->entity;
1640 
1641 	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1642 }
1643 
1644 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1645 {
1646 	struct bfq_entity *entity = &bfqq->entity;
1647 
1648 	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
1649 				    false, false);
1650 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1651 }
1652 
1653 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1654 		      bool expiration)
1655 {
1656 	struct bfq_entity *entity = &bfqq->entity;
1657 
1658 	bfq_activate_requeue_entity(entity, false,
1659 				    bfqq == bfqd->in_service_queue, expiration);
1660 }
1661 
1662 /*
1663  * Called when the bfqq no longer has requests pending, remove it from
1664  * the service tree. As a special case, it can be invoked during an
1665  * expiration.
1666  */
1667 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1668 		       bool expiration)
1669 {
1670 	bfq_log_bfqq(bfqd, bfqq, "del from busy");
1671 
1672 	bfq_clear_bfqq_busy(bfqq);
1673 
1674 	bfqd->busy_queues[bfqq->ioprio_class - 1]--;
1675 
1676 	if (bfqq->wr_coeff > 1)
1677 		bfqd->wr_busy_queues--;
1678 
1679 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
1680 
1681 	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
1682 
1683 	if (!bfqq->dispatched)
1684 		bfq_weights_tree_remove(bfqd, bfqq);
1685 }
1686 
1687 /*
1688  * Called when an inactive queue receives a new request.
1689  */
1690 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1691 {
1692 	bfq_log_bfqq(bfqd, bfqq, "add to busy");
1693 
1694 	bfq_activate_bfqq(bfqd, bfqq);
1695 
1696 	bfq_mark_bfqq_busy(bfqq);
1697 	bfqd->busy_queues[bfqq->ioprio_class - 1]++;
1698 
1699 	if (!bfqq->dispatched)
1700 		if (bfqq->wr_coeff == 1)
1701 			bfq_weights_tree_add(bfqd, bfqq,
1702 					     &bfqd->queue_weights_tree);
1703 
1704 	if (bfqq->wr_coeff > 1)
1705 		bfqd->wr_busy_queues++;
1706 }
1707