xref: /openbmc/linux/block/bfq-iosched.h (revision 9dbbc3b9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Header file for the BFQ I/O scheduler: data structures and
4  * prototypes of interface functions among BFQ components.
5  */
6 #ifndef _BFQ_H
7 #define _BFQ_H
8 
9 #include <linux/blktrace_api.h>
10 #include <linux/hrtimer.h>
11 #include <linux/blk-cgroup.h>
12 
13 #include "blk-cgroup-rwstat.h"
14 
15 #define BFQ_IOPRIO_CLASSES	3
16 #define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
17 
18 #define BFQ_MIN_WEIGHT			1
19 #define BFQ_MAX_WEIGHT			1000
20 #define BFQ_WEIGHT_CONVERSION_COEFF	10
21 
22 #define BFQ_DEFAULT_QUEUE_IOPRIO	4
23 
24 #define BFQ_WEIGHT_LEGACY_DFL	100
25 #define BFQ_DEFAULT_GRP_IOPRIO	0
26 #define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
27 
28 #define MAX_PID_STR_LENGTH 12
29 
30 /*
31  * Soft real-time applications are extremely more latency sensitive
32  * than interactive ones. Over-raise the weight of the former to
33  * privilege them against the latter.
34  */
35 #define BFQ_SOFTRT_WEIGHT_FACTOR	100
36 
37 struct bfq_entity;
38 
39 /**
40  * struct bfq_service_tree - per ioprio_class service tree.
41  *
42  * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
43  * ioprio_class has its own independent scheduler, and so its own
44  * bfq_service_tree.  All the fields are protected by the queue lock
45  * of the containing bfqd.
46  */
47 struct bfq_service_tree {
48 	/* tree for active entities (i.e., those backlogged) */
49 	struct rb_root active;
50 	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
51 	struct rb_root idle;
52 
53 	/* idle entity with minimum F_i */
54 	struct bfq_entity *first_idle;
55 	/* idle entity with maximum F_i */
56 	struct bfq_entity *last_idle;
57 
58 	/* scheduler virtual time */
59 	u64 vtime;
60 	/* scheduler weight sum; active and idle entities contribute to it */
61 	unsigned long wsum;
62 };
63 
64 /**
65  * struct bfq_sched_data - multi-class scheduler.
66  *
67  * bfq_sched_data is the basic scheduler queue.  It supports three
68  * ioprio_classes, and can be used either as a toplevel queue or as an
69  * intermediate queue in a hierarchical setup.
70  *
71  * The supported ioprio_classes are the same as in CFQ, in descending
72  * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
73  * Requests from higher priority queues are served before all the
74  * requests from lower priority queues; among requests of the same
75  * queue requests are served according to B-WF2Q+.
76  *
77  * The schedule is implemented by the service trees, plus the field
78  * @next_in_service, which points to the entity on the active trees
79  * that will be served next, if 1) no changes in the schedule occurs
80  * before the current in-service entity is expired, 2) the in-service
81  * queue becomes idle when it expires, and 3) if the entity pointed by
82  * in_service_entity is not a queue, then the in-service child entity
83  * of the entity pointed by in_service_entity becomes idle on
84  * expiration. This peculiar definition allows for the following
85  * optimization, not yet exploited: while a given entity is still in
86  * service, we already know which is the best candidate for next
87  * service among the other active entities in the same parent
88  * entity. We can then quickly compare the timestamps of the
89  * in-service entity with those of such best candidate.
90  *
91  * All fields are protected by the lock of the containing bfqd.
92  */
93 struct bfq_sched_data {
94 	/* entity in service */
95 	struct bfq_entity *in_service_entity;
96 	/* head-of-line entity (see comments above) */
97 	struct bfq_entity *next_in_service;
98 	/* array of service trees, one per ioprio_class */
99 	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
100 	/* last time CLASS_IDLE was served */
101 	unsigned long bfq_class_idle_last_service;
102 
103 };
104 
105 /**
106  * struct bfq_weight_counter - counter of the number of all active queues
107  *                             with a given weight.
108  */
109 struct bfq_weight_counter {
110 	unsigned int weight; /* weight of the queues this counter refers to */
111 	unsigned int num_active; /* nr of active queues with this weight */
112 	/*
113 	 * Weights tree member (see bfq_data's @queue_weights_tree)
114 	 */
115 	struct rb_node weights_node;
116 };
117 
118 /**
119  * struct bfq_entity - schedulable entity.
120  *
121  * A bfq_entity is used to represent either a bfq_queue (leaf node in the
122  * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
123  * entity belongs to the sched_data of the parent group in the cgroup
124  * hierarchy.  Non-leaf entities have also their own sched_data, stored
125  * in @my_sched_data.
126  *
127  * Each entity stores independently its priority values; this would
128  * allow different weights on different devices, but this
129  * functionality is not exported to userspace by now.  Priorities and
130  * weights are updated lazily, first storing the new values into the
131  * new_* fields, then setting the @prio_changed flag.  As soon as
132  * there is a transition in the entity state that allows the priority
133  * update to take place the effective and the requested priority
134  * values are synchronized.
135  *
136  * Unless cgroups are used, the weight value is calculated from the
137  * ioprio to export the same interface as CFQ.  When dealing with
138  * "well-behaved" queues (i.e., queues that do not spend too much
139  * time to consume their budget and have true sequential behavior, and
140  * when there are no external factors breaking anticipation) the
141  * relative weights at each level of the cgroups hierarchy should be
142  * guaranteed.  All the fields are protected by the queue lock of the
143  * containing bfqd.
144  */
145 struct bfq_entity {
146 	/* service_tree member */
147 	struct rb_node rb_node;
148 
149 	/*
150 	 * Flag, true if the entity is on a tree (either the active or
151 	 * the idle one of its service_tree) or is in service.
152 	 */
153 	bool on_st_or_in_serv;
154 
155 	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
156 	u64 start, finish;
157 
158 	/* tree the entity is enqueued into; %NULL if not on a tree */
159 	struct rb_root *tree;
160 
161 	/*
162 	 * minimum start time of the (active) subtree rooted at this
163 	 * entity; used for O(log N) lookups into active trees
164 	 */
165 	u64 min_start;
166 
167 	/* amount of service received during the last service slot */
168 	int service;
169 
170 	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
171 	int budget;
172 
173 	/* device weight, if non-zero, it overrides the default weight of
174 	 * bfq_group_data */
175 	int dev_weight;
176 	/* weight of the queue */
177 	int weight;
178 	/* next weight if a change is in progress */
179 	int new_weight;
180 
181 	/* original weight, used to implement weight boosting */
182 	int orig_weight;
183 
184 	/* parent entity, for hierarchical scheduling */
185 	struct bfq_entity *parent;
186 
187 	/*
188 	 * For non-leaf nodes in the hierarchy, the associated
189 	 * scheduler queue, %NULL on leaf nodes.
190 	 */
191 	struct bfq_sched_data *my_sched_data;
192 	/* the scheduler queue this entity belongs to */
193 	struct bfq_sched_data *sched_data;
194 
195 	/* flag, set to request a weight, ioprio or ioprio_class change  */
196 	int prio_changed;
197 
198 	/* flag, set if the entity is counted in groups_with_pending_reqs */
199 	bool in_groups_with_pending_reqs;
200 
201 	/* last child queue of entity created (for non-leaf entities) */
202 	struct bfq_queue *last_bfqq_created;
203 };
204 
205 struct bfq_group;
206 
207 /**
208  * struct bfq_ttime - per process thinktime stats.
209  */
210 struct bfq_ttime {
211 	/* completion time of the last request */
212 	u64 last_end_request;
213 
214 	/* total process thinktime */
215 	u64 ttime_total;
216 	/* number of thinktime samples */
217 	unsigned long ttime_samples;
218 	/* average process thinktime */
219 	u64 ttime_mean;
220 };
221 
222 /**
223  * struct bfq_queue - leaf schedulable entity.
224  *
225  * A bfq_queue is a leaf request queue; it can be associated with an
226  * io_context or more, if it  is  async or shared  between  cooperating
227  * processes. @cgroup holds a reference to the cgroup, to be sure that it
228  * does not disappear while a bfqq still references it (mostly to avoid
229  * races between request issuing and task migration followed by cgroup
230  * destruction).
231  * All the fields are protected by the queue lock of the containing bfqd.
232  */
233 struct bfq_queue {
234 	/* reference counter */
235 	int ref;
236 	/* counter of references from other queues for delayed stable merge */
237 	int stable_ref;
238 	/* parent bfq_data */
239 	struct bfq_data *bfqd;
240 
241 	/* current ioprio and ioprio class */
242 	unsigned short ioprio, ioprio_class;
243 	/* next ioprio and ioprio class if a change is in progress */
244 	unsigned short new_ioprio, new_ioprio_class;
245 
246 	/* last total-service-time sample, see bfq_update_inject_limit() */
247 	u64 last_serv_time_ns;
248 	/* limit for request injection */
249 	unsigned int inject_limit;
250 	/* last time the inject limit has been decreased, in jiffies */
251 	unsigned long decrease_time_jif;
252 
253 	/*
254 	 * Shared bfq_queue if queue is cooperating with one or more
255 	 * other queues.
256 	 */
257 	struct bfq_queue *new_bfqq;
258 	/* request-position tree member (see bfq_group's @rq_pos_tree) */
259 	struct rb_node pos_node;
260 	/* request-position tree root (see bfq_group's @rq_pos_tree) */
261 	struct rb_root *pos_root;
262 
263 	/* sorted list of pending requests */
264 	struct rb_root sort_list;
265 	/* if fifo isn't expired, next request to serve */
266 	struct request *next_rq;
267 	/* number of sync and async requests queued */
268 	int queued[2];
269 	/* number of requests currently allocated */
270 	int allocated;
271 	/* number of pending metadata requests */
272 	int meta_pending;
273 	/* fifo list of requests in sort_list */
274 	struct list_head fifo;
275 
276 	/* entity representing this queue in the scheduler */
277 	struct bfq_entity entity;
278 
279 	/* pointer to the weight counter associated with this entity */
280 	struct bfq_weight_counter *weight_counter;
281 
282 	/* maximum budget allowed from the feedback mechanism */
283 	int max_budget;
284 	/* budget expiration (in jiffies) */
285 	unsigned long budget_timeout;
286 
287 	/* number of requests on the dispatch list or inside driver */
288 	int dispatched;
289 
290 	/* status flags */
291 	unsigned long flags;
292 
293 	/* node for active/idle bfqq list inside parent bfqd */
294 	struct list_head bfqq_list;
295 
296 	/* associated @bfq_ttime struct */
297 	struct bfq_ttime ttime;
298 
299 	/* when bfqq started to do I/O within the last observation window */
300 	u64 io_start_time;
301 	/* how long bfqq has remained empty during the last observ. window */
302 	u64 tot_idle_time;
303 
304 	/* bit vector: a 1 for each seeky requests in history */
305 	u32 seek_history;
306 
307 	/* node for the device's burst list */
308 	struct hlist_node burst_list_node;
309 
310 	/* position of the last request enqueued */
311 	sector_t last_request_pos;
312 
313 	/* Number of consecutive pairs of request completion and
314 	 * arrival, such that the queue becomes idle after the
315 	 * completion, but the next request arrives within an idle
316 	 * time slice; used only if the queue's IO_bound flag has been
317 	 * cleared.
318 	 */
319 	unsigned int requests_within_timer;
320 
321 	/* pid of the process owning the queue, used for logging purposes */
322 	pid_t pid;
323 
324 	/*
325 	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
326 	 * if the queue is shared.
327 	 */
328 	struct bfq_io_cq *bic;
329 
330 	/* current maximum weight-raising time for this queue */
331 	unsigned long wr_cur_max_time;
332 	/*
333 	 * Minimum time instant such that, only if a new request is
334 	 * enqueued after this time instant in an idle @bfq_queue with
335 	 * no outstanding requests, then the task associated with the
336 	 * queue it is deemed as soft real-time (see the comments on
337 	 * the function bfq_bfqq_softrt_next_start())
338 	 */
339 	unsigned long soft_rt_next_start;
340 	/*
341 	 * Start time of the current weight-raising period if
342 	 * the @bfq-queue is being weight-raised, otherwise
343 	 * finish time of the last weight-raising period.
344 	 */
345 	unsigned long last_wr_start_finish;
346 	/* factor by which the weight of this queue is multiplied */
347 	unsigned int wr_coeff;
348 	/*
349 	 * Time of the last transition of the @bfq_queue from idle to
350 	 * backlogged.
351 	 */
352 	unsigned long last_idle_bklogged;
353 	/*
354 	 * Cumulative service received from the @bfq_queue since the
355 	 * last transition from idle to backlogged.
356 	 */
357 	unsigned long service_from_backlogged;
358 	/*
359 	 * Cumulative service received from the @bfq_queue since its
360 	 * last transition to weight-raised state.
361 	 */
362 	unsigned long service_from_wr;
363 
364 	/*
365 	 * Value of wr start time when switching to soft rt
366 	 */
367 	unsigned long wr_start_at_switch_to_srt;
368 
369 	unsigned long split_time; /* time of last split */
370 
371 	unsigned long first_IO_time; /* time of first I/O for this queue */
372 
373 	unsigned long creation_time; /* when this queue is created */
374 
375 	/* max service rate measured so far */
376 	u32 max_service_rate;
377 
378 	/*
379 	 * Pointer to the waker queue for this queue, i.e., to the
380 	 * queue Q such that this queue happens to get new I/O right
381 	 * after some I/O request of Q is completed. For details, see
382 	 * the comments on the choice of the queue for injection in
383 	 * bfq_select_queue().
384 	 */
385 	struct bfq_queue *waker_bfqq;
386 	/* pointer to the curr. tentative waker queue, see bfq_check_waker() */
387 	struct bfq_queue *tentative_waker_bfqq;
388 	/* number of times the same tentative waker has been detected */
389 	unsigned int num_waker_detections;
390 
391 	/* node for woken_list, see below */
392 	struct hlist_node woken_list_node;
393 	/*
394 	 * Head of the list of the woken queues for this queue, i.e.,
395 	 * of the list of the queues for which this queue is a waker
396 	 * queue. This list is used to reset the waker_bfqq pointer in
397 	 * the woken queues when this queue exits.
398 	 */
399 	struct hlist_head woken_list;
400 };
401 
402 /**
403  * struct bfq_io_cq - per (request_queue, io_context) structure.
404  */
405 struct bfq_io_cq {
406 	/* associated io_cq structure */
407 	struct io_cq icq; /* must be the first member */
408 	/* array of two process queues, the sync and the async */
409 	struct bfq_queue *bfqq[2];
410 	/* per (request_queue, blkcg) ioprio */
411 	int ioprio;
412 #ifdef CONFIG_BFQ_GROUP_IOSCHED
413 	uint64_t blkcg_serial_nr; /* the current blkcg serial */
414 #endif
415 	/*
416 	 * Snapshot of the has_short_time flag before merging; taken
417 	 * to remember its value while the queue is merged, so as to
418 	 * be able to restore it in case of split.
419 	 */
420 	bool saved_has_short_ttime;
421 	/*
422 	 * Same purpose as the previous two fields for the I/O bound
423 	 * classification of a queue.
424 	 */
425 	bool saved_IO_bound;
426 
427 	u64 saved_io_start_time;
428 	u64 saved_tot_idle_time;
429 
430 	/*
431 	 * Same purpose as the previous fields for the value of the
432 	 * field keeping the queue's belonging to a large burst
433 	 */
434 	bool saved_in_large_burst;
435 	/*
436 	 * True if the queue belonged to a burst list before its merge
437 	 * with another cooperating queue.
438 	 */
439 	bool was_in_burst_list;
440 
441 	/*
442 	 * Save the weight when a merge occurs, to be able
443 	 * to restore it in case of split. If the weight is not
444 	 * correctly resumed when the queue is recycled,
445 	 * then the weight of the recycled queue could differ
446 	 * from the weight of the original queue.
447 	 */
448 	unsigned int saved_weight;
449 
450 	/*
451 	 * Similar to previous fields: save wr information.
452 	 */
453 	unsigned long saved_wr_coeff;
454 	unsigned long saved_last_wr_start_finish;
455 	unsigned long saved_service_from_wr;
456 	unsigned long saved_wr_start_at_switch_to_srt;
457 	unsigned int saved_wr_cur_max_time;
458 	struct bfq_ttime saved_ttime;
459 
460 	/* Save also injection state */
461 	u64 saved_last_serv_time_ns;
462 	unsigned int saved_inject_limit;
463 	unsigned long saved_decrease_time_jif;
464 
465 	/* candidate queue for a stable merge (due to close creation time) */
466 	struct bfq_queue *stable_merge_bfqq;
467 
468 	bool stably_merged;	/* non splittable if true */
469 };
470 
471 /**
472  * struct bfq_data - per-device data structure.
473  *
474  * All the fields are protected by @lock.
475  */
476 struct bfq_data {
477 	/* device request queue */
478 	struct request_queue *queue;
479 	/* dispatch queue */
480 	struct list_head dispatch;
481 
482 	/* root bfq_group for the device */
483 	struct bfq_group *root_group;
484 
485 	/*
486 	 * rbtree of weight counters of @bfq_queues, sorted by
487 	 * weight. Used to keep track of whether all @bfq_queues have
488 	 * the same weight. The tree contains one counter for each
489 	 * distinct weight associated to some active and not
490 	 * weight-raised @bfq_queue (see the comments to the functions
491 	 * bfq_weights_tree_[add|remove] for further details).
492 	 */
493 	struct rb_root_cached queue_weights_tree;
494 
495 	/*
496 	 * Number of groups with at least one descendant process that
497 	 * has at least one request waiting for completion. Note that
498 	 * this accounts for also requests already dispatched, but not
499 	 * yet completed. Therefore this number of groups may differ
500 	 * (be larger) than the number of active groups, as a group is
501 	 * considered active only if its corresponding entity has
502 	 * descendant queues with at least one request queued. This
503 	 * number is used to decide whether a scenario is symmetric.
504 	 * For a detailed explanation see comments on the computation
505 	 * of the variable asymmetric_scenario in the function
506 	 * bfq_better_to_idle().
507 	 *
508 	 * However, it is hard to compute this number exactly, for
509 	 * groups with multiple descendant processes. Consider a group
510 	 * that is inactive, i.e., that has no descendant process with
511 	 * pending I/O inside BFQ queues. Then suppose that
512 	 * num_groups_with_pending_reqs is still accounting for this
513 	 * group, because the group has descendant processes with some
514 	 * I/O request still in flight. num_groups_with_pending_reqs
515 	 * should be decremented when the in-flight request of the
516 	 * last descendant process is finally completed (assuming that
517 	 * nothing else has changed for the group in the meantime, in
518 	 * terms of composition of the group and active/inactive state of child
519 	 * groups and processes). To accomplish this, an additional
520 	 * pending-request counter must be added to entities, and must
521 	 * be updated correctly. To avoid this additional field and operations,
522 	 * we resort to the following tradeoff between simplicity and
523 	 * accuracy: for an inactive group that is still counted in
524 	 * num_groups_with_pending_reqs, we decrement
525 	 * num_groups_with_pending_reqs when the first descendant
526 	 * process of the group remains with no request waiting for
527 	 * completion.
528 	 *
529 	 * Even this simpler decrement strategy requires a little
530 	 * carefulness: to avoid multiple decrements, we flag a group,
531 	 * more precisely an entity representing a group, as still
532 	 * counted in num_groups_with_pending_reqs when it becomes
533 	 * inactive. Then, when the first descendant queue of the
534 	 * entity remains with no request waiting for completion,
535 	 * num_groups_with_pending_reqs is decremented, and this flag
536 	 * is reset. After this flag is reset for the entity,
537 	 * num_groups_with_pending_reqs won't be decremented any
538 	 * longer in case a new descendant queue of the entity remains
539 	 * with no request waiting for completion.
540 	 */
541 	unsigned int num_groups_with_pending_reqs;
542 
543 	/*
544 	 * Per-class (RT, BE, IDLE) number of bfq_queues containing
545 	 * requests (including the queue in service, even if it is
546 	 * idling).
547 	 */
548 	unsigned int busy_queues[3];
549 	/* number of weight-raised busy @bfq_queues */
550 	int wr_busy_queues;
551 	/* number of queued requests */
552 	int queued;
553 	/* number of requests dispatched and waiting for completion */
554 	int rq_in_driver;
555 
556 	/* true if the device is non rotational and performs queueing */
557 	bool nonrot_with_queueing;
558 
559 	/*
560 	 * Maximum number of requests in driver in the last
561 	 * @hw_tag_samples completed requests.
562 	 */
563 	int max_rq_in_driver;
564 	/* number of samples used to calculate hw_tag */
565 	int hw_tag_samples;
566 	/* flag set to one if the driver is showing a queueing behavior */
567 	int hw_tag;
568 
569 	/* number of budgets assigned */
570 	int budgets_assigned;
571 
572 	/*
573 	 * Timer set when idling (waiting) for the next request from
574 	 * the queue in service.
575 	 */
576 	struct hrtimer idle_slice_timer;
577 
578 	/* bfq_queue in service */
579 	struct bfq_queue *in_service_queue;
580 
581 	/* on-disk position of the last served request */
582 	sector_t last_position;
583 
584 	/* position of the last served request for the in-service queue */
585 	sector_t in_serv_last_pos;
586 
587 	/* time of last request completion (ns) */
588 	u64 last_completion;
589 
590 	/* bfqq owning the last completed rq */
591 	struct bfq_queue *last_completed_rq_bfqq;
592 
593 	/* last bfqq created, among those in the root group */
594 	struct bfq_queue *last_bfqq_created;
595 
596 	/* time of last transition from empty to non-empty (ns) */
597 	u64 last_empty_occupied_ns;
598 
599 	/*
600 	 * Flag set to activate the sampling of the total service time
601 	 * of a just-arrived first I/O request (see
602 	 * bfq_update_inject_limit()). This will cause the setting of
603 	 * waited_rq when the request is finally dispatched.
604 	 */
605 	bool wait_dispatch;
606 	/*
607 	 *  If set, then bfq_update_inject_limit() is invoked when
608 	 *  waited_rq is eventually completed.
609 	 */
610 	struct request *waited_rq;
611 	/*
612 	 * True if some request has been injected during the last service hole.
613 	 */
614 	bool rqs_injected;
615 
616 	/* time of first rq dispatch in current observation interval (ns) */
617 	u64 first_dispatch;
618 	/* time of last rq dispatch in current observation interval (ns) */
619 	u64 last_dispatch;
620 
621 	/* beginning of the last budget */
622 	ktime_t last_budget_start;
623 	/* beginning of the last idle slice */
624 	ktime_t last_idling_start;
625 	unsigned long last_idling_start_jiffies;
626 
627 	/* number of samples in current observation interval */
628 	int peak_rate_samples;
629 	/* num of samples of seq dispatches in current observation interval */
630 	u32 sequential_samples;
631 	/* total num of sectors transferred in current observation interval */
632 	u64 tot_sectors_dispatched;
633 	/* max rq size seen during current observation interval (sectors) */
634 	u32 last_rq_max_size;
635 	/* time elapsed from first dispatch in current observ. interval (us) */
636 	u64 delta_from_first;
637 	/*
638 	 * Current estimate of the device peak rate, measured in
639 	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
640 	 * BFQ_RATE_SHIFT is performed to increase precision in
641 	 * fixed-point calculations.
642 	 */
643 	u32 peak_rate;
644 
645 	/* maximum budget allotted to a bfq_queue before rescheduling */
646 	int bfq_max_budget;
647 
648 	/* list of all the bfq_queues active on the device */
649 	struct list_head active_list;
650 	/* list of all the bfq_queues idle on the device */
651 	struct list_head idle_list;
652 
653 	/*
654 	 * Timeout for async/sync requests; when it fires, requests
655 	 * are served in fifo order.
656 	 */
657 	u64 bfq_fifo_expire[2];
658 	/* weight of backward seeks wrt forward ones */
659 	unsigned int bfq_back_penalty;
660 	/* maximum allowed backward seek */
661 	unsigned int bfq_back_max;
662 	/* maximum idling time */
663 	u32 bfq_slice_idle;
664 
665 	/* user-configured max budget value (0 for auto-tuning) */
666 	int bfq_user_max_budget;
667 	/*
668 	 * Timeout for bfq_queues to consume their budget; used to
669 	 * prevent seeky queues from imposing long latencies to
670 	 * sequential or quasi-sequential ones (this also implies that
671 	 * seeky queues cannot receive guarantees in the service
672 	 * domain; after a timeout they are charged for the time they
673 	 * have been in service, to preserve fairness among them, but
674 	 * without service-domain guarantees).
675 	 */
676 	unsigned int bfq_timeout;
677 
678 	/*
679 	 * Force device idling whenever needed to provide accurate
680 	 * service guarantees, without caring about throughput
681 	 * issues. CAVEAT: this may even increase latencies, in case
682 	 * of useless idling for processes that did stop doing I/O.
683 	 */
684 	bool strict_guarantees;
685 
686 	/*
687 	 * Last time at which a queue entered the current burst of
688 	 * queues being activated shortly after each other; for more
689 	 * details about this and the following parameters related to
690 	 * a burst of activations, see the comments on the function
691 	 * bfq_handle_burst.
692 	 */
693 	unsigned long last_ins_in_burst;
694 	/*
695 	 * Reference time interval used to decide whether a queue has
696 	 * been activated shortly after @last_ins_in_burst.
697 	 */
698 	unsigned long bfq_burst_interval;
699 	/* number of queues in the current burst of queue activations */
700 	int burst_size;
701 
702 	/* common parent entity for the queues in the burst */
703 	struct bfq_entity *burst_parent_entity;
704 	/* Maximum burst size above which the current queue-activation
705 	 * burst is deemed as 'large'.
706 	 */
707 	unsigned long bfq_large_burst_thresh;
708 	/* true if a large queue-activation burst is in progress */
709 	bool large_burst;
710 	/*
711 	 * Head of the burst list (as for the above fields, more
712 	 * details in the comments on the function bfq_handle_burst).
713 	 */
714 	struct hlist_head burst_list;
715 
716 	/* if set to true, low-latency heuristics are enabled */
717 	bool low_latency;
718 	/*
719 	 * Maximum factor by which the weight of a weight-raised queue
720 	 * is multiplied.
721 	 */
722 	unsigned int bfq_wr_coeff;
723 	/* maximum duration of a weight-raising period (jiffies) */
724 	unsigned int bfq_wr_max_time;
725 
726 	/* Maximum weight-raising duration for soft real-time processes */
727 	unsigned int bfq_wr_rt_max_time;
728 	/*
729 	 * Minimum idle period after which weight-raising may be
730 	 * reactivated for a queue (in jiffies).
731 	 */
732 	unsigned int bfq_wr_min_idle_time;
733 	/*
734 	 * Minimum period between request arrivals after which
735 	 * weight-raising may be reactivated for an already busy async
736 	 * queue (in jiffies).
737 	 */
738 	unsigned long bfq_wr_min_inter_arr_async;
739 
740 	/* Max service-rate for a soft real-time queue, in sectors/sec */
741 	unsigned int bfq_wr_max_softrt_rate;
742 	/*
743 	 * Cached value of the product ref_rate*ref_wr_duration, used
744 	 * for computing the maximum duration of weight raising
745 	 * automatically.
746 	 */
747 	u64 rate_dur_prod;
748 
749 	/* fallback dummy bfqq for extreme OOM conditions */
750 	struct bfq_queue oom_bfqq;
751 
752 	spinlock_t lock;
753 
754 	/*
755 	 * bic associated with the task issuing current bio for
756 	 * merging. This and the next field are used as a support to
757 	 * be able to perform the bic lookup, needed by bio-merge
758 	 * functions, before the scheduler lock is taken, and thus
759 	 * avoid taking the request-queue lock while the scheduler
760 	 * lock is being held.
761 	 */
762 	struct bfq_io_cq *bio_bic;
763 	/* bfqq associated with the task issuing current bio for merging */
764 	struct bfq_queue *bio_bfqq;
765 
766 	/*
767 	 * Depth limits used in bfq_limit_depth (see comments on the
768 	 * function)
769 	 */
770 	unsigned int word_depths[2][2];
771 };
772 
773 enum bfqq_state_flags {
774 	BFQQF_just_created = 0,	/* queue just allocated */
775 	BFQQF_busy,		/* has requests or is in service */
776 	BFQQF_wait_request,	/* waiting for a request */
777 	BFQQF_non_blocking_wait_rq, /*
778 				     * waiting for a request
779 				     * without idling the device
780 				     */
781 	BFQQF_fifo_expire,	/* FIFO checked in this slice */
782 	BFQQF_has_short_ttime,	/* queue has a short think time */
783 	BFQQF_sync,		/* synchronous queue */
784 	BFQQF_IO_bound,		/*
785 				 * bfqq has timed-out at least once
786 				 * having consumed at most 2/10 of
787 				 * its budget
788 				 */
789 	BFQQF_in_large_burst,	/*
790 				 * bfqq activated in a large burst,
791 				 * see comments to bfq_handle_burst.
792 				 */
793 	BFQQF_softrt_update,	/*
794 				 * may need softrt-next-start
795 				 * update
796 				 */
797 	BFQQF_coop,		/* bfqq is shared */
798 	BFQQF_split_coop,	/* shared bfqq will be split */
799 };
800 
801 #define BFQ_BFQQ_FNS(name)						\
802 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
803 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
804 int bfq_bfqq_##name(const struct bfq_queue *bfqq);
805 
806 BFQ_BFQQ_FNS(just_created);
807 BFQ_BFQQ_FNS(busy);
808 BFQ_BFQQ_FNS(wait_request);
809 BFQ_BFQQ_FNS(non_blocking_wait_rq);
810 BFQ_BFQQ_FNS(fifo_expire);
811 BFQ_BFQQ_FNS(has_short_ttime);
812 BFQ_BFQQ_FNS(sync);
813 BFQ_BFQQ_FNS(IO_bound);
814 BFQ_BFQQ_FNS(in_large_burst);
815 BFQ_BFQQ_FNS(coop);
816 BFQ_BFQQ_FNS(split_coop);
817 BFQ_BFQQ_FNS(softrt_update);
818 #undef BFQ_BFQQ_FNS
819 
820 /* Expiration reasons. */
821 enum bfqq_expiration {
822 	BFQQE_TOO_IDLE = 0,		/*
823 					 * queue has been idling for
824 					 * too long
825 					 */
826 	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
827 	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
828 	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
829 	BFQQE_PREEMPTED		/* preemption in progress */
830 };
831 
832 struct bfq_stat {
833 	struct percpu_counter		cpu_cnt;
834 	atomic64_t			aux_cnt;
835 };
836 
837 struct bfqg_stats {
838 	/* basic stats */
839 	struct blkg_rwstat		bytes;
840 	struct blkg_rwstat		ios;
841 #ifdef CONFIG_BFQ_CGROUP_DEBUG
842 	/* number of ios merged */
843 	struct blkg_rwstat		merged;
844 	/* total time spent on device in ns, may not be accurate w/ queueing */
845 	struct blkg_rwstat		service_time;
846 	/* total time spent waiting in scheduler queue in ns */
847 	struct blkg_rwstat		wait_time;
848 	/* number of IOs queued up */
849 	struct blkg_rwstat		queued;
850 	/* total disk time and nr sectors dispatched by this group */
851 	struct bfq_stat		time;
852 	/* sum of number of ios queued across all samples */
853 	struct bfq_stat		avg_queue_size_sum;
854 	/* count of samples taken for average */
855 	struct bfq_stat		avg_queue_size_samples;
856 	/* how many times this group has been removed from service tree */
857 	struct bfq_stat		dequeue;
858 	/* total time spent waiting for it to be assigned a timeslice. */
859 	struct bfq_stat		group_wait_time;
860 	/* time spent idling for this blkcg_gq */
861 	struct bfq_stat		idle_time;
862 	/* total time with empty current active q with other requests queued */
863 	struct bfq_stat		empty_time;
864 	/* fields after this shouldn't be cleared on stat reset */
865 	u64				start_group_wait_time;
866 	u64				start_idle_time;
867 	u64				start_empty_time;
868 	uint16_t			flags;
869 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
870 };
871 
872 #ifdef CONFIG_BFQ_GROUP_IOSCHED
873 
874 /*
875  * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
876  *
877  * @ps: @blkcg_policy_storage that this structure inherits
878  * @weight: weight of the bfq_group
879  */
880 struct bfq_group_data {
881 	/* must be the first member */
882 	struct blkcg_policy_data pd;
883 
884 	unsigned int weight;
885 };
886 
887 /**
888  * struct bfq_group - per (device, cgroup) data structure.
889  * @entity: schedulable entity to insert into the parent group sched_data.
890  * @sched_data: own sched_data, to contain child entities (they may be
891  *              both bfq_queues and bfq_groups).
892  * @bfqd: the bfq_data for the device this group acts upon.
893  * @async_bfqq: array of async queues for all the tasks belonging to
894  *              the group, one queue per ioprio value per ioprio_class,
895  *              except for the idle class that has only one queue.
896  * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
897  * @my_entity: pointer to @entity, %NULL for the toplevel group; used
898  *             to avoid too many special cases during group creation/
899  *             migration.
900  * @stats: stats for this bfqg.
901  * @active_entities: number of active entities belonging to the group;
902  *                   unused for the root group. Used to know whether there
903  *                   are groups with more than one active @bfq_entity
904  *                   (see the comments to the function
905  *                   bfq_bfqq_may_idle()).
906  * @rq_pos_tree: rbtree sorted by next_request position, used when
907  *               determining if two or more queues have interleaving
908  *               requests (see bfq_find_close_cooperator()).
909  *
910  * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
911  * there is a set of bfq_groups, each one collecting the lower-level
912  * entities belonging to the group that are acting on the same device.
913  *
914  * Locking works as follows:
915  *    o @bfqd is protected by the queue lock, RCU is used to access it
916  *      from the readers.
917  *    o All the other fields are protected by the @bfqd queue lock.
918  */
919 struct bfq_group {
920 	/* must be the first member */
921 	struct blkg_policy_data pd;
922 
923 	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
924 	char blkg_path[128];
925 
926 	/* reference counter (see comments in bfq_bic_update_cgroup) */
927 	int ref;
928 
929 	struct bfq_entity entity;
930 	struct bfq_sched_data sched_data;
931 
932 	void *bfqd;
933 
934 	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
935 	struct bfq_queue *async_idle_bfqq;
936 
937 	struct bfq_entity *my_entity;
938 
939 	int active_entities;
940 
941 	struct rb_root rq_pos_tree;
942 
943 	struct bfqg_stats stats;
944 };
945 
946 #else
947 struct bfq_group {
948 	struct bfq_entity entity;
949 	struct bfq_sched_data sched_data;
950 
951 	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
952 	struct bfq_queue *async_idle_bfqq;
953 
954 	struct rb_root rq_pos_tree;
955 };
956 #endif
957 
958 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
959 
960 /* --------------- main algorithm interface ----------------- */
961 
962 #define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
963 				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
964 
965 extern const int bfq_timeout;
966 
967 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
968 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
969 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
970 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
971 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
972 			  struct rb_root_cached *root);
973 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
974 			       struct bfq_queue *bfqq,
975 			       struct rb_root_cached *root);
976 void bfq_weights_tree_remove(struct bfq_data *bfqd,
977 			     struct bfq_queue *bfqq);
978 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
979 		     bool compensate, enum bfqq_expiration reason);
980 void bfq_put_queue(struct bfq_queue *bfqq);
981 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
982 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq);
983 void bfq_schedule_dispatch(struct bfq_data *bfqd);
984 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
985 
986 /* ------------ end of main algorithm interface -------------- */
987 
988 /* ---------------- cgroups-support interface ---------------- */
989 
990 void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq);
991 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
992 			      unsigned int op);
993 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
994 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
995 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
996 				  u64 io_start_time_ns, unsigned int op);
997 void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
998 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
999 void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
1000 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
1001 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
1002 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1003 		   struct bfq_group *bfqg);
1004 
1005 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
1006 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
1007 void bfq_end_wr_async(struct bfq_data *bfqd);
1008 struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
1009 				     struct blkcg *blkcg);
1010 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
1011 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1012 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
1013 void bfqg_and_blkg_put(struct bfq_group *bfqg);
1014 
1015 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1016 extern struct cftype bfq_blkcg_legacy_files[];
1017 extern struct cftype bfq_blkg_files[];
1018 extern struct blkcg_policy blkcg_policy_bfq;
1019 #endif
1020 
1021 /* ------------- end of cgroups-support interface ------------- */
1022 
1023 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */
1024 
1025 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1026 /* both next loops stop at one of the child entities of the root group */
1027 #define for_each_entity(entity)	\
1028 	for (; entity ; entity = entity->parent)
1029 
1030 /*
1031  * For each iteration, compute parent in advance, so as to be safe if
1032  * entity is deallocated during the iteration. Such a deallocation may
1033  * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1034  * containing entity.
1035  */
1036 #define for_each_entity_safe(entity, parent) \
1037 	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
1038 
1039 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1040 /*
1041  * Next two macros are fake loops when cgroups support is not
1042  * enabled. I fact, in such a case, there is only one level to go up
1043  * (to reach the root group).
1044  */
1045 #define for_each_entity(entity)	\
1046 	for (; entity ; entity = NULL)
1047 
1048 #define for_each_entity_safe(entity, parent) \
1049 	for (parent = NULL; entity ; entity = parent)
1050 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1051 
1052 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq);
1053 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
1054 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
1055 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
1056 struct bfq_entity *bfq_entity_of(struct rb_node *node);
1057 unsigned short bfq_ioprio_to_weight(int ioprio);
1058 void bfq_put_idle_entity(struct bfq_service_tree *st,
1059 			 struct bfq_entity *entity);
1060 struct bfq_service_tree *
1061 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
1062 				struct bfq_entity *entity,
1063 				bool update_class_too);
1064 void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
1065 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1066 			  unsigned long time_ms);
1067 bool __bfq_deactivate_entity(struct bfq_entity *entity,
1068 			     bool ins_into_idle_tree);
1069 bool next_queue_may_preempt(struct bfq_data *bfqd);
1070 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
1071 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
1072 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1073 			 bool ins_into_idle_tree, bool expiration);
1074 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1075 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1076 		      bool expiration);
1077 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1078 		       bool expiration);
1079 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1080 
1081 /* --------------- end of interface of B-WF2Q+ ---------------- */
1082 
1083 /* Logging facilities. */
1084 static inline void bfq_pid_to_str(int pid, char *str, int len)
1085 {
1086 	if (pid != -1)
1087 		snprintf(str, len, "%d", pid);
1088 	else
1089 		snprintf(str, len, "SHARED-");
1090 }
1091 
1092 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1093 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1094 
1095 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
1096 	char pid_str[MAX_PID_STR_LENGTH];	\
1097 	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1098 		break;							\
1099 	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1100 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1101 			bfqg_to_blkg(bfqq_group(bfqq))->blkcg,		\
1102 			"bfq%s%c " fmt, pid_str,			\
1103 			bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args);	\
1104 } while (0)
1105 
1106 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
1107 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1108 		bfqg_to_blkg(bfqg)->blkcg, fmt, ##args);		\
1109 } while (0)
1110 
1111 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1112 
1113 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do {	\
1114 	char pid_str[MAX_PID_STR_LENGTH];	\
1115 	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1116 		break;							\
1117 	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1118 	blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str,	\
1119 			bfq_bfqq_sync((bfqq)) ? 'S' : 'A',		\
1120 				##args);	\
1121 } while (0)
1122 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
1123 
1124 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1125 
1126 #define bfq_log(bfqd, fmt, args...) \
1127 	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
1128 
1129 #endif /* _BFQ_H */
1130