xref: /openbmc/linux/block/bfq-iosched.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include "blk.h"
129 #include "blk-mq.h"
130 #include "blk-mq-tag.h"
131 #include "blk-mq-sched.h"
132 #include "bfq-iosched.h"
133 #include "blk-wbt.h"
134 
135 #define BFQ_BFQQ_FNS(name)						\
136 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
137 {									\
138 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
139 }									\
140 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
141 {									\
142 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
143 }									\
144 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
145 {									\
146 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
147 }
148 
149 BFQ_BFQQ_FNS(just_created);
150 BFQ_BFQQ_FNS(busy);
151 BFQ_BFQQ_FNS(wait_request);
152 BFQ_BFQQ_FNS(non_blocking_wait_rq);
153 BFQ_BFQQ_FNS(fifo_expire);
154 BFQ_BFQQ_FNS(has_short_ttime);
155 BFQ_BFQQ_FNS(sync);
156 BFQ_BFQQ_FNS(IO_bound);
157 BFQ_BFQQ_FNS(in_large_burst);
158 BFQ_BFQQ_FNS(coop);
159 BFQ_BFQQ_FNS(split_coop);
160 BFQ_BFQQ_FNS(softrt_update);
161 BFQ_BFQQ_FNS(has_waker);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of sync (0) and async (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
367 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
368 
369 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
370 {
371 	return bic->bfqq[is_sync];
372 }
373 
374 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
375 {
376 	bic->bfqq[is_sync] = bfqq;
377 }
378 
379 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
380 {
381 	return bic->icq.q->elevator->elevator_data;
382 }
383 
384 /**
385  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
386  * @icq: the iocontext queue.
387  */
388 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
389 {
390 	/* bic->icq is the first member, %NULL will convert to %NULL */
391 	return container_of(icq, struct bfq_io_cq, icq);
392 }
393 
394 /**
395  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
396  * @bfqd: the lookup key.
397  * @ioc: the io_context of the process doing I/O.
398  * @q: the request queue.
399  */
400 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
401 					struct io_context *ioc,
402 					struct request_queue *q)
403 {
404 	if (ioc) {
405 		unsigned long flags;
406 		struct bfq_io_cq *icq;
407 
408 		spin_lock_irqsave(&q->queue_lock, flags);
409 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
410 		spin_unlock_irqrestore(&q->queue_lock, flags);
411 
412 		return icq;
413 	}
414 
415 	return NULL;
416 }
417 
418 /*
419  * Scheduler run of queue, if there are requests pending and no one in the
420  * driver that will restart queueing.
421  */
422 void bfq_schedule_dispatch(struct bfq_data *bfqd)
423 {
424 	if (bfqd->queued != 0) {
425 		bfq_log(bfqd, "schedule dispatch");
426 		blk_mq_run_hw_queues(bfqd->queue, true);
427 	}
428 }
429 
430 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
431 
432 #define bfq_sample_valid(samples)	((samples) > 80)
433 
434 /*
435  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
436  * We choose the request that is closer to the head right now.  Distance
437  * behind the head is penalized and only allowed to a certain extent.
438  */
439 static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 				      struct request *rq1,
441 				      struct request *rq2,
442 				      sector_t last)
443 {
444 	sector_t s1, s2, d1 = 0, d2 = 0;
445 	unsigned long back_max;
446 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
447 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
448 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449 
450 	if (!rq1 || rq1 == rq2)
451 		return rq2;
452 	if (!rq2)
453 		return rq1;
454 
455 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 		return rq1;
457 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 		return rq2;
459 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 		return rq1;
461 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 		return rq2;
463 
464 	s1 = blk_rq_pos(rq1);
465 	s2 = blk_rq_pos(rq2);
466 
467 	/*
468 	 * By definition, 1KiB is 2 sectors.
469 	 */
470 	back_max = bfqd->bfq_back_max * 2;
471 
472 	/*
473 	 * Strict one way elevator _except_ in the case where we allow
474 	 * short backward seeks which are biased as twice the cost of a
475 	 * similar forward seek.
476 	 */
477 	if (s1 >= last)
478 		d1 = s1 - last;
479 	else if (s1 + back_max >= last)
480 		d1 = (last - s1) * bfqd->bfq_back_penalty;
481 	else
482 		wrap |= BFQ_RQ1_WRAP;
483 
484 	if (s2 >= last)
485 		d2 = s2 - last;
486 	else if (s2 + back_max >= last)
487 		d2 = (last - s2) * bfqd->bfq_back_penalty;
488 	else
489 		wrap |= BFQ_RQ2_WRAP;
490 
491 	/* Found required data */
492 
493 	/*
494 	 * By doing switch() on the bit mask "wrap" we avoid having to
495 	 * check two variables for all permutations: --> faster!
496 	 */
497 	switch (wrap) {
498 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 		if (d1 < d2)
500 			return rq1;
501 		else if (d2 < d1)
502 			return rq2;
503 
504 		if (s1 >= s2)
505 			return rq1;
506 		else
507 			return rq2;
508 
509 	case BFQ_RQ2_WRAP:
510 		return rq1;
511 	case BFQ_RQ1_WRAP:
512 		return rq2;
513 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 	default:
515 		/*
516 		 * Since both rqs are wrapped,
517 		 * start with the one that's further behind head
518 		 * (--> only *one* back seek required),
519 		 * since back seek takes more time than forward.
520 		 */
521 		if (s1 <= s2)
522 			return rq1;
523 		else
524 			return rq2;
525 	}
526 }
527 
528 /*
529  * Async I/O can easily starve sync I/O (both sync reads and sync
530  * writes), by consuming all tags. Similarly, storms of sync writes,
531  * such as those that sync(2) may trigger, can starve sync reads.
532  * Limit depths of async I/O and sync writes so as to counter both
533  * problems.
534  */
535 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536 {
537 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
538 
539 	if (op_is_sync(op) && !op_is_write(op))
540 		return;
541 
542 	data->shallow_depth =
543 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544 
545 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
547 			data->shallow_depth);
548 }
549 
550 static struct bfq_queue *
551 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 		     sector_t sector, struct rb_node **ret_parent,
553 		     struct rb_node ***rb_link)
554 {
555 	struct rb_node **p, *parent;
556 	struct bfq_queue *bfqq = NULL;
557 
558 	parent = NULL;
559 	p = &root->rb_node;
560 	while (*p) {
561 		struct rb_node **n;
562 
563 		parent = *p;
564 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565 
566 		/*
567 		 * Sort strictly based on sector. Smallest to the left,
568 		 * largest to the right.
569 		 */
570 		if (sector > blk_rq_pos(bfqq->next_rq))
571 			n = &(*p)->rb_right;
572 		else if (sector < blk_rq_pos(bfqq->next_rq))
573 			n = &(*p)->rb_left;
574 		else
575 			break;
576 		p = n;
577 		bfqq = NULL;
578 	}
579 
580 	*ret_parent = parent;
581 	if (rb_link)
582 		*rb_link = p;
583 
584 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 		(unsigned long long)sector,
586 		bfqq ? bfqq->pid : 0);
587 
588 	return bfqq;
589 }
590 
591 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592 {
593 	return bfqq->service_from_backlogged > 0 &&
594 		time_is_before_jiffies(bfqq->first_IO_time +
595 				       bfq_merge_time_limit);
596 }
597 
598 /*
599  * The following function is not marked as __cold because it is
600  * actually cold, but for the same performance goal described in the
601  * comments on the likely() at the beginning of
602  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
603  * execution time for the case where this function is not invoked, we
604  * had to add an unlikely() in each involved if().
605  */
606 void __cold
607 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
608 {
609 	struct rb_node **p, *parent;
610 	struct bfq_queue *__bfqq;
611 
612 	if (bfqq->pos_root) {
613 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
614 		bfqq->pos_root = NULL;
615 	}
616 
617 	/* oom_bfqq does not participate in queue merging */
618 	if (bfqq == &bfqd->oom_bfqq)
619 		return;
620 
621 	/*
622 	 * bfqq cannot be merged any longer (see comments in
623 	 * bfq_setup_cooperator): no point in adding bfqq into the
624 	 * position tree.
625 	 */
626 	if (bfq_too_late_for_merging(bfqq))
627 		return;
628 
629 	if (bfq_class_idle(bfqq))
630 		return;
631 	if (!bfqq->next_rq)
632 		return;
633 
634 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
635 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
636 			blk_rq_pos(bfqq->next_rq), &parent, &p);
637 	if (!__bfqq) {
638 		rb_link_node(&bfqq->pos_node, parent, p);
639 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
640 	} else
641 		bfqq->pos_root = NULL;
642 }
643 
644 /*
645  * The following function returns false either if every active queue
646  * must receive the same share of the throughput (symmetric scenario),
647  * or, as a special case, if bfqq must receive a share of the
648  * throughput lower than or equal to the share that every other active
649  * queue must receive.  If bfqq does sync I/O, then these are the only
650  * two cases where bfqq happens to be guaranteed its share of the
651  * throughput even if I/O dispatching is not plugged when bfqq remains
652  * temporarily empty (for more details, see the comments in the
653  * function bfq_better_to_idle()). For this reason, the return value
654  * of this function is used to check whether I/O-dispatch plugging can
655  * be avoided.
656  *
657  * The above first case (symmetric scenario) occurs when:
658  * 1) all active queues have the same weight,
659  * 2) all active queues belong to the same I/O-priority class,
660  * 3) all active groups at the same level in the groups tree have the same
661  *    weight,
662  * 4) all active groups at the same level in the groups tree have the same
663  *    number of children.
664  *
665  * Unfortunately, keeping the necessary state for evaluating exactly
666  * the last two symmetry sub-conditions above would be quite complex
667  * and time consuming. Therefore this function evaluates, instead,
668  * only the following stronger three sub-conditions, for which it is
669  * much easier to maintain the needed state:
670  * 1) all active queues have the same weight,
671  * 2) all active queues belong to the same I/O-priority class,
672  * 3) there are no active groups.
673  * In particular, the last condition is always true if hierarchical
674  * support or the cgroups interface are not enabled, thus no state
675  * needs to be maintained in this case.
676  */
677 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
678 				   struct bfq_queue *bfqq)
679 {
680 	bool smallest_weight = bfqq &&
681 		bfqq->weight_counter &&
682 		bfqq->weight_counter ==
683 		container_of(
684 			rb_first_cached(&bfqd->queue_weights_tree),
685 			struct bfq_weight_counter,
686 			weights_node);
687 
688 	/*
689 	 * For queue weights to differ, queue_weights_tree must contain
690 	 * at least two nodes.
691 	 */
692 	bool varied_queue_weights = !smallest_weight &&
693 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
694 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
695 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
696 
697 	bool multiple_classes_busy =
698 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
699 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
700 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
701 
702 	return varied_queue_weights || multiple_classes_busy
703 #ifdef CONFIG_BFQ_GROUP_IOSCHED
704 	       || bfqd->num_groups_with_pending_reqs > 0
705 #endif
706 		;
707 }
708 
709 /*
710  * If the weight-counter tree passed as input contains no counter for
711  * the weight of the input queue, then add that counter; otherwise just
712  * increment the existing counter.
713  *
714  * Note that weight-counter trees contain few nodes in mostly symmetric
715  * scenarios. For example, if all queues have the same weight, then the
716  * weight-counter tree for the queues may contain at most one node.
717  * This holds even if low_latency is on, because weight-raised queues
718  * are not inserted in the tree.
719  * In most scenarios, the rate at which nodes are created/destroyed
720  * should be low too.
721  */
722 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
723 			  struct rb_root_cached *root)
724 {
725 	struct bfq_entity *entity = &bfqq->entity;
726 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
727 	bool leftmost = true;
728 
729 	/*
730 	 * Do not insert if the queue is already associated with a
731 	 * counter, which happens if:
732 	 *   1) a request arrival has caused the queue to become both
733 	 *      non-weight-raised, and hence change its weight, and
734 	 *      backlogged; in this respect, each of the two events
735 	 *      causes an invocation of this function,
736 	 *   2) this is the invocation of this function caused by the
737 	 *      second event. This second invocation is actually useless,
738 	 *      and we handle this fact by exiting immediately. More
739 	 *      efficient or clearer solutions might possibly be adopted.
740 	 */
741 	if (bfqq->weight_counter)
742 		return;
743 
744 	while (*new) {
745 		struct bfq_weight_counter *__counter = container_of(*new,
746 						struct bfq_weight_counter,
747 						weights_node);
748 		parent = *new;
749 
750 		if (entity->weight == __counter->weight) {
751 			bfqq->weight_counter = __counter;
752 			goto inc_counter;
753 		}
754 		if (entity->weight < __counter->weight)
755 			new = &((*new)->rb_left);
756 		else {
757 			new = &((*new)->rb_right);
758 			leftmost = false;
759 		}
760 	}
761 
762 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
763 				       GFP_ATOMIC);
764 
765 	/*
766 	 * In the unlucky event of an allocation failure, we just
767 	 * exit. This will cause the weight of queue to not be
768 	 * considered in bfq_asymmetric_scenario, which, in its turn,
769 	 * causes the scenario to be deemed wrongly symmetric in case
770 	 * bfqq's weight would have been the only weight making the
771 	 * scenario asymmetric.  On the bright side, no unbalance will
772 	 * however occur when bfqq becomes inactive again (the
773 	 * invocation of this function is triggered by an activation
774 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
775 	 * if !bfqq->weight_counter.
776 	 */
777 	if (unlikely(!bfqq->weight_counter))
778 		return;
779 
780 	bfqq->weight_counter->weight = entity->weight;
781 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
782 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
783 				leftmost);
784 
785 inc_counter:
786 	bfqq->weight_counter->num_active++;
787 	bfqq->ref++;
788 }
789 
790 /*
791  * Decrement the weight counter associated with the queue, and, if the
792  * counter reaches 0, remove the counter from the tree.
793  * See the comments to the function bfq_weights_tree_add() for considerations
794  * about overhead.
795  */
796 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
797 			       struct bfq_queue *bfqq,
798 			       struct rb_root_cached *root)
799 {
800 	if (!bfqq->weight_counter)
801 		return;
802 
803 	bfqq->weight_counter->num_active--;
804 	if (bfqq->weight_counter->num_active > 0)
805 		goto reset_entity_pointer;
806 
807 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
808 	kfree(bfqq->weight_counter);
809 
810 reset_entity_pointer:
811 	bfqq->weight_counter = NULL;
812 	bfq_put_queue(bfqq);
813 }
814 
815 /*
816  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
817  * of active groups for each queue's inactive parent entity.
818  */
819 void bfq_weights_tree_remove(struct bfq_data *bfqd,
820 			     struct bfq_queue *bfqq)
821 {
822 	struct bfq_entity *entity = bfqq->entity.parent;
823 
824 	for_each_entity(entity) {
825 		struct bfq_sched_data *sd = entity->my_sched_data;
826 
827 		if (sd->next_in_service || sd->in_service_entity) {
828 			/*
829 			 * entity is still active, because either
830 			 * next_in_service or in_service_entity is not
831 			 * NULL (see the comments on the definition of
832 			 * next_in_service for details on why
833 			 * in_service_entity must be checked too).
834 			 *
835 			 * As a consequence, its parent entities are
836 			 * active as well, and thus this loop must
837 			 * stop here.
838 			 */
839 			break;
840 		}
841 
842 		/*
843 		 * The decrement of num_groups_with_pending_reqs is
844 		 * not performed immediately upon the deactivation of
845 		 * entity, but it is delayed to when it also happens
846 		 * that the first leaf descendant bfqq of entity gets
847 		 * all its pending requests completed. The following
848 		 * instructions perform this delayed decrement, if
849 		 * needed. See the comments on
850 		 * num_groups_with_pending_reqs for details.
851 		 */
852 		if (entity->in_groups_with_pending_reqs) {
853 			entity->in_groups_with_pending_reqs = false;
854 			bfqd->num_groups_with_pending_reqs--;
855 		}
856 	}
857 
858 	/*
859 	 * Next function is invoked last, because it causes bfqq to be
860 	 * freed if the following holds: bfqq is not in service and
861 	 * has no dispatched request. DO NOT use bfqq after the next
862 	 * function invocation.
863 	 */
864 	__bfq_weights_tree_remove(bfqd, bfqq,
865 				  &bfqd->queue_weights_tree);
866 }
867 
868 /*
869  * Return expired entry, or NULL to just start from scratch in rbtree.
870  */
871 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
872 				      struct request *last)
873 {
874 	struct request *rq;
875 
876 	if (bfq_bfqq_fifo_expire(bfqq))
877 		return NULL;
878 
879 	bfq_mark_bfqq_fifo_expire(bfqq);
880 
881 	rq = rq_entry_fifo(bfqq->fifo.next);
882 
883 	if (rq == last || ktime_get_ns() < rq->fifo_time)
884 		return NULL;
885 
886 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
887 	return rq;
888 }
889 
890 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
891 					struct bfq_queue *bfqq,
892 					struct request *last)
893 {
894 	struct rb_node *rbnext = rb_next(&last->rb_node);
895 	struct rb_node *rbprev = rb_prev(&last->rb_node);
896 	struct request *next, *prev = NULL;
897 
898 	/* Follow expired path, else get first next available. */
899 	next = bfq_check_fifo(bfqq, last);
900 	if (next)
901 		return next;
902 
903 	if (rbprev)
904 		prev = rb_entry_rq(rbprev);
905 
906 	if (rbnext)
907 		next = rb_entry_rq(rbnext);
908 	else {
909 		rbnext = rb_first(&bfqq->sort_list);
910 		if (rbnext && rbnext != &last->rb_node)
911 			next = rb_entry_rq(rbnext);
912 	}
913 
914 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
915 }
916 
917 /* see the definition of bfq_async_charge_factor for details */
918 static unsigned long bfq_serv_to_charge(struct request *rq,
919 					struct bfq_queue *bfqq)
920 {
921 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
922 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
923 		return blk_rq_sectors(rq);
924 
925 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
926 }
927 
928 /**
929  * bfq_updated_next_req - update the queue after a new next_rq selection.
930  * @bfqd: the device data the queue belongs to.
931  * @bfqq: the queue to update.
932  *
933  * If the first request of a queue changes we make sure that the queue
934  * has enough budget to serve at least its first request (if the
935  * request has grown).  We do this because if the queue has not enough
936  * budget for its first request, it has to go through two dispatch
937  * rounds to actually get it dispatched.
938  */
939 static void bfq_updated_next_req(struct bfq_data *bfqd,
940 				 struct bfq_queue *bfqq)
941 {
942 	struct bfq_entity *entity = &bfqq->entity;
943 	struct request *next_rq = bfqq->next_rq;
944 	unsigned long new_budget;
945 
946 	if (!next_rq)
947 		return;
948 
949 	if (bfqq == bfqd->in_service_queue)
950 		/*
951 		 * In order not to break guarantees, budgets cannot be
952 		 * changed after an entity has been selected.
953 		 */
954 		return;
955 
956 	new_budget = max_t(unsigned long,
957 			   max_t(unsigned long, bfqq->max_budget,
958 				 bfq_serv_to_charge(next_rq, bfqq)),
959 			   entity->service);
960 	if (entity->budget != new_budget) {
961 		entity->budget = new_budget;
962 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
963 					 new_budget);
964 		bfq_requeue_bfqq(bfqd, bfqq, false);
965 	}
966 }
967 
968 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
969 {
970 	u64 dur;
971 
972 	if (bfqd->bfq_wr_max_time > 0)
973 		return bfqd->bfq_wr_max_time;
974 
975 	dur = bfqd->rate_dur_prod;
976 	do_div(dur, bfqd->peak_rate);
977 
978 	/*
979 	 * Limit duration between 3 and 25 seconds. The upper limit
980 	 * has been conservatively set after the following worst case:
981 	 * on a QEMU/KVM virtual machine
982 	 * - running in a slow PC
983 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
984 	 * - serving a heavy I/O workload, such as the sequential reading
985 	 *   of several files
986 	 * mplayer took 23 seconds to start, if constantly weight-raised.
987 	 *
988 	 * As for higher values than that accommodating the above bad
989 	 * scenario, tests show that higher values would often yield
990 	 * the opposite of the desired result, i.e., would worsen
991 	 * responsiveness by allowing non-interactive applications to
992 	 * preserve weight raising for too long.
993 	 *
994 	 * On the other end, lower values than 3 seconds make it
995 	 * difficult for most interactive tasks to complete their jobs
996 	 * before weight-raising finishes.
997 	 */
998 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
999 }
1000 
1001 /* switch back from soft real-time to interactive weight raising */
1002 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1003 					  struct bfq_data *bfqd)
1004 {
1005 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1006 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1007 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1008 }
1009 
1010 static void
1011 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1012 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1013 {
1014 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1015 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1016 
1017 	if (bic->saved_has_short_ttime)
1018 		bfq_mark_bfqq_has_short_ttime(bfqq);
1019 	else
1020 		bfq_clear_bfqq_has_short_ttime(bfqq);
1021 
1022 	if (bic->saved_IO_bound)
1023 		bfq_mark_bfqq_IO_bound(bfqq);
1024 	else
1025 		bfq_clear_bfqq_IO_bound(bfqq);
1026 
1027 	bfqq->entity.new_weight = bic->saved_weight;
1028 	bfqq->ttime = bic->saved_ttime;
1029 	bfqq->wr_coeff = bic->saved_wr_coeff;
1030 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1031 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1032 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1033 
1034 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1035 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1036 				   bfqq->wr_cur_max_time))) {
1037 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1038 		    !bfq_bfqq_in_large_burst(bfqq) &&
1039 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1040 					     bfq_wr_duration(bfqd))) {
1041 			switch_back_to_interactive_wr(bfqq, bfqd);
1042 		} else {
1043 			bfqq->wr_coeff = 1;
1044 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1045 				     "resume state: switching off wr");
1046 		}
1047 	}
1048 
1049 	/* make sure weight will be updated, however we got here */
1050 	bfqq->entity.prio_changed = 1;
1051 
1052 	if (likely(!busy))
1053 		return;
1054 
1055 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1056 		bfqd->wr_busy_queues++;
1057 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1058 		bfqd->wr_busy_queues--;
1059 }
1060 
1061 static int bfqq_process_refs(struct bfq_queue *bfqq)
1062 {
1063 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1064 		(bfqq->weight_counter != NULL);
1065 }
1066 
1067 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1068 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1069 {
1070 	struct bfq_queue *item;
1071 	struct hlist_node *n;
1072 
1073 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1074 		hlist_del_init(&item->burst_list_node);
1075 
1076 	/*
1077 	 * Start the creation of a new burst list only if there is no
1078 	 * active queue. See comments on the conditional invocation of
1079 	 * bfq_handle_burst().
1080 	 */
1081 	if (bfq_tot_busy_queues(bfqd) == 0) {
1082 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1083 		bfqd->burst_size = 1;
1084 	} else
1085 		bfqd->burst_size = 0;
1086 
1087 	bfqd->burst_parent_entity = bfqq->entity.parent;
1088 }
1089 
1090 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1091 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1092 {
1093 	/* Increment burst size to take into account also bfqq */
1094 	bfqd->burst_size++;
1095 
1096 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1097 		struct bfq_queue *pos, *bfqq_item;
1098 		struct hlist_node *n;
1099 
1100 		/*
1101 		 * Enough queues have been activated shortly after each
1102 		 * other to consider this burst as large.
1103 		 */
1104 		bfqd->large_burst = true;
1105 
1106 		/*
1107 		 * We can now mark all queues in the burst list as
1108 		 * belonging to a large burst.
1109 		 */
1110 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1111 				     burst_list_node)
1112 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1113 		bfq_mark_bfqq_in_large_burst(bfqq);
1114 
1115 		/*
1116 		 * From now on, and until the current burst finishes, any
1117 		 * new queue being activated shortly after the last queue
1118 		 * was inserted in the burst can be immediately marked as
1119 		 * belonging to a large burst. So the burst list is not
1120 		 * needed any more. Remove it.
1121 		 */
1122 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1123 					  burst_list_node)
1124 			hlist_del_init(&pos->burst_list_node);
1125 	} else /*
1126 		* Burst not yet large: add bfqq to the burst list. Do
1127 		* not increment the ref counter for bfqq, because bfqq
1128 		* is removed from the burst list before freeing bfqq
1129 		* in put_queue.
1130 		*/
1131 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1132 }
1133 
1134 /*
1135  * If many queues belonging to the same group happen to be created
1136  * shortly after each other, then the processes associated with these
1137  * queues have typically a common goal. In particular, bursts of queue
1138  * creations are usually caused by services or applications that spawn
1139  * many parallel threads/processes. Examples are systemd during boot,
1140  * or git grep. To help these processes get their job done as soon as
1141  * possible, it is usually better to not grant either weight-raising
1142  * or device idling to their queues, unless these queues must be
1143  * protected from the I/O flowing through other active queues.
1144  *
1145  * In this comment we describe, firstly, the reasons why this fact
1146  * holds, and, secondly, the next function, which implements the main
1147  * steps needed to properly mark these queues so that they can then be
1148  * treated in a different way.
1149  *
1150  * The above services or applications benefit mostly from a high
1151  * throughput: the quicker the requests of the activated queues are
1152  * cumulatively served, the sooner the target job of these queues gets
1153  * completed. As a consequence, weight-raising any of these queues,
1154  * which also implies idling the device for it, is almost always
1155  * counterproductive, unless there are other active queues to isolate
1156  * these new queues from. If there no other active queues, then
1157  * weight-raising these new queues just lowers throughput in most
1158  * cases.
1159  *
1160  * On the other hand, a burst of queue creations may be caused also by
1161  * the start of an application that does not consist of a lot of
1162  * parallel I/O-bound threads. In fact, with a complex application,
1163  * several short processes may need to be executed to start-up the
1164  * application. In this respect, to start an application as quickly as
1165  * possible, the best thing to do is in any case to privilege the I/O
1166  * related to the application with respect to all other
1167  * I/O. Therefore, the best strategy to start as quickly as possible
1168  * an application that causes a burst of queue creations is to
1169  * weight-raise all the queues created during the burst. This is the
1170  * exact opposite of the best strategy for the other type of bursts.
1171  *
1172  * In the end, to take the best action for each of the two cases, the
1173  * two types of bursts need to be distinguished. Fortunately, this
1174  * seems relatively easy, by looking at the sizes of the bursts. In
1175  * particular, we found a threshold such that only bursts with a
1176  * larger size than that threshold are apparently caused by
1177  * services or commands such as systemd or git grep. For brevity,
1178  * hereafter we call just 'large' these bursts. BFQ *does not*
1179  * weight-raise queues whose creation occurs in a large burst. In
1180  * addition, for each of these queues BFQ performs or does not perform
1181  * idling depending on which choice boosts the throughput more. The
1182  * exact choice depends on the device and request pattern at
1183  * hand.
1184  *
1185  * Unfortunately, false positives may occur while an interactive task
1186  * is starting (e.g., an application is being started). The
1187  * consequence is that the queues associated with the task do not
1188  * enjoy weight raising as expected. Fortunately these false positives
1189  * are very rare. They typically occur if some service happens to
1190  * start doing I/O exactly when the interactive task starts.
1191  *
1192  * Turning back to the next function, it is invoked only if there are
1193  * no active queues (apart from active queues that would belong to the
1194  * same, possible burst bfqq would belong to), and it implements all
1195  * the steps needed to detect the occurrence of a large burst and to
1196  * properly mark all the queues belonging to it (so that they can then
1197  * be treated in a different way). This goal is achieved by
1198  * maintaining a "burst list" that holds, temporarily, the queues that
1199  * belong to the burst in progress. The list is then used to mark
1200  * these queues as belonging to a large burst if the burst does become
1201  * large. The main steps are the following.
1202  *
1203  * . when the very first queue is created, the queue is inserted into the
1204  *   list (as it could be the first queue in a possible burst)
1205  *
1206  * . if the current burst has not yet become large, and a queue Q that does
1207  *   not yet belong to the burst is activated shortly after the last time
1208  *   at which a new queue entered the burst list, then the function appends
1209  *   Q to the burst list
1210  *
1211  * . if, as a consequence of the previous step, the burst size reaches
1212  *   the large-burst threshold, then
1213  *
1214  *     . all the queues in the burst list are marked as belonging to a
1215  *       large burst
1216  *
1217  *     . the burst list is deleted; in fact, the burst list already served
1218  *       its purpose (keeping temporarily track of the queues in a burst,
1219  *       so as to be able to mark them as belonging to a large burst in the
1220  *       previous sub-step), and now is not needed any more
1221  *
1222  *     . the device enters a large-burst mode
1223  *
1224  * . if a queue Q that does not belong to the burst is created while
1225  *   the device is in large-burst mode and shortly after the last time
1226  *   at which a queue either entered the burst list or was marked as
1227  *   belonging to the current large burst, then Q is immediately marked
1228  *   as belonging to a large burst.
1229  *
1230  * . if a queue Q that does not belong to the burst is created a while
1231  *   later, i.e., not shortly after, than the last time at which a queue
1232  *   either entered the burst list or was marked as belonging to the
1233  *   current large burst, then the current burst is deemed as finished and:
1234  *
1235  *        . the large-burst mode is reset if set
1236  *
1237  *        . the burst list is emptied
1238  *
1239  *        . Q is inserted in the burst list, as Q may be the first queue
1240  *          in a possible new burst (then the burst list contains just Q
1241  *          after this step).
1242  */
1243 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1244 {
1245 	/*
1246 	 * If bfqq is already in the burst list or is part of a large
1247 	 * burst, or finally has just been split, then there is
1248 	 * nothing else to do.
1249 	 */
1250 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1251 	    bfq_bfqq_in_large_burst(bfqq) ||
1252 	    time_is_after_eq_jiffies(bfqq->split_time +
1253 				     msecs_to_jiffies(10)))
1254 		return;
1255 
1256 	/*
1257 	 * If bfqq's creation happens late enough, or bfqq belongs to
1258 	 * a different group than the burst group, then the current
1259 	 * burst is finished, and related data structures must be
1260 	 * reset.
1261 	 *
1262 	 * In this respect, consider the special case where bfqq is
1263 	 * the very first queue created after BFQ is selected for this
1264 	 * device. In this case, last_ins_in_burst and
1265 	 * burst_parent_entity are not yet significant when we get
1266 	 * here. But it is easy to verify that, whether or not the
1267 	 * following condition is true, bfqq will end up being
1268 	 * inserted into the burst list. In particular the list will
1269 	 * happen to contain only bfqq. And this is exactly what has
1270 	 * to happen, as bfqq may be the first queue of the first
1271 	 * burst.
1272 	 */
1273 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1274 	    bfqd->bfq_burst_interval) ||
1275 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1276 		bfqd->large_burst = false;
1277 		bfq_reset_burst_list(bfqd, bfqq);
1278 		goto end;
1279 	}
1280 
1281 	/*
1282 	 * If we get here, then bfqq is being activated shortly after the
1283 	 * last queue. So, if the current burst is also large, we can mark
1284 	 * bfqq as belonging to this large burst immediately.
1285 	 */
1286 	if (bfqd->large_burst) {
1287 		bfq_mark_bfqq_in_large_burst(bfqq);
1288 		goto end;
1289 	}
1290 
1291 	/*
1292 	 * If we get here, then a large-burst state has not yet been
1293 	 * reached, but bfqq is being activated shortly after the last
1294 	 * queue. Then we add bfqq to the burst.
1295 	 */
1296 	bfq_add_to_burst(bfqd, bfqq);
1297 end:
1298 	/*
1299 	 * At this point, bfqq either has been added to the current
1300 	 * burst or has caused the current burst to terminate and a
1301 	 * possible new burst to start. In particular, in the second
1302 	 * case, bfqq has become the first queue in the possible new
1303 	 * burst.  In both cases last_ins_in_burst needs to be moved
1304 	 * forward.
1305 	 */
1306 	bfqd->last_ins_in_burst = jiffies;
1307 }
1308 
1309 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1310 {
1311 	struct bfq_entity *entity = &bfqq->entity;
1312 
1313 	return entity->budget - entity->service;
1314 }
1315 
1316 /*
1317  * If enough samples have been computed, return the current max budget
1318  * stored in bfqd, which is dynamically updated according to the
1319  * estimated disk peak rate; otherwise return the default max budget
1320  */
1321 static int bfq_max_budget(struct bfq_data *bfqd)
1322 {
1323 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1324 		return bfq_default_max_budget;
1325 	else
1326 		return bfqd->bfq_max_budget;
1327 }
1328 
1329 /*
1330  * Return min budget, which is a fraction of the current or default
1331  * max budget (trying with 1/32)
1332  */
1333 static int bfq_min_budget(struct bfq_data *bfqd)
1334 {
1335 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1336 		return bfq_default_max_budget / 32;
1337 	else
1338 		return bfqd->bfq_max_budget / 32;
1339 }
1340 
1341 /*
1342  * The next function, invoked after the input queue bfqq switches from
1343  * idle to busy, updates the budget of bfqq. The function also tells
1344  * whether the in-service queue should be expired, by returning
1345  * true. The purpose of expiring the in-service queue is to give bfqq
1346  * the chance to possibly preempt the in-service queue, and the reason
1347  * for preempting the in-service queue is to achieve one of the two
1348  * goals below.
1349  *
1350  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1351  * expired because it has remained idle. In particular, bfqq may have
1352  * expired for one of the following two reasons:
1353  *
1354  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1355  *   and did not make it to issue a new request before its last
1356  *   request was served;
1357  *
1358  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1359  *   a new request before the expiration of the idling-time.
1360  *
1361  * Even if bfqq has expired for one of the above reasons, the process
1362  * associated with the queue may be however issuing requests greedily,
1363  * and thus be sensitive to the bandwidth it receives (bfqq may have
1364  * remained idle for other reasons: CPU high load, bfqq not enjoying
1365  * idling, I/O throttling somewhere in the path from the process to
1366  * the I/O scheduler, ...). But if, after every expiration for one of
1367  * the above two reasons, bfqq has to wait for the service of at least
1368  * one full budget of another queue before being served again, then
1369  * bfqq is likely to get a much lower bandwidth or resource time than
1370  * its reserved ones. To address this issue, two countermeasures need
1371  * to be taken.
1372  *
1373  * First, the budget and the timestamps of bfqq need to be updated in
1374  * a special way on bfqq reactivation: they need to be updated as if
1375  * bfqq did not remain idle and did not expire. In fact, if they are
1376  * computed as if bfqq expired and remained idle until reactivation,
1377  * then the process associated with bfqq is treated as if, instead of
1378  * being greedy, it stopped issuing requests when bfqq remained idle,
1379  * and restarts issuing requests only on this reactivation. In other
1380  * words, the scheduler does not help the process recover the "service
1381  * hole" between bfqq expiration and reactivation. As a consequence,
1382  * the process receives a lower bandwidth than its reserved one. In
1383  * contrast, to recover this hole, the budget must be updated as if
1384  * bfqq was not expired at all before this reactivation, i.e., it must
1385  * be set to the value of the remaining budget when bfqq was
1386  * expired. Along the same line, timestamps need to be assigned the
1387  * value they had the last time bfqq was selected for service, i.e.,
1388  * before last expiration. Thus timestamps need to be back-shifted
1389  * with respect to their normal computation (see [1] for more details
1390  * on this tricky aspect).
1391  *
1392  * Secondly, to allow the process to recover the hole, the in-service
1393  * queue must be expired too, to give bfqq the chance to preempt it
1394  * immediately. In fact, if bfqq has to wait for a full budget of the
1395  * in-service queue to be completed, then it may become impossible to
1396  * let the process recover the hole, even if the back-shifted
1397  * timestamps of bfqq are lower than those of the in-service queue. If
1398  * this happens for most or all of the holes, then the process may not
1399  * receive its reserved bandwidth. In this respect, it is worth noting
1400  * that, being the service of outstanding requests unpreemptible, a
1401  * little fraction of the holes may however be unrecoverable, thereby
1402  * causing a little loss of bandwidth.
1403  *
1404  * The last important point is detecting whether bfqq does need this
1405  * bandwidth recovery. In this respect, the next function deems the
1406  * process associated with bfqq greedy, and thus allows it to recover
1407  * the hole, if: 1) the process is waiting for the arrival of a new
1408  * request (which implies that bfqq expired for one of the above two
1409  * reasons), and 2) such a request has arrived soon. The first
1410  * condition is controlled through the flag non_blocking_wait_rq,
1411  * while the second through the flag arrived_in_time. If both
1412  * conditions hold, then the function computes the budget in the
1413  * above-described special way, and signals that the in-service queue
1414  * should be expired. Timestamp back-shifting is done later in
1415  * __bfq_activate_entity.
1416  *
1417  * 2. Reduce latency. Even if timestamps are not backshifted to let
1418  * the process associated with bfqq recover a service hole, bfqq may
1419  * however happen to have, after being (re)activated, a lower finish
1420  * timestamp than the in-service queue.	 That is, the next budget of
1421  * bfqq may have to be completed before the one of the in-service
1422  * queue. If this is the case, then preempting the in-service queue
1423  * allows this goal to be achieved, apart from the unpreemptible,
1424  * outstanding requests mentioned above.
1425  *
1426  * Unfortunately, regardless of which of the above two goals one wants
1427  * to achieve, service trees need first to be updated to know whether
1428  * the in-service queue must be preempted. To have service trees
1429  * correctly updated, the in-service queue must be expired and
1430  * rescheduled, and bfqq must be scheduled too. This is one of the
1431  * most costly operations (in future versions, the scheduling
1432  * mechanism may be re-designed in such a way to make it possible to
1433  * know whether preemption is needed without needing to update service
1434  * trees). In addition, queue preemptions almost always cause random
1435  * I/O, which may in turn cause loss of throughput. Finally, there may
1436  * even be no in-service queue when the next function is invoked (so,
1437  * no queue to compare timestamps with). Because of these facts, the
1438  * next function adopts the following simple scheme to avoid costly
1439  * operations, too frequent preemptions and too many dependencies on
1440  * the state of the scheduler: it requests the expiration of the
1441  * in-service queue (unconditionally) only for queues that need to
1442  * recover a hole. Then it delegates to other parts of the code the
1443  * responsibility of handling the above case 2.
1444  */
1445 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1446 						struct bfq_queue *bfqq,
1447 						bool arrived_in_time)
1448 {
1449 	struct bfq_entity *entity = &bfqq->entity;
1450 
1451 	/*
1452 	 * In the next compound condition, we check also whether there
1453 	 * is some budget left, because otherwise there is no point in
1454 	 * trying to go on serving bfqq with this same budget: bfqq
1455 	 * would be expired immediately after being selected for
1456 	 * service. This would only cause useless overhead.
1457 	 */
1458 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1459 	    bfq_bfqq_budget_left(bfqq) > 0) {
1460 		/*
1461 		 * We do not clear the flag non_blocking_wait_rq here, as
1462 		 * the latter is used in bfq_activate_bfqq to signal
1463 		 * that timestamps need to be back-shifted (and is
1464 		 * cleared right after).
1465 		 */
1466 
1467 		/*
1468 		 * In next assignment we rely on that either
1469 		 * entity->service or entity->budget are not updated
1470 		 * on expiration if bfqq is empty (see
1471 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1472 		 * remain unchanged after such an expiration, and the
1473 		 * following statement therefore assigns to
1474 		 * entity->budget the remaining budget on such an
1475 		 * expiration.
1476 		 */
1477 		entity->budget = min_t(unsigned long,
1478 				       bfq_bfqq_budget_left(bfqq),
1479 				       bfqq->max_budget);
1480 
1481 		/*
1482 		 * At this point, we have used entity->service to get
1483 		 * the budget left (needed for updating
1484 		 * entity->budget). Thus we finally can, and have to,
1485 		 * reset entity->service. The latter must be reset
1486 		 * because bfqq would otherwise be charged again for
1487 		 * the service it has received during its previous
1488 		 * service slot(s).
1489 		 */
1490 		entity->service = 0;
1491 
1492 		return true;
1493 	}
1494 
1495 	/*
1496 	 * We can finally complete expiration, by setting service to 0.
1497 	 */
1498 	entity->service = 0;
1499 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1500 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1501 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1502 	return false;
1503 }
1504 
1505 /*
1506  * Return the farthest past time instant according to jiffies
1507  * macros.
1508  */
1509 static unsigned long bfq_smallest_from_now(void)
1510 {
1511 	return jiffies - MAX_JIFFY_OFFSET;
1512 }
1513 
1514 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1515 					     struct bfq_queue *bfqq,
1516 					     unsigned int old_wr_coeff,
1517 					     bool wr_or_deserves_wr,
1518 					     bool interactive,
1519 					     bool in_burst,
1520 					     bool soft_rt)
1521 {
1522 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1523 		/* start a weight-raising period */
1524 		if (interactive) {
1525 			bfqq->service_from_wr = 0;
1526 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1527 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1528 		} else {
1529 			/*
1530 			 * No interactive weight raising in progress
1531 			 * here: assign minus infinity to
1532 			 * wr_start_at_switch_to_srt, to make sure
1533 			 * that, at the end of the soft-real-time
1534 			 * weight raising periods that is starting
1535 			 * now, no interactive weight-raising period
1536 			 * may be wrongly considered as still in
1537 			 * progress (and thus actually started by
1538 			 * mistake).
1539 			 */
1540 			bfqq->wr_start_at_switch_to_srt =
1541 				bfq_smallest_from_now();
1542 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1543 				BFQ_SOFTRT_WEIGHT_FACTOR;
1544 			bfqq->wr_cur_max_time =
1545 				bfqd->bfq_wr_rt_max_time;
1546 		}
1547 
1548 		/*
1549 		 * If needed, further reduce budget to make sure it is
1550 		 * close to bfqq's backlog, so as to reduce the
1551 		 * scheduling-error component due to a too large
1552 		 * budget. Do not care about throughput consequences,
1553 		 * but only about latency. Finally, do not assign a
1554 		 * too small budget either, to avoid increasing
1555 		 * latency by causing too frequent expirations.
1556 		 */
1557 		bfqq->entity.budget = min_t(unsigned long,
1558 					    bfqq->entity.budget,
1559 					    2 * bfq_min_budget(bfqd));
1560 	} else if (old_wr_coeff > 1) {
1561 		if (interactive) { /* update wr coeff and duration */
1562 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1563 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1564 		} else if (in_burst)
1565 			bfqq->wr_coeff = 1;
1566 		else if (soft_rt) {
1567 			/*
1568 			 * The application is now or still meeting the
1569 			 * requirements for being deemed soft rt.  We
1570 			 * can then correctly and safely (re)charge
1571 			 * the weight-raising duration for the
1572 			 * application with the weight-raising
1573 			 * duration for soft rt applications.
1574 			 *
1575 			 * In particular, doing this recharge now, i.e.,
1576 			 * before the weight-raising period for the
1577 			 * application finishes, reduces the probability
1578 			 * of the following negative scenario:
1579 			 * 1) the weight of a soft rt application is
1580 			 *    raised at startup (as for any newly
1581 			 *    created application),
1582 			 * 2) since the application is not interactive,
1583 			 *    at a certain time weight-raising is
1584 			 *    stopped for the application,
1585 			 * 3) at that time the application happens to
1586 			 *    still have pending requests, and hence
1587 			 *    is destined to not have a chance to be
1588 			 *    deemed soft rt before these requests are
1589 			 *    completed (see the comments to the
1590 			 *    function bfq_bfqq_softrt_next_start()
1591 			 *    for details on soft rt detection),
1592 			 * 4) these pending requests experience a high
1593 			 *    latency because the application is not
1594 			 *    weight-raised while they are pending.
1595 			 */
1596 			if (bfqq->wr_cur_max_time !=
1597 				bfqd->bfq_wr_rt_max_time) {
1598 				bfqq->wr_start_at_switch_to_srt =
1599 					bfqq->last_wr_start_finish;
1600 
1601 				bfqq->wr_cur_max_time =
1602 					bfqd->bfq_wr_rt_max_time;
1603 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1604 					BFQ_SOFTRT_WEIGHT_FACTOR;
1605 			}
1606 			bfqq->last_wr_start_finish = jiffies;
1607 		}
1608 	}
1609 }
1610 
1611 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1612 					struct bfq_queue *bfqq)
1613 {
1614 	return bfqq->dispatched == 0 &&
1615 		time_is_before_jiffies(
1616 			bfqq->budget_timeout +
1617 			bfqd->bfq_wr_min_idle_time);
1618 }
1619 
1620 
1621 /*
1622  * Return true if bfqq is in a higher priority class, or has a higher
1623  * weight than the in-service queue.
1624  */
1625 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1626 					    struct bfq_queue *in_serv_bfqq)
1627 {
1628 	int bfqq_weight, in_serv_weight;
1629 
1630 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1631 		return true;
1632 
1633 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1634 		bfqq_weight = bfqq->entity.weight;
1635 		in_serv_weight = in_serv_bfqq->entity.weight;
1636 	} else {
1637 		if (bfqq->entity.parent)
1638 			bfqq_weight = bfqq->entity.parent->weight;
1639 		else
1640 			bfqq_weight = bfqq->entity.weight;
1641 		if (in_serv_bfqq->entity.parent)
1642 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1643 		else
1644 			in_serv_weight = in_serv_bfqq->entity.weight;
1645 	}
1646 
1647 	return bfqq_weight > in_serv_weight;
1648 }
1649 
1650 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1651 					     struct bfq_queue *bfqq,
1652 					     int old_wr_coeff,
1653 					     struct request *rq,
1654 					     bool *interactive)
1655 {
1656 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1657 		bfqq_wants_to_preempt,
1658 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1659 		/*
1660 		 * See the comments on
1661 		 * bfq_bfqq_update_budg_for_activation for
1662 		 * details on the usage of the next variable.
1663 		 */
1664 		arrived_in_time =  ktime_get_ns() <=
1665 			bfqq->ttime.last_end_request +
1666 			bfqd->bfq_slice_idle * 3;
1667 
1668 
1669 	/*
1670 	 * bfqq deserves to be weight-raised if:
1671 	 * - it is sync,
1672 	 * - it does not belong to a large burst,
1673 	 * - it has been idle for enough time or is soft real-time,
1674 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1675 	 */
1676 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1677 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1678 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1679 		!in_burst &&
1680 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1681 		bfqq->dispatched == 0;
1682 	*interactive = !in_burst && idle_for_long_time;
1683 	wr_or_deserves_wr = bfqd->low_latency &&
1684 		(bfqq->wr_coeff > 1 ||
1685 		 (bfq_bfqq_sync(bfqq) &&
1686 		  bfqq->bic && (*interactive || soft_rt)));
1687 
1688 	/*
1689 	 * Using the last flag, update budget and check whether bfqq
1690 	 * may want to preempt the in-service queue.
1691 	 */
1692 	bfqq_wants_to_preempt =
1693 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1694 						    arrived_in_time);
1695 
1696 	/*
1697 	 * If bfqq happened to be activated in a burst, but has been
1698 	 * idle for much more than an interactive queue, then we
1699 	 * assume that, in the overall I/O initiated in the burst, the
1700 	 * I/O associated with bfqq is finished. So bfqq does not need
1701 	 * to be treated as a queue belonging to a burst
1702 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1703 	 * if set, and remove bfqq from the burst list if it's
1704 	 * there. We do not decrement burst_size, because the fact
1705 	 * that bfqq does not need to belong to the burst list any
1706 	 * more does not invalidate the fact that bfqq was created in
1707 	 * a burst.
1708 	 */
1709 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1710 	    idle_for_long_time &&
1711 	    time_is_before_jiffies(
1712 		    bfqq->budget_timeout +
1713 		    msecs_to_jiffies(10000))) {
1714 		hlist_del_init(&bfqq->burst_list_node);
1715 		bfq_clear_bfqq_in_large_burst(bfqq);
1716 	}
1717 
1718 	bfq_clear_bfqq_just_created(bfqq);
1719 
1720 
1721 	if (!bfq_bfqq_IO_bound(bfqq)) {
1722 		if (arrived_in_time) {
1723 			bfqq->requests_within_timer++;
1724 			if (bfqq->requests_within_timer >=
1725 			    bfqd->bfq_requests_within_timer)
1726 				bfq_mark_bfqq_IO_bound(bfqq);
1727 		} else
1728 			bfqq->requests_within_timer = 0;
1729 	}
1730 
1731 	if (bfqd->low_latency) {
1732 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1733 			/* wraparound */
1734 			bfqq->split_time =
1735 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1736 
1737 		if (time_is_before_jiffies(bfqq->split_time +
1738 					   bfqd->bfq_wr_min_idle_time)) {
1739 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1740 							 old_wr_coeff,
1741 							 wr_or_deserves_wr,
1742 							 *interactive,
1743 							 in_burst,
1744 							 soft_rt);
1745 
1746 			if (old_wr_coeff != bfqq->wr_coeff)
1747 				bfqq->entity.prio_changed = 1;
1748 		}
1749 	}
1750 
1751 	bfqq->last_idle_bklogged = jiffies;
1752 	bfqq->service_from_backlogged = 0;
1753 	bfq_clear_bfqq_softrt_update(bfqq);
1754 
1755 	bfq_add_bfqq_busy(bfqd, bfqq);
1756 
1757 	/*
1758 	 * Expire in-service queue only if preemption may be needed
1759 	 * for guarantees. In particular, we care only about two
1760 	 * cases. The first is that bfqq has to recover a service
1761 	 * hole, as explained in the comments on
1762 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1763 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1764 	 * carry time-critical I/O, then bfqq's bandwidth is less
1765 	 * important than that of queues that carry time-critical I/O.
1766 	 * So, as a further constraint, we consider this case only if
1767 	 * bfqq is at least as weight-raised, i.e., at least as time
1768 	 * critical, as the in-service queue.
1769 	 *
1770 	 * The second case is that bfqq is in a higher priority class,
1771 	 * or has a higher weight than the in-service queue. If this
1772 	 * condition does not hold, we don't care because, even if
1773 	 * bfqq does not start to be served immediately, the resulting
1774 	 * delay for bfqq's I/O is however lower or much lower than
1775 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1776 	 *
1777 	 * In both cases, preemption is needed only if, according to
1778 	 * the timestamps of both bfqq and of the in-service queue,
1779 	 * bfqq actually is the next queue to serve. So, to reduce
1780 	 * useless preemptions, the return value of
1781 	 * next_queue_may_preempt() is considered in the next compound
1782 	 * condition too. Yet next_queue_may_preempt() just checks a
1783 	 * simple, necessary condition for bfqq to be the next queue
1784 	 * to serve. In fact, to evaluate a sufficient condition, the
1785 	 * timestamps of the in-service queue would need to be
1786 	 * updated, and this operation is quite costly (see the
1787 	 * comments on bfq_bfqq_update_budg_for_activation()).
1788 	 */
1789 	if (bfqd->in_service_queue &&
1790 	    ((bfqq_wants_to_preempt &&
1791 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1792 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1793 	    next_queue_may_preempt(bfqd))
1794 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1795 				false, BFQQE_PREEMPTED);
1796 }
1797 
1798 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1799 				   struct bfq_queue *bfqq)
1800 {
1801 	/* invalidate baseline total service time */
1802 	bfqq->last_serv_time_ns = 0;
1803 
1804 	/*
1805 	 * Reset pointer in case we are waiting for
1806 	 * some request completion.
1807 	 */
1808 	bfqd->waited_rq = NULL;
1809 
1810 	/*
1811 	 * If bfqq has a short think time, then start by setting the
1812 	 * inject limit to 0 prudentially, because the service time of
1813 	 * an injected I/O request may be higher than the think time
1814 	 * of bfqq, and therefore, if one request was injected when
1815 	 * bfqq remains empty, this injected request might delay the
1816 	 * service of the next I/O request for bfqq significantly. In
1817 	 * case bfqq can actually tolerate some injection, then the
1818 	 * adaptive update will however raise the limit soon. This
1819 	 * lucky circumstance holds exactly because bfqq has a short
1820 	 * think time, and thus, after remaining empty, is likely to
1821 	 * get new I/O enqueued---and then completed---before being
1822 	 * expired. This is the very pattern that gives the
1823 	 * limit-update algorithm the chance to measure the effect of
1824 	 * injection on request service times, and then to update the
1825 	 * limit accordingly.
1826 	 *
1827 	 * However, in the following special case, the inject limit is
1828 	 * left to 1 even if the think time is short: bfqq's I/O is
1829 	 * synchronized with that of some other queue, i.e., bfqq may
1830 	 * receive new I/O only after the I/O of the other queue is
1831 	 * completed. Keeping the inject limit to 1 allows the
1832 	 * blocking I/O to be served while bfqq is in service. And
1833 	 * this is very convenient both for bfqq and for overall
1834 	 * throughput, as explained in detail in the comments in
1835 	 * bfq_update_has_short_ttime().
1836 	 *
1837 	 * On the opposite end, if bfqq has a long think time, then
1838 	 * start directly by 1, because:
1839 	 * a) on the bright side, keeping at most one request in
1840 	 * service in the drive is unlikely to cause any harm to the
1841 	 * latency of bfqq's requests, as the service time of a single
1842 	 * request is likely to be lower than the think time of bfqq;
1843 	 * b) on the downside, after becoming empty, bfqq is likely to
1844 	 * expire before getting its next request. With this request
1845 	 * arrival pattern, it is very hard to sample total service
1846 	 * times and update the inject limit accordingly (see comments
1847 	 * on bfq_update_inject_limit()). So the limit is likely to be
1848 	 * never, or at least seldom, updated.  As a consequence, by
1849 	 * setting the limit to 1, we avoid that no injection ever
1850 	 * occurs with bfqq. On the downside, this proactive step
1851 	 * further reduces chances to actually compute the baseline
1852 	 * total service time. Thus it reduces chances to execute the
1853 	 * limit-update algorithm and possibly raise the limit to more
1854 	 * than 1.
1855 	 */
1856 	if (bfq_bfqq_has_short_ttime(bfqq))
1857 		bfqq->inject_limit = 0;
1858 	else
1859 		bfqq->inject_limit = 1;
1860 
1861 	bfqq->decrease_time_jif = jiffies;
1862 }
1863 
1864 static void bfq_add_request(struct request *rq)
1865 {
1866 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1867 	struct bfq_data *bfqd = bfqq->bfqd;
1868 	struct request *next_rq, *prev;
1869 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1870 	bool interactive = false;
1871 
1872 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1873 	bfqq->queued[rq_is_sync(rq)]++;
1874 	bfqd->queued++;
1875 
1876 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1877 		/*
1878 		 * Detect whether bfqq's I/O seems synchronized with
1879 		 * that of some other queue, i.e., whether bfqq, after
1880 		 * remaining empty, happens to receive new I/O only
1881 		 * right after some I/O request of the other queue has
1882 		 * been completed. We call waker queue the other
1883 		 * queue, and we assume, for simplicity, that bfqq may
1884 		 * have at most one waker queue.
1885 		 *
1886 		 * A remarkable throughput boost can be reached by
1887 		 * unconditionally injecting the I/O of the waker
1888 		 * queue, every time a new bfq_dispatch_request
1889 		 * happens to be invoked while I/O is being plugged
1890 		 * for bfqq.  In addition to boosting throughput, this
1891 		 * unblocks bfqq's I/O, thereby improving bandwidth
1892 		 * and latency for bfqq. Note that these same results
1893 		 * may be achieved with the general injection
1894 		 * mechanism, but less effectively. For details on
1895 		 * this aspect, see the comments on the choice of the
1896 		 * queue for injection in bfq_select_queue().
1897 		 *
1898 		 * Turning back to the detection of a waker queue, a
1899 		 * queue Q is deemed as a waker queue for bfqq if, for
1900 		 * two consecutive times, bfqq happens to become non
1901 		 * empty right after a request of Q has been
1902 		 * completed. In particular, on the first time, Q is
1903 		 * tentatively set as a candidate waker queue, while
1904 		 * on the second time, the flag
1905 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1906 		 * is a waker queue for bfqq. These detection steps
1907 		 * are performed only if bfqq has a long think time,
1908 		 * so as to make it more likely that bfqq's I/O is
1909 		 * actually being blocked by a synchronization. This
1910 		 * last filter, plus the above two-times requirement,
1911 		 * make false positives less likely.
1912 		 *
1913 		 * NOTE
1914 		 *
1915 		 * The sooner a waker queue is detected, the sooner
1916 		 * throughput can be boosted by injecting I/O from the
1917 		 * waker queue. Fortunately, detection is likely to be
1918 		 * actually fast, for the following reasons. While
1919 		 * blocked by synchronization, bfqq has a long think
1920 		 * time. This implies that bfqq's inject limit is at
1921 		 * least equal to 1 (see the comments in
1922 		 * bfq_update_inject_limit()). So, thanks to
1923 		 * injection, the waker queue is likely to be served
1924 		 * during the very first I/O-plugging time interval
1925 		 * for bfqq. This triggers the first step of the
1926 		 * detection mechanism. Thanks again to injection, the
1927 		 * candidate waker queue is then likely to be
1928 		 * confirmed no later than during the next
1929 		 * I/O-plugging interval for bfqq.
1930 		 */
1931 		if (bfqd->last_completed_rq_bfqq &&
1932 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1933 		    ktime_get_ns() - bfqd->last_completion <
1934 		    200 * NSEC_PER_USEC) {
1935 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1936 			    bfqd->last_completed_rq_bfqq !=
1937 			    bfqq->waker_bfqq) {
1938 				/*
1939 				 * First synchronization detected with
1940 				 * a candidate waker queue, or with a
1941 				 * different candidate waker queue
1942 				 * from the current one.
1943 				 */
1944 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1945 
1946 				/*
1947 				 * If the waker queue disappears, then
1948 				 * bfqq->waker_bfqq must be reset. To
1949 				 * this goal, we maintain in each
1950 				 * waker queue a list, woken_list, of
1951 				 * all the queues that reference the
1952 				 * waker queue through their
1953 				 * waker_bfqq pointer. When the waker
1954 				 * queue exits, the waker_bfqq pointer
1955 				 * of all the queues in the woken_list
1956 				 * is reset.
1957 				 *
1958 				 * In addition, if bfqq is already in
1959 				 * the woken_list of a waker queue,
1960 				 * then, before being inserted into
1961 				 * the woken_list of a new waker
1962 				 * queue, bfqq must be removed from
1963 				 * the woken_list of the old waker
1964 				 * queue.
1965 				 */
1966 				if (!hlist_unhashed(&bfqq->woken_list_node))
1967 					hlist_del_init(&bfqq->woken_list_node);
1968 				hlist_add_head(&bfqq->woken_list_node,
1969 				    &bfqd->last_completed_rq_bfqq->woken_list);
1970 
1971 				bfq_clear_bfqq_has_waker(bfqq);
1972 			} else if (bfqd->last_completed_rq_bfqq ==
1973 				   bfqq->waker_bfqq &&
1974 				   !bfq_bfqq_has_waker(bfqq)) {
1975 				/*
1976 				 * synchronization with waker_bfqq
1977 				 * seen for the second time
1978 				 */
1979 				bfq_mark_bfqq_has_waker(bfqq);
1980 			}
1981 		}
1982 
1983 		/*
1984 		 * Periodically reset inject limit, to make sure that
1985 		 * the latter eventually drops in case workload
1986 		 * changes, see step (3) in the comments on
1987 		 * bfq_update_inject_limit().
1988 		 */
1989 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1990 					     msecs_to_jiffies(1000)))
1991 			bfq_reset_inject_limit(bfqd, bfqq);
1992 
1993 		/*
1994 		 * The following conditions must hold to setup a new
1995 		 * sampling of total service time, and then a new
1996 		 * update of the inject limit:
1997 		 * - bfqq is in service, because the total service
1998 		 *   time is evaluated only for the I/O requests of
1999 		 *   the queues in service;
2000 		 * - this is the right occasion to compute or to
2001 		 *   lower the baseline total service time, because
2002 		 *   there are actually no requests in the drive,
2003 		 *   or
2004 		 *   the baseline total service time is available, and
2005 		 *   this is the right occasion to compute the other
2006 		 *   quantity needed to update the inject limit, i.e.,
2007 		 *   the total service time caused by the amount of
2008 		 *   injection allowed by the current value of the
2009 		 *   limit. It is the right occasion because injection
2010 		 *   has actually been performed during the service
2011 		 *   hole, and there are still in-flight requests,
2012 		 *   which are very likely to be exactly the injected
2013 		 *   requests, or part of them;
2014 		 * - the minimum interval for sampling the total
2015 		 *   service time and updating the inject limit has
2016 		 *   elapsed.
2017 		 */
2018 		if (bfqq == bfqd->in_service_queue &&
2019 		    (bfqd->rq_in_driver == 0 ||
2020 		     (bfqq->last_serv_time_ns > 0 &&
2021 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2022 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2023 					      msecs_to_jiffies(10))) {
2024 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2025 			/*
2026 			 * Start the state machine for measuring the
2027 			 * total service time of rq: setting
2028 			 * wait_dispatch will cause bfqd->waited_rq to
2029 			 * be set when rq will be dispatched.
2030 			 */
2031 			bfqd->wait_dispatch = true;
2032 			/*
2033 			 * If there is no I/O in service in the drive,
2034 			 * then possible injection occurred before the
2035 			 * arrival of rq will not affect the total
2036 			 * service time of rq. So the injection limit
2037 			 * must not be updated as a function of such
2038 			 * total service time, unless new injection
2039 			 * occurs before rq is completed. To have the
2040 			 * injection limit updated only in the latter
2041 			 * case, reset rqs_injected here (rqs_injected
2042 			 * will be set in case injection is performed
2043 			 * on bfqq before rq is completed).
2044 			 */
2045 			if (bfqd->rq_in_driver == 0)
2046 				bfqd->rqs_injected = false;
2047 		}
2048 	}
2049 
2050 	elv_rb_add(&bfqq->sort_list, rq);
2051 
2052 	/*
2053 	 * Check if this request is a better next-serve candidate.
2054 	 */
2055 	prev = bfqq->next_rq;
2056 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2057 	bfqq->next_rq = next_rq;
2058 
2059 	/*
2060 	 * Adjust priority tree position, if next_rq changes.
2061 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2062 	 */
2063 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2064 		bfq_pos_tree_add_move(bfqd, bfqq);
2065 
2066 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2067 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2068 						 rq, &interactive);
2069 	else {
2070 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2071 		    time_is_before_jiffies(
2072 				bfqq->last_wr_start_finish +
2073 				bfqd->bfq_wr_min_inter_arr_async)) {
2074 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2075 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2076 
2077 			bfqd->wr_busy_queues++;
2078 			bfqq->entity.prio_changed = 1;
2079 		}
2080 		if (prev != bfqq->next_rq)
2081 			bfq_updated_next_req(bfqd, bfqq);
2082 	}
2083 
2084 	/*
2085 	 * Assign jiffies to last_wr_start_finish in the following
2086 	 * cases:
2087 	 *
2088 	 * . if bfqq is not going to be weight-raised, because, for
2089 	 *   non weight-raised queues, last_wr_start_finish stores the
2090 	 *   arrival time of the last request; as of now, this piece
2091 	 *   of information is used only for deciding whether to
2092 	 *   weight-raise async queues
2093 	 *
2094 	 * . if bfqq is not weight-raised, because, if bfqq is now
2095 	 *   switching to weight-raised, then last_wr_start_finish
2096 	 *   stores the time when weight-raising starts
2097 	 *
2098 	 * . if bfqq is interactive, because, regardless of whether
2099 	 *   bfqq is currently weight-raised, the weight-raising
2100 	 *   period must start or restart (this case is considered
2101 	 *   separately because it is not detected by the above
2102 	 *   conditions, if bfqq is already weight-raised)
2103 	 *
2104 	 * last_wr_start_finish has to be updated also if bfqq is soft
2105 	 * real-time, because the weight-raising period is constantly
2106 	 * restarted on idle-to-busy transitions for these queues, but
2107 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2108 	 * needed.
2109 	 */
2110 	if (bfqd->low_latency &&
2111 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2112 		bfqq->last_wr_start_finish = jiffies;
2113 }
2114 
2115 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2116 					  struct bio *bio,
2117 					  struct request_queue *q)
2118 {
2119 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2120 
2121 
2122 	if (bfqq)
2123 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2124 
2125 	return NULL;
2126 }
2127 
2128 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2129 {
2130 	if (last_pos)
2131 		return abs(blk_rq_pos(rq) - last_pos);
2132 
2133 	return 0;
2134 }
2135 
2136 #if 0 /* Still not clear if we can do without next two functions */
2137 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2138 {
2139 	struct bfq_data *bfqd = q->elevator->elevator_data;
2140 
2141 	bfqd->rq_in_driver++;
2142 }
2143 
2144 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2145 {
2146 	struct bfq_data *bfqd = q->elevator->elevator_data;
2147 
2148 	bfqd->rq_in_driver--;
2149 }
2150 #endif
2151 
2152 static void bfq_remove_request(struct request_queue *q,
2153 			       struct request *rq)
2154 {
2155 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2156 	struct bfq_data *bfqd = bfqq->bfqd;
2157 	const int sync = rq_is_sync(rq);
2158 
2159 	if (bfqq->next_rq == rq) {
2160 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2161 		bfq_updated_next_req(bfqd, bfqq);
2162 	}
2163 
2164 	if (rq->queuelist.prev != &rq->queuelist)
2165 		list_del_init(&rq->queuelist);
2166 	bfqq->queued[sync]--;
2167 	bfqd->queued--;
2168 	elv_rb_del(&bfqq->sort_list, rq);
2169 
2170 	elv_rqhash_del(q, rq);
2171 	if (q->last_merge == rq)
2172 		q->last_merge = NULL;
2173 
2174 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2175 		bfqq->next_rq = NULL;
2176 
2177 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2178 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2179 			/*
2180 			 * bfqq emptied. In normal operation, when
2181 			 * bfqq is empty, bfqq->entity.service and
2182 			 * bfqq->entity.budget must contain,
2183 			 * respectively, the service received and the
2184 			 * budget used last time bfqq emptied. These
2185 			 * facts do not hold in this case, as at least
2186 			 * this last removal occurred while bfqq is
2187 			 * not in service. To avoid inconsistencies,
2188 			 * reset both bfqq->entity.service and
2189 			 * bfqq->entity.budget, if bfqq has still a
2190 			 * process that may issue I/O requests to it.
2191 			 */
2192 			bfqq->entity.budget = bfqq->entity.service = 0;
2193 		}
2194 
2195 		/*
2196 		 * Remove queue from request-position tree as it is empty.
2197 		 */
2198 		if (bfqq->pos_root) {
2199 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2200 			bfqq->pos_root = NULL;
2201 		}
2202 	} else {
2203 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2204 		if (unlikely(!bfqd->nonrot_with_queueing))
2205 			bfq_pos_tree_add_move(bfqd, bfqq);
2206 	}
2207 
2208 	if (rq->cmd_flags & REQ_META)
2209 		bfqq->meta_pending--;
2210 
2211 }
2212 
2213 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2214 		unsigned int nr_segs)
2215 {
2216 	struct request_queue *q = hctx->queue;
2217 	struct bfq_data *bfqd = q->elevator->elevator_data;
2218 	struct request *free = NULL;
2219 	/*
2220 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2221 	 * store its return value for later use, to avoid nesting
2222 	 * queue_lock inside the bfqd->lock. We assume that the bic
2223 	 * returned by bfq_bic_lookup does not go away before
2224 	 * bfqd->lock is taken.
2225 	 */
2226 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2227 	bool ret;
2228 
2229 	spin_lock_irq(&bfqd->lock);
2230 
2231 	if (bic)
2232 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2233 	else
2234 		bfqd->bio_bfqq = NULL;
2235 	bfqd->bio_bic = bic;
2236 
2237 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2238 
2239 	if (free)
2240 		blk_mq_free_request(free);
2241 	spin_unlock_irq(&bfqd->lock);
2242 
2243 	return ret;
2244 }
2245 
2246 static int bfq_request_merge(struct request_queue *q, struct request **req,
2247 			     struct bio *bio)
2248 {
2249 	struct bfq_data *bfqd = q->elevator->elevator_data;
2250 	struct request *__rq;
2251 
2252 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2253 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2254 		*req = __rq;
2255 		return ELEVATOR_FRONT_MERGE;
2256 	}
2257 
2258 	return ELEVATOR_NO_MERGE;
2259 }
2260 
2261 static struct bfq_queue *bfq_init_rq(struct request *rq);
2262 
2263 static void bfq_request_merged(struct request_queue *q, struct request *req,
2264 			       enum elv_merge type)
2265 {
2266 	if (type == ELEVATOR_FRONT_MERGE &&
2267 	    rb_prev(&req->rb_node) &&
2268 	    blk_rq_pos(req) <
2269 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2270 				    struct request, rb_node))) {
2271 		struct bfq_queue *bfqq = bfq_init_rq(req);
2272 		struct bfq_data *bfqd;
2273 		struct request *prev, *next_rq;
2274 
2275 		if (!bfqq)
2276 			return;
2277 
2278 		bfqd = bfqq->bfqd;
2279 
2280 		/* Reposition request in its sort_list */
2281 		elv_rb_del(&bfqq->sort_list, req);
2282 		elv_rb_add(&bfqq->sort_list, req);
2283 
2284 		/* Choose next request to be served for bfqq */
2285 		prev = bfqq->next_rq;
2286 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2287 					 bfqd->last_position);
2288 		bfqq->next_rq = next_rq;
2289 		/*
2290 		 * If next_rq changes, update both the queue's budget to
2291 		 * fit the new request and the queue's position in its
2292 		 * rq_pos_tree.
2293 		 */
2294 		if (prev != bfqq->next_rq) {
2295 			bfq_updated_next_req(bfqd, bfqq);
2296 			/*
2297 			 * See comments on bfq_pos_tree_add_move() for
2298 			 * the unlikely().
2299 			 */
2300 			if (unlikely(!bfqd->nonrot_with_queueing))
2301 				bfq_pos_tree_add_move(bfqd, bfqq);
2302 		}
2303 	}
2304 }
2305 
2306 /*
2307  * This function is called to notify the scheduler that the requests
2308  * rq and 'next' have been merged, with 'next' going away.  BFQ
2309  * exploits this hook to address the following issue: if 'next' has a
2310  * fifo_time lower that rq, then the fifo_time of rq must be set to
2311  * the value of 'next', to not forget the greater age of 'next'.
2312  *
2313  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2314  * on that rq is picked from the hash table q->elevator->hash, which,
2315  * in its turn, is filled only with I/O requests present in
2316  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2317  * the function that fills this hash table (elv_rqhash_add) is called
2318  * only by bfq_insert_request.
2319  */
2320 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2321 				struct request *next)
2322 {
2323 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2324 		*next_bfqq = bfq_init_rq(next);
2325 
2326 	if (!bfqq)
2327 		return;
2328 
2329 	/*
2330 	 * If next and rq belong to the same bfq_queue and next is older
2331 	 * than rq, then reposition rq in the fifo (by substituting next
2332 	 * with rq). Otherwise, if next and rq belong to different
2333 	 * bfq_queues, never reposition rq: in fact, we would have to
2334 	 * reposition it with respect to next's position in its own fifo,
2335 	 * which would most certainly be too expensive with respect to
2336 	 * the benefits.
2337 	 */
2338 	if (bfqq == next_bfqq &&
2339 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2340 	    next->fifo_time < rq->fifo_time) {
2341 		list_del_init(&rq->queuelist);
2342 		list_replace_init(&next->queuelist, &rq->queuelist);
2343 		rq->fifo_time = next->fifo_time;
2344 	}
2345 
2346 	if (bfqq->next_rq == next)
2347 		bfqq->next_rq = rq;
2348 
2349 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2350 }
2351 
2352 /* Must be called with bfqq != NULL */
2353 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2354 {
2355 	if (bfq_bfqq_busy(bfqq))
2356 		bfqq->bfqd->wr_busy_queues--;
2357 	bfqq->wr_coeff = 1;
2358 	bfqq->wr_cur_max_time = 0;
2359 	bfqq->last_wr_start_finish = jiffies;
2360 	/*
2361 	 * Trigger a weight change on the next invocation of
2362 	 * __bfq_entity_update_weight_prio.
2363 	 */
2364 	bfqq->entity.prio_changed = 1;
2365 }
2366 
2367 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2368 			     struct bfq_group *bfqg)
2369 {
2370 	int i, j;
2371 
2372 	for (i = 0; i < 2; i++)
2373 		for (j = 0; j < IOPRIO_BE_NR; j++)
2374 			if (bfqg->async_bfqq[i][j])
2375 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2376 	if (bfqg->async_idle_bfqq)
2377 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2378 }
2379 
2380 static void bfq_end_wr(struct bfq_data *bfqd)
2381 {
2382 	struct bfq_queue *bfqq;
2383 
2384 	spin_lock_irq(&bfqd->lock);
2385 
2386 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2387 		bfq_bfqq_end_wr(bfqq);
2388 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2389 		bfq_bfqq_end_wr(bfqq);
2390 	bfq_end_wr_async(bfqd);
2391 
2392 	spin_unlock_irq(&bfqd->lock);
2393 }
2394 
2395 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2396 {
2397 	if (request)
2398 		return blk_rq_pos(io_struct);
2399 	else
2400 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2401 }
2402 
2403 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2404 				  sector_t sector)
2405 {
2406 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2407 	       BFQQ_CLOSE_THR;
2408 }
2409 
2410 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2411 					 struct bfq_queue *bfqq,
2412 					 sector_t sector)
2413 {
2414 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2415 	struct rb_node *parent, *node;
2416 	struct bfq_queue *__bfqq;
2417 
2418 	if (RB_EMPTY_ROOT(root))
2419 		return NULL;
2420 
2421 	/*
2422 	 * First, if we find a request starting at the end of the last
2423 	 * request, choose it.
2424 	 */
2425 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2426 	if (__bfqq)
2427 		return __bfqq;
2428 
2429 	/*
2430 	 * If the exact sector wasn't found, the parent of the NULL leaf
2431 	 * will contain the closest sector (rq_pos_tree sorted by
2432 	 * next_request position).
2433 	 */
2434 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2435 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2436 		return __bfqq;
2437 
2438 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2439 		node = rb_next(&__bfqq->pos_node);
2440 	else
2441 		node = rb_prev(&__bfqq->pos_node);
2442 	if (!node)
2443 		return NULL;
2444 
2445 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2446 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2447 		return __bfqq;
2448 
2449 	return NULL;
2450 }
2451 
2452 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2453 						   struct bfq_queue *cur_bfqq,
2454 						   sector_t sector)
2455 {
2456 	struct bfq_queue *bfqq;
2457 
2458 	/*
2459 	 * We shall notice if some of the queues are cooperating,
2460 	 * e.g., working closely on the same area of the device. In
2461 	 * that case, we can group them together and: 1) don't waste
2462 	 * time idling, and 2) serve the union of their requests in
2463 	 * the best possible order for throughput.
2464 	 */
2465 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2466 	if (!bfqq || bfqq == cur_bfqq)
2467 		return NULL;
2468 
2469 	return bfqq;
2470 }
2471 
2472 static struct bfq_queue *
2473 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2474 {
2475 	int process_refs, new_process_refs;
2476 	struct bfq_queue *__bfqq;
2477 
2478 	/*
2479 	 * If there are no process references on the new_bfqq, then it is
2480 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2481 	 * may have dropped their last reference (not just their last process
2482 	 * reference).
2483 	 */
2484 	if (!bfqq_process_refs(new_bfqq))
2485 		return NULL;
2486 
2487 	/* Avoid a circular list and skip interim queue merges. */
2488 	while ((__bfqq = new_bfqq->new_bfqq)) {
2489 		if (__bfqq == bfqq)
2490 			return NULL;
2491 		new_bfqq = __bfqq;
2492 	}
2493 
2494 	process_refs = bfqq_process_refs(bfqq);
2495 	new_process_refs = bfqq_process_refs(new_bfqq);
2496 	/*
2497 	 * If the process for the bfqq has gone away, there is no
2498 	 * sense in merging the queues.
2499 	 */
2500 	if (process_refs == 0 || new_process_refs == 0)
2501 		return NULL;
2502 
2503 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2504 		new_bfqq->pid);
2505 
2506 	/*
2507 	 * Merging is just a redirection: the requests of the process
2508 	 * owning one of the two queues are redirected to the other queue.
2509 	 * The latter queue, in its turn, is set as shared if this is the
2510 	 * first time that the requests of some process are redirected to
2511 	 * it.
2512 	 *
2513 	 * We redirect bfqq to new_bfqq and not the opposite, because
2514 	 * we are in the context of the process owning bfqq, thus we
2515 	 * have the io_cq of this process. So we can immediately
2516 	 * configure this io_cq to redirect the requests of the
2517 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2518 	 * not available any more (new_bfqq->bic == NULL).
2519 	 *
2520 	 * Anyway, even in case new_bfqq coincides with the in-service
2521 	 * queue, redirecting requests the in-service queue is the
2522 	 * best option, as we feed the in-service queue with new
2523 	 * requests close to the last request served and, by doing so,
2524 	 * are likely to increase the throughput.
2525 	 */
2526 	bfqq->new_bfqq = new_bfqq;
2527 	new_bfqq->ref += process_refs;
2528 	return new_bfqq;
2529 }
2530 
2531 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2532 					struct bfq_queue *new_bfqq)
2533 {
2534 	if (bfq_too_late_for_merging(new_bfqq))
2535 		return false;
2536 
2537 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2538 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2539 		return false;
2540 
2541 	/*
2542 	 * If either of the queues has already been detected as seeky,
2543 	 * then merging it with the other queue is unlikely to lead to
2544 	 * sequential I/O.
2545 	 */
2546 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2547 		return false;
2548 
2549 	/*
2550 	 * Interleaved I/O is known to be done by (some) applications
2551 	 * only for reads, so it does not make sense to merge async
2552 	 * queues.
2553 	 */
2554 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2555 		return false;
2556 
2557 	return true;
2558 }
2559 
2560 /*
2561  * Attempt to schedule a merge of bfqq with the currently in-service
2562  * queue or with a close queue among the scheduled queues.  Return
2563  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2564  * structure otherwise.
2565  *
2566  * The OOM queue is not allowed to participate to cooperation: in fact, since
2567  * the requests temporarily redirected to the OOM queue could be redirected
2568  * again to dedicated queues at any time, the state needed to correctly
2569  * handle merging with the OOM queue would be quite complex and expensive
2570  * to maintain. Besides, in such a critical condition as an out of memory,
2571  * the benefits of queue merging may be little relevant, or even negligible.
2572  *
2573  * WARNING: queue merging may impair fairness among non-weight raised
2574  * queues, for at least two reasons: 1) the original weight of a
2575  * merged queue may change during the merged state, 2) even being the
2576  * weight the same, a merged queue may be bloated with many more
2577  * requests than the ones produced by its originally-associated
2578  * process.
2579  */
2580 static struct bfq_queue *
2581 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2582 		     void *io_struct, bool request)
2583 {
2584 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2585 
2586 	/*
2587 	 * Do not perform queue merging if the device is non
2588 	 * rotational and performs internal queueing. In fact, such a
2589 	 * device reaches a high speed through internal parallelism
2590 	 * and pipelining. This means that, to reach a high
2591 	 * throughput, it must have many requests enqueued at the same
2592 	 * time. But, in this configuration, the internal scheduling
2593 	 * algorithm of the device does exactly the job of queue
2594 	 * merging: it reorders requests so as to obtain as much as
2595 	 * possible a sequential I/O pattern. As a consequence, with
2596 	 * the workload generated by processes doing interleaved I/O,
2597 	 * the throughput reached by the device is likely to be the
2598 	 * same, with and without queue merging.
2599 	 *
2600 	 * Disabling merging also provides a remarkable benefit in
2601 	 * terms of throughput. Merging tends to make many workloads
2602 	 * artificially more uneven, because of shared queues
2603 	 * remaining non empty for incomparably more time than
2604 	 * non-merged queues. This may accentuate workload
2605 	 * asymmetries. For example, if one of the queues in a set of
2606 	 * merged queues has a higher weight than a normal queue, then
2607 	 * the shared queue may inherit such a high weight and, by
2608 	 * staying almost always active, may force BFQ to perform I/O
2609 	 * plugging most of the time. This evidently makes it harder
2610 	 * for BFQ to let the device reach a high throughput.
2611 	 *
2612 	 * Finally, the likely() macro below is not used because one
2613 	 * of the two branches is more likely than the other, but to
2614 	 * have the code path after the following if() executed as
2615 	 * fast as possible for the case of a non rotational device
2616 	 * with queueing. We want it because this is the fastest kind
2617 	 * of device. On the opposite end, the likely() may lengthen
2618 	 * the execution time of BFQ for the case of slower devices
2619 	 * (rotational or at least without queueing). But in this case
2620 	 * the execution time of BFQ matters very little, if not at
2621 	 * all.
2622 	 */
2623 	if (likely(bfqd->nonrot_with_queueing))
2624 		return NULL;
2625 
2626 	/*
2627 	 * Prevent bfqq from being merged if it has been created too
2628 	 * long ago. The idea is that true cooperating processes, and
2629 	 * thus their associated bfq_queues, are supposed to be
2630 	 * created shortly after each other. This is the case, e.g.,
2631 	 * for KVM/QEMU and dump I/O threads. Basing on this
2632 	 * assumption, the following filtering greatly reduces the
2633 	 * probability that two non-cooperating processes, which just
2634 	 * happen to do close I/O for some short time interval, have
2635 	 * their queues merged by mistake.
2636 	 */
2637 	if (bfq_too_late_for_merging(bfqq))
2638 		return NULL;
2639 
2640 	if (bfqq->new_bfqq)
2641 		return bfqq->new_bfqq;
2642 
2643 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2644 		return NULL;
2645 
2646 	/* If there is only one backlogged queue, don't search. */
2647 	if (bfq_tot_busy_queues(bfqd) == 1)
2648 		return NULL;
2649 
2650 	in_service_bfqq = bfqd->in_service_queue;
2651 
2652 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2653 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2654 	    bfq_rq_close_to_sector(io_struct, request,
2655 				   bfqd->in_serv_last_pos) &&
2656 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2657 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2658 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2659 		if (new_bfqq)
2660 			return new_bfqq;
2661 	}
2662 	/*
2663 	 * Check whether there is a cooperator among currently scheduled
2664 	 * queues. The only thing we need is that the bio/request is not
2665 	 * NULL, as we need it to establish whether a cooperator exists.
2666 	 */
2667 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2668 			bfq_io_struct_pos(io_struct, request));
2669 
2670 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2671 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2672 		return bfq_setup_merge(bfqq, new_bfqq);
2673 
2674 	return NULL;
2675 }
2676 
2677 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2678 {
2679 	struct bfq_io_cq *bic = bfqq->bic;
2680 
2681 	/*
2682 	 * If !bfqq->bic, the queue is already shared or its requests
2683 	 * have already been redirected to a shared queue; both idle window
2684 	 * and weight raising state have already been saved. Do nothing.
2685 	 */
2686 	if (!bic)
2687 		return;
2688 
2689 	bic->saved_weight = bfqq->entity.orig_weight;
2690 	bic->saved_ttime = bfqq->ttime;
2691 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2692 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2693 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2694 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2695 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2696 		     !bfq_bfqq_in_large_burst(bfqq) &&
2697 		     bfqq->bfqd->low_latency)) {
2698 		/*
2699 		 * bfqq being merged right after being created: bfqq
2700 		 * would have deserved interactive weight raising, but
2701 		 * did not make it to be set in a weight-raised state,
2702 		 * because of this early merge.	Store directly the
2703 		 * weight-raising state that would have been assigned
2704 		 * to bfqq, so that to avoid that bfqq unjustly fails
2705 		 * to enjoy weight raising if split soon.
2706 		 */
2707 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2708 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2709 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2710 		bic->saved_last_wr_start_finish = jiffies;
2711 	} else {
2712 		bic->saved_wr_coeff = bfqq->wr_coeff;
2713 		bic->saved_wr_start_at_switch_to_srt =
2714 			bfqq->wr_start_at_switch_to_srt;
2715 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2716 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2717 	}
2718 }
2719 
2720 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2721 {
2722 	/*
2723 	 * To prevent bfqq's service guarantees from being violated,
2724 	 * bfqq may be left busy, i.e., queued for service, even if
2725 	 * empty (see comments in __bfq_bfqq_expire() for
2726 	 * details). But, if no process will send requests to bfqq any
2727 	 * longer, then there is no point in keeping bfqq queued for
2728 	 * service. In addition, keeping bfqq queued for service, but
2729 	 * with no process ref any longer, may have caused bfqq to be
2730 	 * freed when dequeued from service. But this is assumed to
2731 	 * never happen.
2732 	 */
2733 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2734 	    bfqq != bfqd->in_service_queue)
2735 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2736 
2737 	bfq_put_queue(bfqq);
2738 }
2739 
2740 static void
2741 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2742 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2743 {
2744 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2745 		(unsigned long)new_bfqq->pid);
2746 	/* Save weight raising and idle window of the merged queues */
2747 	bfq_bfqq_save_state(bfqq);
2748 	bfq_bfqq_save_state(new_bfqq);
2749 	if (bfq_bfqq_IO_bound(bfqq))
2750 		bfq_mark_bfqq_IO_bound(new_bfqq);
2751 	bfq_clear_bfqq_IO_bound(bfqq);
2752 
2753 	/*
2754 	 * If bfqq is weight-raised, then let new_bfqq inherit
2755 	 * weight-raising. To reduce false positives, neglect the case
2756 	 * where bfqq has just been created, but has not yet made it
2757 	 * to be weight-raised (which may happen because EQM may merge
2758 	 * bfqq even before bfq_add_request is executed for the first
2759 	 * time for bfqq). Handling this case would however be very
2760 	 * easy, thanks to the flag just_created.
2761 	 */
2762 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2763 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2764 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2765 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2766 		new_bfqq->wr_start_at_switch_to_srt =
2767 			bfqq->wr_start_at_switch_to_srt;
2768 		if (bfq_bfqq_busy(new_bfqq))
2769 			bfqd->wr_busy_queues++;
2770 		new_bfqq->entity.prio_changed = 1;
2771 	}
2772 
2773 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2774 		bfqq->wr_coeff = 1;
2775 		bfqq->entity.prio_changed = 1;
2776 		if (bfq_bfqq_busy(bfqq))
2777 			bfqd->wr_busy_queues--;
2778 	}
2779 
2780 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2781 		     bfqd->wr_busy_queues);
2782 
2783 	/*
2784 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2785 	 */
2786 	bic_set_bfqq(bic, new_bfqq, 1);
2787 	bfq_mark_bfqq_coop(new_bfqq);
2788 	/*
2789 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2790 	 * set new_bfqq->bic to NULL. bfqq either:
2791 	 * - does not belong to any bic any more, and hence bfqq->bic must
2792 	 *   be set to NULL, or
2793 	 * - is a queue whose owning bics have already been redirected to a
2794 	 *   different queue, hence the queue is destined to not belong to
2795 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2796 	 *   assignment causes no harm).
2797 	 */
2798 	new_bfqq->bic = NULL;
2799 	/*
2800 	 * If the queue is shared, the pid is the pid of one of the associated
2801 	 * processes. Which pid depends on the exact sequence of merge events
2802 	 * the queue underwent. So printing such a pid is useless and confusing
2803 	 * because it reports a random pid between those of the associated
2804 	 * processes.
2805 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2806 	 * a pid in logging messages.
2807 	 */
2808 	new_bfqq->pid = -1;
2809 	bfqq->bic = NULL;
2810 	bfq_release_process_ref(bfqd, bfqq);
2811 }
2812 
2813 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2814 				struct bio *bio)
2815 {
2816 	struct bfq_data *bfqd = q->elevator->elevator_data;
2817 	bool is_sync = op_is_sync(bio->bi_opf);
2818 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2819 
2820 	/*
2821 	 * Disallow merge of a sync bio into an async request.
2822 	 */
2823 	if (is_sync && !rq_is_sync(rq))
2824 		return false;
2825 
2826 	/*
2827 	 * Lookup the bfqq that this bio will be queued with. Allow
2828 	 * merge only if rq is queued there.
2829 	 */
2830 	if (!bfqq)
2831 		return false;
2832 
2833 	/*
2834 	 * We take advantage of this function to perform an early merge
2835 	 * of the queues of possible cooperating processes.
2836 	 */
2837 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2838 	if (new_bfqq) {
2839 		/*
2840 		 * bic still points to bfqq, then it has not yet been
2841 		 * redirected to some other bfq_queue, and a queue
2842 		 * merge between bfqq and new_bfqq can be safely
2843 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2844 		 * and bfqq can be put.
2845 		 */
2846 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2847 				new_bfqq);
2848 		/*
2849 		 * If we get here, bio will be queued into new_queue,
2850 		 * so use new_bfqq to decide whether bio and rq can be
2851 		 * merged.
2852 		 */
2853 		bfqq = new_bfqq;
2854 
2855 		/*
2856 		 * Change also bqfd->bio_bfqq, as
2857 		 * bfqd->bio_bic now points to new_bfqq, and
2858 		 * this function may be invoked again (and then may
2859 		 * use again bqfd->bio_bfqq).
2860 		 */
2861 		bfqd->bio_bfqq = bfqq;
2862 	}
2863 
2864 	return bfqq == RQ_BFQQ(rq);
2865 }
2866 
2867 /*
2868  * Set the maximum time for the in-service queue to consume its
2869  * budget. This prevents seeky processes from lowering the throughput.
2870  * In practice, a time-slice service scheme is used with seeky
2871  * processes.
2872  */
2873 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2874 				   struct bfq_queue *bfqq)
2875 {
2876 	unsigned int timeout_coeff;
2877 
2878 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2879 		timeout_coeff = 1;
2880 	else
2881 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2882 
2883 	bfqd->last_budget_start = ktime_get();
2884 
2885 	bfqq->budget_timeout = jiffies +
2886 		bfqd->bfq_timeout * timeout_coeff;
2887 }
2888 
2889 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2890 				       struct bfq_queue *bfqq)
2891 {
2892 	if (bfqq) {
2893 		bfq_clear_bfqq_fifo_expire(bfqq);
2894 
2895 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2896 
2897 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2898 		    bfqq->wr_coeff > 1 &&
2899 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2900 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2901 			/*
2902 			 * For soft real-time queues, move the start
2903 			 * of the weight-raising period forward by the
2904 			 * time the queue has not received any
2905 			 * service. Otherwise, a relatively long
2906 			 * service delay is likely to cause the
2907 			 * weight-raising period of the queue to end,
2908 			 * because of the short duration of the
2909 			 * weight-raising period of a soft real-time
2910 			 * queue.  It is worth noting that this move
2911 			 * is not so dangerous for the other queues,
2912 			 * because soft real-time queues are not
2913 			 * greedy.
2914 			 *
2915 			 * To not add a further variable, we use the
2916 			 * overloaded field budget_timeout to
2917 			 * determine for how long the queue has not
2918 			 * received service, i.e., how much time has
2919 			 * elapsed since the queue expired. However,
2920 			 * this is a little imprecise, because
2921 			 * budget_timeout is set to jiffies if bfqq
2922 			 * not only expires, but also remains with no
2923 			 * request.
2924 			 */
2925 			if (time_after(bfqq->budget_timeout,
2926 				       bfqq->last_wr_start_finish))
2927 				bfqq->last_wr_start_finish +=
2928 					jiffies - bfqq->budget_timeout;
2929 			else
2930 				bfqq->last_wr_start_finish = jiffies;
2931 		}
2932 
2933 		bfq_set_budget_timeout(bfqd, bfqq);
2934 		bfq_log_bfqq(bfqd, bfqq,
2935 			     "set_in_service_queue, cur-budget = %d",
2936 			     bfqq->entity.budget);
2937 	}
2938 
2939 	bfqd->in_service_queue = bfqq;
2940 }
2941 
2942 /*
2943  * Get and set a new queue for service.
2944  */
2945 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2946 {
2947 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2948 
2949 	__bfq_set_in_service_queue(bfqd, bfqq);
2950 	return bfqq;
2951 }
2952 
2953 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2954 {
2955 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2956 	u32 sl;
2957 
2958 	bfq_mark_bfqq_wait_request(bfqq);
2959 
2960 	/*
2961 	 * We don't want to idle for seeks, but we do want to allow
2962 	 * fair distribution of slice time for a process doing back-to-back
2963 	 * seeks. So allow a little bit of time for him to submit a new rq.
2964 	 */
2965 	sl = bfqd->bfq_slice_idle;
2966 	/*
2967 	 * Unless the queue is being weight-raised or the scenario is
2968 	 * asymmetric, grant only minimum idle time if the queue
2969 	 * is seeky. A long idling is preserved for a weight-raised
2970 	 * queue, or, more in general, in an asymmetric scenario,
2971 	 * because a long idling is needed for guaranteeing to a queue
2972 	 * its reserved share of the throughput (in particular, it is
2973 	 * needed if the queue has a higher weight than some other
2974 	 * queue).
2975 	 */
2976 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2977 	    !bfq_asymmetric_scenario(bfqd, bfqq))
2978 		sl = min_t(u64, sl, BFQ_MIN_TT);
2979 	else if (bfqq->wr_coeff > 1)
2980 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2981 
2982 	bfqd->last_idling_start = ktime_get();
2983 	bfqd->last_idling_start_jiffies = jiffies;
2984 
2985 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2986 		      HRTIMER_MODE_REL);
2987 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2988 }
2989 
2990 /*
2991  * In autotuning mode, max_budget is dynamically recomputed as the
2992  * amount of sectors transferred in timeout at the estimated peak
2993  * rate. This enables BFQ to utilize a full timeslice with a full
2994  * budget, even if the in-service queue is served at peak rate. And
2995  * this maximises throughput with sequential workloads.
2996  */
2997 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2998 {
2999 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3000 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3001 }
3002 
3003 /*
3004  * Update parameters related to throughput and responsiveness, as a
3005  * function of the estimated peak rate. See comments on
3006  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3007  */
3008 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3009 {
3010 	if (bfqd->bfq_user_max_budget == 0) {
3011 		bfqd->bfq_max_budget =
3012 			bfq_calc_max_budget(bfqd);
3013 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3014 	}
3015 }
3016 
3017 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3018 				       struct request *rq)
3019 {
3020 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3021 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3022 		bfqd->peak_rate_samples = 1;
3023 		bfqd->sequential_samples = 0;
3024 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3025 			blk_rq_sectors(rq);
3026 	} else /* no new rq dispatched, just reset the number of samples */
3027 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3028 
3029 	bfq_log(bfqd,
3030 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3031 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3032 		bfqd->tot_sectors_dispatched);
3033 }
3034 
3035 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3036 {
3037 	u32 rate, weight, divisor;
3038 
3039 	/*
3040 	 * For the convergence property to hold (see comments on
3041 	 * bfq_update_peak_rate()) and for the assessment to be
3042 	 * reliable, a minimum number of samples must be present, and
3043 	 * a minimum amount of time must have elapsed. If not so, do
3044 	 * not compute new rate. Just reset parameters, to get ready
3045 	 * for a new evaluation attempt.
3046 	 */
3047 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3048 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3049 		goto reset_computation;
3050 
3051 	/*
3052 	 * If a new request completion has occurred after last
3053 	 * dispatch, then, to approximate the rate at which requests
3054 	 * have been served by the device, it is more precise to
3055 	 * extend the observation interval to the last completion.
3056 	 */
3057 	bfqd->delta_from_first =
3058 		max_t(u64, bfqd->delta_from_first,
3059 		      bfqd->last_completion - bfqd->first_dispatch);
3060 
3061 	/*
3062 	 * Rate computed in sects/usec, and not sects/nsec, for
3063 	 * precision issues.
3064 	 */
3065 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3066 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3067 
3068 	/*
3069 	 * Peak rate not updated if:
3070 	 * - the percentage of sequential dispatches is below 3/4 of the
3071 	 *   total, and rate is below the current estimated peak rate
3072 	 * - rate is unreasonably high (> 20M sectors/sec)
3073 	 */
3074 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3075 	     rate <= bfqd->peak_rate) ||
3076 		rate > 20<<BFQ_RATE_SHIFT)
3077 		goto reset_computation;
3078 
3079 	/*
3080 	 * We have to update the peak rate, at last! To this purpose,
3081 	 * we use a low-pass filter. We compute the smoothing constant
3082 	 * of the filter as a function of the 'weight' of the new
3083 	 * measured rate.
3084 	 *
3085 	 * As can be seen in next formulas, we define this weight as a
3086 	 * quantity proportional to how sequential the workload is,
3087 	 * and to how long the observation time interval is.
3088 	 *
3089 	 * The weight runs from 0 to 8. The maximum value of the
3090 	 * weight, 8, yields the minimum value for the smoothing
3091 	 * constant. At this minimum value for the smoothing constant,
3092 	 * the measured rate contributes for half of the next value of
3093 	 * the estimated peak rate.
3094 	 *
3095 	 * So, the first step is to compute the weight as a function
3096 	 * of how sequential the workload is. Note that the weight
3097 	 * cannot reach 9, because bfqd->sequential_samples cannot
3098 	 * become equal to bfqd->peak_rate_samples, which, in its
3099 	 * turn, holds true because bfqd->sequential_samples is not
3100 	 * incremented for the first sample.
3101 	 */
3102 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3103 
3104 	/*
3105 	 * Second step: further refine the weight as a function of the
3106 	 * duration of the observation interval.
3107 	 */
3108 	weight = min_t(u32, 8,
3109 		       div_u64(weight * bfqd->delta_from_first,
3110 			       BFQ_RATE_REF_INTERVAL));
3111 
3112 	/*
3113 	 * Divisor ranging from 10, for minimum weight, to 2, for
3114 	 * maximum weight.
3115 	 */
3116 	divisor = 10 - weight;
3117 
3118 	/*
3119 	 * Finally, update peak rate:
3120 	 *
3121 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3122 	 */
3123 	bfqd->peak_rate *= divisor-1;
3124 	bfqd->peak_rate /= divisor;
3125 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3126 
3127 	bfqd->peak_rate += rate;
3128 
3129 	/*
3130 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3131 	 * the minimum representable values reported in the comments
3132 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3133 	 * divisions by zero where bfqd->peak_rate is used as a
3134 	 * divisor.
3135 	 */
3136 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3137 
3138 	update_thr_responsiveness_params(bfqd);
3139 
3140 reset_computation:
3141 	bfq_reset_rate_computation(bfqd, rq);
3142 }
3143 
3144 /*
3145  * Update the read/write peak rate (the main quantity used for
3146  * auto-tuning, see update_thr_responsiveness_params()).
3147  *
3148  * It is not trivial to estimate the peak rate (correctly): because of
3149  * the presence of sw and hw queues between the scheduler and the
3150  * device components that finally serve I/O requests, it is hard to
3151  * say exactly when a given dispatched request is served inside the
3152  * device, and for how long. As a consequence, it is hard to know
3153  * precisely at what rate a given set of requests is actually served
3154  * by the device.
3155  *
3156  * On the opposite end, the dispatch time of any request is trivially
3157  * available, and, from this piece of information, the "dispatch rate"
3158  * of requests can be immediately computed. So, the idea in the next
3159  * function is to use what is known, namely request dispatch times
3160  * (plus, when useful, request completion times), to estimate what is
3161  * unknown, namely in-device request service rate.
3162  *
3163  * The main issue is that, because of the above facts, the rate at
3164  * which a certain set of requests is dispatched over a certain time
3165  * interval can vary greatly with respect to the rate at which the
3166  * same requests are then served. But, since the size of any
3167  * intermediate queue is limited, and the service scheme is lossless
3168  * (no request is silently dropped), the following obvious convergence
3169  * property holds: the number of requests dispatched MUST become
3170  * closer and closer to the number of requests completed as the
3171  * observation interval grows. This is the key property used in
3172  * the next function to estimate the peak service rate as a function
3173  * of the observed dispatch rate. The function assumes to be invoked
3174  * on every request dispatch.
3175  */
3176 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3177 {
3178 	u64 now_ns = ktime_get_ns();
3179 
3180 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3181 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3182 			bfqd->peak_rate_samples);
3183 		bfq_reset_rate_computation(bfqd, rq);
3184 		goto update_last_values; /* will add one sample */
3185 	}
3186 
3187 	/*
3188 	 * Device idle for very long: the observation interval lasting
3189 	 * up to this dispatch cannot be a valid observation interval
3190 	 * for computing a new peak rate (similarly to the late-
3191 	 * completion event in bfq_completed_request()). Go to
3192 	 * update_rate_and_reset to have the following three steps
3193 	 * taken:
3194 	 * - close the observation interval at the last (previous)
3195 	 *   request dispatch or completion
3196 	 * - compute rate, if possible, for that observation interval
3197 	 * - start a new observation interval with this dispatch
3198 	 */
3199 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3200 	    bfqd->rq_in_driver == 0)
3201 		goto update_rate_and_reset;
3202 
3203 	/* Update sampling information */
3204 	bfqd->peak_rate_samples++;
3205 
3206 	if ((bfqd->rq_in_driver > 0 ||
3207 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3208 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3209 		bfqd->sequential_samples++;
3210 
3211 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3212 
3213 	/* Reset max observed rq size every 32 dispatches */
3214 	if (likely(bfqd->peak_rate_samples % 32))
3215 		bfqd->last_rq_max_size =
3216 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3217 	else
3218 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3219 
3220 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3221 
3222 	/* Target observation interval not yet reached, go on sampling */
3223 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3224 		goto update_last_values;
3225 
3226 update_rate_and_reset:
3227 	bfq_update_rate_reset(bfqd, rq);
3228 update_last_values:
3229 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3230 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3231 		bfqd->in_serv_last_pos = bfqd->last_position;
3232 	bfqd->last_dispatch = now_ns;
3233 }
3234 
3235 /*
3236  * Remove request from internal lists.
3237  */
3238 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3239 {
3240 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3241 
3242 	/*
3243 	 * For consistency, the next instruction should have been
3244 	 * executed after removing the request from the queue and
3245 	 * dispatching it.  We execute instead this instruction before
3246 	 * bfq_remove_request() (and hence introduce a temporary
3247 	 * inconsistency), for efficiency.  In fact, should this
3248 	 * dispatch occur for a non in-service bfqq, this anticipated
3249 	 * increment prevents two counters related to bfqq->dispatched
3250 	 * from risking to be, first, uselessly decremented, and then
3251 	 * incremented again when the (new) value of bfqq->dispatched
3252 	 * happens to be taken into account.
3253 	 */
3254 	bfqq->dispatched++;
3255 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3256 
3257 	bfq_remove_request(q, rq);
3258 }
3259 
3260 /*
3261  * There is a case where idling does not have to be performed for
3262  * throughput concerns, but to preserve the throughput share of
3263  * the process associated with bfqq.
3264  *
3265  * To introduce this case, we can note that allowing the drive
3266  * to enqueue more than one request at a time, and hence
3267  * delegating de facto final scheduling decisions to the
3268  * drive's internal scheduler, entails loss of control on the
3269  * actual request service order. In particular, the critical
3270  * situation is when requests from different processes happen
3271  * to be present, at the same time, in the internal queue(s)
3272  * of the drive. In such a situation, the drive, by deciding
3273  * the service order of the internally-queued requests, does
3274  * determine also the actual throughput distribution among
3275  * these processes. But the drive typically has no notion or
3276  * concern about per-process throughput distribution, and
3277  * makes its decisions only on a per-request basis. Therefore,
3278  * the service distribution enforced by the drive's internal
3279  * scheduler is likely to coincide with the desired throughput
3280  * distribution only in a completely symmetric, or favorably
3281  * skewed scenario where:
3282  * (i-a) each of these processes must get the same throughput as
3283  *	 the others,
3284  * (i-b) in case (i-a) does not hold, it holds that the process
3285  *       associated with bfqq must receive a lower or equal
3286  *	 throughput than any of the other processes;
3287  * (ii)  the I/O of each process has the same properties, in
3288  *       terms of locality (sequential or random), direction
3289  *       (reads or writes), request sizes, greediness
3290  *       (from I/O-bound to sporadic), and so on;
3291 
3292  * In fact, in such a scenario, the drive tends to treat the requests
3293  * of each process in about the same way as the requests of the
3294  * others, and thus to provide each of these processes with about the
3295  * same throughput.  This is exactly the desired throughput
3296  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3297  * even more convenient distribution for (the process associated with)
3298  * bfqq.
3299  *
3300  * In contrast, in any asymmetric or unfavorable scenario, device
3301  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3302  * that bfqq receives its assigned fraction of the device throughput
3303  * (see [1] for details).
3304  *
3305  * The problem is that idling may significantly reduce throughput with
3306  * certain combinations of types of I/O and devices. An important
3307  * example is sync random I/O on flash storage with command
3308  * queueing. So, unless bfqq falls in cases where idling also boosts
3309  * throughput, it is important to check conditions (i-a), i(-b) and
3310  * (ii) accurately, so as to avoid idling when not strictly needed for
3311  * service guarantees.
3312  *
3313  * Unfortunately, it is extremely difficult to thoroughly check
3314  * condition (ii). And, in case there are active groups, it becomes
3315  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3316  * if there are active groups, then, for conditions (i-a) or (i-b) to
3317  * become false 'indirectly', it is enough that an active group
3318  * contains more active processes or sub-groups than some other active
3319  * group. More precisely, for conditions (i-a) or (i-b) to become
3320  * false because of such a group, it is not even necessary that the
3321  * group is (still) active: it is sufficient that, even if the group
3322  * has become inactive, some of its descendant processes still have
3323  * some request already dispatched but still waiting for
3324  * completion. In fact, requests have still to be guaranteed their
3325  * share of the throughput even after being dispatched. In this
3326  * respect, it is easy to show that, if a group frequently becomes
3327  * inactive while still having in-flight requests, and if, when this
3328  * happens, the group is not considered in the calculation of whether
3329  * the scenario is asymmetric, then the group may fail to be
3330  * guaranteed its fair share of the throughput (basically because
3331  * idling may not be performed for the descendant processes of the
3332  * group, but it had to be).  We address this issue with the following
3333  * bi-modal behavior, implemented in the function
3334  * bfq_asymmetric_scenario().
3335  *
3336  * If there are groups with requests waiting for completion
3337  * (as commented above, some of these groups may even be
3338  * already inactive), then the scenario is tagged as
3339  * asymmetric, conservatively, without checking any of the
3340  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3341  * This behavior matches also the fact that groups are created
3342  * exactly if controlling I/O is a primary concern (to
3343  * preserve bandwidth and latency guarantees).
3344  *
3345  * On the opposite end, if there are no groups with requests waiting
3346  * for completion, then only conditions (i-a) and (i-b) are actually
3347  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3348  * idling is not performed, regardless of whether condition (ii)
3349  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3350  * hold, then idling is allowed, and the device tends to be prevented
3351  * from queueing many requests, possibly of several processes. Since
3352  * there are no groups with requests waiting for completion, then, to
3353  * control conditions (i-a) and (i-b) it is enough to check just
3354  * whether all the queues with requests waiting for completion also
3355  * have the same weight.
3356  *
3357  * Not checking condition (ii) evidently exposes bfqq to the
3358  * risk of getting less throughput than its fair share.
3359  * However, for queues with the same weight, a further
3360  * mechanism, preemption, mitigates or even eliminates this
3361  * problem. And it does so without consequences on overall
3362  * throughput. This mechanism and its benefits are explained
3363  * in the next three paragraphs.
3364  *
3365  * Even if a queue, say Q, is expired when it remains idle, Q
3366  * can still preempt the new in-service queue if the next
3367  * request of Q arrives soon (see the comments on
3368  * bfq_bfqq_update_budg_for_activation). If all queues and
3369  * groups have the same weight, this form of preemption,
3370  * combined with the hole-recovery heuristic described in the
3371  * comments on function bfq_bfqq_update_budg_for_activation,
3372  * are enough to preserve a correct bandwidth distribution in
3373  * the mid term, even without idling. In fact, even if not
3374  * idling allows the internal queues of the device to contain
3375  * many requests, and thus to reorder requests, we can rather
3376  * safely assume that the internal scheduler still preserves a
3377  * minimum of mid-term fairness.
3378  *
3379  * More precisely, this preemption-based, idleless approach
3380  * provides fairness in terms of IOPS, and not sectors per
3381  * second. This can be seen with a simple example. Suppose
3382  * that there are two queues with the same weight, but that
3383  * the first queue receives requests of 8 sectors, while the
3384  * second queue receives requests of 1024 sectors. In
3385  * addition, suppose that each of the two queues contains at
3386  * most one request at a time, which implies that each queue
3387  * always remains idle after it is served. Finally, after
3388  * remaining idle, each queue receives very quickly a new
3389  * request. It follows that the two queues are served
3390  * alternatively, preempting each other if needed. This
3391  * implies that, although both queues have the same weight,
3392  * the queue with large requests receives a service that is
3393  * 1024/8 times as high as the service received by the other
3394  * queue.
3395  *
3396  * The motivation for using preemption instead of idling (for
3397  * queues with the same weight) is that, by not idling,
3398  * service guarantees are preserved (completely or at least in
3399  * part) without minimally sacrificing throughput. And, if
3400  * there is no active group, then the primary expectation for
3401  * this device is probably a high throughput.
3402  *
3403  * We are now left only with explaining the two sub-conditions in the
3404  * additional compound condition that is checked below for deciding
3405  * whether the scenario is asymmetric. To explain the first
3406  * sub-condition, we need to add that the function
3407  * bfq_asymmetric_scenario checks the weights of only
3408  * non-weight-raised queues, for efficiency reasons (see comments on
3409  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3410  * is checked explicitly here. More precisely, the compound condition
3411  * below takes into account also the fact that, even if bfqq is being
3412  * weight-raised, the scenario is still symmetric if all queues with
3413  * requests waiting for completion happen to be
3414  * weight-raised. Actually, we should be even more precise here, and
3415  * differentiate between interactive weight raising and soft real-time
3416  * weight raising.
3417  *
3418  * The second sub-condition checked in the compound condition is
3419  * whether there is a fair amount of already in-flight I/O not
3420  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3421  * following reason. The drive may decide to serve in-flight
3422  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3423  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3424  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3425  * basically uncontrolled amount of I/O from other queues may be
3426  * dispatched too, possibly causing the service of bfqq's I/O to be
3427  * delayed even longer in the drive. This problem gets more and more
3428  * serious as the speed and the queue depth of the drive grow,
3429  * because, as these two quantities grow, the probability to find no
3430  * queue busy but many requests in flight grows too. By contrast,
3431  * plugging I/O dispatching minimizes the delay induced by already
3432  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3433  * lose because of this delay.
3434  *
3435  * As a side note, it is worth considering that the above
3436  * device-idling countermeasures may however fail in the following
3437  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3438  * in a time period during which all symmetry sub-conditions hold, and
3439  * therefore the device is allowed to enqueue many requests, but at
3440  * some later point in time some sub-condition stops to hold, then it
3441  * may become impossible to make requests be served in the desired
3442  * order until all the requests already queued in the device have been
3443  * served. The last sub-condition commented above somewhat mitigates
3444  * this problem for weight-raised queues.
3445  */
3446 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3447 						 struct bfq_queue *bfqq)
3448 {
3449 	/* No point in idling for bfqq if it won't get requests any longer */
3450 	if (unlikely(!bfqq_process_refs(bfqq)))
3451 		return false;
3452 
3453 	return (bfqq->wr_coeff > 1 &&
3454 		(bfqd->wr_busy_queues <
3455 		 bfq_tot_busy_queues(bfqd) ||
3456 		 bfqd->rq_in_driver >=
3457 		 bfqq->dispatched + 4)) ||
3458 		bfq_asymmetric_scenario(bfqd, bfqq);
3459 }
3460 
3461 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3462 			      enum bfqq_expiration reason)
3463 {
3464 	/*
3465 	 * If this bfqq is shared between multiple processes, check
3466 	 * to make sure that those processes are still issuing I/Os
3467 	 * within the mean seek distance. If not, it may be time to
3468 	 * break the queues apart again.
3469 	 */
3470 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3471 		bfq_mark_bfqq_split_coop(bfqq);
3472 
3473 	/*
3474 	 * Consider queues with a higher finish virtual time than
3475 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3476 	 * true, then bfqq's bandwidth would be violated if an
3477 	 * uncontrolled amount of I/O from these queues were
3478 	 * dispatched while bfqq is waiting for its new I/O to
3479 	 * arrive. This is exactly what may happen if this is a forced
3480 	 * expiration caused by a preemption attempt, and if bfqq is
3481 	 * not re-scheduled. To prevent this from happening, re-queue
3482 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3483 	 * empty. By doing so, bfqq is granted to be served before the
3484 	 * above queues (provided that bfqq is of course eligible).
3485 	 */
3486 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3487 	    !(reason == BFQQE_PREEMPTED &&
3488 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3489 		if (bfqq->dispatched == 0)
3490 			/*
3491 			 * Overloading budget_timeout field to store
3492 			 * the time at which the queue remains with no
3493 			 * backlog and no outstanding request; used by
3494 			 * the weight-raising mechanism.
3495 			 */
3496 			bfqq->budget_timeout = jiffies;
3497 
3498 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3499 	} else {
3500 		bfq_requeue_bfqq(bfqd, bfqq, true);
3501 		/*
3502 		 * Resort priority tree of potential close cooperators.
3503 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3504 		 */
3505 		if (unlikely(!bfqd->nonrot_with_queueing &&
3506 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3507 			bfq_pos_tree_add_move(bfqd, bfqq);
3508 	}
3509 
3510 	/*
3511 	 * All in-service entities must have been properly deactivated
3512 	 * or requeued before executing the next function, which
3513 	 * resets all in-service entities as no more in service. This
3514 	 * may cause bfqq to be freed. If this happens, the next
3515 	 * function returns true.
3516 	 */
3517 	return __bfq_bfqd_reset_in_service(bfqd);
3518 }
3519 
3520 /**
3521  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3522  * @bfqd: device data.
3523  * @bfqq: queue to update.
3524  * @reason: reason for expiration.
3525  *
3526  * Handle the feedback on @bfqq budget at queue expiration.
3527  * See the body for detailed comments.
3528  */
3529 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3530 				     struct bfq_queue *bfqq,
3531 				     enum bfqq_expiration reason)
3532 {
3533 	struct request *next_rq;
3534 	int budget, min_budget;
3535 
3536 	min_budget = bfq_min_budget(bfqd);
3537 
3538 	if (bfqq->wr_coeff == 1)
3539 		budget = bfqq->max_budget;
3540 	else /*
3541 	      * Use a constant, low budget for weight-raised queues,
3542 	      * to help achieve a low latency. Keep it slightly higher
3543 	      * than the minimum possible budget, to cause a little
3544 	      * bit fewer expirations.
3545 	      */
3546 		budget = 2 * min_budget;
3547 
3548 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3549 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3550 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3551 		budget, bfq_min_budget(bfqd));
3552 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3553 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3554 
3555 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3556 		switch (reason) {
3557 		/*
3558 		 * Caveat: in all the following cases we trade latency
3559 		 * for throughput.
3560 		 */
3561 		case BFQQE_TOO_IDLE:
3562 			/*
3563 			 * This is the only case where we may reduce
3564 			 * the budget: if there is no request of the
3565 			 * process still waiting for completion, then
3566 			 * we assume (tentatively) that the timer has
3567 			 * expired because the batch of requests of
3568 			 * the process could have been served with a
3569 			 * smaller budget.  Hence, betting that
3570 			 * process will behave in the same way when it
3571 			 * becomes backlogged again, we reduce its
3572 			 * next budget.  As long as we guess right,
3573 			 * this budget cut reduces the latency
3574 			 * experienced by the process.
3575 			 *
3576 			 * However, if there are still outstanding
3577 			 * requests, then the process may have not yet
3578 			 * issued its next request just because it is
3579 			 * still waiting for the completion of some of
3580 			 * the still outstanding ones.  So in this
3581 			 * subcase we do not reduce its budget, on the
3582 			 * contrary we increase it to possibly boost
3583 			 * the throughput, as discussed in the
3584 			 * comments to the BUDGET_TIMEOUT case.
3585 			 */
3586 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3587 				budget = min(budget * 2, bfqd->bfq_max_budget);
3588 			else {
3589 				if (budget > 5 * min_budget)
3590 					budget -= 4 * min_budget;
3591 				else
3592 					budget = min_budget;
3593 			}
3594 			break;
3595 		case BFQQE_BUDGET_TIMEOUT:
3596 			/*
3597 			 * We double the budget here because it gives
3598 			 * the chance to boost the throughput if this
3599 			 * is not a seeky process (and has bumped into
3600 			 * this timeout because of, e.g., ZBR).
3601 			 */
3602 			budget = min(budget * 2, bfqd->bfq_max_budget);
3603 			break;
3604 		case BFQQE_BUDGET_EXHAUSTED:
3605 			/*
3606 			 * The process still has backlog, and did not
3607 			 * let either the budget timeout or the disk
3608 			 * idling timeout expire. Hence it is not
3609 			 * seeky, has a short thinktime and may be
3610 			 * happy with a higher budget too. So
3611 			 * definitely increase the budget of this good
3612 			 * candidate to boost the disk throughput.
3613 			 */
3614 			budget = min(budget * 4, bfqd->bfq_max_budget);
3615 			break;
3616 		case BFQQE_NO_MORE_REQUESTS:
3617 			/*
3618 			 * For queues that expire for this reason, it
3619 			 * is particularly important to keep the
3620 			 * budget close to the actual service they
3621 			 * need. Doing so reduces the timestamp
3622 			 * misalignment problem described in the
3623 			 * comments in the body of
3624 			 * __bfq_activate_entity. In fact, suppose
3625 			 * that a queue systematically expires for
3626 			 * BFQQE_NO_MORE_REQUESTS and presents a
3627 			 * new request in time to enjoy timestamp
3628 			 * back-shifting. The larger the budget of the
3629 			 * queue is with respect to the service the
3630 			 * queue actually requests in each service
3631 			 * slot, the more times the queue can be
3632 			 * reactivated with the same virtual finish
3633 			 * time. It follows that, even if this finish
3634 			 * time is pushed to the system virtual time
3635 			 * to reduce the consequent timestamp
3636 			 * misalignment, the queue unjustly enjoys for
3637 			 * many re-activations a lower finish time
3638 			 * than all newly activated queues.
3639 			 *
3640 			 * The service needed by bfqq is measured
3641 			 * quite precisely by bfqq->entity.service.
3642 			 * Since bfqq does not enjoy device idling,
3643 			 * bfqq->entity.service is equal to the number
3644 			 * of sectors that the process associated with
3645 			 * bfqq requested to read/write before waiting
3646 			 * for request completions, or blocking for
3647 			 * other reasons.
3648 			 */
3649 			budget = max_t(int, bfqq->entity.service, min_budget);
3650 			break;
3651 		default:
3652 			return;
3653 		}
3654 	} else if (!bfq_bfqq_sync(bfqq)) {
3655 		/*
3656 		 * Async queues get always the maximum possible
3657 		 * budget, as for them we do not care about latency
3658 		 * (in addition, their ability to dispatch is limited
3659 		 * by the charging factor).
3660 		 */
3661 		budget = bfqd->bfq_max_budget;
3662 	}
3663 
3664 	bfqq->max_budget = budget;
3665 
3666 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3667 	    !bfqd->bfq_user_max_budget)
3668 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3669 
3670 	/*
3671 	 * If there is still backlog, then assign a new budget, making
3672 	 * sure that it is large enough for the next request.  Since
3673 	 * the finish time of bfqq must be kept in sync with the
3674 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3675 	 * update.
3676 	 *
3677 	 * If there is no backlog, then no need to update the budget;
3678 	 * it will be updated on the arrival of a new request.
3679 	 */
3680 	next_rq = bfqq->next_rq;
3681 	if (next_rq)
3682 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3683 					    bfq_serv_to_charge(next_rq, bfqq));
3684 
3685 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3686 			next_rq ? blk_rq_sectors(next_rq) : 0,
3687 			bfqq->entity.budget);
3688 }
3689 
3690 /*
3691  * Return true if the process associated with bfqq is "slow". The slow
3692  * flag is used, in addition to the budget timeout, to reduce the
3693  * amount of service provided to seeky processes, and thus reduce
3694  * their chances to lower the throughput. More details in the comments
3695  * on the function bfq_bfqq_expire().
3696  *
3697  * An important observation is in order: as discussed in the comments
3698  * on the function bfq_update_peak_rate(), with devices with internal
3699  * queues, it is hard if ever possible to know when and for how long
3700  * an I/O request is processed by the device (apart from the trivial
3701  * I/O pattern where a new request is dispatched only after the
3702  * previous one has been completed). This makes it hard to evaluate
3703  * the real rate at which the I/O requests of each bfq_queue are
3704  * served.  In fact, for an I/O scheduler like BFQ, serving a
3705  * bfq_queue means just dispatching its requests during its service
3706  * slot (i.e., until the budget of the queue is exhausted, or the
3707  * queue remains idle, or, finally, a timeout fires). But, during the
3708  * service slot of a bfq_queue, around 100 ms at most, the device may
3709  * be even still processing requests of bfq_queues served in previous
3710  * service slots. On the opposite end, the requests of the in-service
3711  * bfq_queue may be completed after the service slot of the queue
3712  * finishes.
3713  *
3714  * Anyway, unless more sophisticated solutions are used
3715  * (where possible), the sum of the sizes of the requests dispatched
3716  * during the service slot of a bfq_queue is probably the only
3717  * approximation available for the service received by the bfq_queue
3718  * during its service slot. And this sum is the quantity used in this
3719  * function to evaluate the I/O speed of a process.
3720  */
3721 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3722 				 bool compensate, enum bfqq_expiration reason,
3723 				 unsigned long *delta_ms)
3724 {
3725 	ktime_t delta_ktime;
3726 	u32 delta_usecs;
3727 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3728 
3729 	if (!bfq_bfqq_sync(bfqq))
3730 		return false;
3731 
3732 	if (compensate)
3733 		delta_ktime = bfqd->last_idling_start;
3734 	else
3735 		delta_ktime = ktime_get();
3736 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3737 	delta_usecs = ktime_to_us(delta_ktime);
3738 
3739 	/* don't use too short time intervals */
3740 	if (delta_usecs < 1000) {
3741 		if (blk_queue_nonrot(bfqd->queue))
3742 			 /*
3743 			  * give same worst-case guarantees as idling
3744 			  * for seeky
3745 			  */
3746 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3747 		else /* charge at least one seek */
3748 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3749 
3750 		return slow;
3751 	}
3752 
3753 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3754 
3755 	/*
3756 	 * Use only long (> 20ms) intervals to filter out excessive
3757 	 * spikes in service rate estimation.
3758 	 */
3759 	if (delta_usecs > 20000) {
3760 		/*
3761 		 * Caveat for rotational devices: processes doing I/O
3762 		 * in the slower disk zones tend to be slow(er) even
3763 		 * if not seeky. In this respect, the estimated peak
3764 		 * rate is likely to be an average over the disk
3765 		 * surface. Accordingly, to not be too harsh with
3766 		 * unlucky processes, a process is deemed slow only if
3767 		 * its rate has been lower than half of the estimated
3768 		 * peak rate.
3769 		 */
3770 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3771 	}
3772 
3773 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3774 
3775 	return slow;
3776 }
3777 
3778 /*
3779  * To be deemed as soft real-time, an application must meet two
3780  * requirements. First, the application must not require an average
3781  * bandwidth higher than the approximate bandwidth required to playback or
3782  * record a compressed high-definition video.
3783  * The next function is invoked on the completion of the last request of a
3784  * batch, to compute the next-start time instant, soft_rt_next_start, such
3785  * that, if the next request of the application does not arrive before
3786  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3787  *
3788  * The second requirement is that the request pattern of the application is
3789  * isochronous, i.e., that, after issuing a request or a batch of requests,
3790  * the application stops issuing new requests until all its pending requests
3791  * have been completed. After that, the application may issue a new batch,
3792  * and so on.
3793  * For this reason the next function is invoked to compute
3794  * soft_rt_next_start only for applications that meet this requirement,
3795  * whereas soft_rt_next_start is set to infinity for applications that do
3796  * not.
3797  *
3798  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3799  * happen to meet, occasionally or systematically, both the above
3800  * bandwidth and isochrony requirements. This may happen at least in
3801  * the following circumstances. First, if the CPU load is high. The
3802  * application may stop issuing requests while the CPUs are busy
3803  * serving other processes, then restart, then stop again for a while,
3804  * and so on. The other circumstances are related to the storage
3805  * device: the storage device is highly loaded or reaches a low-enough
3806  * throughput with the I/O of the application (e.g., because the I/O
3807  * is random and/or the device is slow). In all these cases, the
3808  * I/O of the application may be simply slowed down enough to meet
3809  * the bandwidth and isochrony requirements. To reduce the probability
3810  * that greedy applications are deemed as soft real-time in these
3811  * corner cases, a further rule is used in the computation of
3812  * soft_rt_next_start: the return value of this function is forced to
3813  * be higher than the maximum between the following two quantities.
3814  *
3815  * (a) Current time plus: (1) the maximum time for which the arrival
3816  *     of a request is waited for when a sync queue becomes idle,
3817  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3818  *     postpone for a moment the reason for adding a few extra
3819  *     jiffies; we get back to it after next item (b).  Lower-bounding
3820  *     the return value of this function with the current time plus
3821  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3822  *     because the latter issue their next request as soon as possible
3823  *     after the last one has been completed. In contrast, a soft
3824  *     real-time application spends some time processing data, after a
3825  *     batch of its requests has been completed.
3826  *
3827  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3828  *     above, greedy applications may happen to meet both the
3829  *     bandwidth and isochrony requirements under heavy CPU or
3830  *     storage-device load. In more detail, in these scenarios, these
3831  *     applications happen, only for limited time periods, to do I/O
3832  *     slowly enough to meet all the requirements described so far,
3833  *     including the filtering in above item (a). These slow-speed
3834  *     time intervals are usually interspersed between other time
3835  *     intervals during which these applications do I/O at a very high
3836  *     speed. Fortunately, exactly because of the high speed of the
3837  *     I/O in the high-speed intervals, the values returned by this
3838  *     function happen to be so high, near the end of any such
3839  *     high-speed interval, to be likely to fall *after* the end of
3840  *     the low-speed time interval that follows. These high values are
3841  *     stored in bfqq->soft_rt_next_start after each invocation of
3842  *     this function. As a consequence, if the last value of
3843  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3844  *     next value that this function may return, then, from the very
3845  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3846  *     likely to be constantly kept so high that any I/O request
3847  *     issued during the low-speed interval is considered as arriving
3848  *     to soon for the application to be deemed as soft
3849  *     real-time. Then, in the high-speed interval that follows, the
3850  *     application will not be deemed as soft real-time, just because
3851  *     it will do I/O at a high speed. And so on.
3852  *
3853  * Getting back to the filtering in item (a), in the following two
3854  * cases this filtering might be easily passed by a greedy
3855  * application, if the reference quantity was just
3856  * bfqd->bfq_slice_idle:
3857  * 1) HZ is so low that the duration of a jiffy is comparable to or
3858  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3859  *    devices with HZ=100. The time granularity may be so coarse
3860  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3861  *    is rather lower than the exact value.
3862  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3863  *    for a while, then suddenly 'jump' by several units to recover the lost
3864  *    increments. This seems to happen, e.g., inside virtual machines.
3865  * To address this issue, in the filtering in (a) we do not use as a
3866  * reference time interval just bfqd->bfq_slice_idle, but
3867  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3868  * minimum number of jiffies for which the filter seems to be quite
3869  * precise also in embedded systems and KVM/QEMU virtual machines.
3870  */
3871 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3872 						struct bfq_queue *bfqq)
3873 {
3874 	return max3(bfqq->soft_rt_next_start,
3875 		    bfqq->last_idle_bklogged +
3876 		    HZ * bfqq->service_from_backlogged /
3877 		    bfqd->bfq_wr_max_softrt_rate,
3878 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3879 }
3880 
3881 /**
3882  * bfq_bfqq_expire - expire a queue.
3883  * @bfqd: device owning the queue.
3884  * @bfqq: the queue to expire.
3885  * @compensate: if true, compensate for the time spent idling.
3886  * @reason: the reason causing the expiration.
3887  *
3888  * If the process associated with bfqq does slow I/O (e.g., because it
3889  * issues random requests), we charge bfqq with the time it has been
3890  * in service instead of the service it has received (see
3891  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3892  * a consequence, bfqq will typically get higher timestamps upon
3893  * reactivation, and hence it will be rescheduled as if it had
3894  * received more service than what it has actually received. In the
3895  * end, bfqq receives less service in proportion to how slowly its
3896  * associated process consumes its budgets (and hence how seriously it
3897  * tends to lower the throughput). In addition, this time-charging
3898  * strategy guarantees time fairness among slow processes. In
3899  * contrast, if the process associated with bfqq is not slow, we
3900  * charge bfqq exactly with the service it has received.
3901  *
3902  * Charging time to the first type of queues and the exact service to
3903  * the other has the effect of using the WF2Q+ policy to schedule the
3904  * former on a timeslice basis, without violating service domain
3905  * guarantees among the latter.
3906  */
3907 void bfq_bfqq_expire(struct bfq_data *bfqd,
3908 		     struct bfq_queue *bfqq,
3909 		     bool compensate,
3910 		     enum bfqq_expiration reason)
3911 {
3912 	bool slow;
3913 	unsigned long delta = 0;
3914 	struct bfq_entity *entity = &bfqq->entity;
3915 
3916 	/*
3917 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3918 	 */
3919 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3920 
3921 	/*
3922 	 * As above explained, charge slow (typically seeky) and
3923 	 * timed-out queues with the time and not the service
3924 	 * received, to favor sequential workloads.
3925 	 *
3926 	 * Processes doing I/O in the slower disk zones will tend to
3927 	 * be slow(er) even if not seeky. Therefore, since the
3928 	 * estimated peak rate is actually an average over the disk
3929 	 * surface, these processes may timeout just for bad luck. To
3930 	 * avoid punishing them, do not charge time to processes that
3931 	 * succeeded in consuming at least 2/3 of their budget. This
3932 	 * allows BFQ to preserve enough elasticity to still perform
3933 	 * bandwidth, and not time, distribution with little unlucky
3934 	 * or quasi-sequential processes.
3935 	 */
3936 	if (bfqq->wr_coeff == 1 &&
3937 	    (slow ||
3938 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3939 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3940 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3941 
3942 	if (reason == BFQQE_TOO_IDLE &&
3943 	    entity->service <= 2 * entity->budget / 10)
3944 		bfq_clear_bfqq_IO_bound(bfqq);
3945 
3946 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3947 		bfqq->last_wr_start_finish = jiffies;
3948 
3949 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3950 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3951 		/*
3952 		 * If we get here, and there are no outstanding
3953 		 * requests, then the request pattern is isochronous
3954 		 * (see the comments on the function
3955 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3956 		 * soft_rt_next_start. And we do it, unless bfqq is in
3957 		 * interactive weight raising. We do not do it in the
3958 		 * latter subcase, for the following reason. bfqq may
3959 		 * be conveying the I/O needed to load a soft
3960 		 * real-time application. Such an application will
3961 		 * actually exhibit a soft real-time I/O pattern after
3962 		 * it finally starts doing its job. But, if
3963 		 * soft_rt_next_start is computed here for an
3964 		 * interactive bfqq, and bfqq had received a lot of
3965 		 * service before remaining with no outstanding
3966 		 * request (likely to happen on a fast device), then
3967 		 * soft_rt_next_start would be assigned such a high
3968 		 * value that, for a very long time, bfqq would be
3969 		 * prevented from being possibly considered as soft
3970 		 * real time.
3971 		 *
3972 		 * If, instead, the queue still has outstanding
3973 		 * requests, then we have to wait for the completion
3974 		 * of all the outstanding requests to discover whether
3975 		 * the request pattern is actually isochronous.
3976 		 */
3977 		if (bfqq->dispatched == 0 &&
3978 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
3979 			bfqq->soft_rt_next_start =
3980 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3981 		else if (bfqq->dispatched > 0) {
3982 			/*
3983 			 * Schedule an update of soft_rt_next_start to when
3984 			 * the task may be discovered to be isochronous.
3985 			 */
3986 			bfq_mark_bfqq_softrt_update(bfqq);
3987 		}
3988 	}
3989 
3990 	bfq_log_bfqq(bfqd, bfqq,
3991 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3992 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3993 
3994 	/*
3995 	 * bfqq expired, so no total service time needs to be computed
3996 	 * any longer: reset state machine for measuring total service
3997 	 * times.
3998 	 */
3999 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4000 	bfqd->waited_rq = NULL;
4001 
4002 	/*
4003 	 * Increase, decrease or leave budget unchanged according to
4004 	 * reason.
4005 	 */
4006 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4007 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4008 		/* bfqq is gone, no more actions on it */
4009 		return;
4010 
4011 	/* mark bfqq as waiting a request only if a bic still points to it */
4012 	if (!bfq_bfqq_busy(bfqq) &&
4013 	    reason != BFQQE_BUDGET_TIMEOUT &&
4014 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4015 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4016 		/*
4017 		 * Not setting service to 0, because, if the next rq
4018 		 * arrives in time, the queue will go on receiving
4019 		 * service with this same budget (as if it never expired)
4020 		 */
4021 	} else
4022 		entity->service = 0;
4023 
4024 	/*
4025 	 * Reset the received-service counter for every parent entity.
4026 	 * Differently from what happens with bfqq->entity.service,
4027 	 * the resetting of this counter never needs to be postponed
4028 	 * for parent entities. In fact, in case bfqq may have a
4029 	 * chance to go on being served using the last, partially
4030 	 * consumed budget, bfqq->entity.service needs to be kept,
4031 	 * because if bfqq then actually goes on being served using
4032 	 * the same budget, the last value of bfqq->entity.service is
4033 	 * needed to properly decrement bfqq->entity.budget by the
4034 	 * portion already consumed. In contrast, it is not necessary
4035 	 * to keep entity->service for parent entities too, because
4036 	 * the bubble up of the new value of bfqq->entity.budget will
4037 	 * make sure that the budgets of parent entities are correct,
4038 	 * even in case bfqq and thus parent entities go on receiving
4039 	 * service with the same budget.
4040 	 */
4041 	entity = entity->parent;
4042 	for_each_entity(entity)
4043 		entity->service = 0;
4044 }
4045 
4046 /*
4047  * Budget timeout is not implemented through a dedicated timer, but
4048  * just checked on request arrivals and completions, as well as on
4049  * idle timer expirations.
4050  */
4051 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4052 {
4053 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4054 }
4055 
4056 /*
4057  * If we expire a queue that is actively waiting (i.e., with the
4058  * device idled) for the arrival of a new request, then we may incur
4059  * the timestamp misalignment problem described in the body of the
4060  * function __bfq_activate_entity. Hence we return true only if this
4061  * condition does not hold, or if the queue is slow enough to deserve
4062  * only to be kicked off for preserving a high throughput.
4063  */
4064 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4065 {
4066 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4067 		"may_budget_timeout: wait_request %d left %d timeout %d",
4068 		bfq_bfqq_wait_request(bfqq),
4069 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4070 		bfq_bfqq_budget_timeout(bfqq));
4071 
4072 	return (!bfq_bfqq_wait_request(bfqq) ||
4073 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4074 		&&
4075 		bfq_bfqq_budget_timeout(bfqq);
4076 }
4077 
4078 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4079 					     struct bfq_queue *bfqq)
4080 {
4081 	bool rot_without_queueing =
4082 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4083 		bfqq_sequential_and_IO_bound,
4084 		idling_boosts_thr;
4085 
4086 	/* No point in idling for bfqq if it won't get requests any longer */
4087 	if (unlikely(!bfqq_process_refs(bfqq)))
4088 		return false;
4089 
4090 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4091 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4092 
4093 	/*
4094 	 * The next variable takes into account the cases where idling
4095 	 * boosts the throughput.
4096 	 *
4097 	 * The value of the variable is computed considering, first, that
4098 	 * idling is virtually always beneficial for the throughput if:
4099 	 * (a) the device is not NCQ-capable and rotational, or
4100 	 * (b) regardless of the presence of NCQ, the device is rotational and
4101 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4102 	 * (c) regardless of whether it is rotational, the device is
4103 	 *     not NCQ-capable and the request pattern for bfqq is
4104 	 *     I/O-bound and sequential.
4105 	 *
4106 	 * Secondly, and in contrast to the above item (b), idling an
4107 	 * NCQ-capable flash-based device would not boost the
4108 	 * throughput even with sequential I/O; rather it would lower
4109 	 * the throughput in proportion to how fast the device
4110 	 * is. Accordingly, the next variable is true if any of the
4111 	 * above conditions (a), (b) or (c) is true, and, in
4112 	 * particular, happens to be false if bfqd is an NCQ-capable
4113 	 * flash-based device.
4114 	 */
4115 	idling_boosts_thr = rot_without_queueing ||
4116 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4117 		 bfqq_sequential_and_IO_bound);
4118 
4119 	/*
4120 	 * The return value of this function is equal to that of
4121 	 * idling_boosts_thr, unless a special case holds. In this
4122 	 * special case, described below, idling may cause problems to
4123 	 * weight-raised queues.
4124 	 *
4125 	 * When the request pool is saturated (e.g., in the presence
4126 	 * of write hogs), if the processes associated with
4127 	 * non-weight-raised queues ask for requests at a lower rate,
4128 	 * then processes associated with weight-raised queues have a
4129 	 * higher probability to get a request from the pool
4130 	 * immediately (or at least soon) when they need one. Thus
4131 	 * they have a higher probability to actually get a fraction
4132 	 * of the device throughput proportional to their high
4133 	 * weight. This is especially true with NCQ-capable drives,
4134 	 * which enqueue several requests in advance, and further
4135 	 * reorder internally-queued requests.
4136 	 *
4137 	 * For this reason, we force to false the return value if
4138 	 * there are weight-raised busy queues. In this case, and if
4139 	 * bfqq is not weight-raised, this guarantees that the device
4140 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4141 	 * then idling will be guaranteed by another variable, see
4142 	 * below). Combined with the timestamping rules of BFQ (see
4143 	 * [1] for details), this behavior causes bfqq, and hence any
4144 	 * sync non-weight-raised queue, to get a lower number of
4145 	 * requests served, and thus to ask for a lower number of
4146 	 * requests from the request pool, before the busy
4147 	 * weight-raised queues get served again. This often mitigates
4148 	 * starvation problems in the presence of heavy write
4149 	 * workloads and NCQ, thereby guaranteeing a higher
4150 	 * application and system responsiveness in these hostile
4151 	 * scenarios.
4152 	 */
4153 	return idling_boosts_thr &&
4154 		bfqd->wr_busy_queues == 0;
4155 }
4156 
4157 /*
4158  * For a queue that becomes empty, device idling is allowed only if
4159  * this function returns true for that queue. As a consequence, since
4160  * device idling plays a critical role for both throughput boosting
4161  * and service guarantees, the return value of this function plays a
4162  * critical role as well.
4163  *
4164  * In a nutshell, this function returns true only if idling is
4165  * beneficial for throughput or, even if detrimental for throughput,
4166  * idling is however necessary to preserve service guarantees (low
4167  * latency, desired throughput distribution, ...). In particular, on
4168  * NCQ-capable devices, this function tries to return false, so as to
4169  * help keep the drives' internal queues full, whenever this helps the
4170  * device boost the throughput without causing any service-guarantee
4171  * issue.
4172  *
4173  * Most of the issues taken into account to get the return value of
4174  * this function are not trivial. We discuss these issues in the two
4175  * functions providing the main pieces of information needed by this
4176  * function.
4177  */
4178 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4179 {
4180 	struct bfq_data *bfqd = bfqq->bfqd;
4181 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4182 
4183 	/* No point in idling for bfqq if it won't get requests any longer */
4184 	if (unlikely(!bfqq_process_refs(bfqq)))
4185 		return false;
4186 
4187 	if (unlikely(bfqd->strict_guarantees))
4188 		return true;
4189 
4190 	/*
4191 	 * Idling is performed only if slice_idle > 0. In addition, we
4192 	 * do not idle if
4193 	 * (a) bfqq is async
4194 	 * (b) bfqq is in the idle io prio class: in this case we do
4195 	 * not idle because we want to minimize the bandwidth that
4196 	 * queues in this class can steal to higher-priority queues
4197 	 */
4198 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4199 	   bfq_class_idle(bfqq))
4200 		return false;
4201 
4202 	idling_boosts_thr_with_no_issue =
4203 		idling_boosts_thr_without_issues(bfqd, bfqq);
4204 
4205 	idling_needed_for_service_guar =
4206 		idling_needed_for_service_guarantees(bfqd, bfqq);
4207 
4208 	/*
4209 	 * We have now the two components we need to compute the
4210 	 * return value of the function, which is true only if idling
4211 	 * either boosts the throughput (without issues), or is
4212 	 * necessary to preserve service guarantees.
4213 	 */
4214 	return idling_boosts_thr_with_no_issue ||
4215 		idling_needed_for_service_guar;
4216 }
4217 
4218 /*
4219  * If the in-service queue is empty but the function bfq_better_to_idle
4220  * returns true, then:
4221  * 1) the queue must remain in service and cannot be expired, and
4222  * 2) the device must be idled to wait for the possible arrival of a new
4223  *    request for the queue.
4224  * See the comments on the function bfq_better_to_idle for the reasons
4225  * why performing device idling is the best choice to boost the throughput
4226  * and preserve service guarantees when bfq_better_to_idle itself
4227  * returns true.
4228  */
4229 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4230 {
4231 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4232 }
4233 
4234 /*
4235  * This function chooses the queue from which to pick the next extra
4236  * I/O request to inject, if it finds a compatible queue. See the
4237  * comments on bfq_update_inject_limit() for details on the injection
4238  * mechanism, and for the definitions of the quantities mentioned
4239  * below.
4240  */
4241 static struct bfq_queue *
4242 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4243 {
4244 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4245 	unsigned int limit = in_serv_bfqq->inject_limit;
4246 	/*
4247 	 * If
4248 	 * - bfqq is not weight-raised and therefore does not carry
4249 	 *   time-critical I/O,
4250 	 * or
4251 	 * - regardless of whether bfqq is weight-raised, bfqq has
4252 	 *   however a long think time, during which it can absorb the
4253 	 *   effect of an appropriate number of extra I/O requests
4254 	 *   from other queues (see bfq_update_inject_limit for
4255 	 *   details on the computation of this number);
4256 	 * then injection can be performed without restrictions.
4257 	 */
4258 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4259 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4260 
4261 	/*
4262 	 * If
4263 	 * - the baseline total service time could not be sampled yet,
4264 	 *   so the inject limit happens to be still 0, and
4265 	 * - a lot of time has elapsed since the plugging of I/O
4266 	 *   dispatching started, so drive speed is being wasted
4267 	 *   significantly;
4268 	 * then temporarily raise inject limit to one request.
4269 	 */
4270 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4271 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4272 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4273 				      bfqd->bfq_slice_idle)
4274 		)
4275 		limit = 1;
4276 
4277 	if (bfqd->rq_in_driver >= limit)
4278 		return NULL;
4279 
4280 	/*
4281 	 * Linear search of the source queue for injection; but, with
4282 	 * a high probability, very few steps are needed to find a
4283 	 * candidate queue, i.e., a queue with enough budget left for
4284 	 * its next request. In fact:
4285 	 * - BFQ dynamically updates the budget of every queue so as
4286 	 *   to accommodate the expected backlog of the queue;
4287 	 * - if a queue gets all its requests dispatched as injected
4288 	 *   service, then the queue is removed from the active list
4289 	 *   (and re-added only if it gets new requests, but then it
4290 	 *   is assigned again enough budget for its new backlog).
4291 	 */
4292 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4293 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4294 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4295 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4296 		    bfq_bfqq_budget_left(bfqq)) {
4297 			/*
4298 			 * Allow for only one large in-flight request
4299 			 * on non-rotational devices, for the
4300 			 * following reason. On non-rotationl drives,
4301 			 * large requests take much longer than
4302 			 * smaller requests to be served. In addition,
4303 			 * the drive prefers to serve large requests
4304 			 * w.r.t. to small ones, if it can choose. So,
4305 			 * having more than one large requests queued
4306 			 * in the drive may easily make the next first
4307 			 * request of the in-service queue wait for so
4308 			 * long to break bfqq's service guarantees. On
4309 			 * the bright side, large requests let the
4310 			 * drive reach a very high throughput, even if
4311 			 * there is only one in-flight large request
4312 			 * at a time.
4313 			 */
4314 			if (blk_queue_nonrot(bfqd->queue) &&
4315 			    blk_rq_sectors(bfqq->next_rq) >=
4316 			    BFQQ_SECT_THR_NONROT)
4317 				limit = min_t(unsigned int, 1, limit);
4318 			else
4319 				limit = in_serv_bfqq->inject_limit;
4320 
4321 			if (bfqd->rq_in_driver < limit) {
4322 				bfqd->rqs_injected = true;
4323 				return bfqq;
4324 			}
4325 		}
4326 
4327 	return NULL;
4328 }
4329 
4330 /*
4331  * Select a queue for service.  If we have a current queue in service,
4332  * check whether to continue servicing it, or retrieve and set a new one.
4333  */
4334 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4335 {
4336 	struct bfq_queue *bfqq;
4337 	struct request *next_rq;
4338 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4339 
4340 	bfqq = bfqd->in_service_queue;
4341 	if (!bfqq)
4342 		goto new_queue;
4343 
4344 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4345 
4346 	/*
4347 	 * Do not expire bfqq for budget timeout if bfqq may be about
4348 	 * to enjoy device idling. The reason why, in this case, we
4349 	 * prevent bfqq from expiring is the same as in the comments
4350 	 * on the case where bfq_bfqq_must_idle() returns true, in
4351 	 * bfq_completed_request().
4352 	 */
4353 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4354 	    !bfq_bfqq_must_idle(bfqq))
4355 		goto expire;
4356 
4357 check_queue:
4358 	/*
4359 	 * This loop is rarely executed more than once. Even when it
4360 	 * happens, it is much more convenient to re-execute this loop
4361 	 * than to return NULL and trigger a new dispatch to get a
4362 	 * request served.
4363 	 */
4364 	next_rq = bfqq->next_rq;
4365 	/*
4366 	 * If bfqq has requests queued and it has enough budget left to
4367 	 * serve them, keep the queue, otherwise expire it.
4368 	 */
4369 	if (next_rq) {
4370 		if (bfq_serv_to_charge(next_rq, bfqq) >
4371 			bfq_bfqq_budget_left(bfqq)) {
4372 			/*
4373 			 * Expire the queue for budget exhaustion,
4374 			 * which makes sure that the next budget is
4375 			 * enough to serve the next request, even if
4376 			 * it comes from the fifo expired path.
4377 			 */
4378 			reason = BFQQE_BUDGET_EXHAUSTED;
4379 			goto expire;
4380 		} else {
4381 			/*
4382 			 * The idle timer may be pending because we may
4383 			 * not disable disk idling even when a new request
4384 			 * arrives.
4385 			 */
4386 			if (bfq_bfqq_wait_request(bfqq)) {
4387 				/*
4388 				 * If we get here: 1) at least a new request
4389 				 * has arrived but we have not disabled the
4390 				 * timer because the request was too small,
4391 				 * 2) then the block layer has unplugged
4392 				 * the device, causing the dispatch to be
4393 				 * invoked.
4394 				 *
4395 				 * Since the device is unplugged, now the
4396 				 * requests are probably large enough to
4397 				 * provide a reasonable throughput.
4398 				 * So we disable idling.
4399 				 */
4400 				bfq_clear_bfqq_wait_request(bfqq);
4401 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4402 			}
4403 			goto keep_queue;
4404 		}
4405 	}
4406 
4407 	/*
4408 	 * No requests pending. However, if the in-service queue is idling
4409 	 * for a new request, or has requests waiting for a completion and
4410 	 * may idle after their completion, then keep it anyway.
4411 	 *
4412 	 * Yet, inject service from other queues if it boosts
4413 	 * throughput and is possible.
4414 	 */
4415 	if (bfq_bfqq_wait_request(bfqq) ||
4416 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4417 		struct bfq_queue *async_bfqq =
4418 			bfqq->bic && bfqq->bic->bfqq[0] &&
4419 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4420 			bfqq->bic->bfqq[0]->next_rq ?
4421 			bfqq->bic->bfqq[0] : NULL;
4422 
4423 		/*
4424 		 * The next three mutually-exclusive ifs decide
4425 		 * whether to try injection, and choose the queue to
4426 		 * pick an I/O request from.
4427 		 *
4428 		 * The first if checks whether the process associated
4429 		 * with bfqq has also async I/O pending. If so, it
4430 		 * injects such I/O unconditionally. Injecting async
4431 		 * I/O from the same process can cause no harm to the
4432 		 * process. On the contrary, it can only increase
4433 		 * bandwidth and reduce latency for the process.
4434 		 *
4435 		 * The second if checks whether there happens to be a
4436 		 * non-empty waker queue for bfqq, i.e., a queue whose
4437 		 * I/O needs to be completed for bfqq to receive new
4438 		 * I/O. This happens, e.g., if bfqq is associated with
4439 		 * a process that does some sync. A sync generates
4440 		 * extra blocking I/O, which must be completed before
4441 		 * the process associated with bfqq can go on with its
4442 		 * I/O. If the I/O of the waker queue is not served,
4443 		 * then bfqq remains empty, and no I/O is dispatched,
4444 		 * until the idle timeout fires for bfqq. This is
4445 		 * likely to result in lower bandwidth and higher
4446 		 * latencies for bfqq, and in a severe loss of total
4447 		 * throughput. The best action to take is therefore to
4448 		 * serve the waker queue as soon as possible. So do it
4449 		 * (without relying on the third alternative below for
4450 		 * eventually serving waker_bfqq's I/O; see the last
4451 		 * paragraph for further details). This systematic
4452 		 * injection of I/O from the waker queue does not
4453 		 * cause any delay to bfqq's I/O. On the contrary,
4454 		 * next bfqq's I/O is brought forward dramatically,
4455 		 * for it is not blocked for milliseconds.
4456 		 *
4457 		 * The third if checks whether bfqq is a queue for
4458 		 * which it is better to avoid injection. It is so if
4459 		 * bfqq delivers more throughput when served without
4460 		 * any further I/O from other queues in the middle, or
4461 		 * if the service times of bfqq's I/O requests both
4462 		 * count more than overall throughput, and may be
4463 		 * easily increased by injection (this happens if bfqq
4464 		 * has a short think time). If none of these
4465 		 * conditions holds, then a candidate queue for
4466 		 * injection is looked for through
4467 		 * bfq_choose_bfqq_for_injection(). Note that the
4468 		 * latter may return NULL (for example if the inject
4469 		 * limit for bfqq is currently 0).
4470 		 *
4471 		 * NOTE: motivation for the second alternative
4472 		 *
4473 		 * Thanks to the way the inject limit is updated in
4474 		 * bfq_update_has_short_ttime(), it is rather likely
4475 		 * that, if I/O is being plugged for bfqq and the
4476 		 * waker queue has pending I/O requests that are
4477 		 * blocking bfqq's I/O, then the third alternative
4478 		 * above lets the waker queue get served before the
4479 		 * I/O-plugging timeout fires. So one may deem the
4480 		 * second alternative superfluous. It is not, because
4481 		 * the third alternative may be way less effective in
4482 		 * case of a synchronization. For two main
4483 		 * reasons. First, throughput may be low because the
4484 		 * inject limit may be too low to guarantee the same
4485 		 * amount of injected I/O, from the waker queue or
4486 		 * other queues, that the second alternative
4487 		 * guarantees (the second alternative unconditionally
4488 		 * injects a pending I/O request of the waker queue
4489 		 * for each bfq_dispatch_request()). Second, with the
4490 		 * third alternative, the duration of the plugging,
4491 		 * i.e., the time before bfqq finally receives new I/O,
4492 		 * may not be minimized, because the waker queue may
4493 		 * happen to be served only after other queues.
4494 		 */
4495 		if (async_bfqq &&
4496 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4497 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4498 		    bfq_bfqq_budget_left(async_bfqq))
4499 			bfqq = bfqq->bic->bfqq[0];
4500 		else if (bfq_bfqq_has_waker(bfqq) &&
4501 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4502 			   bfqq->next_rq &&
4503 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4504 					      bfqq->waker_bfqq) <=
4505 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4506 			)
4507 			bfqq = bfqq->waker_bfqq;
4508 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4509 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4510 			  !bfq_bfqq_has_short_ttime(bfqq)))
4511 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4512 		else
4513 			bfqq = NULL;
4514 
4515 		goto keep_queue;
4516 	}
4517 
4518 	reason = BFQQE_NO_MORE_REQUESTS;
4519 expire:
4520 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4521 new_queue:
4522 	bfqq = bfq_set_in_service_queue(bfqd);
4523 	if (bfqq) {
4524 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4525 		goto check_queue;
4526 	}
4527 keep_queue:
4528 	if (bfqq)
4529 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4530 	else
4531 		bfq_log(bfqd, "select_queue: no queue returned");
4532 
4533 	return bfqq;
4534 }
4535 
4536 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4537 {
4538 	struct bfq_entity *entity = &bfqq->entity;
4539 
4540 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4541 		bfq_log_bfqq(bfqd, bfqq,
4542 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4543 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4544 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4545 			bfqq->wr_coeff,
4546 			bfqq->entity.weight, bfqq->entity.orig_weight);
4547 
4548 		if (entity->prio_changed)
4549 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4550 
4551 		/*
4552 		 * If the queue was activated in a burst, or too much
4553 		 * time has elapsed from the beginning of this
4554 		 * weight-raising period, then end weight raising.
4555 		 */
4556 		if (bfq_bfqq_in_large_burst(bfqq))
4557 			bfq_bfqq_end_wr(bfqq);
4558 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4559 						bfqq->wr_cur_max_time)) {
4560 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4561 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4562 					       bfq_wr_duration(bfqd)))
4563 				bfq_bfqq_end_wr(bfqq);
4564 			else {
4565 				switch_back_to_interactive_wr(bfqq, bfqd);
4566 				bfqq->entity.prio_changed = 1;
4567 			}
4568 		}
4569 		if (bfqq->wr_coeff > 1 &&
4570 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4571 		    bfqq->service_from_wr > max_service_from_wr) {
4572 			/* see comments on max_service_from_wr */
4573 			bfq_bfqq_end_wr(bfqq);
4574 		}
4575 	}
4576 	/*
4577 	 * To improve latency (for this or other queues), immediately
4578 	 * update weight both if it must be raised and if it must be
4579 	 * lowered. Since, entity may be on some active tree here, and
4580 	 * might have a pending change of its ioprio class, invoke
4581 	 * next function with the last parameter unset (see the
4582 	 * comments on the function).
4583 	 */
4584 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4585 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4586 						entity, false);
4587 }
4588 
4589 /*
4590  * Dispatch next request from bfqq.
4591  */
4592 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4593 						 struct bfq_queue *bfqq)
4594 {
4595 	struct request *rq = bfqq->next_rq;
4596 	unsigned long service_to_charge;
4597 
4598 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4599 
4600 	bfq_bfqq_served(bfqq, service_to_charge);
4601 
4602 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4603 		bfqd->wait_dispatch = false;
4604 		bfqd->waited_rq = rq;
4605 	}
4606 
4607 	bfq_dispatch_remove(bfqd->queue, rq);
4608 
4609 	if (bfqq != bfqd->in_service_queue)
4610 		goto return_rq;
4611 
4612 	/*
4613 	 * If weight raising has to terminate for bfqq, then next
4614 	 * function causes an immediate update of bfqq's weight,
4615 	 * without waiting for next activation. As a consequence, on
4616 	 * expiration, bfqq will be timestamped as if has never been
4617 	 * weight-raised during this service slot, even if it has
4618 	 * received part or even most of the service as a
4619 	 * weight-raised queue. This inflates bfqq's timestamps, which
4620 	 * is beneficial, as bfqq is then more willing to leave the
4621 	 * device immediately to possible other weight-raised queues.
4622 	 */
4623 	bfq_update_wr_data(bfqd, bfqq);
4624 
4625 	/*
4626 	 * Expire bfqq, pretending that its budget expired, if bfqq
4627 	 * belongs to CLASS_IDLE and other queues are waiting for
4628 	 * service.
4629 	 */
4630 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4631 		goto return_rq;
4632 
4633 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4634 
4635 return_rq:
4636 	return rq;
4637 }
4638 
4639 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4640 {
4641 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4642 
4643 	if (!atomic_read(&hctx->elevator_queued))
4644 		return false;
4645 
4646 	/*
4647 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4648 	 * most a call to dispatch for nothing
4649 	 */
4650 	return !list_empty_careful(&bfqd->dispatch) ||
4651 		bfq_tot_busy_queues(bfqd) > 0;
4652 }
4653 
4654 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4655 {
4656 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4657 	struct request *rq = NULL;
4658 	struct bfq_queue *bfqq = NULL;
4659 
4660 	if (!list_empty(&bfqd->dispatch)) {
4661 		rq = list_first_entry(&bfqd->dispatch, struct request,
4662 				      queuelist);
4663 		list_del_init(&rq->queuelist);
4664 
4665 		bfqq = RQ_BFQQ(rq);
4666 
4667 		if (bfqq) {
4668 			/*
4669 			 * Increment counters here, because this
4670 			 * dispatch does not follow the standard
4671 			 * dispatch flow (where counters are
4672 			 * incremented)
4673 			 */
4674 			bfqq->dispatched++;
4675 
4676 			goto inc_in_driver_start_rq;
4677 		}
4678 
4679 		/*
4680 		 * We exploit the bfq_finish_requeue_request hook to
4681 		 * decrement rq_in_driver, but
4682 		 * bfq_finish_requeue_request will not be invoked on
4683 		 * this request. So, to avoid unbalance, just start
4684 		 * this request, without incrementing rq_in_driver. As
4685 		 * a negative consequence, rq_in_driver is deceptively
4686 		 * lower than it should be while this request is in
4687 		 * service. This may cause bfq_schedule_dispatch to be
4688 		 * invoked uselessly.
4689 		 *
4690 		 * As for implementing an exact solution, the
4691 		 * bfq_finish_requeue_request hook, if defined, is
4692 		 * probably invoked also on this request. So, by
4693 		 * exploiting this hook, we could 1) increment
4694 		 * rq_in_driver here, and 2) decrement it in
4695 		 * bfq_finish_requeue_request. Such a solution would
4696 		 * let the value of the counter be always accurate,
4697 		 * but it would entail using an extra interface
4698 		 * function. This cost seems higher than the benefit,
4699 		 * being the frequency of non-elevator-private
4700 		 * requests very low.
4701 		 */
4702 		goto start_rq;
4703 	}
4704 
4705 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4706 		bfq_tot_busy_queues(bfqd));
4707 
4708 	if (bfq_tot_busy_queues(bfqd) == 0)
4709 		goto exit;
4710 
4711 	/*
4712 	 * Force device to serve one request at a time if
4713 	 * strict_guarantees is true. Forcing this service scheme is
4714 	 * currently the ONLY way to guarantee that the request
4715 	 * service order enforced by the scheduler is respected by a
4716 	 * queueing device. Otherwise the device is free even to make
4717 	 * some unlucky request wait for as long as the device
4718 	 * wishes.
4719 	 *
4720 	 * Of course, serving one request at a time may cause loss of
4721 	 * throughput.
4722 	 */
4723 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4724 		goto exit;
4725 
4726 	bfqq = bfq_select_queue(bfqd);
4727 	if (!bfqq)
4728 		goto exit;
4729 
4730 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4731 
4732 	if (rq) {
4733 inc_in_driver_start_rq:
4734 		bfqd->rq_in_driver++;
4735 start_rq:
4736 		rq->rq_flags |= RQF_STARTED;
4737 	}
4738 exit:
4739 	return rq;
4740 }
4741 
4742 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4743 static void bfq_update_dispatch_stats(struct request_queue *q,
4744 				      struct request *rq,
4745 				      struct bfq_queue *in_serv_queue,
4746 				      bool idle_timer_disabled)
4747 {
4748 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4749 
4750 	if (!idle_timer_disabled && !bfqq)
4751 		return;
4752 
4753 	/*
4754 	 * rq and bfqq are guaranteed to exist until this function
4755 	 * ends, for the following reasons. First, rq can be
4756 	 * dispatched to the device, and then can be completed and
4757 	 * freed, only after this function ends. Second, rq cannot be
4758 	 * merged (and thus freed because of a merge) any longer,
4759 	 * because it has already started. Thus rq cannot be freed
4760 	 * before this function ends, and, since rq has a reference to
4761 	 * bfqq, the same guarantee holds for bfqq too.
4762 	 *
4763 	 * In addition, the following queue lock guarantees that
4764 	 * bfqq_group(bfqq) exists as well.
4765 	 */
4766 	spin_lock_irq(&q->queue_lock);
4767 	if (idle_timer_disabled)
4768 		/*
4769 		 * Since the idle timer has been disabled,
4770 		 * in_serv_queue contained some request when
4771 		 * __bfq_dispatch_request was invoked above, which
4772 		 * implies that rq was picked exactly from
4773 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4774 		 * therefore guaranteed to exist because of the above
4775 		 * arguments.
4776 		 */
4777 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4778 	if (bfqq) {
4779 		struct bfq_group *bfqg = bfqq_group(bfqq);
4780 
4781 		bfqg_stats_update_avg_queue_size(bfqg);
4782 		bfqg_stats_set_start_empty_time(bfqg);
4783 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4784 	}
4785 	spin_unlock_irq(&q->queue_lock);
4786 }
4787 #else
4788 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4789 					     struct request *rq,
4790 					     struct bfq_queue *in_serv_queue,
4791 					     bool idle_timer_disabled) {}
4792 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4793 
4794 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4795 {
4796 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4797 	struct request *rq;
4798 	struct bfq_queue *in_serv_queue;
4799 	bool waiting_rq, idle_timer_disabled;
4800 
4801 	spin_lock_irq(&bfqd->lock);
4802 
4803 	in_serv_queue = bfqd->in_service_queue;
4804 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4805 
4806 	rq = __bfq_dispatch_request(hctx);
4807 
4808 	idle_timer_disabled =
4809 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4810 
4811 	spin_unlock_irq(&bfqd->lock);
4812 
4813 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4814 				  idle_timer_disabled);
4815 
4816 	return rq;
4817 }
4818 
4819 /*
4820  * Task holds one reference to the queue, dropped when task exits.  Each rq
4821  * in-flight on this queue also holds a reference, dropped when rq is freed.
4822  *
4823  * Scheduler lock must be held here. Recall not to use bfqq after calling
4824  * this function on it.
4825  */
4826 void bfq_put_queue(struct bfq_queue *bfqq)
4827 {
4828 	struct bfq_queue *item;
4829 	struct hlist_node *n;
4830 	struct bfq_group *bfqg = bfqq_group(bfqq);
4831 
4832 	if (bfqq->bfqd)
4833 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4834 			     bfqq, bfqq->ref);
4835 
4836 	bfqq->ref--;
4837 	if (bfqq->ref)
4838 		return;
4839 
4840 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4841 		hlist_del_init(&bfqq->burst_list_node);
4842 		/*
4843 		 * Decrement also burst size after the removal, if the
4844 		 * process associated with bfqq is exiting, and thus
4845 		 * does not contribute to the burst any longer. This
4846 		 * decrement helps filter out false positives of large
4847 		 * bursts, when some short-lived process (often due to
4848 		 * the execution of commands by some service) happens
4849 		 * to start and exit while a complex application is
4850 		 * starting, and thus spawning several processes that
4851 		 * do I/O (and that *must not* be treated as a large
4852 		 * burst, see comments on bfq_handle_burst).
4853 		 *
4854 		 * In particular, the decrement is performed only if:
4855 		 * 1) bfqq is not a merged queue, because, if it is,
4856 		 * then this free of bfqq is not triggered by the exit
4857 		 * of the process bfqq is associated with, but exactly
4858 		 * by the fact that bfqq has just been merged.
4859 		 * 2) burst_size is greater than 0, to handle
4860 		 * unbalanced decrements. Unbalanced decrements may
4861 		 * happen in te following case: bfqq is inserted into
4862 		 * the current burst list--without incrementing
4863 		 * bust_size--because of a split, but the current
4864 		 * burst list is not the burst list bfqq belonged to
4865 		 * (see comments on the case of a split in
4866 		 * bfq_set_request).
4867 		 */
4868 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4869 			bfqq->bfqd->burst_size--;
4870 	}
4871 
4872 	/*
4873 	 * bfqq does not exist any longer, so it cannot be woken by
4874 	 * any other queue, and cannot wake any other queue. Then bfqq
4875 	 * must be removed from the woken list of its possible waker
4876 	 * queue, and all queues in the woken list of bfqq must stop
4877 	 * having a waker queue. Strictly speaking, these updates
4878 	 * should be performed when bfqq remains with no I/O source
4879 	 * attached to it, which happens before bfqq gets freed. In
4880 	 * particular, this happens when the last process associated
4881 	 * with bfqq exits or gets associated with a different
4882 	 * queue. However, both events lead to bfqq being freed soon,
4883 	 * and dangling references would come out only after bfqq gets
4884 	 * freed. So these updates are done here, as a simple and safe
4885 	 * way to handle all cases.
4886 	 */
4887 	/* remove bfqq from woken list */
4888 	if (!hlist_unhashed(&bfqq->woken_list_node))
4889 		hlist_del_init(&bfqq->woken_list_node);
4890 
4891 	/* reset waker for all queues in woken list */
4892 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4893 				  woken_list_node) {
4894 		item->waker_bfqq = NULL;
4895 		bfq_clear_bfqq_has_waker(item);
4896 		hlist_del_init(&item->woken_list_node);
4897 	}
4898 
4899 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4900 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4901 
4902 	kmem_cache_free(bfq_pool, bfqq);
4903 	bfqg_and_blkg_put(bfqg);
4904 }
4905 
4906 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4907 {
4908 	struct bfq_queue *__bfqq, *next;
4909 
4910 	/*
4911 	 * If this queue was scheduled to merge with another queue, be
4912 	 * sure to drop the reference taken on that queue (and others in
4913 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4914 	 */
4915 	__bfqq = bfqq->new_bfqq;
4916 	while (__bfqq) {
4917 		if (__bfqq == bfqq)
4918 			break;
4919 		next = __bfqq->new_bfqq;
4920 		bfq_put_queue(__bfqq);
4921 		__bfqq = next;
4922 	}
4923 }
4924 
4925 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4926 {
4927 	if (bfqq == bfqd->in_service_queue) {
4928 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4929 		bfq_schedule_dispatch(bfqd);
4930 	}
4931 
4932 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4933 
4934 	bfq_put_cooperator(bfqq);
4935 
4936 	bfq_release_process_ref(bfqd, bfqq);
4937 }
4938 
4939 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4940 {
4941 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4942 	struct bfq_data *bfqd;
4943 
4944 	if (bfqq)
4945 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4946 
4947 	if (bfqq && bfqd) {
4948 		unsigned long flags;
4949 
4950 		spin_lock_irqsave(&bfqd->lock, flags);
4951 		bfqq->bic = NULL;
4952 		bfq_exit_bfqq(bfqd, bfqq);
4953 		bic_set_bfqq(bic, NULL, is_sync);
4954 		spin_unlock_irqrestore(&bfqd->lock, flags);
4955 	}
4956 }
4957 
4958 static void bfq_exit_icq(struct io_cq *icq)
4959 {
4960 	struct bfq_io_cq *bic = icq_to_bic(icq);
4961 
4962 	bfq_exit_icq_bfqq(bic, true);
4963 	bfq_exit_icq_bfqq(bic, false);
4964 }
4965 
4966 /*
4967  * Update the entity prio values; note that the new values will not
4968  * be used until the next (re)activation.
4969  */
4970 static void
4971 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4972 {
4973 	struct task_struct *tsk = current;
4974 	int ioprio_class;
4975 	struct bfq_data *bfqd = bfqq->bfqd;
4976 
4977 	if (!bfqd)
4978 		return;
4979 
4980 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4981 	switch (ioprio_class) {
4982 	default:
4983 		pr_err("bdi %s: bfq: bad prio class %d\n",
4984 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
4985 				ioprio_class);
4986 		fallthrough;
4987 	case IOPRIO_CLASS_NONE:
4988 		/*
4989 		 * No prio set, inherit CPU scheduling settings.
4990 		 */
4991 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4992 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4993 		break;
4994 	case IOPRIO_CLASS_RT:
4995 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4996 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4997 		break;
4998 	case IOPRIO_CLASS_BE:
4999 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5000 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5001 		break;
5002 	case IOPRIO_CLASS_IDLE:
5003 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5004 		bfqq->new_ioprio = 7;
5005 		break;
5006 	}
5007 
5008 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5009 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5010 			bfqq->new_ioprio);
5011 		bfqq->new_ioprio = IOPRIO_BE_NR;
5012 	}
5013 
5014 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5015 	bfqq->entity.prio_changed = 1;
5016 }
5017 
5018 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5019 				       struct bio *bio, bool is_sync,
5020 				       struct bfq_io_cq *bic);
5021 
5022 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5023 {
5024 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5025 	struct bfq_queue *bfqq;
5026 	int ioprio = bic->icq.ioc->ioprio;
5027 
5028 	/*
5029 	 * This condition may trigger on a newly created bic, be sure to
5030 	 * drop the lock before returning.
5031 	 */
5032 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5033 		return;
5034 
5035 	bic->ioprio = ioprio;
5036 
5037 	bfqq = bic_to_bfqq(bic, false);
5038 	if (bfqq) {
5039 		bfq_release_process_ref(bfqd, bfqq);
5040 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5041 		bic_set_bfqq(bic, bfqq, false);
5042 	}
5043 
5044 	bfqq = bic_to_bfqq(bic, true);
5045 	if (bfqq)
5046 		bfq_set_next_ioprio_data(bfqq, bic);
5047 }
5048 
5049 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5050 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5051 {
5052 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5053 	INIT_LIST_HEAD(&bfqq->fifo);
5054 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5055 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5056 	INIT_HLIST_HEAD(&bfqq->woken_list);
5057 
5058 	bfqq->ref = 0;
5059 	bfqq->bfqd = bfqd;
5060 
5061 	if (bic)
5062 		bfq_set_next_ioprio_data(bfqq, bic);
5063 
5064 	if (is_sync) {
5065 		/*
5066 		 * No need to mark as has_short_ttime if in
5067 		 * idle_class, because no device idling is performed
5068 		 * for queues in idle class
5069 		 */
5070 		if (!bfq_class_idle(bfqq))
5071 			/* tentatively mark as has_short_ttime */
5072 			bfq_mark_bfqq_has_short_ttime(bfqq);
5073 		bfq_mark_bfqq_sync(bfqq);
5074 		bfq_mark_bfqq_just_created(bfqq);
5075 	} else
5076 		bfq_clear_bfqq_sync(bfqq);
5077 
5078 	/* set end request to minus infinity from now */
5079 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5080 
5081 	bfq_mark_bfqq_IO_bound(bfqq);
5082 
5083 	bfqq->pid = pid;
5084 
5085 	/* Tentative initial value to trade off between thr and lat */
5086 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5087 	bfqq->budget_timeout = bfq_smallest_from_now();
5088 
5089 	bfqq->wr_coeff = 1;
5090 	bfqq->last_wr_start_finish = jiffies;
5091 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5092 	bfqq->split_time = bfq_smallest_from_now();
5093 
5094 	/*
5095 	 * To not forget the possibly high bandwidth consumed by a
5096 	 * process/queue in the recent past,
5097 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5098 	 * to the current value of bfqq->soft_rt_next_start (see
5099 	 * comments on bfq_bfqq_softrt_next_start).  Set
5100 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5101 	 * no bandwidth so far.
5102 	 */
5103 	bfqq->soft_rt_next_start = jiffies;
5104 
5105 	/* first request is almost certainly seeky */
5106 	bfqq->seek_history = 1;
5107 }
5108 
5109 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5110 					       struct bfq_group *bfqg,
5111 					       int ioprio_class, int ioprio)
5112 {
5113 	switch (ioprio_class) {
5114 	case IOPRIO_CLASS_RT:
5115 		return &bfqg->async_bfqq[0][ioprio];
5116 	case IOPRIO_CLASS_NONE:
5117 		ioprio = IOPRIO_NORM;
5118 		fallthrough;
5119 	case IOPRIO_CLASS_BE:
5120 		return &bfqg->async_bfqq[1][ioprio];
5121 	case IOPRIO_CLASS_IDLE:
5122 		return &bfqg->async_idle_bfqq;
5123 	default:
5124 		return NULL;
5125 	}
5126 }
5127 
5128 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5129 				       struct bio *bio, bool is_sync,
5130 				       struct bfq_io_cq *bic)
5131 {
5132 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5133 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5134 	struct bfq_queue **async_bfqq = NULL;
5135 	struct bfq_queue *bfqq;
5136 	struct bfq_group *bfqg;
5137 
5138 	rcu_read_lock();
5139 
5140 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5141 	if (!bfqg) {
5142 		bfqq = &bfqd->oom_bfqq;
5143 		goto out;
5144 	}
5145 
5146 	if (!is_sync) {
5147 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5148 						  ioprio);
5149 		bfqq = *async_bfqq;
5150 		if (bfqq)
5151 			goto out;
5152 	}
5153 
5154 	bfqq = kmem_cache_alloc_node(bfq_pool,
5155 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5156 				     bfqd->queue->node);
5157 
5158 	if (bfqq) {
5159 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5160 			      is_sync);
5161 		bfq_init_entity(&bfqq->entity, bfqg);
5162 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5163 	} else {
5164 		bfqq = &bfqd->oom_bfqq;
5165 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5166 		goto out;
5167 	}
5168 
5169 	/*
5170 	 * Pin the queue now that it's allocated, scheduler exit will
5171 	 * prune it.
5172 	 */
5173 	if (async_bfqq) {
5174 		bfqq->ref++; /*
5175 			      * Extra group reference, w.r.t. sync
5176 			      * queue. This extra reference is removed
5177 			      * only if bfqq->bfqg disappears, to
5178 			      * guarantee that this queue is not freed
5179 			      * until its group goes away.
5180 			      */
5181 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5182 			     bfqq, bfqq->ref);
5183 		*async_bfqq = bfqq;
5184 	}
5185 
5186 out:
5187 	bfqq->ref++; /* get a process reference to this queue */
5188 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5189 	rcu_read_unlock();
5190 	return bfqq;
5191 }
5192 
5193 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5194 				    struct bfq_queue *bfqq)
5195 {
5196 	struct bfq_ttime *ttime = &bfqq->ttime;
5197 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5198 
5199 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5200 
5201 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5202 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5203 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5204 				     ttime->ttime_samples);
5205 }
5206 
5207 static void
5208 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5209 		       struct request *rq)
5210 {
5211 	bfqq->seek_history <<= 1;
5212 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5213 
5214 	if (bfqq->wr_coeff > 1 &&
5215 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5216 	    BFQQ_TOTALLY_SEEKY(bfqq))
5217 		bfq_bfqq_end_wr(bfqq);
5218 }
5219 
5220 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5221 				       struct bfq_queue *bfqq,
5222 				       struct bfq_io_cq *bic)
5223 {
5224 	bool has_short_ttime = true, state_changed;
5225 
5226 	/*
5227 	 * No need to update has_short_ttime if bfqq is async or in
5228 	 * idle io prio class, or if bfq_slice_idle is zero, because
5229 	 * no device idling is performed for bfqq in this case.
5230 	 */
5231 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5232 	    bfqd->bfq_slice_idle == 0)
5233 		return;
5234 
5235 	/* Idle window just restored, statistics are meaningless. */
5236 	if (time_is_after_eq_jiffies(bfqq->split_time +
5237 				     bfqd->bfq_wr_min_idle_time))
5238 		return;
5239 
5240 	/* Think time is infinite if no process is linked to
5241 	 * bfqq. Otherwise check average think time to
5242 	 * decide whether to mark as has_short_ttime
5243 	 */
5244 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5245 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5246 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5247 		has_short_ttime = false;
5248 
5249 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5250 
5251 	if (has_short_ttime)
5252 		bfq_mark_bfqq_has_short_ttime(bfqq);
5253 	else
5254 		bfq_clear_bfqq_has_short_ttime(bfqq);
5255 
5256 	/*
5257 	 * Until the base value for the total service time gets
5258 	 * finally computed for bfqq, the inject limit does depend on
5259 	 * the think-time state (short|long). In particular, the limit
5260 	 * is 0 or 1 if the think time is deemed, respectively, as
5261 	 * short or long (details in the comments in
5262 	 * bfq_update_inject_limit()). Accordingly, the next
5263 	 * instructions reset the inject limit if the think-time state
5264 	 * has changed and the above base value is still to be
5265 	 * computed.
5266 	 *
5267 	 * However, the reset is performed only if more than 100 ms
5268 	 * have elapsed since the last update of the inject limit, or
5269 	 * (inclusive) if the change is from short to long think
5270 	 * time. The reason for this waiting is as follows.
5271 	 *
5272 	 * bfqq may have a long think time because of a
5273 	 * synchronization with some other queue, i.e., because the
5274 	 * I/O of some other queue may need to be completed for bfqq
5275 	 * to receive new I/O. Details in the comments on the choice
5276 	 * of the queue for injection in bfq_select_queue().
5277 	 *
5278 	 * As stressed in those comments, if such a synchronization is
5279 	 * actually in place, then, without injection on bfqq, the
5280 	 * blocking I/O cannot happen to served while bfqq is in
5281 	 * service. As a consequence, if bfqq is granted
5282 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5283 	 * is dispatched, until the idle timeout fires. This is likely
5284 	 * to result in lower bandwidth and higher latencies for bfqq,
5285 	 * and in a severe loss of total throughput.
5286 	 *
5287 	 * On the opposite end, a non-zero inject limit may allow the
5288 	 * I/O that blocks bfqq to be executed soon, and therefore
5289 	 * bfqq to receive new I/O soon.
5290 	 *
5291 	 * But, if the blocking gets actually eliminated, then the
5292 	 * next think-time sample for bfqq may be very low. This in
5293 	 * turn may cause bfqq's think time to be deemed
5294 	 * short. Without the 100 ms barrier, this new state change
5295 	 * would cause the body of the next if to be executed
5296 	 * immediately. But this would set to 0 the inject
5297 	 * limit. Without injection, the blocking I/O would cause the
5298 	 * think time of bfqq to become long again, and therefore the
5299 	 * inject limit to be raised again, and so on. The only effect
5300 	 * of such a steady oscillation between the two think-time
5301 	 * states would be to prevent effective injection on bfqq.
5302 	 *
5303 	 * In contrast, if the inject limit is not reset during such a
5304 	 * long time interval as 100 ms, then the number of short
5305 	 * think time samples can grow significantly before the reset
5306 	 * is performed. As a consequence, the think time state can
5307 	 * become stable before the reset. Therefore there will be no
5308 	 * state change when the 100 ms elapse, and no reset of the
5309 	 * inject limit. The inject limit remains steadily equal to 1
5310 	 * both during and after the 100 ms. So injection can be
5311 	 * performed at all times, and throughput gets boosted.
5312 	 *
5313 	 * An inject limit equal to 1 is however in conflict, in
5314 	 * general, with the fact that the think time of bfqq is
5315 	 * short, because injection may be likely to delay bfqq's I/O
5316 	 * (as explained in the comments in
5317 	 * bfq_update_inject_limit()). But this does not happen in
5318 	 * this special case, because bfqq's low think time is due to
5319 	 * an effective handling of a synchronization, through
5320 	 * injection. In this special case, bfqq's I/O does not get
5321 	 * delayed by injection; on the contrary, bfqq's I/O is
5322 	 * brought forward, because it is not blocked for
5323 	 * milliseconds.
5324 	 *
5325 	 * In addition, serving the blocking I/O much sooner, and much
5326 	 * more frequently than once per I/O-plugging timeout, makes
5327 	 * it much quicker to detect a waker queue (the concept of
5328 	 * waker queue is defined in the comments in
5329 	 * bfq_add_request()). This makes it possible to start sooner
5330 	 * to boost throughput more effectively, by injecting the I/O
5331 	 * of the waker queue unconditionally on every
5332 	 * bfq_dispatch_request().
5333 	 *
5334 	 * One last, important benefit of not resetting the inject
5335 	 * limit before 100 ms is that, during this time interval, the
5336 	 * base value for the total service time is likely to get
5337 	 * finally computed for bfqq, freeing the inject limit from
5338 	 * its relation with the think time.
5339 	 */
5340 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5341 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5342 				      msecs_to_jiffies(100)) ||
5343 	     !has_short_ttime))
5344 		bfq_reset_inject_limit(bfqd, bfqq);
5345 }
5346 
5347 /*
5348  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5349  * something we should do about it.
5350  */
5351 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5352 			    struct request *rq)
5353 {
5354 	if (rq->cmd_flags & REQ_META)
5355 		bfqq->meta_pending++;
5356 
5357 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5358 
5359 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5360 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5361 				 blk_rq_sectors(rq) < 32;
5362 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5363 
5364 		/*
5365 		 * There is just this request queued: if
5366 		 * - the request is small, and
5367 		 * - we are idling to boost throughput, and
5368 		 * - the queue is not to be expired,
5369 		 * then just exit.
5370 		 *
5371 		 * In this way, if the device is being idled to wait
5372 		 * for a new request from the in-service queue, we
5373 		 * avoid unplugging the device and committing the
5374 		 * device to serve just a small request. In contrast
5375 		 * we wait for the block layer to decide when to
5376 		 * unplug the device: hopefully, new requests will be
5377 		 * merged to this one quickly, then the device will be
5378 		 * unplugged and larger requests will be dispatched.
5379 		 */
5380 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5381 		    !budget_timeout)
5382 			return;
5383 
5384 		/*
5385 		 * A large enough request arrived, or idling is being
5386 		 * performed to preserve service guarantees, or
5387 		 * finally the queue is to be expired: in all these
5388 		 * cases disk idling is to be stopped, so clear
5389 		 * wait_request flag and reset timer.
5390 		 */
5391 		bfq_clear_bfqq_wait_request(bfqq);
5392 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5393 
5394 		/*
5395 		 * The queue is not empty, because a new request just
5396 		 * arrived. Hence we can safely expire the queue, in
5397 		 * case of budget timeout, without risking that the
5398 		 * timestamps of the queue are not updated correctly.
5399 		 * See [1] for more details.
5400 		 */
5401 		if (budget_timeout)
5402 			bfq_bfqq_expire(bfqd, bfqq, false,
5403 					BFQQE_BUDGET_TIMEOUT);
5404 	}
5405 }
5406 
5407 /* returns true if it causes the idle timer to be disabled */
5408 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5409 {
5410 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5411 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5412 	bool waiting, idle_timer_disabled = false;
5413 
5414 	if (new_bfqq) {
5415 		/*
5416 		 * Release the request's reference to the old bfqq
5417 		 * and make sure one is taken to the shared queue.
5418 		 */
5419 		new_bfqq->allocated++;
5420 		bfqq->allocated--;
5421 		new_bfqq->ref++;
5422 		/*
5423 		 * If the bic associated with the process
5424 		 * issuing this request still points to bfqq
5425 		 * (and thus has not been already redirected
5426 		 * to new_bfqq or even some other bfq_queue),
5427 		 * then complete the merge and redirect it to
5428 		 * new_bfqq.
5429 		 */
5430 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5431 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5432 					bfqq, new_bfqq);
5433 
5434 		bfq_clear_bfqq_just_created(bfqq);
5435 		/*
5436 		 * rq is about to be enqueued into new_bfqq,
5437 		 * release rq reference on bfqq
5438 		 */
5439 		bfq_put_queue(bfqq);
5440 		rq->elv.priv[1] = new_bfqq;
5441 		bfqq = new_bfqq;
5442 	}
5443 
5444 	bfq_update_io_thinktime(bfqd, bfqq);
5445 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5446 	bfq_update_io_seektime(bfqd, bfqq, rq);
5447 
5448 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5449 	bfq_add_request(rq);
5450 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5451 
5452 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5453 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5454 
5455 	bfq_rq_enqueued(bfqd, bfqq, rq);
5456 
5457 	return idle_timer_disabled;
5458 }
5459 
5460 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5461 static void bfq_update_insert_stats(struct request_queue *q,
5462 				    struct bfq_queue *bfqq,
5463 				    bool idle_timer_disabled,
5464 				    unsigned int cmd_flags)
5465 {
5466 	if (!bfqq)
5467 		return;
5468 
5469 	/*
5470 	 * bfqq still exists, because it can disappear only after
5471 	 * either it is merged with another queue, or the process it
5472 	 * is associated with exits. But both actions must be taken by
5473 	 * the same process currently executing this flow of
5474 	 * instructions.
5475 	 *
5476 	 * In addition, the following queue lock guarantees that
5477 	 * bfqq_group(bfqq) exists as well.
5478 	 */
5479 	spin_lock_irq(&q->queue_lock);
5480 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5481 	if (idle_timer_disabled)
5482 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5483 	spin_unlock_irq(&q->queue_lock);
5484 }
5485 #else
5486 static inline void bfq_update_insert_stats(struct request_queue *q,
5487 					   struct bfq_queue *bfqq,
5488 					   bool idle_timer_disabled,
5489 					   unsigned int cmd_flags) {}
5490 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5491 
5492 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5493 			       bool at_head)
5494 {
5495 	struct request_queue *q = hctx->queue;
5496 	struct bfq_data *bfqd = q->elevator->elevator_data;
5497 	struct bfq_queue *bfqq;
5498 	bool idle_timer_disabled = false;
5499 	unsigned int cmd_flags;
5500 
5501 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5502 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5503 		bfqg_stats_update_legacy_io(q, rq);
5504 #endif
5505 	spin_lock_irq(&bfqd->lock);
5506 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5507 		spin_unlock_irq(&bfqd->lock);
5508 		return;
5509 	}
5510 
5511 	spin_unlock_irq(&bfqd->lock);
5512 
5513 	blk_mq_sched_request_inserted(rq);
5514 
5515 	spin_lock_irq(&bfqd->lock);
5516 	bfqq = bfq_init_rq(rq);
5517 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5518 		if (at_head)
5519 			list_add(&rq->queuelist, &bfqd->dispatch);
5520 		else
5521 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5522 	} else {
5523 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5524 		/*
5525 		 * Update bfqq, because, if a queue merge has occurred
5526 		 * in __bfq_insert_request, then rq has been
5527 		 * redirected into a new queue.
5528 		 */
5529 		bfqq = RQ_BFQQ(rq);
5530 
5531 		if (rq_mergeable(rq)) {
5532 			elv_rqhash_add(q, rq);
5533 			if (!q->last_merge)
5534 				q->last_merge = rq;
5535 		}
5536 	}
5537 
5538 	/*
5539 	 * Cache cmd_flags before releasing scheduler lock, because rq
5540 	 * may disappear afterwards (for example, because of a request
5541 	 * merge).
5542 	 */
5543 	cmd_flags = rq->cmd_flags;
5544 
5545 	spin_unlock_irq(&bfqd->lock);
5546 
5547 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5548 				cmd_flags);
5549 }
5550 
5551 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5552 				struct list_head *list, bool at_head)
5553 {
5554 	while (!list_empty(list)) {
5555 		struct request *rq;
5556 
5557 		rq = list_first_entry(list, struct request, queuelist);
5558 		list_del_init(&rq->queuelist);
5559 		bfq_insert_request(hctx, rq, at_head);
5560 		atomic_inc(&hctx->elevator_queued);
5561 	}
5562 }
5563 
5564 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5565 {
5566 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5567 
5568 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5569 				       bfqd->rq_in_driver);
5570 
5571 	if (bfqd->hw_tag == 1)
5572 		return;
5573 
5574 	/*
5575 	 * This sample is valid if the number of outstanding requests
5576 	 * is large enough to allow a queueing behavior.  Note that the
5577 	 * sum is not exact, as it's not taking into account deactivated
5578 	 * requests.
5579 	 */
5580 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5581 		return;
5582 
5583 	/*
5584 	 * If active queue hasn't enough requests and can idle, bfq might not
5585 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5586 	 * case
5587 	 */
5588 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5589 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5590 	    BFQ_HW_QUEUE_THRESHOLD &&
5591 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5592 		return;
5593 
5594 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5595 		return;
5596 
5597 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5598 	bfqd->max_rq_in_driver = 0;
5599 	bfqd->hw_tag_samples = 0;
5600 
5601 	bfqd->nonrot_with_queueing =
5602 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5603 }
5604 
5605 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5606 {
5607 	u64 now_ns;
5608 	u32 delta_us;
5609 
5610 	bfq_update_hw_tag(bfqd);
5611 
5612 	bfqd->rq_in_driver--;
5613 	bfqq->dispatched--;
5614 
5615 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5616 		/*
5617 		 * Set budget_timeout (which we overload to store the
5618 		 * time at which the queue remains with no backlog and
5619 		 * no outstanding request; used by the weight-raising
5620 		 * mechanism).
5621 		 */
5622 		bfqq->budget_timeout = jiffies;
5623 
5624 		bfq_weights_tree_remove(bfqd, bfqq);
5625 	}
5626 
5627 	now_ns = ktime_get_ns();
5628 
5629 	bfqq->ttime.last_end_request = now_ns;
5630 
5631 	/*
5632 	 * Using us instead of ns, to get a reasonable precision in
5633 	 * computing rate in next check.
5634 	 */
5635 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5636 
5637 	/*
5638 	 * If the request took rather long to complete, and, according
5639 	 * to the maximum request size recorded, this completion latency
5640 	 * implies that the request was certainly served at a very low
5641 	 * rate (less than 1M sectors/sec), then the whole observation
5642 	 * interval that lasts up to this time instant cannot be a
5643 	 * valid time interval for computing a new peak rate.  Invoke
5644 	 * bfq_update_rate_reset to have the following three steps
5645 	 * taken:
5646 	 * - close the observation interval at the last (previous)
5647 	 *   request dispatch or completion
5648 	 * - compute rate, if possible, for that observation interval
5649 	 * - reset to zero samples, which will trigger a proper
5650 	 *   re-initialization of the observation interval on next
5651 	 *   dispatch
5652 	 */
5653 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5654 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5655 			1UL<<(BFQ_RATE_SHIFT - 10))
5656 		bfq_update_rate_reset(bfqd, NULL);
5657 	bfqd->last_completion = now_ns;
5658 	bfqd->last_completed_rq_bfqq = bfqq;
5659 
5660 	/*
5661 	 * If we are waiting to discover whether the request pattern
5662 	 * of the task associated with the queue is actually
5663 	 * isochronous, and both requisites for this condition to hold
5664 	 * are now satisfied, then compute soft_rt_next_start (see the
5665 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5666 	 * do not compute soft_rt_next_start if bfqq is in interactive
5667 	 * weight raising (see the comments in bfq_bfqq_expire() for
5668 	 * an explanation). We schedule this delayed update when bfqq
5669 	 * expires, if it still has in-flight requests.
5670 	 */
5671 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5672 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5673 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5674 		bfqq->soft_rt_next_start =
5675 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5676 
5677 	/*
5678 	 * If this is the in-service queue, check if it needs to be expired,
5679 	 * or if we want to idle in case it has no pending requests.
5680 	 */
5681 	if (bfqd->in_service_queue == bfqq) {
5682 		if (bfq_bfqq_must_idle(bfqq)) {
5683 			if (bfqq->dispatched == 0)
5684 				bfq_arm_slice_timer(bfqd);
5685 			/*
5686 			 * If we get here, we do not expire bfqq, even
5687 			 * if bfqq was in budget timeout or had no
5688 			 * more requests (as controlled in the next
5689 			 * conditional instructions). The reason for
5690 			 * not expiring bfqq is as follows.
5691 			 *
5692 			 * Here bfqq->dispatched > 0 holds, but
5693 			 * bfq_bfqq_must_idle() returned true. This
5694 			 * implies that, even if no request arrives
5695 			 * for bfqq before bfqq->dispatched reaches 0,
5696 			 * bfqq will, however, not be expired on the
5697 			 * completion event that causes bfqq->dispatch
5698 			 * to reach zero. In contrast, on this event,
5699 			 * bfqq will start enjoying device idling
5700 			 * (I/O-dispatch plugging).
5701 			 *
5702 			 * But, if we expired bfqq here, bfqq would
5703 			 * not have the chance to enjoy device idling
5704 			 * when bfqq->dispatched finally reaches
5705 			 * zero. This would expose bfqq to violation
5706 			 * of its reserved service guarantees.
5707 			 */
5708 			return;
5709 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5710 			bfq_bfqq_expire(bfqd, bfqq, false,
5711 					BFQQE_BUDGET_TIMEOUT);
5712 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5713 			 (bfqq->dispatched == 0 ||
5714 			  !bfq_better_to_idle(bfqq)))
5715 			bfq_bfqq_expire(bfqd, bfqq, false,
5716 					BFQQE_NO_MORE_REQUESTS);
5717 	}
5718 
5719 	if (!bfqd->rq_in_driver)
5720 		bfq_schedule_dispatch(bfqd);
5721 }
5722 
5723 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5724 {
5725 	bfqq->allocated--;
5726 
5727 	bfq_put_queue(bfqq);
5728 }
5729 
5730 /*
5731  * The processes associated with bfqq may happen to generate their
5732  * cumulative I/O at a lower rate than the rate at which the device
5733  * could serve the same I/O. This is rather probable, e.g., if only
5734  * one process is associated with bfqq and the device is an SSD. It
5735  * results in bfqq becoming often empty while in service. In this
5736  * respect, if BFQ is allowed to switch to another queue when bfqq
5737  * remains empty, then the device goes on being fed with I/O requests,
5738  * and the throughput is not affected. In contrast, if BFQ is not
5739  * allowed to switch to another queue---because bfqq is sync and
5740  * I/O-dispatch needs to be plugged while bfqq is temporarily
5741  * empty---then, during the service of bfqq, there will be frequent
5742  * "service holes", i.e., time intervals during which bfqq gets empty
5743  * and the device can only consume the I/O already queued in its
5744  * hardware queues. During service holes, the device may even get to
5745  * remaining idle. In the end, during the service of bfqq, the device
5746  * is driven at a lower speed than the one it can reach with the kind
5747  * of I/O flowing through bfqq.
5748  *
5749  * To counter this loss of throughput, BFQ implements a "request
5750  * injection mechanism", which tries to fill the above service holes
5751  * with I/O requests taken from other queues. The hard part in this
5752  * mechanism is finding the right amount of I/O to inject, so as to
5753  * both boost throughput and not break bfqq's bandwidth and latency
5754  * guarantees. In this respect, the mechanism maintains a per-queue
5755  * inject limit, computed as below. While bfqq is empty, the injection
5756  * mechanism dispatches extra I/O requests only until the total number
5757  * of I/O requests in flight---i.e., already dispatched but not yet
5758  * completed---remains lower than this limit.
5759  *
5760  * A first definition comes in handy to introduce the algorithm by
5761  * which the inject limit is computed.  We define as first request for
5762  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5763  * service, and causes bfqq to switch from empty to non-empty. The
5764  * algorithm updates the limit as a function of the effect of
5765  * injection on the service times of only the first requests of
5766  * bfqq. The reason for this restriction is that these are the
5767  * requests whose service time is affected most, because they are the
5768  * first to arrive after injection possibly occurred.
5769  *
5770  * To evaluate the effect of injection, the algorithm measures the
5771  * "total service time" of first requests. We define as total service
5772  * time of an I/O request, the time that elapses since when the
5773  * request is enqueued into bfqq, to when it is completed. This
5774  * quantity allows the whole effect of injection to be measured. It is
5775  * easy to see why. Suppose that some requests of other queues are
5776  * actually injected while bfqq is empty, and that a new request R
5777  * then arrives for bfqq. If the device does start to serve all or
5778  * part of the injected requests during the service hole, then,
5779  * because of this extra service, it may delay the next invocation of
5780  * the dispatch hook of BFQ. Then, even after R gets eventually
5781  * dispatched, the device may delay the actual service of R if it is
5782  * still busy serving the extra requests, or if it decides to serve,
5783  * before R, some extra request still present in its queues. As a
5784  * conclusion, the cumulative extra delay caused by injection can be
5785  * easily evaluated by just comparing the total service time of first
5786  * requests with and without injection.
5787  *
5788  * The limit-update algorithm works as follows. On the arrival of a
5789  * first request of bfqq, the algorithm measures the total time of the
5790  * request only if one of the three cases below holds, and, for each
5791  * case, it updates the limit as described below:
5792  *
5793  * (1) If there is no in-flight request. This gives a baseline for the
5794  *     total service time of the requests of bfqq. If the baseline has
5795  *     not been computed yet, then, after computing it, the limit is
5796  *     set to 1, to start boosting throughput, and to prepare the
5797  *     ground for the next case. If the baseline has already been
5798  *     computed, then it is updated, in case it results to be lower
5799  *     than the previous value.
5800  *
5801  * (2) If the limit is higher than 0 and there are in-flight
5802  *     requests. By comparing the total service time in this case with
5803  *     the above baseline, it is possible to know at which extent the
5804  *     current value of the limit is inflating the total service
5805  *     time. If the inflation is below a certain threshold, then bfqq
5806  *     is assumed to be suffering from no perceivable loss of its
5807  *     service guarantees, and the limit is even tentatively
5808  *     increased. If the inflation is above the threshold, then the
5809  *     limit is decreased. Due to the lack of any hysteresis, this
5810  *     logic makes the limit oscillate even in steady workload
5811  *     conditions. Yet we opted for it, because it is fast in reaching
5812  *     the best value for the limit, as a function of the current I/O
5813  *     workload. To reduce oscillations, this step is disabled for a
5814  *     short time interval after the limit happens to be decreased.
5815  *
5816  * (3) Periodically, after resetting the limit, to make sure that the
5817  *     limit eventually drops in case the workload changes. This is
5818  *     needed because, after the limit has gone safely up for a
5819  *     certain workload, it is impossible to guess whether the
5820  *     baseline total service time may have changed, without measuring
5821  *     it again without injection. A more effective version of this
5822  *     step might be to just sample the baseline, by interrupting
5823  *     injection only once, and then to reset/lower the limit only if
5824  *     the total service time with the current limit does happen to be
5825  *     too large.
5826  *
5827  * More details on each step are provided in the comments on the
5828  * pieces of code that implement these steps: the branch handling the
5829  * transition from empty to non empty in bfq_add_request(), the branch
5830  * handling injection in bfq_select_queue(), and the function
5831  * bfq_choose_bfqq_for_injection(). These comments also explain some
5832  * exceptions, made by the injection mechanism in some special cases.
5833  */
5834 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5835 				    struct bfq_queue *bfqq)
5836 {
5837 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5838 	unsigned int old_limit = bfqq->inject_limit;
5839 
5840 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5841 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5842 
5843 		if (tot_time_ns >= threshold && old_limit > 0) {
5844 			bfqq->inject_limit--;
5845 			bfqq->decrease_time_jif = jiffies;
5846 		} else if (tot_time_ns < threshold &&
5847 			   old_limit <= bfqd->max_rq_in_driver)
5848 			bfqq->inject_limit++;
5849 	}
5850 
5851 	/*
5852 	 * Either we still have to compute the base value for the
5853 	 * total service time, and there seem to be the right
5854 	 * conditions to do it, or we can lower the last base value
5855 	 * computed.
5856 	 *
5857 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5858 	 * request in flight, because this function is in the code
5859 	 * path that handles the completion of a request of bfqq, and,
5860 	 * in particular, this function is executed before
5861 	 * bfqd->rq_in_driver is decremented in such a code path.
5862 	 */
5863 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5864 	    tot_time_ns < bfqq->last_serv_time_ns) {
5865 		if (bfqq->last_serv_time_ns == 0) {
5866 			/*
5867 			 * Now we certainly have a base value: make sure we
5868 			 * start trying injection.
5869 			 */
5870 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5871 		}
5872 		bfqq->last_serv_time_ns = tot_time_ns;
5873 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5874 		/*
5875 		 * No I/O injected and no request still in service in
5876 		 * the drive: these are the exact conditions for
5877 		 * computing the base value of the total service time
5878 		 * for bfqq. So let's update this value, because it is
5879 		 * rather variable. For example, it varies if the size
5880 		 * or the spatial locality of the I/O requests in bfqq
5881 		 * change.
5882 		 */
5883 		bfqq->last_serv_time_ns = tot_time_ns;
5884 
5885 
5886 	/* update complete, not waiting for any request completion any longer */
5887 	bfqd->waited_rq = NULL;
5888 	bfqd->rqs_injected = false;
5889 }
5890 
5891 /*
5892  * Handle either a requeue or a finish for rq. The things to do are
5893  * the same in both cases: all references to rq are to be dropped. In
5894  * particular, rq is considered completed from the point of view of
5895  * the scheduler.
5896  */
5897 static void bfq_finish_requeue_request(struct request *rq)
5898 {
5899 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5900 	struct bfq_data *bfqd;
5901 
5902 	/*
5903 	 * rq either is not associated with any icq, or is an already
5904 	 * requeued request that has not (yet) been re-inserted into
5905 	 * a bfq_queue.
5906 	 */
5907 	if (!rq->elv.icq || !bfqq)
5908 		return;
5909 
5910 	bfqd = bfqq->bfqd;
5911 
5912 	if (rq->rq_flags & RQF_STARTED)
5913 		bfqg_stats_update_completion(bfqq_group(bfqq),
5914 					     rq->start_time_ns,
5915 					     rq->io_start_time_ns,
5916 					     rq->cmd_flags);
5917 
5918 	if (likely(rq->rq_flags & RQF_STARTED)) {
5919 		unsigned long flags;
5920 
5921 		spin_lock_irqsave(&bfqd->lock, flags);
5922 
5923 		if (rq == bfqd->waited_rq)
5924 			bfq_update_inject_limit(bfqd, bfqq);
5925 
5926 		bfq_completed_request(bfqq, bfqd);
5927 		bfq_finish_requeue_request_body(bfqq);
5928 		atomic_dec(&rq->mq_hctx->elevator_queued);
5929 
5930 		spin_unlock_irqrestore(&bfqd->lock, flags);
5931 	} else {
5932 		/*
5933 		 * Request rq may be still/already in the scheduler,
5934 		 * in which case we need to remove it (this should
5935 		 * never happen in case of requeue). And we cannot
5936 		 * defer such a check and removal, to avoid
5937 		 * inconsistencies in the time interval from the end
5938 		 * of this function to the start of the deferred work.
5939 		 * This situation seems to occur only in process
5940 		 * context, as a consequence of a merge. In the
5941 		 * current version of the code, this implies that the
5942 		 * lock is held.
5943 		 */
5944 
5945 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5946 			bfq_remove_request(rq->q, rq);
5947 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5948 						    rq->cmd_flags);
5949 		}
5950 		bfq_finish_requeue_request_body(bfqq);
5951 	}
5952 
5953 	/*
5954 	 * Reset private fields. In case of a requeue, this allows
5955 	 * this function to correctly do nothing if it is spuriously
5956 	 * invoked again on this same request (see the check at the
5957 	 * beginning of the function). Probably, a better general
5958 	 * design would be to prevent blk-mq from invoking the requeue
5959 	 * or finish hooks of an elevator, for a request that is not
5960 	 * referred by that elevator.
5961 	 *
5962 	 * Resetting the following fields would break the
5963 	 * request-insertion logic if rq is re-inserted into a bfq
5964 	 * internal queue, without a re-preparation. Here we assume
5965 	 * that re-insertions of requeued requests, without
5966 	 * re-preparation, can happen only for pass_through or at_head
5967 	 * requests (which are not re-inserted into bfq internal
5968 	 * queues).
5969 	 */
5970 	rq->elv.priv[0] = NULL;
5971 	rq->elv.priv[1] = NULL;
5972 }
5973 
5974 /*
5975  * Removes the association between the current task and bfqq, assuming
5976  * that bic points to the bfq iocontext of the task.
5977  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5978  * was the last process referring to that bfqq.
5979  */
5980 static struct bfq_queue *
5981 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5982 {
5983 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5984 
5985 	if (bfqq_process_refs(bfqq) == 1) {
5986 		bfqq->pid = current->pid;
5987 		bfq_clear_bfqq_coop(bfqq);
5988 		bfq_clear_bfqq_split_coop(bfqq);
5989 		return bfqq;
5990 	}
5991 
5992 	bic_set_bfqq(bic, NULL, 1);
5993 
5994 	bfq_put_cooperator(bfqq);
5995 
5996 	bfq_release_process_ref(bfqq->bfqd, bfqq);
5997 	return NULL;
5998 }
5999 
6000 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6001 						   struct bfq_io_cq *bic,
6002 						   struct bio *bio,
6003 						   bool split, bool is_sync,
6004 						   bool *new_queue)
6005 {
6006 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6007 
6008 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6009 		return bfqq;
6010 
6011 	if (new_queue)
6012 		*new_queue = true;
6013 
6014 	if (bfqq)
6015 		bfq_put_queue(bfqq);
6016 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6017 
6018 	bic_set_bfqq(bic, bfqq, is_sync);
6019 	if (split && is_sync) {
6020 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6021 		    bic->saved_in_large_burst)
6022 			bfq_mark_bfqq_in_large_burst(bfqq);
6023 		else {
6024 			bfq_clear_bfqq_in_large_burst(bfqq);
6025 			if (bic->was_in_burst_list)
6026 				/*
6027 				 * If bfqq was in the current
6028 				 * burst list before being
6029 				 * merged, then we have to add
6030 				 * it back. And we do not need
6031 				 * to increase burst_size, as
6032 				 * we did not decrement
6033 				 * burst_size when we removed
6034 				 * bfqq from the burst list as
6035 				 * a consequence of a merge
6036 				 * (see comments in
6037 				 * bfq_put_queue). In this
6038 				 * respect, it would be rather
6039 				 * costly to know whether the
6040 				 * current burst list is still
6041 				 * the same burst list from
6042 				 * which bfqq was removed on
6043 				 * the merge. To avoid this
6044 				 * cost, if bfqq was in a
6045 				 * burst list, then we add
6046 				 * bfqq to the current burst
6047 				 * list without any further
6048 				 * check. This can cause
6049 				 * inappropriate insertions,
6050 				 * but rarely enough to not
6051 				 * harm the detection of large
6052 				 * bursts significantly.
6053 				 */
6054 				hlist_add_head(&bfqq->burst_list_node,
6055 					       &bfqd->burst_list);
6056 		}
6057 		bfqq->split_time = jiffies;
6058 	}
6059 
6060 	return bfqq;
6061 }
6062 
6063 /*
6064  * Only reset private fields. The actual request preparation will be
6065  * performed by bfq_init_rq, when rq is either inserted or merged. See
6066  * comments on bfq_init_rq for the reason behind this delayed
6067  * preparation.
6068  */
6069 static void bfq_prepare_request(struct request *rq)
6070 {
6071 	/*
6072 	 * Regardless of whether we have an icq attached, we have to
6073 	 * clear the scheduler pointers, as they might point to
6074 	 * previously allocated bic/bfqq structs.
6075 	 */
6076 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6077 }
6078 
6079 /*
6080  * If needed, init rq, allocate bfq data structures associated with
6081  * rq, and increment reference counters in the destination bfq_queue
6082  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6083  * not associated with any bfq_queue.
6084  *
6085  * This function is invoked by the functions that perform rq insertion
6086  * or merging. One may have expected the above preparation operations
6087  * to be performed in bfq_prepare_request, and not delayed to when rq
6088  * is inserted or merged. The rationale behind this delayed
6089  * preparation is that, after the prepare_request hook is invoked for
6090  * rq, rq may still be transformed into a request with no icq, i.e., a
6091  * request not associated with any queue. No bfq hook is invoked to
6092  * signal this transformation. As a consequence, should these
6093  * preparation operations be performed when the prepare_request hook
6094  * is invoked, and should rq be transformed one moment later, bfq
6095  * would end up in an inconsistent state, because it would have
6096  * incremented some queue counters for an rq destined to
6097  * transformation, without any chance to correctly lower these
6098  * counters back. In contrast, no transformation can still happen for
6099  * rq after rq has been inserted or merged. So, it is safe to execute
6100  * these preparation operations when rq is finally inserted or merged.
6101  */
6102 static struct bfq_queue *bfq_init_rq(struct request *rq)
6103 {
6104 	struct request_queue *q = rq->q;
6105 	struct bio *bio = rq->bio;
6106 	struct bfq_data *bfqd = q->elevator->elevator_data;
6107 	struct bfq_io_cq *bic;
6108 	const int is_sync = rq_is_sync(rq);
6109 	struct bfq_queue *bfqq;
6110 	bool new_queue = false;
6111 	bool bfqq_already_existing = false, split = false;
6112 
6113 	if (unlikely(!rq->elv.icq))
6114 		return NULL;
6115 
6116 	/*
6117 	 * Assuming that elv.priv[1] is set only if everything is set
6118 	 * for this rq. This holds true, because this function is
6119 	 * invoked only for insertion or merging, and, after such
6120 	 * events, a request cannot be manipulated any longer before
6121 	 * being removed from bfq.
6122 	 */
6123 	if (rq->elv.priv[1])
6124 		return rq->elv.priv[1];
6125 
6126 	bic = icq_to_bic(rq->elv.icq);
6127 
6128 	bfq_check_ioprio_change(bic, bio);
6129 
6130 	bfq_bic_update_cgroup(bic, bio);
6131 
6132 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6133 					 &new_queue);
6134 
6135 	if (likely(!new_queue)) {
6136 		/* If the queue was seeky for too long, break it apart. */
6137 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6138 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6139 
6140 			/* Update bic before losing reference to bfqq */
6141 			if (bfq_bfqq_in_large_burst(bfqq))
6142 				bic->saved_in_large_burst = true;
6143 
6144 			bfqq = bfq_split_bfqq(bic, bfqq);
6145 			split = true;
6146 
6147 			if (!bfqq)
6148 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6149 								 true, is_sync,
6150 								 NULL);
6151 			else
6152 				bfqq_already_existing = true;
6153 		}
6154 	}
6155 
6156 	bfqq->allocated++;
6157 	bfqq->ref++;
6158 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6159 		     rq, bfqq, bfqq->ref);
6160 
6161 	rq->elv.priv[0] = bic;
6162 	rq->elv.priv[1] = bfqq;
6163 
6164 	/*
6165 	 * If a bfq_queue has only one process reference, it is owned
6166 	 * by only this bic: we can then set bfqq->bic = bic. in
6167 	 * addition, if the queue has also just been split, we have to
6168 	 * resume its state.
6169 	 */
6170 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6171 		bfqq->bic = bic;
6172 		if (split) {
6173 			/*
6174 			 * The queue has just been split from a shared
6175 			 * queue: restore the idle window and the
6176 			 * possible weight raising period.
6177 			 */
6178 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6179 					      bfqq_already_existing);
6180 		}
6181 	}
6182 
6183 	/*
6184 	 * Consider bfqq as possibly belonging to a burst of newly
6185 	 * created queues only if:
6186 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6187 	 * or
6188 	 * 2) There is no other active queue. In fact, if, in
6189 	 *    contrast, there are active queues not belonging to the
6190 	 *    possible burst bfqq may belong to, then there is no gain
6191 	 *    in considering bfqq as belonging to a burst, and
6192 	 *    therefore in not weight-raising bfqq. See comments on
6193 	 *    bfq_handle_burst().
6194 	 *
6195 	 * This filtering also helps eliminating false positives,
6196 	 * occurring when bfqq does not belong to an actual large
6197 	 * burst, but some background task (e.g., a service) happens
6198 	 * to trigger the creation of new queues very close to when
6199 	 * bfqq and its possible companion queues are created. See
6200 	 * comments on bfq_handle_burst() for further details also on
6201 	 * this issue.
6202 	 */
6203 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6204 		     (bfqd->burst_size > 0 ||
6205 		      bfq_tot_busy_queues(bfqd) == 0)))
6206 		bfq_handle_burst(bfqd, bfqq);
6207 
6208 	return bfqq;
6209 }
6210 
6211 static void
6212 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6213 {
6214 	enum bfqq_expiration reason;
6215 	unsigned long flags;
6216 
6217 	spin_lock_irqsave(&bfqd->lock, flags);
6218 
6219 	/*
6220 	 * Considering that bfqq may be in race, we should firstly check
6221 	 * whether bfqq is in service before doing something on it. If
6222 	 * the bfqq in race is not in service, it has already been expired
6223 	 * through __bfq_bfqq_expire func and its wait_request flags has
6224 	 * been cleared in __bfq_bfqd_reset_in_service func.
6225 	 */
6226 	if (bfqq != bfqd->in_service_queue) {
6227 		spin_unlock_irqrestore(&bfqd->lock, flags);
6228 		return;
6229 	}
6230 
6231 	bfq_clear_bfqq_wait_request(bfqq);
6232 
6233 	if (bfq_bfqq_budget_timeout(bfqq))
6234 		/*
6235 		 * Also here the queue can be safely expired
6236 		 * for budget timeout without wasting
6237 		 * guarantees
6238 		 */
6239 		reason = BFQQE_BUDGET_TIMEOUT;
6240 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6241 		/*
6242 		 * The queue may not be empty upon timer expiration,
6243 		 * because we may not disable the timer when the
6244 		 * first request of the in-service queue arrives
6245 		 * during disk idling.
6246 		 */
6247 		reason = BFQQE_TOO_IDLE;
6248 	else
6249 		goto schedule_dispatch;
6250 
6251 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6252 
6253 schedule_dispatch:
6254 	spin_unlock_irqrestore(&bfqd->lock, flags);
6255 	bfq_schedule_dispatch(bfqd);
6256 }
6257 
6258 /*
6259  * Handler of the expiration of the timer running if the in-service queue
6260  * is idling inside its time slice.
6261  */
6262 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6263 {
6264 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6265 					     idle_slice_timer);
6266 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6267 
6268 	/*
6269 	 * Theoretical race here: the in-service queue can be NULL or
6270 	 * different from the queue that was idling if a new request
6271 	 * arrives for the current queue and there is a full dispatch
6272 	 * cycle that changes the in-service queue.  This can hardly
6273 	 * happen, but in the worst case we just expire a queue too
6274 	 * early.
6275 	 */
6276 	if (bfqq)
6277 		bfq_idle_slice_timer_body(bfqd, bfqq);
6278 
6279 	return HRTIMER_NORESTART;
6280 }
6281 
6282 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6283 				 struct bfq_queue **bfqq_ptr)
6284 {
6285 	struct bfq_queue *bfqq = *bfqq_ptr;
6286 
6287 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6288 	if (bfqq) {
6289 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6290 
6291 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6292 			     bfqq, bfqq->ref);
6293 		bfq_put_queue(bfqq);
6294 		*bfqq_ptr = NULL;
6295 	}
6296 }
6297 
6298 /*
6299  * Release all the bfqg references to its async queues.  If we are
6300  * deallocating the group these queues may still contain requests, so
6301  * we reparent them to the root cgroup (i.e., the only one that will
6302  * exist for sure until all the requests on a device are gone).
6303  */
6304 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6305 {
6306 	int i, j;
6307 
6308 	for (i = 0; i < 2; i++)
6309 		for (j = 0; j < IOPRIO_BE_NR; j++)
6310 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6311 
6312 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6313 }
6314 
6315 /*
6316  * See the comments on bfq_limit_depth for the purpose of
6317  * the depths set in the function. Return minimum shallow depth we'll use.
6318  */
6319 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6320 				      struct sbitmap_queue *bt)
6321 {
6322 	unsigned int i, j, min_shallow = UINT_MAX;
6323 
6324 	/*
6325 	 * In-word depths if no bfq_queue is being weight-raised:
6326 	 * leaving 25% of tags only for sync reads.
6327 	 *
6328 	 * In next formulas, right-shift the value
6329 	 * (1U<<bt->sb.shift), instead of computing directly
6330 	 * (1U<<(bt->sb.shift - something)), to be robust against
6331 	 * any possible value of bt->sb.shift, without having to
6332 	 * limit 'something'.
6333 	 */
6334 	/* no more than 50% of tags for async I/O */
6335 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6336 	/*
6337 	 * no more than 75% of tags for sync writes (25% extra tags
6338 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6339 	 * writes)
6340 	 */
6341 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6342 
6343 	/*
6344 	 * In-word depths in case some bfq_queue is being weight-
6345 	 * raised: leaving ~63% of tags for sync reads. This is the
6346 	 * highest percentage for which, in our tests, application
6347 	 * start-up times didn't suffer from any regression due to tag
6348 	 * shortage.
6349 	 */
6350 	/* no more than ~18% of tags for async I/O */
6351 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6352 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6353 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6354 
6355 	for (i = 0; i < 2; i++)
6356 		for (j = 0; j < 2; j++)
6357 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6358 
6359 	return min_shallow;
6360 }
6361 
6362 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6363 {
6364 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6365 	struct blk_mq_tags *tags = hctx->sched_tags;
6366 	unsigned int min_shallow;
6367 
6368 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6369 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6370 }
6371 
6372 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6373 {
6374 	bfq_depth_updated(hctx);
6375 	return 0;
6376 }
6377 
6378 static void bfq_exit_queue(struct elevator_queue *e)
6379 {
6380 	struct bfq_data *bfqd = e->elevator_data;
6381 	struct bfq_queue *bfqq, *n;
6382 
6383 	hrtimer_cancel(&bfqd->idle_slice_timer);
6384 
6385 	spin_lock_irq(&bfqd->lock);
6386 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6387 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6388 	spin_unlock_irq(&bfqd->lock);
6389 
6390 	hrtimer_cancel(&bfqd->idle_slice_timer);
6391 
6392 	/* release oom-queue reference to root group */
6393 	bfqg_and_blkg_put(bfqd->root_group);
6394 
6395 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6396 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6397 #else
6398 	spin_lock_irq(&bfqd->lock);
6399 	bfq_put_async_queues(bfqd, bfqd->root_group);
6400 	kfree(bfqd->root_group);
6401 	spin_unlock_irq(&bfqd->lock);
6402 #endif
6403 
6404 	kfree(bfqd);
6405 }
6406 
6407 static void bfq_init_root_group(struct bfq_group *root_group,
6408 				struct bfq_data *bfqd)
6409 {
6410 	int i;
6411 
6412 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6413 	root_group->entity.parent = NULL;
6414 	root_group->my_entity = NULL;
6415 	root_group->bfqd = bfqd;
6416 #endif
6417 	root_group->rq_pos_tree = RB_ROOT;
6418 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6419 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6420 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6421 }
6422 
6423 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6424 {
6425 	struct bfq_data *bfqd;
6426 	struct elevator_queue *eq;
6427 
6428 	eq = elevator_alloc(q, e);
6429 	if (!eq)
6430 		return -ENOMEM;
6431 
6432 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6433 	if (!bfqd) {
6434 		kobject_put(&eq->kobj);
6435 		return -ENOMEM;
6436 	}
6437 	eq->elevator_data = bfqd;
6438 
6439 	spin_lock_irq(&q->queue_lock);
6440 	q->elevator = eq;
6441 	spin_unlock_irq(&q->queue_lock);
6442 
6443 	/*
6444 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6445 	 * Grab a permanent reference to it, so that the normal code flow
6446 	 * will not attempt to free it.
6447 	 */
6448 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6449 	bfqd->oom_bfqq.ref++;
6450 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6451 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6452 	bfqd->oom_bfqq.entity.new_weight =
6453 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6454 
6455 	/* oom_bfqq does not participate to bursts */
6456 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6457 
6458 	/*
6459 	 * Trigger weight initialization, according to ioprio, at the
6460 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6461 	 * class won't be changed any more.
6462 	 */
6463 	bfqd->oom_bfqq.entity.prio_changed = 1;
6464 
6465 	bfqd->queue = q;
6466 
6467 	INIT_LIST_HEAD(&bfqd->dispatch);
6468 
6469 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6470 		     HRTIMER_MODE_REL);
6471 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6472 
6473 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6474 	bfqd->num_groups_with_pending_reqs = 0;
6475 
6476 	INIT_LIST_HEAD(&bfqd->active_list);
6477 	INIT_LIST_HEAD(&bfqd->idle_list);
6478 	INIT_HLIST_HEAD(&bfqd->burst_list);
6479 
6480 	bfqd->hw_tag = -1;
6481 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6482 
6483 	bfqd->bfq_max_budget = bfq_default_max_budget;
6484 
6485 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6486 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6487 	bfqd->bfq_back_max = bfq_back_max;
6488 	bfqd->bfq_back_penalty = bfq_back_penalty;
6489 	bfqd->bfq_slice_idle = bfq_slice_idle;
6490 	bfqd->bfq_timeout = bfq_timeout;
6491 
6492 	bfqd->bfq_requests_within_timer = 120;
6493 
6494 	bfqd->bfq_large_burst_thresh = 8;
6495 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6496 
6497 	bfqd->low_latency = true;
6498 
6499 	/*
6500 	 * Trade-off between responsiveness and fairness.
6501 	 */
6502 	bfqd->bfq_wr_coeff = 30;
6503 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6504 	bfqd->bfq_wr_max_time = 0;
6505 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6506 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6507 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6508 					      * Approximate rate required
6509 					      * to playback or record a
6510 					      * high-definition compressed
6511 					      * video.
6512 					      */
6513 	bfqd->wr_busy_queues = 0;
6514 
6515 	/*
6516 	 * Begin by assuming, optimistically, that the device peak
6517 	 * rate is equal to 2/3 of the highest reference rate.
6518 	 */
6519 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6520 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6521 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6522 
6523 	spin_lock_init(&bfqd->lock);
6524 
6525 	/*
6526 	 * The invocation of the next bfq_create_group_hierarchy
6527 	 * function is the head of a chain of function calls
6528 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6529 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6530 	 * has_work hook function. For this reason,
6531 	 * bfq_create_group_hierarchy is invoked only after all
6532 	 * scheduler data has been initialized, apart from the fields
6533 	 * that can be initialized only after invoking
6534 	 * bfq_create_group_hierarchy. This, in particular, enables
6535 	 * has_work to correctly return false. Of course, to avoid
6536 	 * other inconsistencies, the blk-mq stack must then refrain
6537 	 * from invoking further scheduler hooks before this init
6538 	 * function is finished.
6539 	 */
6540 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6541 	if (!bfqd->root_group)
6542 		goto out_free;
6543 	bfq_init_root_group(bfqd->root_group, bfqd);
6544 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6545 
6546 	wbt_disable_default(q);
6547 	return 0;
6548 
6549 out_free:
6550 	kfree(bfqd);
6551 	kobject_put(&eq->kobj);
6552 	return -ENOMEM;
6553 }
6554 
6555 static void bfq_slab_kill(void)
6556 {
6557 	kmem_cache_destroy(bfq_pool);
6558 }
6559 
6560 static int __init bfq_slab_setup(void)
6561 {
6562 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6563 	if (!bfq_pool)
6564 		return -ENOMEM;
6565 	return 0;
6566 }
6567 
6568 static ssize_t bfq_var_show(unsigned int var, char *page)
6569 {
6570 	return sprintf(page, "%u\n", var);
6571 }
6572 
6573 static int bfq_var_store(unsigned long *var, const char *page)
6574 {
6575 	unsigned long new_val;
6576 	int ret = kstrtoul(page, 10, &new_val);
6577 
6578 	if (ret)
6579 		return ret;
6580 	*var = new_val;
6581 	return 0;
6582 }
6583 
6584 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6585 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6586 {									\
6587 	struct bfq_data *bfqd = e->elevator_data;			\
6588 	u64 __data = __VAR;						\
6589 	if (__CONV == 1)						\
6590 		__data = jiffies_to_msecs(__data);			\
6591 	else if (__CONV == 2)						\
6592 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6593 	return bfq_var_show(__data, (page));				\
6594 }
6595 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6596 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6597 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6598 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6599 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6600 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6601 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6602 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6603 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6604 #undef SHOW_FUNCTION
6605 
6606 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6607 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6608 {									\
6609 	struct bfq_data *bfqd = e->elevator_data;			\
6610 	u64 __data = __VAR;						\
6611 	__data = div_u64(__data, NSEC_PER_USEC);			\
6612 	return bfq_var_show(__data, (page));				\
6613 }
6614 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6615 #undef USEC_SHOW_FUNCTION
6616 
6617 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6618 static ssize_t								\
6619 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6620 {									\
6621 	struct bfq_data *bfqd = e->elevator_data;			\
6622 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6623 	int ret;							\
6624 									\
6625 	ret = bfq_var_store(&__data, (page));				\
6626 	if (ret)							\
6627 		return ret;						\
6628 	if (__data < __min)						\
6629 		__data = __min;						\
6630 	else if (__data > __max)					\
6631 		__data = __max;						\
6632 	if (__CONV == 1)						\
6633 		*(__PTR) = msecs_to_jiffies(__data);			\
6634 	else if (__CONV == 2)						\
6635 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6636 	else								\
6637 		*(__PTR) = __data;					\
6638 	return count;							\
6639 }
6640 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6641 		INT_MAX, 2);
6642 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6643 		INT_MAX, 2);
6644 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6645 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6646 		INT_MAX, 0);
6647 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6648 #undef STORE_FUNCTION
6649 
6650 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6651 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6652 {									\
6653 	struct bfq_data *bfqd = e->elevator_data;			\
6654 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6655 	int ret;							\
6656 									\
6657 	ret = bfq_var_store(&__data, (page));				\
6658 	if (ret)							\
6659 		return ret;						\
6660 	if (__data < __min)						\
6661 		__data = __min;						\
6662 	else if (__data > __max)					\
6663 		__data = __max;						\
6664 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6665 	return count;							\
6666 }
6667 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6668 		    UINT_MAX);
6669 #undef USEC_STORE_FUNCTION
6670 
6671 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6672 				    const char *page, size_t count)
6673 {
6674 	struct bfq_data *bfqd = e->elevator_data;
6675 	unsigned long __data;
6676 	int ret;
6677 
6678 	ret = bfq_var_store(&__data, (page));
6679 	if (ret)
6680 		return ret;
6681 
6682 	if (__data == 0)
6683 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6684 	else {
6685 		if (__data > INT_MAX)
6686 			__data = INT_MAX;
6687 		bfqd->bfq_max_budget = __data;
6688 	}
6689 
6690 	bfqd->bfq_user_max_budget = __data;
6691 
6692 	return count;
6693 }
6694 
6695 /*
6696  * Leaving this name to preserve name compatibility with cfq
6697  * parameters, but this timeout is used for both sync and async.
6698  */
6699 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6700 				      const char *page, size_t count)
6701 {
6702 	struct bfq_data *bfqd = e->elevator_data;
6703 	unsigned long __data;
6704 	int ret;
6705 
6706 	ret = bfq_var_store(&__data, (page));
6707 	if (ret)
6708 		return ret;
6709 
6710 	if (__data < 1)
6711 		__data = 1;
6712 	else if (__data > INT_MAX)
6713 		__data = INT_MAX;
6714 
6715 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6716 	if (bfqd->bfq_user_max_budget == 0)
6717 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6718 
6719 	return count;
6720 }
6721 
6722 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6723 				     const char *page, size_t count)
6724 {
6725 	struct bfq_data *bfqd = e->elevator_data;
6726 	unsigned long __data;
6727 	int ret;
6728 
6729 	ret = bfq_var_store(&__data, (page));
6730 	if (ret)
6731 		return ret;
6732 
6733 	if (__data > 1)
6734 		__data = 1;
6735 	if (!bfqd->strict_guarantees && __data == 1
6736 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6737 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6738 
6739 	bfqd->strict_guarantees = __data;
6740 
6741 	return count;
6742 }
6743 
6744 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6745 				     const char *page, size_t count)
6746 {
6747 	struct bfq_data *bfqd = e->elevator_data;
6748 	unsigned long __data;
6749 	int ret;
6750 
6751 	ret = bfq_var_store(&__data, (page));
6752 	if (ret)
6753 		return ret;
6754 
6755 	if (__data > 1)
6756 		__data = 1;
6757 	if (__data == 0 && bfqd->low_latency != 0)
6758 		bfq_end_wr(bfqd);
6759 	bfqd->low_latency = __data;
6760 
6761 	return count;
6762 }
6763 
6764 #define BFQ_ATTR(name) \
6765 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6766 
6767 static struct elv_fs_entry bfq_attrs[] = {
6768 	BFQ_ATTR(fifo_expire_sync),
6769 	BFQ_ATTR(fifo_expire_async),
6770 	BFQ_ATTR(back_seek_max),
6771 	BFQ_ATTR(back_seek_penalty),
6772 	BFQ_ATTR(slice_idle),
6773 	BFQ_ATTR(slice_idle_us),
6774 	BFQ_ATTR(max_budget),
6775 	BFQ_ATTR(timeout_sync),
6776 	BFQ_ATTR(strict_guarantees),
6777 	BFQ_ATTR(low_latency),
6778 	__ATTR_NULL
6779 };
6780 
6781 static struct elevator_type iosched_bfq_mq = {
6782 	.ops = {
6783 		.limit_depth		= bfq_limit_depth,
6784 		.prepare_request	= bfq_prepare_request,
6785 		.requeue_request        = bfq_finish_requeue_request,
6786 		.finish_request		= bfq_finish_requeue_request,
6787 		.exit_icq		= bfq_exit_icq,
6788 		.insert_requests	= bfq_insert_requests,
6789 		.dispatch_request	= bfq_dispatch_request,
6790 		.next_request		= elv_rb_latter_request,
6791 		.former_request		= elv_rb_former_request,
6792 		.allow_merge		= bfq_allow_bio_merge,
6793 		.bio_merge		= bfq_bio_merge,
6794 		.request_merge		= bfq_request_merge,
6795 		.requests_merged	= bfq_requests_merged,
6796 		.request_merged		= bfq_request_merged,
6797 		.has_work		= bfq_has_work,
6798 		.depth_updated		= bfq_depth_updated,
6799 		.init_hctx		= bfq_init_hctx,
6800 		.init_sched		= bfq_init_queue,
6801 		.exit_sched		= bfq_exit_queue,
6802 	},
6803 
6804 	.icq_size =		sizeof(struct bfq_io_cq),
6805 	.icq_align =		__alignof__(struct bfq_io_cq),
6806 	.elevator_attrs =	bfq_attrs,
6807 	.elevator_name =	"bfq",
6808 	.elevator_owner =	THIS_MODULE,
6809 };
6810 MODULE_ALIAS("bfq-iosched");
6811 
6812 static int __init bfq_init(void)
6813 {
6814 	int ret;
6815 
6816 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6817 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6818 	if (ret)
6819 		return ret;
6820 #endif
6821 
6822 	ret = -ENOMEM;
6823 	if (bfq_slab_setup())
6824 		goto err_pol_unreg;
6825 
6826 	/*
6827 	 * Times to load large popular applications for the typical
6828 	 * systems installed on the reference devices (see the
6829 	 * comments before the definition of the next
6830 	 * array). Actually, we use slightly lower values, as the
6831 	 * estimated peak rate tends to be smaller than the actual
6832 	 * peak rate.  The reason for this last fact is that estimates
6833 	 * are computed over much shorter time intervals than the long
6834 	 * intervals typically used for benchmarking. Why? First, to
6835 	 * adapt more quickly to variations. Second, because an I/O
6836 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6837 	 * be run for a long time.
6838 	 */
6839 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6840 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6841 
6842 	ret = elv_register(&iosched_bfq_mq);
6843 	if (ret)
6844 		goto slab_kill;
6845 
6846 	return 0;
6847 
6848 slab_kill:
6849 	bfq_slab_kill();
6850 err_pol_unreg:
6851 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6852 	blkcg_policy_unregister(&blkcg_policy_bfq);
6853 #endif
6854 	return ret;
6855 }
6856 
6857 static void __exit bfq_exit(void)
6858 {
6859 	elv_unregister(&iosched_bfq_mq);
6860 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6861 	blkcg_policy_unregister(&blkcg_policy_bfq);
6862 #endif
6863 	bfq_slab_kill();
6864 }
6865 
6866 module_init(bfq_init);
6867 module_exit(bfq_exit);
6868 
6869 MODULE_AUTHOR("Paolo Valente");
6870 MODULE_LICENSE("GPL");
6871 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6872