xref: /openbmc/linux/block/bfq-iosched.c (revision b78412b8)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. This feature enables
53  * BFQ to provide applications in these classes with a very low
54  * latency. Finally, BFQ also features additional heuristics for
55  * preserving both a low latency and a high throughput on NCQ-capable,
56  * rotational or flash-based devices, and to get the job done quickly
57  * for applications consisting in many I/O-bound processes.
58  *
59  * NOTE: if the main or only goal, with a given device, is to achieve
60  * the maximum-possible throughput at all times, then do switch off
61  * all low-latency heuristics for that device, by setting low_latency
62  * to 0.
63  *
64  * BFQ is described in [1], where also a reference to the initial, more
65  * theoretical paper on BFQ can be found. The interested reader can find
66  * in the latter paper full details on the main algorithm, as well as
67  * formulas of the guarantees and formal proofs of all the properties.
68  * With respect to the version of BFQ presented in these papers, this
69  * implementation adds a few more heuristics, such as the one that
70  * guarantees a low latency to soft real-time applications, and a
71  * hierarchical extension based on H-WF2Q+.
72  *
73  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75  * with O(log N) complexity derives from the one introduced with EEVDF
76  * in [3].
77  *
78  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79  *     Scheduler", Proceedings of the First Workshop on Mobile System
80  *     Technologies (MST-2015), May 2015.
81  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82  *
83  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85  *     Oct 1997.
86  *
87  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88  *
89  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90  *     First: A Flexible and Accurate Mechanism for Proportional Share
91  *     Resource Allocation", technical report.
92  *
93  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94  */
95 #include <linux/module.h>
96 #include <linux/slab.h>
97 #include <linux/blkdev.h>
98 #include <linux/cgroup.h>
99 #include <linux/elevator.h>
100 #include <linux/ktime.h>
101 #include <linux/rbtree.h>
102 #include <linux/ioprio.h>
103 #include <linux/sbitmap.h>
104 #include <linux/delay.h>
105 
106 #include "blk.h"
107 #include "blk-mq.h"
108 #include "blk-mq-tag.h"
109 #include "blk-mq-sched.h"
110 #include "bfq-iosched.h"
111 
112 #define BFQ_BFQQ_FNS(name)						\
113 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
114 {									\
115 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
116 }									\
117 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
118 {									\
119 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
120 }									\
121 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
122 {									\
123 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
124 }
125 
126 BFQ_BFQQ_FNS(just_created);
127 BFQ_BFQQ_FNS(busy);
128 BFQ_BFQQ_FNS(wait_request);
129 BFQ_BFQQ_FNS(non_blocking_wait_rq);
130 BFQ_BFQQ_FNS(fifo_expire);
131 BFQ_BFQQ_FNS(has_short_ttime);
132 BFQ_BFQQ_FNS(sync);
133 BFQ_BFQQ_FNS(IO_bound);
134 BFQ_BFQQ_FNS(in_large_burst);
135 BFQ_BFQQ_FNS(coop);
136 BFQ_BFQQ_FNS(split_coop);
137 BFQ_BFQQ_FNS(softrt_update);
138 #undef BFQ_BFQQ_FNS						\
139 
140 /* Expiration time of sync (0) and async (1) requests, in ns. */
141 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
142 
143 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
144 static const int bfq_back_max = 16 * 1024;
145 
146 /* Penalty of a backwards seek, in number of sectors. */
147 static const int bfq_back_penalty = 2;
148 
149 /* Idling period duration, in ns. */
150 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
151 
152 /* Minimum number of assigned budgets for which stats are safe to compute. */
153 static const int bfq_stats_min_budgets = 194;
154 
155 /* Default maximum budget values, in sectors and number of requests. */
156 static const int bfq_default_max_budget = 16 * 1024;
157 
158 /*
159  * Async to sync throughput distribution is controlled as follows:
160  * when an async request is served, the entity is charged the number
161  * of sectors of the request, multiplied by the factor below
162  */
163 static const int bfq_async_charge_factor = 10;
164 
165 /* Default timeout values, in jiffies, approximating CFQ defaults. */
166 const int bfq_timeout = HZ / 8;
167 
168 static struct kmem_cache *bfq_pool;
169 
170 /* Below this threshold (in ns), we consider thinktime immediate. */
171 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
172 
173 /* hw_tag detection: parallel requests threshold and min samples needed. */
174 #define BFQ_HW_QUEUE_THRESHOLD	4
175 #define BFQ_HW_QUEUE_SAMPLES	32
176 
177 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
178 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
179 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
180 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 32/8)
181 
182 /* Min number of samples required to perform peak-rate update */
183 #define BFQ_RATE_MIN_SAMPLES	32
184 /* Min observation time interval required to perform a peak-rate update (ns) */
185 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
186 /* Target observation time interval for a peak-rate update (ns) */
187 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
188 
189 /* Shift used for peak rate fixed precision calculations. */
190 #define BFQ_RATE_SHIFT		16
191 
192 /*
193  * By default, BFQ computes the duration of the weight raising for
194  * interactive applications automatically, using the following formula:
195  * duration = (R / r) * T, where r is the peak rate of the device, and
196  * R and T are two reference parameters.
197  * In particular, R is the peak rate of the reference device (see below),
198  * and T is a reference time: given the systems that are likely to be
199  * installed on the reference device according to its speed class, T is
200  * about the maximum time needed, under BFQ and while reading two files in
201  * parallel, to load typical large applications on these systems.
202  * In practice, the slower/faster the device at hand is, the more/less it
203  * takes to load applications with respect to the reference device.
204  * Accordingly, the longer/shorter BFQ grants weight raising to interactive
205  * applications.
206  *
207  * BFQ uses four different reference pairs (R, T), depending on:
208  * . whether the device is rotational or non-rotational;
209  * . whether the device is slow, such as old or portable HDDs, as well as
210  *   SD cards, or fast, such as newer HDDs and SSDs.
211  *
212  * The device's speed class is dynamically (re)detected in
213  * bfq_update_peak_rate() every time the estimated peak rate is updated.
214  *
215  * In the following definitions, R_slow[0]/R_fast[0] and
216  * T_slow[0]/T_fast[0] are the reference values for a slow/fast
217  * rotational device, whereas R_slow[1]/R_fast[1] and
218  * T_slow[1]/T_fast[1] are the reference values for a slow/fast
219  * non-rotational device. Finally, device_speed_thresh are the
220  * thresholds used to switch between speed classes. The reference
221  * rates are not the actual peak rates of the devices used as a
222  * reference, but slightly lower values. The reason for using these
223  * slightly lower values is that the peak-rate estimator tends to
224  * yield slightly lower values than the actual peak rate (it can yield
225  * the actual peak rate only if there is only one process doing I/O,
226  * and the process does sequential I/O).
227  *
228  * Both the reference peak rates and the thresholds are measured in
229  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
230  */
231 static int R_slow[2] = {1000, 10700};
232 static int R_fast[2] = {14000, 33000};
233 /*
234  * To improve readability, a conversion function is used to initialize the
235  * following arrays, which entails that they can be initialized only in a
236  * function.
237  */
238 static int T_slow[2];
239 static int T_fast[2];
240 static int device_speed_thresh[2];
241 
242 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
243 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
244 
245 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
246 {
247 	return bic->bfqq[is_sync];
248 }
249 
250 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
251 {
252 	bic->bfqq[is_sync] = bfqq;
253 }
254 
255 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
256 {
257 	return bic->icq.q->elevator->elevator_data;
258 }
259 
260 /**
261  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
262  * @icq: the iocontext queue.
263  */
264 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
265 {
266 	/* bic->icq is the first member, %NULL will convert to %NULL */
267 	return container_of(icq, struct bfq_io_cq, icq);
268 }
269 
270 /**
271  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
272  * @bfqd: the lookup key.
273  * @ioc: the io_context of the process doing I/O.
274  * @q: the request queue.
275  */
276 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
277 					struct io_context *ioc,
278 					struct request_queue *q)
279 {
280 	if (ioc) {
281 		unsigned long flags;
282 		struct bfq_io_cq *icq;
283 
284 		spin_lock_irqsave(q->queue_lock, flags);
285 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
286 		spin_unlock_irqrestore(q->queue_lock, flags);
287 
288 		return icq;
289 	}
290 
291 	return NULL;
292 }
293 
294 /*
295  * Scheduler run of queue, if there are requests pending and no one in the
296  * driver that will restart queueing.
297  */
298 void bfq_schedule_dispatch(struct bfq_data *bfqd)
299 {
300 	if (bfqd->queued != 0) {
301 		bfq_log(bfqd, "schedule dispatch");
302 		blk_mq_run_hw_queues(bfqd->queue, true);
303 	}
304 }
305 
306 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
307 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
308 
309 #define bfq_sample_valid(samples)	((samples) > 80)
310 
311 /*
312  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
313  * We choose the request that is closesr to the head right now.  Distance
314  * behind the head is penalized and only allowed to a certain extent.
315  */
316 static struct request *bfq_choose_req(struct bfq_data *bfqd,
317 				      struct request *rq1,
318 				      struct request *rq2,
319 				      sector_t last)
320 {
321 	sector_t s1, s2, d1 = 0, d2 = 0;
322 	unsigned long back_max;
323 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
324 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
325 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
326 
327 	if (!rq1 || rq1 == rq2)
328 		return rq2;
329 	if (!rq2)
330 		return rq1;
331 
332 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
333 		return rq1;
334 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
335 		return rq2;
336 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
337 		return rq1;
338 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
339 		return rq2;
340 
341 	s1 = blk_rq_pos(rq1);
342 	s2 = blk_rq_pos(rq2);
343 
344 	/*
345 	 * By definition, 1KiB is 2 sectors.
346 	 */
347 	back_max = bfqd->bfq_back_max * 2;
348 
349 	/*
350 	 * Strict one way elevator _except_ in the case where we allow
351 	 * short backward seeks which are biased as twice the cost of a
352 	 * similar forward seek.
353 	 */
354 	if (s1 >= last)
355 		d1 = s1 - last;
356 	else if (s1 + back_max >= last)
357 		d1 = (last - s1) * bfqd->bfq_back_penalty;
358 	else
359 		wrap |= BFQ_RQ1_WRAP;
360 
361 	if (s2 >= last)
362 		d2 = s2 - last;
363 	else if (s2 + back_max >= last)
364 		d2 = (last - s2) * bfqd->bfq_back_penalty;
365 	else
366 		wrap |= BFQ_RQ2_WRAP;
367 
368 	/* Found required data */
369 
370 	/*
371 	 * By doing switch() on the bit mask "wrap" we avoid having to
372 	 * check two variables for all permutations: --> faster!
373 	 */
374 	switch (wrap) {
375 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
376 		if (d1 < d2)
377 			return rq1;
378 		else if (d2 < d1)
379 			return rq2;
380 
381 		if (s1 >= s2)
382 			return rq1;
383 		else
384 			return rq2;
385 
386 	case BFQ_RQ2_WRAP:
387 		return rq1;
388 	case BFQ_RQ1_WRAP:
389 		return rq2;
390 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
391 	default:
392 		/*
393 		 * Since both rqs are wrapped,
394 		 * start with the one that's further behind head
395 		 * (--> only *one* back seek required),
396 		 * since back seek takes more time than forward.
397 		 */
398 		if (s1 <= s2)
399 			return rq1;
400 		else
401 			return rq2;
402 	}
403 }
404 
405 static struct bfq_queue *
406 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
407 		     sector_t sector, struct rb_node **ret_parent,
408 		     struct rb_node ***rb_link)
409 {
410 	struct rb_node **p, *parent;
411 	struct bfq_queue *bfqq = NULL;
412 
413 	parent = NULL;
414 	p = &root->rb_node;
415 	while (*p) {
416 		struct rb_node **n;
417 
418 		parent = *p;
419 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
420 
421 		/*
422 		 * Sort strictly based on sector. Smallest to the left,
423 		 * largest to the right.
424 		 */
425 		if (sector > blk_rq_pos(bfqq->next_rq))
426 			n = &(*p)->rb_right;
427 		else if (sector < blk_rq_pos(bfqq->next_rq))
428 			n = &(*p)->rb_left;
429 		else
430 			break;
431 		p = n;
432 		bfqq = NULL;
433 	}
434 
435 	*ret_parent = parent;
436 	if (rb_link)
437 		*rb_link = p;
438 
439 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
440 		(unsigned long long)sector,
441 		bfqq ? bfqq->pid : 0);
442 
443 	return bfqq;
444 }
445 
446 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
447 {
448 	struct rb_node **p, *parent;
449 	struct bfq_queue *__bfqq;
450 
451 	if (bfqq->pos_root) {
452 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
453 		bfqq->pos_root = NULL;
454 	}
455 
456 	if (bfq_class_idle(bfqq))
457 		return;
458 	if (!bfqq->next_rq)
459 		return;
460 
461 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
462 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
463 			blk_rq_pos(bfqq->next_rq), &parent, &p);
464 	if (!__bfqq) {
465 		rb_link_node(&bfqq->pos_node, parent, p);
466 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
467 	} else
468 		bfqq->pos_root = NULL;
469 }
470 
471 /*
472  * Tell whether there are active queues or groups with differentiated weights.
473  */
474 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
475 {
476 	/*
477 	 * For weights to differ, at least one of the trees must contain
478 	 * at least two nodes.
479 	 */
480 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
481 		(bfqd->queue_weights_tree.rb_node->rb_left ||
482 		 bfqd->queue_weights_tree.rb_node->rb_right)
483 #ifdef CONFIG_BFQ_GROUP_IOSCHED
484 	       ) ||
485 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
486 		(bfqd->group_weights_tree.rb_node->rb_left ||
487 		 bfqd->group_weights_tree.rb_node->rb_right)
488 #endif
489 	       );
490 }
491 
492 /*
493  * The following function returns true if every queue must receive the
494  * same share of the throughput (this condition is used when deciding
495  * whether idling may be disabled, see the comments in the function
496  * bfq_bfqq_may_idle()).
497  *
498  * Such a scenario occurs when:
499  * 1) all active queues have the same weight,
500  * 2) all active groups at the same level in the groups tree have the same
501  *    weight,
502  * 3) all active groups at the same level in the groups tree have the same
503  *    number of children.
504  *
505  * Unfortunately, keeping the necessary state for evaluating exactly the
506  * above symmetry conditions would be quite complex and time-consuming.
507  * Therefore this function evaluates, instead, the following stronger
508  * sub-conditions, for which it is much easier to maintain the needed
509  * state:
510  * 1) all active queues have the same weight,
511  * 2) all active groups have the same weight,
512  * 3) all active groups have at most one active child each.
513  * In particular, the last two conditions are always true if hierarchical
514  * support and the cgroups interface are not enabled, thus no state needs
515  * to be maintained in this case.
516  */
517 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
518 {
519 	return !bfq_differentiated_weights(bfqd);
520 }
521 
522 /*
523  * If the weight-counter tree passed as input contains no counter for
524  * the weight of the input entity, then add that counter; otherwise just
525  * increment the existing counter.
526  *
527  * Note that weight-counter trees contain few nodes in mostly symmetric
528  * scenarios. For example, if all queues have the same weight, then the
529  * weight-counter tree for the queues may contain at most one node.
530  * This holds even if low_latency is on, because weight-raised queues
531  * are not inserted in the tree.
532  * In most scenarios, the rate at which nodes are created/destroyed
533  * should be low too.
534  */
535 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
536 			  struct rb_root *root)
537 {
538 	struct rb_node **new = &(root->rb_node), *parent = NULL;
539 
540 	/*
541 	 * Do not insert if the entity is already associated with a
542 	 * counter, which happens if:
543 	 *   1) the entity is associated with a queue,
544 	 *   2) a request arrival has caused the queue to become both
545 	 *      non-weight-raised, and hence change its weight, and
546 	 *      backlogged; in this respect, each of the two events
547 	 *      causes an invocation of this function,
548 	 *   3) this is the invocation of this function caused by the
549 	 *      second event. This second invocation is actually useless,
550 	 *      and we handle this fact by exiting immediately. More
551 	 *      efficient or clearer solutions might possibly be adopted.
552 	 */
553 	if (entity->weight_counter)
554 		return;
555 
556 	while (*new) {
557 		struct bfq_weight_counter *__counter = container_of(*new,
558 						struct bfq_weight_counter,
559 						weights_node);
560 		parent = *new;
561 
562 		if (entity->weight == __counter->weight) {
563 			entity->weight_counter = __counter;
564 			goto inc_counter;
565 		}
566 		if (entity->weight < __counter->weight)
567 			new = &((*new)->rb_left);
568 		else
569 			new = &((*new)->rb_right);
570 	}
571 
572 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
573 					 GFP_ATOMIC);
574 
575 	/*
576 	 * In the unlucky event of an allocation failure, we just
577 	 * exit. This will cause the weight of entity to not be
578 	 * considered in bfq_differentiated_weights, which, in its
579 	 * turn, causes the scenario to be deemed wrongly symmetric in
580 	 * case entity's weight would have been the only weight making
581 	 * the scenario asymmetric. On the bright side, no unbalance
582 	 * will however occur when entity becomes inactive again (the
583 	 * invocation of this function is triggered by an activation
584 	 * of entity). In fact, bfq_weights_tree_remove does nothing
585 	 * if !entity->weight_counter.
586 	 */
587 	if (unlikely(!entity->weight_counter))
588 		return;
589 
590 	entity->weight_counter->weight = entity->weight;
591 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
592 	rb_insert_color(&entity->weight_counter->weights_node, root);
593 
594 inc_counter:
595 	entity->weight_counter->num_active++;
596 }
597 
598 /*
599  * Decrement the weight counter associated with the entity, and, if the
600  * counter reaches 0, remove the counter from the tree.
601  * See the comments to the function bfq_weights_tree_add() for considerations
602  * about overhead.
603  */
604 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
605 			     struct rb_root *root)
606 {
607 	if (!entity->weight_counter)
608 		return;
609 
610 	entity->weight_counter->num_active--;
611 	if (entity->weight_counter->num_active > 0)
612 		goto reset_entity_pointer;
613 
614 	rb_erase(&entity->weight_counter->weights_node, root);
615 	kfree(entity->weight_counter);
616 
617 reset_entity_pointer:
618 	entity->weight_counter = NULL;
619 }
620 
621 /*
622  * Return expired entry, or NULL to just start from scratch in rbtree.
623  */
624 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
625 				      struct request *last)
626 {
627 	struct request *rq;
628 
629 	if (bfq_bfqq_fifo_expire(bfqq))
630 		return NULL;
631 
632 	bfq_mark_bfqq_fifo_expire(bfqq);
633 
634 	rq = rq_entry_fifo(bfqq->fifo.next);
635 
636 	if (rq == last || ktime_get_ns() < rq->fifo_time)
637 		return NULL;
638 
639 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
640 	return rq;
641 }
642 
643 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
644 					struct bfq_queue *bfqq,
645 					struct request *last)
646 {
647 	struct rb_node *rbnext = rb_next(&last->rb_node);
648 	struct rb_node *rbprev = rb_prev(&last->rb_node);
649 	struct request *next, *prev = NULL;
650 
651 	/* Follow expired path, else get first next available. */
652 	next = bfq_check_fifo(bfqq, last);
653 	if (next)
654 		return next;
655 
656 	if (rbprev)
657 		prev = rb_entry_rq(rbprev);
658 
659 	if (rbnext)
660 		next = rb_entry_rq(rbnext);
661 	else {
662 		rbnext = rb_first(&bfqq->sort_list);
663 		if (rbnext && rbnext != &last->rb_node)
664 			next = rb_entry_rq(rbnext);
665 	}
666 
667 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
668 }
669 
670 /* see the definition of bfq_async_charge_factor for details */
671 static unsigned long bfq_serv_to_charge(struct request *rq,
672 					struct bfq_queue *bfqq)
673 {
674 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
675 		return blk_rq_sectors(rq);
676 
677 	/*
678 	 * If there are no weight-raised queues, then amplify service
679 	 * by just the async charge factor; otherwise amplify service
680 	 * by twice the async charge factor, to further reduce latency
681 	 * for weight-raised queues.
682 	 */
683 	if (bfqq->bfqd->wr_busy_queues == 0)
684 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
685 
686 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
687 }
688 
689 /**
690  * bfq_updated_next_req - update the queue after a new next_rq selection.
691  * @bfqd: the device data the queue belongs to.
692  * @bfqq: the queue to update.
693  *
694  * If the first request of a queue changes we make sure that the queue
695  * has enough budget to serve at least its first request (if the
696  * request has grown).  We do this because if the queue has not enough
697  * budget for its first request, it has to go through two dispatch
698  * rounds to actually get it dispatched.
699  */
700 static void bfq_updated_next_req(struct bfq_data *bfqd,
701 				 struct bfq_queue *bfqq)
702 {
703 	struct bfq_entity *entity = &bfqq->entity;
704 	struct request *next_rq = bfqq->next_rq;
705 	unsigned long new_budget;
706 
707 	if (!next_rq)
708 		return;
709 
710 	if (bfqq == bfqd->in_service_queue)
711 		/*
712 		 * In order not to break guarantees, budgets cannot be
713 		 * changed after an entity has been selected.
714 		 */
715 		return;
716 
717 	new_budget = max_t(unsigned long, bfqq->max_budget,
718 			   bfq_serv_to_charge(next_rq, bfqq));
719 	if (entity->budget != new_budget) {
720 		entity->budget = new_budget;
721 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
722 					 new_budget);
723 		bfq_requeue_bfqq(bfqd, bfqq, false);
724 	}
725 }
726 
727 static void
728 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
729 		      struct bfq_io_cq *bic, bool bfq_already_existing)
730 {
731 	unsigned int old_wr_coeff = bfqq->wr_coeff;
732 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
733 
734 	if (bic->saved_has_short_ttime)
735 		bfq_mark_bfqq_has_short_ttime(bfqq);
736 	else
737 		bfq_clear_bfqq_has_short_ttime(bfqq);
738 
739 	if (bic->saved_IO_bound)
740 		bfq_mark_bfqq_IO_bound(bfqq);
741 	else
742 		bfq_clear_bfqq_IO_bound(bfqq);
743 
744 	bfqq->ttime = bic->saved_ttime;
745 	bfqq->wr_coeff = bic->saved_wr_coeff;
746 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
747 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
748 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
749 
750 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
751 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
752 				   bfqq->wr_cur_max_time))) {
753 		bfq_log_bfqq(bfqq->bfqd, bfqq,
754 		    "resume state: switching off wr");
755 
756 		bfqq->wr_coeff = 1;
757 	}
758 
759 	/* make sure weight will be updated, however we got here */
760 	bfqq->entity.prio_changed = 1;
761 
762 	if (likely(!busy))
763 		return;
764 
765 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
766 		bfqd->wr_busy_queues++;
767 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
768 		bfqd->wr_busy_queues--;
769 }
770 
771 static int bfqq_process_refs(struct bfq_queue *bfqq)
772 {
773 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
774 }
775 
776 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
777 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
778 {
779 	struct bfq_queue *item;
780 	struct hlist_node *n;
781 
782 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
783 		hlist_del_init(&item->burst_list_node);
784 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
785 	bfqd->burst_size = 1;
786 	bfqd->burst_parent_entity = bfqq->entity.parent;
787 }
788 
789 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
790 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
791 {
792 	/* Increment burst size to take into account also bfqq */
793 	bfqd->burst_size++;
794 
795 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
796 		struct bfq_queue *pos, *bfqq_item;
797 		struct hlist_node *n;
798 
799 		/*
800 		 * Enough queues have been activated shortly after each
801 		 * other to consider this burst as large.
802 		 */
803 		bfqd->large_burst = true;
804 
805 		/*
806 		 * We can now mark all queues in the burst list as
807 		 * belonging to a large burst.
808 		 */
809 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
810 				     burst_list_node)
811 			bfq_mark_bfqq_in_large_burst(bfqq_item);
812 		bfq_mark_bfqq_in_large_burst(bfqq);
813 
814 		/*
815 		 * From now on, and until the current burst finishes, any
816 		 * new queue being activated shortly after the last queue
817 		 * was inserted in the burst can be immediately marked as
818 		 * belonging to a large burst. So the burst list is not
819 		 * needed any more. Remove it.
820 		 */
821 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
822 					  burst_list_node)
823 			hlist_del_init(&pos->burst_list_node);
824 	} else /*
825 		* Burst not yet large: add bfqq to the burst list. Do
826 		* not increment the ref counter for bfqq, because bfqq
827 		* is removed from the burst list before freeing bfqq
828 		* in put_queue.
829 		*/
830 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
831 }
832 
833 /*
834  * If many queues belonging to the same group happen to be created
835  * shortly after each other, then the processes associated with these
836  * queues have typically a common goal. In particular, bursts of queue
837  * creations are usually caused by services or applications that spawn
838  * many parallel threads/processes. Examples are systemd during boot,
839  * or git grep. To help these processes get their job done as soon as
840  * possible, it is usually better to not grant either weight-raising
841  * or device idling to their queues.
842  *
843  * In this comment we describe, firstly, the reasons why this fact
844  * holds, and, secondly, the next function, which implements the main
845  * steps needed to properly mark these queues so that they can then be
846  * treated in a different way.
847  *
848  * The above services or applications benefit mostly from a high
849  * throughput: the quicker the requests of the activated queues are
850  * cumulatively served, the sooner the target job of these queues gets
851  * completed. As a consequence, weight-raising any of these queues,
852  * which also implies idling the device for it, is almost always
853  * counterproductive. In most cases it just lowers throughput.
854  *
855  * On the other hand, a burst of queue creations may be caused also by
856  * the start of an application that does not consist of a lot of
857  * parallel I/O-bound threads. In fact, with a complex application,
858  * several short processes may need to be executed to start-up the
859  * application. In this respect, to start an application as quickly as
860  * possible, the best thing to do is in any case to privilege the I/O
861  * related to the application with respect to all other
862  * I/O. Therefore, the best strategy to start as quickly as possible
863  * an application that causes a burst of queue creations is to
864  * weight-raise all the queues created during the burst. This is the
865  * exact opposite of the best strategy for the other type of bursts.
866  *
867  * In the end, to take the best action for each of the two cases, the
868  * two types of bursts need to be distinguished. Fortunately, this
869  * seems relatively easy, by looking at the sizes of the bursts. In
870  * particular, we found a threshold such that only bursts with a
871  * larger size than that threshold are apparently caused by
872  * services or commands such as systemd or git grep. For brevity,
873  * hereafter we call just 'large' these bursts. BFQ *does not*
874  * weight-raise queues whose creation occurs in a large burst. In
875  * addition, for each of these queues BFQ performs or does not perform
876  * idling depending on which choice boosts the throughput more. The
877  * exact choice depends on the device and request pattern at
878  * hand.
879  *
880  * Unfortunately, false positives may occur while an interactive task
881  * is starting (e.g., an application is being started). The
882  * consequence is that the queues associated with the task do not
883  * enjoy weight raising as expected. Fortunately these false positives
884  * are very rare. They typically occur if some service happens to
885  * start doing I/O exactly when the interactive task starts.
886  *
887  * Turning back to the next function, it implements all the steps
888  * needed to detect the occurrence of a large burst and to properly
889  * mark all the queues belonging to it (so that they can then be
890  * treated in a different way). This goal is achieved by maintaining a
891  * "burst list" that holds, temporarily, the queues that belong to the
892  * burst in progress. The list is then used to mark these queues as
893  * belonging to a large burst if the burst does become large. The main
894  * steps are the following.
895  *
896  * . when the very first queue is created, the queue is inserted into the
897  *   list (as it could be the first queue in a possible burst)
898  *
899  * . if the current burst has not yet become large, and a queue Q that does
900  *   not yet belong to the burst is activated shortly after the last time
901  *   at which a new queue entered the burst list, then the function appends
902  *   Q to the burst list
903  *
904  * . if, as a consequence of the previous step, the burst size reaches
905  *   the large-burst threshold, then
906  *
907  *     . all the queues in the burst list are marked as belonging to a
908  *       large burst
909  *
910  *     . the burst list is deleted; in fact, the burst list already served
911  *       its purpose (keeping temporarily track of the queues in a burst,
912  *       so as to be able to mark them as belonging to a large burst in the
913  *       previous sub-step), and now is not needed any more
914  *
915  *     . the device enters a large-burst mode
916  *
917  * . if a queue Q that does not belong to the burst is created while
918  *   the device is in large-burst mode and shortly after the last time
919  *   at which a queue either entered the burst list or was marked as
920  *   belonging to the current large burst, then Q is immediately marked
921  *   as belonging to a large burst.
922  *
923  * . if a queue Q that does not belong to the burst is created a while
924  *   later, i.e., not shortly after, than the last time at which a queue
925  *   either entered the burst list or was marked as belonging to the
926  *   current large burst, then the current burst is deemed as finished and:
927  *
928  *        . the large-burst mode is reset if set
929  *
930  *        . the burst list is emptied
931  *
932  *        . Q is inserted in the burst list, as Q may be the first queue
933  *          in a possible new burst (then the burst list contains just Q
934  *          after this step).
935  */
936 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
937 {
938 	/*
939 	 * If bfqq is already in the burst list or is part of a large
940 	 * burst, or finally has just been split, then there is
941 	 * nothing else to do.
942 	 */
943 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
944 	    bfq_bfqq_in_large_burst(bfqq) ||
945 	    time_is_after_eq_jiffies(bfqq->split_time +
946 				     msecs_to_jiffies(10)))
947 		return;
948 
949 	/*
950 	 * If bfqq's creation happens late enough, or bfqq belongs to
951 	 * a different group than the burst group, then the current
952 	 * burst is finished, and related data structures must be
953 	 * reset.
954 	 *
955 	 * In this respect, consider the special case where bfqq is
956 	 * the very first queue created after BFQ is selected for this
957 	 * device. In this case, last_ins_in_burst and
958 	 * burst_parent_entity are not yet significant when we get
959 	 * here. But it is easy to verify that, whether or not the
960 	 * following condition is true, bfqq will end up being
961 	 * inserted into the burst list. In particular the list will
962 	 * happen to contain only bfqq. And this is exactly what has
963 	 * to happen, as bfqq may be the first queue of the first
964 	 * burst.
965 	 */
966 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
967 	    bfqd->bfq_burst_interval) ||
968 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
969 		bfqd->large_burst = false;
970 		bfq_reset_burst_list(bfqd, bfqq);
971 		goto end;
972 	}
973 
974 	/*
975 	 * If we get here, then bfqq is being activated shortly after the
976 	 * last queue. So, if the current burst is also large, we can mark
977 	 * bfqq as belonging to this large burst immediately.
978 	 */
979 	if (bfqd->large_burst) {
980 		bfq_mark_bfqq_in_large_burst(bfqq);
981 		goto end;
982 	}
983 
984 	/*
985 	 * If we get here, then a large-burst state has not yet been
986 	 * reached, but bfqq is being activated shortly after the last
987 	 * queue. Then we add bfqq to the burst.
988 	 */
989 	bfq_add_to_burst(bfqd, bfqq);
990 end:
991 	/*
992 	 * At this point, bfqq either has been added to the current
993 	 * burst or has caused the current burst to terminate and a
994 	 * possible new burst to start. In particular, in the second
995 	 * case, bfqq has become the first queue in the possible new
996 	 * burst.  In both cases last_ins_in_burst needs to be moved
997 	 * forward.
998 	 */
999 	bfqd->last_ins_in_burst = jiffies;
1000 }
1001 
1002 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1003 {
1004 	struct bfq_entity *entity = &bfqq->entity;
1005 
1006 	return entity->budget - entity->service;
1007 }
1008 
1009 /*
1010  * If enough samples have been computed, return the current max budget
1011  * stored in bfqd, which is dynamically updated according to the
1012  * estimated disk peak rate; otherwise return the default max budget
1013  */
1014 static int bfq_max_budget(struct bfq_data *bfqd)
1015 {
1016 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1017 		return bfq_default_max_budget;
1018 	else
1019 		return bfqd->bfq_max_budget;
1020 }
1021 
1022 /*
1023  * Return min budget, which is a fraction of the current or default
1024  * max budget (trying with 1/32)
1025  */
1026 static int bfq_min_budget(struct bfq_data *bfqd)
1027 {
1028 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1029 		return bfq_default_max_budget / 32;
1030 	else
1031 		return bfqd->bfq_max_budget / 32;
1032 }
1033 
1034 /*
1035  * The next function, invoked after the input queue bfqq switches from
1036  * idle to busy, updates the budget of bfqq. The function also tells
1037  * whether the in-service queue should be expired, by returning
1038  * true. The purpose of expiring the in-service queue is to give bfqq
1039  * the chance to possibly preempt the in-service queue, and the reason
1040  * for preempting the in-service queue is to achieve one of the two
1041  * goals below.
1042  *
1043  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1044  * expired because it has remained idle. In particular, bfqq may have
1045  * expired for one of the following two reasons:
1046  *
1047  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1048  *   and did not make it to issue a new request before its last
1049  *   request was served;
1050  *
1051  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1052  *   a new request before the expiration of the idling-time.
1053  *
1054  * Even if bfqq has expired for one of the above reasons, the process
1055  * associated with the queue may be however issuing requests greedily,
1056  * and thus be sensitive to the bandwidth it receives (bfqq may have
1057  * remained idle for other reasons: CPU high load, bfqq not enjoying
1058  * idling, I/O throttling somewhere in the path from the process to
1059  * the I/O scheduler, ...). But if, after every expiration for one of
1060  * the above two reasons, bfqq has to wait for the service of at least
1061  * one full budget of another queue before being served again, then
1062  * bfqq is likely to get a much lower bandwidth or resource time than
1063  * its reserved ones. To address this issue, two countermeasures need
1064  * to be taken.
1065  *
1066  * First, the budget and the timestamps of bfqq need to be updated in
1067  * a special way on bfqq reactivation: they need to be updated as if
1068  * bfqq did not remain idle and did not expire. In fact, if they are
1069  * computed as if bfqq expired and remained idle until reactivation,
1070  * then the process associated with bfqq is treated as if, instead of
1071  * being greedy, it stopped issuing requests when bfqq remained idle,
1072  * and restarts issuing requests only on this reactivation. In other
1073  * words, the scheduler does not help the process recover the "service
1074  * hole" between bfqq expiration and reactivation. As a consequence,
1075  * the process receives a lower bandwidth than its reserved one. In
1076  * contrast, to recover this hole, the budget must be updated as if
1077  * bfqq was not expired at all before this reactivation, i.e., it must
1078  * be set to the value of the remaining budget when bfqq was
1079  * expired. Along the same line, timestamps need to be assigned the
1080  * value they had the last time bfqq was selected for service, i.e.,
1081  * before last expiration. Thus timestamps need to be back-shifted
1082  * with respect to their normal computation (see [1] for more details
1083  * on this tricky aspect).
1084  *
1085  * Secondly, to allow the process to recover the hole, the in-service
1086  * queue must be expired too, to give bfqq the chance to preempt it
1087  * immediately. In fact, if bfqq has to wait for a full budget of the
1088  * in-service queue to be completed, then it may become impossible to
1089  * let the process recover the hole, even if the back-shifted
1090  * timestamps of bfqq are lower than those of the in-service queue. If
1091  * this happens for most or all of the holes, then the process may not
1092  * receive its reserved bandwidth. In this respect, it is worth noting
1093  * that, being the service of outstanding requests unpreemptible, a
1094  * little fraction of the holes may however be unrecoverable, thereby
1095  * causing a little loss of bandwidth.
1096  *
1097  * The last important point is detecting whether bfqq does need this
1098  * bandwidth recovery. In this respect, the next function deems the
1099  * process associated with bfqq greedy, and thus allows it to recover
1100  * the hole, if: 1) the process is waiting for the arrival of a new
1101  * request (which implies that bfqq expired for one of the above two
1102  * reasons), and 2) such a request has arrived soon. The first
1103  * condition is controlled through the flag non_blocking_wait_rq,
1104  * while the second through the flag arrived_in_time. If both
1105  * conditions hold, then the function computes the budget in the
1106  * above-described special way, and signals that the in-service queue
1107  * should be expired. Timestamp back-shifting is done later in
1108  * __bfq_activate_entity.
1109  *
1110  * 2. Reduce latency. Even if timestamps are not backshifted to let
1111  * the process associated with bfqq recover a service hole, bfqq may
1112  * however happen to have, after being (re)activated, a lower finish
1113  * timestamp than the in-service queue.	 That is, the next budget of
1114  * bfqq may have to be completed before the one of the in-service
1115  * queue. If this is the case, then preempting the in-service queue
1116  * allows this goal to be achieved, apart from the unpreemptible,
1117  * outstanding requests mentioned above.
1118  *
1119  * Unfortunately, regardless of which of the above two goals one wants
1120  * to achieve, service trees need first to be updated to know whether
1121  * the in-service queue must be preempted. To have service trees
1122  * correctly updated, the in-service queue must be expired and
1123  * rescheduled, and bfqq must be scheduled too. This is one of the
1124  * most costly operations (in future versions, the scheduling
1125  * mechanism may be re-designed in such a way to make it possible to
1126  * know whether preemption is needed without needing to update service
1127  * trees). In addition, queue preemptions almost always cause random
1128  * I/O, and thus loss of throughput. Because of these facts, the next
1129  * function adopts the following simple scheme to avoid both costly
1130  * operations and too frequent preemptions: it requests the expiration
1131  * of the in-service queue (unconditionally) only for queues that need
1132  * to recover a hole, or that either are weight-raised or deserve to
1133  * be weight-raised.
1134  */
1135 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1136 						struct bfq_queue *bfqq,
1137 						bool arrived_in_time,
1138 						bool wr_or_deserves_wr)
1139 {
1140 	struct bfq_entity *entity = &bfqq->entity;
1141 
1142 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1143 		/*
1144 		 * We do not clear the flag non_blocking_wait_rq here, as
1145 		 * the latter is used in bfq_activate_bfqq to signal
1146 		 * that timestamps need to be back-shifted (and is
1147 		 * cleared right after).
1148 		 */
1149 
1150 		/*
1151 		 * In next assignment we rely on that either
1152 		 * entity->service or entity->budget are not updated
1153 		 * on expiration if bfqq is empty (see
1154 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1155 		 * remain unchanged after such an expiration, and the
1156 		 * following statement therefore assigns to
1157 		 * entity->budget the remaining budget on such an
1158 		 * expiration. For clarity, entity->service is not
1159 		 * updated on expiration in any case, and, in normal
1160 		 * operation, is reset only when bfqq is selected for
1161 		 * service (see bfq_get_next_queue).
1162 		 */
1163 		entity->budget = min_t(unsigned long,
1164 				       bfq_bfqq_budget_left(bfqq),
1165 				       bfqq->max_budget);
1166 
1167 		return true;
1168 	}
1169 
1170 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1171 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1172 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1173 	return wr_or_deserves_wr;
1174 }
1175 
1176 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1177 {
1178 	u64 dur;
1179 
1180 	if (bfqd->bfq_wr_max_time > 0)
1181 		return bfqd->bfq_wr_max_time;
1182 
1183 	dur = bfqd->RT_prod;
1184 	do_div(dur, bfqd->peak_rate);
1185 
1186 	/*
1187 	 * Limit duration between 3 and 13 seconds. Tests show that
1188 	 * higher values than 13 seconds often yield the opposite of
1189 	 * the desired result, i.e., worsen responsiveness by letting
1190 	 * non-interactive and non-soft-real-time applications
1191 	 * preserve weight raising for a too long time interval.
1192 	 *
1193 	 * On the other end, lower values than 3 seconds make it
1194 	 * difficult for most interactive tasks to complete their jobs
1195 	 * before weight-raising finishes.
1196 	 */
1197 	if (dur > msecs_to_jiffies(13000))
1198 		dur = msecs_to_jiffies(13000);
1199 	else if (dur < msecs_to_jiffies(3000))
1200 		dur = msecs_to_jiffies(3000);
1201 
1202 	return dur;
1203 }
1204 
1205 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1206 					     struct bfq_queue *bfqq,
1207 					     unsigned int old_wr_coeff,
1208 					     bool wr_or_deserves_wr,
1209 					     bool interactive,
1210 					     bool in_burst,
1211 					     bool soft_rt)
1212 {
1213 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1214 		/* start a weight-raising period */
1215 		if (interactive) {
1216 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1217 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1218 		} else {
1219 			bfqq->wr_start_at_switch_to_srt = jiffies;
1220 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1221 				BFQ_SOFTRT_WEIGHT_FACTOR;
1222 			bfqq->wr_cur_max_time =
1223 				bfqd->bfq_wr_rt_max_time;
1224 		}
1225 
1226 		/*
1227 		 * If needed, further reduce budget to make sure it is
1228 		 * close to bfqq's backlog, so as to reduce the
1229 		 * scheduling-error component due to a too large
1230 		 * budget. Do not care about throughput consequences,
1231 		 * but only about latency. Finally, do not assign a
1232 		 * too small budget either, to avoid increasing
1233 		 * latency by causing too frequent expirations.
1234 		 */
1235 		bfqq->entity.budget = min_t(unsigned long,
1236 					    bfqq->entity.budget,
1237 					    2 * bfq_min_budget(bfqd));
1238 	} else if (old_wr_coeff > 1) {
1239 		if (interactive) { /* update wr coeff and duration */
1240 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1241 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1242 		} else if (in_burst)
1243 			bfqq->wr_coeff = 1;
1244 		else if (soft_rt) {
1245 			/*
1246 			 * The application is now or still meeting the
1247 			 * requirements for being deemed soft rt.  We
1248 			 * can then correctly and safely (re)charge
1249 			 * the weight-raising duration for the
1250 			 * application with the weight-raising
1251 			 * duration for soft rt applications.
1252 			 *
1253 			 * In particular, doing this recharge now, i.e.,
1254 			 * before the weight-raising period for the
1255 			 * application finishes, reduces the probability
1256 			 * of the following negative scenario:
1257 			 * 1) the weight of a soft rt application is
1258 			 *    raised at startup (as for any newly
1259 			 *    created application),
1260 			 * 2) since the application is not interactive,
1261 			 *    at a certain time weight-raising is
1262 			 *    stopped for the application,
1263 			 * 3) at that time the application happens to
1264 			 *    still have pending requests, and hence
1265 			 *    is destined to not have a chance to be
1266 			 *    deemed soft rt before these requests are
1267 			 *    completed (see the comments to the
1268 			 *    function bfq_bfqq_softrt_next_start()
1269 			 *    for details on soft rt detection),
1270 			 * 4) these pending requests experience a high
1271 			 *    latency because the application is not
1272 			 *    weight-raised while they are pending.
1273 			 */
1274 			if (bfqq->wr_cur_max_time !=
1275 				bfqd->bfq_wr_rt_max_time) {
1276 				bfqq->wr_start_at_switch_to_srt =
1277 					bfqq->last_wr_start_finish;
1278 
1279 				bfqq->wr_cur_max_time =
1280 					bfqd->bfq_wr_rt_max_time;
1281 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1282 					BFQ_SOFTRT_WEIGHT_FACTOR;
1283 			}
1284 			bfqq->last_wr_start_finish = jiffies;
1285 		}
1286 	}
1287 }
1288 
1289 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1290 					struct bfq_queue *bfqq)
1291 {
1292 	return bfqq->dispatched == 0 &&
1293 		time_is_before_jiffies(
1294 			bfqq->budget_timeout +
1295 			bfqd->bfq_wr_min_idle_time);
1296 }
1297 
1298 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1299 					     struct bfq_queue *bfqq,
1300 					     int old_wr_coeff,
1301 					     struct request *rq,
1302 					     bool *interactive)
1303 {
1304 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1305 		bfqq_wants_to_preempt,
1306 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1307 		/*
1308 		 * See the comments on
1309 		 * bfq_bfqq_update_budg_for_activation for
1310 		 * details on the usage of the next variable.
1311 		 */
1312 		arrived_in_time =  ktime_get_ns() <=
1313 			bfqq->ttime.last_end_request +
1314 			bfqd->bfq_slice_idle * 3;
1315 
1316 	bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1317 
1318 	/*
1319 	 * bfqq deserves to be weight-raised if:
1320 	 * - it is sync,
1321 	 * - it does not belong to a large burst,
1322 	 * - it has been idle for enough time or is soft real-time,
1323 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1324 	 */
1325 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1326 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1327 		!in_burst &&
1328 		time_is_before_jiffies(bfqq->soft_rt_next_start);
1329 	*interactive = !in_burst && idle_for_long_time;
1330 	wr_or_deserves_wr = bfqd->low_latency &&
1331 		(bfqq->wr_coeff > 1 ||
1332 		 (bfq_bfqq_sync(bfqq) &&
1333 		  bfqq->bic && (*interactive || soft_rt)));
1334 
1335 	/*
1336 	 * Using the last flag, update budget and check whether bfqq
1337 	 * may want to preempt the in-service queue.
1338 	 */
1339 	bfqq_wants_to_preempt =
1340 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1341 						    arrived_in_time,
1342 						    wr_or_deserves_wr);
1343 
1344 	/*
1345 	 * If bfqq happened to be activated in a burst, but has been
1346 	 * idle for much more than an interactive queue, then we
1347 	 * assume that, in the overall I/O initiated in the burst, the
1348 	 * I/O associated with bfqq is finished. So bfqq does not need
1349 	 * to be treated as a queue belonging to a burst
1350 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1351 	 * if set, and remove bfqq from the burst list if it's
1352 	 * there. We do not decrement burst_size, because the fact
1353 	 * that bfqq does not need to belong to the burst list any
1354 	 * more does not invalidate the fact that bfqq was created in
1355 	 * a burst.
1356 	 */
1357 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1358 	    idle_for_long_time &&
1359 	    time_is_before_jiffies(
1360 		    bfqq->budget_timeout +
1361 		    msecs_to_jiffies(10000))) {
1362 		hlist_del_init(&bfqq->burst_list_node);
1363 		bfq_clear_bfqq_in_large_burst(bfqq);
1364 	}
1365 
1366 	bfq_clear_bfqq_just_created(bfqq);
1367 
1368 
1369 	if (!bfq_bfqq_IO_bound(bfqq)) {
1370 		if (arrived_in_time) {
1371 			bfqq->requests_within_timer++;
1372 			if (bfqq->requests_within_timer >=
1373 			    bfqd->bfq_requests_within_timer)
1374 				bfq_mark_bfqq_IO_bound(bfqq);
1375 		} else
1376 			bfqq->requests_within_timer = 0;
1377 	}
1378 
1379 	if (bfqd->low_latency) {
1380 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1381 			/* wraparound */
1382 			bfqq->split_time =
1383 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1384 
1385 		if (time_is_before_jiffies(bfqq->split_time +
1386 					   bfqd->bfq_wr_min_idle_time)) {
1387 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1388 							 old_wr_coeff,
1389 							 wr_or_deserves_wr,
1390 							 *interactive,
1391 							 in_burst,
1392 							 soft_rt);
1393 
1394 			if (old_wr_coeff != bfqq->wr_coeff)
1395 				bfqq->entity.prio_changed = 1;
1396 		}
1397 	}
1398 
1399 	bfqq->last_idle_bklogged = jiffies;
1400 	bfqq->service_from_backlogged = 0;
1401 	bfq_clear_bfqq_softrt_update(bfqq);
1402 
1403 	bfq_add_bfqq_busy(bfqd, bfqq);
1404 
1405 	/*
1406 	 * Expire in-service queue only if preemption may be needed
1407 	 * for guarantees. In this respect, the function
1408 	 * next_queue_may_preempt just checks a simple, necessary
1409 	 * condition, and not a sufficient condition based on
1410 	 * timestamps. In fact, for the latter condition to be
1411 	 * evaluated, timestamps would need first to be updated, and
1412 	 * this operation is quite costly (see the comments on the
1413 	 * function bfq_bfqq_update_budg_for_activation).
1414 	 */
1415 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1416 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1417 	    next_queue_may_preempt(bfqd))
1418 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1419 				false, BFQQE_PREEMPTED);
1420 }
1421 
1422 static void bfq_add_request(struct request *rq)
1423 {
1424 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1425 	struct bfq_data *bfqd = bfqq->bfqd;
1426 	struct request *next_rq, *prev;
1427 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1428 	bool interactive = false;
1429 
1430 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1431 	bfqq->queued[rq_is_sync(rq)]++;
1432 	bfqd->queued++;
1433 
1434 	elv_rb_add(&bfqq->sort_list, rq);
1435 
1436 	/*
1437 	 * Check if this request is a better next-serve candidate.
1438 	 */
1439 	prev = bfqq->next_rq;
1440 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1441 	bfqq->next_rq = next_rq;
1442 
1443 	/*
1444 	 * Adjust priority tree position, if next_rq changes.
1445 	 */
1446 	if (prev != bfqq->next_rq)
1447 		bfq_pos_tree_add_move(bfqd, bfqq);
1448 
1449 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1450 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1451 						 rq, &interactive);
1452 	else {
1453 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1454 		    time_is_before_jiffies(
1455 				bfqq->last_wr_start_finish +
1456 				bfqd->bfq_wr_min_inter_arr_async)) {
1457 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1458 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1459 
1460 			bfqd->wr_busy_queues++;
1461 			bfqq->entity.prio_changed = 1;
1462 		}
1463 		if (prev != bfqq->next_rq)
1464 			bfq_updated_next_req(bfqd, bfqq);
1465 	}
1466 
1467 	/*
1468 	 * Assign jiffies to last_wr_start_finish in the following
1469 	 * cases:
1470 	 *
1471 	 * . if bfqq is not going to be weight-raised, because, for
1472 	 *   non weight-raised queues, last_wr_start_finish stores the
1473 	 *   arrival time of the last request; as of now, this piece
1474 	 *   of information is used only for deciding whether to
1475 	 *   weight-raise async queues
1476 	 *
1477 	 * . if bfqq is not weight-raised, because, if bfqq is now
1478 	 *   switching to weight-raised, then last_wr_start_finish
1479 	 *   stores the time when weight-raising starts
1480 	 *
1481 	 * . if bfqq is interactive, because, regardless of whether
1482 	 *   bfqq is currently weight-raised, the weight-raising
1483 	 *   period must start or restart (this case is considered
1484 	 *   separately because it is not detected by the above
1485 	 *   conditions, if bfqq is already weight-raised)
1486 	 *
1487 	 * last_wr_start_finish has to be updated also if bfqq is soft
1488 	 * real-time, because the weight-raising period is constantly
1489 	 * restarted on idle-to-busy transitions for these queues, but
1490 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1491 	 * needed.
1492 	 */
1493 	if (bfqd->low_latency &&
1494 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1495 		bfqq->last_wr_start_finish = jiffies;
1496 }
1497 
1498 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1499 					  struct bio *bio,
1500 					  struct request_queue *q)
1501 {
1502 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1503 
1504 
1505 	if (bfqq)
1506 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1507 
1508 	return NULL;
1509 }
1510 
1511 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1512 {
1513 	if (last_pos)
1514 		return abs(blk_rq_pos(rq) - last_pos);
1515 
1516 	return 0;
1517 }
1518 
1519 #if 0 /* Still not clear if we can do without next two functions */
1520 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1521 {
1522 	struct bfq_data *bfqd = q->elevator->elevator_data;
1523 
1524 	bfqd->rq_in_driver++;
1525 }
1526 
1527 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1528 {
1529 	struct bfq_data *bfqd = q->elevator->elevator_data;
1530 
1531 	bfqd->rq_in_driver--;
1532 }
1533 #endif
1534 
1535 static void bfq_remove_request(struct request_queue *q,
1536 			       struct request *rq)
1537 {
1538 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1539 	struct bfq_data *bfqd = bfqq->bfqd;
1540 	const int sync = rq_is_sync(rq);
1541 
1542 	if (bfqq->next_rq == rq) {
1543 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1544 		bfq_updated_next_req(bfqd, bfqq);
1545 	}
1546 
1547 	if (rq->queuelist.prev != &rq->queuelist)
1548 		list_del_init(&rq->queuelist);
1549 	bfqq->queued[sync]--;
1550 	bfqd->queued--;
1551 	elv_rb_del(&bfqq->sort_list, rq);
1552 
1553 	elv_rqhash_del(q, rq);
1554 	if (q->last_merge == rq)
1555 		q->last_merge = NULL;
1556 
1557 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1558 		bfqq->next_rq = NULL;
1559 
1560 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1561 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1562 			/*
1563 			 * bfqq emptied. In normal operation, when
1564 			 * bfqq is empty, bfqq->entity.service and
1565 			 * bfqq->entity.budget must contain,
1566 			 * respectively, the service received and the
1567 			 * budget used last time bfqq emptied. These
1568 			 * facts do not hold in this case, as at least
1569 			 * this last removal occurred while bfqq is
1570 			 * not in service. To avoid inconsistencies,
1571 			 * reset both bfqq->entity.service and
1572 			 * bfqq->entity.budget, if bfqq has still a
1573 			 * process that may issue I/O requests to it.
1574 			 */
1575 			bfqq->entity.budget = bfqq->entity.service = 0;
1576 		}
1577 
1578 		/*
1579 		 * Remove queue from request-position tree as it is empty.
1580 		 */
1581 		if (bfqq->pos_root) {
1582 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1583 			bfqq->pos_root = NULL;
1584 		}
1585 	}
1586 
1587 	if (rq->cmd_flags & REQ_META)
1588 		bfqq->meta_pending--;
1589 
1590 	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
1591 }
1592 
1593 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1594 {
1595 	struct request_queue *q = hctx->queue;
1596 	struct bfq_data *bfqd = q->elevator->elevator_data;
1597 	struct request *free = NULL;
1598 	/*
1599 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1600 	 * store its return value for later use, to avoid nesting
1601 	 * queue_lock inside the bfqd->lock. We assume that the bic
1602 	 * returned by bfq_bic_lookup does not go away before
1603 	 * bfqd->lock is taken.
1604 	 */
1605 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1606 	bool ret;
1607 
1608 	spin_lock_irq(&bfqd->lock);
1609 
1610 	if (bic)
1611 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1612 	else
1613 		bfqd->bio_bfqq = NULL;
1614 	bfqd->bio_bic = bic;
1615 
1616 	ret = blk_mq_sched_try_merge(q, bio, &free);
1617 
1618 	if (free)
1619 		blk_mq_free_request(free);
1620 	spin_unlock_irq(&bfqd->lock);
1621 
1622 	return ret;
1623 }
1624 
1625 static int bfq_request_merge(struct request_queue *q, struct request **req,
1626 			     struct bio *bio)
1627 {
1628 	struct bfq_data *bfqd = q->elevator->elevator_data;
1629 	struct request *__rq;
1630 
1631 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1632 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1633 		*req = __rq;
1634 		return ELEVATOR_FRONT_MERGE;
1635 	}
1636 
1637 	return ELEVATOR_NO_MERGE;
1638 }
1639 
1640 static void bfq_request_merged(struct request_queue *q, struct request *req,
1641 			       enum elv_merge type)
1642 {
1643 	if (type == ELEVATOR_FRONT_MERGE &&
1644 	    rb_prev(&req->rb_node) &&
1645 	    blk_rq_pos(req) <
1646 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1647 				    struct request, rb_node))) {
1648 		struct bfq_queue *bfqq = RQ_BFQQ(req);
1649 		struct bfq_data *bfqd = bfqq->bfqd;
1650 		struct request *prev, *next_rq;
1651 
1652 		/* Reposition request in its sort_list */
1653 		elv_rb_del(&bfqq->sort_list, req);
1654 		elv_rb_add(&bfqq->sort_list, req);
1655 
1656 		/* Choose next request to be served for bfqq */
1657 		prev = bfqq->next_rq;
1658 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1659 					 bfqd->last_position);
1660 		bfqq->next_rq = next_rq;
1661 		/*
1662 		 * If next_rq changes, update both the queue's budget to
1663 		 * fit the new request and the queue's position in its
1664 		 * rq_pos_tree.
1665 		 */
1666 		if (prev != bfqq->next_rq) {
1667 			bfq_updated_next_req(bfqd, bfqq);
1668 			bfq_pos_tree_add_move(bfqd, bfqq);
1669 		}
1670 	}
1671 }
1672 
1673 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1674 				struct request *next)
1675 {
1676 	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1677 
1678 	if (!RB_EMPTY_NODE(&rq->rb_node))
1679 		goto end;
1680 	spin_lock_irq(&bfqq->bfqd->lock);
1681 
1682 	/*
1683 	 * If next and rq belong to the same bfq_queue and next is older
1684 	 * than rq, then reposition rq in the fifo (by substituting next
1685 	 * with rq). Otherwise, if next and rq belong to different
1686 	 * bfq_queues, never reposition rq: in fact, we would have to
1687 	 * reposition it with respect to next's position in its own fifo,
1688 	 * which would most certainly be too expensive with respect to
1689 	 * the benefits.
1690 	 */
1691 	if (bfqq == next_bfqq &&
1692 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1693 	    next->fifo_time < rq->fifo_time) {
1694 		list_del_init(&rq->queuelist);
1695 		list_replace_init(&next->queuelist, &rq->queuelist);
1696 		rq->fifo_time = next->fifo_time;
1697 	}
1698 
1699 	if (bfqq->next_rq == next)
1700 		bfqq->next_rq = rq;
1701 
1702 	bfq_remove_request(q, next);
1703 
1704 	spin_unlock_irq(&bfqq->bfqd->lock);
1705 end:
1706 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1707 }
1708 
1709 /* Must be called with bfqq != NULL */
1710 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1711 {
1712 	if (bfq_bfqq_busy(bfqq))
1713 		bfqq->bfqd->wr_busy_queues--;
1714 	bfqq->wr_coeff = 1;
1715 	bfqq->wr_cur_max_time = 0;
1716 	bfqq->last_wr_start_finish = jiffies;
1717 	/*
1718 	 * Trigger a weight change on the next invocation of
1719 	 * __bfq_entity_update_weight_prio.
1720 	 */
1721 	bfqq->entity.prio_changed = 1;
1722 }
1723 
1724 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1725 			     struct bfq_group *bfqg)
1726 {
1727 	int i, j;
1728 
1729 	for (i = 0; i < 2; i++)
1730 		for (j = 0; j < IOPRIO_BE_NR; j++)
1731 			if (bfqg->async_bfqq[i][j])
1732 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1733 	if (bfqg->async_idle_bfqq)
1734 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1735 }
1736 
1737 static void bfq_end_wr(struct bfq_data *bfqd)
1738 {
1739 	struct bfq_queue *bfqq;
1740 
1741 	spin_lock_irq(&bfqd->lock);
1742 
1743 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1744 		bfq_bfqq_end_wr(bfqq);
1745 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1746 		bfq_bfqq_end_wr(bfqq);
1747 	bfq_end_wr_async(bfqd);
1748 
1749 	spin_unlock_irq(&bfqd->lock);
1750 }
1751 
1752 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1753 {
1754 	if (request)
1755 		return blk_rq_pos(io_struct);
1756 	else
1757 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1758 }
1759 
1760 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1761 				  sector_t sector)
1762 {
1763 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1764 	       BFQQ_CLOSE_THR;
1765 }
1766 
1767 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1768 					 struct bfq_queue *bfqq,
1769 					 sector_t sector)
1770 {
1771 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1772 	struct rb_node *parent, *node;
1773 	struct bfq_queue *__bfqq;
1774 
1775 	if (RB_EMPTY_ROOT(root))
1776 		return NULL;
1777 
1778 	/*
1779 	 * First, if we find a request starting at the end of the last
1780 	 * request, choose it.
1781 	 */
1782 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1783 	if (__bfqq)
1784 		return __bfqq;
1785 
1786 	/*
1787 	 * If the exact sector wasn't found, the parent of the NULL leaf
1788 	 * will contain the closest sector (rq_pos_tree sorted by
1789 	 * next_request position).
1790 	 */
1791 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1792 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1793 		return __bfqq;
1794 
1795 	if (blk_rq_pos(__bfqq->next_rq) < sector)
1796 		node = rb_next(&__bfqq->pos_node);
1797 	else
1798 		node = rb_prev(&__bfqq->pos_node);
1799 	if (!node)
1800 		return NULL;
1801 
1802 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
1803 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1804 		return __bfqq;
1805 
1806 	return NULL;
1807 }
1808 
1809 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1810 						   struct bfq_queue *cur_bfqq,
1811 						   sector_t sector)
1812 {
1813 	struct bfq_queue *bfqq;
1814 
1815 	/*
1816 	 * We shall notice if some of the queues are cooperating,
1817 	 * e.g., working closely on the same area of the device. In
1818 	 * that case, we can group them together and: 1) don't waste
1819 	 * time idling, and 2) serve the union of their requests in
1820 	 * the best possible order for throughput.
1821 	 */
1822 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1823 	if (!bfqq || bfqq == cur_bfqq)
1824 		return NULL;
1825 
1826 	return bfqq;
1827 }
1828 
1829 static struct bfq_queue *
1830 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1831 {
1832 	int process_refs, new_process_refs;
1833 	struct bfq_queue *__bfqq;
1834 
1835 	/*
1836 	 * If there are no process references on the new_bfqq, then it is
1837 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1838 	 * may have dropped their last reference (not just their last process
1839 	 * reference).
1840 	 */
1841 	if (!bfqq_process_refs(new_bfqq))
1842 		return NULL;
1843 
1844 	/* Avoid a circular list and skip interim queue merges. */
1845 	while ((__bfqq = new_bfqq->new_bfqq)) {
1846 		if (__bfqq == bfqq)
1847 			return NULL;
1848 		new_bfqq = __bfqq;
1849 	}
1850 
1851 	process_refs = bfqq_process_refs(bfqq);
1852 	new_process_refs = bfqq_process_refs(new_bfqq);
1853 	/*
1854 	 * If the process for the bfqq has gone away, there is no
1855 	 * sense in merging the queues.
1856 	 */
1857 	if (process_refs == 0 || new_process_refs == 0)
1858 		return NULL;
1859 
1860 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1861 		new_bfqq->pid);
1862 
1863 	/*
1864 	 * Merging is just a redirection: the requests of the process
1865 	 * owning one of the two queues are redirected to the other queue.
1866 	 * The latter queue, in its turn, is set as shared if this is the
1867 	 * first time that the requests of some process are redirected to
1868 	 * it.
1869 	 *
1870 	 * We redirect bfqq to new_bfqq and not the opposite, because
1871 	 * we are in the context of the process owning bfqq, thus we
1872 	 * have the io_cq of this process. So we can immediately
1873 	 * configure this io_cq to redirect the requests of the
1874 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1875 	 * not available any more (new_bfqq->bic == NULL).
1876 	 *
1877 	 * Anyway, even in case new_bfqq coincides with the in-service
1878 	 * queue, redirecting requests the in-service queue is the
1879 	 * best option, as we feed the in-service queue with new
1880 	 * requests close to the last request served and, by doing so,
1881 	 * are likely to increase the throughput.
1882 	 */
1883 	bfqq->new_bfqq = new_bfqq;
1884 	new_bfqq->ref += process_refs;
1885 	return new_bfqq;
1886 }
1887 
1888 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1889 					struct bfq_queue *new_bfqq)
1890 {
1891 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1892 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
1893 		return false;
1894 
1895 	/*
1896 	 * If either of the queues has already been detected as seeky,
1897 	 * then merging it with the other queue is unlikely to lead to
1898 	 * sequential I/O.
1899 	 */
1900 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1901 		return false;
1902 
1903 	/*
1904 	 * Interleaved I/O is known to be done by (some) applications
1905 	 * only for reads, so it does not make sense to merge async
1906 	 * queues.
1907 	 */
1908 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1909 		return false;
1910 
1911 	return true;
1912 }
1913 
1914 /*
1915  * If this function returns true, then bfqq cannot be merged. The idea
1916  * is that true cooperation happens very early after processes start
1917  * to do I/O. Usually, late cooperations are just accidental false
1918  * positives. In case bfqq is weight-raised, such false positives
1919  * would evidently degrade latency guarantees for bfqq.
1920  */
1921 static bool wr_from_too_long(struct bfq_queue *bfqq)
1922 {
1923 	return bfqq->wr_coeff > 1 &&
1924 		time_is_before_jiffies(bfqq->last_wr_start_finish +
1925 				       msecs_to_jiffies(100));
1926 }
1927 
1928 /*
1929  * Attempt to schedule a merge of bfqq with the currently in-service
1930  * queue or with a close queue among the scheduled queues.  Return
1931  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1932  * structure otherwise.
1933  *
1934  * The OOM queue is not allowed to participate to cooperation: in fact, since
1935  * the requests temporarily redirected to the OOM queue could be redirected
1936  * again to dedicated queues at any time, the state needed to correctly
1937  * handle merging with the OOM queue would be quite complex and expensive
1938  * to maintain. Besides, in such a critical condition as an out of memory,
1939  * the benefits of queue merging may be little relevant, or even negligible.
1940  *
1941  * Weight-raised queues can be merged only if their weight-raising
1942  * period has just started. In fact cooperating processes are usually
1943  * started together. Thus, with this filter we avoid false positives
1944  * that would jeopardize low-latency guarantees.
1945  *
1946  * WARNING: queue merging may impair fairness among non-weight raised
1947  * queues, for at least two reasons: 1) the original weight of a
1948  * merged queue may change during the merged state, 2) even being the
1949  * weight the same, a merged queue may be bloated with many more
1950  * requests than the ones produced by its originally-associated
1951  * process.
1952  */
1953 static struct bfq_queue *
1954 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1955 		     void *io_struct, bool request)
1956 {
1957 	struct bfq_queue *in_service_bfqq, *new_bfqq;
1958 
1959 	if (bfqq->new_bfqq)
1960 		return bfqq->new_bfqq;
1961 
1962 	if (!io_struct ||
1963 	    wr_from_too_long(bfqq) ||
1964 	    unlikely(bfqq == &bfqd->oom_bfqq))
1965 		return NULL;
1966 
1967 	/* If there is only one backlogged queue, don't search. */
1968 	if (bfqd->busy_queues == 1)
1969 		return NULL;
1970 
1971 	in_service_bfqq = bfqd->in_service_queue;
1972 
1973 	if (!in_service_bfqq || in_service_bfqq == bfqq
1974 	    || wr_from_too_long(in_service_bfqq) ||
1975 	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
1976 		goto check_scheduled;
1977 
1978 	if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
1979 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
1980 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
1981 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
1982 		if (new_bfqq)
1983 			return new_bfqq;
1984 	}
1985 	/*
1986 	 * Check whether there is a cooperator among currently scheduled
1987 	 * queues. The only thing we need is that the bio/request is not
1988 	 * NULL, as we need it to establish whether a cooperator exists.
1989 	 */
1990 check_scheduled:
1991 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
1992 			bfq_io_struct_pos(io_struct, request));
1993 
1994 	if (new_bfqq && !wr_from_too_long(new_bfqq) &&
1995 	    likely(new_bfqq != &bfqd->oom_bfqq) &&
1996 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
1997 		return bfq_setup_merge(bfqq, new_bfqq);
1998 
1999 	return NULL;
2000 }
2001 
2002 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2003 {
2004 	struct bfq_io_cq *bic = bfqq->bic;
2005 
2006 	/*
2007 	 * If !bfqq->bic, the queue is already shared or its requests
2008 	 * have already been redirected to a shared queue; both idle window
2009 	 * and weight raising state have already been saved. Do nothing.
2010 	 */
2011 	if (!bic)
2012 		return;
2013 
2014 	bic->saved_ttime = bfqq->ttime;
2015 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2016 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2017 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2018 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2019 	bic->saved_wr_coeff = bfqq->wr_coeff;
2020 	bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2021 	bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2022 	bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2023 }
2024 
2025 static void
2026 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2027 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2028 {
2029 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2030 		(unsigned long)new_bfqq->pid);
2031 	/* Save weight raising and idle window of the merged queues */
2032 	bfq_bfqq_save_state(bfqq);
2033 	bfq_bfqq_save_state(new_bfqq);
2034 	if (bfq_bfqq_IO_bound(bfqq))
2035 		bfq_mark_bfqq_IO_bound(new_bfqq);
2036 	bfq_clear_bfqq_IO_bound(bfqq);
2037 
2038 	/*
2039 	 * If bfqq is weight-raised, then let new_bfqq inherit
2040 	 * weight-raising. To reduce false positives, neglect the case
2041 	 * where bfqq has just been created, but has not yet made it
2042 	 * to be weight-raised (which may happen because EQM may merge
2043 	 * bfqq even before bfq_add_request is executed for the first
2044 	 * time for bfqq). Handling this case would however be very
2045 	 * easy, thanks to the flag just_created.
2046 	 */
2047 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2048 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2049 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2050 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2051 		new_bfqq->wr_start_at_switch_to_srt =
2052 			bfqq->wr_start_at_switch_to_srt;
2053 		if (bfq_bfqq_busy(new_bfqq))
2054 			bfqd->wr_busy_queues++;
2055 		new_bfqq->entity.prio_changed = 1;
2056 	}
2057 
2058 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2059 		bfqq->wr_coeff = 1;
2060 		bfqq->entity.prio_changed = 1;
2061 		if (bfq_bfqq_busy(bfqq))
2062 			bfqd->wr_busy_queues--;
2063 	}
2064 
2065 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2066 		     bfqd->wr_busy_queues);
2067 
2068 	/*
2069 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2070 	 */
2071 	bic_set_bfqq(bic, new_bfqq, 1);
2072 	bfq_mark_bfqq_coop(new_bfqq);
2073 	/*
2074 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2075 	 * set new_bfqq->bic to NULL. bfqq either:
2076 	 * - does not belong to any bic any more, and hence bfqq->bic must
2077 	 *   be set to NULL, or
2078 	 * - is a queue whose owning bics have already been redirected to a
2079 	 *   different queue, hence the queue is destined to not belong to
2080 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2081 	 *   assignment causes no harm).
2082 	 */
2083 	new_bfqq->bic = NULL;
2084 	bfqq->bic = NULL;
2085 	/* release process reference to bfqq */
2086 	bfq_put_queue(bfqq);
2087 }
2088 
2089 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2090 				struct bio *bio)
2091 {
2092 	struct bfq_data *bfqd = q->elevator->elevator_data;
2093 	bool is_sync = op_is_sync(bio->bi_opf);
2094 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2095 
2096 	/*
2097 	 * Disallow merge of a sync bio into an async request.
2098 	 */
2099 	if (is_sync && !rq_is_sync(rq))
2100 		return false;
2101 
2102 	/*
2103 	 * Lookup the bfqq that this bio will be queued with. Allow
2104 	 * merge only if rq is queued there.
2105 	 */
2106 	if (!bfqq)
2107 		return false;
2108 
2109 	/*
2110 	 * We take advantage of this function to perform an early merge
2111 	 * of the queues of possible cooperating processes.
2112 	 */
2113 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2114 	if (new_bfqq) {
2115 		/*
2116 		 * bic still points to bfqq, then it has not yet been
2117 		 * redirected to some other bfq_queue, and a queue
2118 		 * merge beween bfqq and new_bfqq can be safely
2119 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2120 		 * and bfqq can be put.
2121 		 */
2122 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2123 				new_bfqq);
2124 		/*
2125 		 * If we get here, bio will be queued into new_queue,
2126 		 * so use new_bfqq to decide whether bio and rq can be
2127 		 * merged.
2128 		 */
2129 		bfqq = new_bfqq;
2130 
2131 		/*
2132 		 * Change also bqfd->bio_bfqq, as
2133 		 * bfqd->bio_bic now points to new_bfqq, and
2134 		 * this function may be invoked again (and then may
2135 		 * use again bqfd->bio_bfqq).
2136 		 */
2137 		bfqd->bio_bfqq = bfqq;
2138 	}
2139 
2140 	return bfqq == RQ_BFQQ(rq);
2141 }
2142 
2143 /*
2144  * Set the maximum time for the in-service queue to consume its
2145  * budget. This prevents seeky processes from lowering the throughput.
2146  * In practice, a time-slice service scheme is used with seeky
2147  * processes.
2148  */
2149 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2150 				   struct bfq_queue *bfqq)
2151 {
2152 	unsigned int timeout_coeff;
2153 
2154 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2155 		timeout_coeff = 1;
2156 	else
2157 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2158 
2159 	bfqd->last_budget_start = ktime_get();
2160 
2161 	bfqq->budget_timeout = jiffies +
2162 		bfqd->bfq_timeout * timeout_coeff;
2163 }
2164 
2165 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2166 				       struct bfq_queue *bfqq)
2167 {
2168 	if (bfqq) {
2169 		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
2170 		bfq_clear_bfqq_fifo_expire(bfqq);
2171 
2172 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2173 
2174 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2175 		    bfqq->wr_coeff > 1 &&
2176 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2177 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2178 			/*
2179 			 * For soft real-time queues, move the start
2180 			 * of the weight-raising period forward by the
2181 			 * time the queue has not received any
2182 			 * service. Otherwise, a relatively long
2183 			 * service delay is likely to cause the
2184 			 * weight-raising period of the queue to end,
2185 			 * because of the short duration of the
2186 			 * weight-raising period of a soft real-time
2187 			 * queue.  It is worth noting that this move
2188 			 * is not so dangerous for the other queues,
2189 			 * because soft real-time queues are not
2190 			 * greedy.
2191 			 *
2192 			 * To not add a further variable, we use the
2193 			 * overloaded field budget_timeout to
2194 			 * determine for how long the queue has not
2195 			 * received service, i.e., how much time has
2196 			 * elapsed since the queue expired. However,
2197 			 * this is a little imprecise, because
2198 			 * budget_timeout is set to jiffies if bfqq
2199 			 * not only expires, but also remains with no
2200 			 * request.
2201 			 */
2202 			if (time_after(bfqq->budget_timeout,
2203 				       bfqq->last_wr_start_finish))
2204 				bfqq->last_wr_start_finish +=
2205 					jiffies - bfqq->budget_timeout;
2206 			else
2207 				bfqq->last_wr_start_finish = jiffies;
2208 		}
2209 
2210 		bfq_set_budget_timeout(bfqd, bfqq);
2211 		bfq_log_bfqq(bfqd, bfqq,
2212 			     "set_in_service_queue, cur-budget = %d",
2213 			     bfqq->entity.budget);
2214 	}
2215 
2216 	bfqd->in_service_queue = bfqq;
2217 }
2218 
2219 /*
2220  * Get and set a new queue for service.
2221  */
2222 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2223 {
2224 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2225 
2226 	__bfq_set_in_service_queue(bfqd, bfqq);
2227 	return bfqq;
2228 }
2229 
2230 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2231 {
2232 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2233 	u32 sl;
2234 
2235 	bfq_mark_bfqq_wait_request(bfqq);
2236 
2237 	/*
2238 	 * We don't want to idle for seeks, but we do want to allow
2239 	 * fair distribution of slice time for a process doing back-to-back
2240 	 * seeks. So allow a little bit of time for him to submit a new rq.
2241 	 */
2242 	sl = bfqd->bfq_slice_idle;
2243 	/*
2244 	 * Unless the queue is being weight-raised or the scenario is
2245 	 * asymmetric, grant only minimum idle time if the queue
2246 	 * is seeky. A long idling is preserved for a weight-raised
2247 	 * queue, or, more in general, in an asymmetric scenario,
2248 	 * because a long idling is needed for guaranteeing to a queue
2249 	 * its reserved share of the throughput (in particular, it is
2250 	 * needed if the queue has a higher weight than some other
2251 	 * queue).
2252 	 */
2253 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2254 	    bfq_symmetric_scenario(bfqd))
2255 		sl = min_t(u64, sl, BFQ_MIN_TT);
2256 
2257 	bfqd->last_idling_start = ktime_get();
2258 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2259 		      HRTIMER_MODE_REL);
2260 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2261 }
2262 
2263 /*
2264  * In autotuning mode, max_budget is dynamically recomputed as the
2265  * amount of sectors transferred in timeout at the estimated peak
2266  * rate. This enables BFQ to utilize a full timeslice with a full
2267  * budget, even if the in-service queue is served at peak rate. And
2268  * this maximises throughput with sequential workloads.
2269  */
2270 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2271 {
2272 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2273 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2274 }
2275 
2276 /*
2277  * Update parameters related to throughput and responsiveness, as a
2278  * function of the estimated peak rate. See comments on
2279  * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2280  */
2281 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2282 {
2283 	int dev_type = blk_queue_nonrot(bfqd->queue);
2284 
2285 	if (bfqd->bfq_user_max_budget == 0)
2286 		bfqd->bfq_max_budget =
2287 			bfq_calc_max_budget(bfqd);
2288 
2289 	if (bfqd->device_speed == BFQ_BFQD_FAST &&
2290 	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
2291 		bfqd->device_speed = BFQ_BFQD_SLOW;
2292 		bfqd->RT_prod = R_slow[dev_type] *
2293 			T_slow[dev_type];
2294 	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2295 		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
2296 		bfqd->device_speed = BFQ_BFQD_FAST;
2297 		bfqd->RT_prod = R_fast[dev_type] *
2298 			T_fast[dev_type];
2299 	}
2300 
2301 	bfq_log(bfqd,
2302 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2303 		dev_type == 0 ? "ROT" : "NONROT",
2304 		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2305 		bfqd->device_speed == BFQ_BFQD_FAST ?
2306 		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2307 		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2308 		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2309 		BFQ_RATE_SHIFT);
2310 }
2311 
2312 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2313 				       struct request *rq)
2314 {
2315 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2316 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2317 		bfqd->peak_rate_samples = 1;
2318 		bfqd->sequential_samples = 0;
2319 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2320 			blk_rq_sectors(rq);
2321 	} else /* no new rq dispatched, just reset the number of samples */
2322 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2323 
2324 	bfq_log(bfqd,
2325 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2326 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2327 		bfqd->tot_sectors_dispatched);
2328 }
2329 
2330 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2331 {
2332 	u32 rate, weight, divisor;
2333 
2334 	/*
2335 	 * For the convergence property to hold (see comments on
2336 	 * bfq_update_peak_rate()) and for the assessment to be
2337 	 * reliable, a minimum number of samples must be present, and
2338 	 * a minimum amount of time must have elapsed. If not so, do
2339 	 * not compute new rate. Just reset parameters, to get ready
2340 	 * for a new evaluation attempt.
2341 	 */
2342 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2343 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2344 		goto reset_computation;
2345 
2346 	/*
2347 	 * If a new request completion has occurred after last
2348 	 * dispatch, then, to approximate the rate at which requests
2349 	 * have been served by the device, it is more precise to
2350 	 * extend the observation interval to the last completion.
2351 	 */
2352 	bfqd->delta_from_first =
2353 		max_t(u64, bfqd->delta_from_first,
2354 		      bfqd->last_completion - bfqd->first_dispatch);
2355 
2356 	/*
2357 	 * Rate computed in sects/usec, and not sects/nsec, for
2358 	 * precision issues.
2359 	 */
2360 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2361 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2362 
2363 	/*
2364 	 * Peak rate not updated if:
2365 	 * - the percentage of sequential dispatches is below 3/4 of the
2366 	 *   total, and rate is below the current estimated peak rate
2367 	 * - rate is unreasonably high (> 20M sectors/sec)
2368 	 */
2369 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2370 	     rate <= bfqd->peak_rate) ||
2371 		rate > 20<<BFQ_RATE_SHIFT)
2372 		goto reset_computation;
2373 
2374 	/*
2375 	 * We have to update the peak rate, at last! To this purpose,
2376 	 * we use a low-pass filter. We compute the smoothing constant
2377 	 * of the filter as a function of the 'weight' of the new
2378 	 * measured rate.
2379 	 *
2380 	 * As can be seen in next formulas, we define this weight as a
2381 	 * quantity proportional to how sequential the workload is,
2382 	 * and to how long the observation time interval is.
2383 	 *
2384 	 * The weight runs from 0 to 8. The maximum value of the
2385 	 * weight, 8, yields the minimum value for the smoothing
2386 	 * constant. At this minimum value for the smoothing constant,
2387 	 * the measured rate contributes for half of the next value of
2388 	 * the estimated peak rate.
2389 	 *
2390 	 * So, the first step is to compute the weight as a function
2391 	 * of how sequential the workload is. Note that the weight
2392 	 * cannot reach 9, because bfqd->sequential_samples cannot
2393 	 * become equal to bfqd->peak_rate_samples, which, in its
2394 	 * turn, holds true because bfqd->sequential_samples is not
2395 	 * incremented for the first sample.
2396 	 */
2397 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2398 
2399 	/*
2400 	 * Second step: further refine the weight as a function of the
2401 	 * duration of the observation interval.
2402 	 */
2403 	weight = min_t(u32, 8,
2404 		       div_u64(weight * bfqd->delta_from_first,
2405 			       BFQ_RATE_REF_INTERVAL));
2406 
2407 	/*
2408 	 * Divisor ranging from 10, for minimum weight, to 2, for
2409 	 * maximum weight.
2410 	 */
2411 	divisor = 10 - weight;
2412 
2413 	/*
2414 	 * Finally, update peak rate:
2415 	 *
2416 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2417 	 */
2418 	bfqd->peak_rate *= divisor-1;
2419 	bfqd->peak_rate /= divisor;
2420 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2421 
2422 	bfqd->peak_rate += rate;
2423 	update_thr_responsiveness_params(bfqd);
2424 
2425 reset_computation:
2426 	bfq_reset_rate_computation(bfqd, rq);
2427 }
2428 
2429 /*
2430  * Update the read/write peak rate (the main quantity used for
2431  * auto-tuning, see update_thr_responsiveness_params()).
2432  *
2433  * It is not trivial to estimate the peak rate (correctly): because of
2434  * the presence of sw and hw queues between the scheduler and the
2435  * device components that finally serve I/O requests, it is hard to
2436  * say exactly when a given dispatched request is served inside the
2437  * device, and for how long. As a consequence, it is hard to know
2438  * precisely at what rate a given set of requests is actually served
2439  * by the device.
2440  *
2441  * On the opposite end, the dispatch time of any request is trivially
2442  * available, and, from this piece of information, the "dispatch rate"
2443  * of requests can be immediately computed. So, the idea in the next
2444  * function is to use what is known, namely request dispatch times
2445  * (plus, when useful, request completion times), to estimate what is
2446  * unknown, namely in-device request service rate.
2447  *
2448  * The main issue is that, because of the above facts, the rate at
2449  * which a certain set of requests is dispatched over a certain time
2450  * interval can vary greatly with respect to the rate at which the
2451  * same requests are then served. But, since the size of any
2452  * intermediate queue is limited, and the service scheme is lossless
2453  * (no request is silently dropped), the following obvious convergence
2454  * property holds: the number of requests dispatched MUST become
2455  * closer and closer to the number of requests completed as the
2456  * observation interval grows. This is the key property used in
2457  * the next function to estimate the peak service rate as a function
2458  * of the observed dispatch rate. The function assumes to be invoked
2459  * on every request dispatch.
2460  */
2461 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2462 {
2463 	u64 now_ns = ktime_get_ns();
2464 
2465 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2466 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2467 			bfqd->peak_rate_samples);
2468 		bfq_reset_rate_computation(bfqd, rq);
2469 		goto update_last_values; /* will add one sample */
2470 	}
2471 
2472 	/*
2473 	 * Device idle for very long: the observation interval lasting
2474 	 * up to this dispatch cannot be a valid observation interval
2475 	 * for computing a new peak rate (similarly to the late-
2476 	 * completion event in bfq_completed_request()). Go to
2477 	 * update_rate_and_reset to have the following three steps
2478 	 * taken:
2479 	 * - close the observation interval at the last (previous)
2480 	 *   request dispatch or completion
2481 	 * - compute rate, if possible, for that observation interval
2482 	 * - start a new observation interval with this dispatch
2483 	 */
2484 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2485 	    bfqd->rq_in_driver == 0)
2486 		goto update_rate_and_reset;
2487 
2488 	/* Update sampling information */
2489 	bfqd->peak_rate_samples++;
2490 
2491 	if ((bfqd->rq_in_driver > 0 ||
2492 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2493 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2494 		bfqd->sequential_samples++;
2495 
2496 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2497 
2498 	/* Reset max observed rq size every 32 dispatches */
2499 	if (likely(bfqd->peak_rate_samples % 32))
2500 		bfqd->last_rq_max_size =
2501 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2502 	else
2503 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2504 
2505 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2506 
2507 	/* Target observation interval not yet reached, go on sampling */
2508 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2509 		goto update_last_values;
2510 
2511 update_rate_and_reset:
2512 	bfq_update_rate_reset(bfqd, rq);
2513 update_last_values:
2514 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2515 	bfqd->last_dispatch = now_ns;
2516 }
2517 
2518 /*
2519  * Remove request from internal lists.
2520  */
2521 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2522 {
2523 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2524 
2525 	/*
2526 	 * For consistency, the next instruction should have been
2527 	 * executed after removing the request from the queue and
2528 	 * dispatching it.  We execute instead this instruction before
2529 	 * bfq_remove_request() (and hence introduce a temporary
2530 	 * inconsistency), for efficiency.  In fact, should this
2531 	 * dispatch occur for a non in-service bfqq, this anticipated
2532 	 * increment prevents two counters related to bfqq->dispatched
2533 	 * from risking to be, first, uselessly decremented, and then
2534 	 * incremented again when the (new) value of bfqq->dispatched
2535 	 * happens to be taken into account.
2536 	 */
2537 	bfqq->dispatched++;
2538 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2539 
2540 	bfq_remove_request(q, rq);
2541 }
2542 
2543 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2544 {
2545 	/*
2546 	 * If this bfqq is shared between multiple processes, check
2547 	 * to make sure that those processes are still issuing I/Os
2548 	 * within the mean seek distance. If not, it may be time to
2549 	 * break the queues apart again.
2550 	 */
2551 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2552 		bfq_mark_bfqq_split_coop(bfqq);
2553 
2554 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2555 		if (bfqq->dispatched == 0)
2556 			/*
2557 			 * Overloading budget_timeout field to store
2558 			 * the time at which the queue remains with no
2559 			 * backlog and no outstanding request; used by
2560 			 * the weight-raising mechanism.
2561 			 */
2562 			bfqq->budget_timeout = jiffies;
2563 
2564 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2565 	} else {
2566 		bfq_requeue_bfqq(bfqd, bfqq, true);
2567 		/*
2568 		 * Resort priority tree of potential close cooperators.
2569 		 */
2570 		bfq_pos_tree_add_move(bfqd, bfqq);
2571 	}
2572 
2573 	/*
2574 	 * All in-service entities must have been properly deactivated
2575 	 * or requeued before executing the next function, which
2576 	 * resets all in-service entites as no more in service.
2577 	 */
2578 	__bfq_bfqd_reset_in_service(bfqd);
2579 }
2580 
2581 /**
2582  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2583  * @bfqd: device data.
2584  * @bfqq: queue to update.
2585  * @reason: reason for expiration.
2586  *
2587  * Handle the feedback on @bfqq budget at queue expiration.
2588  * See the body for detailed comments.
2589  */
2590 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2591 				     struct bfq_queue *bfqq,
2592 				     enum bfqq_expiration reason)
2593 {
2594 	struct request *next_rq;
2595 	int budget, min_budget;
2596 
2597 	min_budget = bfq_min_budget(bfqd);
2598 
2599 	if (bfqq->wr_coeff == 1)
2600 		budget = bfqq->max_budget;
2601 	else /*
2602 	      * Use a constant, low budget for weight-raised queues,
2603 	      * to help achieve a low latency. Keep it slightly higher
2604 	      * than the minimum possible budget, to cause a little
2605 	      * bit fewer expirations.
2606 	      */
2607 		budget = 2 * min_budget;
2608 
2609 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2610 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2611 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2612 		budget, bfq_min_budget(bfqd));
2613 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2614 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2615 
2616 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2617 		switch (reason) {
2618 		/*
2619 		 * Caveat: in all the following cases we trade latency
2620 		 * for throughput.
2621 		 */
2622 		case BFQQE_TOO_IDLE:
2623 			/*
2624 			 * This is the only case where we may reduce
2625 			 * the budget: if there is no request of the
2626 			 * process still waiting for completion, then
2627 			 * we assume (tentatively) that the timer has
2628 			 * expired because the batch of requests of
2629 			 * the process could have been served with a
2630 			 * smaller budget.  Hence, betting that
2631 			 * process will behave in the same way when it
2632 			 * becomes backlogged again, we reduce its
2633 			 * next budget.  As long as we guess right,
2634 			 * this budget cut reduces the latency
2635 			 * experienced by the process.
2636 			 *
2637 			 * However, if there are still outstanding
2638 			 * requests, then the process may have not yet
2639 			 * issued its next request just because it is
2640 			 * still waiting for the completion of some of
2641 			 * the still outstanding ones.  So in this
2642 			 * subcase we do not reduce its budget, on the
2643 			 * contrary we increase it to possibly boost
2644 			 * the throughput, as discussed in the
2645 			 * comments to the BUDGET_TIMEOUT case.
2646 			 */
2647 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2648 				budget = min(budget * 2, bfqd->bfq_max_budget);
2649 			else {
2650 				if (budget > 5 * min_budget)
2651 					budget -= 4 * min_budget;
2652 				else
2653 					budget = min_budget;
2654 			}
2655 			break;
2656 		case BFQQE_BUDGET_TIMEOUT:
2657 			/*
2658 			 * We double the budget here because it gives
2659 			 * the chance to boost the throughput if this
2660 			 * is not a seeky process (and has bumped into
2661 			 * this timeout because of, e.g., ZBR).
2662 			 */
2663 			budget = min(budget * 2, bfqd->bfq_max_budget);
2664 			break;
2665 		case BFQQE_BUDGET_EXHAUSTED:
2666 			/*
2667 			 * The process still has backlog, and did not
2668 			 * let either the budget timeout or the disk
2669 			 * idling timeout expire. Hence it is not
2670 			 * seeky, has a short thinktime and may be
2671 			 * happy with a higher budget too. So
2672 			 * definitely increase the budget of this good
2673 			 * candidate to boost the disk throughput.
2674 			 */
2675 			budget = min(budget * 4, bfqd->bfq_max_budget);
2676 			break;
2677 		case BFQQE_NO_MORE_REQUESTS:
2678 			/*
2679 			 * For queues that expire for this reason, it
2680 			 * is particularly important to keep the
2681 			 * budget close to the actual service they
2682 			 * need. Doing so reduces the timestamp
2683 			 * misalignment problem described in the
2684 			 * comments in the body of
2685 			 * __bfq_activate_entity. In fact, suppose
2686 			 * that a queue systematically expires for
2687 			 * BFQQE_NO_MORE_REQUESTS and presents a
2688 			 * new request in time to enjoy timestamp
2689 			 * back-shifting. The larger the budget of the
2690 			 * queue is with respect to the service the
2691 			 * queue actually requests in each service
2692 			 * slot, the more times the queue can be
2693 			 * reactivated with the same virtual finish
2694 			 * time. It follows that, even if this finish
2695 			 * time is pushed to the system virtual time
2696 			 * to reduce the consequent timestamp
2697 			 * misalignment, the queue unjustly enjoys for
2698 			 * many re-activations a lower finish time
2699 			 * than all newly activated queues.
2700 			 *
2701 			 * The service needed by bfqq is measured
2702 			 * quite precisely by bfqq->entity.service.
2703 			 * Since bfqq does not enjoy device idling,
2704 			 * bfqq->entity.service is equal to the number
2705 			 * of sectors that the process associated with
2706 			 * bfqq requested to read/write before waiting
2707 			 * for request completions, or blocking for
2708 			 * other reasons.
2709 			 */
2710 			budget = max_t(int, bfqq->entity.service, min_budget);
2711 			break;
2712 		default:
2713 			return;
2714 		}
2715 	} else if (!bfq_bfqq_sync(bfqq)) {
2716 		/*
2717 		 * Async queues get always the maximum possible
2718 		 * budget, as for them we do not care about latency
2719 		 * (in addition, their ability to dispatch is limited
2720 		 * by the charging factor).
2721 		 */
2722 		budget = bfqd->bfq_max_budget;
2723 	}
2724 
2725 	bfqq->max_budget = budget;
2726 
2727 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2728 	    !bfqd->bfq_user_max_budget)
2729 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2730 
2731 	/*
2732 	 * If there is still backlog, then assign a new budget, making
2733 	 * sure that it is large enough for the next request.  Since
2734 	 * the finish time of bfqq must be kept in sync with the
2735 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2736 	 * update.
2737 	 *
2738 	 * If there is no backlog, then no need to update the budget;
2739 	 * it will be updated on the arrival of a new request.
2740 	 */
2741 	next_rq = bfqq->next_rq;
2742 	if (next_rq)
2743 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2744 					    bfq_serv_to_charge(next_rq, bfqq));
2745 
2746 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2747 			next_rq ? blk_rq_sectors(next_rq) : 0,
2748 			bfqq->entity.budget);
2749 }
2750 
2751 /*
2752  * Return true if the process associated with bfqq is "slow". The slow
2753  * flag is used, in addition to the budget timeout, to reduce the
2754  * amount of service provided to seeky processes, and thus reduce
2755  * their chances to lower the throughput. More details in the comments
2756  * on the function bfq_bfqq_expire().
2757  *
2758  * An important observation is in order: as discussed in the comments
2759  * on the function bfq_update_peak_rate(), with devices with internal
2760  * queues, it is hard if ever possible to know when and for how long
2761  * an I/O request is processed by the device (apart from the trivial
2762  * I/O pattern where a new request is dispatched only after the
2763  * previous one has been completed). This makes it hard to evaluate
2764  * the real rate at which the I/O requests of each bfq_queue are
2765  * served.  In fact, for an I/O scheduler like BFQ, serving a
2766  * bfq_queue means just dispatching its requests during its service
2767  * slot (i.e., until the budget of the queue is exhausted, or the
2768  * queue remains idle, or, finally, a timeout fires). But, during the
2769  * service slot of a bfq_queue, around 100 ms at most, the device may
2770  * be even still processing requests of bfq_queues served in previous
2771  * service slots. On the opposite end, the requests of the in-service
2772  * bfq_queue may be completed after the service slot of the queue
2773  * finishes.
2774  *
2775  * Anyway, unless more sophisticated solutions are used
2776  * (where possible), the sum of the sizes of the requests dispatched
2777  * during the service slot of a bfq_queue is probably the only
2778  * approximation available for the service received by the bfq_queue
2779  * during its service slot. And this sum is the quantity used in this
2780  * function to evaluate the I/O speed of a process.
2781  */
2782 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2783 				 bool compensate, enum bfqq_expiration reason,
2784 				 unsigned long *delta_ms)
2785 {
2786 	ktime_t delta_ktime;
2787 	u32 delta_usecs;
2788 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
2789 
2790 	if (!bfq_bfqq_sync(bfqq))
2791 		return false;
2792 
2793 	if (compensate)
2794 		delta_ktime = bfqd->last_idling_start;
2795 	else
2796 		delta_ktime = ktime_get();
2797 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2798 	delta_usecs = ktime_to_us(delta_ktime);
2799 
2800 	/* don't use too short time intervals */
2801 	if (delta_usecs < 1000) {
2802 		if (blk_queue_nonrot(bfqd->queue))
2803 			 /*
2804 			  * give same worst-case guarantees as idling
2805 			  * for seeky
2806 			  */
2807 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2808 		else /* charge at least one seek */
2809 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2810 
2811 		return slow;
2812 	}
2813 
2814 	*delta_ms = delta_usecs / USEC_PER_MSEC;
2815 
2816 	/*
2817 	 * Use only long (> 20ms) intervals to filter out excessive
2818 	 * spikes in service rate estimation.
2819 	 */
2820 	if (delta_usecs > 20000) {
2821 		/*
2822 		 * Caveat for rotational devices: processes doing I/O
2823 		 * in the slower disk zones tend to be slow(er) even
2824 		 * if not seeky. In this respect, the estimated peak
2825 		 * rate is likely to be an average over the disk
2826 		 * surface. Accordingly, to not be too harsh with
2827 		 * unlucky processes, a process is deemed slow only if
2828 		 * its rate has been lower than half of the estimated
2829 		 * peak rate.
2830 		 */
2831 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
2832 	}
2833 
2834 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
2835 
2836 	return slow;
2837 }
2838 
2839 /*
2840  * To be deemed as soft real-time, an application must meet two
2841  * requirements. First, the application must not require an average
2842  * bandwidth higher than the approximate bandwidth required to playback or
2843  * record a compressed high-definition video.
2844  * The next function is invoked on the completion of the last request of a
2845  * batch, to compute the next-start time instant, soft_rt_next_start, such
2846  * that, if the next request of the application does not arrive before
2847  * soft_rt_next_start, then the above requirement on the bandwidth is met.
2848  *
2849  * The second requirement is that the request pattern of the application is
2850  * isochronous, i.e., that, after issuing a request or a batch of requests,
2851  * the application stops issuing new requests until all its pending requests
2852  * have been completed. After that, the application may issue a new batch,
2853  * and so on.
2854  * For this reason the next function is invoked to compute
2855  * soft_rt_next_start only for applications that meet this requirement,
2856  * whereas soft_rt_next_start is set to infinity for applications that do
2857  * not.
2858  *
2859  * Unfortunately, even a greedy application may happen to behave in an
2860  * isochronous way if the CPU load is high. In fact, the application may
2861  * stop issuing requests while the CPUs are busy serving other processes,
2862  * then restart, then stop again for a while, and so on. In addition, if
2863  * the disk achieves a low enough throughput with the request pattern
2864  * issued by the application (e.g., because the request pattern is random
2865  * and/or the device is slow), then the application may meet the above
2866  * bandwidth requirement too. To prevent such a greedy application to be
2867  * deemed as soft real-time, a further rule is used in the computation of
2868  * soft_rt_next_start: soft_rt_next_start must be higher than the current
2869  * time plus the maximum time for which the arrival of a request is waited
2870  * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2871  * This filters out greedy applications, as the latter issue instead their
2872  * next request as soon as possible after the last one has been completed
2873  * (in contrast, when a batch of requests is completed, a soft real-time
2874  * application spends some time processing data).
2875  *
2876  * Unfortunately, the last filter may easily generate false positives if
2877  * only bfqd->bfq_slice_idle is used as a reference time interval and one
2878  * or both the following cases occur:
2879  * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2880  *    than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2881  *    HZ=100.
2882  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2883  *    for a while, then suddenly 'jump' by several units to recover the lost
2884  *    increments. This seems to happen, e.g., inside virtual machines.
2885  * To address this issue, we do not use as a reference time interval just
2886  * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2887  * particular we add the minimum number of jiffies for which the filter
2888  * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2889  * machines.
2890  */
2891 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2892 						struct bfq_queue *bfqq)
2893 {
2894 	return max(bfqq->last_idle_bklogged +
2895 		   HZ * bfqq->service_from_backlogged /
2896 		   bfqd->bfq_wr_max_softrt_rate,
2897 		   jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2898 }
2899 
2900 /*
2901  * Return the farthest future time instant according to jiffies
2902  * macros.
2903  */
2904 static unsigned long bfq_greatest_from_now(void)
2905 {
2906 	return jiffies + MAX_JIFFY_OFFSET;
2907 }
2908 
2909 /*
2910  * Return the farthest past time instant according to jiffies
2911  * macros.
2912  */
2913 static unsigned long bfq_smallest_from_now(void)
2914 {
2915 	return jiffies - MAX_JIFFY_OFFSET;
2916 }
2917 
2918 /**
2919  * bfq_bfqq_expire - expire a queue.
2920  * @bfqd: device owning the queue.
2921  * @bfqq: the queue to expire.
2922  * @compensate: if true, compensate for the time spent idling.
2923  * @reason: the reason causing the expiration.
2924  *
2925  * If the process associated with bfqq does slow I/O (e.g., because it
2926  * issues random requests), we charge bfqq with the time it has been
2927  * in service instead of the service it has received (see
2928  * bfq_bfqq_charge_time for details on how this goal is achieved). As
2929  * a consequence, bfqq will typically get higher timestamps upon
2930  * reactivation, and hence it will be rescheduled as if it had
2931  * received more service than what it has actually received. In the
2932  * end, bfqq receives less service in proportion to how slowly its
2933  * associated process consumes its budgets (and hence how seriously it
2934  * tends to lower the throughput). In addition, this time-charging
2935  * strategy guarantees time fairness among slow processes. In
2936  * contrast, if the process associated with bfqq is not slow, we
2937  * charge bfqq exactly with the service it has received.
2938  *
2939  * Charging time to the first type of queues and the exact service to
2940  * the other has the effect of using the WF2Q+ policy to schedule the
2941  * former on a timeslice basis, without violating service domain
2942  * guarantees among the latter.
2943  */
2944 void bfq_bfqq_expire(struct bfq_data *bfqd,
2945 		     struct bfq_queue *bfqq,
2946 		     bool compensate,
2947 		     enum bfqq_expiration reason)
2948 {
2949 	bool slow;
2950 	unsigned long delta = 0;
2951 	struct bfq_entity *entity = &bfqq->entity;
2952 	int ref;
2953 
2954 	/*
2955 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
2956 	 */
2957 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
2958 
2959 	/*
2960 	 * Increase service_from_backlogged before next statement,
2961 	 * because the possible next invocation of
2962 	 * bfq_bfqq_charge_time would likely inflate
2963 	 * entity->service. In contrast, service_from_backlogged must
2964 	 * contain real service, to enable the soft real-time
2965 	 * heuristic to correctly compute the bandwidth consumed by
2966 	 * bfqq.
2967 	 */
2968 	bfqq->service_from_backlogged += entity->service;
2969 
2970 	/*
2971 	 * As above explained, charge slow (typically seeky) and
2972 	 * timed-out queues with the time and not the service
2973 	 * received, to favor sequential workloads.
2974 	 *
2975 	 * Processes doing I/O in the slower disk zones will tend to
2976 	 * be slow(er) even if not seeky. Therefore, since the
2977 	 * estimated peak rate is actually an average over the disk
2978 	 * surface, these processes may timeout just for bad luck. To
2979 	 * avoid punishing them, do not charge time to processes that
2980 	 * succeeded in consuming at least 2/3 of their budget. This
2981 	 * allows BFQ to preserve enough elasticity to still perform
2982 	 * bandwidth, and not time, distribution with little unlucky
2983 	 * or quasi-sequential processes.
2984 	 */
2985 	if (bfqq->wr_coeff == 1 &&
2986 	    (slow ||
2987 	     (reason == BFQQE_BUDGET_TIMEOUT &&
2988 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
2989 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
2990 
2991 	if (reason == BFQQE_TOO_IDLE &&
2992 	    entity->service <= 2 * entity->budget / 10)
2993 		bfq_clear_bfqq_IO_bound(bfqq);
2994 
2995 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
2996 		bfqq->last_wr_start_finish = jiffies;
2997 
2998 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
2999 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3000 		/*
3001 		 * If we get here, and there are no outstanding
3002 		 * requests, then the request pattern is isochronous
3003 		 * (see the comments on the function
3004 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3005 		 * soft_rt_next_start. If, instead, the queue still
3006 		 * has outstanding requests, then we have to wait for
3007 		 * the completion of all the outstanding requests to
3008 		 * discover whether the request pattern is actually
3009 		 * isochronous.
3010 		 */
3011 		if (bfqq->dispatched == 0)
3012 			bfqq->soft_rt_next_start =
3013 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3014 		else {
3015 			/*
3016 			 * The application is still waiting for the
3017 			 * completion of one or more requests:
3018 			 * prevent it from possibly being incorrectly
3019 			 * deemed as soft real-time by setting its
3020 			 * soft_rt_next_start to infinity. In fact,
3021 			 * without this assignment, the application
3022 			 * would be incorrectly deemed as soft
3023 			 * real-time if:
3024 			 * 1) it issued a new request before the
3025 			 *    completion of all its in-flight
3026 			 *    requests, and
3027 			 * 2) at that time, its soft_rt_next_start
3028 			 *    happened to be in the past.
3029 			 */
3030 			bfqq->soft_rt_next_start =
3031 				bfq_greatest_from_now();
3032 			/*
3033 			 * Schedule an update of soft_rt_next_start to when
3034 			 * the task may be discovered to be isochronous.
3035 			 */
3036 			bfq_mark_bfqq_softrt_update(bfqq);
3037 		}
3038 	}
3039 
3040 	bfq_log_bfqq(bfqd, bfqq,
3041 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3042 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3043 
3044 	/*
3045 	 * Increase, decrease or leave budget unchanged according to
3046 	 * reason.
3047 	 */
3048 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3049 	ref = bfqq->ref;
3050 	__bfq_bfqq_expire(bfqd, bfqq);
3051 
3052 	/* mark bfqq as waiting a request only if a bic still points to it */
3053 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3054 	    reason != BFQQE_BUDGET_TIMEOUT &&
3055 	    reason != BFQQE_BUDGET_EXHAUSTED)
3056 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3057 }
3058 
3059 /*
3060  * Budget timeout is not implemented through a dedicated timer, but
3061  * just checked on request arrivals and completions, as well as on
3062  * idle timer expirations.
3063  */
3064 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3065 {
3066 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3067 }
3068 
3069 /*
3070  * If we expire a queue that is actively waiting (i.e., with the
3071  * device idled) for the arrival of a new request, then we may incur
3072  * the timestamp misalignment problem described in the body of the
3073  * function __bfq_activate_entity. Hence we return true only if this
3074  * condition does not hold, or if the queue is slow enough to deserve
3075  * only to be kicked off for preserving a high throughput.
3076  */
3077 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3078 {
3079 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3080 		"may_budget_timeout: wait_request %d left %d timeout %d",
3081 		bfq_bfqq_wait_request(bfqq),
3082 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3083 		bfq_bfqq_budget_timeout(bfqq));
3084 
3085 	return (!bfq_bfqq_wait_request(bfqq) ||
3086 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3087 		&&
3088 		bfq_bfqq_budget_timeout(bfqq);
3089 }
3090 
3091 /*
3092  * For a queue that becomes empty, device idling is allowed only if
3093  * this function returns true for the queue. As a consequence, since
3094  * device idling plays a critical role in both throughput boosting and
3095  * service guarantees, the return value of this function plays a
3096  * critical role in both these aspects as well.
3097  *
3098  * In a nutshell, this function returns true only if idling is
3099  * beneficial for throughput or, even if detrimental for throughput,
3100  * idling is however necessary to preserve service guarantees (low
3101  * latency, desired throughput distribution, ...). In particular, on
3102  * NCQ-capable devices, this function tries to return false, so as to
3103  * help keep the drives' internal queues full, whenever this helps the
3104  * device boost the throughput without causing any service-guarantee
3105  * issue.
3106  *
3107  * In more detail, the return value of this function is obtained by,
3108  * first, computing a number of boolean variables that take into
3109  * account throughput and service-guarantee issues, and, then,
3110  * combining these variables in a logical expression. Most of the
3111  * issues taken into account are not trivial. We discuss these issues
3112  * individually while introducing the variables.
3113  */
3114 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3115 {
3116 	struct bfq_data *bfqd = bfqq->bfqd;
3117 	bool rot_without_queueing =
3118 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3119 		bfqq_sequential_and_IO_bound,
3120 		idling_boosts_thr, idling_boosts_thr_without_issues,
3121 		idling_needed_for_service_guarantees,
3122 		asymmetric_scenario;
3123 
3124 	if (bfqd->strict_guarantees)
3125 		return true;
3126 
3127 	/*
3128 	 * Idling is performed only if slice_idle > 0. In addition, we
3129 	 * do not idle if
3130 	 * (a) bfqq is async
3131 	 * (b) bfqq is in the idle io prio class: in this case we do
3132 	 * not idle because we want to minimize the bandwidth that
3133 	 * queues in this class can steal to higher-priority queues
3134 	 */
3135 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3136 	    bfq_class_idle(bfqq))
3137 		return false;
3138 
3139 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3140 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3141 
3142 	/*
3143 	 * The next variable takes into account the cases where idling
3144 	 * boosts the throughput.
3145 	 *
3146 	 * The value of the variable is computed considering, first, that
3147 	 * idling is virtually always beneficial for the throughput if:
3148 	 * (a) the device is not NCQ-capable and rotational, or
3149 	 * (b) regardless of the presence of NCQ, the device is rotational and
3150 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3151 	 * (c) regardless of whether it is rotational, the device is
3152 	 *     not NCQ-capable and the request pattern for bfqq is
3153 	 *     I/O-bound and sequential.
3154 	 *
3155 	 * Secondly, and in contrast to the above item (b), idling an
3156 	 * NCQ-capable flash-based device would not boost the
3157 	 * throughput even with sequential I/O; rather it would lower
3158 	 * the throughput in proportion to how fast the device
3159 	 * is. Accordingly, the next variable is true if any of the
3160 	 * above conditions (a), (b) or (c) is true, and, in
3161 	 * particular, happens to be false if bfqd is an NCQ-capable
3162 	 * flash-based device.
3163 	 */
3164 	idling_boosts_thr = rot_without_queueing ||
3165 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3166 		 bfqq_sequential_and_IO_bound);
3167 
3168 	/*
3169 	 * The value of the next variable,
3170 	 * idling_boosts_thr_without_issues, is equal to that of
3171 	 * idling_boosts_thr, unless a special case holds. In this
3172 	 * special case, described below, idling may cause problems to
3173 	 * weight-raised queues.
3174 	 *
3175 	 * When the request pool is saturated (e.g., in the presence
3176 	 * of write hogs), if the processes associated with
3177 	 * non-weight-raised queues ask for requests at a lower rate,
3178 	 * then processes associated with weight-raised queues have a
3179 	 * higher probability to get a request from the pool
3180 	 * immediately (or at least soon) when they need one. Thus
3181 	 * they have a higher probability to actually get a fraction
3182 	 * of the device throughput proportional to their high
3183 	 * weight. This is especially true with NCQ-capable drives,
3184 	 * which enqueue several requests in advance, and further
3185 	 * reorder internally-queued requests.
3186 	 *
3187 	 * For this reason, we force to false the value of
3188 	 * idling_boosts_thr_without_issues if there are weight-raised
3189 	 * busy queues. In this case, and if bfqq is not weight-raised,
3190 	 * this guarantees that the device is not idled for bfqq (if,
3191 	 * instead, bfqq is weight-raised, then idling will be
3192 	 * guaranteed by another variable, see below). Combined with
3193 	 * the timestamping rules of BFQ (see [1] for details), this
3194 	 * behavior causes bfqq, and hence any sync non-weight-raised
3195 	 * queue, to get a lower number of requests served, and thus
3196 	 * to ask for a lower number of requests from the request
3197 	 * pool, before the busy weight-raised queues get served
3198 	 * again. This often mitigates starvation problems in the
3199 	 * presence of heavy write workloads and NCQ, thereby
3200 	 * guaranteeing a higher application and system responsiveness
3201 	 * in these hostile scenarios.
3202 	 */
3203 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3204 		bfqd->wr_busy_queues == 0;
3205 
3206 	/*
3207 	 * There is then a case where idling must be performed not
3208 	 * for throughput concerns, but to preserve service
3209 	 * guarantees.
3210 	 *
3211 	 * To introduce this case, we can note that allowing the drive
3212 	 * to enqueue more than one request at a time, and hence
3213 	 * delegating de facto final scheduling decisions to the
3214 	 * drive's internal scheduler, entails loss of control on the
3215 	 * actual request service order. In particular, the critical
3216 	 * situation is when requests from different processes happen
3217 	 * to be present, at the same time, in the internal queue(s)
3218 	 * of the drive. In such a situation, the drive, by deciding
3219 	 * the service order of the internally-queued requests, does
3220 	 * determine also the actual throughput distribution among
3221 	 * these processes. But the drive typically has no notion or
3222 	 * concern about per-process throughput distribution, and
3223 	 * makes its decisions only on a per-request basis. Therefore,
3224 	 * the service distribution enforced by the drive's internal
3225 	 * scheduler is likely to coincide with the desired
3226 	 * device-throughput distribution only in a completely
3227 	 * symmetric scenario where:
3228 	 * (i)  each of these processes must get the same throughput as
3229 	 *      the others;
3230 	 * (ii) all these processes have the same I/O pattern
3231 		(either sequential or random).
3232 	 * In fact, in such a scenario, the drive will tend to treat
3233 	 * the requests of each of these processes in about the same
3234 	 * way as the requests of the others, and thus to provide
3235 	 * each of these processes with about the same throughput
3236 	 * (which is exactly the desired throughput distribution). In
3237 	 * contrast, in any asymmetric scenario, device idling is
3238 	 * certainly needed to guarantee that bfqq receives its
3239 	 * assigned fraction of the device throughput (see [1] for
3240 	 * details).
3241 	 *
3242 	 * We address this issue by controlling, actually, only the
3243 	 * symmetry sub-condition (i), i.e., provided that
3244 	 * sub-condition (i) holds, idling is not performed,
3245 	 * regardless of whether sub-condition (ii) holds. In other
3246 	 * words, only if sub-condition (i) holds, then idling is
3247 	 * allowed, and the device tends to be prevented from queueing
3248 	 * many requests, possibly of several processes. The reason
3249 	 * for not controlling also sub-condition (ii) is that we
3250 	 * exploit preemption to preserve guarantees in case of
3251 	 * symmetric scenarios, even if (ii) does not hold, as
3252 	 * explained in the next two paragraphs.
3253 	 *
3254 	 * Even if a queue, say Q, is expired when it remains idle, Q
3255 	 * can still preempt the new in-service queue if the next
3256 	 * request of Q arrives soon (see the comments on
3257 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3258 	 * groups have the same weight, this form of preemption,
3259 	 * combined with the hole-recovery heuristic described in the
3260 	 * comments on function bfq_bfqq_update_budg_for_activation,
3261 	 * are enough to preserve a correct bandwidth distribution in
3262 	 * the mid term, even without idling. In fact, even if not
3263 	 * idling allows the internal queues of the device to contain
3264 	 * many requests, and thus to reorder requests, we can rather
3265 	 * safely assume that the internal scheduler still preserves a
3266 	 * minimum of mid-term fairness. The motivation for using
3267 	 * preemption instead of idling is that, by not idling,
3268 	 * service guarantees are preserved without minimally
3269 	 * sacrificing throughput. In other words, both a high
3270 	 * throughput and its desired distribution are obtained.
3271 	 *
3272 	 * More precisely, this preemption-based, idleless approach
3273 	 * provides fairness in terms of IOPS, and not sectors per
3274 	 * second. This can be seen with a simple example. Suppose
3275 	 * that there are two queues with the same weight, but that
3276 	 * the first queue receives requests of 8 sectors, while the
3277 	 * second queue receives requests of 1024 sectors. In
3278 	 * addition, suppose that each of the two queues contains at
3279 	 * most one request at a time, which implies that each queue
3280 	 * always remains idle after it is served. Finally, after
3281 	 * remaining idle, each queue receives very quickly a new
3282 	 * request. It follows that the two queues are served
3283 	 * alternatively, preempting each other if needed. This
3284 	 * implies that, although both queues have the same weight,
3285 	 * the queue with large requests receives a service that is
3286 	 * 1024/8 times as high as the service received by the other
3287 	 * queue.
3288 	 *
3289 	 * On the other hand, device idling is performed, and thus
3290 	 * pure sector-domain guarantees are provided, for the
3291 	 * following queues, which are likely to need stronger
3292 	 * throughput guarantees: weight-raised queues, and queues
3293 	 * with a higher weight than other queues. When such queues
3294 	 * are active, sub-condition (i) is false, which triggers
3295 	 * device idling.
3296 	 *
3297 	 * According to the above considerations, the next variable is
3298 	 * true (only) if sub-condition (i) holds. To compute the
3299 	 * value of this variable, we not only use the return value of
3300 	 * the function bfq_symmetric_scenario(), but also check
3301 	 * whether bfqq is being weight-raised, because
3302 	 * bfq_symmetric_scenario() does not take into account also
3303 	 * weight-raised queues (see comments on
3304 	 * bfq_weights_tree_add()).
3305 	 *
3306 	 * As a side note, it is worth considering that the above
3307 	 * device-idling countermeasures may however fail in the
3308 	 * following unlucky scenario: if idling is (correctly)
3309 	 * disabled in a time period during which all symmetry
3310 	 * sub-conditions hold, and hence the device is allowed to
3311 	 * enqueue many requests, but at some later point in time some
3312 	 * sub-condition stops to hold, then it may become impossible
3313 	 * to let requests be served in the desired order until all
3314 	 * the requests already queued in the device have been served.
3315 	 */
3316 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3317 		!bfq_symmetric_scenario(bfqd);
3318 
3319 	/*
3320 	 * Finally, there is a case where maximizing throughput is the
3321 	 * best choice even if it may cause unfairness toward
3322 	 * bfqq. Such a case is when bfqq became active in a burst of
3323 	 * queue activations. Queues that became active during a large
3324 	 * burst benefit only from throughput, as discussed in the
3325 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3326 	 * in a burst and not idling the device maximizes throughput,
3327 	 * then the device must no be idled, because not idling the
3328 	 * device provides bfqq and all other queues in the burst with
3329 	 * maximum benefit. Combining this and the above case, we can
3330 	 * now establish when idling is actually needed to preserve
3331 	 * service guarantees.
3332 	 */
3333 	idling_needed_for_service_guarantees =
3334 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3335 
3336 	/*
3337 	 * We have now all the components we need to compute the
3338 	 * return value of the function, which is true only if idling
3339 	 * either boosts the throughput (without issues), or is
3340 	 * necessary to preserve service guarantees.
3341 	 */
3342 	return idling_boosts_thr_without_issues ||
3343 		idling_needed_for_service_guarantees;
3344 }
3345 
3346 /*
3347  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3348  * returns true, then:
3349  * 1) the queue must remain in service and cannot be expired, and
3350  * 2) the device must be idled to wait for the possible arrival of a new
3351  *    request for the queue.
3352  * See the comments on the function bfq_bfqq_may_idle for the reasons
3353  * why performing device idling is the best choice to boost the throughput
3354  * and preserve service guarantees when bfq_bfqq_may_idle itself
3355  * returns true.
3356  */
3357 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3358 {
3359 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
3360 }
3361 
3362 /*
3363  * Select a queue for service.  If we have a current queue in service,
3364  * check whether to continue servicing it, or retrieve and set a new one.
3365  */
3366 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3367 {
3368 	struct bfq_queue *bfqq;
3369 	struct request *next_rq;
3370 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3371 
3372 	bfqq = bfqd->in_service_queue;
3373 	if (!bfqq)
3374 		goto new_queue;
3375 
3376 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3377 
3378 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3379 	    !bfq_bfqq_wait_request(bfqq) &&
3380 	    !bfq_bfqq_must_idle(bfqq))
3381 		goto expire;
3382 
3383 check_queue:
3384 	/*
3385 	 * This loop is rarely executed more than once. Even when it
3386 	 * happens, it is much more convenient to re-execute this loop
3387 	 * than to return NULL and trigger a new dispatch to get a
3388 	 * request served.
3389 	 */
3390 	next_rq = bfqq->next_rq;
3391 	/*
3392 	 * If bfqq has requests queued and it has enough budget left to
3393 	 * serve them, keep the queue, otherwise expire it.
3394 	 */
3395 	if (next_rq) {
3396 		if (bfq_serv_to_charge(next_rq, bfqq) >
3397 			bfq_bfqq_budget_left(bfqq)) {
3398 			/*
3399 			 * Expire the queue for budget exhaustion,
3400 			 * which makes sure that the next budget is
3401 			 * enough to serve the next request, even if
3402 			 * it comes from the fifo expired path.
3403 			 */
3404 			reason = BFQQE_BUDGET_EXHAUSTED;
3405 			goto expire;
3406 		} else {
3407 			/*
3408 			 * The idle timer may be pending because we may
3409 			 * not disable disk idling even when a new request
3410 			 * arrives.
3411 			 */
3412 			if (bfq_bfqq_wait_request(bfqq)) {
3413 				/*
3414 				 * If we get here: 1) at least a new request
3415 				 * has arrived but we have not disabled the
3416 				 * timer because the request was too small,
3417 				 * 2) then the block layer has unplugged
3418 				 * the device, causing the dispatch to be
3419 				 * invoked.
3420 				 *
3421 				 * Since the device is unplugged, now the
3422 				 * requests are probably large enough to
3423 				 * provide a reasonable throughput.
3424 				 * So we disable idling.
3425 				 */
3426 				bfq_clear_bfqq_wait_request(bfqq);
3427 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3428 				bfqg_stats_update_idle_time(bfqq_group(bfqq));
3429 			}
3430 			goto keep_queue;
3431 		}
3432 	}
3433 
3434 	/*
3435 	 * No requests pending. However, if the in-service queue is idling
3436 	 * for a new request, or has requests waiting for a completion and
3437 	 * may idle after their completion, then keep it anyway.
3438 	 */
3439 	if (bfq_bfqq_wait_request(bfqq) ||
3440 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3441 		bfqq = NULL;
3442 		goto keep_queue;
3443 	}
3444 
3445 	reason = BFQQE_NO_MORE_REQUESTS;
3446 expire:
3447 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3448 new_queue:
3449 	bfqq = bfq_set_in_service_queue(bfqd);
3450 	if (bfqq) {
3451 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3452 		goto check_queue;
3453 	}
3454 keep_queue:
3455 	if (bfqq)
3456 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3457 	else
3458 		bfq_log(bfqd, "select_queue: no queue returned");
3459 
3460 	return bfqq;
3461 }
3462 
3463 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3464 {
3465 	struct bfq_entity *entity = &bfqq->entity;
3466 
3467 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3468 		bfq_log_bfqq(bfqd, bfqq,
3469 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3470 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3471 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3472 			bfqq->wr_coeff,
3473 			bfqq->entity.weight, bfqq->entity.orig_weight);
3474 
3475 		if (entity->prio_changed)
3476 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3477 
3478 		/*
3479 		 * If the queue was activated in a burst, or too much
3480 		 * time has elapsed from the beginning of this
3481 		 * weight-raising period, then end weight raising.
3482 		 */
3483 		if (bfq_bfqq_in_large_burst(bfqq))
3484 			bfq_bfqq_end_wr(bfqq);
3485 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3486 						bfqq->wr_cur_max_time)) {
3487 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3488 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3489 					       bfq_wr_duration(bfqd)))
3490 				bfq_bfqq_end_wr(bfqq);
3491 			else {
3492 				/* switch back to interactive wr */
3493 				bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3494 				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3495 				bfqq->last_wr_start_finish =
3496 					bfqq->wr_start_at_switch_to_srt;
3497 				bfqq->entity.prio_changed = 1;
3498 			}
3499 		}
3500 	}
3501 	/*
3502 	 * To improve latency (for this or other queues), immediately
3503 	 * update weight both if it must be raised and if it must be
3504 	 * lowered. Since, entity may be on some active tree here, and
3505 	 * might have a pending change of its ioprio class, invoke
3506 	 * next function with the last parameter unset (see the
3507 	 * comments on the function).
3508 	 */
3509 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3510 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3511 						entity, false);
3512 }
3513 
3514 /*
3515  * Dispatch next request from bfqq.
3516  */
3517 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3518 						 struct bfq_queue *bfqq)
3519 {
3520 	struct request *rq = bfqq->next_rq;
3521 	unsigned long service_to_charge;
3522 
3523 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3524 
3525 	bfq_bfqq_served(bfqq, service_to_charge);
3526 
3527 	bfq_dispatch_remove(bfqd->queue, rq);
3528 
3529 	/*
3530 	 * If weight raising has to terminate for bfqq, then next
3531 	 * function causes an immediate update of bfqq's weight,
3532 	 * without waiting for next activation. As a consequence, on
3533 	 * expiration, bfqq will be timestamped as if has never been
3534 	 * weight-raised during this service slot, even if it has
3535 	 * received part or even most of the service as a
3536 	 * weight-raised queue. This inflates bfqq's timestamps, which
3537 	 * is beneficial, as bfqq is then more willing to leave the
3538 	 * device immediately to possible other weight-raised queues.
3539 	 */
3540 	bfq_update_wr_data(bfqd, bfqq);
3541 
3542 	/*
3543 	 * Expire bfqq, pretending that its budget expired, if bfqq
3544 	 * belongs to CLASS_IDLE and other queues are waiting for
3545 	 * service.
3546 	 */
3547 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3548 		goto expire;
3549 
3550 	return rq;
3551 
3552 expire:
3553 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3554 	return rq;
3555 }
3556 
3557 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3558 {
3559 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3560 
3561 	/*
3562 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3563 	 * most a call to dispatch for nothing
3564 	 */
3565 	return !list_empty_careful(&bfqd->dispatch) ||
3566 		bfqd->busy_queues > 0;
3567 }
3568 
3569 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3570 {
3571 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3572 	struct request *rq = NULL;
3573 	struct bfq_queue *bfqq = NULL;
3574 
3575 	if (!list_empty(&bfqd->dispatch)) {
3576 		rq = list_first_entry(&bfqd->dispatch, struct request,
3577 				      queuelist);
3578 		list_del_init(&rq->queuelist);
3579 
3580 		bfqq = RQ_BFQQ(rq);
3581 
3582 		if (bfqq) {
3583 			/*
3584 			 * Increment counters here, because this
3585 			 * dispatch does not follow the standard
3586 			 * dispatch flow (where counters are
3587 			 * incremented)
3588 			 */
3589 			bfqq->dispatched++;
3590 
3591 			goto inc_in_driver_start_rq;
3592 		}
3593 
3594 		/*
3595 		 * We exploit the put_rq_private hook to decrement
3596 		 * rq_in_driver, but put_rq_private will not be
3597 		 * invoked on this request. So, to avoid unbalance,
3598 		 * just start this request, without incrementing
3599 		 * rq_in_driver. As a negative consequence,
3600 		 * rq_in_driver is deceptively lower than it should be
3601 		 * while this request is in service. This may cause
3602 		 * bfq_schedule_dispatch to be invoked uselessly.
3603 		 *
3604 		 * As for implementing an exact solution, the
3605 		 * put_request hook, if defined, is probably invoked
3606 		 * also on this request. So, by exploiting this hook,
3607 		 * we could 1) increment rq_in_driver here, and 2)
3608 		 * decrement it in put_request. Such a solution would
3609 		 * let the value of the counter be always accurate,
3610 		 * but it would entail using an extra interface
3611 		 * function. This cost seems higher than the benefit,
3612 		 * being the frequency of non-elevator-private
3613 		 * requests very low.
3614 		 */
3615 		goto start_rq;
3616 	}
3617 
3618 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3619 
3620 	if (bfqd->busy_queues == 0)
3621 		goto exit;
3622 
3623 	/*
3624 	 * Force device to serve one request at a time if
3625 	 * strict_guarantees is true. Forcing this service scheme is
3626 	 * currently the ONLY way to guarantee that the request
3627 	 * service order enforced by the scheduler is respected by a
3628 	 * queueing device. Otherwise the device is free even to make
3629 	 * some unlucky request wait for as long as the device
3630 	 * wishes.
3631 	 *
3632 	 * Of course, serving one request at at time may cause loss of
3633 	 * throughput.
3634 	 */
3635 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3636 		goto exit;
3637 
3638 	bfqq = bfq_select_queue(bfqd);
3639 	if (!bfqq)
3640 		goto exit;
3641 
3642 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3643 
3644 	if (rq) {
3645 inc_in_driver_start_rq:
3646 		bfqd->rq_in_driver++;
3647 start_rq:
3648 		rq->rq_flags |= RQF_STARTED;
3649 	}
3650 exit:
3651 	return rq;
3652 }
3653 
3654 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3655 {
3656 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3657 	struct request *rq;
3658 
3659 	spin_lock_irq(&bfqd->lock);
3660 
3661 	rq = __bfq_dispatch_request(hctx);
3662 	spin_unlock_irq(&bfqd->lock);
3663 
3664 	return rq;
3665 }
3666 
3667 /*
3668  * Task holds one reference to the queue, dropped when task exits.  Each rq
3669  * in-flight on this queue also holds a reference, dropped when rq is freed.
3670  *
3671  * Scheduler lock must be held here. Recall not to use bfqq after calling
3672  * this function on it.
3673  */
3674 void bfq_put_queue(struct bfq_queue *bfqq)
3675 {
3676 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3677 	struct bfq_group *bfqg = bfqq_group(bfqq);
3678 #endif
3679 
3680 	if (bfqq->bfqd)
3681 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3682 			     bfqq, bfqq->ref);
3683 
3684 	bfqq->ref--;
3685 	if (bfqq->ref)
3686 		return;
3687 
3688 	if (bfq_bfqq_sync(bfqq))
3689 		/*
3690 		 * The fact that this queue is being destroyed does not
3691 		 * invalidate the fact that this queue may have been
3692 		 * activated during the current burst. As a consequence,
3693 		 * although the queue does not exist anymore, and hence
3694 		 * needs to be removed from the burst list if there,
3695 		 * the burst size has not to be decremented.
3696 		 */
3697 		hlist_del_init(&bfqq->burst_list_node);
3698 
3699 	kmem_cache_free(bfq_pool, bfqq);
3700 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3701 	bfqg_and_blkg_put(bfqg);
3702 #endif
3703 }
3704 
3705 static void bfq_put_cooperator(struct bfq_queue *bfqq)
3706 {
3707 	struct bfq_queue *__bfqq, *next;
3708 
3709 	/*
3710 	 * If this queue was scheduled to merge with another queue, be
3711 	 * sure to drop the reference taken on that queue (and others in
3712 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3713 	 */
3714 	__bfqq = bfqq->new_bfqq;
3715 	while (__bfqq) {
3716 		if (__bfqq == bfqq)
3717 			break;
3718 		next = __bfqq->new_bfqq;
3719 		bfq_put_queue(__bfqq);
3720 		__bfqq = next;
3721 	}
3722 }
3723 
3724 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3725 {
3726 	if (bfqq == bfqd->in_service_queue) {
3727 		__bfq_bfqq_expire(bfqd, bfqq);
3728 		bfq_schedule_dispatch(bfqd);
3729 	}
3730 
3731 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3732 
3733 	bfq_put_cooperator(bfqq);
3734 
3735 	bfq_put_queue(bfqq); /* release process reference */
3736 }
3737 
3738 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3739 {
3740 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3741 	struct bfq_data *bfqd;
3742 
3743 	if (bfqq)
3744 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3745 
3746 	if (bfqq && bfqd) {
3747 		unsigned long flags;
3748 
3749 		spin_lock_irqsave(&bfqd->lock, flags);
3750 		bfq_exit_bfqq(bfqd, bfqq);
3751 		bic_set_bfqq(bic, NULL, is_sync);
3752 		spin_unlock_irqrestore(&bfqd->lock, flags);
3753 	}
3754 }
3755 
3756 static void bfq_exit_icq(struct io_cq *icq)
3757 {
3758 	struct bfq_io_cq *bic = icq_to_bic(icq);
3759 
3760 	bfq_exit_icq_bfqq(bic, true);
3761 	bfq_exit_icq_bfqq(bic, false);
3762 }
3763 
3764 /*
3765  * Update the entity prio values; note that the new values will not
3766  * be used until the next (re)activation.
3767  */
3768 static void
3769 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3770 {
3771 	struct task_struct *tsk = current;
3772 	int ioprio_class;
3773 	struct bfq_data *bfqd = bfqq->bfqd;
3774 
3775 	if (!bfqd)
3776 		return;
3777 
3778 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3779 	switch (ioprio_class) {
3780 	default:
3781 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3782 			"bfq: bad prio class %d\n", ioprio_class);
3783 		/* fall through */
3784 	case IOPRIO_CLASS_NONE:
3785 		/*
3786 		 * No prio set, inherit CPU scheduling settings.
3787 		 */
3788 		bfqq->new_ioprio = task_nice_ioprio(tsk);
3789 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3790 		break;
3791 	case IOPRIO_CLASS_RT:
3792 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3793 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3794 		break;
3795 	case IOPRIO_CLASS_BE:
3796 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3797 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3798 		break;
3799 	case IOPRIO_CLASS_IDLE:
3800 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3801 		bfqq->new_ioprio = 7;
3802 		break;
3803 	}
3804 
3805 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3806 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3807 			bfqq->new_ioprio);
3808 		bfqq->new_ioprio = IOPRIO_BE_NR;
3809 	}
3810 
3811 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3812 	bfqq->entity.prio_changed = 1;
3813 }
3814 
3815 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3816 				       struct bio *bio, bool is_sync,
3817 				       struct bfq_io_cq *bic);
3818 
3819 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3820 {
3821 	struct bfq_data *bfqd = bic_to_bfqd(bic);
3822 	struct bfq_queue *bfqq;
3823 	int ioprio = bic->icq.ioc->ioprio;
3824 
3825 	/*
3826 	 * This condition may trigger on a newly created bic, be sure to
3827 	 * drop the lock before returning.
3828 	 */
3829 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3830 		return;
3831 
3832 	bic->ioprio = ioprio;
3833 
3834 	bfqq = bic_to_bfqq(bic, false);
3835 	if (bfqq) {
3836 		/* release process reference on this queue */
3837 		bfq_put_queue(bfqq);
3838 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3839 		bic_set_bfqq(bic, bfqq, false);
3840 	}
3841 
3842 	bfqq = bic_to_bfqq(bic, true);
3843 	if (bfqq)
3844 		bfq_set_next_ioprio_data(bfqq, bic);
3845 }
3846 
3847 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3848 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
3849 {
3850 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
3851 	INIT_LIST_HEAD(&bfqq->fifo);
3852 	INIT_HLIST_NODE(&bfqq->burst_list_node);
3853 
3854 	bfqq->ref = 0;
3855 	bfqq->bfqd = bfqd;
3856 
3857 	if (bic)
3858 		bfq_set_next_ioprio_data(bfqq, bic);
3859 
3860 	if (is_sync) {
3861 		/*
3862 		 * No need to mark as has_short_ttime if in
3863 		 * idle_class, because no device idling is performed
3864 		 * for queues in idle class
3865 		 */
3866 		if (!bfq_class_idle(bfqq))
3867 			/* tentatively mark as has_short_ttime */
3868 			bfq_mark_bfqq_has_short_ttime(bfqq);
3869 		bfq_mark_bfqq_sync(bfqq);
3870 		bfq_mark_bfqq_just_created(bfqq);
3871 	} else
3872 		bfq_clear_bfqq_sync(bfqq);
3873 
3874 	/* set end request to minus infinity from now */
3875 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3876 
3877 	bfq_mark_bfqq_IO_bound(bfqq);
3878 
3879 	bfqq->pid = pid;
3880 
3881 	/* Tentative initial value to trade off between thr and lat */
3882 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
3883 	bfqq->budget_timeout = bfq_smallest_from_now();
3884 
3885 	bfqq->wr_coeff = 1;
3886 	bfqq->last_wr_start_finish = jiffies;
3887 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
3888 	bfqq->split_time = bfq_smallest_from_now();
3889 
3890 	/*
3891 	 * Set to the value for which bfqq will not be deemed as
3892 	 * soft rt when it becomes backlogged.
3893 	 */
3894 	bfqq->soft_rt_next_start = bfq_greatest_from_now();
3895 
3896 	/* first request is almost certainly seeky */
3897 	bfqq->seek_history = 1;
3898 }
3899 
3900 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
3901 					       struct bfq_group *bfqg,
3902 					       int ioprio_class, int ioprio)
3903 {
3904 	switch (ioprio_class) {
3905 	case IOPRIO_CLASS_RT:
3906 		return &bfqg->async_bfqq[0][ioprio];
3907 	case IOPRIO_CLASS_NONE:
3908 		ioprio = IOPRIO_NORM;
3909 		/* fall through */
3910 	case IOPRIO_CLASS_BE:
3911 		return &bfqg->async_bfqq[1][ioprio];
3912 	case IOPRIO_CLASS_IDLE:
3913 		return &bfqg->async_idle_bfqq;
3914 	default:
3915 		return NULL;
3916 	}
3917 }
3918 
3919 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3920 				       struct bio *bio, bool is_sync,
3921 				       struct bfq_io_cq *bic)
3922 {
3923 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3924 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3925 	struct bfq_queue **async_bfqq = NULL;
3926 	struct bfq_queue *bfqq;
3927 	struct bfq_group *bfqg;
3928 
3929 	rcu_read_lock();
3930 
3931 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3932 	if (!bfqg) {
3933 		bfqq = &bfqd->oom_bfqq;
3934 		goto out;
3935 	}
3936 
3937 	if (!is_sync) {
3938 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
3939 						  ioprio);
3940 		bfqq = *async_bfqq;
3941 		if (bfqq)
3942 			goto out;
3943 	}
3944 
3945 	bfqq = kmem_cache_alloc_node(bfq_pool,
3946 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3947 				     bfqd->queue->node);
3948 
3949 	if (bfqq) {
3950 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3951 			      is_sync);
3952 		bfq_init_entity(&bfqq->entity, bfqg);
3953 		bfq_log_bfqq(bfqd, bfqq, "allocated");
3954 	} else {
3955 		bfqq = &bfqd->oom_bfqq;
3956 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3957 		goto out;
3958 	}
3959 
3960 	/*
3961 	 * Pin the queue now that it's allocated, scheduler exit will
3962 	 * prune it.
3963 	 */
3964 	if (async_bfqq) {
3965 		bfqq->ref++; /*
3966 			      * Extra group reference, w.r.t. sync
3967 			      * queue. This extra reference is removed
3968 			      * only if bfqq->bfqg disappears, to
3969 			      * guarantee that this queue is not freed
3970 			      * until its group goes away.
3971 			      */
3972 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
3973 			     bfqq, bfqq->ref);
3974 		*async_bfqq = bfqq;
3975 	}
3976 
3977 out:
3978 	bfqq->ref++; /* get a process reference to this queue */
3979 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
3980 	rcu_read_unlock();
3981 	return bfqq;
3982 }
3983 
3984 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
3985 				    struct bfq_queue *bfqq)
3986 {
3987 	struct bfq_ttime *ttime = &bfqq->ttime;
3988 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
3989 
3990 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
3991 
3992 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
3993 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3994 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3995 				     ttime->ttime_samples);
3996 }
3997 
3998 static void
3999 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4000 		       struct request *rq)
4001 {
4002 	bfqq->seek_history <<= 1;
4003 	bfqq->seek_history |=
4004 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4005 		(!blk_queue_nonrot(bfqd->queue) ||
4006 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4007 }
4008 
4009 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4010 				       struct bfq_queue *bfqq,
4011 				       struct bfq_io_cq *bic)
4012 {
4013 	bool has_short_ttime = true;
4014 
4015 	/*
4016 	 * No need to update has_short_ttime if bfqq is async or in
4017 	 * idle io prio class, or if bfq_slice_idle is zero, because
4018 	 * no device idling is performed for bfqq in this case.
4019 	 */
4020 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4021 	    bfqd->bfq_slice_idle == 0)
4022 		return;
4023 
4024 	/* Idle window just restored, statistics are meaningless. */
4025 	if (time_is_after_eq_jiffies(bfqq->split_time +
4026 				     bfqd->bfq_wr_min_idle_time))
4027 		return;
4028 
4029 	/* Think time is infinite if no process is linked to
4030 	 * bfqq. Otherwise check average think time to
4031 	 * decide whether to mark as has_short_ttime
4032 	 */
4033 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4034 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4035 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4036 		has_short_ttime = false;
4037 
4038 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4039 		     has_short_ttime);
4040 
4041 	if (has_short_ttime)
4042 		bfq_mark_bfqq_has_short_ttime(bfqq);
4043 	else
4044 		bfq_clear_bfqq_has_short_ttime(bfqq);
4045 }
4046 
4047 /*
4048  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4049  * something we should do about it.
4050  */
4051 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4052 			    struct request *rq)
4053 {
4054 	struct bfq_io_cq *bic = RQ_BIC(rq);
4055 
4056 	if (rq->cmd_flags & REQ_META)
4057 		bfqq->meta_pending++;
4058 
4059 	bfq_update_io_thinktime(bfqd, bfqq);
4060 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4061 	bfq_update_io_seektime(bfqd, bfqq, rq);
4062 
4063 	bfq_log_bfqq(bfqd, bfqq,
4064 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4065 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4066 
4067 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4068 
4069 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4070 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4071 				 blk_rq_sectors(rq) < 32;
4072 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4073 
4074 		/*
4075 		 * There is just this request queued: if the request
4076 		 * is small and the queue is not to be expired, then
4077 		 * just exit.
4078 		 *
4079 		 * In this way, if the device is being idled to wait
4080 		 * for a new request from the in-service queue, we
4081 		 * avoid unplugging the device and committing the
4082 		 * device to serve just a small request. On the
4083 		 * contrary, we wait for the block layer to decide
4084 		 * when to unplug the device: hopefully, new requests
4085 		 * will be merged to this one quickly, then the device
4086 		 * will be unplugged and larger requests will be
4087 		 * dispatched.
4088 		 */
4089 		if (small_req && !budget_timeout)
4090 			return;
4091 
4092 		/*
4093 		 * A large enough request arrived, or the queue is to
4094 		 * be expired: in both cases disk idling is to be
4095 		 * stopped, so clear wait_request flag and reset
4096 		 * timer.
4097 		 */
4098 		bfq_clear_bfqq_wait_request(bfqq);
4099 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4100 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4101 
4102 		/*
4103 		 * The queue is not empty, because a new request just
4104 		 * arrived. Hence we can safely expire the queue, in
4105 		 * case of budget timeout, without risking that the
4106 		 * timestamps of the queue are not updated correctly.
4107 		 * See [1] for more details.
4108 		 */
4109 		if (budget_timeout)
4110 			bfq_bfqq_expire(bfqd, bfqq, false,
4111 					BFQQE_BUDGET_TIMEOUT);
4112 	}
4113 }
4114 
4115 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4116 {
4117 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4118 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4119 
4120 	if (new_bfqq) {
4121 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4122 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4123 		/*
4124 		 * Release the request's reference to the old bfqq
4125 		 * and make sure one is taken to the shared queue.
4126 		 */
4127 		new_bfqq->allocated++;
4128 		bfqq->allocated--;
4129 		new_bfqq->ref++;
4130 		bfq_clear_bfqq_just_created(bfqq);
4131 		/*
4132 		 * If the bic associated with the process
4133 		 * issuing this request still points to bfqq
4134 		 * (and thus has not been already redirected
4135 		 * to new_bfqq or even some other bfq_queue),
4136 		 * then complete the merge and redirect it to
4137 		 * new_bfqq.
4138 		 */
4139 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4140 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4141 					bfqq, new_bfqq);
4142 		/*
4143 		 * rq is about to be enqueued into new_bfqq,
4144 		 * release rq reference on bfqq
4145 		 */
4146 		bfq_put_queue(bfqq);
4147 		rq->elv.priv[1] = new_bfqq;
4148 		bfqq = new_bfqq;
4149 	}
4150 
4151 	bfq_add_request(rq);
4152 
4153 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4154 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4155 
4156 	bfq_rq_enqueued(bfqd, bfqq, rq);
4157 }
4158 
4159 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4160 			       bool at_head)
4161 {
4162 	struct request_queue *q = hctx->queue;
4163 	struct bfq_data *bfqd = q->elevator->elevator_data;
4164 
4165 	spin_lock_irq(&bfqd->lock);
4166 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4167 		spin_unlock_irq(&bfqd->lock);
4168 		return;
4169 	}
4170 
4171 	spin_unlock_irq(&bfqd->lock);
4172 
4173 	blk_mq_sched_request_inserted(rq);
4174 
4175 	spin_lock_irq(&bfqd->lock);
4176 	if (at_head || blk_rq_is_passthrough(rq)) {
4177 		if (at_head)
4178 			list_add(&rq->queuelist, &bfqd->dispatch);
4179 		else
4180 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4181 	} else {
4182 		__bfq_insert_request(bfqd, rq);
4183 
4184 		if (rq_mergeable(rq)) {
4185 			elv_rqhash_add(q, rq);
4186 			if (!q->last_merge)
4187 				q->last_merge = rq;
4188 		}
4189 	}
4190 
4191 	spin_unlock_irq(&bfqd->lock);
4192 }
4193 
4194 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4195 				struct list_head *list, bool at_head)
4196 {
4197 	while (!list_empty(list)) {
4198 		struct request *rq;
4199 
4200 		rq = list_first_entry(list, struct request, queuelist);
4201 		list_del_init(&rq->queuelist);
4202 		bfq_insert_request(hctx, rq, at_head);
4203 	}
4204 }
4205 
4206 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4207 {
4208 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4209 				       bfqd->rq_in_driver);
4210 
4211 	if (bfqd->hw_tag == 1)
4212 		return;
4213 
4214 	/*
4215 	 * This sample is valid if the number of outstanding requests
4216 	 * is large enough to allow a queueing behavior.  Note that the
4217 	 * sum is not exact, as it's not taking into account deactivated
4218 	 * requests.
4219 	 */
4220 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4221 		return;
4222 
4223 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4224 		return;
4225 
4226 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4227 	bfqd->max_rq_in_driver = 0;
4228 	bfqd->hw_tag_samples = 0;
4229 }
4230 
4231 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4232 {
4233 	u64 now_ns;
4234 	u32 delta_us;
4235 
4236 	bfq_update_hw_tag(bfqd);
4237 
4238 	bfqd->rq_in_driver--;
4239 	bfqq->dispatched--;
4240 
4241 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4242 		/*
4243 		 * Set budget_timeout (which we overload to store the
4244 		 * time at which the queue remains with no backlog and
4245 		 * no outstanding request; used by the weight-raising
4246 		 * mechanism).
4247 		 */
4248 		bfqq->budget_timeout = jiffies;
4249 
4250 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4251 					&bfqd->queue_weights_tree);
4252 	}
4253 
4254 	now_ns = ktime_get_ns();
4255 
4256 	bfqq->ttime.last_end_request = now_ns;
4257 
4258 	/*
4259 	 * Using us instead of ns, to get a reasonable precision in
4260 	 * computing rate in next check.
4261 	 */
4262 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4263 
4264 	/*
4265 	 * If the request took rather long to complete, and, according
4266 	 * to the maximum request size recorded, this completion latency
4267 	 * implies that the request was certainly served at a very low
4268 	 * rate (less than 1M sectors/sec), then the whole observation
4269 	 * interval that lasts up to this time instant cannot be a
4270 	 * valid time interval for computing a new peak rate.  Invoke
4271 	 * bfq_update_rate_reset to have the following three steps
4272 	 * taken:
4273 	 * - close the observation interval at the last (previous)
4274 	 *   request dispatch or completion
4275 	 * - compute rate, if possible, for that observation interval
4276 	 * - reset to zero samples, which will trigger a proper
4277 	 *   re-initialization of the observation interval on next
4278 	 *   dispatch
4279 	 */
4280 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4281 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4282 			1UL<<(BFQ_RATE_SHIFT - 10))
4283 		bfq_update_rate_reset(bfqd, NULL);
4284 	bfqd->last_completion = now_ns;
4285 
4286 	/*
4287 	 * If we are waiting to discover whether the request pattern
4288 	 * of the task associated with the queue is actually
4289 	 * isochronous, and both requisites for this condition to hold
4290 	 * are now satisfied, then compute soft_rt_next_start (see the
4291 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4292 	 * schedule this delayed check when bfqq expires, if it still
4293 	 * has in-flight requests.
4294 	 */
4295 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4296 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4297 		bfqq->soft_rt_next_start =
4298 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4299 
4300 	/*
4301 	 * If this is the in-service queue, check if it needs to be expired,
4302 	 * or if we want to idle in case it has no pending requests.
4303 	 */
4304 	if (bfqd->in_service_queue == bfqq) {
4305 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4306 			bfq_arm_slice_timer(bfqd);
4307 			return;
4308 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4309 			bfq_bfqq_expire(bfqd, bfqq, false,
4310 					BFQQE_BUDGET_TIMEOUT);
4311 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4312 			 (bfqq->dispatched == 0 ||
4313 			  !bfq_bfqq_may_idle(bfqq)))
4314 			bfq_bfqq_expire(bfqd, bfqq, false,
4315 					BFQQE_NO_MORE_REQUESTS);
4316 	}
4317 
4318 	if (!bfqd->rq_in_driver)
4319 		bfq_schedule_dispatch(bfqd);
4320 }
4321 
4322 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4323 {
4324 	bfqq->allocated--;
4325 
4326 	bfq_put_queue(bfqq);
4327 }
4328 
4329 static void bfq_finish_request(struct request *rq)
4330 {
4331 	struct bfq_queue *bfqq;
4332 	struct bfq_data *bfqd;
4333 
4334 	if (!rq->elv.icq)
4335 		return;
4336 
4337 	bfqq = RQ_BFQQ(rq);
4338 	bfqd = bfqq->bfqd;
4339 
4340 	if (rq->rq_flags & RQF_STARTED)
4341 		bfqg_stats_update_completion(bfqq_group(bfqq),
4342 					     rq_start_time_ns(rq),
4343 					     rq_io_start_time_ns(rq),
4344 					     rq->cmd_flags);
4345 
4346 	if (likely(rq->rq_flags & RQF_STARTED)) {
4347 		unsigned long flags;
4348 
4349 		spin_lock_irqsave(&bfqd->lock, flags);
4350 
4351 		bfq_completed_request(bfqq, bfqd);
4352 		bfq_put_rq_priv_body(bfqq);
4353 
4354 		spin_unlock_irqrestore(&bfqd->lock, flags);
4355 	} else {
4356 		/*
4357 		 * Request rq may be still/already in the scheduler,
4358 		 * in which case we need to remove it. And we cannot
4359 		 * defer such a check and removal, to avoid
4360 		 * inconsistencies in the time interval from the end
4361 		 * of this function to the start of the deferred work.
4362 		 * This situation seems to occur only in process
4363 		 * context, as a consequence of a merge. In the
4364 		 * current version of the code, this implies that the
4365 		 * lock is held.
4366 		 */
4367 
4368 		if (!RB_EMPTY_NODE(&rq->rb_node))
4369 			bfq_remove_request(rq->q, rq);
4370 		bfq_put_rq_priv_body(bfqq);
4371 	}
4372 
4373 	rq->elv.priv[0] = NULL;
4374 	rq->elv.priv[1] = NULL;
4375 }
4376 
4377 /*
4378  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4379  * was the last process referring to that bfqq.
4380  */
4381 static struct bfq_queue *
4382 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4383 {
4384 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4385 
4386 	if (bfqq_process_refs(bfqq) == 1) {
4387 		bfqq->pid = current->pid;
4388 		bfq_clear_bfqq_coop(bfqq);
4389 		bfq_clear_bfqq_split_coop(bfqq);
4390 		return bfqq;
4391 	}
4392 
4393 	bic_set_bfqq(bic, NULL, 1);
4394 
4395 	bfq_put_cooperator(bfqq);
4396 
4397 	bfq_put_queue(bfqq);
4398 	return NULL;
4399 }
4400 
4401 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4402 						   struct bfq_io_cq *bic,
4403 						   struct bio *bio,
4404 						   bool split, bool is_sync,
4405 						   bool *new_queue)
4406 {
4407 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4408 
4409 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4410 		return bfqq;
4411 
4412 	if (new_queue)
4413 		*new_queue = true;
4414 
4415 	if (bfqq)
4416 		bfq_put_queue(bfqq);
4417 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4418 
4419 	bic_set_bfqq(bic, bfqq, is_sync);
4420 	if (split && is_sync) {
4421 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4422 		    bic->saved_in_large_burst)
4423 			bfq_mark_bfqq_in_large_burst(bfqq);
4424 		else {
4425 			bfq_clear_bfqq_in_large_burst(bfqq);
4426 			if (bic->was_in_burst_list)
4427 				hlist_add_head(&bfqq->burst_list_node,
4428 					       &bfqd->burst_list);
4429 		}
4430 		bfqq->split_time = jiffies;
4431 	}
4432 
4433 	return bfqq;
4434 }
4435 
4436 /*
4437  * Allocate bfq data structures associated with this request.
4438  */
4439 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4440 {
4441 	struct request_queue *q = rq->q;
4442 	struct bfq_data *bfqd = q->elevator->elevator_data;
4443 	struct bfq_io_cq *bic;
4444 	const int is_sync = rq_is_sync(rq);
4445 	struct bfq_queue *bfqq;
4446 	bool new_queue = false;
4447 	bool bfqq_already_existing = false, split = false;
4448 
4449 	if (!rq->elv.icq)
4450 		return;
4451 	bic = icq_to_bic(rq->elv.icq);
4452 
4453 	spin_lock_irq(&bfqd->lock);
4454 
4455 	bfq_check_ioprio_change(bic, bio);
4456 
4457 	bfq_bic_update_cgroup(bic, bio);
4458 
4459 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4460 					 &new_queue);
4461 
4462 	if (likely(!new_queue)) {
4463 		/* If the queue was seeky for too long, break it apart. */
4464 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4465 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4466 
4467 			/* Update bic before losing reference to bfqq */
4468 			if (bfq_bfqq_in_large_burst(bfqq))
4469 				bic->saved_in_large_burst = true;
4470 
4471 			bfqq = bfq_split_bfqq(bic, bfqq);
4472 			split = true;
4473 
4474 			if (!bfqq)
4475 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4476 								 true, is_sync,
4477 								 NULL);
4478 			else
4479 				bfqq_already_existing = true;
4480 		}
4481 	}
4482 
4483 	bfqq->allocated++;
4484 	bfqq->ref++;
4485 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4486 		     rq, bfqq, bfqq->ref);
4487 
4488 	rq->elv.priv[0] = bic;
4489 	rq->elv.priv[1] = bfqq;
4490 
4491 	/*
4492 	 * If a bfq_queue has only one process reference, it is owned
4493 	 * by only this bic: we can then set bfqq->bic = bic. in
4494 	 * addition, if the queue has also just been split, we have to
4495 	 * resume its state.
4496 	 */
4497 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4498 		bfqq->bic = bic;
4499 		if (split) {
4500 			/*
4501 			 * The queue has just been split from a shared
4502 			 * queue: restore the idle window and the
4503 			 * possible weight raising period.
4504 			 */
4505 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
4506 					      bfqq_already_existing);
4507 		}
4508 	}
4509 
4510 	if (unlikely(bfq_bfqq_just_created(bfqq)))
4511 		bfq_handle_burst(bfqd, bfqq);
4512 
4513 	spin_unlock_irq(&bfqd->lock);
4514 }
4515 
4516 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4517 {
4518 	struct bfq_data *bfqd = bfqq->bfqd;
4519 	enum bfqq_expiration reason;
4520 	unsigned long flags;
4521 
4522 	spin_lock_irqsave(&bfqd->lock, flags);
4523 	bfq_clear_bfqq_wait_request(bfqq);
4524 
4525 	if (bfqq != bfqd->in_service_queue) {
4526 		spin_unlock_irqrestore(&bfqd->lock, flags);
4527 		return;
4528 	}
4529 
4530 	if (bfq_bfqq_budget_timeout(bfqq))
4531 		/*
4532 		 * Also here the queue can be safely expired
4533 		 * for budget timeout without wasting
4534 		 * guarantees
4535 		 */
4536 		reason = BFQQE_BUDGET_TIMEOUT;
4537 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4538 		/*
4539 		 * The queue may not be empty upon timer expiration,
4540 		 * because we may not disable the timer when the
4541 		 * first request of the in-service queue arrives
4542 		 * during disk idling.
4543 		 */
4544 		reason = BFQQE_TOO_IDLE;
4545 	else
4546 		goto schedule_dispatch;
4547 
4548 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
4549 
4550 schedule_dispatch:
4551 	spin_unlock_irqrestore(&bfqd->lock, flags);
4552 	bfq_schedule_dispatch(bfqd);
4553 }
4554 
4555 /*
4556  * Handler of the expiration of the timer running if the in-service queue
4557  * is idling inside its time slice.
4558  */
4559 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4560 {
4561 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4562 					     idle_slice_timer);
4563 	struct bfq_queue *bfqq = bfqd->in_service_queue;
4564 
4565 	/*
4566 	 * Theoretical race here: the in-service queue can be NULL or
4567 	 * different from the queue that was idling if a new request
4568 	 * arrives for the current queue and there is a full dispatch
4569 	 * cycle that changes the in-service queue.  This can hardly
4570 	 * happen, but in the worst case we just expire a queue too
4571 	 * early.
4572 	 */
4573 	if (bfqq)
4574 		bfq_idle_slice_timer_body(bfqq);
4575 
4576 	return HRTIMER_NORESTART;
4577 }
4578 
4579 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4580 				 struct bfq_queue **bfqq_ptr)
4581 {
4582 	struct bfq_queue *bfqq = *bfqq_ptr;
4583 
4584 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4585 	if (bfqq) {
4586 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4587 
4588 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4589 			     bfqq, bfqq->ref);
4590 		bfq_put_queue(bfqq);
4591 		*bfqq_ptr = NULL;
4592 	}
4593 }
4594 
4595 /*
4596  * Release all the bfqg references to its async queues.  If we are
4597  * deallocating the group these queues may still contain requests, so
4598  * we reparent them to the root cgroup (i.e., the only one that will
4599  * exist for sure until all the requests on a device are gone).
4600  */
4601 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
4602 {
4603 	int i, j;
4604 
4605 	for (i = 0; i < 2; i++)
4606 		for (j = 0; j < IOPRIO_BE_NR; j++)
4607 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
4608 
4609 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
4610 }
4611 
4612 static void bfq_exit_queue(struct elevator_queue *e)
4613 {
4614 	struct bfq_data *bfqd = e->elevator_data;
4615 	struct bfq_queue *bfqq, *n;
4616 
4617 	hrtimer_cancel(&bfqd->idle_slice_timer);
4618 
4619 	spin_lock_irq(&bfqd->lock);
4620 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
4621 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
4622 	spin_unlock_irq(&bfqd->lock);
4623 
4624 	hrtimer_cancel(&bfqd->idle_slice_timer);
4625 
4626 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4627 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4628 #else
4629 	spin_lock_irq(&bfqd->lock);
4630 	bfq_put_async_queues(bfqd, bfqd->root_group);
4631 	kfree(bfqd->root_group);
4632 	spin_unlock_irq(&bfqd->lock);
4633 #endif
4634 
4635 	kfree(bfqd);
4636 }
4637 
4638 static void bfq_init_root_group(struct bfq_group *root_group,
4639 				struct bfq_data *bfqd)
4640 {
4641 	int i;
4642 
4643 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4644 	root_group->entity.parent = NULL;
4645 	root_group->my_entity = NULL;
4646 	root_group->bfqd = bfqd;
4647 #endif
4648 	root_group->rq_pos_tree = RB_ROOT;
4649 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4650 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4651 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
4652 }
4653 
4654 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4655 {
4656 	struct bfq_data *bfqd;
4657 	struct elevator_queue *eq;
4658 
4659 	eq = elevator_alloc(q, e);
4660 	if (!eq)
4661 		return -ENOMEM;
4662 
4663 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4664 	if (!bfqd) {
4665 		kobject_put(&eq->kobj);
4666 		return -ENOMEM;
4667 	}
4668 	eq->elevator_data = bfqd;
4669 
4670 	spin_lock_irq(q->queue_lock);
4671 	q->elevator = eq;
4672 	spin_unlock_irq(q->queue_lock);
4673 
4674 	/*
4675 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4676 	 * Grab a permanent reference to it, so that the normal code flow
4677 	 * will not attempt to free it.
4678 	 */
4679 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4680 	bfqd->oom_bfqq.ref++;
4681 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4682 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4683 	bfqd->oom_bfqq.entity.new_weight =
4684 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
4685 
4686 	/* oom_bfqq does not participate to bursts */
4687 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4688 
4689 	/*
4690 	 * Trigger weight initialization, according to ioprio, at the
4691 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4692 	 * class won't be changed any more.
4693 	 */
4694 	bfqd->oom_bfqq.entity.prio_changed = 1;
4695 
4696 	bfqd->queue = q;
4697 
4698 	INIT_LIST_HEAD(&bfqd->dispatch);
4699 
4700 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4701 		     HRTIMER_MODE_REL);
4702 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4703 
4704 	bfqd->queue_weights_tree = RB_ROOT;
4705 	bfqd->group_weights_tree = RB_ROOT;
4706 
4707 	INIT_LIST_HEAD(&bfqd->active_list);
4708 	INIT_LIST_HEAD(&bfqd->idle_list);
4709 	INIT_HLIST_HEAD(&bfqd->burst_list);
4710 
4711 	bfqd->hw_tag = -1;
4712 
4713 	bfqd->bfq_max_budget = bfq_default_max_budget;
4714 
4715 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4716 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4717 	bfqd->bfq_back_max = bfq_back_max;
4718 	bfqd->bfq_back_penalty = bfq_back_penalty;
4719 	bfqd->bfq_slice_idle = bfq_slice_idle;
4720 	bfqd->bfq_timeout = bfq_timeout;
4721 
4722 	bfqd->bfq_requests_within_timer = 120;
4723 
4724 	bfqd->bfq_large_burst_thresh = 8;
4725 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4726 
4727 	bfqd->low_latency = true;
4728 
4729 	/*
4730 	 * Trade-off between responsiveness and fairness.
4731 	 */
4732 	bfqd->bfq_wr_coeff = 30;
4733 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
4734 	bfqd->bfq_wr_max_time = 0;
4735 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4736 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
4737 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
4738 					      * Approximate rate required
4739 					      * to playback or record a
4740 					      * high-definition compressed
4741 					      * video.
4742 					      */
4743 	bfqd->wr_busy_queues = 0;
4744 
4745 	/*
4746 	 * Begin by assuming, optimistically, that the device is a
4747 	 * high-speed one, and that its peak rate is equal to 2/3 of
4748 	 * the highest reference rate.
4749 	 */
4750 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4751 			T_fast[blk_queue_nonrot(bfqd->queue)];
4752 	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4753 	bfqd->device_speed = BFQ_BFQD_FAST;
4754 
4755 	spin_lock_init(&bfqd->lock);
4756 
4757 	/*
4758 	 * The invocation of the next bfq_create_group_hierarchy
4759 	 * function is the head of a chain of function calls
4760 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4761 	 * blk_mq_freeze_queue) that may lead to the invocation of the
4762 	 * has_work hook function. For this reason,
4763 	 * bfq_create_group_hierarchy is invoked only after all
4764 	 * scheduler data has been initialized, apart from the fields
4765 	 * that can be initialized only after invoking
4766 	 * bfq_create_group_hierarchy. This, in particular, enables
4767 	 * has_work to correctly return false. Of course, to avoid
4768 	 * other inconsistencies, the blk-mq stack must then refrain
4769 	 * from invoking further scheduler hooks before this init
4770 	 * function is finished.
4771 	 */
4772 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4773 	if (!bfqd->root_group)
4774 		goto out_free;
4775 	bfq_init_root_group(bfqd->root_group, bfqd);
4776 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4777 
4778 
4779 	return 0;
4780 
4781 out_free:
4782 	kfree(bfqd);
4783 	kobject_put(&eq->kobj);
4784 	return -ENOMEM;
4785 }
4786 
4787 static void bfq_slab_kill(void)
4788 {
4789 	kmem_cache_destroy(bfq_pool);
4790 }
4791 
4792 static int __init bfq_slab_setup(void)
4793 {
4794 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
4795 	if (!bfq_pool)
4796 		return -ENOMEM;
4797 	return 0;
4798 }
4799 
4800 static ssize_t bfq_var_show(unsigned int var, char *page)
4801 {
4802 	return sprintf(page, "%u\n", var);
4803 }
4804 
4805 static int bfq_var_store(unsigned long *var, const char *page)
4806 {
4807 	unsigned long new_val;
4808 	int ret = kstrtoul(page, 10, &new_val);
4809 
4810 	if (ret)
4811 		return ret;
4812 	*var = new_val;
4813 	return 0;
4814 }
4815 
4816 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4817 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4818 {									\
4819 	struct bfq_data *bfqd = e->elevator_data;			\
4820 	u64 __data = __VAR;						\
4821 	if (__CONV == 1)						\
4822 		__data = jiffies_to_msecs(__data);			\
4823 	else if (__CONV == 2)						\
4824 		__data = div_u64(__data, NSEC_PER_MSEC);		\
4825 	return bfq_var_show(__data, (page));				\
4826 }
4827 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4828 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4829 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4830 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4831 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4832 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4833 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4834 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
4835 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
4836 #undef SHOW_FUNCTION
4837 
4838 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4839 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4840 {									\
4841 	struct bfq_data *bfqd = e->elevator_data;			\
4842 	u64 __data = __VAR;						\
4843 	__data = div_u64(__data, NSEC_PER_USEC);			\
4844 	return bfq_var_show(__data, (page));				\
4845 }
4846 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4847 #undef USEC_SHOW_FUNCTION
4848 
4849 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4850 static ssize_t								\
4851 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4852 {									\
4853 	struct bfq_data *bfqd = e->elevator_data;			\
4854 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4855 	int ret;							\
4856 									\
4857 	ret = bfq_var_store(&__data, (page));				\
4858 	if (ret)							\
4859 		return ret;						\
4860 	if (__data < __min)						\
4861 		__data = __min;						\
4862 	else if (__data > __max)					\
4863 		__data = __max;						\
4864 	if (__CONV == 1)						\
4865 		*(__PTR) = msecs_to_jiffies(__data);			\
4866 	else if (__CONV == 2)						\
4867 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4868 	else								\
4869 		*(__PTR) = __data;					\
4870 	return count;							\
4871 }
4872 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4873 		INT_MAX, 2);
4874 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4875 		INT_MAX, 2);
4876 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4877 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4878 		INT_MAX, 0);
4879 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4880 #undef STORE_FUNCTION
4881 
4882 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4883 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4884 {									\
4885 	struct bfq_data *bfqd = e->elevator_data;			\
4886 	unsigned long __data, __min = (MIN), __max = (MAX);		\
4887 	int ret;							\
4888 									\
4889 	ret = bfq_var_store(&__data, (page));				\
4890 	if (ret)							\
4891 		return ret;						\
4892 	if (__data < __min)						\
4893 		__data = __min;						\
4894 	else if (__data > __max)					\
4895 		__data = __max;						\
4896 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4897 	return count;							\
4898 }
4899 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4900 		    UINT_MAX);
4901 #undef USEC_STORE_FUNCTION
4902 
4903 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4904 				    const char *page, size_t count)
4905 {
4906 	struct bfq_data *bfqd = e->elevator_data;
4907 	unsigned long __data;
4908 	int ret;
4909 
4910 	ret = bfq_var_store(&__data, (page));
4911 	if (ret)
4912 		return ret;
4913 
4914 	if (__data == 0)
4915 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4916 	else {
4917 		if (__data > INT_MAX)
4918 			__data = INT_MAX;
4919 		bfqd->bfq_max_budget = __data;
4920 	}
4921 
4922 	bfqd->bfq_user_max_budget = __data;
4923 
4924 	return count;
4925 }
4926 
4927 /*
4928  * Leaving this name to preserve name compatibility with cfq
4929  * parameters, but this timeout is used for both sync and async.
4930  */
4931 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4932 				      const char *page, size_t count)
4933 {
4934 	struct bfq_data *bfqd = e->elevator_data;
4935 	unsigned long __data;
4936 	int ret;
4937 
4938 	ret = bfq_var_store(&__data, (page));
4939 	if (ret)
4940 		return ret;
4941 
4942 	if (__data < 1)
4943 		__data = 1;
4944 	else if (__data > INT_MAX)
4945 		__data = INT_MAX;
4946 
4947 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
4948 	if (bfqd->bfq_user_max_budget == 0)
4949 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4950 
4951 	return count;
4952 }
4953 
4954 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4955 				     const char *page, size_t count)
4956 {
4957 	struct bfq_data *bfqd = e->elevator_data;
4958 	unsigned long __data;
4959 	int ret;
4960 
4961 	ret = bfq_var_store(&__data, (page));
4962 	if (ret)
4963 		return ret;
4964 
4965 	if (__data > 1)
4966 		__data = 1;
4967 	if (!bfqd->strict_guarantees && __data == 1
4968 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4969 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4970 
4971 	bfqd->strict_guarantees = __data;
4972 
4973 	return count;
4974 }
4975 
4976 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
4977 				     const char *page, size_t count)
4978 {
4979 	struct bfq_data *bfqd = e->elevator_data;
4980 	unsigned long __data;
4981 	int ret;
4982 
4983 	ret = bfq_var_store(&__data, (page));
4984 	if (ret)
4985 		return ret;
4986 
4987 	if (__data > 1)
4988 		__data = 1;
4989 	if (__data == 0 && bfqd->low_latency != 0)
4990 		bfq_end_wr(bfqd);
4991 	bfqd->low_latency = __data;
4992 
4993 	return count;
4994 }
4995 
4996 #define BFQ_ATTR(name) \
4997 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
4998 
4999 static struct elv_fs_entry bfq_attrs[] = {
5000 	BFQ_ATTR(fifo_expire_sync),
5001 	BFQ_ATTR(fifo_expire_async),
5002 	BFQ_ATTR(back_seek_max),
5003 	BFQ_ATTR(back_seek_penalty),
5004 	BFQ_ATTR(slice_idle),
5005 	BFQ_ATTR(slice_idle_us),
5006 	BFQ_ATTR(max_budget),
5007 	BFQ_ATTR(timeout_sync),
5008 	BFQ_ATTR(strict_guarantees),
5009 	BFQ_ATTR(low_latency),
5010 	__ATTR_NULL
5011 };
5012 
5013 static struct elevator_type iosched_bfq_mq = {
5014 	.ops.mq = {
5015 		.prepare_request	= bfq_prepare_request,
5016 		.finish_request		= bfq_finish_request,
5017 		.exit_icq		= bfq_exit_icq,
5018 		.insert_requests	= bfq_insert_requests,
5019 		.dispatch_request	= bfq_dispatch_request,
5020 		.next_request		= elv_rb_latter_request,
5021 		.former_request		= elv_rb_former_request,
5022 		.allow_merge		= bfq_allow_bio_merge,
5023 		.bio_merge		= bfq_bio_merge,
5024 		.request_merge		= bfq_request_merge,
5025 		.requests_merged	= bfq_requests_merged,
5026 		.request_merged		= bfq_request_merged,
5027 		.has_work		= bfq_has_work,
5028 		.init_sched		= bfq_init_queue,
5029 		.exit_sched		= bfq_exit_queue,
5030 	},
5031 
5032 	.uses_mq =		true,
5033 	.icq_size =		sizeof(struct bfq_io_cq),
5034 	.icq_align =		__alignof__(struct bfq_io_cq),
5035 	.elevator_attrs =	bfq_attrs,
5036 	.elevator_name =	"bfq",
5037 	.elevator_owner =	THIS_MODULE,
5038 };
5039 MODULE_ALIAS("bfq-iosched");
5040 
5041 static int __init bfq_init(void)
5042 {
5043 	int ret;
5044 
5045 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5046 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5047 	if (ret)
5048 		return ret;
5049 #endif
5050 
5051 	ret = -ENOMEM;
5052 	if (bfq_slab_setup())
5053 		goto err_pol_unreg;
5054 
5055 	/*
5056 	 * Times to load large popular applications for the typical
5057 	 * systems installed on the reference devices (see the
5058 	 * comments before the definitions of the next two
5059 	 * arrays). Actually, we use slightly slower values, as the
5060 	 * estimated peak rate tends to be smaller than the actual
5061 	 * peak rate.  The reason for this last fact is that estimates
5062 	 * are computed over much shorter time intervals than the long
5063 	 * intervals typically used for benchmarking. Why? First, to
5064 	 * adapt more quickly to variations. Second, because an I/O
5065 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5066 	 * be run for a long time.
5067 	 */
5068 	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5069 	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5070 	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5071 	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5072 
5073 	/*
5074 	 * Thresholds that determine the switch between speed classes
5075 	 * (see the comments before the definition of the array
5076 	 * device_speed_thresh). These thresholds are biased towards
5077 	 * transitions to the fast class. This is safer than the
5078 	 * opposite bias. In fact, a wrong transition to the slow
5079 	 * class results in short weight-raising periods, because the
5080 	 * speed of the device then tends to be higher that the
5081 	 * reference peak rate. On the opposite end, a wrong
5082 	 * transition to the fast class tends to increase
5083 	 * weight-raising periods, because of the opposite reason.
5084 	 */
5085 	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5086 	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5087 
5088 	ret = elv_register(&iosched_bfq_mq);
5089 	if (ret)
5090 		goto slab_kill;
5091 
5092 	return 0;
5093 
5094 slab_kill:
5095 	bfq_slab_kill();
5096 err_pol_unreg:
5097 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5098 	blkcg_policy_unregister(&blkcg_policy_bfq);
5099 #endif
5100 	return ret;
5101 }
5102 
5103 static void __exit bfq_exit(void)
5104 {
5105 	elv_unregister(&iosched_bfq_mq);
5106 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5107 	blkcg_policy_unregister(&blkcg_policy_bfq);
5108 #endif
5109 	bfq_slab_kill();
5110 }
5111 
5112 module_init(bfq_init);
5113 module_exit(bfq_exit);
5114 
5115 MODULE_AUTHOR("Paolo Valente");
5116 MODULE_LICENSE("GPL");
5117 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5118