xref: /openbmc/linux/block/bfq-iosched.c (revision adb57164)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 
127 #include "blk.h"
128 #include "blk-mq.h"
129 #include "blk-mq-tag.h"
130 #include "blk-mq-sched.h"
131 #include "bfq-iosched.h"
132 #include "blk-wbt.h"
133 
134 #define BFQ_BFQQ_FNS(name)						\
135 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
136 {									\
137 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
138 }									\
139 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
140 {									\
141 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
142 }									\
143 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
144 {									\
145 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
146 }
147 
148 BFQ_BFQQ_FNS(just_created);
149 BFQ_BFQQ_FNS(busy);
150 BFQ_BFQQ_FNS(wait_request);
151 BFQ_BFQQ_FNS(non_blocking_wait_rq);
152 BFQ_BFQQ_FNS(fifo_expire);
153 BFQ_BFQQ_FNS(has_short_ttime);
154 BFQ_BFQQ_FNS(sync);
155 BFQ_BFQQ_FNS(IO_bound);
156 BFQ_BFQQ_FNS(in_large_burst);
157 BFQ_BFQQ_FNS(coop);
158 BFQ_BFQQ_FNS(split_coop);
159 BFQ_BFQQ_FNS(softrt_update);
160 BFQ_BFQQ_FNS(has_waker);
161 #undef BFQ_BFQQ_FNS						\
162 
163 /* Expiration time of sync (0) and async (1) requests, in ns. */
164 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
165 
166 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
167 static const int bfq_back_max = 16 * 1024;
168 
169 /* Penalty of a backwards seek, in number of sectors. */
170 static const int bfq_back_penalty = 2;
171 
172 /* Idling period duration, in ns. */
173 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
174 
175 /* Minimum number of assigned budgets for which stats are safe to compute. */
176 static const int bfq_stats_min_budgets = 194;
177 
178 /* Default maximum budget values, in sectors and number of requests. */
179 static const int bfq_default_max_budget = 16 * 1024;
180 
181 /*
182  * When a sync request is dispatched, the queue that contains that
183  * request, and all the ancestor entities of that queue, are charged
184  * with the number of sectors of the request. In contrast, if the
185  * request is async, then the queue and its ancestor entities are
186  * charged with the number of sectors of the request, multiplied by
187  * the factor below. This throttles the bandwidth for async I/O,
188  * w.r.t. to sync I/O, and it is done to counter the tendency of async
189  * writes to steal I/O throughput to reads.
190  *
191  * The current value of this parameter is the result of a tuning with
192  * several hardware and software configurations. We tried to find the
193  * lowest value for which writes do not cause noticeable problems to
194  * reads. In fact, the lower this parameter, the stabler I/O control,
195  * in the following respect.  The lower this parameter is, the less
196  * the bandwidth enjoyed by a group decreases
197  * - when the group does writes, w.r.t. to when it does reads;
198  * - when other groups do reads, w.r.t. to when they do writes.
199  */
200 static const int bfq_async_charge_factor = 3;
201 
202 /* Default timeout values, in jiffies, approximating CFQ defaults. */
203 const int bfq_timeout = HZ / 8;
204 
205 /*
206  * Time limit for merging (see comments in bfq_setup_cooperator). Set
207  * to the slowest value that, in our tests, proved to be effective in
208  * removing false positives, while not causing true positives to miss
209  * queue merging.
210  *
211  * As can be deduced from the low time limit below, queue merging, if
212  * successful, happens at the very beginning of the I/O of the involved
213  * cooperating processes, as a consequence of the arrival of the very
214  * first requests from each cooperator.  After that, there is very
215  * little chance to find cooperators.
216  */
217 static const unsigned long bfq_merge_time_limit = HZ/10;
218 
219 static struct kmem_cache *bfq_pool;
220 
221 /* Below this threshold (in ns), we consider thinktime immediate. */
222 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
223 
224 /* hw_tag detection: parallel requests threshold and min samples needed. */
225 #define BFQ_HW_QUEUE_THRESHOLD	3
226 #define BFQ_HW_QUEUE_SAMPLES	32
227 
228 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
229 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
230 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
231 	(get_sdist(last_pos, rq) >			\
232 	 BFQQ_SEEK_THR &&				\
233 	 (!blk_queue_nonrot(bfqd->queue) ||		\
234 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
235 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
236 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
237 /*
238  * Sync random I/O is likely to be confused with soft real-time I/O,
239  * because it is characterized by limited throughput and apparently
240  * isochronous arrival pattern. To avoid false positives, queues
241  * containing only random (seeky) I/O are prevented from being tagged
242  * as soft real-time.
243  */
244 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
245 
246 /* Min number of samples required to perform peak-rate update */
247 #define BFQ_RATE_MIN_SAMPLES	32
248 /* Min observation time interval required to perform a peak-rate update (ns) */
249 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
250 /* Target observation time interval for a peak-rate update (ns) */
251 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
252 
253 /*
254  * Shift used for peak-rate fixed precision calculations.
255  * With
256  * - the current shift: 16 positions
257  * - the current type used to store rate: u32
258  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
259  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
260  * the range of rates that can be stored is
261  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
262  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
263  * [15, 65G] sectors/sec
264  * Which, assuming a sector size of 512B, corresponds to a range of
265  * [7.5K, 33T] B/sec
266  */
267 #define BFQ_RATE_SHIFT		16
268 
269 /*
270  * When configured for computing the duration of the weight-raising
271  * for interactive queues automatically (see the comments at the
272  * beginning of this file), BFQ does it using the following formula:
273  * duration = (ref_rate / r) * ref_wr_duration,
274  * where r is the peak rate of the device, and ref_rate and
275  * ref_wr_duration are two reference parameters.  In particular,
276  * ref_rate is the peak rate of the reference storage device (see
277  * below), and ref_wr_duration is about the maximum time needed, with
278  * BFQ and while reading two files in parallel, to load typical large
279  * applications on the reference device (see the comments on
280  * max_service_from_wr below, for more details on how ref_wr_duration
281  * is obtained).  In practice, the slower/faster the device at hand
282  * is, the more/less it takes to load applications with respect to the
283  * reference device.  Accordingly, the longer/shorter BFQ grants
284  * weight raising to interactive applications.
285  *
286  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
287  * depending on whether the device is rotational or non-rotational.
288  *
289  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
290  * are the reference values for a rotational device, whereas
291  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
292  * non-rotational device. The reference rates are not the actual peak
293  * rates of the devices used as a reference, but slightly lower
294  * values. The reason for using slightly lower values is that the
295  * peak-rate estimator tends to yield slightly lower values than the
296  * actual peak rate (it can yield the actual peak rate only if there
297  * is only one process doing I/O, and the process does sequential
298  * I/O).
299  *
300  * The reference peak rates are measured in sectors/usec, left-shifted
301  * by BFQ_RATE_SHIFT.
302  */
303 static int ref_rate[2] = {14000, 33000};
304 /*
305  * To improve readability, a conversion function is used to initialize
306  * the following array, which entails that the array can be
307  * initialized only in a function.
308  */
309 static int ref_wr_duration[2];
310 
311 /*
312  * BFQ uses the above-detailed, time-based weight-raising mechanism to
313  * privilege interactive tasks. This mechanism is vulnerable to the
314  * following false positives: I/O-bound applications that will go on
315  * doing I/O for much longer than the duration of weight
316  * raising. These applications have basically no benefit from being
317  * weight-raised at the beginning of their I/O. On the opposite end,
318  * while being weight-raised, these applications
319  * a) unjustly steal throughput to applications that may actually need
320  * low latency;
321  * b) make BFQ uselessly perform device idling; device idling results
322  * in loss of device throughput with most flash-based storage, and may
323  * increase latencies when used purposelessly.
324  *
325  * BFQ tries to reduce these problems, by adopting the following
326  * countermeasure. To introduce this countermeasure, we need first to
327  * finish explaining how the duration of weight-raising for
328  * interactive tasks is computed.
329  *
330  * For a bfq_queue deemed as interactive, the duration of weight
331  * raising is dynamically adjusted, as a function of the estimated
332  * peak rate of the device, so as to be equal to the time needed to
333  * execute the 'largest' interactive task we benchmarked so far. By
334  * largest task, we mean the task for which each involved process has
335  * to do more I/O than for any of the other tasks we benchmarked. This
336  * reference interactive task is the start-up of LibreOffice Writer,
337  * and in this task each process/bfq_queue needs to have at most ~110K
338  * sectors transferred.
339  *
340  * This last piece of information enables BFQ to reduce the actual
341  * duration of weight-raising for at least one class of I/O-bound
342  * applications: those doing sequential or quasi-sequential I/O. An
343  * example is file copy. In fact, once started, the main I/O-bound
344  * processes of these applications usually consume the above 110K
345  * sectors in much less time than the processes of an application that
346  * is starting, because these I/O-bound processes will greedily devote
347  * almost all their CPU cycles only to their target,
348  * throughput-friendly I/O operations. This is even more true if BFQ
349  * happens to be underestimating the device peak rate, and thus
350  * overestimating the duration of weight raising. But, according to
351  * our measurements, once transferred 110K sectors, these processes
352  * have no right to be weight-raised any longer.
353  *
354  * Basing on the last consideration, BFQ ends weight-raising for a
355  * bfq_queue if the latter happens to have received an amount of
356  * service at least equal to the following constant. The constant is
357  * set to slightly more than 110K, to have a minimum safety margin.
358  *
359  * This early ending of weight-raising reduces the amount of time
360  * during which interactive false positives cause the two problems
361  * described at the beginning of these comments.
362  */
363 static const unsigned long max_service_from_wr = 120000;
364 
365 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
366 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
367 
368 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
369 {
370 	return bic->bfqq[is_sync];
371 }
372 
373 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
374 {
375 	bic->bfqq[is_sync] = bfqq;
376 }
377 
378 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
379 {
380 	return bic->icq.q->elevator->elevator_data;
381 }
382 
383 /**
384  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
385  * @icq: the iocontext queue.
386  */
387 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
388 {
389 	/* bic->icq is the first member, %NULL will convert to %NULL */
390 	return container_of(icq, struct bfq_io_cq, icq);
391 }
392 
393 /**
394  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
395  * @bfqd: the lookup key.
396  * @ioc: the io_context of the process doing I/O.
397  * @q: the request queue.
398  */
399 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
400 					struct io_context *ioc,
401 					struct request_queue *q)
402 {
403 	if (ioc) {
404 		unsigned long flags;
405 		struct bfq_io_cq *icq;
406 
407 		spin_lock_irqsave(&q->queue_lock, flags);
408 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
409 		spin_unlock_irqrestore(&q->queue_lock, flags);
410 
411 		return icq;
412 	}
413 
414 	return NULL;
415 }
416 
417 /*
418  * Scheduler run of queue, if there are requests pending and no one in the
419  * driver that will restart queueing.
420  */
421 void bfq_schedule_dispatch(struct bfq_data *bfqd)
422 {
423 	if (bfqd->queued != 0) {
424 		bfq_log(bfqd, "schedule dispatch");
425 		blk_mq_run_hw_queues(bfqd->queue, true);
426 	}
427 }
428 
429 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
430 
431 #define bfq_sample_valid(samples)	((samples) > 80)
432 
433 /*
434  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
435  * We choose the request that is closer to the head right now.  Distance
436  * behind the head is penalized and only allowed to a certain extent.
437  */
438 static struct request *bfq_choose_req(struct bfq_data *bfqd,
439 				      struct request *rq1,
440 				      struct request *rq2,
441 				      sector_t last)
442 {
443 	sector_t s1, s2, d1 = 0, d2 = 0;
444 	unsigned long back_max;
445 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
446 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
447 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
448 
449 	if (!rq1 || rq1 == rq2)
450 		return rq2;
451 	if (!rq2)
452 		return rq1;
453 
454 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
455 		return rq1;
456 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
457 		return rq2;
458 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
459 		return rq1;
460 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
461 		return rq2;
462 
463 	s1 = blk_rq_pos(rq1);
464 	s2 = blk_rq_pos(rq2);
465 
466 	/*
467 	 * By definition, 1KiB is 2 sectors.
468 	 */
469 	back_max = bfqd->bfq_back_max * 2;
470 
471 	/*
472 	 * Strict one way elevator _except_ in the case where we allow
473 	 * short backward seeks which are biased as twice the cost of a
474 	 * similar forward seek.
475 	 */
476 	if (s1 >= last)
477 		d1 = s1 - last;
478 	else if (s1 + back_max >= last)
479 		d1 = (last - s1) * bfqd->bfq_back_penalty;
480 	else
481 		wrap |= BFQ_RQ1_WRAP;
482 
483 	if (s2 >= last)
484 		d2 = s2 - last;
485 	else if (s2 + back_max >= last)
486 		d2 = (last - s2) * bfqd->bfq_back_penalty;
487 	else
488 		wrap |= BFQ_RQ2_WRAP;
489 
490 	/* Found required data */
491 
492 	/*
493 	 * By doing switch() on the bit mask "wrap" we avoid having to
494 	 * check two variables for all permutations: --> faster!
495 	 */
496 	switch (wrap) {
497 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
498 		if (d1 < d2)
499 			return rq1;
500 		else if (d2 < d1)
501 			return rq2;
502 
503 		if (s1 >= s2)
504 			return rq1;
505 		else
506 			return rq2;
507 
508 	case BFQ_RQ2_WRAP:
509 		return rq1;
510 	case BFQ_RQ1_WRAP:
511 		return rq2;
512 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
513 	default:
514 		/*
515 		 * Since both rqs are wrapped,
516 		 * start with the one that's further behind head
517 		 * (--> only *one* back seek required),
518 		 * since back seek takes more time than forward.
519 		 */
520 		if (s1 <= s2)
521 			return rq1;
522 		else
523 			return rq2;
524 	}
525 }
526 
527 /*
528  * Async I/O can easily starve sync I/O (both sync reads and sync
529  * writes), by consuming all tags. Similarly, storms of sync writes,
530  * such as those that sync(2) may trigger, can starve sync reads.
531  * Limit depths of async I/O and sync writes so as to counter both
532  * problems.
533  */
534 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
535 {
536 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
537 
538 	if (op_is_sync(op) && !op_is_write(op))
539 		return;
540 
541 	data->shallow_depth =
542 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
543 
544 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
545 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
546 			data->shallow_depth);
547 }
548 
549 static struct bfq_queue *
550 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
551 		     sector_t sector, struct rb_node **ret_parent,
552 		     struct rb_node ***rb_link)
553 {
554 	struct rb_node **p, *parent;
555 	struct bfq_queue *bfqq = NULL;
556 
557 	parent = NULL;
558 	p = &root->rb_node;
559 	while (*p) {
560 		struct rb_node **n;
561 
562 		parent = *p;
563 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
564 
565 		/*
566 		 * Sort strictly based on sector. Smallest to the left,
567 		 * largest to the right.
568 		 */
569 		if (sector > blk_rq_pos(bfqq->next_rq))
570 			n = &(*p)->rb_right;
571 		else if (sector < blk_rq_pos(bfqq->next_rq))
572 			n = &(*p)->rb_left;
573 		else
574 			break;
575 		p = n;
576 		bfqq = NULL;
577 	}
578 
579 	*ret_parent = parent;
580 	if (rb_link)
581 		*rb_link = p;
582 
583 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
584 		(unsigned long long)sector,
585 		bfqq ? bfqq->pid : 0);
586 
587 	return bfqq;
588 }
589 
590 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
591 {
592 	return bfqq->service_from_backlogged > 0 &&
593 		time_is_before_jiffies(bfqq->first_IO_time +
594 				       bfq_merge_time_limit);
595 }
596 
597 /*
598  * The following function is not marked as __cold because it is
599  * actually cold, but for the same performance goal described in the
600  * comments on the likely() at the beginning of
601  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
602  * execution time for the case where this function is not invoked, we
603  * had to add an unlikely() in each involved if().
604  */
605 void __cold
606 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
607 {
608 	struct rb_node **p, *parent;
609 	struct bfq_queue *__bfqq;
610 
611 	if (bfqq->pos_root) {
612 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
613 		bfqq->pos_root = NULL;
614 	}
615 
616 	/* oom_bfqq does not participate in queue merging */
617 	if (bfqq == &bfqd->oom_bfqq)
618 		return;
619 
620 	/*
621 	 * bfqq cannot be merged any longer (see comments in
622 	 * bfq_setup_cooperator): no point in adding bfqq into the
623 	 * position tree.
624 	 */
625 	if (bfq_too_late_for_merging(bfqq))
626 		return;
627 
628 	if (bfq_class_idle(bfqq))
629 		return;
630 	if (!bfqq->next_rq)
631 		return;
632 
633 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
634 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
635 			blk_rq_pos(bfqq->next_rq), &parent, &p);
636 	if (!__bfqq) {
637 		rb_link_node(&bfqq->pos_node, parent, p);
638 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
639 	} else
640 		bfqq->pos_root = NULL;
641 }
642 
643 /*
644  * The following function returns false either if every active queue
645  * must receive the same share of the throughput (symmetric scenario),
646  * or, as a special case, if bfqq must receive a share of the
647  * throughput lower than or equal to the share that every other active
648  * queue must receive.  If bfqq does sync I/O, then these are the only
649  * two cases where bfqq happens to be guaranteed its share of the
650  * throughput even if I/O dispatching is not plugged when bfqq remains
651  * temporarily empty (for more details, see the comments in the
652  * function bfq_better_to_idle()). For this reason, the return value
653  * of this function is used to check whether I/O-dispatch plugging can
654  * be avoided.
655  *
656  * The above first case (symmetric scenario) occurs when:
657  * 1) all active queues have the same weight,
658  * 2) all active queues belong to the same I/O-priority class,
659  * 3) all active groups at the same level in the groups tree have the same
660  *    weight,
661  * 4) all active groups at the same level in the groups tree have the same
662  *    number of children.
663  *
664  * Unfortunately, keeping the necessary state for evaluating exactly
665  * the last two symmetry sub-conditions above would be quite complex
666  * and time consuming. Therefore this function evaluates, instead,
667  * only the following stronger three sub-conditions, for which it is
668  * much easier to maintain the needed state:
669  * 1) all active queues have the same weight,
670  * 2) all active queues belong to the same I/O-priority class,
671  * 3) there are no active groups.
672  * In particular, the last condition is always true if hierarchical
673  * support or the cgroups interface are not enabled, thus no state
674  * needs to be maintained in this case.
675  */
676 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
677 				   struct bfq_queue *bfqq)
678 {
679 	bool smallest_weight = bfqq &&
680 		bfqq->weight_counter &&
681 		bfqq->weight_counter ==
682 		container_of(
683 			rb_first_cached(&bfqd->queue_weights_tree),
684 			struct bfq_weight_counter,
685 			weights_node);
686 
687 	/*
688 	 * For queue weights to differ, queue_weights_tree must contain
689 	 * at least two nodes.
690 	 */
691 	bool varied_queue_weights = !smallest_weight &&
692 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
693 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
694 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
695 
696 	bool multiple_classes_busy =
697 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
698 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
699 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
700 
701 	return varied_queue_weights || multiple_classes_busy
702 #ifdef CONFIG_BFQ_GROUP_IOSCHED
703 	       || bfqd->num_groups_with_pending_reqs > 0
704 #endif
705 		;
706 }
707 
708 /*
709  * If the weight-counter tree passed as input contains no counter for
710  * the weight of the input queue, then add that counter; otherwise just
711  * increment the existing counter.
712  *
713  * Note that weight-counter trees contain few nodes in mostly symmetric
714  * scenarios. For example, if all queues have the same weight, then the
715  * weight-counter tree for the queues may contain at most one node.
716  * This holds even if low_latency is on, because weight-raised queues
717  * are not inserted in the tree.
718  * In most scenarios, the rate at which nodes are created/destroyed
719  * should be low too.
720  */
721 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
722 			  struct rb_root_cached *root)
723 {
724 	struct bfq_entity *entity = &bfqq->entity;
725 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
726 	bool leftmost = true;
727 
728 	/*
729 	 * Do not insert if the queue is already associated with a
730 	 * counter, which happens if:
731 	 *   1) a request arrival has caused the queue to become both
732 	 *      non-weight-raised, and hence change its weight, and
733 	 *      backlogged; in this respect, each of the two events
734 	 *      causes an invocation of this function,
735 	 *   2) this is the invocation of this function caused by the
736 	 *      second event. This second invocation is actually useless,
737 	 *      and we handle this fact by exiting immediately. More
738 	 *      efficient or clearer solutions might possibly be adopted.
739 	 */
740 	if (bfqq->weight_counter)
741 		return;
742 
743 	while (*new) {
744 		struct bfq_weight_counter *__counter = container_of(*new,
745 						struct bfq_weight_counter,
746 						weights_node);
747 		parent = *new;
748 
749 		if (entity->weight == __counter->weight) {
750 			bfqq->weight_counter = __counter;
751 			goto inc_counter;
752 		}
753 		if (entity->weight < __counter->weight)
754 			new = &((*new)->rb_left);
755 		else {
756 			new = &((*new)->rb_right);
757 			leftmost = false;
758 		}
759 	}
760 
761 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
762 				       GFP_ATOMIC);
763 
764 	/*
765 	 * In the unlucky event of an allocation failure, we just
766 	 * exit. This will cause the weight of queue to not be
767 	 * considered in bfq_asymmetric_scenario, which, in its turn,
768 	 * causes the scenario to be deemed wrongly symmetric in case
769 	 * bfqq's weight would have been the only weight making the
770 	 * scenario asymmetric.  On the bright side, no unbalance will
771 	 * however occur when bfqq becomes inactive again (the
772 	 * invocation of this function is triggered by an activation
773 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
774 	 * if !bfqq->weight_counter.
775 	 */
776 	if (unlikely(!bfqq->weight_counter))
777 		return;
778 
779 	bfqq->weight_counter->weight = entity->weight;
780 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
781 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
782 				leftmost);
783 
784 inc_counter:
785 	bfqq->weight_counter->num_active++;
786 	bfqq->ref++;
787 }
788 
789 /*
790  * Decrement the weight counter associated with the queue, and, if the
791  * counter reaches 0, remove the counter from the tree.
792  * See the comments to the function bfq_weights_tree_add() for considerations
793  * about overhead.
794  */
795 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
796 			       struct bfq_queue *bfqq,
797 			       struct rb_root_cached *root)
798 {
799 	if (!bfqq->weight_counter)
800 		return;
801 
802 	bfqq->weight_counter->num_active--;
803 	if (bfqq->weight_counter->num_active > 0)
804 		goto reset_entity_pointer;
805 
806 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
807 	kfree(bfqq->weight_counter);
808 
809 reset_entity_pointer:
810 	bfqq->weight_counter = NULL;
811 	bfq_put_queue(bfqq);
812 }
813 
814 /*
815  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
816  * of active groups for each queue's inactive parent entity.
817  */
818 void bfq_weights_tree_remove(struct bfq_data *bfqd,
819 			     struct bfq_queue *bfqq)
820 {
821 	struct bfq_entity *entity = bfqq->entity.parent;
822 
823 	for_each_entity(entity) {
824 		struct bfq_sched_data *sd = entity->my_sched_data;
825 
826 		if (sd->next_in_service || sd->in_service_entity) {
827 			/*
828 			 * entity is still active, because either
829 			 * next_in_service or in_service_entity is not
830 			 * NULL (see the comments on the definition of
831 			 * next_in_service for details on why
832 			 * in_service_entity must be checked too).
833 			 *
834 			 * As a consequence, its parent entities are
835 			 * active as well, and thus this loop must
836 			 * stop here.
837 			 */
838 			break;
839 		}
840 
841 		/*
842 		 * The decrement of num_groups_with_pending_reqs is
843 		 * not performed immediately upon the deactivation of
844 		 * entity, but it is delayed to when it also happens
845 		 * that the first leaf descendant bfqq of entity gets
846 		 * all its pending requests completed. The following
847 		 * instructions perform this delayed decrement, if
848 		 * needed. See the comments on
849 		 * num_groups_with_pending_reqs for details.
850 		 */
851 		if (entity->in_groups_with_pending_reqs) {
852 			entity->in_groups_with_pending_reqs = false;
853 			bfqd->num_groups_with_pending_reqs--;
854 		}
855 	}
856 
857 	/*
858 	 * Next function is invoked last, because it causes bfqq to be
859 	 * freed if the following holds: bfqq is not in service and
860 	 * has no dispatched request. DO NOT use bfqq after the next
861 	 * function invocation.
862 	 */
863 	__bfq_weights_tree_remove(bfqd, bfqq,
864 				  &bfqd->queue_weights_tree);
865 }
866 
867 /*
868  * Return expired entry, or NULL to just start from scratch in rbtree.
869  */
870 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
871 				      struct request *last)
872 {
873 	struct request *rq;
874 
875 	if (bfq_bfqq_fifo_expire(bfqq))
876 		return NULL;
877 
878 	bfq_mark_bfqq_fifo_expire(bfqq);
879 
880 	rq = rq_entry_fifo(bfqq->fifo.next);
881 
882 	if (rq == last || ktime_get_ns() < rq->fifo_time)
883 		return NULL;
884 
885 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
886 	return rq;
887 }
888 
889 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
890 					struct bfq_queue *bfqq,
891 					struct request *last)
892 {
893 	struct rb_node *rbnext = rb_next(&last->rb_node);
894 	struct rb_node *rbprev = rb_prev(&last->rb_node);
895 	struct request *next, *prev = NULL;
896 
897 	/* Follow expired path, else get first next available. */
898 	next = bfq_check_fifo(bfqq, last);
899 	if (next)
900 		return next;
901 
902 	if (rbprev)
903 		prev = rb_entry_rq(rbprev);
904 
905 	if (rbnext)
906 		next = rb_entry_rq(rbnext);
907 	else {
908 		rbnext = rb_first(&bfqq->sort_list);
909 		if (rbnext && rbnext != &last->rb_node)
910 			next = rb_entry_rq(rbnext);
911 	}
912 
913 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
914 }
915 
916 /* see the definition of bfq_async_charge_factor for details */
917 static unsigned long bfq_serv_to_charge(struct request *rq,
918 					struct bfq_queue *bfqq)
919 {
920 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
921 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
922 		return blk_rq_sectors(rq);
923 
924 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
925 }
926 
927 /**
928  * bfq_updated_next_req - update the queue after a new next_rq selection.
929  * @bfqd: the device data the queue belongs to.
930  * @bfqq: the queue to update.
931  *
932  * If the first request of a queue changes we make sure that the queue
933  * has enough budget to serve at least its first request (if the
934  * request has grown).  We do this because if the queue has not enough
935  * budget for its first request, it has to go through two dispatch
936  * rounds to actually get it dispatched.
937  */
938 static void bfq_updated_next_req(struct bfq_data *bfqd,
939 				 struct bfq_queue *bfqq)
940 {
941 	struct bfq_entity *entity = &bfqq->entity;
942 	struct request *next_rq = bfqq->next_rq;
943 	unsigned long new_budget;
944 
945 	if (!next_rq)
946 		return;
947 
948 	if (bfqq == bfqd->in_service_queue)
949 		/*
950 		 * In order not to break guarantees, budgets cannot be
951 		 * changed after an entity has been selected.
952 		 */
953 		return;
954 
955 	new_budget = max_t(unsigned long,
956 			   max_t(unsigned long, bfqq->max_budget,
957 				 bfq_serv_to_charge(next_rq, bfqq)),
958 			   entity->service);
959 	if (entity->budget != new_budget) {
960 		entity->budget = new_budget;
961 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
962 					 new_budget);
963 		bfq_requeue_bfqq(bfqd, bfqq, false);
964 	}
965 }
966 
967 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
968 {
969 	u64 dur;
970 
971 	if (bfqd->bfq_wr_max_time > 0)
972 		return bfqd->bfq_wr_max_time;
973 
974 	dur = bfqd->rate_dur_prod;
975 	do_div(dur, bfqd->peak_rate);
976 
977 	/*
978 	 * Limit duration between 3 and 25 seconds. The upper limit
979 	 * has been conservatively set after the following worst case:
980 	 * on a QEMU/KVM virtual machine
981 	 * - running in a slow PC
982 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
983 	 * - serving a heavy I/O workload, such as the sequential reading
984 	 *   of several files
985 	 * mplayer took 23 seconds to start, if constantly weight-raised.
986 	 *
987 	 * As for higher values than that accommodating the above bad
988 	 * scenario, tests show that higher values would often yield
989 	 * the opposite of the desired result, i.e., would worsen
990 	 * responsiveness by allowing non-interactive applications to
991 	 * preserve weight raising for too long.
992 	 *
993 	 * On the other end, lower values than 3 seconds make it
994 	 * difficult for most interactive tasks to complete their jobs
995 	 * before weight-raising finishes.
996 	 */
997 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
998 }
999 
1000 /* switch back from soft real-time to interactive weight raising */
1001 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1002 					  struct bfq_data *bfqd)
1003 {
1004 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1005 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1006 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1007 }
1008 
1009 static void
1010 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1011 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1012 {
1013 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1014 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1015 
1016 	if (bic->saved_has_short_ttime)
1017 		bfq_mark_bfqq_has_short_ttime(bfqq);
1018 	else
1019 		bfq_clear_bfqq_has_short_ttime(bfqq);
1020 
1021 	if (bic->saved_IO_bound)
1022 		bfq_mark_bfqq_IO_bound(bfqq);
1023 	else
1024 		bfq_clear_bfqq_IO_bound(bfqq);
1025 
1026 	bfqq->entity.new_weight = bic->saved_weight;
1027 	bfqq->ttime = bic->saved_ttime;
1028 	bfqq->wr_coeff = bic->saved_wr_coeff;
1029 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1030 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1031 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1032 
1033 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1034 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1035 				   bfqq->wr_cur_max_time))) {
1036 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1037 		    !bfq_bfqq_in_large_burst(bfqq) &&
1038 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1039 					     bfq_wr_duration(bfqd))) {
1040 			switch_back_to_interactive_wr(bfqq, bfqd);
1041 		} else {
1042 			bfqq->wr_coeff = 1;
1043 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1044 				     "resume state: switching off wr");
1045 		}
1046 	}
1047 
1048 	/* make sure weight will be updated, however we got here */
1049 	bfqq->entity.prio_changed = 1;
1050 
1051 	if (likely(!busy))
1052 		return;
1053 
1054 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1055 		bfqd->wr_busy_queues++;
1056 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1057 		bfqd->wr_busy_queues--;
1058 }
1059 
1060 static int bfqq_process_refs(struct bfq_queue *bfqq)
1061 {
1062 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1063 		(bfqq->weight_counter != NULL);
1064 }
1065 
1066 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1067 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1068 {
1069 	struct bfq_queue *item;
1070 	struct hlist_node *n;
1071 
1072 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1073 		hlist_del_init(&item->burst_list_node);
1074 
1075 	/*
1076 	 * Start the creation of a new burst list only if there is no
1077 	 * active queue. See comments on the conditional invocation of
1078 	 * bfq_handle_burst().
1079 	 */
1080 	if (bfq_tot_busy_queues(bfqd) == 0) {
1081 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1082 		bfqd->burst_size = 1;
1083 	} else
1084 		bfqd->burst_size = 0;
1085 
1086 	bfqd->burst_parent_entity = bfqq->entity.parent;
1087 }
1088 
1089 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1090 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1091 {
1092 	/* Increment burst size to take into account also bfqq */
1093 	bfqd->burst_size++;
1094 
1095 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1096 		struct bfq_queue *pos, *bfqq_item;
1097 		struct hlist_node *n;
1098 
1099 		/*
1100 		 * Enough queues have been activated shortly after each
1101 		 * other to consider this burst as large.
1102 		 */
1103 		bfqd->large_burst = true;
1104 
1105 		/*
1106 		 * We can now mark all queues in the burst list as
1107 		 * belonging to a large burst.
1108 		 */
1109 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1110 				     burst_list_node)
1111 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1112 		bfq_mark_bfqq_in_large_burst(bfqq);
1113 
1114 		/*
1115 		 * From now on, and until the current burst finishes, any
1116 		 * new queue being activated shortly after the last queue
1117 		 * was inserted in the burst can be immediately marked as
1118 		 * belonging to a large burst. So the burst list is not
1119 		 * needed any more. Remove it.
1120 		 */
1121 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1122 					  burst_list_node)
1123 			hlist_del_init(&pos->burst_list_node);
1124 	} else /*
1125 		* Burst not yet large: add bfqq to the burst list. Do
1126 		* not increment the ref counter for bfqq, because bfqq
1127 		* is removed from the burst list before freeing bfqq
1128 		* in put_queue.
1129 		*/
1130 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1131 }
1132 
1133 /*
1134  * If many queues belonging to the same group happen to be created
1135  * shortly after each other, then the processes associated with these
1136  * queues have typically a common goal. In particular, bursts of queue
1137  * creations are usually caused by services or applications that spawn
1138  * many parallel threads/processes. Examples are systemd during boot,
1139  * or git grep. To help these processes get their job done as soon as
1140  * possible, it is usually better to not grant either weight-raising
1141  * or device idling to their queues, unless these queues must be
1142  * protected from the I/O flowing through other active queues.
1143  *
1144  * In this comment we describe, firstly, the reasons why this fact
1145  * holds, and, secondly, the next function, which implements the main
1146  * steps needed to properly mark these queues so that they can then be
1147  * treated in a different way.
1148  *
1149  * The above services or applications benefit mostly from a high
1150  * throughput: the quicker the requests of the activated queues are
1151  * cumulatively served, the sooner the target job of these queues gets
1152  * completed. As a consequence, weight-raising any of these queues,
1153  * which also implies idling the device for it, is almost always
1154  * counterproductive, unless there are other active queues to isolate
1155  * these new queues from. If there no other active queues, then
1156  * weight-raising these new queues just lowers throughput in most
1157  * cases.
1158  *
1159  * On the other hand, a burst of queue creations may be caused also by
1160  * the start of an application that does not consist of a lot of
1161  * parallel I/O-bound threads. In fact, with a complex application,
1162  * several short processes may need to be executed to start-up the
1163  * application. In this respect, to start an application as quickly as
1164  * possible, the best thing to do is in any case to privilege the I/O
1165  * related to the application with respect to all other
1166  * I/O. Therefore, the best strategy to start as quickly as possible
1167  * an application that causes a burst of queue creations is to
1168  * weight-raise all the queues created during the burst. This is the
1169  * exact opposite of the best strategy for the other type of bursts.
1170  *
1171  * In the end, to take the best action for each of the two cases, the
1172  * two types of bursts need to be distinguished. Fortunately, this
1173  * seems relatively easy, by looking at the sizes of the bursts. In
1174  * particular, we found a threshold such that only bursts with a
1175  * larger size than that threshold are apparently caused by
1176  * services or commands such as systemd or git grep. For brevity,
1177  * hereafter we call just 'large' these bursts. BFQ *does not*
1178  * weight-raise queues whose creation occurs in a large burst. In
1179  * addition, for each of these queues BFQ performs or does not perform
1180  * idling depending on which choice boosts the throughput more. The
1181  * exact choice depends on the device and request pattern at
1182  * hand.
1183  *
1184  * Unfortunately, false positives may occur while an interactive task
1185  * is starting (e.g., an application is being started). The
1186  * consequence is that the queues associated with the task do not
1187  * enjoy weight raising as expected. Fortunately these false positives
1188  * are very rare. They typically occur if some service happens to
1189  * start doing I/O exactly when the interactive task starts.
1190  *
1191  * Turning back to the next function, it is invoked only if there are
1192  * no active queues (apart from active queues that would belong to the
1193  * same, possible burst bfqq would belong to), and it implements all
1194  * the steps needed to detect the occurrence of a large burst and to
1195  * properly mark all the queues belonging to it (so that they can then
1196  * be treated in a different way). This goal is achieved by
1197  * maintaining a "burst list" that holds, temporarily, the queues that
1198  * belong to the burst in progress. The list is then used to mark
1199  * these queues as belonging to a large burst if the burst does become
1200  * large. The main steps are the following.
1201  *
1202  * . when the very first queue is created, the queue is inserted into the
1203  *   list (as it could be the first queue in a possible burst)
1204  *
1205  * . if the current burst has not yet become large, and a queue Q that does
1206  *   not yet belong to the burst is activated shortly after the last time
1207  *   at which a new queue entered the burst list, then the function appends
1208  *   Q to the burst list
1209  *
1210  * . if, as a consequence of the previous step, the burst size reaches
1211  *   the large-burst threshold, then
1212  *
1213  *     . all the queues in the burst list are marked as belonging to a
1214  *       large burst
1215  *
1216  *     . the burst list is deleted; in fact, the burst list already served
1217  *       its purpose (keeping temporarily track of the queues in a burst,
1218  *       so as to be able to mark them as belonging to a large burst in the
1219  *       previous sub-step), and now is not needed any more
1220  *
1221  *     . the device enters a large-burst mode
1222  *
1223  * . if a queue Q that does not belong to the burst is created while
1224  *   the device is in large-burst mode and shortly after the last time
1225  *   at which a queue either entered the burst list or was marked as
1226  *   belonging to the current large burst, then Q is immediately marked
1227  *   as belonging to a large burst.
1228  *
1229  * . if a queue Q that does not belong to the burst is created a while
1230  *   later, i.e., not shortly after, than the last time at which a queue
1231  *   either entered the burst list or was marked as belonging to the
1232  *   current large burst, then the current burst is deemed as finished and:
1233  *
1234  *        . the large-burst mode is reset if set
1235  *
1236  *        . the burst list is emptied
1237  *
1238  *        . Q is inserted in the burst list, as Q may be the first queue
1239  *          in a possible new burst (then the burst list contains just Q
1240  *          after this step).
1241  */
1242 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1243 {
1244 	/*
1245 	 * If bfqq is already in the burst list or is part of a large
1246 	 * burst, or finally has just been split, then there is
1247 	 * nothing else to do.
1248 	 */
1249 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1250 	    bfq_bfqq_in_large_burst(bfqq) ||
1251 	    time_is_after_eq_jiffies(bfqq->split_time +
1252 				     msecs_to_jiffies(10)))
1253 		return;
1254 
1255 	/*
1256 	 * If bfqq's creation happens late enough, or bfqq belongs to
1257 	 * a different group than the burst group, then the current
1258 	 * burst is finished, and related data structures must be
1259 	 * reset.
1260 	 *
1261 	 * In this respect, consider the special case where bfqq is
1262 	 * the very first queue created after BFQ is selected for this
1263 	 * device. In this case, last_ins_in_burst and
1264 	 * burst_parent_entity are not yet significant when we get
1265 	 * here. But it is easy to verify that, whether or not the
1266 	 * following condition is true, bfqq will end up being
1267 	 * inserted into the burst list. In particular the list will
1268 	 * happen to contain only bfqq. And this is exactly what has
1269 	 * to happen, as bfqq may be the first queue of the first
1270 	 * burst.
1271 	 */
1272 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1273 	    bfqd->bfq_burst_interval) ||
1274 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1275 		bfqd->large_burst = false;
1276 		bfq_reset_burst_list(bfqd, bfqq);
1277 		goto end;
1278 	}
1279 
1280 	/*
1281 	 * If we get here, then bfqq is being activated shortly after the
1282 	 * last queue. So, if the current burst is also large, we can mark
1283 	 * bfqq as belonging to this large burst immediately.
1284 	 */
1285 	if (bfqd->large_burst) {
1286 		bfq_mark_bfqq_in_large_burst(bfqq);
1287 		goto end;
1288 	}
1289 
1290 	/*
1291 	 * If we get here, then a large-burst state has not yet been
1292 	 * reached, but bfqq is being activated shortly after the last
1293 	 * queue. Then we add bfqq to the burst.
1294 	 */
1295 	bfq_add_to_burst(bfqd, bfqq);
1296 end:
1297 	/*
1298 	 * At this point, bfqq either has been added to the current
1299 	 * burst or has caused the current burst to terminate and a
1300 	 * possible new burst to start. In particular, in the second
1301 	 * case, bfqq has become the first queue in the possible new
1302 	 * burst.  In both cases last_ins_in_burst needs to be moved
1303 	 * forward.
1304 	 */
1305 	bfqd->last_ins_in_burst = jiffies;
1306 }
1307 
1308 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1309 {
1310 	struct bfq_entity *entity = &bfqq->entity;
1311 
1312 	return entity->budget - entity->service;
1313 }
1314 
1315 /*
1316  * If enough samples have been computed, return the current max budget
1317  * stored in bfqd, which is dynamically updated according to the
1318  * estimated disk peak rate; otherwise return the default max budget
1319  */
1320 static int bfq_max_budget(struct bfq_data *bfqd)
1321 {
1322 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1323 		return bfq_default_max_budget;
1324 	else
1325 		return bfqd->bfq_max_budget;
1326 }
1327 
1328 /*
1329  * Return min budget, which is a fraction of the current or default
1330  * max budget (trying with 1/32)
1331  */
1332 static int bfq_min_budget(struct bfq_data *bfqd)
1333 {
1334 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1335 		return bfq_default_max_budget / 32;
1336 	else
1337 		return bfqd->bfq_max_budget / 32;
1338 }
1339 
1340 /*
1341  * The next function, invoked after the input queue bfqq switches from
1342  * idle to busy, updates the budget of bfqq. The function also tells
1343  * whether the in-service queue should be expired, by returning
1344  * true. The purpose of expiring the in-service queue is to give bfqq
1345  * the chance to possibly preempt the in-service queue, and the reason
1346  * for preempting the in-service queue is to achieve one of the two
1347  * goals below.
1348  *
1349  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1350  * expired because it has remained idle. In particular, bfqq may have
1351  * expired for one of the following two reasons:
1352  *
1353  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1354  *   and did not make it to issue a new request before its last
1355  *   request was served;
1356  *
1357  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1358  *   a new request before the expiration of the idling-time.
1359  *
1360  * Even if bfqq has expired for one of the above reasons, the process
1361  * associated with the queue may be however issuing requests greedily,
1362  * and thus be sensitive to the bandwidth it receives (bfqq may have
1363  * remained idle for other reasons: CPU high load, bfqq not enjoying
1364  * idling, I/O throttling somewhere in the path from the process to
1365  * the I/O scheduler, ...). But if, after every expiration for one of
1366  * the above two reasons, bfqq has to wait for the service of at least
1367  * one full budget of another queue before being served again, then
1368  * bfqq is likely to get a much lower bandwidth or resource time than
1369  * its reserved ones. To address this issue, two countermeasures need
1370  * to be taken.
1371  *
1372  * First, the budget and the timestamps of bfqq need to be updated in
1373  * a special way on bfqq reactivation: they need to be updated as if
1374  * bfqq did not remain idle and did not expire. In fact, if they are
1375  * computed as if bfqq expired and remained idle until reactivation,
1376  * then the process associated with bfqq is treated as if, instead of
1377  * being greedy, it stopped issuing requests when bfqq remained idle,
1378  * and restarts issuing requests only on this reactivation. In other
1379  * words, the scheduler does not help the process recover the "service
1380  * hole" between bfqq expiration and reactivation. As a consequence,
1381  * the process receives a lower bandwidth than its reserved one. In
1382  * contrast, to recover this hole, the budget must be updated as if
1383  * bfqq was not expired at all before this reactivation, i.e., it must
1384  * be set to the value of the remaining budget when bfqq was
1385  * expired. Along the same line, timestamps need to be assigned the
1386  * value they had the last time bfqq was selected for service, i.e.,
1387  * before last expiration. Thus timestamps need to be back-shifted
1388  * with respect to their normal computation (see [1] for more details
1389  * on this tricky aspect).
1390  *
1391  * Secondly, to allow the process to recover the hole, the in-service
1392  * queue must be expired too, to give bfqq the chance to preempt it
1393  * immediately. In fact, if bfqq has to wait for a full budget of the
1394  * in-service queue to be completed, then it may become impossible to
1395  * let the process recover the hole, even if the back-shifted
1396  * timestamps of bfqq are lower than those of the in-service queue. If
1397  * this happens for most or all of the holes, then the process may not
1398  * receive its reserved bandwidth. In this respect, it is worth noting
1399  * that, being the service of outstanding requests unpreemptible, a
1400  * little fraction of the holes may however be unrecoverable, thereby
1401  * causing a little loss of bandwidth.
1402  *
1403  * The last important point is detecting whether bfqq does need this
1404  * bandwidth recovery. In this respect, the next function deems the
1405  * process associated with bfqq greedy, and thus allows it to recover
1406  * the hole, if: 1) the process is waiting for the arrival of a new
1407  * request (which implies that bfqq expired for one of the above two
1408  * reasons), and 2) such a request has arrived soon. The first
1409  * condition is controlled through the flag non_blocking_wait_rq,
1410  * while the second through the flag arrived_in_time. If both
1411  * conditions hold, then the function computes the budget in the
1412  * above-described special way, and signals that the in-service queue
1413  * should be expired. Timestamp back-shifting is done later in
1414  * __bfq_activate_entity.
1415  *
1416  * 2. Reduce latency. Even if timestamps are not backshifted to let
1417  * the process associated with bfqq recover a service hole, bfqq may
1418  * however happen to have, after being (re)activated, a lower finish
1419  * timestamp than the in-service queue.	 That is, the next budget of
1420  * bfqq may have to be completed before the one of the in-service
1421  * queue. If this is the case, then preempting the in-service queue
1422  * allows this goal to be achieved, apart from the unpreemptible,
1423  * outstanding requests mentioned above.
1424  *
1425  * Unfortunately, regardless of which of the above two goals one wants
1426  * to achieve, service trees need first to be updated to know whether
1427  * the in-service queue must be preempted. To have service trees
1428  * correctly updated, the in-service queue must be expired and
1429  * rescheduled, and bfqq must be scheduled too. This is one of the
1430  * most costly operations (in future versions, the scheduling
1431  * mechanism may be re-designed in such a way to make it possible to
1432  * know whether preemption is needed without needing to update service
1433  * trees). In addition, queue preemptions almost always cause random
1434  * I/O, which may in turn cause loss of throughput. Finally, there may
1435  * even be no in-service queue when the next function is invoked (so,
1436  * no queue to compare timestamps with). Because of these facts, the
1437  * next function adopts the following simple scheme to avoid costly
1438  * operations, too frequent preemptions and too many dependencies on
1439  * the state of the scheduler: it requests the expiration of the
1440  * in-service queue (unconditionally) only for queues that need to
1441  * recover a hole. Then it delegates to other parts of the code the
1442  * responsibility of handling the above case 2.
1443  */
1444 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1445 						struct bfq_queue *bfqq,
1446 						bool arrived_in_time)
1447 {
1448 	struct bfq_entity *entity = &bfqq->entity;
1449 
1450 	/*
1451 	 * In the next compound condition, we check also whether there
1452 	 * is some budget left, because otherwise there is no point in
1453 	 * trying to go on serving bfqq with this same budget: bfqq
1454 	 * would be expired immediately after being selected for
1455 	 * service. This would only cause useless overhead.
1456 	 */
1457 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1458 	    bfq_bfqq_budget_left(bfqq) > 0) {
1459 		/*
1460 		 * We do not clear the flag non_blocking_wait_rq here, as
1461 		 * the latter is used in bfq_activate_bfqq to signal
1462 		 * that timestamps need to be back-shifted (and is
1463 		 * cleared right after).
1464 		 */
1465 
1466 		/*
1467 		 * In next assignment we rely on that either
1468 		 * entity->service or entity->budget are not updated
1469 		 * on expiration if bfqq is empty (see
1470 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1471 		 * remain unchanged after such an expiration, and the
1472 		 * following statement therefore assigns to
1473 		 * entity->budget the remaining budget on such an
1474 		 * expiration.
1475 		 */
1476 		entity->budget = min_t(unsigned long,
1477 				       bfq_bfqq_budget_left(bfqq),
1478 				       bfqq->max_budget);
1479 
1480 		/*
1481 		 * At this point, we have used entity->service to get
1482 		 * the budget left (needed for updating
1483 		 * entity->budget). Thus we finally can, and have to,
1484 		 * reset entity->service. The latter must be reset
1485 		 * because bfqq would otherwise be charged again for
1486 		 * the service it has received during its previous
1487 		 * service slot(s).
1488 		 */
1489 		entity->service = 0;
1490 
1491 		return true;
1492 	}
1493 
1494 	/*
1495 	 * We can finally complete expiration, by setting service to 0.
1496 	 */
1497 	entity->service = 0;
1498 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1499 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1500 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1501 	return false;
1502 }
1503 
1504 /*
1505  * Return the farthest past time instant according to jiffies
1506  * macros.
1507  */
1508 static unsigned long bfq_smallest_from_now(void)
1509 {
1510 	return jiffies - MAX_JIFFY_OFFSET;
1511 }
1512 
1513 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1514 					     struct bfq_queue *bfqq,
1515 					     unsigned int old_wr_coeff,
1516 					     bool wr_or_deserves_wr,
1517 					     bool interactive,
1518 					     bool in_burst,
1519 					     bool soft_rt)
1520 {
1521 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1522 		/* start a weight-raising period */
1523 		if (interactive) {
1524 			bfqq->service_from_wr = 0;
1525 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1526 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1527 		} else {
1528 			/*
1529 			 * No interactive weight raising in progress
1530 			 * here: assign minus infinity to
1531 			 * wr_start_at_switch_to_srt, to make sure
1532 			 * that, at the end of the soft-real-time
1533 			 * weight raising periods that is starting
1534 			 * now, no interactive weight-raising period
1535 			 * may be wrongly considered as still in
1536 			 * progress (and thus actually started by
1537 			 * mistake).
1538 			 */
1539 			bfqq->wr_start_at_switch_to_srt =
1540 				bfq_smallest_from_now();
1541 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1542 				BFQ_SOFTRT_WEIGHT_FACTOR;
1543 			bfqq->wr_cur_max_time =
1544 				bfqd->bfq_wr_rt_max_time;
1545 		}
1546 
1547 		/*
1548 		 * If needed, further reduce budget to make sure it is
1549 		 * close to bfqq's backlog, so as to reduce the
1550 		 * scheduling-error component due to a too large
1551 		 * budget. Do not care about throughput consequences,
1552 		 * but only about latency. Finally, do not assign a
1553 		 * too small budget either, to avoid increasing
1554 		 * latency by causing too frequent expirations.
1555 		 */
1556 		bfqq->entity.budget = min_t(unsigned long,
1557 					    bfqq->entity.budget,
1558 					    2 * bfq_min_budget(bfqd));
1559 	} else if (old_wr_coeff > 1) {
1560 		if (interactive) { /* update wr coeff and duration */
1561 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1562 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1563 		} else if (in_burst)
1564 			bfqq->wr_coeff = 1;
1565 		else if (soft_rt) {
1566 			/*
1567 			 * The application is now or still meeting the
1568 			 * requirements for being deemed soft rt.  We
1569 			 * can then correctly and safely (re)charge
1570 			 * the weight-raising duration for the
1571 			 * application with the weight-raising
1572 			 * duration for soft rt applications.
1573 			 *
1574 			 * In particular, doing this recharge now, i.e.,
1575 			 * before the weight-raising period for the
1576 			 * application finishes, reduces the probability
1577 			 * of the following negative scenario:
1578 			 * 1) the weight of a soft rt application is
1579 			 *    raised at startup (as for any newly
1580 			 *    created application),
1581 			 * 2) since the application is not interactive,
1582 			 *    at a certain time weight-raising is
1583 			 *    stopped for the application,
1584 			 * 3) at that time the application happens to
1585 			 *    still have pending requests, and hence
1586 			 *    is destined to not have a chance to be
1587 			 *    deemed soft rt before these requests are
1588 			 *    completed (see the comments to the
1589 			 *    function bfq_bfqq_softrt_next_start()
1590 			 *    for details on soft rt detection),
1591 			 * 4) these pending requests experience a high
1592 			 *    latency because the application is not
1593 			 *    weight-raised while they are pending.
1594 			 */
1595 			if (bfqq->wr_cur_max_time !=
1596 				bfqd->bfq_wr_rt_max_time) {
1597 				bfqq->wr_start_at_switch_to_srt =
1598 					bfqq->last_wr_start_finish;
1599 
1600 				bfqq->wr_cur_max_time =
1601 					bfqd->bfq_wr_rt_max_time;
1602 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1603 					BFQ_SOFTRT_WEIGHT_FACTOR;
1604 			}
1605 			bfqq->last_wr_start_finish = jiffies;
1606 		}
1607 	}
1608 }
1609 
1610 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1611 					struct bfq_queue *bfqq)
1612 {
1613 	return bfqq->dispatched == 0 &&
1614 		time_is_before_jiffies(
1615 			bfqq->budget_timeout +
1616 			bfqd->bfq_wr_min_idle_time);
1617 }
1618 
1619 
1620 /*
1621  * Return true if bfqq is in a higher priority class, or has a higher
1622  * weight than the in-service queue.
1623  */
1624 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1625 					    struct bfq_queue *in_serv_bfqq)
1626 {
1627 	int bfqq_weight, in_serv_weight;
1628 
1629 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1630 		return true;
1631 
1632 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1633 		bfqq_weight = bfqq->entity.weight;
1634 		in_serv_weight = in_serv_bfqq->entity.weight;
1635 	} else {
1636 		if (bfqq->entity.parent)
1637 			bfqq_weight = bfqq->entity.parent->weight;
1638 		else
1639 			bfqq_weight = bfqq->entity.weight;
1640 		if (in_serv_bfqq->entity.parent)
1641 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1642 		else
1643 			in_serv_weight = in_serv_bfqq->entity.weight;
1644 	}
1645 
1646 	return bfqq_weight > in_serv_weight;
1647 }
1648 
1649 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1650 					     struct bfq_queue *bfqq,
1651 					     int old_wr_coeff,
1652 					     struct request *rq,
1653 					     bool *interactive)
1654 {
1655 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1656 		bfqq_wants_to_preempt,
1657 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1658 		/*
1659 		 * See the comments on
1660 		 * bfq_bfqq_update_budg_for_activation for
1661 		 * details on the usage of the next variable.
1662 		 */
1663 		arrived_in_time =  ktime_get_ns() <=
1664 			bfqq->ttime.last_end_request +
1665 			bfqd->bfq_slice_idle * 3;
1666 
1667 
1668 	/*
1669 	 * bfqq deserves to be weight-raised if:
1670 	 * - it is sync,
1671 	 * - it does not belong to a large burst,
1672 	 * - it has been idle for enough time or is soft real-time,
1673 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1674 	 */
1675 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1676 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1677 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1678 		!in_burst &&
1679 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1680 		bfqq->dispatched == 0;
1681 	*interactive = !in_burst && idle_for_long_time;
1682 	wr_or_deserves_wr = bfqd->low_latency &&
1683 		(bfqq->wr_coeff > 1 ||
1684 		 (bfq_bfqq_sync(bfqq) &&
1685 		  bfqq->bic && (*interactive || soft_rt)));
1686 
1687 	/*
1688 	 * Using the last flag, update budget and check whether bfqq
1689 	 * may want to preempt the in-service queue.
1690 	 */
1691 	bfqq_wants_to_preempt =
1692 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1693 						    arrived_in_time);
1694 
1695 	/*
1696 	 * If bfqq happened to be activated in a burst, but has been
1697 	 * idle for much more than an interactive queue, then we
1698 	 * assume that, in the overall I/O initiated in the burst, the
1699 	 * I/O associated with bfqq is finished. So bfqq does not need
1700 	 * to be treated as a queue belonging to a burst
1701 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1702 	 * if set, and remove bfqq from the burst list if it's
1703 	 * there. We do not decrement burst_size, because the fact
1704 	 * that bfqq does not need to belong to the burst list any
1705 	 * more does not invalidate the fact that bfqq was created in
1706 	 * a burst.
1707 	 */
1708 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1709 	    idle_for_long_time &&
1710 	    time_is_before_jiffies(
1711 		    bfqq->budget_timeout +
1712 		    msecs_to_jiffies(10000))) {
1713 		hlist_del_init(&bfqq->burst_list_node);
1714 		bfq_clear_bfqq_in_large_burst(bfqq);
1715 	}
1716 
1717 	bfq_clear_bfqq_just_created(bfqq);
1718 
1719 
1720 	if (!bfq_bfqq_IO_bound(bfqq)) {
1721 		if (arrived_in_time) {
1722 			bfqq->requests_within_timer++;
1723 			if (bfqq->requests_within_timer >=
1724 			    bfqd->bfq_requests_within_timer)
1725 				bfq_mark_bfqq_IO_bound(bfqq);
1726 		} else
1727 			bfqq->requests_within_timer = 0;
1728 	}
1729 
1730 	if (bfqd->low_latency) {
1731 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1732 			/* wraparound */
1733 			bfqq->split_time =
1734 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1735 
1736 		if (time_is_before_jiffies(bfqq->split_time +
1737 					   bfqd->bfq_wr_min_idle_time)) {
1738 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1739 							 old_wr_coeff,
1740 							 wr_or_deserves_wr,
1741 							 *interactive,
1742 							 in_burst,
1743 							 soft_rt);
1744 
1745 			if (old_wr_coeff != bfqq->wr_coeff)
1746 				bfqq->entity.prio_changed = 1;
1747 		}
1748 	}
1749 
1750 	bfqq->last_idle_bklogged = jiffies;
1751 	bfqq->service_from_backlogged = 0;
1752 	bfq_clear_bfqq_softrt_update(bfqq);
1753 
1754 	bfq_add_bfqq_busy(bfqd, bfqq);
1755 
1756 	/*
1757 	 * Expire in-service queue only if preemption may be needed
1758 	 * for guarantees. In particular, we care only about two
1759 	 * cases. The first is that bfqq has to recover a service
1760 	 * hole, as explained in the comments on
1761 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1762 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1763 	 * carry time-critical I/O, then bfqq's bandwidth is less
1764 	 * important than that of queues that carry time-critical I/O.
1765 	 * So, as a further constraint, we consider this case only if
1766 	 * bfqq is at least as weight-raised, i.e., at least as time
1767 	 * critical, as the in-service queue.
1768 	 *
1769 	 * The second case is that bfqq is in a higher priority class,
1770 	 * or has a higher weight than the in-service queue. If this
1771 	 * condition does not hold, we don't care because, even if
1772 	 * bfqq does not start to be served immediately, the resulting
1773 	 * delay for bfqq's I/O is however lower or much lower than
1774 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1775 	 *
1776 	 * In both cases, preemption is needed only if, according to
1777 	 * the timestamps of both bfqq and of the in-service queue,
1778 	 * bfqq actually is the next queue to serve. So, to reduce
1779 	 * useless preemptions, the return value of
1780 	 * next_queue_may_preempt() is considered in the next compound
1781 	 * condition too. Yet next_queue_may_preempt() just checks a
1782 	 * simple, necessary condition for bfqq to be the next queue
1783 	 * to serve. In fact, to evaluate a sufficient condition, the
1784 	 * timestamps of the in-service queue would need to be
1785 	 * updated, and this operation is quite costly (see the
1786 	 * comments on bfq_bfqq_update_budg_for_activation()).
1787 	 */
1788 	if (bfqd->in_service_queue &&
1789 	    ((bfqq_wants_to_preempt &&
1790 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1791 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1792 	    next_queue_may_preempt(bfqd))
1793 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1794 				false, BFQQE_PREEMPTED);
1795 }
1796 
1797 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1798 				   struct bfq_queue *bfqq)
1799 {
1800 	/* invalidate baseline total service time */
1801 	bfqq->last_serv_time_ns = 0;
1802 
1803 	/*
1804 	 * Reset pointer in case we are waiting for
1805 	 * some request completion.
1806 	 */
1807 	bfqd->waited_rq = NULL;
1808 
1809 	/*
1810 	 * If bfqq has a short think time, then start by setting the
1811 	 * inject limit to 0 prudentially, because the service time of
1812 	 * an injected I/O request may be higher than the think time
1813 	 * of bfqq, and therefore, if one request was injected when
1814 	 * bfqq remains empty, this injected request might delay the
1815 	 * service of the next I/O request for bfqq significantly. In
1816 	 * case bfqq can actually tolerate some injection, then the
1817 	 * adaptive update will however raise the limit soon. This
1818 	 * lucky circumstance holds exactly because bfqq has a short
1819 	 * think time, and thus, after remaining empty, is likely to
1820 	 * get new I/O enqueued---and then completed---before being
1821 	 * expired. This is the very pattern that gives the
1822 	 * limit-update algorithm the chance to measure the effect of
1823 	 * injection on request service times, and then to update the
1824 	 * limit accordingly.
1825 	 *
1826 	 * However, in the following special case, the inject limit is
1827 	 * left to 1 even if the think time is short: bfqq's I/O is
1828 	 * synchronized with that of some other queue, i.e., bfqq may
1829 	 * receive new I/O only after the I/O of the other queue is
1830 	 * completed. Keeping the inject limit to 1 allows the
1831 	 * blocking I/O to be served while bfqq is in service. And
1832 	 * this is very convenient both for bfqq and for overall
1833 	 * throughput, as explained in detail in the comments in
1834 	 * bfq_update_has_short_ttime().
1835 	 *
1836 	 * On the opposite end, if bfqq has a long think time, then
1837 	 * start directly by 1, because:
1838 	 * a) on the bright side, keeping at most one request in
1839 	 * service in the drive is unlikely to cause any harm to the
1840 	 * latency of bfqq's requests, as the service time of a single
1841 	 * request is likely to be lower than the think time of bfqq;
1842 	 * b) on the downside, after becoming empty, bfqq is likely to
1843 	 * expire before getting its next request. With this request
1844 	 * arrival pattern, it is very hard to sample total service
1845 	 * times and update the inject limit accordingly (see comments
1846 	 * on bfq_update_inject_limit()). So the limit is likely to be
1847 	 * never, or at least seldom, updated.  As a consequence, by
1848 	 * setting the limit to 1, we avoid that no injection ever
1849 	 * occurs with bfqq. On the downside, this proactive step
1850 	 * further reduces chances to actually compute the baseline
1851 	 * total service time. Thus it reduces chances to execute the
1852 	 * limit-update algorithm and possibly raise the limit to more
1853 	 * than 1.
1854 	 */
1855 	if (bfq_bfqq_has_short_ttime(bfqq))
1856 		bfqq->inject_limit = 0;
1857 	else
1858 		bfqq->inject_limit = 1;
1859 
1860 	bfqq->decrease_time_jif = jiffies;
1861 }
1862 
1863 static void bfq_add_request(struct request *rq)
1864 {
1865 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1866 	struct bfq_data *bfqd = bfqq->bfqd;
1867 	struct request *next_rq, *prev;
1868 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1869 	bool interactive = false;
1870 
1871 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1872 	bfqq->queued[rq_is_sync(rq)]++;
1873 	bfqd->queued++;
1874 
1875 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1876 		/*
1877 		 * Detect whether bfqq's I/O seems synchronized with
1878 		 * that of some other queue, i.e., whether bfqq, after
1879 		 * remaining empty, happens to receive new I/O only
1880 		 * right after some I/O request of the other queue has
1881 		 * been completed. We call waker queue the other
1882 		 * queue, and we assume, for simplicity, that bfqq may
1883 		 * have at most one waker queue.
1884 		 *
1885 		 * A remarkable throughput boost can be reached by
1886 		 * unconditionally injecting the I/O of the waker
1887 		 * queue, every time a new bfq_dispatch_request
1888 		 * happens to be invoked while I/O is being plugged
1889 		 * for bfqq.  In addition to boosting throughput, this
1890 		 * unblocks bfqq's I/O, thereby improving bandwidth
1891 		 * and latency for bfqq. Note that these same results
1892 		 * may be achieved with the general injection
1893 		 * mechanism, but less effectively. For details on
1894 		 * this aspect, see the comments on the choice of the
1895 		 * queue for injection in bfq_select_queue().
1896 		 *
1897 		 * Turning back to the detection of a waker queue, a
1898 		 * queue Q is deemed as a waker queue for bfqq if, for
1899 		 * two consecutive times, bfqq happens to become non
1900 		 * empty right after a request of Q has been
1901 		 * completed. In particular, on the first time, Q is
1902 		 * tentatively set as a candidate waker queue, while
1903 		 * on the second time, the flag
1904 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1905 		 * is a waker queue for bfqq. These detection steps
1906 		 * are performed only if bfqq has a long think time,
1907 		 * so as to make it more likely that bfqq's I/O is
1908 		 * actually being blocked by a synchronization. This
1909 		 * last filter, plus the above two-times requirement,
1910 		 * make false positives less likely.
1911 		 *
1912 		 * NOTE
1913 		 *
1914 		 * The sooner a waker queue is detected, the sooner
1915 		 * throughput can be boosted by injecting I/O from the
1916 		 * waker queue. Fortunately, detection is likely to be
1917 		 * actually fast, for the following reasons. While
1918 		 * blocked by synchronization, bfqq has a long think
1919 		 * time. This implies that bfqq's inject limit is at
1920 		 * least equal to 1 (see the comments in
1921 		 * bfq_update_inject_limit()). So, thanks to
1922 		 * injection, the waker queue is likely to be served
1923 		 * during the very first I/O-plugging time interval
1924 		 * for bfqq. This triggers the first step of the
1925 		 * detection mechanism. Thanks again to injection, the
1926 		 * candidate waker queue is then likely to be
1927 		 * confirmed no later than during the next
1928 		 * I/O-plugging interval for bfqq.
1929 		 */
1930 		if (bfqd->last_completed_rq_bfqq &&
1931 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1932 		    ktime_get_ns() - bfqd->last_completion <
1933 		    200 * NSEC_PER_USEC) {
1934 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1935 			    bfqd->last_completed_rq_bfqq !=
1936 			    bfqq->waker_bfqq) {
1937 				/*
1938 				 * First synchronization detected with
1939 				 * a candidate waker queue, or with a
1940 				 * different candidate waker queue
1941 				 * from the current one.
1942 				 */
1943 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1944 
1945 				/*
1946 				 * If the waker queue disappears, then
1947 				 * bfqq->waker_bfqq must be reset. To
1948 				 * this goal, we maintain in each
1949 				 * waker queue a list, woken_list, of
1950 				 * all the queues that reference the
1951 				 * waker queue through their
1952 				 * waker_bfqq pointer. When the waker
1953 				 * queue exits, the waker_bfqq pointer
1954 				 * of all the queues in the woken_list
1955 				 * is reset.
1956 				 *
1957 				 * In addition, if bfqq is already in
1958 				 * the woken_list of a waker queue,
1959 				 * then, before being inserted into
1960 				 * the woken_list of a new waker
1961 				 * queue, bfqq must be removed from
1962 				 * the woken_list of the old waker
1963 				 * queue.
1964 				 */
1965 				if (!hlist_unhashed(&bfqq->woken_list_node))
1966 					hlist_del_init(&bfqq->woken_list_node);
1967 				hlist_add_head(&bfqq->woken_list_node,
1968 				    &bfqd->last_completed_rq_bfqq->woken_list);
1969 
1970 				bfq_clear_bfqq_has_waker(bfqq);
1971 			} else if (bfqd->last_completed_rq_bfqq ==
1972 				   bfqq->waker_bfqq &&
1973 				   !bfq_bfqq_has_waker(bfqq)) {
1974 				/*
1975 				 * synchronization with waker_bfqq
1976 				 * seen for the second time
1977 				 */
1978 				bfq_mark_bfqq_has_waker(bfqq);
1979 			}
1980 		}
1981 
1982 		/*
1983 		 * Periodically reset inject limit, to make sure that
1984 		 * the latter eventually drops in case workload
1985 		 * changes, see step (3) in the comments on
1986 		 * bfq_update_inject_limit().
1987 		 */
1988 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1989 					     msecs_to_jiffies(1000)))
1990 			bfq_reset_inject_limit(bfqd, bfqq);
1991 
1992 		/*
1993 		 * The following conditions must hold to setup a new
1994 		 * sampling of total service time, and then a new
1995 		 * update of the inject limit:
1996 		 * - bfqq is in service, because the total service
1997 		 *   time is evaluated only for the I/O requests of
1998 		 *   the queues in service;
1999 		 * - this is the right occasion to compute or to
2000 		 *   lower the baseline total service time, because
2001 		 *   there are actually no requests in the drive,
2002 		 *   or
2003 		 *   the baseline total service time is available, and
2004 		 *   this is the right occasion to compute the other
2005 		 *   quantity needed to update the inject limit, i.e.,
2006 		 *   the total service time caused by the amount of
2007 		 *   injection allowed by the current value of the
2008 		 *   limit. It is the right occasion because injection
2009 		 *   has actually been performed during the service
2010 		 *   hole, and there are still in-flight requests,
2011 		 *   which are very likely to be exactly the injected
2012 		 *   requests, or part of them;
2013 		 * - the minimum interval for sampling the total
2014 		 *   service time and updating the inject limit has
2015 		 *   elapsed.
2016 		 */
2017 		if (bfqq == bfqd->in_service_queue &&
2018 		    (bfqd->rq_in_driver == 0 ||
2019 		     (bfqq->last_serv_time_ns > 0 &&
2020 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2021 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2022 					      msecs_to_jiffies(10))) {
2023 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2024 			/*
2025 			 * Start the state machine for measuring the
2026 			 * total service time of rq: setting
2027 			 * wait_dispatch will cause bfqd->waited_rq to
2028 			 * be set when rq will be dispatched.
2029 			 */
2030 			bfqd->wait_dispatch = true;
2031 			/*
2032 			 * If there is no I/O in service in the drive,
2033 			 * then possible injection occurred before the
2034 			 * arrival of rq will not affect the total
2035 			 * service time of rq. So the injection limit
2036 			 * must not be updated as a function of such
2037 			 * total service time, unless new injection
2038 			 * occurs before rq is completed. To have the
2039 			 * injection limit updated only in the latter
2040 			 * case, reset rqs_injected here (rqs_injected
2041 			 * will be set in case injection is performed
2042 			 * on bfqq before rq is completed).
2043 			 */
2044 			if (bfqd->rq_in_driver == 0)
2045 				bfqd->rqs_injected = false;
2046 		}
2047 	}
2048 
2049 	elv_rb_add(&bfqq->sort_list, rq);
2050 
2051 	/*
2052 	 * Check if this request is a better next-serve candidate.
2053 	 */
2054 	prev = bfqq->next_rq;
2055 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2056 	bfqq->next_rq = next_rq;
2057 
2058 	/*
2059 	 * Adjust priority tree position, if next_rq changes.
2060 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2061 	 */
2062 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2063 		bfq_pos_tree_add_move(bfqd, bfqq);
2064 
2065 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2066 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2067 						 rq, &interactive);
2068 	else {
2069 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2070 		    time_is_before_jiffies(
2071 				bfqq->last_wr_start_finish +
2072 				bfqd->bfq_wr_min_inter_arr_async)) {
2073 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2074 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2075 
2076 			bfqd->wr_busy_queues++;
2077 			bfqq->entity.prio_changed = 1;
2078 		}
2079 		if (prev != bfqq->next_rq)
2080 			bfq_updated_next_req(bfqd, bfqq);
2081 	}
2082 
2083 	/*
2084 	 * Assign jiffies to last_wr_start_finish in the following
2085 	 * cases:
2086 	 *
2087 	 * . if bfqq is not going to be weight-raised, because, for
2088 	 *   non weight-raised queues, last_wr_start_finish stores the
2089 	 *   arrival time of the last request; as of now, this piece
2090 	 *   of information is used only for deciding whether to
2091 	 *   weight-raise async queues
2092 	 *
2093 	 * . if bfqq is not weight-raised, because, if bfqq is now
2094 	 *   switching to weight-raised, then last_wr_start_finish
2095 	 *   stores the time when weight-raising starts
2096 	 *
2097 	 * . if bfqq is interactive, because, regardless of whether
2098 	 *   bfqq is currently weight-raised, the weight-raising
2099 	 *   period must start or restart (this case is considered
2100 	 *   separately because it is not detected by the above
2101 	 *   conditions, if bfqq is already weight-raised)
2102 	 *
2103 	 * last_wr_start_finish has to be updated also if bfqq is soft
2104 	 * real-time, because the weight-raising period is constantly
2105 	 * restarted on idle-to-busy transitions for these queues, but
2106 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2107 	 * needed.
2108 	 */
2109 	if (bfqd->low_latency &&
2110 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2111 		bfqq->last_wr_start_finish = jiffies;
2112 }
2113 
2114 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2115 					  struct bio *bio,
2116 					  struct request_queue *q)
2117 {
2118 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2119 
2120 
2121 	if (bfqq)
2122 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2123 
2124 	return NULL;
2125 }
2126 
2127 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2128 {
2129 	if (last_pos)
2130 		return abs(blk_rq_pos(rq) - last_pos);
2131 
2132 	return 0;
2133 }
2134 
2135 #if 0 /* Still not clear if we can do without next two functions */
2136 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2137 {
2138 	struct bfq_data *bfqd = q->elevator->elevator_data;
2139 
2140 	bfqd->rq_in_driver++;
2141 }
2142 
2143 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2144 {
2145 	struct bfq_data *bfqd = q->elevator->elevator_data;
2146 
2147 	bfqd->rq_in_driver--;
2148 }
2149 #endif
2150 
2151 static void bfq_remove_request(struct request_queue *q,
2152 			       struct request *rq)
2153 {
2154 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2155 	struct bfq_data *bfqd = bfqq->bfqd;
2156 	const int sync = rq_is_sync(rq);
2157 
2158 	if (bfqq->next_rq == rq) {
2159 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2160 		bfq_updated_next_req(bfqd, bfqq);
2161 	}
2162 
2163 	if (rq->queuelist.prev != &rq->queuelist)
2164 		list_del_init(&rq->queuelist);
2165 	bfqq->queued[sync]--;
2166 	bfqd->queued--;
2167 	elv_rb_del(&bfqq->sort_list, rq);
2168 
2169 	elv_rqhash_del(q, rq);
2170 	if (q->last_merge == rq)
2171 		q->last_merge = NULL;
2172 
2173 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2174 		bfqq->next_rq = NULL;
2175 
2176 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2177 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2178 			/*
2179 			 * bfqq emptied. In normal operation, when
2180 			 * bfqq is empty, bfqq->entity.service and
2181 			 * bfqq->entity.budget must contain,
2182 			 * respectively, the service received and the
2183 			 * budget used last time bfqq emptied. These
2184 			 * facts do not hold in this case, as at least
2185 			 * this last removal occurred while bfqq is
2186 			 * not in service. To avoid inconsistencies,
2187 			 * reset both bfqq->entity.service and
2188 			 * bfqq->entity.budget, if bfqq has still a
2189 			 * process that may issue I/O requests to it.
2190 			 */
2191 			bfqq->entity.budget = bfqq->entity.service = 0;
2192 		}
2193 
2194 		/*
2195 		 * Remove queue from request-position tree as it is empty.
2196 		 */
2197 		if (bfqq->pos_root) {
2198 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2199 			bfqq->pos_root = NULL;
2200 		}
2201 	} else {
2202 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2203 		if (unlikely(!bfqd->nonrot_with_queueing))
2204 			bfq_pos_tree_add_move(bfqd, bfqq);
2205 	}
2206 
2207 	if (rq->cmd_flags & REQ_META)
2208 		bfqq->meta_pending--;
2209 
2210 }
2211 
2212 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2213 		unsigned int nr_segs)
2214 {
2215 	struct request_queue *q = hctx->queue;
2216 	struct bfq_data *bfqd = q->elevator->elevator_data;
2217 	struct request *free = NULL;
2218 	/*
2219 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2220 	 * store its return value for later use, to avoid nesting
2221 	 * queue_lock inside the bfqd->lock. We assume that the bic
2222 	 * returned by bfq_bic_lookup does not go away before
2223 	 * bfqd->lock is taken.
2224 	 */
2225 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2226 	bool ret;
2227 
2228 	spin_lock_irq(&bfqd->lock);
2229 
2230 	if (bic)
2231 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2232 	else
2233 		bfqd->bio_bfqq = NULL;
2234 	bfqd->bio_bic = bic;
2235 
2236 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2237 
2238 	if (free)
2239 		blk_mq_free_request(free);
2240 	spin_unlock_irq(&bfqd->lock);
2241 
2242 	return ret;
2243 }
2244 
2245 static int bfq_request_merge(struct request_queue *q, struct request **req,
2246 			     struct bio *bio)
2247 {
2248 	struct bfq_data *bfqd = q->elevator->elevator_data;
2249 	struct request *__rq;
2250 
2251 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2252 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2253 		*req = __rq;
2254 		return ELEVATOR_FRONT_MERGE;
2255 	}
2256 
2257 	return ELEVATOR_NO_MERGE;
2258 }
2259 
2260 static struct bfq_queue *bfq_init_rq(struct request *rq);
2261 
2262 static void bfq_request_merged(struct request_queue *q, struct request *req,
2263 			       enum elv_merge type)
2264 {
2265 	if (type == ELEVATOR_FRONT_MERGE &&
2266 	    rb_prev(&req->rb_node) &&
2267 	    blk_rq_pos(req) <
2268 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2269 				    struct request, rb_node))) {
2270 		struct bfq_queue *bfqq = bfq_init_rq(req);
2271 		struct bfq_data *bfqd;
2272 		struct request *prev, *next_rq;
2273 
2274 		if (!bfqq)
2275 			return;
2276 
2277 		bfqd = bfqq->bfqd;
2278 
2279 		/* Reposition request in its sort_list */
2280 		elv_rb_del(&bfqq->sort_list, req);
2281 		elv_rb_add(&bfqq->sort_list, req);
2282 
2283 		/* Choose next request to be served for bfqq */
2284 		prev = bfqq->next_rq;
2285 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2286 					 bfqd->last_position);
2287 		bfqq->next_rq = next_rq;
2288 		/*
2289 		 * If next_rq changes, update both the queue's budget to
2290 		 * fit the new request and the queue's position in its
2291 		 * rq_pos_tree.
2292 		 */
2293 		if (prev != bfqq->next_rq) {
2294 			bfq_updated_next_req(bfqd, bfqq);
2295 			/*
2296 			 * See comments on bfq_pos_tree_add_move() for
2297 			 * the unlikely().
2298 			 */
2299 			if (unlikely(!bfqd->nonrot_with_queueing))
2300 				bfq_pos_tree_add_move(bfqd, bfqq);
2301 		}
2302 	}
2303 }
2304 
2305 /*
2306  * This function is called to notify the scheduler that the requests
2307  * rq and 'next' have been merged, with 'next' going away.  BFQ
2308  * exploits this hook to address the following issue: if 'next' has a
2309  * fifo_time lower that rq, then the fifo_time of rq must be set to
2310  * the value of 'next', to not forget the greater age of 'next'.
2311  *
2312  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2313  * on that rq is picked from the hash table q->elevator->hash, which,
2314  * in its turn, is filled only with I/O requests present in
2315  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2316  * the function that fills this hash table (elv_rqhash_add) is called
2317  * only by bfq_insert_request.
2318  */
2319 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2320 				struct request *next)
2321 {
2322 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2323 		*next_bfqq = bfq_init_rq(next);
2324 
2325 	if (!bfqq)
2326 		return;
2327 
2328 	/*
2329 	 * If next and rq belong to the same bfq_queue and next is older
2330 	 * than rq, then reposition rq in the fifo (by substituting next
2331 	 * with rq). Otherwise, if next and rq belong to different
2332 	 * bfq_queues, never reposition rq: in fact, we would have to
2333 	 * reposition it with respect to next's position in its own fifo,
2334 	 * which would most certainly be too expensive with respect to
2335 	 * the benefits.
2336 	 */
2337 	if (bfqq == next_bfqq &&
2338 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2339 	    next->fifo_time < rq->fifo_time) {
2340 		list_del_init(&rq->queuelist);
2341 		list_replace_init(&next->queuelist, &rq->queuelist);
2342 		rq->fifo_time = next->fifo_time;
2343 	}
2344 
2345 	if (bfqq->next_rq == next)
2346 		bfqq->next_rq = rq;
2347 
2348 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2349 }
2350 
2351 /* Must be called with bfqq != NULL */
2352 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2353 {
2354 	if (bfq_bfqq_busy(bfqq))
2355 		bfqq->bfqd->wr_busy_queues--;
2356 	bfqq->wr_coeff = 1;
2357 	bfqq->wr_cur_max_time = 0;
2358 	bfqq->last_wr_start_finish = jiffies;
2359 	/*
2360 	 * Trigger a weight change on the next invocation of
2361 	 * __bfq_entity_update_weight_prio.
2362 	 */
2363 	bfqq->entity.prio_changed = 1;
2364 }
2365 
2366 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2367 			     struct bfq_group *bfqg)
2368 {
2369 	int i, j;
2370 
2371 	for (i = 0; i < 2; i++)
2372 		for (j = 0; j < IOPRIO_BE_NR; j++)
2373 			if (bfqg->async_bfqq[i][j])
2374 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2375 	if (bfqg->async_idle_bfqq)
2376 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2377 }
2378 
2379 static void bfq_end_wr(struct bfq_data *bfqd)
2380 {
2381 	struct bfq_queue *bfqq;
2382 
2383 	spin_lock_irq(&bfqd->lock);
2384 
2385 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2386 		bfq_bfqq_end_wr(bfqq);
2387 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2388 		bfq_bfqq_end_wr(bfqq);
2389 	bfq_end_wr_async(bfqd);
2390 
2391 	spin_unlock_irq(&bfqd->lock);
2392 }
2393 
2394 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2395 {
2396 	if (request)
2397 		return blk_rq_pos(io_struct);
2398 	else
2399 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2400 }
2401 
2402 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2403 				  sector_t sector)
2404 {
2405 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2406 	       BFQQ_CLOSE_THR;
2407 }
2408 
2409 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2410 					 struct bfq_queue *bfqq,
2411 					 sector_t sector)
2412 {
2413 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2414 	struct rb_node *parent, *node;
2415 	struct bfq_queue *__bfqq;
2416 
2417 	if (RB_EMPTY_ROOT(root))
2418 		return NULL;
2419 
2420 	/*
2421 	 * First, if we find a request starting at the end of the last
2422 	 * request, choose it.
2423 	 */
2424 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2425 	if (__bfqq)
2426 		return __bfqq;
2427 
2428 	/*
2429 	 * If the exact sector wasn't found, the parent of the NULL leaf
2430 	 * will contain the closest sector (rq_pos_tree sorted by
2431 	 * next_request position).
2432 	 */
2433 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2434 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2435 		return __bfqq;
2436 
2437 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2438 		node = rb_next(&__bfqq->pos_node);
2439 	else
2440 		node = rb_prev(&__bfqq->pos_node);
2441 	if (!node)
2442 		return NULL;
2443 
2444 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2445 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2446 		return __bfqq;
2447 
2448 	return NULL;
2449 }
2450 
2451 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2452 						   struct bfq_queue *cur_bfqq,
2453 						   sector_t sector)
2454 {
2455 	struct bfq_queue *bfqq;
2456 
2457 	/*
2458 	 * We shall notice if some of the queues are cooperating,
2459 	 * e.g., working closely on the same area of the device. In
2460 	 * that case, we can group them together and: 1) don't waste
2461 	 * time idling, and 2) serve the union of their requests in
2462 	 * the best possible order for throughput.
2463 	 */
2464 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2465 	if (!bfqq || bfqq == cur_bfqq)
2466 		return NULL;
2467 
2468 	return bfqq;
2469 }
2470 
2471 static struct bfq_queue *
2472 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2473 {
2474 	int process_refs, new_process_refs;
2475 	struct bfq_queue *__bfqq;
2476 
2477 	/*
2478 	 * If there are no process references on the new_bfqq, then it is
2479 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2480 	 * may have dropped their last reference (not just their last process
2481 	 * reference).
2482 	 */
2483 	if (!bfqq_process_refs(new_bfqq))
2484 		return NULL;
2485 
2486 	/* Avoid a circular list and skip interim queue merges. */
2487 	while ((__bfqq = new_bfqq->new_bfqq)) {
2488 		if (__bfqq == bfqq)
2489 			return NULL;
2490 		new_bfqq = __bfqq;
2491 	}
2492 
2493 	process_refs = bfqq_process_refs(bfqq);
2494 	new_process_refs = bfqq_process_refs(new_bfqq);
2495 	/*
2496 	 * If the process for the bfqq has gone away, there is no
2497 	 * sense in merging the queues.
2498 	 */
2499 	if (process_refs == 0 || new_process_refs == 0)
2500 		return NULL;
2501 
2502 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2503 		new_bfqq->pid);
2504 
2505 	/*
2506 	 * Merging is just a redirection: the requests of the process
2507 	 * owning one of the two queues are redirected to the other queue.
2508 	 * The latter queue, in its turn, is set as shared if this is the
2509 	 * first time that the requests of some process are redirected to
2510 	 * it.
2511 	 *
2512 	 * We redirect bfqq to new_bfqq and not the opposite, because
2513 	 * we are in the context of the process owning bfqq, thus we
2514 	 * have the io_cq of this process. So we can immediately
2515 	 * configure this io_cq to redirect the requests of the
2516 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2517 	 * not available any more (new_bfqq->bic == NULL).
2518 	 *
2519 	 * Anyway, even in case new_bfqq coincides with the in-service
2520 	 * queue, redirecting requests the in-service queue is the
2521 	 * best option, as we feed the in-service queue with new
2522 	 * requests close to the last request served and, by doing so,
2523 	 * are likely to increase the throughput.
2524 	 */
2525 	bfqq->new_bfqq = new_bfqq;
2526 	new_bfqq->ref += process_refs;
2527 	return new_bfqq;
2528 }
2529 
2530 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2531 					struct bfq_queue *new_bfqq)
2532 {
2533 	if (bfq_too_late_for_merging(new_bfqq))
2534 		return false;
2535 
2536 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2537 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2538 		return false;
2539 
2540 	/*
2541 	 * If either of the queues has already been detected as seeky,
2542 	 * then merging it with the other queue is unlikely to lead to
2543 	 * sequential I/O.
2544 	 */
2545 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2546 		return false;
2547 
2548 	/*
2549 	 * Interleaved I/O is known to be done by (some) applications
2550 	 * only for reads, so it does not make sense to merge async
2551 	 * queues.
2552 	 */
2553 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2554 		return false;
2555 
2556 	return true;
2557 }
2558 
2559 /*
2560  * Attempt to schedule a merge of bfqq with the currently in-service
2561  * queue or with a close queue among the scheduled queues.  Return
2562  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2563  * structure otherwise.
2564  *
2565  * The OOM queue is not allowed to participate to cooperation: in fact, since
2566  * the requests temporarily redirected to the OOM queue could be redirected
2567  * again to dedicated queues at any time, the state needed to correctly
2568  * handle merging with the OOM queue would be quite complex and expensive
2569  * to maintain. Besides, in such a critical condition as an out of memory,
2570  * the benefits of queue merging may be little relevant, or even negligible.
2571  *
2572  * WARNING: queue merging may impair fairness among non-weight raised
2573  * queues, for at least two reasons: 1) the original weight of a
2574  * merged queue may change during the merged state, 2) even being the
2575  * weight the same, a merged queue may be bloated with many more
2576  * requests than the ones produced by its originally-associated
2577  * process.
2578  */
2579 static struct bfq_queue *
2580 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2581 		     void *io_struct, bool request)
2582 {
2583 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2584 
2585 	/*
2586 	 * Do not perform queue merging if the device is non
2587 	 * rotational and performs internal queueing. In fact, such a
2588 	 * device reaches a high speed through internal parallelism
2589 	 * and pipelining. This means that, to reach a high
2590 	 * throughput, it must have many requests enqueued at the same
2591 	 * time. But, in this configuration, the internal scheduling
2592 	 * algorithm of the device does exactly the job of queue
2593 	 * merging: it reorders requests so as to obtain as much as
2594 	 * possible a sequential I/O pattern. As a consequence, with
2595 	 * the workload generated by processes doing interleaved I/O,
2596 	 * the throughput reached by the device is likely to be the
2597 	 * same, with and without queue merging.
2598 	 *
2599 	 * Disabling merging also provides a remarkable benefit in
2600 	 * terms of throughput. Merging tends to make many workloads
2601 	 * artificially more uneven, because of shared queues
2602 	 * remaining non empty for incomparably more time than
2603 	 * non-merged queues. This may accentuate workload
2604 	 * asymmetries. For example, if one of the queues in a set of
2605 	 * merged queues has a higher weight than a normal queue, then
2606 	 * the shared queue may inherit such a high weight and, by
2607 	 * staying almost always active, may force BFQ to perform I/O
2608 	 * plugging most of the time. This evidently makes it harder
2609 	 * for BFQ to let the device reach a high throughput.
2610 	 *
2611 	 * Finally, the likely() macro below is not used because one
2612 	 * of the two branches is more likely than the other, but to
2613 	 * have the code path after the following if() executed as
2614 	 * fast as possible for the case of a non rotational device
2615 	 * with queueing. We want it because this is the fastest kind
2616 	 * of device. On the opposite end, the likely() may lengthen
2617 	 * the execution time of BFQ for the case of slower devices
2618 	 * (rotational or at least without queueing). But in this case
2619 	 * the execution time of BFQ matters very little, if not at
2620 	 * all.
2621 	 */
2622 	if (likely(bfqd->nonrot_with_queueing))
2623 		return NULL;
2624 
2625 	/*
2626 	 * Prevent bfqq from being merged if it has been created too
2627 	 * long ago. The idea is that true cooperating processes, and
2628 	 * thus their associated bfq_queues, are supposed to be
2629 	 * created shortly after each other. This is the case, e.g.,
2630 	 * for KVM/QEMU and dump I/O threads. Basing on this
2631 	 * assumption, the following filtering greatly reduces the
2632 	 * probability that two non-cooperating processes, which just
2633 	 * happen to do close I/O for some short time interval, have
2634 	 * their queues merged by mistake.
2635 	 */
2636 	if (bfq_too_late_for_merging(bfqq))
2637 		return NULL;
2638 
2639 	if (bfqq->new_bfqq)
2640 		return bfqq->new_bfqq;
2641 
2642 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2643 		return NULL;
2644 
2645 	/* If there is only one backlogged queue, don't search. */
2646 	if (bfq_tot_busy_queues(bfqd) == 1)
2647 		return NULL;
2648 
2649 	in_service_bfqq = bfqd->in_service_queue;
2650 
2651 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2652 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2653 	    bfq_rq_close_to_sector(io_struct, request,
2654 				   bfqd->in_serv_last_pos) &&
2655 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2656 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2657 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2658 		if (new_bfqq)
2659 			return new_bfqq;
2660 	}
2661 	/*
2662 	 * Check whether there is a cooperator among currently scheduled
2663 	 * queues. The only thing we need is that the bio/request is not
2664 	 * NULL, as we need it to establish whether a cooperator exists.
2665 	 */
2666 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2667 			bfq_io_struct_pos(io_struct, request));
2668 
2669 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2670 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2671 		return bfq_setup_merge(bfqq, new_bfqq);
2672 
2673 	return NULL;
2674 }
2675 
2676 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2677 {
2678 	struct bfq_io_cq *bic = bfqq->bic;
2679 
2680 	/*
2681 	 * If !bfqq->bic, the queue is already shared or its requests
2682 	 * have already been redirected to a shared queue; both idle window
2683 	 * and weight raising state have already been saved. Do nothing.
2684 	 */
2685 	if (!bic)
2686 		return;
2687 
2688 	bic->saved_weight = bfqq->entity.orig_weight;
2689 	bic->saved_ttime = bfqq->ttime;
2690 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2691 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2692 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2693 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2694 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2695 		     !bfq_bfqq_in_large_burst(bfqq) &&
2696 		     bfqq->bfqd->low_latency)) {
2697 		/*
2698 		 * bfqq being merged right after being created: bfqq
2699 		 * would have deserved interactive weight raising, but
2700 		 * did not make it to be set in a weight-raised state,
2701 		 * because of this early merge.	Store directly the
2702 		 * weight-raising state that would have been assigned
2703 		 * to bfqq, so that to avoid that bfqq unjustly fails
2704 		 * to enjoy weight raising if split soon.
2705 		 */
2706 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2707 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2708 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2709 		bic->saved_last_wr_start_finish = jiffies;
2710 	} else {
2711 		bic->saved_wr_coeff = bfqq->wr_coeff;
2712 		bic->saved_wr_start_at_switch_to_srt =
2713 			bfqq->wr_start_at_switch_to_srt;
2714 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2715 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2716 	}
2717 }
2718 
2719 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2720 {
2721 	/*
2722 	 * To prevent bfqq's service guarantees from being violated,
2723 	 * bfqq may be left busy, i.e., queued for service, even if
2724 	 * empty (see comments in __bfq_bfqq_expire() for
2725 	 * details). But, if no process will send requests to bfqq any
2726 	 * longer, then there is no point in keeping bfqq queued for
2727 	 * service. In addition, keeping bfqq queued for service, but
2728 	 * with no process ref any longer, may have caused bfqq to be
2729 	 * freed when dequeued from service. But this is assumed to
2730 	 * never happen.
2731 	 */
2732 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2733 	    bfqq != bfqd->in_service_queue)
2734 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2735 
2736 	bfq_put_queue(bfqq);
2737 }
2738 
2739 static void
2740 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2741 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2742 {
2743 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2744 		(unsigned long)new_bfqq->pid);
2745 	/* Save weight raising and idle window of the merged queues */
2746 	bfq_bfqq_save_state(bfqq);
2747 	bfq_bfqq_save_state(new_bfqq);
2748 	if (bfq_bfqq_IO_bound(bfqq))
2749 		bfq_mark_bfqq_IO_bound(new_bfqq);
2750 	bfq_clear_bfqq_IO_bound(bfqq);
2751 
2752 	/*
2753 	 * If bfqq is weight-raised, then let new_bfqq inherit
2754 	 * weight-raising. To reduce false positives, neglect the case
2755 	 * where bfqq has just been created, but has not yet made it
2756 	 * to be weight-raised (which may happen because EQM may merge
2757 	 * bfqq even before bfq_add_request is executed for the first
2758 	 * time for bfqq). Handling this case would however be very
2759 	 * easy, thanks to the flag just_created.
2760 	 */
2761 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2762 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2763 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2764 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2765 		new_bfqq->wr_start_at_switch_to_srt =
2766 			bfqq->wr_start_at_switch_to_srt;
2767 		if (bfq_bfqq_busy(new_bfqq))
2768 			bfqd->wr_busy_queues++;
2769 		new_bfqq->entity.prio_changed = 1;
2770 	}
2771 
2772 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2773 		bfqq->wr_coeff = 1;
2774 		bfqq->entity.prio_changed = 1;
2775 		if (bfq_bfqq_busy(bfqq))
2776 			bfqd->wr_busy_queues--;
2777 	}
2778 
2779 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2780 		     bfqd->wr_busy_queues);
2781 
2782 	/*
2783 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2784 	 */
2785 	bic_set_bfqq(bic, new_bfqq, 1);
2786 	bfq_mark_bfqq_coop(new_bfqq);
2787 	/*
2788 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2789 	 * set new_bfqq->bic to NULL. bfqq either:
2790 	 * - does not belong to any bic any more, and hence bfqq->bic must
2791 	 *   be set to NULL, or
2792 	 * - is a queue whose owning bics have already been redirected to a
2793 	 *   different queue, hence the queue is destined to not belong to
2794 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2795 	 *   assignment causes no harm).
2796 	 */
2797 	new_bfqq->bic = NULL;
2798 	/*
2799 	 * If the queue is shared, the pid is the pid of one of the associated
2800 	 * processes. Which pid depends on the exact sequence of merge events
2801 	 * the queue underwent. So printing such a pid is useless and confusing
2802 	 * because it reports a random pid between those of the associated
2803 	 * processes.
2804 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2805 	 * a pid in logging messages.
2806 	 */
2807 	new_bfqq->pid = -1;
2808 	bfqq->bic = NULL;
2809 	bfq_release_process_ref(bfqd, bfqq);
2810 }
2811 
2812 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2813 				struct bio *bio)
2814 {
2815 	struct bfq_data *bfqd = q->elevator->elevator_data;
2816 	bool is_sync = op_is_sync(bio->bi_opf);
2817 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2818 
2819 	/*
2820 	 * Disallow merge of a sync bio into an async request.
2821 	 */
2822 	if (is_sync && !rq_is_sync(rq))
2823 		return false;
2824 
2825 	/*
2826 	 * Lookup the bfqq that this bio will be queued with. Allow
2827 	 * merge only if rq is queued there.
2828 	 */
2829 	if (!bfqq)
2830 		return false;
2831 
2832 	/*
2833 	 * We take advantage of this function to perform an early merge
2834 	 * of the queues of possible cooperating processes.
2835 	 */
2836 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2837 	if (new_bfqq) {
2838 		/*
2839 		 * bic still points to bfqq, then it has not yet been
2840 		 * redirected to some other bfq_queue, and a queue
2841 		 * merge between bfqq and new_bfqq can be safely
2842 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2843 		 * and bfqq can be put.
2844 		 */
2845 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2846 				new_bfqq);
2847 		/*
2848 		 * If we get here, bio will be queued into new_queue,
2849 		 * so use new_bfqq to decide whether bio and rq can be
2850 		 * merged.
2851 		 */
2852 		bfqq = new_bfqq;
2853 
2854 		/*
2855 		 * Change also bqfd->bio_bfqq, as
2856 		 * bfqd->bio_bic now points to new_bfqq, and
2857 		 * this function may be invoked again (and then may
2858 		 * use again bqfd->bio_bfqq).
2859 		 */
2860 		bfqd->bio_bfqq = bfqq;
2861 	}
2862 
2863 	return bfqq == RQ_BFQQ(rq);
2864 }
2865 
2866 /*
2867  * Set the maximum time for the in-service queue to consume its
2868  * budget. This prevents seeky processes from lowering the throughput.
2869  * In practice, a time-slice service scheme is used with seeky
2870  * processes.
2871  */
2872 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2873 				   struct bfq_queue *bfqq)
2874 {
2875 	unsigned int timeout_coeff;
2876 
2877 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2878 		timeout_coeff = 1;
2879 	else
2880 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2881 
2882 	bfqd->last_budget_start = ktime_get();
2883 
2884 	bfqq->budget_timeout = jiffies +
2885 		bfqd->bfq_timeout * timeout_coeff;
2886 }
2887 
2888 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2889 				       struct bfq_queue *bfqq)
2890 {
2891 	if (bfqq) {
2892 		bfq_clear_bfqq_fifo_expire(bfqq);
2893 
2894 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2895 
2896 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2897 		    bfqq->wr_coeff > 1 &&
2898 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2899 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2900 			/*
2901 			 * For soft real-time queues, move the start
2902 			 * of the weight-raising period forward by the
2903 			 * time the queue has not received any
2904 			 * service. Otherwise, a relatively long
2905 			 * service delay is likely to cause the
2906 			 * weight-raising period of the queue to end,
2907 			 * because of the short duration of the
2908 			 * weight-raising period of a soft real-time
2909 			 * queue.  It is worth noting that this move
2910 			 * is not so dangerous for the other queues,
2911 			 * because soft real-time queues are not
2912 			 * greedy.
2913 			 *
2914 			 * To not add a further variable, we use the
2915 			 * overloaded field budget_timeout to
2916 			 * determine for how long the queue has not
2917 			 * received service, i.e., how much time has
2918 			 * elapsed since the queue expired. However,
2919 			 * this is a little imprecise, because
2920 			 * budget_timeout is set to jiffies if bfqq
2921 			 * not only expires, but also remains with no
2922 			 * request.
2923 			 */
2924 			if (time_after(bfqq->budget_timeout,
2925 				       bfqq->last_wr_start_finish))
2926 				bfqq->last_wr_start_finish +=
2927 					jiffies - bfqq->budget_timeout;
2928 			else
2929 				bfqq->last_wr_start_finish = jiffies;
2930 		}
2931 
2932 		bfq_set_budget_timeout(bfqd, bfqq);
2933 		bfq_log_bfqq(bfqd, bfqq,
2934 			     "set_in_service_queue, cur-budget = %d",
2935 			     bfqq->entity.budget);
2936 	}
2937 
2938 	bfqd->in_service_queue = bfqq;
2939 }
2940 
2941 /*
2942  * Get and set a new queue for service.
2943  */
2944 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2945 {
2946 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2947 
2948 	__bfq_set_in_service_queue(bfqd, bfqq);
2949 	return bfqq;
2950 }
2951 
2952 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2953 {
2954 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2955 	u32 sl;
2956 
2957 	bfq_mark_bfqq_wait_request(bfqq);
2958 
2959 	/*
2960 	 * We don't want to idle for seeks, but we do want to allow
2961 	 * fair distribution of slice time for a process doing back-to-back
2962 	 * seeks. So allow a little bit of time for him to submit a new rq.
2963 	 */
2964 	sl = bfqd->bfq_slice_idle;
2965 	/*
2966 	 * Unless the queue is being weight-raised or the scenario is
2967 	 * asymmetric, grant only minimum idle time if the queue
2968 	 * is seeky. A long idling is preserved for a weight-raised
2969 	 * queue, or, more in general, in an asymmetric scenario,
2970 	 * because a long idling is needed for guaranteeing to a queue
2971 	 * its reserved share of the throughput (in particular, it is
2972 	 * needed if the queue has a higher weight than some other
2973 	 * queue).
2974 	 */
2975 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2976 	    !bfq_asymmetric_scenario(bfqd, bfqq))
2977 		sl = min_t(u64, sl, BFQ_MIN_TT);
2978 	else if (bfqq->wr_coeff > 1)
2979 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2980 
2981 	bfqd->last_idling_start = ktime_get();
2982 	bfqd->last_idling_start_jiffies = jiffies;
2983 
2984 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2985 		      HRTIMER_MODE_REL);
2986 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2987 }
2988 
2989 /*
2990  * In autotuning mode, max_budget is dynamically recomputed as the
2991  * amount of sectors transferred in timeout at the estimated peak
2992  * rate. This enables BFQ to utilize a full timeslice with a full
2993  * budget, even if the in-service queue is served at peak rate. And
2994  * this maximises throughput with sequential workloads.
2995  */
2996 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2997 {
2998 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2999 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3000 }
3001 
3002 /*
3003  * Update parameters related to throughput and responsiveness, as a
3004  * function of the estimated peak rate. See comments on
3005  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3006  */
3007 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3008 {
3009 	if (bfqd->bfq_user_max_budget == 0) {
3010 		bfqd->bfq_max_budget =
3011 			bfq_calc_max_budget(bfqd);
3012 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3013 	}
3014 }
3015 
3016 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3017 				       struct request *rq)
3018 {
3019 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3020 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3021 		bfqd->peak_rate_samples = 1;
3022 		bfqd->sequential_samples = 0;
3023 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3024 			blk_rq_sectors(rq);
3025 	} else /* no new rq dispatched, just reset the number of samples */
3026 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3027 
3028 	bfq_log(bfqd,
3029 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3030 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3031 		bfqd->tot_sectors_dispatched);
3032 }
3033 
3034 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3035 {
3036 	u32 rate, weight, divisor;
3037 
3038 	/*
3039 	 * For the convergence property to hold (see comments on
3040 	 * bfq_update_peak_rate()) and for the assessment to be
3041 	 * reliable, a minimum number of samples must be present, and
3042 	 * a minimum amount of time must have elapsed. If not so, do
3043 	 * not compute new rate. Just reset parameters, to get ready
3044 	 * for a new evaluation attempt.
3045 	 */
3046 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3047 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3048 		goto reset_computation;
3049 
3050 	/*
3051 	 * If a new request completion has occurred after last
3052 	 * dispatch, then, to approximate the rate at which requests
3053 	 * have been served by the device, it is more precise to
3054 	 * extend the observation interval to the last completion.
3055 	 */
3056 	bfqd->delta_from_first =
3057 		max_t(u64, bfqd->delta_from_first,
3058 		      bfqd->last_completion - bfqd->first_dispatch);
3059 
3060 	/*
3061 	 * Rate computed in sects/usec, and not sects/nsec, for
3062 	 * precision issues.
3063 	 */
3064 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3065 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3066 
3067 	/*
3068 	 * Peak rate not updated if:
3069 	 * - the percentage of sequential dispatches is below 3/4 of the
3070 	 *   total, and rate is below the current estimated peak rate
3071 	 * - rate is unreasonably high (> 20M sectors/sec)
3072 	 */
3073 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3074 	     rate <= bfqd->peak_rate) ||
3075 		rate > 20<<BFQ_RATE_SHIFT)
3076 		goto reset_computation;
3077 
3078 	/*
3079 	 * We have to update the peak rate, at last! To this purpose,
3080 	 * we use a low-pass filter. We compute the smoothing constant
3081 	 * of the filter as a function of the 'weight' of the new
3082 	 * measured rate.
3083 	 *
3084 	 * As can be seen in next formulas, we define this weight as a
3085 	 * quantity proportional to how sequential the workload is,
3086 	 * and to how long the observation time interval is.
3087 	 *
3088 	 * The weight runs from 0 to 8. The maximum value of the
3089 	 * weight, 8, yields the minimum value for the smoothing
3090 	 * constant. At this minimum value for the smoothing constant,
3091 	 * the measured rate contributes for half of the next value of
3092 	 * the estimated peak rate.
3093 	 *
3094 	 * So, the first step is to compute the weight as a function
3095 	 * of how sequential the workload is. Note that the weight
3096 	 * cannot reach 9, because bfqd->sequential_samples cannot
3097 	 * become equal to bfqd->peak_rate_samples, which, in its
3098 	 * turn, holds true because bfqd->sequential_samples is not
3099 	 * incremented for the first sample.
3100 	 */
3101 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3102 
3103 	/*
3104 	 * Second step: further refine the weight as a function of the
3105 	 * duration of the observation interval.
3106 	 */
3107 	weight = min_t(u32, 8,
3108 		       div_u64(weight * bfqd->delta_from_first,
3109 			       BFQ_RATE_REF_INTERVAL));
3110 
3111 	/*
3112 	 * Divisor ranging from 10, for minimum weight, to 2, for
3113 	 * maximum weight.
3114 	 */
3115 	divisor = 10 - weight;
3116 
3117 	/*
3118 	 * Finally, update peak rate:
3119 	 *
3120 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3121 	 */
3122 	bfqd->peak_rate *= divisor-1;
3123 	bfqd->peak_rate /= divisor;
3124 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3125 
3126 	bfqd->peak_rate += rate;
3127 
3128 	/*
3129 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3130 	 * the minimum representable values reported in the comments
3131 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3132 	 * divisions by zero where bfqd->peak_rate is used as a
3133 	 * divisor.
3134 	 */
3135 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3136 
3137 	update_thr_responsiveness_params(bfqd);
3138 
3139 reset_computation:
3140 	bfq_reset_rate_computation(bfqd, rq);
3141 }
3142 
3143 /*
3144  * Update the read/write peak rate (the main quantity used for
3145  * auto-tuning, see update_thr_responsiveness_params()).
3146  *
3147  * It is not trivial to estimate the peak rate (correctly): because of
3148  * the presence of sw and hw queues between the scheduler and the
3149  * device components that finally serve I/O requests, it is hard to
3150  * say exactly when a given dispatched request is served inside the
3151  * device, and for how long. As a consequence, it is hard to know
3152  * precisely at what rate a given set of requests is actually served
3153  * by the device.
3154  *
3155  * On the opposite end, the dispatch time of any request is trivially
3156  * available, and, from this piece of information, the "dispatch rate"
3157  * of requests can be immediately computed. So, the idea in the next
3158  * function is to use what is known, namely request dispatch times
3159  * (plus, when useful, request completion times), to estimate what is
3160  * unknown, namely in-device request service rate.
3161  *
3162  * The main issue is that, because of the above facts, the rate at
3163  * which a certain set of requests is dispatched over a certain time
3164  * interval can vary greatly with respect to the rate at which the
3165  * same requests are then served. But, since the size of any
3166  * intermediate queue is limited, and the service scheme is lossless
3167  * (no request is silently dropped), the following obvious convergence
3168  * property holds: the number of requests dispatched MUST become
3169  * closer and closer to the number of requests completed as the
3170  * observation interval grows. This is the key property used in
3171  * the next function to estimate the peak service rate as a function
3172  * of the observed dispatch rate. The function assumes to be invoked
3173  * on every request dispatch.
3174  */
3175 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3176 {
3177 	u64 now_ns = ktime_get_ns();
3178 
3179 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3180 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3181 			bfqd->peak_rate_samples);
3182 		bfq_reset_rate_computation(bfqd, rq);
3183 		goto update_last_values; /* will add one sample */
3184 	}
3185 
3186 	/*
3187 	 * Device idle for very long: the observation interval lasting
3188 	 * up to this dispatch cannot be a valid observation interval
3189 	 * for computing a new peak rate (similarly to the late-
3190 	 * completion event in bfq_completed_request()). Go to
3191 	 * update_rate_and_reset to have the following three steps
3192 	 * taken:
3193 	 * - close the observation interval at the last (previous)
3194 	 *   request dispatch or completion
3195 	 * - compute rate, if possible, for that observation interval
3196 	 * - start a new observation interval with this dispatch
3197 	 */
3198 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3199 	    bfqd->rq_in_driver == 0)
3200 		goto update_rate_and_reset;
3201 
3202 	/* Update sampling information */
3203 	bfqd->peak_rate_samples++;
3204 
3205 	if ((bfqd->rq_in_driver > 0 ||
3206 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3207 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3208 		bfqd->sequential_samples++;
3209 
3210 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3211 
3212 	/* Reset max observed rq size every 32 dispatches */
3213 	if (likely(bfqd->peak_rate_samples % 32))
3214 		bfqd->last_rq_max_size =
3215 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3216 	else
3217 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3218 
3219 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3220 
3221 	/* Target observation interval not yet reached, go on sampling */
3222 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3223 		goto update_last_values;
3224 
3225 update_rate_and_reset:
3226 	bfq_update_rate_reset(bfqd, rq);
3227 update_last_values:
3228 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3229 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3230 		bfqd->in_serv_last_pos = bfqd->last_position;
3231 	bfqd->last_dispatch = now_ns;
3232 }
3233 
3234 /*
3235  * Remove request from internal lists.
3236  */
3237 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3238 {
3239 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3240 
3241 	/*
3242 	 * For consistency, the next instruction should have been
3243 	 * executed after removing the request from the queue and
3244 	 * dispatching it.  We execute instead this instruction before
3245 	 * bfq_remove_request() (and hence introduce a temporary
3246 	 * inconsistency), for efficiency.  In fact, should this
3247 	 * dispatch occur for a non in-service bfqq, this anticipated
3248 	 * increment prevents two counters related to bfqq->dispatched
3249 	 * from risking to be, first, uselessly decremented, and then
3250 	 * incremented again when the (new) value of bfqq->dispatched
3251 	 * happens to be taken into account.
3252 	 */
3253 	bfqq->dispatched++;
3254 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3255 
3256 	bfq_remove_request(q, rq);
3257 }
3258 
3259 /*
3260  * There is a case where idling does not have to be performed for
3261  * throughput concerns, but to preserve the throughput share of
3262  * the process associated with bfqq.
3263  *
3264  * To introduce this case, we can note that allowing the drive
3265  * to enqueue more than one request at a time, and hence
3266  * delegating de facto final scheduling decisions to the
3267  * drive's internal scheduler, entails loss of control on the
3268  * actual request service order. In particular, the critical
3269  * situation is when requests from different processes happen
3270  * to be present, at the same time, in the internal queue(s)
3271  * of the drive. In such a situation, the drive, by deciding
3272  * the service order of the internally-queued requests, does
3273  * determine also the actual throughput distribution among
3274  * these processes. But the drive typically has no notion or
3275  * concern about per-process throughput distribution, and
3276  * makes its decisions only on a per-request basis. Therefore,
3277  * the service distribution enforced by the drive's internal
3278  * scheduler is likely to coincide with the desired throughput
3279  * distribution only in a completely symmetric, or favorably
3280  * skewed scenario where:
3281  * (i-a) each of these processes must get the same throughput as
3282  *	 the others,
3283  * (i-b) in case (i-a) does not hold, it holds that the process
3284  *       associated with bfqq must receive a lower or equal
3285  *	 throughput than any of the other processes;
3286  * (ii)  the I/O of each process has the same properties, in
3287  *       terms of locality (sequential or random), direction
3288  *       (reads or writes), request sizes, greediness
3289  *       (from I/O-bound to sporadic), and so on;
3290 
3291  * In fact, in such a scenario, the drive tends to treat the requests
3292  * of each process in about the same way as the requests of the
3293  * others, and thus to provide each of these processes with about the
3294  * same throughput.  This is exactly the desired throughput
3295  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3296  * even more convenient distribution for (the process associated with)
3297  * bfqq.
3298  *
3299  * In contrast, in any asymmetric or unfavorable scenario, device
3300  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3301  * that bfqq receives its assigned fraction of the device throughput
3302  * (see [1] for details).
3303  *
3304  * The problem is that idling may significantly reduce throughput with
3305  * certain combinations of types of I/O and devices. An important
3306  * example is sync random I/O on flash storage with command
3307  * queueing. So, unless bfqq falls in cases where idling also boosts
3308  * throughput, it is important to check conditions (i-a), i(-b) and
3309  * (ii) accurately, so as to avoid idling when not strictly needed for
3310  * service guarantees.
3311  *
3312  * Unfortunately, it is extremely difficult to thoroughly check
3313  * condition (ii). And, in case there are active groups, it becomes
3314  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3315  * if there are active groups, then, for conditions (i-a) or (i-b) to
3316  * become false 'indirectly', it is enough that an active group
3317  * contains more active processes or sub-groups than some other active
3318  * group. More precisely, for conditions (i-a) or (i-b) to become
3319  * false because of such a group, it is not even necessary that the
3320  * group is (still) active: it is sufficient that, even if the group
3321  * has become inactive, some of its descendant processes still have
3322  * some request already dispatched but still waiting for
3323  * completion. In fact, requests have still to be guaranteed their
3324  * share of the throughput even after being dispatched. In this
3325  * respect, it is easy to show that, if a group frequently becomes
3326  * inactive while still having in-flight requests, and if, when this
3327  * happens, the group is not considered in the calculation of whether
3328  * the scenario is asymmetric, then the group may fail to be
3329  * guaranteed its fair share of the throughput (basically because
3330  * idling may not be performed for the descendant processes of the
3331  * group, but it had to be).  We address this issue with the following
3332  * bi-modal behavior, implemented in the function
3333  * bfq_asymmetric_scenario().
3334  *
3335  * If there are groups with requests waiting for completion
3336  * (as commented above, some of these groups may even be
3337  * already inactive), then the scenario is tagged as
3338  * asymmetric, conservatively, without checking any of the
3339  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3340  * This behavior matches also the fact that groups are created
3341  * exactly if controlling I/O is a primary concern (to
3342  * preserve bandwidth and latency guarantees).
3343  *
3344  * On the opposite end, if there are no groups with requests waiting
3345  * for completion, then only conditions (i-a) and (i-b) are actually
3346  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3347  * idling is not performed, regardless of whether condition (ii)
3348  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3349  * hold, then idling is allowed, and the device tends to be prevented
3350  * from queueing many requests, possibly of several processes. Since
3351  * there are no groups with requests waiting for completion, then, to
3352  * control conditions (i-a) and (i-b) it is enough to check just
3353  * whether all the queues with requests waiting for completion also
3354  * have the same weight.
3355  *
3356  * Not checking condition (ii) evidently exposes bfqq to the
3357  * risk of getting less throughput than its fair share.
3358  * However, for queues with the same weight, a further
3359  * mechanism, preemption, mitigates or even eliminates this
3360  * problem. And it does so without consequences on overall
3361  * throughput. This mechanism and its benefits are explained
3362  * in the next three paragraphs.
3363  *
3364  * Even if a queue, say Q, is expired when it remains idle, Q
3365  * can still preempt the new in-service queue if the next
3366  * request of Q arrives soon (see the comments on
3367  * bfq_bfqq_update_budg_for_activation). If all queues and
3368  * groups have the same weight, this form of preemption,
3369  * combined with the hole-recovery heuristic described in the
3370  * comments on function bfq_bfqq_update_budg_for_activation,
3371  * are enough to preserve a correct bandwidth distribution in
3372  * the mid term, even without idling. In fact, even if not
3373  * idling allows the internal queues of the device to contain
3374  * many requests, and thus to reorder requests, we can rather
3375  * safely assume that the internal scheduler still preserves a
3376  * minimum of mid-term fairness.
3377  *
3378  * More precisely, this preemption-based, idleless approach
3379  * provides fairness in terms of IOPS, and not sectors per
3380  * second. This can be seen with a simple example. Suppose
3381  * that there are two queues with the same weight, but that
3382  * the first queue receives requests of 8 sectors, while the
3383  * second queue receives requests of 1024 sectors. In
3384  * addition, suppose that each of the two queues contains at
3385  * most one request at a time, which implies that each queue
3386  * always remains idle after it is served. Finally, after
3387  * remaining idle, each queue receives very quickly a new
3388  * request. It follows that the two queues are served
3389  * alternatively, preempting each other if needed. This
3390  * implies that, although both queues have the same weight,
3391  * the queue with large requests receives a service that is
3392  * 1024/8 times as high as the service received by the other
3393  * queue.
3394  *
3395  * The motivation for using preemption instead of idling (for
3396  * queues with the same weight) is that, by not idling,
3397  * service guarantees are preserved (completely or at least in
3398  * part) without minimally sacrificing throughput. And, if
3399  * there is no active group, then the primary expectation for
3400  * this device is probably a high throughput.
3401  *
3402  * We are now left only with explaining the two sub-conditions in the
3403  * additional compound condition that is checked below for deciding
3404  * whether the scenario is asymmetric. To explain the first
3405  * sub-condition, we need to add that the function
3406  * bfq_asymmetric_scenario checks the weights of only
3407  * non-weight-raised queues, for efficiency reasons (see comments on
3408  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3409  * is checked explicitly here. More precisely, the compound condition
3410  * below takes into account also the fact that, even if bfqq is being
3411  * weight-raised, the scenario is still symmetric if all queues with
3412  * requests waiting for completion happen to be
3413  * weight-raised. Actually, we should be even more precise here, and
3414  * differentiate between interactive weight raising and soft real-time
3415  * weight raising.
3416  *
3417  * The second sub-condition checked in the compound condition is
3418  * whether there is a fair amount of already in-flight I/O not
3419  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3420  * following reason. The drive may decide to serve in-flight
3421  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3422  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3423  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3424  * basically uncontrolled amount of I/O from other queues may be
3425  * dispatched too, possibly causing the service of bfqq's I/O to be
3426  * delayed even longer in the drive. This problem gets more and more
3427  * serious as the speed and the queue depth of the drive grow,
3428  * because, as these two quantities grow, the probability to find no
3429  * queue busy but many requests in flight grows too. By contrast,
3430  * plugging I/O dispatching minimizes the delay induced by already
3431  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3432  * lose because of this delay.
3433  *
3434  * As a side note, it is worth considering that the above
3435  * device-idling countermeasures may however fail in the following
3436  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3437  * in a time period during which all symmetry sub-conditions hold, and
3438  * therefore the device is allowed to enqueue many requests, but at
3439  * some later point in time some sub-condition stops to hold, then it
3440  * may become impossible to make requests be served in the desired
3441  * order until all the requests already queued in the device have been
3442  * served. The last sub-condition commented above somewhat mitigates
3443  * this problem for weight-raised queues.
3444  */
3445 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3446 						 struct bfq_queue *bfqq)
3447 {
3448 	/* No point in idling for bfqq if it won't get requests any longer */
3449 	if (unlikely(!bfqq_process_refs(bfqq)))
3450 		return false;
3451 
3452 	return (bfqq->wr_coeff > 1 &&
3453 		(bfqd->wr_busy_queues <
3454 		 bfq_tot_busy_queues(bfqd) ||
3455 		 bfqd->rq_in_driver >=
3456 		 bfqq->dispatched + 4)) ||
3457 		bfq_asymmetric_scenario(bfqd, bfqq);
3458 }
3459 
3460 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3461 			      enum bfqq_expiration reason)
3462 {
3463 	/*
3464 	 * If this bfqq is shared between multiple processes, check
3465 	 * to make sure that those processes are still issuing I/Os
3466 	 * within the mean seek distance. If not, it may be time to
3467 	 * break the queues apart again.
3468 	 */
3469 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3470 		bfq_mark_bfqq_split_coop(bfqq);
3471 
3472 	/*
3473 	 * Consider queues with a higher finish virtual time than
3474 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3475 	 * true, then bfqq's bandwidth would be violated if an
3476 	 * uncontrolled amount of I/O from these queues were
3477 	 * dispatched while bfqq is waiting for its new I/O to
3478 	 * arrive. This is exactly what may happen if this is a forced
3479 	 * expiration caused by a preemption attempt, and if bfqq is
3480 	 * not re-scheduled. To prevent this from happening, re-queue
3481 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3482 	 * empty. By doing so, bfqq is granted to be served before the
3483 	 * above queues (provided that bfqq is of course eligible).
3484 	 */
3485 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3486 	    !(reason == BFQQE_PREEMPTED &&
3487 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3488 		if (bfqq->dispatched == 0)
3489 			/*
3490 			 * Overloading budget_timeout field to store
3491 			 * the time at which the queue remains with no
3492 			 * backlog and no outstanding request; used by
3493 			 * the weight-raising mechanism.
3494 			 */
3495 			bfqq->budget_timeout = jiffies;
3496 
3497 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3498 	} else {
3499 		bfq_requeue_bfqq(bfqd, bfqq, true);
3500 		/*
3501 		 * Resort priority tree of potential close cooperators.
3502 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3503 		 */
3504 		if (unlikely(!bfqd->nonrot_with_queueing &&
3505 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3506 			bfq_pos_tree_add_move(bfqd, bfqq);
3507 	}
3508 
3509 	/*
3510 	 * All in-service entities must have been properly deactivated
3511 	 * or requeued before executing the next function, which
3512 	 * resets all in-service entities as no more in service. This
3513 	 * may cause bfqq to be freed. If this happens, the next
3514 	 * function returns true.
3515 	 */
3516 	return __bfq_bfqd_reset_in_service(bfqd);
3517 }
3518 
3519 /**
3520  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3521  * @bfqd: device data.
3522  * @bfqq: queue to update.
3523  * @reason: reason for expiration.
3524  *
3525  * Handle the feedback on @bfqq budget at queue expiration.
3526  * See the body for detailed comments.
3527  */
3528 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3529 				     struct bfq_queue *bfqq,
3530 				     enum bfqq_expiration reason)
3531 {
3532 	struct request *next_rq;
3533 	int budget, min_budget;
3534 
3535 	min_budget = bfq_min_budget(bfqd);
3536 
3537 	if (bfqq->wr_coeff == 1)
3538 		budget = bfqq->max_budget;
3539 	else /*
3540 	      * Use a constant, low budget for weight-raised queues,
3541 	      * to help achieve a low latency. Keep it slightly higher
3542 	      * than the minimum possible budget, to cause a little
3543 	      * bit fewer expirations.
3544 	      */
3545 		budget = 2 * min_budget;
3546 
3547 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3548 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3549 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3550 		budget, bfq_min_budget(bfqd));
3551 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3552 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3553 
3554 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3555 		switch (reason) {
3556 		/*
3557 		 * Caveat: in all the following cases we trade latency
3558 		 * for throughput.
3559 		 */
3560 		case BFQQE_TOO_IDLE:
3561 			/*
3562 			 * This is the only case where we may reduce
3563 			 * the budget: if there is no request of the
3564 			 * process still waiting for completion, then
3565 			 * we assume (tentatively) that the timer has
3566 			 * expired because the batch of requests of
3567 			 * the process could have been served with a
3568 			 * smaller budget.  Hence, betting that
3569 			 * process will behave in the same way when it
3570 			 * becomes backlogged again, we reduce its
3571 			 * next budget.  As long as we guess right,
3572 			 * this budget cut reduces the latency
3573 			 * experienced by the process.
3574 			 *
3575 			 * However, if there are still outstanding
3576 			 * requests, then the process may have not yet
3577 			 * issued its next request just because it is
3578 			 * still waiting for the completion of some of
3579 			 * the still outstanding ones.  So in this
3580 			 * subcase we do not reduce its budget, on the
3581 			 * contrary we increase it to possibly boost
3582 			 * the throughput, as discussed in the
3583 			 * comments to the BUDGET_TIMEOUT case.
3584 			 */
3585 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3586 				budget = min(budget * 2, bfqd->bfq_max_budget);
3587 			else {
3588 				if (budget > 5 * min_budget)
3589 					budget -= 4 * min_budget;
3590 				else
3591 					budget = min_budget;
3592 			}
3593 			break;
3594 		case BFQQE_BUDGET_TIMEOUT:
3595 			/*
3596 			 * We double the budget here because it gives
3597 			 * the chance to boost the throughput if this
3598 			 * is not a seeky process (and has bumped into
3599 			 * this timeout because of, e.g., ZBR).
3600 			 */
3601 			budget = min(budget * 2, bfqd->bfq_max_budget);
3602 			break;
3603 		case BFQQE_BUDGET_EXHAUSTED:
3604 			/*
3605 			 * The process still has backlog, and did not
3606 			 * let either the budget timeout or the disk
3607 			 * idling timeout expire. Hence it is not
3608 			 * seeky, has a short thinktime and may be
3609 			 * happy with a higher budget too. So
3610 			 * definitely increase the budget of this good
3611 			 * candidate to boost the disk throughput.
3612 			 */
3613 			budget = min(budget * 4, bfqd->bfq_max_budget);
3614 			break;
3615 		case BFQQE_NO_MORE_REQUESTS:
3616 			/*
3617 			 * For queues that expire for this reason, it
3618 			 * is particularly important to keep the
3619 			 * budget close to the actual service they
3620 			 * need. Doing so reduces the timestamp
3621 			 * misalignment problem described in the
3622 			 * comments in the body of
3623 			 * __bfq_activate_entity. In fact, suppose
3624 			 * that a queue systematically expires for
3625 			 * BFQQE_NO_MORE_REQUESTS and presents a
3626 			 * new request in time to enjoy timestamp
3627 			 * back-shifting. The larger the budget of the
3628 			 * queue is with respect to the service the
3629 			 * queue actually requests in each service
3630 			 * slot, the more times the queue can be
3631 			 * reactivated with the same virtual finish
3632 			 * time. It follows that, even if this finish
3633 			 * time is pushed to the system virtual time
3634 			 * to reduce the consequent timestamp
3635 			 * misalignment, the queue unjustly enjoys for
3636 			 * many re-activations a lower finish time
3637 			 * than all newly activated queues.
3638 			 *
3639 			 * The service needed by bfqq is measured
3640 			 * quite precisely by bfqq->entity.service.
3641 			 * Since bfqq does not enjoy device idling,
3642 			 * bfqq->entity.service is equal to the number
3643 			 * of sectors that the process associated with
3644 			 * bfqq requested to read/write before waiting
3645 			 * for request completions, or blocking for
3646 			 * other reasons.
3647 			 */
3648 			budget = max_t(int, bfqq->entity.service, min_budget);
3649 			break;
3650 		default:
3651 			return;
3652 		}
3653 	} else if (!bfq_bfqq_sync(bfqq)) {
3654 		/*
3655 		 * Async queues get always the maximum possible
3656 		 * budget, as for them we do not care about latency
3657 		 * (in addition, their ability to dispatch is limited
3658 		 * by the charging factor).
3659 		 */
3660 		budget = bfqd->bfq_max_budget;
3661 	}
3662 
3663 	bfqq->max_budget = budget;
3664 
3665 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3666 	    !bfqd->bfq_user_max_budget)
3667 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3668 
3669 	/*
3670 	 * If there is still backlog, then assign a new budget, making
3671 	 * sure that it is large enough for the next request.  Since
3672 	 * the finish time of bfqq must be kept in sync with the
3673 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3674 	 * update.
3675 	 *
3676 	 * If there is no backlog, then no need to update the budget;
3677 	 * it will be updated on the arrival of a new request.
3678 	 */
3679 	next_rq = bfqq->next_rq;
3680 	if (next_rq)
3681 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3682 					    bfq_serv_to_charge(next_rq, bfqq));
3683 
3684 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3685 			next_rq ? blk_rq_sectors(next_rq) : 0,
3686 			bfqq->entity.budget);
3687 }
3688 
3689 /*
3690  * Return true if the process associated with bfqq is "slow". The slow
3691  * flag is used, in addition to the budget timeout, to reduce the
3692  * amount of service provided to seeky processes, and thus reduce
3693  * their chances to lower the throughput. More details in the comments
3694  * on the function bfq_bfqq_expire().
3695  *
3696  * An important observation is in order: as discussed in the comments
3697  * on the function bfq_update_peak_rate(), with devices with internal
3698  * queues, it is hard if ever possible to know when and for how long
3699  * an I/O request is processed by the device (apart from the trivial
3700  * I/O pattern where a new request is dispatched only after the
3701  * previous one has been completed). This makes it hard to evaluate
3702  * the real rate at which the I/O requests of each bfq_queue are
3703  * served.  In fact, for an I/O scheduler like BFQ, serving a
3704  * bfq_queue means just dispatching its requests during its service
3705  * slot (i.e., until the budget of the queue is exhausted, or the
3706  * queue remains idle, or, finally, a timeout fires). But, during the
3707  * service slot of a bfq_queue, around 100 ms at most, the device may
3708  * be even still processing requests of bfq_queues served in previous
3709  * service slots. On the opposite end, the requests of the in-service
3710  * bfq_queue may be completed after the service slot of the queue
3711  * finishes.
3712  *
3713  * Anyway, unless more sophisticated solutions are used
3714  * (where possible), the sum of the sizes of the requests dispatched
3715  * during the service slot of a bfq_queue is probably the only
3716  * approximation available for the service received by the bfq_queue
3717  * during its service slot. And this sum is the quantity used in this
3718  * function to evaluate the I/O speed of a process.
3719  */
3720 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3721 				 bool compensate, enum bfqq_expiration reason,
3722 				 unsigned long *delta_ms)
3723 {
3724 	ktime_t delta_ktime;
3725 	u32 delta_usecs;
3726 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3727 
3728 	if (!bfq_bfqq_sync(bfqq))
3729 		return false;
3730 
3731 	if (compensate)
3732 		delta_ktime = bfqd->last_idling_start;
3733 	else
3734 		delta_ktime = ktime_get();
3735 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3736 	delta_usecs = ktime_to_us(delta_ktime);
3737 
3738 	/* don't use too short time intervals */
3739 	if (delta_usecs < 1000) {
3740 		if (blk_queue_nonrot(bfqd->queue))
3741 			 /*
3742 			  * give same worst-case guarantees as idling
3743 			  * for seeky
3744 			  */
3745 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3746 		else /* charge at least one seek */
3747 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3748 
3749 		return slow;
3750 	}
3751 
3752 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3753 
3754 	/*
3755 	 * Use only long (> 20ms) intervals to filter out excessive
3756 	 * spikes in service rate estimation.
3757 	 */
3758 	if (delta_usecs > 20000) {
3759 		/*
3760 		 * Caveat for rotational devices: processes doing I/O
3761 		 * in the slower disk zones tend to be slow(er) even
3762 		 * if not seeky. In this respect, the estimated peak
3763 		 * rate is likely to be an average over the disk
3764 		 * surface. Accordingly, to not be too harsh with
3765 		 * unlucky processes, a process is deemed slow only if
3766 		 * its rate has been lower than half of the estimated
3767 		 * peak rate.
3768 		 */
3769 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3770 	}
3771 
3772 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3773 
3774 	return slow;
3775 }
3776 
3777 /*
3778  * To be deemed as soft real-time, an application must meet two
3779  * requirements. First, the application must not require an average
3780  * bandwidth higher than the approximate bandwidth required to playback or
3781  * record a compressed high-definition video.
3782  * The next function is invoked on the completion of the last request of a
3783  * batch, to compute the next-start time instant, soft_rt_next_start, such
3784  * that, if the next request of the application does not arrive before
3785  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3786  *
3787  * The second requirement is that the request pattern of the application is
3788  * isochronous, i.e., that, after issuing a request or a batch of requests,
3789  * the application stops issuing new requests until all its pending requests
3790  * have been completed. After that, the application may issue a new batch,
3791  * and so on.
3792  * For this reason the next function is invoked to compute
3793  * soft_rt_next_start only for applications that meet this requirement,
3794  * whereas soft_rt_next_start is set to infinity for applications that do
3795  * not.
3796  *
3797  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3798  * happen to meet, occasionally or systematically, both the above
3799  * bandwidth and isochrony requirements. This may happen at least in
3800  * the following circumstances. First, if the CPU load is high. The
3801  * application may stop issuing requests while the CPUs are busy
3802  * serving other processes, then restart, then stop again for a while,
3803  * and so on. The other circumstances are related to the storage
3804  * device: the storage device is highly loaded or reaches a low-enough
3805  * throughput with the I/O of the application (e.g., because the I/O
3806  * is random and/or the device is slow). In all these cases, the
3807  * I/O of the application may be simply slowed down enough to meet
3808  * the bandwidth and isochrony requirements. To reduce the probability
3809  * that greedy applications are deemed as soft real-time in these
3810  * corner cases, a further rule is used in the computation of
3811  * soft_rt_next_start: the return value of this function is forced to
3812  * be higher than the maximum between the following two quantities.
3813  *
3814  * (a) Current time plus: (1) the maximum time for which the arrival
3815  *     of a request is waited for when a sync queue becomes idle,
3816  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3817  *     postpone for a moment the reason for adding a few extra
3818  *     jiffies; we get back to it after next item (b).  Lower-bounding
3819  *     the return value of this function with the current time plus
3820  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3821  *     because the latter issue their next request as soon as possible
3822  *     after the last one has been completed. In contrast, a soft
3823  *     real-time application spends some time processing data, after a
3824  *     batch of its requests has been completed.
3825  *
3826  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3827  *     above, greedy applications may happen to meet both the
3828  *     bandwidth and isochrony requirements under heavy CPU or
3829  *     storage-device load. In more detail, in these scenarios, these
3830  *     applications happen, only for limited time periods, to do I/O
3831  *     slowly enough to meet all the requirements described so far,
3832  *     including the filtering in above item (a). These slow-speed
3833  *     time intervals are usually interspersed between other time
3834  *     intervals during which these applications do I/O at a very high
3835  *     speed. Fortunately, exactly because of the high speed of the
3836  *     I/O in the high-speed intervals, the values returned by this
3837  *     function happen to be so high, near the end of any such
3838  *     high-speed interval, to be likely to fall *after* the end of
3839  *     the low-speed time interval that follows. These high values are
3840  *     stored in bfqq->soft_rt_next_start after each invocation of
3841  *     this function. As a consequence, if the last value of
3842  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3843  *     next value that this function may return, then, from the very
3844  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3845  *     likely to be constantly kept so high that any I/O request
3846  *     issued during the low-speed interval is considered as arriving
3847  *     to soon for the application to be deemed as soft
3848  *     real-time. Then, in the high-speed interval that follows, the
3849  *     application will not be deemed as soft real-time, just because
3850  *     it will do I/O at a high speed. And so on.
3851  *
3852  * Getting back to the filtering in item (a), in the following two
3853  * cases this filtering might be easily passed by a greedy
3854  * application, if the reference quantity was just
3855  * bfqd->bfq_slice_idle:
3856  * 1) HZ is so low that the duration of a jiffy is comparable to or
3857  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3858  *    devices with HZ=100. The time granularity may be so coarse
3859  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3860  *    is rather lower than the exact value.
3861  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3862  *    for a while, then suddenly 'jump' by several units to recover the lost
3863  *    increments. This seems to happen, e.g., inside virtual machines.
3864  * To address this issue, in the filtering in (a) we do not use as a
3865  * reference time interval just bfqd->bfq_slice_idle, but
3866  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3867  * minimum number of jiffies for which the filter seems to be quite
3868  * precise also in embedded systems and KVM/QEMU virtual machines.
3869  */
3870 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3871 						struct bfq_queue *bfqq)
3872 {
3873 	return max3(bfqq->soft_rt_next_start,
3874 		    bfqq->last_idle_bklogged +
3875 		    HZ * bfqq->service_from_backlogged /
3876 		    bfqd->bfq_wr_max_softrt_rate,
3877 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3878 }
3879 
3880 /**
3881  * bfq_bfqq_expire - expire a queue.
3882  * @bfqd: device owning the queue.
3883  * @bfqq: the queue to expire.
3884  * @compensate: if true, compensate for the time spent idling.
3885  * @reason: the reason causing the expiration.
3886  *
3887  * If the process associated with bfqq does slow I/O (e.g., because it
3888  * issues random requests), we charge bfqq with the time it has been
3889  * in service instead of the service it has received (see
3890  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3891  * a consequence, bfqq will typically get higher timestamps upon
3892  * reactivation, and hence it will be rescheduled as if it had
3893  * received more service than what it has actually received. In the
3894  * end, bfqq receives less service in proportion to how slowly its
3895  * associated process consumes its budgets (and hence how seriously it
3896  * tends to lower the throughput). In addition, this time-charging
3897  * strategy guarantees time fairness among slow processes. In
3898  * contrast, if the process associated with bfqq is not slow, we
3899  * charge bfqq exactly with the service it has received.
3900  *
3901  * Charging time to the first type of queues and the exact service to
3902  * the other has the effect of using the WF2Q+ policy to schedule the
3903  * former on a timeslice basis, without violating service domain
3904  * guarantees among the latter.
3905  */
3906 void bfq_bfqq_expire(struct bfq_data *bfqd,
3907 		     struct bfq_queue *bfqq,
3908 		     bool compensate,
3909 		     enum bfqq_expiration reason)
3910 {
3911 	bool slow;
3912 	unsigned long delta = 0;
3913 	struct bfq_entity *entity = &bfqq->entity;
3914 
3915 	/*
3916 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3917 	 */
3918 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3919 
3920 	/*
3921 	 * As above explained, charge slow (typically seeky) and
3922 	 * timed-out queues with the time and not the service
3923 	 * received, to favor sequential workloads.
3924 	 *
3925 	 * Processes doing I/O in the slower disk zones will tend to
3926 	 * be slow(er) even if not seeky. Therefore, since the
3927 	 * estimated peak rate is actually an average over the disk
3928 	 * surface, these processes may timeout just for bad luck. To
3929 	 * avoid punishing them, do not charge time to processes that
3930 	 * succeeded in consuming at least 2/3 of their budget. This
3931 	 * allows BFQ to preserve enough elasticity to still perform
3932 	 * bandwidth, and not time, distribution with little unlucky
3933 	 * or quasi-sequential processes.
3934 	 */
3935 	if (bfqq->wr_coeff == 1 &&
3936 	    (slow ||
3937 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3938 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3939 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3940 
3941 	if (reason == BFQQE_TOO_IDLE &&
3942 	    entity->service <= 2 * entity->budget / 10)
3943 		bfq_clear_bfqq_IO_bound(bfqq);
3944 
3945 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3946 		bfqq->last_wr_start_finish = jiffies;
3947 
3948 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3949 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3950 		/*
3951 		 * If we get here, and there are no outstanding
3952 		 * requests, then the request pattern is isochronous
3953 		 * (see the comments on the function
3954 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3955 		 * soft_rt_next_start. And we do it, unless bfqq is in
3956 		 * interactive weight raising. We do not do it in the
3957 		 * latter subcase, for the following reason. bfqq may
3958 		 * be conveying the I/O needed to load a soft
3959 		 * real-time application. Such an application will
3960 		 * actually exhibit a soft real-time I/O pattern after
3961 		 * it finally starts doing its job. But, if
3962 		 * soft_rt_next_start is computed here for an
3963 		 * interactive bfqq, and bfqq had received a lot of
3964 		 * service before remaining with no outstanding
3965 		 * request (likely to happen on a fast device), then
3966 		 * soft_rt_next_start would be assigned such a high
3967 		 * value that, for a very long time, bfqq would be
3968 		 * prevented from being possibly considered as soft
3969 		 * real time.
3970 		 *
3971 		 * If, instead, the queue still has outstanding
3972 		 * requests, then we have to wait for the completion
3973 		 * of all the outstanding requests to discover whether
3974 		 * the request pattern is actually isochronous.
3975 		 */
3976 		if (bfqq->dispatched == 0 &&
3977 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
3978 			bfqq->soft_rt_next_start =
3979 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3980 		else if (bfqq->dispatched > 0) {
3981 			/*
3982 			 * Schedule an update of soft_rt_next_start to when
3983 			 * the task may be discovered to be isochronous.
3984 			 */
3985 			bfq_mark_bfqq_softrt_update(bfqq);
3986 		}
3987 	}
3988 
3989 	bfq_log_bfqq(bfqd, bfqq,
3990 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3991 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3992 
3993 	/*
3994 	 * bfqq expired, so no total service time needs to be computed
3995 	 * any longer: reset state machine for measuring total service
3996 	 * times.
3997 	 */
3998 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
3999 	bfqd->waited_rq = NULL;
4000 
4001 	/*
4002 	 * Increase, decrease or leave budget unchanged according to
4003 	 * reason.
4004 	 */
4005 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4006 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4007 		/* bfqq is gone, no more actions on it */
4008 		return;
4009 
4010 	/* mark bfqq as waiting a request only if a bic still points to it */
4011 	if (!bfq_bfqq_busy(bfqq) &&
4012 	    reason != BFQQE_BUDGET_TIMEOUT &&
4013 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4014 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4015 		/*
4016 		 * Not setting service to 0, because, if the next rq
4017 		 * arrives in time, the queue will go on receiving
4018 		 * service with this same budget (as if it never expired)
4019 		 */
4020 	} else
4021 		entity->service = 0;
4022 
4023 	/*
4024 	 * Reset the received-service counter for every parent entity.
4025 	 * Differently from what happens with bfqq->entity.service,
4026 	 * the resetting of this counter never needs to be postponed
4027 	 * for parent entities. In fact, in case bfqq may have a
4028 	 * chance to go on being served using the last, partially
4029 	 * consumed budget, bfqq->entity.service needs to be kept,
4030 	 * because if bfqq then actually goes on being served using
4031 	 * the same budget, the last value of bfqq->entity.service is
4032 	 * needed to properly decrement bfqq->entity.budget by the
4033 	 * portion already consumed. In contrast, it is not necessary
4034 	 * to keep entity->service for parent entities too, because
4035 	 * the bubble up of the new value of bfqq->entity.budget will
4036 	 * make sure that the budgets of parent entities are correct,
4037 	 * even in case bfqq and thus parent entities go on receiving
4038 	 * service with the same budget.
4039 	 */
4040 	entity = entity->parent;
4041 	for_each_entity(entity)
4042 		entity->service = 0;
4043 }
4044 
4045 /*
4046  * Budget timeout is not implemented through a dedicated timer, but
4047  * just checked on request arrivals and completions, as well as on
4048  * idle timer expirations.
4049  */
4050 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4051 {
4052 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4053 }
4054 
4055 /*
4056  * If we expire a queue that is actively waiting (i.e., with the
4057  * device idled) for the arrival of a new request, then we may incur
4058  * the timestamp misalignment problem described in the body of the
4059  * function __bfq_activate_entity. Hence we return true only if this
4060  * condition does not hold, or if the queue is slow enough to deserve
4061  * only to be kicked off for preserving a high throughput.
4062  */
4063 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4064 {
4065 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4066 		"may_budget_timeout: wait_request %d left %d timeout %d",
4067 		bfq_bfqq_wait_request(bfqq),
4068 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4069 		bfq_bfqq_budget_timeout(bfqq));
4070 
4071 	return (!bfq_bfqq_wait_request(bfqq) ||
4072 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4073 		&&
4074 		bfq_bfqq_budget_timeout(bfqq);
4075 }
4076 
4077 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4078 					     struct bfq_queue *bfqq)
4079 {
4080 	bool rot_without_queueing =
4081 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4082 		bfqq_sequential_and_IO_bound,
4083 		idling_boosts_thr;
4084 
4085 	/* No point in idling for bfqq if it won't get requests any longer */
4086 	if (unlikely(!bfqq_process_refs(bfqq)))
4087 		return false;
4088 
4089 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4090 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4091 
4092 	/*
4093 	 * The next variable takes into account the cases where idling
4094 	 * boosts the throughput.
4095 	 *
4096 	 * The value of the variable is computed considering, first, that
4097 	 * idling is virtually always beneficial for the throughput if:
4098 	 * (a) the device is not NCQ-capable and rotational, or
4099 	 * (b) regardless of the presence of NCQ, the device is rotational and
4100 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4101 	 * (c) regardless of whether it is rotational, the device is
4102 	 *     not NCQ-capable and the request pattern for bfqq is
4103 	 *     I/O-bound and sequential.
4104 	 *
4105 	 * Secondly, and in contrast to the above item (b), idling an
4106 	 * NCQ-capable flash-based device would not boost the
4107 	 * throughput even with sequential I/O; rather it would lower
4108 	 * the throughput in proportion to how fast the device
4109 	 * is. Accordingly, the next variable is true if any of the
4110 	 * above conditions (a), (b) or (c) is true, and, in
4111 	 * particular, happens to be false if bfqd is an NCQ-capable
4112 	 * flash-based device.
4113 	 */
4114 	idling_boosts_thr = rot_without_queueing ||
4115 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4116 		 bfqq_sequential_and_IO_bound);
4117 
4118 	/*
4119 	 * The return value of this function is equal to that of
4120 	 * idling_boosts_thr, unless a special case holds. In this
4121 	 * special case, described below, idling may cause problems to
4122 	 * weight-raised queues.
4123 	 *
4124 	 * When the request pool is saturated (e.g., in the presence
4125 	 * of write hogs), if the processes associated with
4126 	 * non-weight-raised queues ask for requests at a lower rate,
4127 	 * then processes associated with weight-raised queues have a
4128 	 * higher probability to get a request from the pool
4129 	 * immediately (or at least soon) when they need one. Thus
4130 	 * they have a higher probability to actually get a fraction
4131 	 * of the device throughput proportional to their high
4132 	 * weight. This is especially true with NCQ-capable drives,
4133 	 * which enqueue several requests in advance, and further
4134 	 * reorder internally-queued requests.
4135 	 *
4136 	 * For this reason, we force to false the return value if
4137 	 * there are weight-raised busy queues. In this case, and if
4138 	 * bfqq is not weight-raised, this guarantees that the device
4139 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4140 	 * then idling will be guaranteed by another variable, see
4141 	 * below). Combined with the timestamping rules of BFQ (see
4142 	 * [1] for details), this behavior causes bfqq, and hence any
4143 	 * sync non-weight-raised queue, to get a lower number of
4144 	 * requests served, and thus to ask for a lower number of
4145 	 * requests from the request pool, before the busy
4146 	 * weight-raised queues get served again. This often mitigates
4147 	 * starvation problems in the presence of heavy write
4148 	 * workloads and NCQ, thereby guaranteeing a higher
4149 	 * application and system responsiveness in these hostile
4150 	 * scenarios.
4151 	 */
4152 	return idling_boosts_thr &&
4153 		bfqd->wr_busy_queues == 0;
4154 }
4155 
4156 /*
4157  * For a queue that becomes empty, device idling is allowed only if
4158  * this function returns true for that queue. As a consequence, since
4159  * device idling plays a critical role for both throughput boosting
4160  * and service guarantees, the return value of this function plays a
4161  * critical role as well.
4162  *
4163  * In a nutshell, this function returns true only if idling is
4164  * beneficial for throughput or, even if detrimental for throughput,
4165  * idling is however necessary to preserve service guarantees (low
4166  * latency, desired throughput distribution, ...). In particular, on
4167  * NCQ-capable devices, this function tries to return false, so as to
4168  * help keep the drives' internal queues full, whenever this helps the
4169  * device boost the throughput without causing any service-guarantee
4170  * issue.
4171  *
4172  * Most of the issues taken into account to get the return value of
4173  * this function are not trivial. We discuss these issues in the two
4174  * functions providing the main pieces of information needed by this
4175  * function.
4176  */
4177 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4178 {
4179 	struct bfq_data *bfqd = bfqq->bfqd;
4180 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4181 
4182 	/* No point in idling for bfqq if it won't get requests any longer */
4183 	if (unlikely(!bfqq_process_refs(bfqq)))
4184 		return false;
4185 
4186 	if (unlikely(bfqd->strict_guarantees))
4187 		return true;
4188 
4189 	/*
4190 	 * Idling is performed only if slice_idle > 0. In addition, we
4191 	 * do not idle if
4192 	 * (a) bfqq is async
4193 	 * (b) bfqq is in the idle io prio class: in this case we do
4194 	 * not idle because we want to minimize the bandwidth that
4195 	 * queues in this class can steal to higher-priority queues
4196 	 */
4197 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4198 	   bfq_class_idle(bfqq))
4199 		return false;
4200 
4201 	idling_boosts_thr_with_no_issue =
4202 		idling_boosts_thr_without_issues(bfqd, bfqq);
4203 
4204 	idling_needed_for_service_guar =
4205 		idling_needed_for_service_guarantees(bfqd, bfqq);
4206 
4207 	/*
4208 	 * We have now the two components we need to compute the
4209 	 * return value of the function, which is true only if idling
4210 	 * either boosts the throughput (without issues), or is
4211 	 * necessary to preserve service guarantees.
4212 	 */
4213 	return idling_boosts_thr_with_no_issue ||
4214 		idling_needed_for_service_guar;
4215 }
4216 
4217 /*
4218  * If the in-service queue is empty but the function bfq_better_to_idle
4219  * returns true, then:
4220  * 1) the queue must remain in service and cannot be expired, and
4221  * 2) the device must be idled to wait for the possible arrival of a new
4222  *    request for the queue.
4223  * See the comments on the function bfq_better_to_idle for the reasons
4224  * why performing device idling is the best choice to boost the throughput
4225  * and preserve service guarantees when bfq_better_to_idle itself
4226  * returns true.
4227  */
4228 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4229 {
4230 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4231 }
4232 
4233 /*
4234  * This function chooses the queue from which to pick the next extra
4235  * I/O request to inject, if it finds a compatible queue. See the
4236  * comments on bfq_update_inject_limit() for details on the injection
4237  * mechanism, and for the definitions of the quantities mentioned
4238  * below.
4239  */
4240 static struct bfq_queue *
4241 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4242 {
4243 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4244 	unsigned int limit = in_serv_bfqq->inject_limit;
4245 	/*
4246 	 * If
4247 	 * - bfqq is not weight-raised and therefore does not carry
4248 	 *   time-critical I/O,
4249 	 * or
4250 	 * - regardless of whether bfqq is weight-raised, bfqq has
4251 	 *   however a long think time, during which it can absorb the
4252 	 *   effect of an appropriate number of extra I/O requests
4253 	 *   from other queues (see bfq_update_inject_limit for
4254 	 *   details on the computation of this number);
4255 	 * then injection can be performed without restrictions.
4256 	 */
4257 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4258 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4259 
4260 	/*
4261 	 * If
4262 	 * - the baseline total service time could not be sampled yet,
4263 	 *   so the inject limit happens to be still 0, and
4264 	 * - a lot of time has elapsed since the plugging of I/O
4265 	 *   dispatching started, so drive speed is being wasted
4266 	 *   significantly;
4267 	 * then temporarily raise inject limit to one request.
4268 	 */
4269 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4270 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4271 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4272 				      bfqd->bfq_slice_idle)
4273 		)
4274 		limit = 1;
4275 
4276 	if (bfqd->rq_in_driver >= limit)
4277 		return NULL;
4278 
4279 	/*
4280 	 * Linear search of the source queue for injection; but, with
4281 	 * a high probability, very few steps are needed to find a
4282 	 * candidate queue, i.e., a queue with enough budget left for
4283 	 * its next request. In fact:
4284 	 * - BFQ dynamically updates the budget of every queue so as
4285 	 *   to accommodate the expected backlog of the queue;
4286 	 * - if a queue gets all its requests dispatched as injected
4287 	 *   service, then the queue is removed from the active list
4288 	 *   (and re-added only if it gets new requests, but then it
4289 	 *   is assigned again enough budget for its new backlog).
4290 	 */
4291 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4292 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4293 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4294 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4295 		    bfq_bfqq_budget_left(bfqq)) {
4296 			/*
4297 			 * Allow for only one large in-flight request
4298 			 * on non-rotational devices, for the
4299 			 * following reason. On non-rotationl drives,
4300 			 * large requests take much longer than
4301 			 * smaller requests to be served. In addition,
4302 			 * the drive prefers to serve large requests
4303 			 * w.r.t. to small ones, if it can choose. So,
4304 			 * having more than one large requests queued
4305 			 * in the drive may easily make the next first
4306 			 * request of the in-service queue wait for so
4307 			 * long to break bfqq's service guarantees. On
4308 			 * the bright side, large requests let the
4309 			 * drive reach a very high throughput, even if
4310 			 * there is only one in-flight large request
4311 			 * at a time.
4312 			 */
4313 			if (blk_queue_nonrot(bfqd->queue) &&
4314 			    blk_rq_sectors(bfqq->next_rq) >=
4315 			    BFQQ_SECT_THR_NONROT)
4316 				limit = min_t(unsigned int, 1, limit);
4317 			else
4318 				limit = in_serv_bfqq->inject_limit;
4319 
4320 			if (bfqd->rq_in_driver < limit) {
4321 				bfqd->rqs_injected = true;
4322 				return bfqq;
4323 			}
4324 		}
4325 
4326 	return NULL;
4327 }
4328 
4329 /*
4330  * Select a queue for service.  If we have a current queue in service,
4331  * check whether to continue servicing it, or retrieve and set a new one.
4332  */
4333 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4334 {
4335 	struct bfq_queue *bfqq;
4336 	struct request *next_rq;
4337 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4338 
4339 	bfqq = bfqd->in_service_queue;
4340 	if (!bfqq)
4341 		goto new_queue;
4342 
4343 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4344 
4345 	/*
4346 	 * Do not expire bfqq for budget timeout if bfqq may be about
4347 	 * to enjoy device idling. The reason why, in this case, we
4348 	 * prevent bfqq from expiring is the same as in the comments
4349 	 * on the case where bfq_bfqq_must_idle() returns true, in
4350 	 * bfq_completed_request().
4351 	 */
4352 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4353 	    !bfq_bfqq_must_idle(bfqq))
4354 		goto expire;
4355 
4356 check_queue:
4357 	/*
4358 	 * This loop is rarely executed more than once. Even when it
4359 	 * happens, it is much more convenient to re-execute this loop
4360 	 * than to return NULL and trigger a new dispatch to get a
4361 	 * request served.
4362 	 */
4363 	next_rq = bfqq->next_rq;
4364 	/*
4365 	 * If bfqq has requests queued and it has enough budget left to
4366 	 * serve them, keep the queue, otherwise expire it.
4367 	 */
4368 	if (next_rq) {
4369 		if (bfq_serv_to_charge(next_rq, bfqq) >
4370 			bfq_bfqq_budget_left(bfqq)) {
4371 			/*
4372 			 * Expire the queue for budget exhaustion,
4373 			 * which makes sure that the next budget is
4374 			 * enough to serve the next request, even if
4375 			 * it comes from the fifo expired path.
4376 			 */
4377 			reason = BFQQE_BUDGET_EXHAUSTED;
4378 			goto expire;
4379 		} else {
4380 			/*
4381 			 * The idle timer may be pending because we may
4382 			 * not disable disk idling even when a new request
4383 			 * arrives.
4384 			 */
4385 			if (bfq_bfqq_wait_request(bfqq)) {
4386 				/*
4387 				 * If we get here: 1) at least a new request
4388 				 * has arrived but we have not disabled the
4389 				 * timer because the request was too small,
4390 				 * 2) then the block layer has unplugged
4391 				 * the device, causing the dispatch to be
4392 				 * invoked.
4393 				 *
4394 				 * Since the device is unplugged, now the
4395 				 * requests are probably large enough to
4396 				 * provide a reasonable throughput.
4397 				 * So we disable idling.
4398 				 */
4399 				bfq_clear_bfqq_wait_request(bfqq);
4400 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4401 			}
4402 			goto keep_queue;
4403 		}
4404 	}
4405 
4406 	/*
4407 	 * No requests pending. However, if the in-service queue is idling
4408 	 * for a new request, or has requests waiting for a completion and
4409 	 * may idle after their completion, then keep it anyway.
4410 	 *
4411 	 * Yet, inject service from other queues if it boosts
4412 	 * throughput and is possible.
4413 	 */
4414 	if (bfq_bfqq_wait_request(bfqq) ||
4415 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4416 		struct bfq_queue *async_bfqq =
4417 			bfqq->bic && bfqq->bic->bfqq[0] &&
4418 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4419 			bfqq->bic->bfqq[0]->next_rq ?
4420 			bfqq->bic->bfqq[0] : NULL;
4421 
4422 		/*
4423 		 * The next three mutually-exclusive ifs decide
4424 		 * whether to try injection, and choose the queue to
4425 		 * pick an I/O request from.
4426 		 *
4427 		 * The first if checks whether the process associated
4428 		 * with bfqq has also async I/O pending. If so, it
4429 		 * injects such I/O unconditionally. Injecting async
4430 		 * I/O from the same process can cause no harm to the
4431 		 * process. On the contrary, it can only increase
4432 		 * bandwidth and reduce latency for the process.
4433 		 *
4434 		 * The second if checks whether there happens to be a
4435 		 * non-empty waker queue for bfqq, i.e., a queue whose
4436 		 * I/O needs to be completed for bfqq to receive new
4437 		 * I/O. This happens, e.g., if bfqq is associated with
4438 		 * a process that does some sync. A sync generates
4439 		 * extra blocking I/O, which must be completed before
4440 		 * the process associated with bfqq can go on with its
4441 		 * I/O. If the I/O of the waker queue is not served,
4442 		 * then bfqq remains empty, and no I/O is dispatched,
4443 		 * until the idle timeout fires for bfqq. This is
4444 		 * likely to result in lower bandwidth and higher
4445 		 * latencies for bfqq, and in a severe loss of total
4446 		 * throughput. The best action to take is therefore to
4447 		 * serve the waker queue as soon as possible. So do it
4448 		 * (without relying on the third alternative below for
4449 		 * eventually serving waker_bfqq's I/O; see the last
4450 		 * paragraph for further details). This systematic
4451 		 * injection of I/O from the waker queue does not
4452 		 * cause any delay to bfqq's I/O. On the contrary,
4453 		 * next bfqq's I/O is brought forward dramatically,
4454 		 * for it is not blocked for milliseconds.
4455 		 *
4456 		 * The third if checks whether bfqq is a queue for
4457 		 * which it is better to avoid injection. It is so if
4458 		 * bfqq delivers more throughput when served without
4459 		 * any further I/O from other queues in the middle, or
4460 		 * if the service times of bfqq's I/O requests both
4461 		 * count more than overall throughput, and may be
4462 		 * easily increased by injection (this happens if bfqq
4463 		 * has a short think time). If none of these
4464 		 * conditions holds, then a candidate queue for
4465 		 * injection is looked for through
4466 		 * bfq_choose_bfqq_for_injection(). Note that the
4467 		 * latter may return NULL (for example if the inject
4468 		 * limit for bfqq is currently 0).
4469 		 *
4470 		 * NOTE: motivation for the second alternative
4471 		 *
4472 		 * Thanks to the way the inject limit is updated in
4473 		 * bfq_update_has_short_ttime(), it is rather likely
4474 		 * that, if I/O is being plugged for bfqq and the
4475 		 * waker queue has pending I/O requests that are
4476 		 * blocking bfqq's I/O, then the third alternative
4477 		 * above lets the waker queue get served before the
4478 		 * I/O-plugging timeout fires. So one may deem the
4479 		 * second alternative superfluous. It is not, because
4480 		 * the third alternative may be way less effective in
4481 		 * case of a synchronization. For two main
4482 		 * reasons. First, throughput may be low because the
4483 		 * inject limit may be too low to guarantee the same
4484 		 * amount of injected I/O, from the waker queue or
4485 		 * other queues, that the second alternative
4486 		 * guarantees (the second alternative unconditionally
4487 		 * injects a pending I/O request of the waker queue
4488 		 * for each bfq_dispatch_request()). Second, with the
4489 		 * third alternative, the duration of the plugging,
4490 		 * i.e., the time before bfqq finally receives new I/O,
4491 		 * may not be minimized, because the waker queue may
4492 		 * happen to be served only after other queues.
4493 		 */
4494 		if (async_bfqq &&
4495 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4496 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4497 		    bfq_bfqq_budget_left(async_bfqq))
4498 			bfqq = bfqq->bic->bfqq[0];
4499 		else if (bfq_bfqq_has_waker(bfqq) &&
4500 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4501 			   bfqq->next_rq &&
4502 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4503 					      bfqq->waker_bfqq) <=
4504 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4505 			)
4506 			bfqq = bfqq->waker_bfqq;
4507 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4508 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4509 			  !bfq_bfqq_has_short_ttime(bfqq)))
4510 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4511 		else
4512 			bfqq = NULL;
4513 
4514 		goto keep_queue;
4515 	}
4516 
4517 	reason = BFQQE_NO_MORE_REQUESTS;
4518 expire:
4519 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4520 new_queue:
4521 	bfqq = bfq_set_in_service_queue(bfqd);
4522 	if (bfqq) {
4523 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4524 		goto check_queue;
4525 	}
4526 keep_queue:
4527 	if (bfqq)
4528 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4529 	else
4530 		bfq_log(bfqd, "select_queue: no queue returned");
4531 
4532 	return bfqq;
4533 }
4534 
4535 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4536 {
4537 	struct bfq_entity *entity = &bfqq->entity;
4538 
4539 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4540 		bfq_log_bfqq(bfqd, bfqq,
4541 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4542 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4543 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4544 			bfqq->wr_coeff,
4545 			bfqq->entity.weight, bfqq->entity.orig_weight);
4546 
4547 		if (entity->prio_changed)
4548 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4549 
4550 		/*
4551 		 * If the queue was activated in a burst, or too much
4552 		 * time has elapsed from the beginning of this
4553 		 * weight-raising period, then end weight raising.
4554 		 */
4555 		if (bfq_bfqq_in_large_burst(bfqq))
4556 			bfq_bfqq_end_wr(bfqq);
4557 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4558 						bfqq->wr_cur_max_time)) {
4559 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4560 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4561 					       bfq_wr_duration(bfqd)))
4562 				bfq_bfqq_end_wr(bfqq);
4563 			else {
4564 				switch_back_to_interactive_wr(bfqq, bfqd);
4565 				bfqq->entity.prio_changed = 1;
4566 			}
4567 		}
4568 		if (bfqq->wr_coeff > 1 &&
4569 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4570 		    bfqq->service_from_wr > max_service_from_wr) {
4571 			/* see comments on max_service_from_wr */
4572 			bfq_bfqq_end_wr(bfqq);
4573 		}
4574 	}
4575 	/*
4576 	 * To improve latency (for this or other queues), immediately
4577 	 * update weight both if it must be raised and if it must be
4578 	 * lowered. Since, entity may be on some active tree here, and
4579 	 * might have a pending change of its ioprio class, invoke
4580 	 * next function with the last parameter unset (see the
4581 	 * comments on the function).
4582 	 */
4583 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4584 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4585 						entity, false);
4586 }
4587 
4588 /*
4589  * Dispatch next request from bfqq.
4590  */
4591 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4592 						 struct bfq_queue *bfqq)
4593 {
4594 	struct request *rq = bfqq->next_rq;
4595 	unsigned long service_to_charge;
4596 
4597 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4598 
4599 	bfq_bfqq_served(bfqq, service_to_charge);
4600 
4601 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4602 		bfqd->wait_dispatch = false;
4603 		bfqd->waited_rq = rq;
4604 	}
4605 
4606 	bfq_dispatch_remove(bfqd->queue, rq);
4607 
4608 	if (bfqq != bfqd->in_service_queue)
4609 		goto return_rq;
4610 
4611 	/*
4612 	 * If weight raising has to terminate for bfqq, then next
4613 	 * function causes an immediate update of bfqq's weight,
4614 	 * without waiting for next activation. As a consequence, on
4615 	 * expiration, bfqq will be timestamped as if has never been
4616 	 * weight-raised during this service slot, even if it has
4617 	 * received part or even most of the service as a
4618 	 * weight-raised queue. This inflates bfqq's timestamps, which
4619 	 * is beneficial, as bfqq is then more willing to leave the
4620 	 * device immediately to possible other weight-raised queues.
4621 	 */
4622 	bfq_update_wr_data(bfqd, bfqq);
4623 
4624 	/*
4625 	 * Expire bfqq, pretending that its budget expired, if bfqq
4626 	 * belongs to CLASS_IDLE and other queues are waiting for
4627 	 * service.
4628 	 */
4629 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4630 		goto return_rq;
4631 
4632 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4633 
4634 return_rq:
4635 	return rq;
4636 }
4637 
4638 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4639 {
4640 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4641 
4642 	/*
4643 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4644 	 * most a call to dispatch for nothing
4645 	 */
4646 	return !list_empty_careful(&bfqd->dispatch) ||
4647 		bfq_tot_busy_queues(bfqd) > 0;
4648 }
4649 
4650 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4651 {
4652 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4653 	struct request *rq = NULL;
4654 	struct bfq_queue *bfqq = NULL;
4655 
4656 	if (!list_empty(&bfqd->dispatch)) {
4657 		rq = list_first_entry(&bfqd->dispatch, struct request,
4658 				      queuelist);
4659 		list_del_init(&rq->queuelist);
4660 
4661 		bfqq = RQ_BFQQ(rq);
4662 
4663 		if (bfqq) {
4664 			/*
4665 			 * Increment counters here, because this
4666 			 * dispatch does not follow the standard
4667 			 * dispatch flow (where counters are
4668 			 * incremented)
4669 			 */
4670 			bfqq->dispatched++;
4671 
4672 			goto inc_in_driver_start_rq;
4673 		}
4674 
4675 		/*
4676 		 * We exploit the bfq_finish_requeue_request hook to
4677 		 * decrement rq_in_driver, but
4678 		 * bfq_finish_requeue_request will not be invoked on
4679 		 * this request. So, to avoid unbalance, just start
4680 		 * this request, without incrementing rq_in_driver. As
4681 		 * a negative consequence, rq_in_driver is deceptively
4682 		 * lower than it should be while this request is in
4683 		 * service. This may cause bfq_schedule_dispatch to be
4684 		 * invoked uselessly.
4685 		 *
4686 		 * As for implementing an exact solution, the
4687 		 * bfq_finish_requeue_request hook, if defined, is
4688 		 * probably invoked also on this request. So, by
4689 		 * exploiting this hook, we could 1) increment
4690 		 * rq_in_driver here, and 2) decrement it in
4691 		 * bfq_finish_requeue_request. Such a solution would
4692 		 * let the value of the counter be always accurate,
4693 		 * but it would entail using an extra interface
4694 		 * function. This cost seems higher than the benefit,
4695 		 * being the frequency of non-elevator-private
4696 		 * requests very low.
4697 		 */
4698 		goto start_rq;
4699 	}
4700 
4701 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4702 		bfq_tot_busy_queues(bfqd));
4703 
4704 	if (bfq_tot_busy_queues(bfqd) == 0)
4705 		goto exit;
4706 
4707 	/*
4708 	 * Force device to serve one request at a time if
4709 	 * strict_guarantees is true. Forcing this service scheme is
4710 	 * currently the ONLY way to guarantee that the request
4711 	 * service order enforced by the scheduler is respected by a
4712 	 * queueing device. Otherwise the device is free even to make
4713 	 * some unlucky request wait for as long as the device
4714 	 * wishes.
4715 	 *
4716 	 * Of course, serving one request at at time may cause loss of
4717 	 * throughput.
4718 	 */
4719 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4720 		goto exit;
4721 
4722 	bfqq = bfq_select_queue(bfqd);
4723 	if (!bfqq)
4724 		goto exit;
4725 
4726 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4727 
4728 	if (rq) {
4729 inc_in_driver_start_rq:
4730 		bfqd->rq_in_driver++;
4731 start_rq:
4732 		rq->rq_flags |= RQF_STARTED;
4733 	}
4734 exit:
4735 	return rq;
4736 }
4737 
4738 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4739 static void bfq_update_dispatch_stats(struct request_queue *q,
4740 				      struct request *rq,
4741 				      struct bfq_queue *in_serv_queue,
4742 				      bool idle_timer_disabled)
4743 {
4744 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4745 
4746 	if (!idle_timer_disabled && !bfqq)
4747 		return;
4748 
4749 	/*
4750 	 * rq and bfqq are guaranteed to exist until this function
4751 	 * ends, for the following reasons. First, rq can be
4752 	 * dispatched to the device, and then can be completed and
4753 	 * freed, only after this function ends. Second, rq cannot be
4754 	 * merged (and thus freed because of a merge) any longer,
4755 	 * because it has already started. Thus rq cannot be freed
4756 	 * before this function ends, and, since rq has a reference to
4757 	 * bfqq, the same guarantee holds for bfqq too.
4758 	 *
4759 	 * In addition, the following queue lock guarantees that
4760 	 * bfqq_group(bfqq) exists as well.
4761 	 */
4762 	spin_lock_irq(&q->queue_lock);
4763 	if (idle_timer_disabled)
4764 		/*
4765 		 * Since the idle timer has been disabled,
4766 		 * in_serv_queue contained some request when
4767 		 * __bfq_dispatch_request was invoked above, which
4768 		 * implies that rq was picked exactly from
4769 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4770 		 * therefore guaranteed to exist because of the above
4771 		 * arguments.
4772 		 */
4773 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4774 	if (bfqq) {
4775 		struct bfq_group *bfqg = bfqq_group(bfqq);
4776 
4777 		bfqg_stats_update_avg_queue_size(bfqg);
4778 		bfqg_stats_set_start_empty_time(bfqg);
4779 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4780 	}
4781 	spin_unlock_irq(&q->queue_lock);
4782 }
4783 #else
4784 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4785 					     struct request *rq,
4786 					     struct bfq_queue *in_serv_queue,
4787 					     bool idle_timer_disabled) {}
4788 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4789 
4790 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4791 {
4792 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4793 	struct request *rq;
4794 	struct bfq_queue *in_serv_queue;
4795 	bool waiting_rq, idle_timer_disabled;
4796 
4797 	spin_lock_irq(&bfqd->lock);
4798 
4799 	in_serv_queue = bfqd->in_service_queue;
4800 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4801 
4802 	rq = __bfq_dispatch_request(hctx);
4803 
4804 	idle_timer_disabled =
4805 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4806 
4807 	spin_unlock_irq(&bfqd->lock);
4808 
4809 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4810 				  idle_timer_disabled);
4811 
4812 	return rq;
4813 }
4814 
4815 /*
4816  * Task holds one reference to the queue, dropped when task exits.  Each rq
4817  * in-flight on this queue also holds a reference, dropped when rq is freed.
4818  *
4819  * Scheduler lock must be held here. Recall not to use bfqq after calling
4820  * this function on it.
4821  */
4822 void bfq_put_queue(struct bfq_queue *bfqq)
4823 {
4824 	struct bfq_queue *item;
4825 	struct hlist_node *n;
4826 	struct bfq_group *bfqg = bfqq_group(bfqq);
4827 
4828 	if (bfqq->bfqd)
4829 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4830 			     bfqq, bfqq->ref);
4831 
4832 	bfqq->ref--;
4833 	if (bfqq->ref)
4834 		return;
4835 
4836 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4837 		hlist_del_init(&bfqq->burst_list_node);
4838 		/*
4839 		 * Decrement also burst size after the removal, if the
4840 		 * process associated with bfqq is exiting, and thus
4841 		 * does not contribute to the burst any longer. This
4842 		 * decrement helps filter out false positives of large
4843 		 * bursts, when some short-lived process (often due to
4844 		 * the execution of commands by some service) happens
4845 		 * to start and exit while a complex application is
4846 		 * starting, and thus spawning several processes that
4847 		 * do I/O (and that *must not* be treated as a large
4848 		 * burst, see comments on bfq_handle_burst).
4849 		 *
4850 		 * In particular, the decrement is performed only if:
4851 		 * 1) bfqq is not a merged queue, because, if it is,
4852 		 * then this free of bfqq is not triggered by the exit
4853 		 * of the process bfqq is associated with, but exactly
4854 		 * by the fact that bfqq has just been merged.
4855 		 * 2) burst_size is greater than 0, to handle
4856 		 * unbalanced decrements. Unbalanced decrements may
4857 		 * happen in te following case: bfqq is inserted into
4858 		 * the current burst list--without incrementing
4859 		 * bust_size--because of a split, but the current
4860 		 * burst list is not the burst list bfqq belonged to
4861 		 * (see comments on the case of a split in
4862 		 * bfq_set_request).
4863 		 */
4864 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4865 			bfqq->bfqd->burst_size--;
4866 	}
4867 
4868 	/*
4869 	 * bfqq does not exist any longer, so it cannot be woken by
4870 	 * any other queue, and cannot wake any other queue. Then bfqq
4871 	 * must be removed from the woken list of its possible waker
4872 	 * queue, and all queues in the woken list of bfqq must stop
4873 	 * having a waker queue. Strictly speaking, these updates
4874 	 * should be performed when bfqq remains with no I/O source
4875 	 * attached to it, which happens before bfqq gets freed. In
4876 	 * particular, this happens when the last process associated
4877 	 * with bfqq exits or gets associated with a different
4878 	 * queue. However, both events lead to bfqq being freed soon,
4879 	 * and dangling references would come out only after bfqq gets
4880 	 * freed. So these updates are done here, as a simple and safe
4881 	 * way to handle all cases.
4882 	 */
4883 	/* remove bfqq from woken list */
4884 	if (!hlist_unhashed(&bfqq->woken_list_node))
4885 		hlist_del_init(&bfqq->woken_list_node);
4886 
4887 	/* reset waker for all queues in woken list */
4888 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4889 				  woken_list_node) {
4890 		item->waker_bfqq = NULL;
4891 		bfq_clear_bfqq_has_waker(item);
4892 		hlist_del_init(&item->woken_list_node);
4893 	}
4894 
4895 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4896 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4897 
4898 	kmem_cache_free(bfq_pool, bfqq);
4899 	bfqg_and_blkg_put(bfqg);
4900 }
4901 
4902 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4903 {
4904 	struct bfq_queue *__bfqq, *next;
4905 
4906 	/*
4907 	 * If this queue was scheduled to merge with another queue, be
4908 	 * sure to drop the reference taken on that queue (and others in
4909 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4910 	 */
4911 	__bfqq = bfqq->new_bfqq;
4912 	while (__bfqq) {
4913 		if (__bfqq == bfqq)
4914 			break;
4915 		next = __bfqq->new_bfqq;
4916 		bfq_put_queue(__bfqq);
4917 		__bfqq = next;
4918 	}
4919 }
4920 
4921 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4922 {
4923 	if (bfqq == bfqd->in_service_queue) {
4924 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4925 		bfq_schedule_dispatch(bfqd);
4926 	}
4927 
4928 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4929 
4930 	bfq_put_cooperator(bfqq);
4931 
4932 	bfq_release_process_ref(bfqd, bfqq);
4933 }
4934 
4935 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4936 {
4937 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4938 	struct bfq_data *bfqd;
4939 
4940 	if (bfqq)
4941 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4942 
4943 	if (bfqq && bfqd) {
4944 		unsigned long flags;
4945 
4946 		spin_lock_irqsave(&bfqd->lock, flags);
4947 		bfqq->bic = NULL;
4948 		bfq_exit_bfqq(bfqd, bfqq);
4949 		bic_set_bfqq(bic, NULL, is_sync);
4950 		spin_unlock_irqrestore(&bfqd->lock, flags);
4951 	}
4952 }
4953 
4954 static void bfq_exit_icq(struct io_cq *icq)
4955 {
4956 	struct bfq_io_cq *bic = icq_to_bic(icq);
4957 
4958 	bfq_exit_icq_bfqq(bic, true);
4959 	bfq_exit_icq_bfqq(bic, false);
4960 }
4961 
4962 /*
4963  * Update the entity prio values; note that the new values will not
4964  * be used until the next (re)activation.
4965  */
4966 static void
4967 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4968 {
4969 	struct task_struct *tsk = current;
4970 	int ioprio_class;
4971 	struct bfq_data *bfqd = bfqq->bfqd;
4972 
4973 	if (!bfqd)
4974 		return;
4975 
4976 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4977 	switch (ioprio_class) {
4978 	default:
4979 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4980 			"bfq: bad prio class %d\n", ioprio_class);
4981 		/* fall through */
4982 	case IOPRIO_CLASS_NONE:
4983 		/*
4984 		 * No prio set, inherit CPU scheduling settings.
4985 		 */
4986 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4987 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4988 		break;
4989 	case IOPRIO_CLASS_RT:
4990 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4991 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4992 		break;
4993 	case IOPRIO_CLASS_BE:
4994 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4995 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4996 		break;
4997 	case IOPRIO_CLASS_IDLE:
4998 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4999 		bfqq->new_ioprio = 7;
5000 		break;
5001 	}
5002 
5003 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5004 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5005 			bfqq->new_ioprio);
5006 		bfqq->new_ioprio = IOPRIO_BE_NR;
5007 	}
5008 
5009 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5010 	bfqq->entity.prio_changed = 1;
5011 }
5012 
5013 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5014 				       struct bio *bio, bool is_sync,
5015 				       struct bfq_io_cq *bic);
5016 
5017 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5018 {
5019 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5020 	struct bfq_queue *bfqq;
5021 	int ioprio = bic->icq.ioc->ioprio;
5022 
5023 	/*
5024 	 * This condition may trigger on a newly created bic, be sure to
5025 	 * drop the lock before returning.
5026 	 */
5027 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5028 		return;
5029 
5030 	bic->ioprio = ioprio;
5031 
5032 	bfqq = bic_to_bfqq(bic, false);
5033 	if (bfqq) {
5034 		bfq_release_process_ref(bfqd, bfqq);
5035 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5036 		bic_set_bfqq(bic, bfqq, false);
5037 	}
5038 
5039 	bfqq = bic_to_bfqq(bic, true);
5040 	if (bfqq)
5041 		bfq_set_next_ioprio_data(bfqq, bic);
5042 }
5043 
5044 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5045 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5046 {
5047 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5048 	INIT_LIST_HEAD(&bfqq->fifo);
5049 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5050 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5051 	INIT_HLIST_HEAD(&bfqq->woken_list);
5052 
5053 	bfqq->ref = 0;
5054 	bfqq->bfqd = bfqd;
5055 
5056 	if (bic)
5057 		bfq_set_next_ioprio_data(bfqq, bic);
5058 
5059 	if (is_sync) {
5060 		/*
5061 		 * No need to mark as has_short_ttime if in
5062 		 * idle_class, because no device idling is performed
5063 		 * for queues in idle class
5064 		 */
5065 		if (!bfq_class_idle(bfqq))
5066 			/* tentatively mark as has_short_ttime */
5067 			bfq_mark_bfqq_has_short_ttime(bfqq);
5068 		bfq_mark_bfqq_sync(bfqq);
5069 		bfq_mark_bfqq_just_created(bfqq);
5070 	} else
5071 		bfq_clear_bfqq_sync(bfqq);
5072 
5073 	/* set end request to minus infinity from now */
5074 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5075 
5076 	bfq_mark_bfqq_IO_bound(bfqq);
5077 
5078 	bfqq->pid = pid;
5079 
5080 	/* Tentative initial value to trade off between thr and lat */
5081 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5082 	bfqq->budget_timeout = bfq_smallest_from_now();
5083 
5084 	bfqq->wr_coeff = 1;
5085 	bfqq->last_wr_start_finish = jiffies;
5086 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5087 	bfqq->split_time = bfq_smallest_from_now();
5088 
5089 	/*
5090 	 * To not forget the possibly high bandwidth consumed by a
5091 	 * process/queue in the recent past,
5092 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5093 	 * to the current value of bfqq->soft_rt_next_start (see
5094 	 * comments on bfq_bfqq_softrt_next_start).  Set
5095 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5096 	 * no bandwidth so far.
5097 	 */
5098 	bfqq->soft_rt_next_start = jiffies;
5099 
5100 	/* first request is almost certainly seeky */
5101 	bfqq->seek_history = 1;
5102 }
5103 
5104 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5105 					       struct bfq_group *bfqg,
5106 					       int ioprio_class, int ioprio)
5107 {
5108 	switch (ioprio_class) {
5109 	case IOPRIO_CLASS_RT:
5110 		return &bfqg->async_bfqq[0][ioprio];
5111 	case IOPRIO_CLASS_NONE:
5112 		ioprio = IOPRIO_NORM;
5113 		/* fall through */
5114 	case IOPRIO_CLASS_BE:
5115 		return &bfqg->async_bfqq[1][ioprio];
5116 	case IOPRIO_CLASS_IDLE:
5117 		return &bfqg->async_idle_bfqq;
5118 	default:
5119 		return NULL;
5120 	}
5121 }
5122 
5123 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5124 				       struct bio *bio, bool is_sync,
5125 				       struct bfq_io_cq *bic)
5126 {
5127 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5128 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5129 	struct bfq_queue **async_bfqq = NULL;
5130 	struct bfq_queue *bfqq;
5131 	struct bfq_group *bfqg;
5132 
5133 	rcu_read_lock();
5134 
5135 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5136 	if (!bfqg) {
5137 		bfqq = &bfqd->oom_bfqq;
5138 		goto out;
5139 	}
5140 
5141 	if (!is_sync) {
5142 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5143 						  ioprio);
5144 		bfqq = *async_bfqq;
5145 		if (bfqq)
5146 			goto out;
5147 	}
5148 
5149 	bfqq = kmem_cache_alloc_node(bfq_pool,
5150 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5151 				     bfqd->queue->node);
5152 
5153 	if (bfqq) {
5154 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5155 			      is_sync);
5156 		bfq_init_entity(&bfqq->entity, bfqg);
5157 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5158 	} else {
5159 		bfqq = &bfqd->oom_bfqq;
5160 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5161 		goto out;
5162 	}
5163 
5164 	/*
5165 	 * Pin the queue now that it's allocated, scheduler exit will
5166 	 * prune it.
5167 	 */
5168 	if (async_bfqq) {
5169 		bfqq->ref++; /*
5170 			      * Extra group reference, w.r.t. sync
5171 			      * queue. This extra reference is removed
5172 			      * only if bfqq->bfqg disappears, to
5173 			      * guarantee that this queue is not freed
5174 			      * until its group goes away.
5175 			      */
5176 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5177 			     bfqq, bfqq->ref);
5178 		*async_bfqq = bfqq;
5179 	}
5180 
5181 out:
5182 	bfqq->ref++; /* get a process reference to this queue */
5183 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5184 	rcu_read_unlock();
5185 	return bfqq;
5186 }
5187 
5188 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5189 				    struct bfq_queue *bfqq)
5190 {
5191 	struct bfq_ttime *ttime = &bfqq->ttime;
5192 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5193 
5194 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5195 
5196 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5197 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5198 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5199 				     ttime->ttime_samples);
5200 }
5201 
5202 static void
5203 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5204 		       struct request *rq)
5205 {
5206 	bfqq->seek_history <<= 1;
5207 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5208 
5209 	if (bfqq->wr_coeff > 1 &&
5210 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5211 	    BFQQ_TOTALLY_SEEKY(bfqq))
5212 		bfq_bfqq_end_wr(bfqq);
5213 }
5214 
5215 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5216 				       struct bfq_queue *bfqq,
5217 				       struct bfq_io_cq *bic)
5218 {
5219 	bool has_short_ttime = true, state_changed;
5220 
5221 	/*
5222 	 * No need to update has_short_ttime if bfqq is async or in
5223 	 * idle io prio class, or if bfq_slice_idle is zero, because
5224 	 * no device idling is performed for bfqq in this case.
5225 	 */
5226 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5227 	    bfqd->bfq_slice_idle == 0)
5228 		return;
5229 
5230 	/* Idle window just restored, statistics are meaningless. */
5231 	if (time_is_after_eq_jiffies(bfqq->split_time +
5232 				     bfqd->bfq_wr_min_idle_time))
5233 		return;
5234 
5235 	/* Think time is infinite if no process is linked to
5236 	 * bfqq. Otherwise check average think time to
5237 	 * decide whether to mark as has_short_ttime
5238 	 */
5239 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5240 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5241 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5242 		has_short_ttime = false;
5243 
5244 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5245 
5246 	if (has_short_ttime)
5247 		bfq_mark_bfqq_has_short_ttime(bfqq);
5248 	else
5249 		bfq_clear_bfqq_has_short_ttime(bfqq);
5250 
5251 	/*
5252 	 * Until the base value for the total service time gets
5253 	 * finally computed for bfqq, the inject limit does depend on
5254 	 * the think-time state (short|long). In particular, the limit
5255 	 * is 0 or 1 if the think time is deemed, respectively, as
5256 	 * short or long (details in the comments in
5257 	 * bfq_update_inject_limit()). Accordingly, the next
5258 	 * instructions reset the inject limit if the think-time state
5259 	 * has changed and the above base value is still to be
5260 	 * computed.
5261 	 *
5262 	 * However, the reset is performed only if more than 100 ms
5263 	 * have elapsed since the last update of the inject limit, or
5264 	 * (inclusive) if the change is from short to long think
5265 	 * time. The reason for this waiting is as follows.
5266 	 *
5267 	 * bfqq may have a long think time because of a
5268 	 * synchronization with some other queue, i.e., because the
5269 	 * I/O of some other queue may need to be completed for bfqq
5270 	 * to receive new I/O. Details in the comments on the choice
5271 	 * of the queue for injection in bfq_select_queue().
5272 	 *
5273 	 * As stressed in those comments, if such a synchronization is
5274 	 * actually in place, then, without injection on bfqq, the
5275 	 * blocking I/O cannot happen to served while bfqq is in
5276 	 * service. As a consequence, if bfqq is granted
5277 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5278 	 * is dispatched, until the idle timeout fires. This is likely
5279 	 * to result in lower bandwidth and higher latencies for bfqq,
5280 	 * and in a severe loss of total throughput.
5281 	 *
5282 	 * On the opposite end, a non-zero inject limit may allow the
5283 	 * I/O that blocks bfqq to be executed soon, and therefore
5284 	 * bfqq to receive new I/O soon.
5285 	 *
5286 	 * But, if the blocking gets actually eliminated, then the
5287 	 * next think-time sample for bfqq may be very low. This in
5288 	 * turn may cause bfqq's think time to be deemed
5289 	 * short. Without the 100 ms barrier, this new state change
5290 	 * would cause the body of the next if to be executed
5291 	 * immediately. But this would set to 0 the inject
5292 	 * limit. Without injection, the blocking I/O would cause the
5293 	 * think time of bfqq to become long again, and therefore the
5294 	 * inject limit to be raised again, and so on. The only effect
5295 	 * of such a steady oscillation between the two think-time
5296 	 * states would be to prevent effective injection on bfqq.
5297 	 *
5298 	 * In contrast, if the inject limit is not reset during such a
5299 	 * long time interval as 100 ms, then the number of short
5300 	 * think time samples can grow significantly before the reset
5301 	 * is performed. As a consequence, the think time state can
5302 	 * become stable before the reset. Therefore there will be no
5303 	 * state change when the 100 ms elapse, and no reset of the
5304 	 * inject limit. The inject limit remains steadily equal to 1
5305 	 * both during and after the 100 ms. So injection can be
5306 	 * performed at all times, and throughput gets boosted.
5307 	 *
5308 	 * An inject limit equal to 1 is however in conflict, in
5309 	 * general, with the fact that the think time of bfqq is
5310 	 * short, because injection may be likely to delay bfqq's I/O
5311 	 * (as explained in the comments in
5312 	 * bfq_update_inject_limit()). But this does not happen in
5313 	 * this special case, because bfqq's low think time is due to
5314 	 * an effective handling of a synchronization, through
5315 	 * injection. In this special case, bfqq's I/O does not get
5316 	 * delayed by injection; on the contrary, bfqq's I/O is
5317 	 * brought forward, because it is not blocked for
5318 	 * milliseconds.
5319 	 *
5320 	 * In addition, serving the blocking I/O much sooner, and much
5321 	 * more frequently than once per I/O-plugging timeout, makes
5322 	 * it much quicker to detect a waker queue (the concept of
5323 	 * waker queue is defined in the comments in
5324 	 * bfq_add_request()). This makes it possible to start sooner
5325 	 * to boost throughput more effectively, by injecting the I/O
5326 	 * of the waker queue unconditionally on every
5327 	 * bfq_dispatch_request().
5328 	 *
5329 	 * One last, important benefit of not resetting the inject
5330 	 * limit before 100 ms is that, during this time interval, the
5331 	 * base value for the total service time is likely to get
5332 	 * finally computed for bfqq, freeing the inject limit from
5333 	 * its relation with the think time.
5334 	 */
5335 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5336 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5337 				      msecs_to_jiffies(100)) ||
5338 	     !has_short_ttime))
5339 		bfq_reset_inject_limit(bfqd, bfqq);
5340 }
5341 
5342 /*
5343  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5344  * something we should do about it.
5345  */
5346 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5347 			    struct request *rq)
5348 {
5349 	if (rq->cmd_flags & REQ_META)
5350 		bfqq->meta_pending++;
5351 
5352 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5353 
5354 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5355 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5356 				 blk_rq_sectors(rq) < 32;
5357 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5358 
5359 		/*
5360 		 * There is just this request queued: if
5361 		 * - the request is small, and
5362 		 * - we are idling to boost throughput, and
5363 		 * - the queue is not to be expired,
5364 		 * then just exit.
5365 		 *
5366 		 * In this way, if the device is being idled to wait
5367 		 * for a new request from the in-service queue, we
5368 		 * avoid unplugging the device and committing the
5369 		 * device to serve just a small request. In contrast
5370 		 * we wait for the block layer to decide when to
5371 		 * unplug the device: hopefully, new requests will be
5372 		 * merged to this one quickly, then the device will be
5373 		 * unplugged and larger requests will be dispatched.
5374 		 */
5375 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5376 		    !budget_timeout)
5377 			return;
5378 
5379 		/*
5380 		 * A large enough request arrived, or idling is being
5381 		 * performed to preserve service guarantees, or
5382 		 * finally the queue is to be expired: in all these
5383 		 * cases disk idling is to be stopped, so clear
5384 		 * wait_request flag and reset timer.
5385 		 */
5386 		bfq_clear_bfqq_wait_request(bfqq);
5387 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5388 
5389 		/*
5390 		 * The queue is not empty, because a new request just
5391 		 * arrived. Hence we can safely expire the queue, in
5392 		 * case of budget timeout, without risking that the
5393 		 * timestamps of the queue are not updated correctly.
5394 		 * See [1] for more details.
5395 		 */
5396 		if (budget_timeout)
5397 			bfq_bfqq_expire(bfqd, bfqq, false,
5398 					BFQQE_BUDGET_TIMEOUT);
5399 	}
5400 }
5401 
5402 /* returns true if it causes the idle timer to be disabled */
5403 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5404 {
5405 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5406 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5407 	bool waiting, idle_timer_disabled = false;
5408 
5409 	if (new_bfqq) {
5410 		/*
5411 		 * Release the request's reference to the old bfqq
5412 		 * and make sure one is taken to the shared queue.
5413 		 */
5414 		new_bfqq->allocated++;
5415 		bfqq->allocated--;
5416 		new_bfqq->ref++;
5417 		/*
5418 		 * If the bic associated with the process
5419 		 * issuing this request still points to bfqq
5420 		 * (and thus has not been already redirected
5421 		 * to new_bfqq or even some other bfq_queue),
5422 		 * then complete the merge and redirect it to
5423 		 * new_bfqq.
5424 		 */
5425 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5426 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5427 					bfqq, new_bfqq);
5428 
5429 		bfq_clear_bfqq_just_created(bfqq);
5430 		/*
5431 		 * rq is about to be enqueued into new_bfqq,
5432 		 * release rq reference on bfqq
5433 		 */
5434 		bfq_put_queue(bfqq);
5435 		rq->elv.priv[1] = new_bfqq;
5436 		bfqq = new_bfqq;
5437 	}
5438 
5439 	bfq_update_io_thinktime(bfqd, bfqq);
5440 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5441 	bfq_update_io_seektime(bfqd, bfqq, rq);
5442 
5443 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5444 	bfq_add_request(rq);
5445 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5446 
5447 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5448 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5449 
5450 	bfq_rq_enqueued(bfqd, bfqq, rq);
5451 
5452 	return idle_timer_disabled;
5453 }
5454 
5455 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5456 static void bfq_update_insert_stats(struct request_queue *q,
5457 				    struct bfq_queue *bfqq,
5458 				    bool idle_timer_disabled,
5459 				    unsigned int cmd_flags)
5460 {
5461 	if (!bfqq)
5462 		return;
5463 
5464 	/*
5465 	 * bfqq still exists, because it can disappear only after
5466 	 * either it is merged with another queue, or the process it
5467 	 * is associated with exits. But both actions must be taken by
5468 	 * the same process currently executing this flow of
5469 	 * instructions.
5470 	 *
5471 	 * In addition, the following queue lock guarantees that
5472 	 * bfqq_group(bfqq) exists as well.
5473 	 */
5474 	spin_lock_irq(&q->queue_lock);
5475 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5476 	if (idle_timer_disabled)
5477 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5478 	spin_unlock_irq(&q->queue_lock);
5479 }
5480 #else
5481 static inline void bfq_update_insert_stats(struct request_queue *q,
5482 					   struct bfq_queue *bfqq,
5483 					   bool idle_timer_disabled,
5484 					   unsigned int cmd_flags) {}
5485 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5486 
5487 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5488 			       bool at_head)
5489 {
5490 	struct request_queue *q = hctx->queue;
5491 	struct bfq_data *bfqd = q->elevator->elevator_data;
5492 	struct bfq_queue *bfqq;
5493 	bool idle_timer_disabled = false;
5494 	unsigned int cmd_flags;
5495 
5496 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5497 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5498 		bfqg_stats_update_legacy_io(q, rq);
5499 #endif
5500 	spin_lock_irq(&bfqd->lock);
5501 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5502 		spin_unlock_irq(&bfqd->lock);
5503 		return;
5504 	}
5505 
5506 	spin_unlock_irq(&bfqd->lock);
5507 
5508 	blk_mq_sched_request_inserted(rq);
5509 
5510 	spin_lock_irq(&bfqd->lock);
5511 	bfqq = bfq_init_rq(rq);
5512 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5513 		if (at_head)
5514 			list_add(&rq->queuelist, &bfqd->dispatch);
5515 		else
5516 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5517 	} else {
5518 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5519 		/*
5520 		 * Update bfqq, because, if a queue merge has occurred
5521 		 * in __bfq_insert_request, then rq has been
5522 		 * redirected into a new queue.
5523 		 */
5524 		bfqq = RQ_BFQQ(rq);
5525 
5526 		if (rq_mergeable(rq)) {
5527 			elv_rqhash_add(q, rq);
5528 			if (!q->last_merge)
5529 				q->last_merge = rq;
5530 		}
5531 	}
5532 
5533 	/*
5534 	 * Cache cmd_flags before releasing scheduler lock, because rq
5535 	 * may disappear afterwards (for example, because of a request
5536 	 * merge).
5537 	 */
5538 	cmd_flags = rq->cmd_flags;
5539 
5540 	spin_unlock_irq(&bfqd->lock);
5541 
5542 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5543 				cmd_flags);
5544 }
5545 
5546 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5547 				struct list_head *list, bool at_head)
5548 {
5549 	while (!list_empty(list)) {
5550 		struct request *rq;
5551 
5552 		rq = list_first_entry(list, struct request, queuelist);
5553 		list_del_init(&rq->queuelist);
5554 		bfq_insert_request(hctx, rq, at_head);
5555 	}
5556 }
5557 
5558 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5559 {
5560 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5561 
5562 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5563 				       bfqd->rq_in_driver);
5564 
5565 	if (bfqd->hw_tag == 1)
5566 		return;
5567 
5568 	/*
5569 	 * This sample is valid if the number of outstanding requests
5570 	 * is large enough to allow a queueing behavior.  Note that the
5571 	 * sum is not exact, as it's not taking into account deactivated
5572 	 * requests.
5573 	 */
5574 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5575 		return;
5576 
5577 	/*
5578 	 * If active queue hasn't enough requests and can idle, bfq might not
5579 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5580 	 * case
5581 	 */
5582 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5583 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5584 	    BFQ_HW_QUEUE_THRESHOLD &&
5585 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5586 		return;
5587 
5588 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5589 		return;
5590 
5591 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5592 	bfqd->max_rq_in_driver = 0;
5593 	bfqd->hw_tag_samples = 0;
5594 
5595 	bfqd->nonrot_with_queueing =
5596 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5597 }
5598 
5599 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5600 {
5601 	u64 now_ns;
5602 	u32 delta_us;
5603 
5604 	bfq_update_hw_tag(bfqd);
5605 
5606 	bfqd->rq_in_driver--;
5607 	bfqq->dispatched--;
5608 
5609 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5610 		/*
5611 		 * Set budget_timeout (which we overload to store the
5612 		 * time at which the queue remains with no backlog and
5613 		 * no outstanding request; used by the weight-raising
5614 		 * mechanism).
5615 		 */
5616 		bfqq->budget_timeout = jiffies;
5617 
5618 		bfq_weights_tree_remove(bfqd, bfqq);
5619 	}
5620 
5621 	now_ns = ktime_get_ns();
5622 
5623 	bfqq->ttime.last_end_request = now_ns;
5624 
5625 	/*
5626 	 * Using us instead of ns, to get a reasonable precision in
5627 	 * computing rate in next check.
5628 	 */
5629 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5630 
5631 	/*
5632 	 * If the request took rather long to complete, and, according
5633 	 * to the maximum request size recorded, this completion latency
5634 	 * implies that the request was certainly served at a very low
5635 	 * rate (less than 1M sectors/sec), then the whole observation
5636 	 * interval that lasts up to this time instant cannot be a
5637 	 * valid time interval for computing a new peak rate.  Invoke
5638 	 * bfq_update_rate_reset to have the following three steps
5639 	 * taken:
5640 	 * - close the observation interval at the last (previous)
5641 	 *   request dispatch or completion
5642 	 * - compute rate, if possible, for that observation interval
5643 	 * - reset to zero samples, which will trigger a proper
5644 	 *   re-initialization of the observation interval on next
5645 	 *   dispatch
5646 	 */
5647 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5648 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5649 			1UL<<(BFQ_RATE_SHIFT - 10))
5650 		bfq_update_rate_reset(bfqd, NULL);
5651 	bfqd->last_completion = now_ns;
5652 	bfqd->last_completed_rq_bfqq = bfqq;
5653 
5654 	/*
5655 	 * If we are waiting to discover whether the request pattern
5656 	 * of the task associated with the queue is actually
5657 	 * isochronous, and both requisites for this condition to hold
5658 	 * are now satisfied, then compute soft_rt_next_start (see the
5659 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5660 	 * do not compute soft_rt_next_start if bfqq is in interactive
5661 	 * weight raising (see the comments in bfq_bfqq_expire() for
5662 	 * an explanation). We schedule this delayed update when bfqq
5663 	 * expires, if it still has in-flight requests.
5664 	 */
5665 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5666 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5667 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5668 		bfqq->soft_rt_next_start =
5669 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5670 
5671 	/*
5672 	 * If this is the in-service queue, check if it needs to be expired,
5673 	 * or if we want to idle in case it has no pending requests.
5674 	 */
5675 	if (bfqd->in_service_queue == bfqq) {
5676 		if (bfq_bfqq_must_idle(bfqq)) {
5677 			if (bfqq->dispatched == 0)
5678 				bfq_arm_slice_timer(bfqd);
5679 			/*
5680 			 * If we get here, we do not expire bfqq, even
5681 			 * if bfqq was in budget timeout or had no
5682 			 * more requests (as controlled in the next
5683 			 * conditional instructions). The reason for
5684 			 * not expiring bfqq is as follows.
5685 			 *
5686 			 * Here bfqq->dispatched > 0 holds, but
5687 			 * bfq_bfqq_must_idle() returned true. This
5688 			 * implies that, even if no request arrives
5689 			 * for bfqq before bfqq->dispatched reaches 0,
5690 			 * bfqq will, however, not be expired on the
5691 			 * completion event that causes bfqq->dispatch
5692 			 * to reach zero. In contrast, on this event,
5693 			 * bfqq will start enjoying device idling
5694 			 * (I/O-dispatch plugging).
5695 			 *
5696 			 * But, if we expired bfqq here, bfqq would
5697 			 * not have the chance to enjoy device idling
5698 			 * when bfqq->dispatched finally reaches
5699 			 * zero. This would expose bfqq to violation
5700 			 * of its reserved service guarantees.
5701 			 */
5702 			return;
5703 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5704 			bfq_bfqq_expire(bfqd, bfqq, false,
5705 					BFQQE_BUDGET_TIMEOUT);
5706 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5707 			 (bfqq->dispatched == 0 ||
5708 			  !bfq_better_to_idle(bfqq)))
5709 			bfq_bfqq_expire(bfqd, bfqq, false,
5710 					BFQQE_NO_MORE_REQUESTS);
5711 	}
5712 
5713 	if (!bfqd->rq_in_driver)
5714 		bfq_schedule_dispatch(bfqd);
5715 }
5716 
5717 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5718 {
5719 	bfqq->allocated--;
5720 
5721 	bfq_put_queue(bfqq);
5722 }
5723 
5724 /*
5725  * The processes associated with bfqq may happen to generate their
5726  * cumulative I/O at a lower rate than the rate at which the device
5727  * could serve the same I/O. This is rather probable, e.g., if only
5728  * one process is associated with bfqq and the device is an SSD. It
5729  * results in bfqq becoming often empty while in service. In this
5730  * respect, if BFQ is allowed to switch to another queue when bfqq
5731  * remains empty, then the device goes on being fed with I/O requests,
5732  * and the throughput is not affected. In contrast, if BFQ is not
5733  * allowed to switch to another queue---because bfqq is sync and
5734  * I/O-dispatch needs to be plugged while bfqq is temporarily
5735  * empty---then, during the service of bfqq, there will be frequent
5736  * "service holes", i.e., time intervals during which bfqq gets empty
5737  * and the device can only consume the I/O already queued in its
5738  * hardware queues. During service holes, the device may even get to
5739  * remaining idle. In the end, during the service of bfqq, the device
5740  * is driven at a lower speed than the one it can reach with the kind
5741  * of I/O flowing through bfqq.
5742  *
5743  * To counter this loss of throughput, BFQ implements a "request
5744  * injection mechanism", which tries to fill the above service holes
5745  * with I/O requests taken from other queues. The hard part in this
5746  * mechanism is finding the right amount of I/O to inject, so as to
5747  * both boost throughput and not break bfqq's bandwidth and latency
5748  * guarantees. In this respect, the mechanism maintains a per-queue
5749  * inject limit, computed as below. While bfqq is empty, the injection
5750  * mechanism dispatches extra I/O requests only until the total number
5751  * of I/O requests in flight---i.e., already dispatched but not yet
5752  * completed---remains lower than this limit.
5753  *
5754  * A first definition comes in handy to introduce the algorithm by
5755  * which the inject limit is computed.  We define as first request for
5756  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5757  * service, and causes bfqq to switch from empty to non-empty. The
5758  * algorithm updates the limit as a function of the effect of
5759  * injection on the service times of only the first requests of
5760  * bfqq. The reason for this restriction is that these are the
5761  * requests whose service time is affected most, because they are the
5762  * first to arrive after injection possibly occurred.
5763  *
5764  * To evaluate the effect of injection, the algorithm measures the
5765  * "total service time" of first requests. We define as total service
5766  * time of an I/O request, the time that elapses since when the
5767  * request is enqueued into bfqq, to when it is completed. This
5768  * quantity allows the whole effect of injection to be measured. It is
5769  * easy to see why. Suppose that some requests of other queues are
5770  * actually injected while bfqq is empty, and that a new request R
5771  * then arrives for bfqq. If the device does start to serve all or
5772  * part of the injected requests during the service hole, then,
5773  * because of this extra service, it may delay the next invocation of
5774  * the dispatch hook of BFQ. Then, even after R gets eventually
5775  * dispatched, the device may delay the actual service of R if it is
5776  * still busy serving the extra requests, or if it decides to serve,
5777  * before R, some extra request still present in its queues. As a
5778  * conclusion, the cumulative extra delay caused by injection can be
5779  * easily evaluated by just comparing the total service time of first
5780  * requests with and without injection.
5781  *
5782  * The limit-update algorithm works as follows. On the arrival of a
5783  * first request of bfqq, the algorithm measures the total time of the
5784  * request only if one of the three cases below holds, and, for each
5785  * case, it updates the limit as described below:
5786  *
5787  * (1) If there is no in-flight request. This gives a baseline for the
5788  *     total service time of the requests of bfqq. If the baseline has
5789  *     not been computed yet, then, after computing it, the limit is
5790  *     set to 1, to start boosting throughput, and to prepare the
5791  *     ground for the next case. If the baseline has already been
5792  *     computed, then it is updated, in case it results to be lower
5793  *     than the previous value.
5794  *
5795  * (2) If the limit is higher than 0 and there are in-flight
5796  *     requests. By comparing the total service time in this case with
5797  *     the above baseline, it is possible to know at which extent the
5798  *     current value of the limit is inflating the total service
5799  *     time. If the inflation is below a certain threshold, then bfqq
5800  *     is assumed to be suffering from no perceivable loss of its
5801  *     service guarantees, and the limit is even tentatively
5802  *     increased. If the inflation is above the threshold, then the
5803  *     limit is decreased. Due to the lack of any hysteresis, this
5804  *     logic makes the limit oscillate even in steady workload
5805  *     conditions. Yet we opted for it, because it is fast in reaching
5806  *     the best value for the limit, as a function of the current I/O
5807  *     workload. To reduce oscillations, this step is disabled for a
5808  *     short time interval after the limit happens to be decreased.
5809  *
5810  * (3) Periodically, after resetting the limit, to make sure that the
5811  *     limit eventually drops in case the workload changes. This is
5812  *     needed because, after the limit has gone safely up for a
5813  *     certain workload, it is impossible to guess whether the
5814  *     baseline total service time may have changed, without measuring
5815  *     it again without injection. A more effective version of this
5816  *     step might be to just sample the baseline, by interrupting
5817  *     injection only once, and then to reset/lower the limit only if
5818  *     the total service time with the current limit does happen to be
5819  *     too large.
5820  *
5821  * More details on each step are provided in the comments on the
5822  * pieces of code that implement these steps: the branch handling the
5823  * transition from empty to non empty in bfq_add_request(), the branch
5824  * handling injection in bfq_select_queue(), and the function
5825  * bfq_choose_bfqq_for_injection(). These comments also explain some
5826  * exceptions, made by the injection mechanism in some special cases.
5827  */
5828 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5829 				    struct bfq_queue *bfqq)
5830 {
5831 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5832 	unsigned int old_limit = bfqq->inject_limit;
5833 
5834 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5835 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5836 
5837 		if (tot_time_ns >= threshold && old_limit > 0) {
5838 			bfqq->inject_limit--;
5839 			bfqq->decrease_time_jif = jiffies;
5840 		} else if (tot_time_ns < threshold &&
5841 			   old_limit <= bfqd->max_rq_in_driver)
5842 			bfqq->inject_limit++;
5843 	}
5844 
5845 	/*
5846 	 * Either we still have to compute the base value for the
5847 	 * total service time, and there seem to be the right
5848 	 * conditions to do it, or we can lower the last base value
5849 	 * computed.
5850 	 *
5851 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5852 	 * request in flight, because this function is in the code
5853 	 * path that handles the completion of a request of bfqq, and,
5854 	 * in particular, this function is executed before
5855 	 * bfqd->rq_in_driver is decremented in such a code path.
5856 	 */
5857 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5858 	    tot_time_ns < bfqq->last_serv_time_ns) {
5859 		if (bfqq->last_serv_time_ns == 0) {
5860 			/*
5861 			 * Now we certainly have a base value: make sure we
5862 			 * start trying injection.
5863 			 */
5864 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5865 		}
5866 		bfqq->last_serv_time_ns = tot_time_ns;
5867 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5868 		/*
5869 		 * No I/O injected and no request still in service in
5870 		 * the drive: these are the exact conditions for
5871 		 * computing the base value of the total service time
5872 		 * for bfqq. So let's update this value, because it is
5873 		 * rather variable. For example, it varies if the size
5874 		 * or the spatial locality of the I/O requests in bfqq
5875 		 * change.
5876 		 */
5877 		bfqq->last_serv_time_ns = tot_time_ns;
5878 
5879 
5880 	/* update complete, not waiting for any request completion any longer */
5881 	bfqd->waited_rq = NULL;
5882 	bfqd->rqs_injected = false;
5883 }
5884 
5885 /*
5886  * Handle either a requeue or a finish for rq. The things to do are
5887  * the same in both cases: all references to rq are to be dropped. In
5888  * particular, rq is considered completed from the point of view of
5889  * the scheduler.
5890  */
5891 static void bfq_finish_requeue_request(struct request *rq)
5892 {
5893 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5894 	struct bfq_data *bfqd;
5895 
5896 	/*
5897 	 * Requeue and finish hooks are invoked in blk-mq without
5898 	 * checking whether the involved request is actually still
5899 	 * referenced in the scheduler. To handle this fact, the
5900 	 * following two checks make this function exit in case of
5901 	 * spurious invocations, for which there is nothing to do.
5902 	 *
5903 	 * First, check whether rq has nothing to do with an elevator.
5904 	 */
5905 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
5906 		return;
5907 
5908 	/*
5909 	 * rq either is not associated with any icq, or is an already
5910 	 * requeued request that has not (yet) been re-inserted into
5911 	 * a bfq_queue.
5912 	 */
5913 	if (!rq->elv.icq || !bfqq)
5914 		return;
5915 
5916 	bfqd = bfqq->bfqd;
5917 
5918 	if (rq->rq_flags & RQF_STARTED)
5919 		bfqg_stats_update_completion(bfqq_group(bfqq),
5920 					     rq->start_time_ns,
5921 					     rq->io_start_time_ns,
5922 					     rq->cmd_flags);
5923 
5924 	if (likely(rq->rq_flags & RQF_STARTED)) {
5925 		unsigned long flags;
5926 
5927 		spin_lock_irqsave(&bfqd->lock, flags);
5928 
5929 		if (rq == bfqd->waited_rq)
5930 			bfq_update_inject_limit(bfqd, bfqq);
5931 
5932 		bfq_completed_request(bfqq, bfqd);
5933 		bfq_finish_requeue_request_body(bfqq);
5934 
5935 		spin_unlock_irqrestore(&bfqd->lock, flags);
5936 	} else {
5937 		/*
5938 		 * Request rq may be still/already in the scheduler,
5939 		 * in which case we need to remove it (this should
5940 		 * never happen in case of requeue). And we cannot
5941 		 * defer such a check and removal, to avoid
5942 		 * inconsistencies in the time interval from the end
5943 		 * of this function to the start of the deferred work.
5944 		 * This situation seems to occur only in process
5945 		 * context, as a consequence of a merge. In the
5946 		 * current version of the code, this implies that the
5947 		 * lock is held.
5948 		 */
5949 
5950 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5951 			bfq_remove_request(rq->q, rq);
5952 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5953 						    rq->cmd_flags);
5954 		}
5955 		bfq_finish_requeue_request_body(bfqq);
5956 	}
5957 
5958 	/*
5959 	 * Reset private fields. In case of a requeue, this allows
5960 	 * this function to correctly do nothing if it is spuriously
5961 	 * invoked again on this same request (see the check at the
5962 	 * beginning of the function). Probably, a better general
5963 	 * design would be to prevent blk-mq from invoking the requeue
5964 	 * or finish hooks of an elevator, for a request that is not
5965 	 * referred by that elevator.
5966 	 *
5967 	 * Resetting the following fields would break the
5968 	 * request-insertion logic if rq is re-inserted into a bfq
5969 	 * internal queue, without a re-preparation. Here we assume
5970 	 * that re-insertions of requeued requests, without
5971 	 * re-preparation, can happen only for pass_through or at_head
5972 	 * requests (which are not re-inserted into bfq internal
5973 	 * queues).
5974 	 */
5975 	rq->elv.priv[0] = NULL;
5976 	rq->elv.priv[1] = NULL;
5977 }
5978 
5979 /*
5980  * Removes the association between the current task and bfqq, assuming
5981  * that bic points to the bfq iocontext of the task.
5982  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5983  * was the last process referring to that bfqq.
5984  */
5985 static struct bfq_queue *
5986 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5987 {
5988 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5989 
5990 	if (bfqq_process_refs(bfqq) == 1) {
5991 		bfqq->pid = current->pid;
5992 		bfq_clear_bfqq_coop(bfqq);
5993 		bfq_clear_bfqq_split_coop(bfqq);
5994 		return bfqq;
5995 	}
5996 
5997 	bic_set_bfqq(bic, NULL, 1);
5998 
5999 	bfq_put_cooperator(bfqq);
6000 
6001 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6002 	return NULL;
6003 }
6004 
6005 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6006 						   struct bfq_io_cq *bic,
6007 						   struct bio *bio,
6008 						   bool split, bool is_sync,
6009 						   bool *new_queue)
6010 {
6011 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6012 
6013 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6014 		return bfqq;
6015 
6016 	if (new_queue)
6017 		*new_queue = true;
6018 
6019 	if (bfqq)
6020 		bfq_put_queue(bfqq);
6021 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6022 
6023 	bic_set_bfqq(bic, bfqq, is_sync);
6024 	if (split && is_sync) {
6025 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6026 		    bic->saved_in_large_burst)
6027 			bfq_mark_bfqq_in_large_burst(bfqq);
6028 		else {
6029 			bfq_clear_bfqq_in_large_burst(bfqq);
6030 			if (bic->was_in_burst_list)
6031 				/*
6032 				 * If bfqq was in the current
6033 				 * burst list before being
6034 				 * merged, then we have to add
6035 				 * it back. And we do not need
6036 				 * to increase burst_size, as
6037 				 * we did not decrement
6038 				 * burst_size when we removed
6039 				 * bfqq from the burst list as
6040 				 * a consequence of a merge
6041 				 * (see comments in
6042 				 * bfq_put_queue). In this
6043 				 * respect, it would be rather
6044 				 * costly to know whether the
6045 				 * current burst list is still
6046 				 * the same burst list from
6047 				 * which bfqq was removed on
6048 				 * the merge. To avoid this
6049 				 * cost, if bfqq was in a
6050 				 * burst list, then we add
6051 				 * bfqq to the current burst
6052 				 * list without any further
6053 				 * check. This can cause
6054 				 * inappropriate insertions,
6055 				 * but rarely enough to not
6056 				 * harm the detection of large
6057 				 * bursts significantly.
6058 				 */
6059 				hlist_add_head(&bfqq->burst_list_node,
6060 					       &bfqd->burst_list);
6061 		}
6062 		bfqq->split_time = jiffies;
6063 	}
6064 
6065 	return bfqq;
6066 }
6067 
6068 /*
6069  * Only reset private fields. The actual request preparation will be
6070  * performed by bfq_init_rq, when rq is either inserted or merged. See
6071  * comments on bfq_init_rq for the reason behind this delayed
6072  * preparation.
6073  */
6074 static void bfq_prepare_request(struct request *rq, struct bio *bio)
6075 {
6076 	/*
6077 	 * Regardless of whether we have an icq attached, we have to
6078 	 * clear the scheduler pointers, as they might point to
6079 	 * previously allocated bic/bfqq structs.
6080 	 */
6081 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6082 }
6083 
6084 /*
6085  * If needed, init rq, allocate bfq data structures associated with
6086  * rq, and increment reference counters in the destination bfq_queue
6087  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6088  * not associated with any bfq_queue.
6089  *
6090  * This function is invoked by the functions that perform rq insertion
6091  * or merging. One may have expected the above preparation operations
6092  * to be performed in bfq_prepare_request, and not delayed to when rq
6093  * is inserted or merged. The rationale behind this delayed
6094  * preparation is that, after the prepare_request hook is invoked for
6095  * rq, rq may still be transformed into a request with no icq, i.e., a
6096  * request not associated with any queue. No bfq hook is invoked to
6097  * signal this transformation. As a consequence, should these
6098  * preparation operations be performed when the prepare_request hook
6099  * is invoked, and should rq be transformed one moment later, bfq
6100  * would end up in an inconsistent state, because it would have
6101  * incremented some queue counters for an rq destined to
6102  * transformation, without any chance to correctly lower these
6103  * counters back. In contrast, no transformation can still happen for
6104  * rq after rq has been inserted or merged. So, it is safe to execute
6105  * these preparation operations when rq is finally inserted or merged.
6106  */
6107 static struct bfq_queue *bfq_init_rq(struct request *rq)
6108 {
6109 	struct request_queue *q = rq->q;
6110 	struct bio *bio = rq->bio;
6111 	struct bfq_data *bfqd = q->elevator->elevator_data;
6112 	struct bfq_io_cq *bic;
6113 	const int is_sync = rq_is_sync(rq);
6114 	struct bfq_queue *bfqq;
6115 	bool new_queue = false;
6116 	bool bfqq_already_existing = false, split = false;
6117 
6118 	if (unlikely(!rq->elv.icq))
6119 		return NULL;
6120 
6121 	/*
6122 	 * Assuming that elv.priv[1] is set only if everything is set
6123 	 * for this rq. This holds true, because this function is
6124 	 * invoked only for insertion or merging, and, after such
6125 	 * events, a request cannot be manipulated any longer before
6126 	 * being removed from bfq.
6127 	 */
6128 	if (rq->elv.priv[1])
6129 		return rq->elv.priv[1];
6130 
6131 	bic = icq_to_bic(rq->elv.icq);
6132 
6133 	bfq_check_ioprio_change(bic, bio);
6134 
6135 	bfq_bic_update_cgroup(bic, bio);
6136 
6137 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6138 					 &new_queue);
6139 
6140 	if (likely(!new_queue)) {
6141 		/* If the queue was seeky for too long, break it apart. */
6142 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6143 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6144 
6145 			/* Update bic before losing reference to bfqq */
6146 			if (bfq_bfqq_in_large_burst(bfqq))
6147 				bic->saved_in_large_burst = true;
6148 
6149 			bfqq = bfq_split_bfqq(bic, bfqq);
6150 			split = true;
6151 
6152 			if (!bfqq)
6153 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6154 								 true, is_sync,
6155 								 NULL);
6156 			else
6157 				bfqq_already_existing = true;
6158 		}
6159 	}
6160 
6161 	bfqq->allocated++;
6162 	bfqq->ref++;
6163 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6164 		     rq, bfqq, bfqq->ref);
6165 
6166 	rq->elv.priv[0] = bic;
6167 	rq->elv.priv[1] = bfqq;
6168 
6169 	/*
6170 	 * If a bfq_queue has only one process reference, it is owned
6171 	 * by only this bic: we can then set bfqq->bic = bic. in
6172 	 * addition, if the queue has also just been split, we have to
6173 	 * resume its state.
6174 	 */
6175 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6176 		bfqq->bic = bic;
6177 		if (split) {
6178 			/*
6179 			 * The queue has just been split from a shared
6180 			 * queue: restore the idle window and the
6181 			 * possible weight raising period.
6182 			 */
6183 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6184 					      bfqq_already_existing);
6185 		}
6186 	}
6187 
6188 	/*
6189 	 * Consider bfqq as possibly belonging to a burst of newly
6190 	 * created queues only if:
6191 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6192 	 * or
6193 	 * 2) There is no other active queue. In fact, if, in
6194 	 *    contrast, there are active queues not belonging to the
6195 	 *    possible burst bfqq may belong to, then there is no gain
6196 	 *    in considering bfqq as belonging to a burst, and
6197 	 *    therefore in not weight-raising bfqq. See comments on
6198 	 *    bfq_handle_burst().
6199 	 *
6200 	 * This filtering also helps eliminating false positives,
6201 	 * occurring when bfqq does not belong to an actual large
6202 	 * burst, but some background task (e.g., a service) happens
6203 	 * to trigger the creation of new queues very close to when
6204 	 * bfqq and its possible companion queues are created. See
6205 	 * comments on bfq_handle_burst() for further details also on
6206 	 * this issue.
6207 	 */
6208 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6209 		     (bfqd->burst_size > 0 ||
6210 		      bfq_tot_busy_queues(bfqd) == 0)))
6211 		bfq_handle_burst(bfqd, bfqq);
6212 
6213 	return bfqq;
6214 }
6215 
6216 static void
6217 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6218 {
6219 	enum bfqq_expiration reason;
6220 	unsigned long flags;
6221 
6222 	spin_lock_irqsave(&bfqd->lock, flags);
6223 
6224 	/*
6225 	 * Considering that bfqq may be in race, we should firstly check
6226 	 * whether bfqq is in service before doing something on it. If
6227 	 * the bfqq in race is not in service, it has already been expired
6228 	 * through __bfq_bfqq_expire func and its wait_request flags has
6229 	 * been cleared in __bfq_bfqd_reset_in_service func.
6230 	 */
6231 	if (bfqq != bfqd->in_service_queue) {
6232 		spin_unlock_irqrestore(&bfqd->lock, flags);
6233 		return;
6234 	}
6235 
6236 	bfq_clear_bfqq_wait_request(bfqq);
6237 
6238 	if (bfq_bfqq_budget_timeout(bfqq))
6239 		/*
6240 		 * Also here the queue can be safely expired
6241 		 * for budget timeout without wasting
6242 		 * guarantees
6243 		 */
6244 		reason = BFQQE_BUDGET_TIMEOUT;
6245 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6246 		/*
6247 		 * The queue may not be empty upon timer expiration,
6248 		 * because we may not disable the timer when the
6249 		 * first request of the in-service queue arrives
6250 		 * during disk idling.
6251 		 */
6252 		reason = BFQQE_TOO_IDLE;
6253 	else
6254 		goto schedule_dispatch;
6255 
6256 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6257 
6258 schedule_dispatch:
6259 	spin_unlock_irqrestore(&bfqd->lock, flags);
6260 	bfq_schedule_dispatch(bfqd);
6261 }
6262 
6263 /*
6264  * Handler of the expiration of the timer running if the in-service queue
6265  * is idling inside its time slice.
6266  */
6267 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6268 {
6269 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6270 					     idle_slice_timer);
6271 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6272 
6273 	/*
6274 	 * Theoretical race here: the in-service queue can be NULL or
6275 	 * different from the queue that was idling if a new request
6276 	 * arrives for the current queue and there is a full dispatch
6277 	 * cycle that changes the in-service queue.  This can hardly
6278 	 * happen, but in the worst case we just expire a queue too
6279 	 * early.
6280 	 */
6281 	if (bfqq)
6282 		bfq_idle_slice_timer_body(bfqd, bfqq);
6283 
6284 	return HRTIMER_NORESTART;
6285 }
6286 
6287 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6288 				 struct bfq_queue **bfqq_ptr)
6289 {
6290 	struct bfq_queue *bfqq = *bfqq_ptr;
6291 
6292 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6293 	if (bfqq) {
6294 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6295 
6296 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6297 			     bfqq, bfqq->ref);
6298 		bfq_put_queue(bfqq);
6299 		*bfqq_ptr = NULL;
6300 	}
6301 }
6302 
6303 /*
6304  * Release all the bfqg references to its async queues.  If we are
6305  * deallocating the group these queues may still contain requests, so
6306  * we reparent them to the root cgroup (i.e., the only one that will
6307  * exist for sure until all the requests on a device are gone).
6308  */
6309 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6310 {
6311 	int i, j;
6312 
6313 	for (i = 0; i < 2; i++)
6314 		for (j = 0; j < IOPRIO_BE_NR; j++)
6315 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6316 
6317 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6318 }
6319 
6320 /*
6321  * See the comments on bfq_limit_depth for the purpose of
6322  * the depths set in the function. Return minimum shallow depth we'll use.
6323  */
6324 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6325 				      struct sbitmap_queue *bt)
6326 {
6327 	unsigned int i, j, min_shallow = UINT_MAX;
6328 
6329 	/*
6330 	 * In-word depths if no bfq_queue is being weight-raised:
6331 	 * leaving 25% of tags only for sync reads.
6332 	 *
6333 	 * In next formulas, right-shift the value
6334 	 * (1U<<bt->sb.shift), instead of computing directly
6335 	 * (1U<<(bt->sb.shift - something)), to be robust against
6336 	 * any possible value of bt->sb.shift, without having to
6337 	 * limit 'something'.
6338 	 */
6339 	/* no more than 50% of tags for async I/O */
6340 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6341 	/*
6342 	 * no more than 75% of tags for sync writes (25% extra tags
6343 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6344 	 * writes)
6345 	 */
6346 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6347 
6348 	/*
6349 	 * In-word depths in case some bfq_queue is being weight-
6350 	 * raised: leaving ~63% of tags for sync reads. This is the
6351 	 * highest percentage for which, in our tests, application
6352 	 * start-up times didn't suffer from any regression due to tag
6353 	 * shortage.
6354 	 */
6355 	/* no more than ~18% of tags for async I/O */
6356 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6357 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6358 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6359 
6360 	for (i = 0; i < 2; i++)
6361 		for (j = 0; j < 2; j++)
6362 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6363 
6364 	return min_shallow;
6365 }
6366 
6367 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6368 {
6369 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6370 	struct blk_mq_tags *tags = hctx->sched_tags;
6371 	unsigned int min_shallow;
6372 
6373 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
6374 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
6375 }
6376 
6377 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6378 {
6379 	bfq_depth_updated(hctx);
6380 	return 0;
6381 }
6382 
6383 static void bfq_exit_queue(struct elevator_queue *e)
6384 {
6385 	struct bfq_data *bfqd = e->elevator_data;
6386 	struct bfq_queue *bfqq, *n;
6387 
6388 	hrtimer_cancel(&bfqd->idle_slice_timer);
6389 
6390 	spin_lock_irq(&bfqd->lock);
6391 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6392 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6393 	spin_unlock_irq(&bfqd->lock);
6394 
6395 	hrtimer_cancel(&bfqd->idle_slice_timer);
6396 
6397 	/* release oom-queue reference to root group */
6398 	bfqg_and_blkg_put(bfqd->root_group);
6399 
6400 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6401 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6402 #else
6403 	spin_lock_irq(&bfqd->lock);
6404 	bfq_put_async_queues(bfqd, bfqd->root_group);
6405 	kfree(bfqd->root_group);
6406 	spin_unlock_irq(&bfqd->lock);
6407 #endif
6408 
6409 	kfree(bfqd);
6410 }
6411 
6412 static void bfq_init_root_group(struct bfq_group *root_group,
6413 				struct bfq_data *bfqd)
6414 {
6415 	int i;
6416 
6417 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6418 	root_group->entity.parent = NULL;
6419 	root_group->my_entity = NULL;
6420 	root_group->bfqd = bfqd;
6421 #endif
6422 	root_group->rq_pos_tree = RB_ROOT;
6423 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6424 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6425 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6426 }
6427 
6428 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6429 {
6430 	struct bfq_data *bfqd;
6431 	struct elevator_queue *eq;
6432 
6433 	eq = elevator_alloc(q, e);
6434 	if (!eq)
6435 		return -ENOMEM;
6436 
6437 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6438 	if (!bfqd) {
6439 		kobject_put(&eq->kobj);
6440 		return -ENOMEM;
6441 	}
6442 	eq->elevator_data = bfqd;
6443 
6444 	spin_lock_irq(&q->queue_lock);
6445 	q->elevator = eq;
6446 	spin_unlock_irq(&q->queue_lock);
6447 
6448 	/*
6449 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6450 	 * Grab a permanent reference to it, so that the normal code flow
6451 	 * will not attempt to free it.
6452 	 */
6453 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6454 	bfqd->oom_bfqq.ref++;
6455 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6456 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6457 	bfqd->oom_bfqq.entity.new_weight =
6458 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6459 
6460 	/* oom_bfqq does not participate to bursts */
6461 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6462 
6463 	/*
6464 	 * Trigger weight initialization, according to ioprio, at the
6465 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6466 	 * class won't be changed any more.
6467 	 */
6468 	bfqd->oom_bfqq.entity.prio_changed = 1;
6469 
6470 	bfqd->queue = q;
6471 
6472 	INIT_LIST_HEAD(&bfqd->dispatch);
6473 
6474 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6475 		     HRTIMER_MODE_REL);
6476 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6477 
6478 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6479 	bfqd->num_groups_with_pending_reqs = 0;
6480 
6481 	INIT_LIST_HEAD(&bfqd->active_list);
6482 	INIT_LIST_HEAD(&bfqd->idle_list);
6483 	INIT_HLIST_HEAD(&bfqd->burst_list);
6484 
6485 	bfqd->hw_tag = -1;
6486 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6487 
6488 	bfqd->bfq_max_budget = bfq_default_max_budget;
6489 
6490 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6491 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6492 	bfqd->bfq_back_max = bfq_back_max;
6493 	bfqd->bfq_back_penalty = bfq_back_penalty;
6494 	bfqd->bfq_slice_idle = bfq_slice_idle;
6495 	bfqd->bfq_timeout = bfq_timeout;
6496 
6497 	bfqd->bfq_requests_within_timer = 120;
6498 
6499 	bfqd->bfq_large_burst_thresh = 8;
6500 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6501 
6502 	bfqd->low_latency = true;
6503 
6504 	/*
6505 	 * Trade-off between responsiveness and fairness.
6506 	 */
6507 	bfqd->bfq_wr_coeff = 30;
6508 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6509 	bfqd->bfq_wr_max_time = 0;
6510 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6511 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6512 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6513 					      * Approximate rate required
6514 					      * to playback or record a
6515 					      * high-definition compressed
6516 					      * video.
6517 					      */
6518 	bfqd->wr_busy_queues = 0;
6519 
6520 	/*
6521 	 * Begin by assuming, optimistically, that the device peak
6522 	 * rate is equal to 2/3 of the highest reference rate.
6523 	 */
6524 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6525 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6526 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6527 
6528 	spin_lock_init(&bfqd->lock);
6529 
6530 	/*
6531 	 * The invocation of the next bfq_create_group_hierarchy
6532 	 * function is the head of a chain of function calls
6533 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6534 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6535 	 * has_work hook function. For this reason,
6536 	 * bfq_create_group_hierarchy is invoked only after all
6537 	 * scheduler data has been initialized, apart from the fields
6538 	 * that can be initialized only after invoking
6539 	 * bfq_create_group_hierarchy. This, in particular, enables
6540 	 * has_work to correctly return false. Of course, to avoid
6541 	 * other inconsistencies, the blk-mq stack must then refrain
6542 	 * from invoking further scheduler hooks before this init
6543 	 * function is finished.
6544 	 */
6545 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6546 	if (!bfqd->root_group)
6547 		goto out_free;
6548 	bfq_init_root_group(bfqd->root_group, bfqd);
6549 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6550 
6551 	wbt_disable_default(q);
6552 	return 0;
6553 
6554 out_free:
6555 	kfree(bfqd);
6556 	kobject_put(&eq->kobj);
6557 	return -ENOMEM;
6558 }
6559 
6560 static void bfq_slab_kill(void)
6561 {
6562 	kmem_cache_destroy(bfq_pool);
6563 }
6564 
6565 static int __init bfq_slab_setup(void)
6566 {
6567 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6568 	if (!bfq_pool)
6569 		return -ENOMEM;
6570 	return 0;
6571 }
6572 
6573 static ssize_t bfq_var_show(unsigned int var, char *page)
6574 {
6575 	return sprintf(page, "%u\n", var);
6576 }
6577 
6578 static int bfq_var_store(unsigned long *var, const char *page)
6579 {
6580 	unsigned long new_val;
6581 	int ret = kstrtoul(page, 10, &new_val);
6582 
6583 	if (ret)
6584 		return ret;
6585 	*var = new_val;
6586 	return 0;
6587 }
6588 
6589 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6590 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6591 {									\
6592 	struct bfq_data *bfqd = e->elevator_data;			\
6593 	u64 __data = __VAR;						\
6594 	if (__CONV == 1)						\
6595 		__data = jiffies_to_msecs(__data);			\
6596 	else if (__CONV == 2)						\
6597 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6598 	return bfq_var_show(__data, (page));				\
6599 }
6600 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6601 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6602 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6603 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6604 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6605 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6606 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6607 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6608 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6609 #undef SHOW_FUNCTION
6610 
6611 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6612 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6613 {									\
6614 	struct bfq_data *bfqd = e->elevator_data;			\
6615 	u64 __data = __VAR;						\
6616 	__data = div_u64(__data, NSEC_PER_USEC);			\
6617 	return bfq_var_show(__data, (page));				\
6618 }
6619 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6620 #undef USEC_SHOW_FUNCTION
6621 
6622 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6623 static ssize_t								\
6624 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6625 {									\
6626 	struct bfq_data *bfqd = e->elevator_data;			\
6627 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6628 	int ret;							\
6629 									\
6630 	ret = bfq_var_store(&__data, (page));				\
6631 	if (ret)							\
6632 		return ret;						\
6633 	if (__data < __min)						\
6634 		__data = __min;						\
6635 	else if (__data > __max)					\
6636 		__data = __max;						\
6637 	if (__CONV == 1)						\
6638 		*(__PTR) = msecs_to_jiffies(__data);			\
6639 	else if (__CONV == 2)						\
6640 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6641 	else								\
6642 		*(__PTR) = __data;					\
6643 	return count;							\
6644 }
6645 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6646 		INT_MAX, 2);
6647 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6648 		INT_MAX, 2);
6649 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6650 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6651 		INT_MAX, 0);
6652 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6653 #undef STORE_FUNCTION
6654 
6655 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6656 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6657 {									\
6658 	struct bfq_data *bfqd = e->elevator_data;			\
6659 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6660 	int ret;							\
6661 									\
6662 	ret = bfq_var_store(&__data, (page));				\
6663 	if (ret)							\
6664 		return ret;						\
6665 	if (__data < __min)						\
6666 		__data = __min;						\
6667 	else if (__data > __max)					\
6668 		__data = __max;						\
6669 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6670 	return count;							\
6671 }
6672 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6673 		    UINT_MAX);
6674 #undef USEC_STORE_FUNCTION
6675 
6676 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6677 				    const char *page, size_t count)
6678 {
6679 	struct bfq_data *bfqd = e->elevator_data;
6680 	unsigned long __data;
6681 	int ret;
6682 
6683 	ret = bfq_var_store(&__data, (page));
6684 	if (ret)
6685 		return ret;
6686 
6687 	if (__data == 0)
6688 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6689 	else {
6690 		if (__data > INT_MAX)
6691 			__data = INT_MAX;
6692 		bfqd->bfq_max_budget = __data;
6693 	}
6694 
6695 	bfqd->bfq_user_max_budget = __data;
6696 
6697 	return count;
6698 }
6699 
6700 /*
6701  * Leaving this name to preserve name compatibility with cfq
6702  * parameters, but this timeout is used for both sync and async.
6703  */
6704 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6705 				      const char *page, size_t count)
6706 {
6707 	struct bfq_data *bfqd = e->elevator_data;
6708 	unsigned long __data;
6709 	int ret;
6710 
6711 	ret = bfq_var_store(&__data, (page));
6712 	if (ret)
6713 		return ret;
6714 
6715 	if (__data < 1)
6716 		__data = 1;
6717 	else if (__data > INT_MAX)
6718 		__data = INT_MAX;
6719 
6720 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6721 	if (bfqd->bfq_user_max_budget == 0)
6722 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6723 
6724 	return count;
6725 }
6726 
6727 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6728 				     const char *page, size_t count)
6729 {
6730 	struct bfq_data *bfqd = e->elevator_data;
6731 	unsigned long __data;
6732 	int ret;
6733 
6734 	ret = bfq_var_store(&__data, (page));
6735 	if (ret)
6736 		return ret;
6737 
6738 	if (__data > 1)
6739 		__data = 1;
6740 	if (!bfqd->strict_guarantees && __data == 1
6741 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6742 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6743 
6744 	bfqd->strict_guarantees = __data;
6745 
6746 	return count;
6747 }
6748 
6749 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6750 				     const char *page, size_t count)
6751 {
6752 	struct bfq_data *bfqd = e->elevator_data;
6753 	unsigned long __data;
6754 	int ret;
6755 
6756 	ret = bfq_var_store(&__data, (page));
6757 	if (ret)
6758 		return ret;
6759 
6760 	if (__data > 1)
6761 		__data = 1;
6762 	if (__data == 0 && bfqd->low_latency != 0)
6763 		bfq_end_wr(bfqd);
6764 	bfqd->low_latency = __data;
6765 
6766 	return count;
6767 }
6768 
6769 #define BFQ_ATTR(name) \
6770 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6771 
6772 static struct elv_fs_entry bfq_attrs[] = {
6773 	BFQ_ATTR(fifo_expire_sync),
6774 	BFQ_ATTR(fifo_expire_async),
6775 	BFQ_ATTR(back_seek_max),
6776 	BFQ_ATTR(back_seek_penalty),
6777 	BFQ_ATTR(slice_idle),
6778 	BFQ_ATTR(slice_idle_us),
6779 	BFQ_ATTR(max_budget),
6780 	BFQ_ATTR(timeout_sync),
6781 	BFQ_ATTR(strict_guarantees),
6782 	BFQ_ATTR(low_latency),
6783 	__ATTR_NULL
6784 };
6785 
6786 static struct elevator_type iosched_bfq_mq = {
6787 	.ops = {
6788 		.limit_depth		= bfq_limit_depth,
6789 		.prepare_request	= bfq_prepare_request,
6790 		.requeue_request        = bfq_finish_requeue_request,
6791 		.finish_request		= bfq_finish_requeue_request,
6792 		.exit_icq		= bfq_exit_icq,
6793 		.insert_requests	= bfq_insert_requests,
6794 		.dispatch_request	= bfq_dispatch_request,
6795 		.next_request		= elv_rb_latter_request,
6796 		.former_request		= elv_rb_former_request,
6797 		.allow_merge		= bfq_allow_bio_merge,
6798 		.bio_merge		= bfq_bio_merge,
6799 		.request_merge		= bfq_request_merge,
6800 		.requests_merged	= bfq_requests_merged,
6801 		.request_merged		= bfq_request_merged,
6802 		.has_work		= bfq_has_work,
6803 		.depth_updated		= bfq_depth_updated,
6804 		.init_hctx		= bfq_init_hctx,
6805 		.init_sched		= bfq_init_queue,
6806 		.exit_sched		= bfq_exit_queue,
6807 	},
6808 
6809 	.icq_size =		sizeof(struct bfq_io_cq),
6810 	.icq_align =		__alignof__(struct bfq_io_cq),
6811 	.elevator_attrs =	bfq_attrs,
6812 	.elevator_name =	"bfq",
6813 	.elevator_owner =	THIS_MODULE,
6814 };
6815 MODULE_ALIAS("bfq-iosched");
6816 
6817 static int __init bfq_init(void)
6818 {
6819 	int ret;
6820 
6821 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6822 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6823 	if (ret)
6824 		return ret;
6825 #endif
6826 
6827 	ret = -ENOMEM;
6828 	if (bfq_slab_setup())
6829 		goto err_pol_unreg;
6830 
6831 	/*
6832 	 * Times to load large popular applications for the typical
6833 	 * systems installed on the reference devices (see the
6834 	 * comments before the definition of the next
6835 	 * array). Actually, we use slightly lower values, as the
6836 	 * estimated peak rate tends to be smaller than the actual
6837 	 * peak rate.  The reason for this last fact is that estimates
6838 	 * are computed over much shorter time intervals than the long
6839 	 * intervals typically used for benchmarking. Why? First, to
6840 	 * adapt more quickly to variations. Second, because an I/O
6841 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6842 	 * be run for a long time.
6843 	 */
6844 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6845 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6846 
6847 	ret = elv_register(&iosched_bfq_mq);
6848 	if (ret)
6849 		goto slab_kill;
6850 
6851 	return 0;
6852 
6853 slab_kill:
6854 	bfq_slab_kill();
6855 err_pol_unreg:
6856 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6857 	blkcg_policy_unregister(&blkcg_policy_bfq);
6858 #endif
6859 	return ret;
6860 }
6861 
6862 static void __exit bfq_exit(void)
6863 {
6864 	elv_unregister(&iosched_bfq_mq);
6865 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6866 	blkcg_policy_unregister(&blkcg_policy_bfq);
6867 #endif
6868 	bfq_slab_kill();
6869 }
6870 
6871 module_init(bfq_init);
6872 module_exit(bfq_exit);
6873 
6874 MODULE_AUTHOR("Paolo Valente");
6875 MODULE_LICENSE("GPL");
6876 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6877