xref: /openbmc/linux/block/bfq-iosched.c (revision aadaeca4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	/*
390 	 * If bfqq != NULL, then a non-stable queue merge between
391 	 * bic->bfqq and bfqq is happening here. This causes troubles
392 	 * in the following case: bic->bfqq has also been scheduled
393 	 * for a possible stable merge with bic->stable_merge_bfqq,
394 	 * and bic->stable_merge_bfqq == bfqq happens to
395 	 * hold. Troubles occur because bfqq may then undergo a split,
396 	 * thereby becoming eligible for a stable merge. Yet, if
397 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
398 	 * would be stably merged with itself. To avoid this anomaly,
399 	 * we cancel the stable merge if
400 	 * bic->stable_merge_bfqq == bfqq.
401 	 */
402 	bic->bfqq[is_sync] = bfqq;
403 
404 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
405 		/*
406 		 * Actually, these same instructions are executed also
407 		 * in bfq_setup_cooperator, in case of abort or actual
408 		 * execution of a stable merge. We could avoid
409 		 * repeating these instructions there too, but if we
410 		 * did so, we would nest even more complexity in this
411 		 * function.
412 		 */
413 		bfq_put_stable_ref(bic->stable_merge_bfqq);
414 
415 		bic->stable_merge_bfqq = NULL;
416 	}
417 }
418 
419 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
420 {
421 	return bic->icq.q->elevator->elevator_data;
422 }
423 
424 /**
425  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
426  * @icq: the iocontext queue.
427  */
428 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
429 {
430 	/* bic->icq is the first member, %NULL will convert to %NULL */
431 	return container_of(icq, struct bfq_io_cq, icq);
432 }
433 
434 /**
435  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
436  * @q: the request queue.
437  */
438 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
439 {
440 	struct bfq_io_cq *icq;
441 	unsigned long flags;
442 
443 	if (!current->io_context)
444 		return NULL;
445 
446 	spin_lock_irqsave(&q->queue_lock, flags);
447 	icq = icq_to_bic(ioc_lookup_icq(q));
448 	spin_unlock_irqrestore(&q->queue_lock, flags);
449 
450 	return icq;
451 }
452 
453 /*
454  * Scheduler run of queue, if there are requests pending and no one in the
455  * driver that will restart queueing.
456  */
457 void bfq_schedule_dispatch(struct bfq_data *bfqd)
458 {
459 	if (bfqd->queued != 0) {
460 		bfq_log(bfqd, "schedule dispatch");
461 		blk_mq_run_hw_queues(bfqd->queue, true);
462 	}
463 }
464 
465 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
466 
467 #define bfq_sample_valid(samples)	((samples) > 80)
468 
469 /*
470  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
471  * We choose the request that is closer to the head right now.  Distance
472  * behind the head is penalized and only allowed to a certain extent.
473  */
474 static struct request *bfq_choose_req(struct bfq_data *bfqd,
475 				      struct request *rq1,
476 				      struct request *rq2,
477 				      sector_t last)
478 {
479 	sector_t s1, s2, d1 = 0, d2 = 0;
480 	unsigned long back_max;
481 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
482 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
483 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
484 
485 	if (!rq1 || rq1 == rq2)
486 		return rq2;
487 	if (!rq2)
488 		return rq1;
489 
490 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
491 		return rq1;
492 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
493 		return rq2;
494 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
495 		return rq1;
496 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
497 		return rq2;
498 
499 	s1 = blk_rq_pos(rq1);
500 	s2 = blk_rq_pos(rq2);
501 
502 	/*
503 	 * By definition, 1KiB is 2 sectors.
504 	 */
505 	back_max = bfqd->bfq_back_max * 2;
506 
507 	/*
508 	 * Strict one way elevator _except_ in the case where we allow
509 	 * short backward seeks which are biased as twice the cost of a
510 	 * similar forward seek.
511 	 */
512 	if (s1 >= last)
513 		d1 = s1 - last;
514 	else if (s1 + back_max >= last)
515 		d1 = (last - s1) * bfqd->bfq_back_penalty;
516 	else
517 		wrap |= BFQ_RQ1_WRAP;
518 
519 	if (s2 >= last)
520 		d2 = s2 - last;
521 	else if (s2 + back_max >= last)
522 		d2 = (last - s2) * bfqd->bfq_back_penalty;
523 	else
524 		wrap |= BFQ_RQ2_WRAP;
525 
526 	/* Found required data */
527 
528 	/*
529 	 * By doing switch() on the bit mask "wrap" we avoid having to
530 	 * check two variables for all permutations: --> faster!
531 	 */
532 	switch (wrap) {
533 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
534 		if (d1 < d2)
535 			return rq1;
536 		else if (d2 < d1)
537 			return rq2;
538 
539 		if (s1 >= s2)
540 			return rq1;
541 		else
542 			return rq2;
543 
544 	case BFQ_RQ2_WRAP:
545 		return rq1;
546 	case BFQ_RQ1_WRAP:
547 		return rq2;
548 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
549 	default:
550 		/*
551 		 * Since both rqs are wrapped,
552 		 * start with the one that's further behind head
553 		 * (--> only *one* back seek required),
554 		 * since back seek takes more time than forward.
555 		 */
556 		if (s1 <= s2)
557 			return rq1;
558 		else
559 			return rq2;
560 	}
561 }
562 
563 #define BFQ_LIMIT_INLINE_DEPTH 16
564 
565 #ifdef CONFIG_BFQ_GROUP_IOSCHED
566 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
567 {
568 	struct bfq_data *bfqd = bfqq->bfqd;
569 	struct bfq_entity *entity = &bfqq->entity;
570 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
571 	struct bfq_entity **entities = inline_entities;
572 	int depth, level;
573 	int class_idx = bfqq->ioprio_class - 1;
574 	struct bfq_sched_data *sched_data;
575 	unsigned long wsum;
576 	bool ret = false;
577 
578 	if (!entity->on_st_or_in_serv)
579 		return false;
580 
581 	/* +1 for bfqq entity, root cgroup not included */
582 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
583 	if (depth > BFQ_LIMIT_INLINE_DEPTH) {
584 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
585 		if (!entities)
586 			return false;
587 	}
588 
589 	spin_lock_irq(&bfqd->lock);
590 	sched_data = entity->sched_data;
591 	/* Gather our ancestors as we need to traverse them in reverse order */
592 	level = 0;
593 	for_each_entity(entity) {
594 		/*
595 		 * If at some level entity is not even active, allow request
596 		 * queueing so that BFQ knows there's work to do and activate
597 		 * entities.
598 		 */
599 		if (!entity->on_st_or_in_serv)
600 			goto out;
601 		/* Uh, more parents than cgroup subsystem thinks? */
602 		if (WARN_ON_ONCE(level >= depth))
603 			break;
604 		entities[level++] = entity;
605 	}
606 	WARN_ON_ONCE(level != depth);
607 	for (level--; level >= 0; level--) {
608 		entity = entities[level];
609 		if (level > 0) {
610 			wsum = bfq_entity_service_tree(entity)->wsum;
611 		} else {
612 			int i;
613 			/*
614 			 * For bfqq itself we take into account service trees
615 			 * of all higher priority classes and multiply their
616 			 * weights so that low prio queue from higher class
617 			 * gets more requests than high prio queue from lower
618 			 * class.
619 			 */
620 			wsum = 0;
621 			for (i = 0; i <= class_idx; i++) {
622 				wsum = wsum * IOPRIO_BE_NR +
623 					sched_data->service_tree[i].wsum;
624 			}
625 		}
626 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
627 		if (entity->allocated >= limit) {
628 			bfq_log_bfqq(bfqq->bfqd, bfqq,
629 				"too many requests: allocated %d limit %d level %d",
630 				entity->allocated, limit, level);
631 			ret = true;
632 			break;
633 		}
634 	}
635 out:
636 	spin_unlock_irq(&bfqd->lock);
637 	if (entities != inline_entities)
638 		kfree(entities);
639 	return ret;
640 }
641 #else
642 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
643 {
644 	return false;
645 }
646 #endif
647 
648 /*
649  * Async I/O can easily starve sync I/O (both sync reads and sync
650  * writes), by consuming all tags. Similarly, storms of sync writes,
651  * such as those that sync(2) may trigger, can starve sync reads.
652  * Limit depths of async I/O and sync writes so as to counter both
653  * problems.
654  *
655  * Also if a bfq queue or its parent cgroup consume more tags than would be
656  * appropriate for their weight, we trim the available tag depth to 1. This
657  * avoids a situation where one cgroup can starve another cgroup from tags and
658  * thus block service differentiation among cgroups. Note that because the
659  * queue / cgroup already has many requests allocated and queued, this does not
660  * significantly affect service guarantees coming from the BFQ scheduling
661  * algorithm.
662  */
663 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
664 {
665 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
666 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
667 	struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(op)) : NULL;
668 	int depth;
669 	unsigned limit = data->q->nr_requests;
670 
671 	/* Sync reads have full depth available */
672 	if (op_is_sync(op) && !op_is_write(op)) {
673 		depth = 0;
674 	} else {
675 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
676 		limit = (limit * depth) >> bfqd->full_depth_shift;
677 	}
678 
679 	/*
680 	 * Does queue (or any parent entity) exceed number of requests that
681 	 * should be available to it? Heavily limit depth so that it cannot
682 	 * consume more available requests and thus starve other entities.
683 	 */
684 	if (bfqq && bfqq_request_over_limit(bfqq, limit))
685 		depth = 1;
686 
687 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
688 		__func__, bfqd->wr_busy_queues, op_is_sync(op), depth);
689 	if (depth)
690 		data->shallow_depth = depth;
691 }
692 
693 static struct bfq_queue *
694 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
695 		     sector_t sector, struct rb_node **ret_parent,
696 		     struct rb_node ***rb_link)
697 {
698 	struct rb_node **p, *parent;
699 	struct bfq_queue *bfqq = NULL;
700 
701 	parent = NULL;
702 	p = &root->rb_node;
703 	while (*p) {
704 		struct rb_node **n;
705 
706 		parent = *p;
707 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
708 
709 		/*
710 		 * Sort strictly based on sector. Smallest to the left,
711 		 * largest to the right.
712 		 */
713 		if (sector > blk_rq_pos(bfqq->next_rq))
714 			n = &(*p)->rb_right;
715 		else if (sector < blk_rq_pos(bfqq->next_rq))
716 			n = &(*p)->rb_left;
717 		else
718 			break;
719 		p = n;
720 		bfqq = NULL;
721 	}
722 
723 	*ret_parent = parent;
724 	if (rb_link)
725 		*rb_link = p;
726 
727 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
728 		(unsigned long long)sector,
729 		bfqq ? bfqq->pid : 0);
730 
731 	return bfqq;
732 }
733 
734 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
735 {
736 	return bfqq->service_from_backlogged > 0 &&
737 		time_is_before_jiffies(bfqq->first_IO_time +
738 				       bfq_merge_time_limit);
739 }
740 
741 /*
742  * The following function is not marked as __cold because it is
743  * actually cold, but for the same performance goal described in the
744  * comments on the likely() at the beginning of
745  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
746  * execution time for the case where this function is not invoked, we
747  * had to add an unlikely() in each involved if().
748  */
749 void __cold
750 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
751 {
752 	struct rb_node **p, *parent;
753 	struct bfq_queue *__bfqq;
754 
755 	if (bfqq->pos_root) {
756 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
757 		bfqq->pos_root = NULL;
758 	}
759 
760 	/* oom_bfqq does not participate in queue merging */
761 	if (bfqq == &bfqd->oom_bfqq)
762 		return;
763 
764 	/*
765 	 * bfqq cannot be merged any longer (see comments in
766 	 * bfq_setup_cooperator): no point in adding bfqq into the
767 	 * position tree.
768 	 */
769 	if (bfq_too_late_for_merging(bfqq))
770 		return;
771 
772 	if (bfq_class_idle(bfqq))
773 		return;
774 	if (!bfqq->next_rq)
775 		return;
776 
777 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
778 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
779 			blk_rq_pos(bfqq->next_rq), &parent, &p);
780 	if (!__bfqq) {
781 		rb_link_node(&bfqq->pos_node, parent, p);
782 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
783 	} else
784 		bfqq->pos_root = NULL;
785 }
786 
787 /*
788  * The following function returns false either if every active queue
789  * must receive the same share of the throughput (symmetric scenario),
790  * or, as a special case, if bfqq must receive a share of the
791  * throughput lower than or equal to the share that every other active
792  * queue must receive.  If bfqq does sync I/O, then these are the only
793  * two cases where bfqq happens to be guaranteed its share of the
794  * throughput even if I/O dispatching is not plugged when bfqq remains
795  * temporarily empty (for more details, see the comments in the
796  * function bfq_better_to_idle()). For this reason, the return value
797  * of this function is used to check whether I/O-dispatch plugging can
798  * be avoided.
799  *
800  * The above first case (symmetric scenario) occurs when:
801  * 1) all active queues have the same weight,
802  * 2) all active queues belong to the same I/O-priority class,
803  * 3) all active groups at the same level in the groups tree have the same
804  *    weight,
805  * 4) all active groups at the same level in the groups tree have the same
806  *    number of children.
807  *
808  * Unfortunately, keeping the necessary state for evaluating exactly
809  * the last two symmetry sub-conditions above would be quite complex
810  * and time consuming. Therefore this function evaluates, instead,
811  * only the following stronger three sub-conditions, for which it is
812  * much easier to maintain the needed state:
813  * 1) all active queues have the same weight,
814  * 2) all active queues belong to the same I/O-priority class,
815  * 3) there are no active groups.
816  * In particular, the last condition is always true if hierarchical
817  * support or the cgroups interface are not enabled, thus no state
818  * needs to be maintained in this case.
819  */
820 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
821 				   struct bfq_queue *bfqq)
822 {
823 	bool smallest_weight = bfqq &&
824 		bfqq->weight_counter &&
825 		bfqq->weight_counter ==
826 		container_of(
827 			rb_first_cached(&bfqd->queue_weights_tree),
828 			struct bfq_weight_counter,
829 			weights_node);
830 
831 	/*
832 	 * For queue weights to differ, queue_weights_tree must contain
833 	 * at least two nodes.
834 	 */
835 	bool varied_queue_weights = !smallest_weight &&
836 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
837 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
838 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
839 
840 	bool multiple_classes_busy =
841 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
842 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
843 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
844 
845 	return varied_queue_weights || multiple_classes_busy
846 #ifdef CONFIG_BFQ_GROUP_IOSCHED
847 	       || bfqd->num_groups_with_pending_reqs > 0
848 #endif
849 		;
850 }
851 
852 /*
853  * If the weight-counter tree passed as input contains no counter for
854  * the weight of the input queue, then add that counter; otherwise just
855  * increment the existing counter.
856  *
857  * Note that weight-counter trees contain few nodes in mostly symmetric
858  * scenarios. For example, if all queues have the same weight, then the
859  * weight-counter tree for the queues may contain at most one node.
860  * This holds even if low_latency is on, because weight-raised queues
861  * are not inserted in the tree.
862  * In most scenarios, the rate at which nodes are created/destroyed
863  * should be low too.
864  */
865 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
866 			  struct rb_root_cached *root)
867 {
868 	struct bfq_entity *entity = &bfqq->entity;
869 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
870 	bool leftmost = true;
871 
872 	/*
873 	 * Do not insert if the queue is already associated with a
874 	 * counter, which happens if:
875 	 *   1) a request arrival has caused the queue to become both
876 	 *      non-weight-raised, and hence change its weight, and
877 	 *      backlogged; in this respect, each of the two events
878 	 *      causes an invocation of this function,
879 	 *   2) this is the invocation of this function caused by the
880 	 *      second event. This second invocation is actually useless,
881 	 *      and we handle this fact by exiting immediately. More
882 	 *      efficient or clearer solutions might possibly be adopted.
883 	 */
884 	if (bfqq->weight_counter)
885 		return;
886 
887 	while (*new) {
888 		struct bfq_weight_counter *__counter = container_of(*new,
889 						struct bfq_weight_counter,
890 						weights_node);
891 		parent = *new;
892 
893 		if (entity->weight == __counter->weight) {
894 			bfqq->weight_counter = __counter;
895 			goto inc_counter;
896 		}
897 		if (entity->weight < __counter->weight)
898 			new = &((*new)->rb_left);
899 		else {
900 			new = &((*new)->rb_right);
901 			leftmost = false;
902 		}
903 	}
904 
905 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
906 				       GFP_ATOMIC);
907 
908 	/*
909 	 * In the unlucky event of an allocation failure, we just
910 	 * exit. This will cause the weight of queue to not be
911 	 * considered in bfq_asymmetric_scenario, which, in its turn,
912 	 * causes the scenario to be deemed wrongly symmetric in case
913 	 * bfqq's weight would have been the only weight making the
914 	 * scenario asymmetric.  On the bright side, no unbalance will
915 	 * however occur when bfqq becomes inactive again (the
916 	 * invocation of this function is triggered by an activation
917 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
918 	 * if !bfqq->weight_counter.
919 	 */
920 	if (unlikely(!bfqq->weight_counter))
921 		return;
922 
923 	bfqq->weight_counter->weight = entity->weight;
924 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
925 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
926 				leftmost);
927 
928 inc_counter:
929 	bfqq->weight_counter->num_active++;
930 	bfqq->ref++;
931 }
932 
933 /*
934  * Decrement the weight counter associated with the queue, and, if the
935  * counter reaches 0, remove the counter from the tree.
936  * See the comments to the function bfq_weights_tree_add() for considerations
937  * about overhead.
938  */
939 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
940 			       struct bfq_queue *bfqq,
941 			       struct rb_root_cached *root)
942 {
943 	if (!bfqq->weight_counter)
944 		return;
945 
946 	bfqq->weight_counter->num_active--;
947 	if (bfqq->weight_counter->num_active > 0)
948 		goto reset_entity_pointer;
949 
950 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
951 	kfree(bfqq->weight_counter);
952 
953 reset_entity_pointer:
954 	bfqq->weight_counter = NULL;
955 	bfq_put_queue(bfqq);
956 }
957 
958 /*
959  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
960  * of active groups for each queue's inactive parent entity.
961  */
962 void bfq_weights_tree_remove(struct bfq_data *bfqd,
963 			     struct bfq_queue *bfqq)
964 {
965 	struct bfq_entity *entity = bfqq->entity.parent;
966 
967 	for_each_entity(entity) {
968 		struct bfq_sched_data *sd = entity->my_sched_data;
969 
970 		if (sd->next_in_service || sd->in_service_entity) {
971 			/*
972 			 * entity is still active, because either
973 			 * next_in_service or in_service_entity is not
974 			 * NULL (see the comments on the definition of
975 			 * next_in_service for details on why
976 			 * in_service_entity must be checked too).
977 			 *
978 			 * As a consequence, its parent entities are
979 			 * active as well, and thus this loop must
980 			 * stop here.
981 			 */
982 			break;
983 		}
984 
985 		/*
986 		 * The decrement of num_groups_with_pending_reqs is
987 		 * not performed immediately upon the deactivation of
988 		 * entity, but it is delayed to when it also happens
989 		 * that the first leaf descendant bfqq of entity gets
990 		 * all its pending requests completed. The following
991 		 * instructions perform this delayed decrement, if
992 		 * needed. See the comments on
993 		 * num_groups_with_pending_reqs for details.
994 		 */
995 		if (entity->in_groups_with_pending_reqs) {
996 			entity->in_groups_with_pending_reqs = false;
997 			bfqd->num_groups_with_pending_reqs--;
998 		}
999 	}
1000 
1001 	/*
1002 	 * Next function is invoked last, because it causes bfqq to be
1003 	 * freed if the following holds: bfqq is not in service and
1004 	 * has no dispatched request. DO NOT use bfqq after the next
1005 	 * function invocation.
1006 	 */
1007 	__bfq_weights_tree_remove(bfqd, bfqq,
1008 				  &bfqd->queue_weights_tree);
1009 }
1010 
1011 /*
1012  * Return expired entry, or NULL to just start from scratch in rbtree.
1013  */
1014 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
1015 				      struct request *last)
1016 {
1017 	struct request *rq;
1018 
1019 	if (bfq_bfqq_fifo_expire(bfqq))
1020 		return NULL;
1021 
1022 	bfq_mark_bfqq_fifo_expire(bfqq);
1023 
1024 	rq = rq_entry_fifo(bfqq->fifo.next);
1025 
1026 	if (rq == last || ktime_get_ns() < rq->fifo_time)
1027 		return NULL;
1028 
1029 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1030 	return rq;
1031 }
1032 
1033 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1034 					struct bfq_queue *bfqq,
1035 					struct request *last)
1036 {
1037 	struct rb_node *rbnext = rb_next(&last->rb_node);
1038 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1039 	struct request *next, *prev = NULL;
1040 
1041 	/* Follow expired path, else get first next available. */
1042 	next = bfq_check_fifo(bfqq, last);
1043 	if (next)
1044 		return next;
1045 
1046 	if (rbprev)
1047 		prev = rb_entry_rq(rbprev);
1048 
1049 	if (rbnext)
1050 		next = rb_entry_rq(rbnext);
1051 	else {
1052 		rbnext = rb_first(&bfqq->sort_list);
1053 		if (rbnext && rbnext != &last->rb_node)
1054 			next = rb_entry_rq(rbnext);
1055 	}
1056 
1057 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1058 }
1059 
1060 /* see the definition of bfq_async_charge_factor for details */
1061 static unsigned long bfq_serv_to_charge(struct request *rq,
1062 					struct bfq_queue *bfqq)
1063 {
1064 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1065 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1066 		return blk_rq_sectors(rq);
1067 
1068 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1069 }
1070 
1071 /**
1072  * bfq_updated_next_req - update the queue after a new next_rq selection.
1073  * @bfqd: the device data the queue belongs to.
1074  * @bfqq: the queue to update.
1075  *
1076  * If the first request of a queue changes we make sure that the queue
1077  * has enough budget to serve at least its first request (if the
1078  * request has grown).  We do this because if the queue has not enough
1079  * budget for its first request, it has to go through two dispatch
1080  * rounds to actually get it dispatched.
1081  */
1082 static void bfq_updated_next_req(struct bfq_data *bfqd,
1083 				 struct bfq_queue *bfqq)
1084 {
1085 	struct bfq_entity *entity = &bfqq->entity;
1086 	struct request *next_rq = bfqq->next_rq;
1087 	unsigned long new_budget;
1088 
1089 	if (!next_rq)
1090 		return;
1091 
1092 	if (bfqq == bfqd->in_service_queue)
1093 		/*
1094 		 * In order not to break guarantees, budgets cannot be
1095 		 * changed after an entity has been selected.
1096 		 */
1097 		return;
1098 
1099 	new_budget = max_t(unsigned long,
1100 			   max_t(unsigned long, bfqq->max_budget,
1101 				 bfq_serv_to_charge(next_rq, bfqq)),
1102 			   entity->service);
1103 	if (entity->budget != new_budget) {
1104 		entity->budget = new_budget;
1105 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1106 					 new_budget);
1107 		bfq_requeue_bfqq(bfqd, bfqq, false);
1108 	}
1109 }
1110 
1111 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1112 {
1113 	u64 dur;
1114 
1115 	if (bfqd->bfq_wr_max_time > 0)
1116 		return bfqd->bfq_wr_max_time;
1117 
1118 	dur = bfqd->rate_dur_prod;
1119 	do_div(dur, bfqd->peak_rate);
1120 
1121 	/*
1122 	 * Limit duration between 3 and 25 seconds. The upper limit
1123 	 * has been conservatively set after the following worst case:
1124 	 * on a QEMU/KVM virtual machine
1125 	 * - running in a slow PC
1126 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1127 	 * - serving a heavy I/O workload, such as the sequential reading
1128 	 *   of several files
1129 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1130 	 *
1131 	 * As for higher values than that accommodating the above bad
1132 	 * scenario, tests show that higher values would often yield
1133 	 * the opposite of the desired result, i.e., would worsen
1134 	 * responsiveness by allowing non-interactive applications to
1135 	 * preserve weight raising for too long.
1136 	 *
1137 	 * On the other end, lower values than 3 seconds make it
1138 	 * difficult for most interactive tasks to complete their jobs
1139 	 * before weight-raising finishes.
1140 	 */
1141 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1142 }
1143 
1144 /* switch back from soft real-time to interactive weight raising */
1145 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1146 					  struct bfq_data *bfqd)
1147 {
1148 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1149 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1150 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1151 }
1152 
1153 static void
1154 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1155 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1156 {
1157 	unsigned int old_wr_coeff = 1;
1158 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1159 
1160 	if (bic->saved_has_short_ttime)
1161 		bfq_mark_bfqq_has_short_ttime(bfqq);
1162 	else
1163 		bfq_clear_bfqq_has_short_ttime(bfqq);
1164 
1165 	if (bic->saved_IO_bound)
1166 		bfq_mark_bfqq_IO_bound(bfqq);
1167 	else
1168 		bfq_clear_bfqq_IO_bound(bfqq);
1169 
1170 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1171 	bfqq->inject_limit = bic->saved_inject_limit;
1172 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1173 
1174 	bfqq->entity.new_weight = bic->saved_weight;
1175 	bfqq->ttime = bic->saved_ttime;
1176 	bfqq->io_start_time = bic->saved_io_start_time;
1177 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1178 	/*
1179 	 * Restore weight coefficient only if low_latency is on
1180 	 */
1181 	if (bfqd->low_latency) {
1182 		old_wr_coeff = bfqq->wr_coeff;
1183 		bfqq->wr_coeff = bic->saved_wr_coeff;
1184 	}
1185 	bfqq->service_from_wr = bic->saved_service_from_wr;
1186 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1187 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1188 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1189 
1190 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1191 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1192 				   bfqq->wr_cur_max_time))) {
1193 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1194 		    !bfq_bfqq_in_large_burst(bfqq) &&
1195 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1196 					     bfq_wr_duration(bfqd))) {
1197 			switch_back_to_interactive_wr(bfqq, bfqd);
1198 		} else {
1199 			bfqq->wr_coeff = 1;
1200 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1201 				     "resume state: switching off wr");
1202 		}
1203 	}
1204 
1205 	/* make sure weight will be updated, however we got here */
1206 	bfqq->entity.prio_changed = 1;
1207 
1208 	if (likely(!busy))
1209 		return;
1210 
1211 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1212 		bfqd->wr_busy_queues++;
1213 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1214 		bfqd->wr_busy_queues--;
1215 }
1216 
1217 static int bfqq_process_refs(struct bfq_queue *bfqq)
1218 {
1219 	return bfqq->ref - bfqq->entity.allocated -
1220 		bfqq->entity.on_st_or_in_serv -
1221 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1222 }
1223 
1224 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1225 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1226 {
1227 	struct bfq_queue *item;
1228 	struct hlist_node *n;
1229 
1230 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1231 		hlist_del_init(&item->burst_list_node);
1232 
1233 	/*
1234 	 * Start the creation of a new burst list only if there is no
1235 	 * active queue. See comments on the conditional invocation of
1236 	 * bfq_handle_burst().
1237 	 */
1238 	if (bfq_tot_busy_queues(bfqd) == 0) {
1239 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1240 		bfqd->burst_size = 1;
1241 	} else
1242 		bfqd->burst_size = 0;
1243 
1244 	bfqd->burst_parent_entity = bfqq->entity.parent;
1245 }
1246 
1247 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1248 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1249 {
1250 	/* Increment burst size to take into account also bfqq */
1251 	bfqd->burst_size++;
1252 
1253 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1254 		struct bfq_queue *pos, *bfqq_item;
1255 		struct hlist_node *n;
1256 
1257 		/*
1258 		 * Enough queues have been activated shortly after each
1259 		 * other to consider this burst as large.
1260 		 */
1261 		bfqd->large_burst = true;
1262 
1263 		/*
1264 		 * We can now mark all queues in the burst list as
1265 		 * belonging to a large burst.
1266 		 */
1267 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1268 				     burst_list_node)
1269 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1270 		bfq_mark_bfqq_in_large_burst(bfqq);
1271 
1272 		/*
1273 		 * From now on, and until the current burst finishes, any
1274 		 * new queue being activated shortly after the last queue
1275 		 * was inserted in the burst can be immediately marked as
1276 		 * belonging to a large burst. So the burst list is not
1277 		 * needed any more. Remove it.
1278 		 */
1279 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1280 					  burst_list_node)
1281 			hlist_del_init(&pos->burst_list_node);
1282 	} else /*
1283 		* Burst not yet large: add bfqq to the burst list. Do
1284 		* not increment the ref counter for bfqq, because bfqq
1285 		* is removed from the burst list before freeing bfqq
1286 		* in put_queue.
1287 		*/
1288 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1289 }
1290 
1291 /*
1292  * If many queues belonging to the same group happen to be created
1293  * shortly after each other, then the processes associated with these
1294  * queues have typically a common goal. In particular, bursts of queue
1295  * creations are usually caused by services or applications that spawn
1296  * many parallel threads/processes. Examples are systemd during boot,
1297  * or git grep. To help these processes get their job done as soon as
1298  * possible, it is usually better to not grant either weight-raising
1299  * or device idling to their queues, unless these queues must be
1300  * protected from the I/O flowing through other active queues.
1301  *
1302  * In this comment we describe, firstly, the reasons why this fact
1303  * holds, and, secondly, the next function, which implements the main
1304  * steps needed to properly mark these queues so that they can then be
1305  * treated in a different way.
1306  *
1307  * The above services or applications benefit mostly from a high
1308  * throughput: the quicker the requests of the activated queues are
1309  * cumulatively served, the sooner the target job of these queues gets
1310  * completed. As a consequence, weight-raising any of these queues,
1311  * which also implies idling the device for it, is almost always
1312  * counterproductive, unless there are other active queues to isolate
1313  * these new queues from. If there no other active queues, then
1314  * weight-raising these new queues just lowers throughput in most
1315  * cases.
1316  *
1317  * On the other hand, a burst of queue creations may be caused also by
1318  * the start of an application that does not consist of a lot of
1319  * parallel I/O-bound threads. In fact, with a complex application,
1320  * several short processes may need to be executed to start-up the
1321  * application. In this respect, to start an application as quickly as
1322  * possible, the best thing to do is in any case to privilege the I/O
1323  * related to the application with respect to all other
1324  * I/O. Therefore, the best strategy to start as quickly as possible
1325  * an application that causes a burst of queue creations is to
1326  * weight-raise all the queues created during the burst. This is the
1327  * exact opposite of the best strategy for the other type of bursts.
1328  *
1329  * In the end, to take the best action for each of the two cases, the
1330  * two types of bursts need to be distinguished. Fortunately, this
1331  * seems relatively easy, by looking at the sizes of the bursts. In
1332  * particular, we found a threshold such that only bursts with a
1333  * larger size than that threshold are apparently caused by
1334  * services or commands such as systemd or git grep. For brevity,
1335  * hereafter we call just 'large' these bursts. BFQ *does not*
1336  * weight-raise queues whose creation occurs in a large burst. In
1337  * addition, for each of these queues BFQ performs or does not perform
1338  * idling depending on which choice boosts the throughput more. The
1339  * exact choice depends on the device and request pattern at
1340  * hand.
1341  *
1342  * Unfortunately, false positives may occur while an interactive task
1343  * is starting (e.g., an application is being started). The
1344  * consequence is that the queues associated with the task do not
1345  * enjoy weight raising as expected. Fortunately these false positives
1346  * are very rare. They typically occur if some service happens to
1347  * start doing I/O exactly when the interactive task starts.
1348  *
1349  * Turning back to the next function, it is invoked only if there are
1350  * no active queues (apart from active queues that would belong to the
1351  * same, possible burst bfqq would belong to), and it implements all
1352  * the steps needed to detect the occurrence of a large burst and to
1353  * properly mark all the queues belonging to it (so that they can then
1354  * be treated in a different way). This goal is achieved by
1355  * maintaining a "burst list" that holds, temporarily, the queues that
1356  * belong to the burst in progress. The list is then used to mark
1357  * these queues as belonging to a large burst if the burst does become
1358  * large. The main steps are the following.
1359  *
1360  * . when the very first queue is created, the queue is inserted into the
1361  *   list (as it could be the first queue in a possible burst)
1362  *
1363  * . if the current burst has not yet become large, and a queue Q that does
1364  *   not yet belong to the burst is activated shortly after the last time
1365  *   at which a new queue entered the burst list, then the function appends
1366  *   Q to the burst list
1367  *
1368  * . if, as a consequence of the previous step, the burst size reaches
1369  *   the large-burst threshold, then
1370  *
1371  *     . all the queues in the burst list are marked as belonging to a
1372  *       large burst
1373  *
1374  *     . the burst list is deleted; in fact, the burst list already served
1375  *       its purpose (keeping temporarily track of the queues in a burst,
1376  *       so as to be able to mark them as belonging to a large burst in the
1377  *       previous sub-step), and now is not needed any more
1378  *
1379  *     . the device enters a large-burst mode
1380  *
1381  * . if a queue Q that does not belong to the burst is created while
1382  *   the device is in large-burst mode and shortly after the last time
1383  *   at which a queue either entered the burst list or was marked as
1384  *   belonging to the current large burst, then Q is immediately marked
1385  *   as belonging to a large burst.
1386  *
1387  * . if a queue Q that does not belong to the burst is created a while
1388  *   later, i.e., not shortly after, than the last time at which a queue
1389  *   either entered the burst list or was marked as belonging to the
1390  *   current large burst, then the current burst is deemed as finished and:
1391  *
1392  *        . the large-burst mode is reset if set
1393  *
1394  *        . the burst list is emptied
1395  *
1396  *        . Q is inserted in the burst list, as Q may be the first queue
1397  *          in a possible new burst (then the burst list contains just Q
1398  *          after this step).
1399  */
1400 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1401 {
1402 	/*
1403 	 * If bfqq is already in the burst list or is part of a large
1404 	 * burst, or finally has just been split, then there is
1405 	 * nothing else to do.
1406 	 */
1407 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1408 	    bfq_bfqq_in_large_burst(bfqq) ||
1409 	    time_is_after_eq_jiffies(bfqq->split_time +
1410 				     msecs_to_jiffies(10)))
1411 		return;
1412 
1413 	/*
1414 	 * If bfqq's creation happens late enough, or bfqq belongs to
1415 	 * a different group than the burst group, then the current
1416 	 * burst is finished, and related data structures must be
1417 	 * reset.
1418 	 *
1419 	 * In this respect, consider the special case where bfqq is
1420 	 * the very first queue created after BFQ is selected for this
1421 	 * device. In this case, last_ins_in_burst and
1422 	 * burst_parent_entity are not yet significant when we get
1423 	 * here. But it is easy to verify that, whether or not the
1424 	 * following condition is true, bfqq will end up being
1425 	 * inserted into the burst list. In particular the list will
1426 	 * happen to contain only bfqq. And this is exactly what has
1427 	 * to happen, as bfqq may be the first queue of the first
1428 	 * burst.
1429 	 */
1430 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1431 	    bfqd->bfq_burst_interval) ||
1432 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1433 		bfqd->large_burst = false;
1434 		bfq_reset_burst_list(bfqd, bfqq);
1435 		goto end;
1436 	}
1437 
1438 	/*
1439 	 * If we get here, then bfqq is being activated shortly after the
1440 	 * last queue. So, if the current burst is also large, we can mark
1441 	 * bfqq as belonging to this large burst immediately.
1442 	 */
1443 	if (bfqd->large_burst) {
1444 		bfq_mark_bfqq_in_large_burst(bfqq);
1445 		goto end;
1446 	}
1447 
1448 	/*
1449 	 * If we get here, then a large-burst state has not yet been
1450 	 * reached, but bfqq is being activated shortly after the last
1451 	 * queue. Then we add bfqq to the burst.
1452 	 */
1453 	bfq_add_to_burst(bfqd, bfqq);
1454 end:
1455 	/*
1456 	 * At this point, bfqq either has been added to the current
1457 	 * burst or has caused the current burst to terminate and a
1458 	 * possible new burst to start. In particular, in the second
1459 	 * case, bfqq has become the first queue in the possible new
1460 	 * burst.  In both cases last_ins_in_burst needs to be moved
1461 	 * forward.
1462 	 */
1463 	bfqd->last_ins_in_burst = jiffies;
1464 }
1465 
1466 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1467 {
1468 	struct bfq_entity *entity = &bfqq->entity;
1469 
1470 	return entity->budget - entity->service;
1471 }
1472 
1473 /*
1474  * If enough samples have been computed, return the current max budget
1475  * stored in bfqd, which is dynamically updated according to the
1476  * estimated disk peak rate; otherwise return the default max budget
1477  */
1478 static int bfq_max_budget(struct bfq_data *bfqd)
1479 {
1480 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1481 		return bfq_default_max_budget;
1482 	else
1483 		return bfqd->bfq_max_budget;
1484 }
1485 
1486 /*
1487  * Return min budget, which is a fraction of the current or default
1488  * max budget (trying with 1/32)
1489  */
1490 static int bfq_min_budget(struct bfq_data *bfqd)
1491 {
1492 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1493 		return bfq_default_max_budget / 32;
1494 	else
1495 		return bfqd->bfq_max_budget / 32;
1496 }
1497 
1498 /*
1499  * The next function, invoked after the input queue bfqq switches from
1500  * idle to busy, updates the budget of bfqq. The function also tells
1501  * whether the in-service queue should be expired, by returning
1502  * true. The purpose of expiring the in-service queue is to give bfqq
1503  * the chance to possibly preempt the in-service queue, and the reason
1504  * for preempting the in-service queue is to achieve one of the two
1505  * goals below.
1506  *
1507  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1508  * expired because it has remained idle. In particular, bfqq may have
1509  * expired for one of the following two reasons:
1510  *
1511  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1512  *   and did not make it to issue a new request before its last
1513  *   request was served;
1514  *
1515  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1516  *   a new request before the expiration of the idling-time.
1517  *
1518  * Even if bfqq has expired for one of the above reasons, the process
1519  * associated with the queue may be however issuing requests greedily,
1520  * and thus be sensitive to the bandwidth it receives (bfqq may have
1521  * remained idle for other reasons: CPU high load, bfqq not enjoying
1522  * idling, I/O throttling somewhere in the path from the process to
1523  * the I/O scheduler, ...). But if, after every expiration for one of
1524  * the above two reasons, bfqq has to wait for the service of at least
1525  * one full budget of another queue before being served again, then
1526  * bfqq is likely to get a much lower bandwidth or resource time than
1527  * its reserved ones. To address this issue, two countermeasures need
1528  * to be taken.
1529  *
1530  * First, the budget and the timestamps of bfqq need to be updated in
1531  * a special way on bfqq reactivation: they need to be updated as if
1532  * bfqq did not remain idle and did not expire. In fact, if they are
1533  * computed as if bfqq expired and remained idle until reactivation,
1534  * then the process associated with bfqq is treated as if, instead of
1535  * being greedy, it stopped issuing requests when bfqq remained idle,
1536  * and restarts issuing requests only on this reactivation. In other
1537  * words, the scheduler does not help the process recover the "service
1538  * hole" between bfqq expiration and reactivation. As a consequence,
1539  * the process receives a lower bandwidth than its reserved one. In
1540  * contrast, to recover this hole, the budget must be updated as if
1541  * bfqq was not expired at all before this reactivation, i.e., it must
1542  * be set to the value of the remaining budget when bfqq was
1543  * expired. Along the same line, timestamps need to be assigned the
1544  * value they had the last time bfqq was selected for service, i.e.,
1545  * before last expiration. Thus timestamps need to be back-shifted
1546  * with respect to their normal computation (see [1] for more details
1547  * on this tricky aspect).
1548  *
1549  * Secondly, to allow the process to recover the hole, the in-service
1550  * queue must be expired too, to give bfqq the chance to preempt it
1551  * immediately. In fact, if bfqq has to wait for a full budget of the
1552  * in-service queue to be completed, then it may become impossible to
1553  * let the process recover the hole, even if the back-shifted
1554  * timestamps of bfqq are lower than those of the in-service queue. If
1555  * this happens for most or all of the holes, then the process may not
1556  * receive its reserved bandwidth. In this respect, it is worth noting
1557  * that, being the service of outstanding requests unpreemptible, a
1558  * little fraction of the holes may however be unrecoverable, thereby
1559  * causing a little loss of bandwidth.
1560  *
1561  * The last important point is detecting whether bfqq does need this
1562  * bandwidth recovery. In this respect, the next function deems the
1563  * process associated with bfqq greedy, and thus allows it to recover
1564  * the hole, if: 1) the process is waiting for the arrival of a new
1565  * request (which implies that bfqq expired for one of the above two
1566  * reasons), and 2) such a request has arrived soon. The first
1567  * condition is controlled through the flag non_blocking_wait_rq,
1568  * while the second through the flag arrived_in_time. If both
1569  * conditions hold, then the function computes the budget in the
1570  * above-described special way, and signals that the in-service queue
1571  * should be expired. Timestamp back-shifting is done later in
1572  * __bfq_activate_entity.
1573  *
1574  * 2. Reduce latency. Even if timestamps are not backshifted to let
1575  * the process associated with bfqq recover a service hole, bfqq may
1576  * however happen to have, after being (re)activated, a lower finish
1577  * timestamp than the in-service queue.	 That is, the next budget of
1578  * bfqq may have to be completed before the one of the in-service
1579  * queue. If this is the case, then preempting the in-service queue
1580  * allows this goal to be achieved, apart from the unpreemptible,
1581  * outstanding requests mentioned above.
1582  *
1583  * Unfortunately, regardless of which of the above two goals one wants
1584  * to achieve, service trees need first to be updated to know whether
1585  * the in-service queue must be preempted. To have service trees
1586  * correctly updated, the in-service queue must be expired and
1587  * rescheduled, and bfqq must be scheduled too. This is one of the
1588  * most costly operations (in future versions, the scheduling
1589  * mechanism may be re-designed in such a way to make it possible to
1590  * know whether preemption is needed without needing to update service
1591  * trees). In addition, queue preemptions almost always cause random
1592  * I/O, which may in turn cause loss of throughput. Finally, there may
1593  * even be no in-service queue when the next function is invoked (so,
1594  * no queue to compare timestamps with). Because of these facts, the
1595  * next function adopts the following simple scheme to avoid costly
1596  * operations, too frequent preemptions and too many dependencies on
1597  * the state of the scheduler: it requests the expiration of the
1598  * in-service queue (unconditionally) only for queues that need to
1599  * recover a hole. Then it delegates to other parts of the code the
1600  * responsibility of handling the above case 2.
1601  */
1602 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1603 						struct bfq_queue *bfqq,
1604 						bool arrived_in_time)
1605 {
1606 	struct bfq_entity *entity = &bfqq->entity;
1607 
1608 	/*
1609 	 * In the next compound condition, we check also whether there
1610 	 * is some budget left, because otherwise there is no point in
1611 	 * trying to go on serving bfqq with this same budget: bfqq
1612 	 * would be expired immediately after being selected for
1613 	 * service. This would only cause useless overhead.
1614 	 */
1615 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1616 	    bfq_bfqq_budget_left(bfqq) > 0) {
1617 		/*
1618 		 * We do not clear the flag non_blocking_wait_rq here, as
1619 		 * the latter is used in bfq_activate_bfqq to signal
1620 		 * that timestamps need to be back-shifted (and is
1621 		 * cleared right after).
1622 		 */
1623 
1624 		/*
1625 		 * In next assignment we rely on that either
1626 		 * entity->service or entity->budget are not updated
1627 		 * on expiration if bfqq is empty (see
1628 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1629 		 * remain unchanged after such an expiration, and the
1630 		 * following statement therefore assigns to
1631 		 * entity->budget the remaining budget on such an
1632 		 * expiration.
1633 		 */
1634 		entity->budget = min_t(unsigned long,
1635 				       bfq_bfqq_budget_left(bfqq),
1636 				       bfqq->max_budget);
1637 
1638 		/*
1639 		 * At this point, we have used entity->service to get
1640 		 * the budget left (needed for updating
1641 		 * entity->budget). Thus we finally can, and have to,
1642 		 * reset entity->service. The latter must be reset
1643 		 * because bfqq would otherwise be charged again for
1644 		 * the service it has received during its previous
1645 		 * service slot(s).
1646 		 */
1647 		entity->service = 0;
1648 
1649 		return true;
1650 	}
1651 
1652 	/*
1653 	 * We can finally complete expiration, by setting service to 0.
1654 	 */
1655 	entity->service = 0;
1656 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1657 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1658 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1659 	return false;
1660 }
1661 
1662 /*
1663  * Return the farthest past time instant according to jiffies
1664  * macros.
1665  */
1666 static unsigned long bfq_smallest_from_now(void)
1667 {
1668 	return jiffies - MAX_JIFFY_OFFSET;
1669 }
1670 
1671 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1672 					     struct bfq_queue *bfqq,
1673 					     unsigned int old_wr_coeff,
1674 					     bool wr_or_deserves_wr,
1675 					     bool interactive,
1676 					     bool in_burst,
1677 					     bool soft_rt)
1678 {
1679 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1680 		/* start a weight-raising period */
1681 		if (interactive) {
1682 			bfqq->service_from_wr = 0;
1683 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1684 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1685 		} else {
1686 			/*
1687 			 * No interactive weight raising in progress
1688 			 * here: assign minus infinity to
1689 			 * wr_start_at_switch_to_srt, to make sure
1690 			 * that, at the end of the soft-real-time
1691 			 * weight raising periods that is starting
1692 			 * now, no interactive weight-raising period
1693 			 * may be wrongly considered as still in
1694 			 * progress (and thus actually started by
1695 			 * mistake).
1696 			 */
1697 			bfqq->wr_start_at_switch_to_srt =
1698 				bfq_smallest_from_now();
1699 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1700 				BFQ_SOFTRT_WEIGHT_FACTOR;
1701 			bfqq->wr_cur_max_time =
1702 				bfqd->bfq_wr_rt_max_time;
1703 		}
1704 
1705 		/*
1706 		 * If needed, further reduce budget to make sure it is
1707 		 * close to bfqq's backlog, so as to reduce the
1708 		 * scheduling-error component due to a too large
1709 		 * budget. Do not care about throughput consequences,
1710 		 * but only about latency. Finally, do not assign a
1711 		 * too small budget either, to avoid increasing
1712 		 * latency by causing too frequent expirations.
1713 		 */
1714 		bfqq->entity.budget = min_t(unsigned long,
1715 					    bfqq->entity.budget,
1716 					    2 * bfq_min_budget(bfqd));
1717 	} else if (old_wr_coeff > 1) {
1718 		if (interactive) { /* update wr coeff and duration */
1719 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1720 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1721 		} else if (in_burst)
1722 			bfqq->wr_coeff = 1;
1723 		else if (soft_rt) {
1724 			/*
1725 			 * The application is now or still meeting the
1726 			 * requirements for being deemed soft rt.  We
1727 			 * can then correctly and safely (re)charge
1728 			 * the weight-raising duration for the
1729 			 * application with the weight-raising
1730 			 * duration for soft rt applications.
1731 			 *
1732 			 * In particular, doing this recharge now, i.e.,
1733 			 * before the weight-raising period for the
1734 			 * application finishes, reduces the probability
1735 			 * of the following negative scenario:
1736 			 * 1) the weight of a soft rt application is
1737 			 *    raised at startup (as for any newly
1738 			 *    created application),
1739 			 * 2) since the application is not interactive,
1740 			 *    at a certain time weight-raising is
1741 			 *    stopped for the application,
1742 			 * 3) at that time the application happens to
1743 			 *    still have pending requests, and hence
1744 			 *    is destined to not have a chance to be
1745 			 *    deemed soft rt before these requests are
1746 			 *    completed (see the comments to the
1747 			 *    function bfq_bfqq_softrt_next_start()
1748 			 *    for details on soft rt detection),
1749 			 * 4) these pending requests experience a high
1750 			 *    latency because the application is not
1751 			 *    weight-raised while they are pending.
1752 			 */
1753 			if (bfqq->wr_cur_max_time !=
1754 				bfqd->bfq_wr_rt_max_time) {
1755 				bfqq->wr_start_at_switch_to_srt =
1756 					bfqq->last_wr_start_finish;
1757 
1758 				bfqq->wr_cur_max_time =
1759 					bfqd->bfq_wr_rt_max_time;
1760 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1761 					BFQ_SOFTRT_WEIGHT_FACTOR;
1762 			}
1763 			bfqq->last_wr_start_finish = jiffies;
1764 		}
1765 	}
1766 }
1767 
1768 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1769 					struct bfq_queue *bfqq)
1770 {
1771 	return bfqq->dispatched == 0 &&
1772 		time_is_before_jiffies(
1773 			bfqq->budget_timeout +
1774 			bfqd->bfq_wr_min_idle_time);
1775 }
1776 
1777 
1778 /*
1779  * Return true if bfqq is in a higher priority class, or has a higher
1780  * weight than the in-service queue.
1781  */
1782 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1783 					    struct bfq_queue *in_serv_bfqq)
1784 {
1785 	int bfqq_weight, in_serv_weight;
1786 
1787 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1788 		return true;
1789 
1790 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1791 		bfqq_weight = bfqq->entity.weight;
1792 		in_serv_weight = in_serv_bfqq->entity.weight;
1793 	} else {
1794 		if (bfqq->entity.parent)
1795 			bfqq_weight = bfqq->entity.parent->weight;
1796 		else
1797 			bfqq_weight = bfqq->entity.weight;
1798 		if (in_serv_bfqq->entity.parent)
1799 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1800 		else
1801 			in_serv_weight = in_serv_bfqq->entity.weight;
1802 	}
1803 
1804 	return bfqq_weight > in_serv_weight;
1805 }
1806 
1807 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1808 
1809 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1810 					     struct bfq_queue *bfqq,
1811 					     int old_wr_coeff,
1812 					     struct request *rq,
1813 					     bool *interactive)
1814 {
1815 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1816 		bfqq_wants_to_preempt,
1817 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1818 		/*
1819 		 * See the comments on
1820 		 * bfq_bfqq_update_budg_for_activation for
1821 		 * details on the usage of the next variable.
1822 		 */
1823 		arrived_in_time =  ktime_get_ns() <=
1824 			bfqq->ttime.last_end_request +
1825 			bfqd->bfq_slice_idle * 3;
1826 
1827 
1828 	/*
1829 	 * bfqq deserves to be weight-raised if:
1830 	 * - it is sync,
1831 	 * - it does not belong to a large burst,
1832 	 * - it has been idle for enough time or is soft real-time,
1833 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1834 	 * - has a default weight (otherwise we assume the user wanted
1835 	 *   to control its weight explicitly)
1836 	 */
1837 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1838 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1839 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1840 		!in_burst &&
1841 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1842 		bfqq->dispatched == 0 &&
1843 		bfqq->entity.new_weight == 40;
1844 	*interactive = !in_burst && idle_for_long_time &&
1845 		bfqq->entity.new_weight == 40;
1846 	/*
1847 	 * Merged bfq_queues are kept out of weight-raising
1848 	 * (low-latency) mechanisms. The reason is that these queues
1849 	 * are usually created for non-interactive and
1850 	 * non-soft-real-time tasks. Yet this is not the case for
1851 	 * stably-merged queues. These queues are merged just because
1852 	 * they are created shortly after each other. So they may
1853 	 * easily serve the I/O of an interactive or soft-real time
1854 	 * application, if the application happens to spawn multiple
1855 	 * processes. So let also stably-merged queued enjoy weight
1856 	 * raising.
1857 	 */
1858 	wr_or_deserves_wr = bfqd->low_latency &&
1859 		(bfqq->wr_coeff > 1 ||
1860 		 (bfq_bfqq_sync(bfqq) &&
1861 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1862 		   (*interactive || soft_rt)));
1863 
1864 	/*
1865 	 * Using the last flag, update budget and check whether bfqq
1866 	 * may want to preempt the in-service queue.
1867 	 */
1868 	bfqq_wants_to_preempt =
1869 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1870 						    arrived_in_time);
1871 
1872 	/*
1873 	 * If bfqq happened to be activated in a burst, but has been
1874 	 * idle for much more than an interactive queue, then we
1875 	 * assume that, in the overall I/O initiated in the burst, the
1876 	 * I/O associated with bfqq is finished. So bfqq does not need
1877 	 * to be treated as a queue belonging to a burst
1878 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1879 	 * if set, and remove bfqq from the burst list if it's
1880 	 * there. We do not decrement burst_size, because the fact
1881 	 * that bfqq does not need to belong to the burst list any
1882 	 * more does not invalidate the fact that bfqq was created in
1883 	 * a burst.
1884 	 */
1885 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1886 	    idle_for_long_time &&
1887 	    time_is_before_jiffies(
1888 		    bfqq->budget_timeout +
1889 		    msecs_to_jiffies(10000))) {
1890 		hlist_del_init(&bfqq->burst_list_node);
1891 		bfq_clear_bfqq_in_large_burst(bfqq);
1892 	}
1893 
1894 	bfq_clear_bfqq_just_created(bfqq);
1895 
1896 	if (bfqd->low_latency) {
1897 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1898 			/* wraparound */
1899 			bfqq->split_time =
1900 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1901 
1902 		if (time_is_before_jiffies(bfqq->split_time +
1903 					   bfqd->bfq_wr_min_idle_time)) {
1904 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1905 							 old_wr_coeff,
1906 							 wr_or_deserves_wr,
1907 							 *interactive,
1908 							 in_burst,
1909 							 soft_rt);
1910 
1911 			if (old_wr_coeff != bfqq->wr_coeff)
1912 				bfqq->entity.prio_changed = 1;
1913 		}
1914 	}
1915 
1916 	bfqq->last_idle_bklogged = jiffies;
1917 	bfqq->service_from_backlogged = 0;
1918 	bfq_clear_bfqq_softrt_update(bfqq);
1919 
1920 	bfq_add_bfqq_busy(bfqd, bfqq);
1921 
1922 	/*
1923 	 * Expire in-service queue if preemption may be needed for
1924 	 * guarantees or throughput. As for guarantees, we care
1925 	 * explicitly about two cases. The first is that bfqq has to
1926 	 * recover a service hole, as explained in the comments on
1927 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1928 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1929 	 * carry time-critical I/O, then bfqq's bandwidth is less
1930 	 * important than that of queues that carry time-critical I/O.
1931 	 * So, as a further constraint, we consider this case only if
1932 	 * bfqq is at least as weight-raised, i.e., at least as time
1933 	 * critical, as the in-service queue.
1934 	 *
1935 	 * The second case is that bfqq is in a higher priority class,
1936 	 * or has a higher weight than the in-service queue. If this
1937 	 * condition does not hold, we don't care because, even if
1938 	 * bfqq does not start to be served immediately, the resulting
1939 	 * delay for bfqq's I/O is however lower or much lower than
1940 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1941 	 *
1942 	 * In both cases, preemption is needed only if, according to
1943 	 * the timestamps of both bfqq and of the in-service queue,
1944 	 * bfqq actually is the next queue to serve. So, to reduce
1945 	 * useless preemptions, the return value of
1946 	 * next_queue_may_preempt() is considered in the next compound
1947 	 * condition too. Yet next_queue_may_preempt() just checks a
1948 	 * simple, necessary condition for bfqq to be the next queue
1949 	 * to serve. In fact, to evaluate a sufficient condition, the
1950 	 * timestamps of the in-service queue would need to be
1951 	 * updated, and this operation is quite costly (see the
1952 	 * comments on bfq_bfqq_update_budg_for_activation()).
1953 	 *
1954 	 * As for throughput, we ask bfq_better_to_idle() whether we
1955 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1956 	 * says no, then plugging is not needed any longer, either to
1957 	 * boost throughput or to perserve service guarantees. Then
1958 	 * the best option is to stop plugging I/O, as not doing so
1959 	 * would certainly lower throughput. We may end up in this
1960 	 * case if: (1) upon a dispatch attempt, we detected that it
1961 	 * was better to plug I/O dispatch, and to wait for a new
1962 	 * request to arrive for the currently in-service queue, but
1963 	 * (2) this switch of bfqq to busy changes the scenario.
1964 	 */
1965 	if (bfqd->in_service_queue &&
1966 	    ((bfqq_wants_to_preempt &&
1967 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1968 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1969 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1970 	    next_queue_may_preempt(bfqd))
1971 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1972 				false, BFQQE_PREEMPTED);
1973 }
1974 
1975 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1976 				   struct bfq_queue *bfqq)
1977 {
1978 	/* invalidate baseline total service time */
1979 	bfqq->last_serv_time_ns = 0;
1980 
1981 	/*
1982 	 * Reset pointer in case we are waiting for
1983 	 * some request completion.
1984 	 */
1985 	bfqd->waited_rq = NULL;
1986 
1987 	/*
1988 	 * If bfqq has a short think time, then start by setting the
1989 	 * inject limit to 0 prudentially, because the service time of
1990 	 * an injected I/O request may be higher than the think time
1991 	 * of bfqq, and therefore, if one request was injected when
1992 	 * bfqq remains empty, this injected request might delay the
1993 	 * service of the next I/O request for bfqq significantly. In
1994 	 * case bfqq can actually tolerate some injection, then the
1995 	 * adaptive update will however raise the limit soon. This
1996 	 * lucky circumstance holds exactly because bfqq has a short
1997 	 * think time, and thus, after remaining empty, is likely to
1998 	 * get new I/O enqueued---and then completed---before being
1999 	 * expired. This is the very pattern that gives the
2000 	 * limit-update algorithm the chance to measure the effect of
2001 	 * injection on request service times, and then to update the
2002 	 * limit accordingly.
2003 	 *
2004 	 * However, in the following special case, the inject limit is
2005 	 * left to 1 even if the think time is short: bfqq's I/O is
2006 	 * synchronized with that of some other queue, i.e., bfqq may
2007 	 * receive new I/O only after the I/O of the other queue is
2008 	 * completed. Keeping the inject limit to 1 allows the
2009 	 * blocking I/O to be served while bfqq is in service. And
2010 	 * this is very convenient both for bfqq and for overall
2011 	 * throughput, as explained in detail in the comments in
2012 	 * bfq_update_has_short_ttime().
2013 	 *
2014 	 * On the opposite end, if bfqq has a long think time, then
2015 	 * start directly by 1, because:
2016 	 * a) on the bright side, keeping at most one request in
2017 	 * service in the drive is unlikely to cause any harm to the
2018 	 * latency of bfqq's requests, as the service time of a single
2019 	 * request is likely to be lower than the think time of bfqq;
2020 	 * b) on the downside, after becoming empty, bfqq is likely to
2021 	 * expire before getting its next request. With this request
2022 	 * arrival pattern, it is very hard to sample total service
2023 	 * times and update the inject limit accordingly (see comments
2024 	 * on bfq_update_inject_limit()). So the limit is likely to be
2025 	 * never, or at least seldom, updated.  As a consequence, by
2026 	 * setting the limit to 1, we avoid that no injection ever
2027 	 * occurs with bfqq. On the downside, this proactive step
2028 	 * further reduces chances to actually compute the baseline
2029 	 * total service time. Thus it reduces chances to execute the
2030 	 * limit-update algorithm and possibly raise the limit to more
2031 	 * than 1.
2032 	 */
2033 	if (bfq_bfqq_has_short_ttime(bfqq))
2034 		bfqq->inject_limit = 0;
2035 	else
2036 		bfqq->inject_limit = 1;
2037 
2038 	bfqq->decrease_time_jif = jiffies;
2039 }
2040 
2041 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2042 {
2043 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2044 
2045 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2046 		bfqq->tot_idle_time +=
2047 			now_ns - bfqq->ttime.last_end_request;
2048 
2049 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2050 		return;
2051 
2052 	/*
2053 	 * Must be busy for at least about 80% of the time to be
2054 	 * considered I/O bound.
2055 	 */
2056 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2057 		bfq_clear_bfqq_IO_bound(bfqq);
2058 	else
2059 		bfq_mark_bfqq_IO_bound(bfqq);
2060 
2061 	/*
2062 	 * Keep an observation window of at most 200 ms in the past
2063 	 * from now.
2064 	 */
2065 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2066 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2067 		bfqq->tot_idle_time >>= 1;
2068 	}
2069 }
2070 
2071 /*
2072  * Detect whether bfqq's I/O seems synchronized with that of some
2073  * other queue, i.e., whether bfqq, after remaining empty, happens to
2074  * receive new I/O only right after some I/O request of the other
2075  * queue has been completed. We call waker queue the other queue, and
2076  * we assume, for simplicity, that bfqq may have at most one waker
2077  * queue.
2078  *
2079  * A remarkable throughput boost can be reached by unconditionally
2080  * injecting the I/O of the waker queue, every time a new
2081  * bfq_dispatch_request happens to be invoked while I/O is being
2082  * plugged for bfqq.  In addition to boosting throughput, this
2083  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2084  * bfqq. Note that these same results may be achieved with the general
2085  * injection mechanism, but less effectively. For details on this
2086  * aspect, see the comments on the choice of the queue for injection
2087  * in bfq_select_queue().
2088  *
2089  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2090  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2091  * non empty right after a request of Q has been completed within given
2092  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2093  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2094  * still being served by the drive, and may receive new I/O on the completion
2095  * of some of the in-flight requests. In particular, on the first time, Q is
2096  * tentatively set as a candidate waker queue, while on the third consecutive
2097  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2098  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2099  * has a long think time, so as to make it more likely that bfqq's I/O is
2100  * actually being blocked by a synchronization. This last filter, plus the
2101  * above three-times requirement and time limit for detection, make false
2102  * positives less likely.
2103  *
2104  * NOTE
2105  *
2106  * The sooner a waker queue is detected, the sooner throughput can be
2107  * boosted by injecting I/O from the waker queue. Fortunately,
2108  * detection is likely to be actually fast, for the following
2109  * reasons. While blocked by synchronization, bfqq has a long think
2110  * time. This implies that bfqq's inject limit is at least equal to 1
2111  * (see the comments in bfq_update_inject_limit()). So, thanks to
2112  * injection, the waker queue is likely to be served during the very
2113  * first I/O-plugging time interval for bfqq. This triggers the first
2114  * step of the detection mechanism. Thanks again to injection, the
2115  * candidate waker queue is then likely to be confirmed no later than
2116  * during the next I/O-plugging interval for bfqq.
2117  *
2118  * ISSUE
2119  *
2120  * On queue merging all waker information is lost.
2121  */
2122 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2123 			    u64 now_ns)
2124 {
2125 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2126 
2127 	if (!bfqd->last_completed_rq_bfqq ||
2128 	    bfqd->last_completed_rq_bfqq == bfqq ||
2129 	    bfq_bfqq_has_short_ttime(bfqq) ||
2130 	    bfqq->dispatched > 0 ||
2131 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2132 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2133 		return;
2134 
2135 	/*
2136 	 * We reset waker detection logic also if too much time has passed
2137  	 * since the first detection. If wakeups are rare, pointless idling
2138 	 * doesn't hurt throughput that much. The condition below makes sure
2139 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2140 	 */
2141 	if (bfqd->last_completed_rq_bfqq !=
2142 	    bfqq->tentative_waker_bfqq ||
2143 	    now_ns > bfqq->waker_detection_started +
2144 					128 * (u64)bfqd->bfq_slice_idle) {
2145 		/*
2146 		 * First synchronization detected with a
2147 		 * candidate waker queue, or with a different
2148 		 * candidate waker queue from the current one.
2149 		 */
2150 		bfqq->tentative_waker_bfqq =
2151 			bfqd->last_completed_rq_bfqq;
2152 		bfqq->num_waker_detections = 1;
2153 		bfqq->waker_detection_started = now_ns;
2154 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2155 			      MAX_BFQQ_NAME_LENGTH);
2156 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2157 	} else /* Same tentative waker queue detected again */
2158 		bfqq->num_waker_detections++;
2159 
2160 	if (bfqq->num_waker_detections == 3) {
2161 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2162 		bfqq->tentative_waker_bfqq = NULL;
2163 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2164 			      MAX_BFQQ_NAME_LENGTH);
2165 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2166 
2167 		/*
2168 		 * If the waker queue disappears, then
2169 		 * bfqq->waker_bfqq must be reset. To
2170 		 * this goal, we maintain in each
2171 		 * waker queue a list, woken_list, of
2172 		 * all the queues that reference the
2173 		 * waker queue through their
2174 		 * waker_bfqq pointer. When the waker
2175 		 * queue exits, the waker_bfqq pointer
2176 		 * of all the queues in the woken_list
2177 		 * is reset.
2178 		 *
2179 		 * In addition, if bfqq is already in
2180 		 * the woken_list of a waker queue,
2181 		 * then, before being inserted into
2182 		 * the woken_list of a new waker
2183 		 * queue, bfqq must be removed from
2184 		 * the woken_list of the old waker
2185 		 * queue.
2186 		 */
2187 		if (!hlist_unhashed(&bfqq->woken_list_node))
2188 			hlist_del_init(&bfqq->woken_list_node);
2189 		hlist_add_head(&bfqq->woken_list_node,
2190 			       &bfqd->last_completed_rq_bfqq->woken_list);
2191 	}
2192 }
2193 
2194 static void bfq_add_request(struct request *rq)
2195 {
2196 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2197 	struct bfq_data *bfqd = bfqq->bfqd;
2198 	struct request *next_rq, *prev;
2199 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2200 	bool interactive = false;
2201 	u64 now_ns = ktime_get_ns();
2202 
2203 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2204 	bfqq->queued[rq_is_sync(rq)]++;
2205 	bfqd->queued++;
2206 
2207 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2208 		bfq_check_waker(bfqd, bfqq, now_ns);
2209 
2210 		/*
2211 		 * Periodically reset inject limit, to make sure that
2212 		 * the latter eventually drops in case workload
2213 		 * changes, see step (3) in the comments on
2214 		 * bfq_update_inject_limit().
2215 		 */
2216 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2217 					     msecs_to_jiffies(1000)))
2218 			bfq_reset_inject_limit(bfqd, bfqq);
2219 
2220 		/*
2221 		 * The following conditions must hold to setup a new
2222 		 * sampling of total service time, and then a new
2223 		 * update of the inject limit:
2224 		 * - bfqq is in service, because the total service
2225 		 *   time is evaluated only for the I/O requests of
2226 		 *   the queues in service;
2227 		 * - this is the right occasion to compute or to
2228 		 *   lower the baseline total service time, because
2229 		 *   there are actually no requests in the drive,
2230 		 *   or
2231 		 *   the baseline total service time is available, and
2232 		 *   this is the right occasion to compute the other
2233 		 *   quantity needed to update the inject limit, i.e.,
2234 		 *   the total service time caused by the amount of
2235 		 *   injection allowed by the current value of the
2236 		 *   limit. It is the right occasion because injection
2237 		 *   has actually been performed during the service
2238 		 *   hole, and there are still in-flight requests,
2239 		 *   which are very likely to be exactly the injected
2240 		 *   requests, or part of them;
2241 		 * - the minimum interval for sampling the total
2242 		 *   service time and updating the inject limit has
2243 		 *   elapsed.
2244 		 */
2245 		if (bfqq == bfqd->in_service_queue &&
2246 		    (bfqd->rq_in_driver == 0 ||
2247 		     (bfqq->last_serv_time_ns > 0 &&
2248 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2249 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2250 					      msecs_to_jiffies(10))) {
2251 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2252 			/*
2253 			 * Start the state machine for measuring the
2254 			 * total service time of rq: setting
2255 			 * wait_dispatch will cause bfqd->waited_rq to
2256 			 * be set when rq will be dispatched.
2257 			 */
2258 			bfqd->wait_dispatch = true;
2259 			/*
2260 			 * If there is no I/O in service in the drive,
2261 			 * then possible injection occurred before the
2262 			 * arrival of rq will not affect the total
2263 			 * service time of rq. So the injection limit
2264 			 * must not be updated as a function of such
2265 			 * total service time, unless new injection
2266 			 * occurs before rq is completed. To have the
2267 			 * injection limit updated only in the latter
2268 			 * case, reset rqs_injected here (rqs_injected
2269 			 * will be set in case injection is performed
2270 			 * on bfqq before rq is completed).
2271 			 */
2272 			if (bfqd->rq_in_driver == 0)
2273 				bfqd->rqs_injected = false;
2274 		}
2275 	}
2276 
2277 	if (bfq_bfqq_sync(bfqq))
2278 		bfq_update_io_intensity(bfqq, now_ns);
2279 
2280 	elv_rb_add(&bfqq->sort_list, rq);
2281 
2282 	/*
2283 	 * Check if this request is a better next-serve candidate.
2284 	 */
2285 	prev = bfqq->next_rq;
2286 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2287 	bfqq->next_rq = next_rq;
2288 
2289 	/*
2290 	 * Adjust priority tree position, if next_rq changes.
2291 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2292 	 */
2293 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2294 		bfq_pos_tree_add_move(bfqd, bfqq);
2295 
2296 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2297 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2298 						 rq, &interactive);
2299 	else {
2300 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2301 		    time_is_before_jiffies(
2302 				bfqq->last_wr_start_finish +
2303 				bfqd->bfq_wr_min_inter_arr_async)) {
2304 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2305 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2306 
2307 			bfqd->wr_busy_queues++;
2308 			bfqq->entity.prio_changed = 1;
2309 		}
2310 		if (prev != bfqq->next_rq)
2311 			bfq_updated_next_req(bfqd, bfqq);
2312 	}
2313 
2314 	/*
2315 	 * Assign jiffies to last_wr_start_finish in the following
2316 	 * cases:
2317 	 *
2318 	 * . if bfqq is not going to be weight-raised, because, for
2319 	 *   non weight-raised queues, last_wr_start_finish stores the
2320 	 *   arrival time of the last request; as of now, this piece
2321 	 *   of information is used only for deciding whether to
2322 	 *   weight-raise async queues
2323 	 *
2324 	 * . if bfqq is not weight-raised, because, if bfqq is now
2325 	 *   switching to weight-raised, then last_wr_start_finish
2326 	 *   stores the time when weight-raising starts
2327 	 *
2328 	 * . if bfqq is interactive, because, regardless of whether
2329 	 *   bfqq is currently weight-raised, the weight-raising
2330 	 *   period must start or restart (this case is considered
2331 	 *   separately because it is not detected by the above
2332 	 *   conditions, if bfqq is already weight-raised)
2333 	 *
2334 	 * last_wr_start_finish has to be updated also if bfqq is soft
2335 	 * real-time, because the weight-raising period is constantly
2336 	 * restarted on idle-to-busy transitions for these queues, but
2337 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2338 	 * needed.
2339 	 */
2340 	if (bfqd->low_latency &&
2341 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2342 		bfqq->last_wr_start_finish = jiffies;
2343 }
2344 
2345 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2346 					  struct bio *bio,
2347 					  struct request_queue *q)
2348 {
2349 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2350 
2351 
2352 	if (bfqq)
2353 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2354 
2355 	return NULL;
2356 }
2357 
2358 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2359 {
2360 	if (last_pos)
2361 		return abs(blk_rq_pos(rq) - last_pos);
2362 
2363 	return 0;
2364 }
2365 
2366 #if 0 /* Still not clear if we can do without next two functions */
2367 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2368 {
2369 	struct bfq_data *bfqd = q->elevator->elevator_data;
2370 
2371 	bfqd->rq_in_driver++;
2372 }
2373 
2374 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2375 {
2376 	struct bfq_data *bfqd = q->elevator->elevator_data;
2377 
2378 	bfqd->rq_in_driver--;
2379 }
2380 #endif
2381 
2382 static void bfq_remove_request(struct request_queue *q,
2383 			       struct request *rq)
2384 {
2385 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2386 	struct bfq_data *bfqd = bfqq->bfqd;
2387 	const int sync = rq_is_sync(rq);
2388 
2389 	if (bfqq->next_rq == rq) {
2390 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2391 		bfq_updated_next_req(bfqd, bfqq);
2392 	}
2393 
2394 	if (rq->queuelist.prev != &rq->queuelist)
2395 		list_del_init(&rq->queuelist);
2396 	bfqq->queued[sync]--;
2397 	bfqd->queued--;
2398 	elv_rb_del(&bfqq->sort_list, rq);
2399 
2400 	elv_rqhash_del(q, rq);
2401 	if (q->last_merge == rq)
2402 		q->last_merge = NULL;
2403 
2404 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2405 		bfqq->next_rq = NULL;
2406 
2407 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2408 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2409 			/*
2410 			 * bfqq emptied. In normal operation, when
2411 			 * bfqq is empty, bfqq->entity.service and
2412 			 * bfqq->entity.budget must contain,
2413 			 * respectively, the service received and the
2414 			 * budget used last time bfqq emptied. These
2415 			 * facts do not hold in this case, as at least
2416 			 * this last removal occurred while bfqq is
2417 			 * not in service. To avoid inconsistencies,
2418 			 * reset both bfqq->entity.service and
2419 			 * bfqq->entity.budget, if bfqq has still a
2420 			 * process that may issue I/O requests to it.
2421 			 */
2422 			bfqq->entity.budget = bfqq->entity.service = 0;
2423 		}
2424 
2425 		/*
2426 		 * Remove queue from request-position tree as it is empty.
2427 		 */
2428 		if (bfqq->pos_root) {
2429 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2430 			bfqq->pos_root = NULL;
2431 		}
2432 	} else {
2433 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2434 		if (unlikely(!bfqd->nonrot_with_queueing))
2435 			bfq_pos_tree_add_move(bfqd, bfqq);
2436 	}
2437 
2438 	if (rq->cmd_flags & REQ_META)
2439 		bfqq->meta_pending--;
2440 
2441 }
2442 
2443 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2444 		unsigned int nr_segs)
2445 {
2446 	struct bfq_data *bfqd = q->elevator->elevator_data;
2447 	struct request *free = NULL;
2448 	/*
2449 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2450 	 * store its return value for later use, to avoid nesting
2451 	 * queue_lock inside the bfqd->lock. We assume that the bic
2452 	 * returned by bfq_bic_lookup does not go away before
2453 	 * bfqd->lock is taken.
2454 	 */
2455 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2456 	bool ret;
2457 
2458 	spin_lock_irq(&bfqd->lock);
2459 
2460 	if (bic)
2461 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2462 	else
2463 		bfqd->bio_bfqq = NULL;
2464 	bfqd->bio_bic = bic;
2465 
2466 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2467 
2468 	spin_unlock_irq(&bfqd->lock);
2469 	if (free)
2470 		blk_mq_free_request(free);
2471 
2472 	return ret;
2473 }
2474 
2475 static int bfq_request_merge(struct request_queue *q, struct request **req,
2476 			     struct bio *bio)
2477 {
2478 	struct bfq_data *bfqd = q->elevator->elevator_data;
2479 	struct request *__rq;
2480 
2481 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2482 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2483 		*req = __rq;
2484 
2485 		if (blk_discard_mergable(__rq))
2486 			return ELEVATOR_DISCARD_MERGE;
2487 		return ELEVATOR_FRONT_MERGE;
2488 	}
2489 
2490 	return ELEVATOR_NO_MERGE;
2491 }
2492 
2493 static struct bfq_queue *bfq_init_rq(struct request *rq);
2494 
2495 static void bfq_request_merged(struct request_queue *q, struct request *req,
2496 			       enum elv_merge type)
2497 {
2498 	if (type == ELEVATOR_FRONT_MERGE &&
2499 	    rb_prev(&req->rb_node) &&
2500 	    blk_rq_pos(req) <
2501 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2502 				    struct request, rb_node))) {
2503 		struct bfq_queue *bfqq = bfq_init_rq(req);
2504 		struct bfq_data *bfqd;
2505 		struct request *prev, *next_rq;
2506 
2507 		if (!bfqq)
2508 			return;
2509 
2510 		bfqd = bfqq->bfqd;
2511 
2512 		/* Reposition request in its sort_list */
2513 		elv_rb_del(&bfqq->sort_list, req);
2514 		elv_rb_add(&bfqq->sort_list, req);
2515 
2516 		/* Choose next request to be served for bfqq */
2517 		prev = bfqq->next_rq;
2518 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2519 					 bfqd->last_position);
2520 		bfqq->next_rq = next_rq;
2521 		/*
2522 		 * If next_rq changes, update both the queue's budget to
2523 		 * fit the new request and the queue's position in its
2524 		 * rq_pos_tree.
2525 		 */
2526 		if (prev != bfqq->next_rq) {
2527 			bfq_updated_next_req(bfqd, bfqq);
2528 			/*
2529 			 * See comments on bfq_pos_tree_add_move() for
2530 			 * the unlikely().
2531 			 */
2532 			if (unlikely(!bfqd->nonrot_with_queueing))
2533 				bfq_pos_tree_add_move(bfqd, bfqq);
2534 		}
2535 	}
2536 }
2537 
2538 /*
2539  * This function is called to notify the scheduler that the requests
2540  * rq and 'next' have been merged, with 'next' going away.  BFQ
2541  * exploits this hook to address the following issue: if 'next' has a
2542  * fifo_time lower that rq, then the fifo_time of rq must be set to
2543  * the value of 'next', to not forget the greater age of 'next'.
2544  *
2545  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2546  * on that rq is picked from the hash table q->elevator->hash, which,
2547  * in its turn, is filled only with I/O requests present in
2548  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2549  * the function that fills this hash table (elv_rqhash_add) is called
2550  * only by bfq_insert_request.
2551  */
2552 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2553 				struct request *next)
2554 {
2555 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2556 		*next_bfqq = bfq_init_rq(next);
2557 
2558 	if (!bfqq)
2559 		goto remove;
2560 
2561 	/*
2562 	 * If next and rq belong to the same bfq_queue and next is older
2563 	 * than rq, then reposition rq in the fifo (by substituting next
2564 	 * with rq). Otherwise, if next and rq belong to different
2565 	 * bfq_queues, never reposition rq: in fact, we would have to
2566 	 * reposition it with respect to next's position in its own fifo,
2567 	 * which would most certainly be too expensive with respect to
2568 	 * the benefits.
2569 	 */
2570 	if (bfqq == next_bfqq &&
2571 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2572 	    next->fifo_time < rq->fifo_time) {
2573 		list_del_init(&rq->queuelist);
2574 		list_replace_init(&next->queuelist, &rq->queuelist);
2575 		rq->fifo_time = next->fifo_time;
2576 	}
2577 
2578 	if (bfqq->next_rq == next)
2579 		bfqq->next_rq = rq;
2580 
2581 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2582 remove:
2583 	/* Merged request may be in the IO scheduler. Remove it. */
2584 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2585 		bfq_remove_request(next->q, next);
2586 		if (next_bfqq)
2587 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2588 						    next->cmd_flags);
2589 	}
2590 }
2591 
2592 /* Must be called with bfqq != NULL */
2593 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2594 {
2595 	/*
2596 	 * If bfqq has been enjoying interactive weight-raising, then
2597 	 * reset soft_rt_next_start. We do it for the following
2598 	 * reason. bfqq may have been conveying the I/O needed to load
2599 	 * a soft real-time application. Such an application actually
2600 	 * exhibits a soft real-time I/O pattern after it finishes
2601 	 * loading, and finally starts doing its job. But, if bfqq has
2602 	 * been receiving a lot of bandwidth so far (likely to happen
2603 	 * on a fast device), then soft_rt_next_start now contains a
2604 	 * high value that. So, without this reset, bfqq would be
2605 	 * prevented from being possibly considered as soft_rt for a
2606 	 * very long time.
2607 	 */
2608 
2609 	if (bfqq->wr_cur_max_time !=
2610 	    bfqq->bfqd->bfq_wr_rt_max_time)
2611 		bfqq->soft_rt_next_start = jiffies;
2612 
2613 	if (bfq_bfqq_busy(bfqq))
2614 		bfqq->bfqd->wr_busy_queues--;
2615 	bfqq->wr_coeff = 1;
2616 	bfqq->wr_cur_max_time = 0;
2617 	bfqq->last_wr_start_finish = jiffies;
2618 	/*
2619 	 * Trigger a weight change on the next invocation of
2620 	 * __bfq_entity_update_weight_prio.
2621 	 */
2622 	bfqq->entity.prio_changed = 1;
2623 }
2624 
2625 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2626 			     struct bfq_group *bfqg)
2627 {
2628 	int i, j;
2629 
2630 	for (i = 0; i < 2; i++)
2631 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2632 			if (bfqg->async_bfqq[i][j])
2633 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2634 	if (bfqg->async_idle_bfqq)
2635 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2636 }
2637 
2638 static void bfq_end_wr(struct bfq_data *bfqd)
2639 {
2640 	struct bfq_queue *bfqq;
2641 
2642 	spin_lock_irq(&bfqd->lock);
2643 
2644 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2645 		bfq_bfqq_end_wr(bfqq);
2646 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2647 		bfq_bfqq_end_wr(bfqq);
2648 	bfq_end_wr_async(bfqd);
2649 
2650 	spin_unlock_irq(&bfqd->lock);
2651 }
2652 
2653 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2654 {
2655 	if (request)
2656 		return blk_rq_pos(io_struct);
2657 	else
2658 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2659 }
2660 
2661 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2662 				  sector_t sector)
2663 {
2664 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2665 	       BFQQ_CLOSE_THR;
2666 }
2667 
2668 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2669 					 struct bfq_queue *bfqq,
2670 					 sector_t sector)
2671 {
2672 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2673 	struct rb_node *parent, *node;
2674 	struct bfq_queue *__bfqq;
2675 
2676 	if (RB_EMPTY_ROOT(root))
2677 		return NULL;
2678 
2679 	/*
2680 	 * First, if we find a request starting at the end of the last
2681 	 * request, choose it.
2682 	 */
2683 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2684 	if (__bfqq)
2685 		return __bfqq;
2686 
2687 	/*
2688 	 * If the exact sector wasn't found, the parent of the NULL leaf
2689 	 * will contain the closest sector (rq_pos_tree sorted by
2690 	 * next_request position).
2691 	 */
2692 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2693 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2694 		return __bfqq;
2695 
2696 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2697 		node = rb_next(&__bfqq->pos_node);
2698 	else
2699 		node = rb_prev(&__bfqq->pos_node);
2700 	if (!node)
2701 		return NULL;
2702 
2703 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2704 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2705 		return __bfqq;
2706 
2707 	return NULL;
2708 }
2709 
2710 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2711 						   struct bfq_queue *cur_bfqq,
2712 						   sector_t sector)
2713 {
2714 	struct bfq_queue *bfqq;
2715 
2716 	/*
2717 	 * We shall notice if some of the queues are cooperating,
2718 	 * e.g., working closely on the same area of the device. In
2719 	 * that case, we can group them together and: 1) don't waste
2720 	 * time idling, and 2) serve the union of their requests in
2721 	 * the best possible order for throughput.
2722 	 */
2723 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2724 	if (!bfqq || bfqq == cur_bfqq)
2725 		return NULL;
2726 
2727 	return bfqq;
2728 }
2729 
2730 static struct bfq_queue *
2731 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2732 {
2733 	int process_refs, new_process_refs;
2734 	struct bfq_queue *__bfqq;
2735 
2736 	/*
2737 	 * If there are no process references on the new_bfqq, then it is
2738 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2739 	 * may have dropped their last reference (not just their last process
2740 	 * reference).
2741 	 */
2742 	if (!bfqq_process_refs(new_bfqq))
2743 		return NULL;
2744 
2745 	/* Avoid a circular list and skip interim queue merges. */
2746 	while ((__bfqq = new_bfqq->new_bfqq)) {
2747 		if (__bfqq == bfqq)
2748 			return NULL;
2749 		new_bfqq = __bfqq;
2750 	}
2751 
2752 	process_refs = bfqq_process_refs(bfqq);
2753 	new_process_refs = bfqq_process_refs(new_bfqq);
2754 	/*
2755 	 * If the process for the bfqq has gone away, there is no
2756 	 * sense in merging the queues.
2757 	 */
2758 	if (process_refs == 0 || new_process_refs == 0)
2759 		return NULL;
2760 
2761 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2762 		new_bfqq->pid);
2763 
2764 	/*
2765 	 * Merging is just a redirection: the requests of the process
2766 	 * owning one of the two queues are redirected to the other queue.
2767 	 * The latter queue, in its turn, is set as shared if this is the
2768 	 * first time that the requests of some process are redirected to
2769 	 * it.
2770 	 *
2771 	 * We redirect bfqq to new_bfqq and not the opposite, because
2772 	 * we are in the context of the process owning bfqq, thus we
2773 	 * have the io_cq of this process. So we can immediately
2774 	 * configure this io_cq to redirect the requests of the
2775 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2776 	 * not available any more (new_bfqq->bic == NULL).
2777 	 *
2778 	 * Anyway, even in case new_bfqq coincides with the in-service
2779 	 * queue, redirecting requests the in-service queue is the
2780 	 * best option, as we feed the in-service queue with new
2781 	 * requests close to the last request served and, by doing so,
2782 	 * are likely to increase the throughput.
2783 	 */
2784 	bfqq->new_bfqq = new_bfqq;
2785 	/*
2786 	 * The above assignment schedules the following redirections:
2787 	 * each time some I/O for bfqq arrives, the process that
2788 	 * generated that I/O is disassociated from bfqq and
2789 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2790 	 * in advance, adding the number of processes that are
2791 	 * expected to be associated with new_bfqq as they happen to
2792 	 * issue I/O.
2793 	 */
2794 	new_bfqq->ref += process_refs;
2795 	return new_bfqq;
2796 }
2797 
2798 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2799 					struct bfq_queue *new_bfqq)
2800 {
2801 	if (bfq_too_late_for_merging(new_bfqq))
2802 		return false;
2803 
2804 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2805 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2806 		return false;
2807 
2808 	/*
2809 	 * If either of the queues has already been detected as seeky,
2810 	 * then merging it with the other queue is unlikely to lead to
2811 	 * sequential I/O.
2812 	 */
2813 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2814 		return false;
2815 
2816 	/*
2817 	 * Interleaved I/O is known to be done by (some) applications
2818 	 * only for reads, so it does not make sense to merge async
2819 	 * queues.
2820 	 */
2821 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2822 		return false;
2823 
2824 	return true;
2825 }
2826 
2827 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2828 					     struct bfq_queue *bfqq);
2829 
2830 /*
2831  * Attempt to schedule a merge of bfqq with the currently in-service
2832  * queue or with a close queue among the scheduled queues.  Return
2833  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2834  * structure otherwise.
2835  *
2836  * The OOM queue is not allowed to participate to cooperation: in fact, since
2837  * the requests temporarily redirected to the OOM queue could be redirected
2838  * again to dedicated queues at any time, the state needed to correctly
2839  * handle merging with the OOM queue would be quite complex and expensive
2840  * to maintain. Besides, in such a critical condition as an out of memory,
2841  * the benefits of queue merging may be little relevant, or even negligible.
2842  *
2843  * WARNING: queue merging may impair fairness among non-weight raised
2844  * queues, for at least two reasons: 1) the original weight of a
2845  * merged queue may change during the merged state, 2) even being the
2846  * weight the same, a merged queue may be bloated with many more
2847  * requests than the ones produced by its originally-associated
2848  * process.
2849  */
2850 static struct bfq_queue *
2851 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2852 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2853 {
2854 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2855 
2856 	/* if a merge has already been setup, then proceed with that first */
2857 	if (bfqq->new_bfqq)
2858 		return bfqq->new_bfqq;
2859 
2860 	/*
2861 	 * Check delayed stable merge for rotational or non-queueing
2862 	 * devs. For this branch to be executed, bfqq must not be
2863 	 * currently merged with some other queue (i.e., bfqq->bic
2864 	 * must be non null). If we considered also merged queues,
2865 	 * then we should also check whether bfqq has already been
2866 	 * merged with bic->stable_merge_bfqq. But this would be
2867 	 * costly and complicated.
2868 	 */
2869 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2870 		/*
2871 		 * Make sure also that bfqq is sync, because
2872 		 * bic->stable_merge_bfqq may point to some queue (for
2873 		 * stable merging) also if bic is associated with a
2874 		 * sync queue, but this bfqq is async
2875 		 */
2876 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2877 		    !bfq_bfqq_just_created(bfqq) &&
2878 		    time_is_before_jiffies(bfqq->split_time +
2879 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2880 		    time_is_before_jiffies(bfqq->creation_time +
2881 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2882 			struct bfq_queue *stable_merge_bfqq =
2883 				bic->stable_merge_bfqq;
2884 			int proc_ref = min(bfqq_process_refs(bfqq),
2885 					   bfqq_process_refs(stable_merge_bfqq));
2886 
2887 			/* deschedule stable merge, because done or aborted here */
2888 			bfq_put_stable_ref(stable_merge_bfqq);
2889 
2890 			bic->stable_merge_bfqq = NULL;
2891 
2892 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2893 			    proc_ref > 0) {
2894 				/* next function will take at least one ref */
2895 				struct bfq_queue *new_bfqq =
2896 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2897 
2898 				bic->stably_merged = true;
2899 				if (new_bfqq && new_bfqq->bic)
2900 					new_bfqq->bic->stably_merged = true;
2901 				return new_bfqq;
2902 			} else
2903 				return NULL;
2904 		}
2905 	}
2906 
2907 	/*
2908 	 * Do not perform queue merging if the device is non
2909 	 * rotational and performs internal queueing. In fact, such a
2910 	 * device reaches a high speed through internal parallelism
2911 	 * and pipelining. This means that, to reach a high
2912 	 * throughput, it must have many requests enqueued at the same
2913 	 * time. But, in this configuration, the internal scheduling
2914 	 * algorithm of the device does exactly the job of queue
2915 	 * merging: it reorders requests so as to obtain as much as
2916 	 * possible a sequential I/O pattern. As a consequence, with
2917 	 * the workload generated by processes doing interleaved I/O,
2918 	 * the throughput reached by the device is likely to be the
2919 	 * same, with and without queue merging.
2920 	 *
2921 	 * Disabling merging also provides a remarkable benefit in
2922 	 * terms of throughput. Merging tends to make many workloads
2923 	 * artificially more uneven, because of shared queues
2924 	 * remaining non empty for incomparably more time than
2925 	 * non-merged queues. This may accentuate workload
2926 	 * asymmetries. For example, if one of the queues in a set of
2927 	 * merged queues has a higher weight than a normal queue, then
2928 	 * the shared queue may inherit such a high weight and, by
2929 	 * staying almost always active, may force BFQ to perform I/O
2930 	 * plugging most of the time. This evidently makes it harder
2931 	 * for BFQ to let the device reach a high throughput.
2932 	 *
2933 	 * Finally, the likely() macro below is not used because one
2934 	 * of the two branches is more likely than the other, but to
2935 	 * have the code path after the following if() executed as
2936 	 * fast as possible for the case of a non rotational device
2937 	 * with queueing. We want it because this is the fastest kind
2938 	 * of device. On the opposite end, the likely() may lengthen
2939 	 * the execution time of BFQ for the case of slower devices
2940 	 * (rotational or at least without queueing). But in this case
2941 	 * the execution time of BFQ matters very little, if not at
2942 	 * all.
2943 	 */
2944 	if (likely(bfqd->nonrot_with_queueing))
2945 		return NULL;
2946 
2947 	/*
2948 	 * Prevent bfqq from being merged if it has been created too
2949 	 * long ago. The idea is that true cooperating processes, and
2950 	 * thus their associated bfq_queues, are supposed to be
2951 	 * created shortly after each other. This is the case, e.g.,
2952 	 * for KVM/QEMU and dump I/O threads. Basing on this
2953 	 * assumption, the following filtering greatly reduces the
2954 	 * probability that two non-cooperating processes, which just
2955 	 * happen to do close I/O for some short time interval, have
2956 	 * their queues merged by mistake.
2957 	 */
2958 	if (bfq_too_late_for_merging(bfqq))
2959 		return NULL;
2960 
2961 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2962 		return NULL;
2963 
2964 	/* If there is only one backlogged queue, don't search. */
2965 	if (bfq_tot_busy_queues(bfqd) == 1)
2966 		return NULL;
2967 
2968 	in_service_bfqq = bfqd->in_service_queue;
2969 
2970 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2971 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2972 	    bfq_rq_close_to_sector(io_struct, request,
2973 				   bfqd->in_serv_last_pos) &&
2974 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2975 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2976 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2977 		if (new_bfqq)
2978 			return new_bfqq;
2979 	}
2980 	/*
2981 	 * Check whether there is a cooperator among currently scheduled
2982 	 * queues. The only thing we need is that the bio/request is not
2983 	 * NULL, as we need it to establish whether a cooperator exists.
2984 	 */
2985 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2986 			bfq_io_struct_pos(io_struct, request));
2987 
2988 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2989 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2990 		return bfq_setup_merge(bfqq, new_bfqq);
2991 
2992 	return NULL;
2993 }
2994 
2995 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2996 {
2997 	struct bfq_io_cq *bic = bfqq->bic;
2998 
2999 	/*
3000 	 * If !bfqq->bic, the queue is already shared or its requests
3001 	 * have already been redirected to a shared queue; both idle window
3002 	 * and weight raising state have already been saved. Do nothing.
3003 	 */
3004 	if (!bic)
3005 		return;
3006 
3007 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3008 	bic->saved_inject_limit = bfqq->inject_limit;
3009 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
3010 
3011 	bic->saved_weight = bfqq->entity.orig_weight;
3012 	bic->saved_ttime = bfqq->ttime;
3013 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
3014 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3015 	bic->saved_io_start_time = bfqq->io_start_time;
3016 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
3017 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3018 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
3019 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3020 		     !bfq_bfqq_in_large_burst(bfqq) &&
3021 		     bfqq->bfqd->low_latency)) {
3022 		/*
3023 		 * bfqq being merged right after being created: bfqq
3024 		 * would have deserved interactive weight raising, but
3025 		 * did not make it to be set in a weight-raised state,
3026 		 * because of this early merge.	Store directly the
3027 		 * weight-raising state that would have been assigned
3028 		 * to bfqq, so that to avoid that bfqq unjustly fails
3029 		 * to enjoy weight raising if split soon.
3030 		 */
3031 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3032 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
3033 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
3034 		bic->saved_last_wr_start_finish = jiffies;
3035 	} else {
3036 		bic->saved_wr_coeff = bfqq->wr_coeff;
3037 		bic->saved_wr_start_at_switch_to_srt =
3038 			bfqq->wr_start_at_switch_to_srt;
3039 		bic->saved_service_from_wr = bfqq->service_from_wr;
3040 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3041 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3042 	}
3043 }
3044 
3045 
3046 static void
3047 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3048 {
3049 	if (cur_bfqq->entity.parent &&
3050 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3051 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3052 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3053 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3054 }
3055 
3056 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3057 {
3058 	/*
3059 	 * To prevent bfqq's service guarantees from being violated,
3060 	 * bfqq may be left busy, i.e., queued for service, even if
3061 	 * empty (see comments in __bfq_bfqq_expire() for
3062 	 * details). But, if no process will send requests to bfqq any
3063 	 * longer, then there is no point in keeping bfqq queued for
3064 	 * service. In addition, keeping bfqq queued for service, but
3065 	 * with no process ref any longer, may have caused bfqq to be
3066 	 * freed when dequeued from service. But this is assumed to
3067 	 * never happen.
3068 	 */
3069 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3070 	    bfqq != bfqd->in_service_queue)
3071 		bfq_del_bfqq_busy(bfqd, bfqq, false);
3072 
3073 	bfq_reassign_last_bfqq(bfqq, NULL);
3074 
3075 	bfq_put_queue(bfqq);
3076 }
3077 
3078 static void
3079 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3080 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3081 {
3082 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3083 		(unsigned long)new_bfqq->pid);
3084 	/* Save weight raising and idle window of the merged queues */
3085 	bfq_bfqq_save_state(bfqq);
3086 	bfq_bfqq_save_state(new_bfqq);
3087 	if (bfq_bfqq_IO_bound(bfqq))
3088 		bfq_mark_bfqq_IO_bound(new_bfqq);
3089 	bfq_clear_bfqq_IO_bound(bfqq);
3090 
3091 	/*
3092 	 * The processes associated with bfqq are cooperators of the
3093 	 * processes associated with new_bfqq. So, if bfqq has a
3094 	 * waker, then assume that all these processes will be happy
3095 	 * to let bfqq's waker freely inject I/O when they have no
3096 	 * I/O.
3097 	 */
3098 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3099 	    bfqq->waker_bfqq != new_bfqq) {
3100 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3101 		new_bfqq->tentative_waker_bfqq = NULL;
3102 
3103 		/*
3104 		 * If the waker queue disappears, then
3105 		 * new_bfqq->waker_bfqq must be reset. So insert
3106 		 * new_bfqq into the woken_list of the waker. See
3107 		 * bfq_check_waker for details.
3108 		 */
3109 		hlist_add_head(&new_bfqq->woken_list_node,
3110 			       &new_bfqq->waker_bfqq->woken_list);
3111 
3112 	}
3113 
3114 	/*
3115 	 * If bfqq is weight-raised, then let new_bfqq inherit
3116 	 * weight-raising. To reduce false positives, neglect the case
3117 	 * where bfqq has just been created, but has not yet made it
3118 	 * to be weight-raised (which may happen because EQM may merge
3119 	 * bfqq even before bfq_add_request is executed for the first
3120 	 * time for bfqq). Handling this case would however be very
3121 	 * easy, thanks to the flag just_created.
3122 	 */
3123 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3124 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3125 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3126 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3127 		new_bfqq->wr_start_at_switch_to_srt =
3128 			bfqq->wr_start_at_switch_to_srt;
3129 		if (bfq_bfqq_busy(new_bfqq))
3130 			bfqd->wr_busy_queues++;
3131 		new_bfqq->entity.prio_changed = 1;
3132 	}
3133 
3134 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3135 		bfqq->wr_coeff = 1;
3136 		bfqq->entity.prio_changed = 1;
3137 		if (bfq_bfqq_busy(bfqq))
3138 			bfqd->wr_busy_queues--;
3139 	}
3140 
3141 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3142 		     bfqd->wr_busy_queues);
3143 
3144 	/*
3145 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3146 	 */
3147 	bic_set_bfqq(bic, new_bfqq, 1);
3148 	bfq_mark_bfqq_coop(new_bfqq);
3149 	/*
3150 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3151 	 * set new_bfqq->bic to NULL. bfqq either:
3152 	 * - does not belong to any bic any more, and hence bfqq->bic must
3153 	 *   be set to NULL, or
3154 	 * - is a queue whose owning bics have already been redirected to a
3155 	 *   different queue, hence the queue is destined to not belong to
3156 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3157 	 *   assignment causes no harm).
3158 	 */
3159 	new_bfqq->bic = NULL;
3160 	/*
3161 	 * If the queue is shared, the pid is the pid of one of the associated
3162 	 * processes. Which pid depends on the exact sequence of merge events
3163 	 * the queue underwent. So printing such a pid is useless and confusing
3164 	 * because it reports a random pid between those of the associated
3165 	 * processes.
3166 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3167 	 * a pid in logging messages.
3168 	 */
3169 	new_bfqq->pid = -1;
3170 	bfqq->bic = NULL;
3171 
3172 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3173 
3174 	bfq_release_process_ref(bfqd, bfqq);
3175 }
3176 
3177 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3178 				struct bio *bio)
3179 {
3180 	struct bfq_data *bfqd = q->elevator->elevator_data;
3181 	bool is_sync = op_is_sync(bio->bi_opf);
3182 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3183 
3184 	/*
3185 	 * Disallow merge of a sync bio into an async request.
3186 	 */
3187 	if (is_sync && !rq_is_sync(rq))
3188 		return false;
3189 
3190 	/*
3191 	 * Lookup the bfqq that this bio will be queued with. Allow
3192 	 * merge only if rq is queued there.
3193 	 */
3194 	if (!bfqq)
3195 		return false;
3196 
3197 	/*
3198 	 * We take advantage of this function to perform an early merge
3199 	 * of the queues of possible cooperating processes.
3200 	 */
3201 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3202 	if (new_bfqq) {
3203 		/*
3204 		 * bic still points to bfqq, then it has not yet been
3205 		 * redirected to some other bfq_queue, and a queue
3206 		 * merge between bfqq and new_bfqq can be safely
3207 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3208 		 * and bfqq can be put.
3209 		 */
3210 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3211 				new_bfqq);
3212 		/*
3213 		 * If we get here, bio will be queued into new_queue,
3214 		 * so use new_bfqq to decide whether bio and rq can be
3215 		 * merged.
3216 		 */
3217 		bfqq = new_bfqq;
3218 
3219 		/*
3220 		 * Change also bqfd->bio_bfqq, as
3221 		 * bfqd->bio_bic now points to new_bfqq, and
3222 		 * this function may be invoked again (and then may
3223 		 * use again bqfd->bio_bfqq).
3224 		 */
3225 		bfqd->bio_bfqq = bfqq;
3226 	}
3227 
3228 	return bfqq == RQ_BFQQ(rq);
3229 }
3230 
3231 /*
3232  * Set the maximum time for the in-service queue to consume its
3233  * budget. This prevents seeky processes from lowering the throughput.
3234  * In practice, a time-slice service scheme is used with seeky
3235  * processes.
3236  */
3237 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3238 				   struct bfq_queue *bfqq)
3239 {
3240 	unsigned int timeout_coeff;
3241 
3242 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3243 		timeout_coeff = 1;
3244 	else
3245 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3246 
3247 	bfqd->last_budget_start = ktime_get();
3248 
3249 	bfqq->budget_timeout = jiffies +
3250 		bfqd->bfq_timeout * timeout_coeff;
3251 }
3252 
3253 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3254 				       struct bfq_queue *bfqq)
3255 {
3256 	if (bfqq) {
3257 		bfq_clear_bfqq_fifo_expire(bfqq);
3258 
3259 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3260 
3261 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3262 		    bfqq->wr_coeff > 1 &&
3263 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3264 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3265 			/*
3266 			 * For soft real-time queues, move the start
3267 			 * of the weight-raising period forward by the
3268 			 * time the queue has not received any
3269 			 * service. Otherwise, a relatively long
3270 			 * service delay is likely to cause the
3271 			 * weight-raising period of the queue to end,
3272 			 * because of the short duration of the
3273 			 * weight-raising period of a soft real-time
3274 			 * queue.  It is worth noting that this move
3275 			 * is not so dangerous for the other queues,
3276 			 * because soft real-time queues are not
3277 			 * greedy.
3278 			 *
3279 			 * To not add a further variable, we use the
3280 			 * overloaded field budget_timeout to
3281 			 * determine for how long the queue has not
3282 			 * received service, i.e., how much time has
3283 			 * elapsed since the queue expired. However,
3284 			 * this is a little imprecise, because
3285 			 * budget_timeout is set to jiffies if bfqq
3286 			 * not only expires, but also remains with no
3287 			 * request.
3288 			 */
3289 			if (time_after(bfqq->budget_timeout,
3290 				       bfqq->last_wr_start_finish))
3291 				bfqq->last_wr_start_finish +=
3292 					jiffies - bfqq->budget_timeout;
3293 			else
3294 				bfqq->last_wr_start_finish = jiffies;
3295 		}
3296 
3297 		bfq_set_budget_timeout(bfqd, bfqq);
3298 		bfq_log_bfqq(bfqd, bfqq,
3299 			     "set_in_service_queue, cur-budget = %d",
3300 			     bfqq->entity.budget);
3301 	}
3302 
3303 	bfqd->in_service_queue = bfqq;
3304 	bfqd->in_serv_last_pos = 0;
3305 }
3306 
3307 /*
3308  * Get and set a new queue for service.
3309  */
3310 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3311 {
3312 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3313 
3314 	__bfq_set_in_service_queue(bfqd, bfqq);
3315 	return bfqq;
3316 }
3317 
3318 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3319 {
3320 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3321 	u32 sl;
3322 
3323 	bfq_mark_bfqq_wait_request(bfqq);
3324 
3325 	/*
3326 	 * We don't want to idle for seeks, but we do want to allow
3327 	 * fair distribution of slice time for a process doing back-to-back
3328 	 * seeks. So allow a little bit of time for him to submit a new rq.
3329 	 */
3330 	sl = bfqd->bfq_slice_idle;
3331 	/*
3332 	 * Unless the queue is being weight-raised or the scenario is
3333 	 * asymmetric, grant only minimum idle time if the queue
3334 	 * is seeky. A long idling is preserved for a weight-raised
3335 	 * queue, or, more in general, in an asymmetric scenario,
3336 	 * because a long idling is needed for guaranteeing to a queue
3337 	 * its reserved share of the throughput (in particular, it is
3338 	 * needed if the queue has a higher weight than some other
3339 	 * queue).
3340 	 */
3341 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3342 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3343 		sl = min_t(u64, sl, BFQ_MIN_TT);
3344 	else if (bfqq->wr_coeff > 1)
3345 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3346 
3347 	bfqd->last_idling_start = ktime_get();
3348 	bfqd->last_idling_start_jiffies = jiffies;
3349 
3350 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3351 		      HRTIMER_MODE_REL);
3352 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3353 }
3354 
3355 /*
3356  * In autotuning mode, max_budget is dynamically recomputed as the
3357  * amount of sectors transferred in timeout at the estimated peak
3358  * rate. This enables BFQ to utilize a full timeslice with a full
3359  * budget, even if the in-service queue is served at peak rate. And
3360  * this maximises throughput with sequential workloads.
3361  */
3362 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3363 {
3364 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3365 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3366 }
3367 
3368 /*
3369  * Update parameters related to throughput and responsiveness, as a
3370  * function of the estimated peak rate. See comments on
3371  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3372  */
3373 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3374 {
3375 	if (bfqd->bfq_user_max_budget == 0) {
3376 		bfqd->bfq_max_budget =
3377 			bfq_calc_max_budget(bfqd);
3378 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3379 	}
3380 }
3381 
3382 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3383 				       struct request *rq)
3384 {
3385 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3386 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3387 		bfqd->peak_rate_samples = 1;
3388 		bfqd->sequential_samples = 0;
3389 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3390 			blk_rq_sectors(rq);
3391 	} else /* no new rq dispatched, just reset the number of samples */
3392 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3393 
3394 	bfq_log(bfqd,
3395 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3396 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3397 		bfqd->tot_sectors_dispatched);
3398 }
3399 
3400 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3401 {
3402 	u32 rate, weight, divisor;
3403 
3404 	/*
3405 	 * For the convergence property to hold (see comments on
3406 	 * bfq_update_peak_rate()) and for the assessment to be
3407 	 * reliable, a minimum number of samples must be present, and
3408 	 * a minimum amount of time must have elapsed. If not so, do
3409 	 * not compute new rate. Just reset parameters, to get ready
3410 	 * for a new evaluation attempt.
3411 	 */
3412 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3413 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3414 		goto reset_computation;
3415 
3416 	/*
3417 	 * If a new request completion has occurred after last
3418 	 * dispatch, then, to approximate the rate at which requests
3419 	 * have been served by the device, it is more precise to
3420 	 * extend the observation interval to the last completion.
3421 	 */
3422 	bfqd->delta_from_first =
3423 		max_t(u64, bfqd->delta_from_first,
3424 		      bfqd->last_completion - bfqd->first_dispatch);
3425 
3426 	/*
3427 	 * Rate computed in sects/usec, and not sects/nsec, for
3428 	 * precision issues.
3429 	 */
3430 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3431 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3432 
3433 	/*
3434 	 * Peak rate not updated if:
3435 	 * - the percentage of sequential dispatches is below 3/4 of the
3436 	 *   total, and rate is below the current estimated peak rate
3437 	 * - rate is unreasonably high (> 20M sectors/sec)
3438 	 */
3439 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3440 	     rate <= bfqd->peak_rate) ||
3441 		rate > 20<<BFQ_RATE_SHIFT)
3442 		goto reset_computation;
3443 
3444 	/*
3445 	 * We have to update the peak rate, at last! To this purpose,
3446 	 * we use a low-pass filter. We compute the smoothing constant
3447 	 * of the filter as a function of the 'weight' of the new
3448 	 * measured rate.
3449 	 *
3450 	 * As can be seen in next formulas, we define this weight as a
3451 	 * quantity proportional to how sequential the workload is,
3452 	 * and to how long the observation time interval is.
3453 	 *
3454 	 * The weight runs from 0 to 8. The maximum value of the
3455 	 * weight, 8, yields the minimum value for the smoothing
3456 	 * constant. At this minimum value for the smoothing constant,
3457 	 * the measured rate contributes for half of the next value of
3458 	 * the estimated peak rate.
3459 	 *
3460 	 * So, the first step is to compute the weight as a function
3461 	 * of how sequential the workload is. Note that the weight
3462 	 * cannot reach 9, because bfqd->sequential_samples cannot
3463 	 * become equal to bfqd->peak_rate_samples, which, in its
3464 	 * turn, holds true because bfqd->sequential_samples is not
3465 	 * incremented for the first sample.
3466 	 */
3467 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3468 
3469 	/*
3470 	 * Second step: further refine the weight as a function of the
3471 	 * duration of the observation interval.
3472 	 */
3473 	weight = min_t(u32, 8,
3474 		       div_u64(weight * bfqd->delta_from_first,
3475 			       BFQ_RATE_REF_INTERVAL));
3476 
3477 	/*
3478 	 * Divisor ranging from 10, for minimum weight, to 2, for
3479 	 * maximum weight.
3480 	 */
3481 	divisor = 10 - weight;
3482 
3483 	/*
3484 	 * Finally, update peak rate:
3485 	 *
3486 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3487 	 */
3488 	bfqd->peak_rate *= divisor-1;
3489 	bfqd->peak_rate /= divisor;
3490 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3491 
3492 	bfqd->peak_rate += rate;
3493 
3494 	/*
3495 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3496 	 * the minimum representable values reported in the comments
3497 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3498 	 * divisions by zero where bfqd->peak_rate is used as a
3499 	 * divisor.
3500 	 */
3501 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3502 
3503 	update_thr_responsiveness_params(bfqd);
3504 
3505 reset_computation:
3506 	bfq_reset_rate_computation(bfqd, rq);
3507 }
3508 
3509 /*
3510  * Update the read/write peak rate (the main quantity used for
3511  * auto-tuning, see update_thr_responsiveness_params()).
3512  *
3513  * It is not trivial to estimate the peak rate (correctly): because of
3514  * the presence of sw and hw queues between the scheduler and the
3515  * device components that finally serve I/O requests, it is hard to
3516  * say exactly when a given dispatched request is served inside the
3517  * device, and for how long. As a consequence, it is hard to know
3518  * precisely at what rate a given set of requests is actually served
3519  * by the device.
3520  *
3521  * On the opposite end, the dispatch time of any request is trivially
3522  * available, and, from this piece of information, the "dispatch rate"
3523  * of requests can be immediately computed. So, the idea in the next
3524  * function is to use what is known, namely request dispatch times
3525  * (plus, when useful, request completion times), to estimate what is
3526  * unknown, namely in-device request service rate.
3527  *
3528  * The main issue is that, because of the above facts, the rate at
3529  * which a certain set of requests is dispatched over a certain time
3530  * interval can vary greatly with respect to the rate at which the
3531  * same requests are then served. But, since the size of any
3532  * intermediate queue is limited, and the service scheme is lossless
3533  * (no request is silently dropped), the following obvious convergence
3534  * property holds: the number of requests dispatched MUST become
3535  * closer and closer to the number of requests completed as the
3536  * observation interval grows. This is the key property used in
3537  * the next function to estimate the peak service rate as a function
3538  * of the observed dispatch rate. The function assumes to be invoked
3539  * on every request dispatch.
3540  */
3541 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3542 {
3543 	u64 now_ns = ktime_get_ns();
3544 
3545 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3546 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3547 			bfqd->peak_rate_samples);
3548 		bfq_reset_rate_computation(bfqd, rq);
3549 		goto update_last_values; /* will add one sample */
3550 	}
3551 
3552 	/*
3553 	 * Device idle for very long: the observation interval lasting
3554 	 * up to this dispatch cannot be a valid observation interval
3555 	 * for computing a new peak rate (similarly to the late-
3556 	 * completion event in bfq_completed_request()). Go to
3557 	 * update_rate_and_reset to have the following three steps
3558 	 * taken:
3559 	 * - close the observation interval at the last (previous)
3560 	 *   request dispatch or completion
3561 	 * - compute rate, if possible, for that observation interval
3562 	 * - start a new observation interval with this dispatch
3563 	 */
3564 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3565 	    bfqd->rq_in_driver == 0)
3566 		goto update_rate_and_reset;
3567 
3568 	/* Update sampling information */
3569 	bfqd->peak_rate_samples++;
3570 
3571 	if ((bfqd->rq_in_driver > 0 ||
3572 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3573 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3574 		bfqd->sequential_samples++;
3575 
3576 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3577 
3578 	/* Reset max observed rq size every 32 dispatches */
3579 	if (likely(bfqd->peak_rate_samples % 32))
3580 		bfqd->last_rq_max_size =
3581 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3582 	else
3583 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3584 
3585 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3586 
3587 	/* Target observation interval not yet reached, go on sampling */
3588 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3589 		goto update_last_values;
3590 
3591 update_rate_and_reset:
3592 	bfq_update_rate_reset(bfqd, rq);
3593 update_last_values:
3594 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3595 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3596 		bfqd->in_serv_last_pos = bfqd->last_position;
3597 	bfqd->last_dispatch = now_ns;
3598 }
3599 
3600 /*
3601  * Remove request from internal lists.
3602  */
3603 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3604 {
3605 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3606 
3607 	/*
3608 	 * For consistency, the next instruction should have been
3609 	 * executed after removing the request from the queue and
3610 	 * dispatching it.  We execute instead this instruction before
3611 	 * bfq_remove_request() (and hence introduce a temporary
3612 	 * inconsistency), for efficiency.  In fact, should this
3613 	 * dispatch occur for a non in-service bfqq, this anticipated
3614 	 * increment prevents two counters related to bfqq->dispatched
3615 	 * from risking to be, first, uselessly decremented, and then
3616 	 * incremented again when the (new) value of bfqq->dispatched
3617 	 * happens to be taken into account.
3618 	 */
3619 	bfqq->dispatched++;
3620 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3621 
3622 	bfq_remove_request(q, rq);
3623 }
3624 
3625 /*
3626  * There is a case where idling does not have to be performed for
3627  * throughput concerns, but to preserve the throughput share of
3628  * the process associated with bfqq.
3629  *
3630  * To introduce this case, we can note that allowing the drive
3631  * to enqueue more than one request at a time, and hence
3632  * delegating de facto final scheduling decisions to the
3633  * drive's internal scheduler, entails loss of control on the
3634  * actual request service order. In particular, the critical
3635  * situation is when requests from different processes happen
3636  * to be present, at the same time, in the internal queue(s)
3637  * of the drive. In such a situation, the drive, by deciding
3638  * the service order of the internally-queued requests, does
3639  * determine also the actual throughput distribution among
3640  * these processes. But the drive typically has no notion or
3641  * concern about per-process throughput distribution, and
3642  * makes its decisions only on a per-request basis. Therefore,
3643  * the service distribution enforced by the drive's internal
3644  * scheduler is likely to coincide with the desired throughput
3645  * distribution only in a completely symmetric, or favorably
3646  * skewed scenario where:
3647  * (i-a) each of these processes must get the same throughput as
3648  *	 the others,
3649  * (i-b) in case (i-a) does not hold, it holds that the process
3650  *       associated with bfqq must receive a lower or equal
3651  *	 throughput than any of the other processes;
3652  * (ii)  the I/O of each process has the same properties, in
3653  *       terms of locality (sequential or random), direction
3654  *       (reads or writes), request sizes, greediness
3655  *       (from I/O-bound to sporadic), and so on;
3656 
3657  * In fact, in such a scenario, the drive tends to treat the requests
3658  * of each process in about the same way as the requests of the
3659  * others, and thus to provide each of these processes with about the
3660  * same throughput.  This is exactly the desired throughput
3661  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3662  * even more convenient distribution for (the process associated with)
3663  * bfqq.
3664  *
3665  * In contrast, in any asymmetric or unfavorable scenario, device
3666  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3667  * that bfqq receives its assigned fraction of the device throughput
3668  * (see [1] for details).
3669  *
3670  * The problem is that idling may significantly reduce throughput with
3671  * certain combinations of types of I/O and devices. An important
3672  * example is sync random I/O on flash storage with command
3673  * queueing. So, unless bfqq falls in cases where idling also boosts
3674  * throughput, it is important to check conditions (i-a), i(-b) and
3675  * (ii) accurately, so as to avoid idling when not strictly needed for
3676  * service guarantees.
3677  *
3678  * Unfortunately, it is extremely difficult to thoroughly check
3679  * condition (ii). And, in case there are active groups, it becomes
3680  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3681  * if there are active groups, then, for conditions (i-a) or (i-b) to
3682  * become false 'indirectly', it is enough that an active group
3683  * contains more active processes or sub-groups than some other active
3684  * group. More precisely, for conditions (i-a) or (i-b) to become
3685  * false because of such a group, it is not even necessary that the
3686  * group is (still) active: it is sufficient that, even if the group
3687  * has become inactive, some of its descendant processes still have
3688  * some request already dispatched but still waiting for
3689  * completion. In fact, requests have still to be guaranteed their
3690  * share of the throughput even after being dispatched. In this
3691  * respect, it is easy to show that, if a group frequently becomes
3692  * inactive while still having in-flight requests, and if, when this
3693  * happens, the group is not considered in the calculation of whether
3694  * the scenario is asymmetric, then the group may fail to be
3695  * guaranteed its fair share of the throughput (basically because
3696  * idling may not be performed for the descendant processes of the
3697  * group, but it had to be).  We address this issue with the following
3698  * bi-modal behavior, implemented in the function
3699  * bfq_asymmetric_scenario().
3700  *
3701  * If there are groups with requests waiting for completion
3702  * (as commented above, some of these groups may even be
3703  * already inactive), then the scenario is tagged as
3704  * asymmetric, conservatively, without checking any of the
3705  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3706  * This behavior matches also the fact that groups are created
3707  * exactly if controlling I/O is a primary concern (to
3708  * preserve bandwidth and latency guarantees).
3709  *
3710  * On the opposite end, if there are no groups with requests waiting
3711  * for completion, then only conditions (i-a) and (i-b) are actually
3712  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3713  * idling is not performed, regardless of whether condition (ii)
3714  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3715  * hold, then idling is allowed, and the device tends to be prevented
3716  * from queueing many requests, possibly of several processes. Since
3717  * there are no groups with requests waiting for completion, then, to
3718  * control conditions (i-a) and (i-b) it is enough to check just
3719  * whether all the queues with requests waiting for completion also
3720  * have the same weight.
3721  *
3722  * Not checking condition (ii) evidently exposes bfqq to the
3723  * risk of getting less throughput than its fair share.
3724  * However, for queues with the same weight, a further
3725  * mechanism, preemption, mitigates or even eliminates this
3726  * problem. And it does so without consequences on overall
3727  * throughput. This mechanism and its benefits are explained
3728  * in the next three paragraphs.
3729  *
3730  * Even if a queue, say Q, is expired when it remains idle, Q
3731  * can still preempt the new in-service queue if the next
3732  * request of Q arrives soon (see the comments on
3733  * bfq_bfqq_update_budg_for_activation). If all queues and
3734  * groups have the same weight, this form of preemption,
3735  * combined with the hole-recovery heuristic described in the
3736  * comments on function bfq_bfqq_update_budg_for_activation,
3737  * are enough to preserve a correct bandwidth distribution in
3738  * the mid term, even without idling. In fact, even if not
3739  * idling allows the internal queues of the device to contain
3740  * many requests, and thus to reorder requests, we can rather
3741  * safely assume that the internal scheduler still preserves a
3742  * minimum of mid-term fairness.
3743  *
3744  * More precisely, this preemption-based, idleless approach
3745  * provides fairness in terms of IOPS, and not sectors per
3746  * second. This can be seen with a simple example. Suppose
3747  * that there are two queues with the same weight, but that
3748  * the first queue receives requests of 8 sectors, while the
3749  * second queue receives requests of 1024 sectors. In
3750  * addition, suppose that each of the two queues contains at
3751  * most one request at a time, which implies that each queue
3752  * always remains idle after it is served. Finally, after
3753  * remaining idle, each queue receives very quickly a new
3754  * request. It follows that the two queues are served
3755  * alternatively, preempting each other if needed. This
3756  * implies that, although both queues have the same weight,
3757  * the queue with large requests receives a service that is
3758  * 1024/8 times as high as the service received by the other
3759  * queue.
3760  *
3761  * The motivation for using preemption instead of idling (for
3762  * queues with the same weight) is that, by not idling,
3763  * service guarantees are preserved (completely or at least in
3764  * part) without minimally sacrificing throughput. And, if
3765  * there is no active group, then the primary expectation for
3766  * this device is probably a high throughput.
3767  *
3768  * We are now left only with explaining the two sub-conditions in the
3769  * additional compound condition that is checked below for deciding
3770  * whether the scenario is asymmetric. To explain the first
3771  * sub-condition, we need to add that the function
3772  * bfq_asymmetric_scenario checks the weights of only
3773  * non-weight-raised queues, for efficiency reasons (see comments on
3774  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3775  * is checked explicitly here. More precisely, the compound condition
3776  * below takes into account also the fact that, even if bfqq is being
3777  * weight-raised, the scenario is still symmetric if all queues with
3778  * requests waiting for completion happen to be
3779  * weight-raised. Actually, we should be even more precise here, and
3780  * differentiate between interactive weight raising and soft real-time
3781  * weight raising.
3782  *
3783  * The second sub-condition checked in the compound condition is
3784  * whether there is a fair amount of already in-flight I/O not
3785  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3786  * following reason. The drive may decide to serve in-flight
3787  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3788  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3789  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3790  * basically uncontrolled amount of I/O from other queues may be
3791  * dispatched too, possibly causing the service of bfqq's I/O to be
3792  * delayed even longer in the drive. This problem gets more and more
3793  * serious as the speed and the queue depth of the drive grow,
3794  * because, as these two quantities grow, the probability to find no
3795  * queue busy but many requests in flight grows too. By contrast,
3796  * plugging I/O dispatching minimizes the delay induced by already
3797  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3798  * lose because of this delay.
3799  *
3800  * As a side note, it is worth considering that the above
3801  * device-idling countermeasures may however fail in the following
3802  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3803  * in a time period during which all symmetry sub-conditions hold, and
3804  * therefore the device is allowed to enqueue many requests, but at
3805  * some later point in time some sub-condition stops to hold, then it
3806  * may become impossible to make requests be served in the desired
3807  * order until all the requests already queued in the device have been
3808  * served. The last sub-condition commented above somewhat mitigates
3809  * this problem for weight-raised queues.
3810  *
3811  * However, as an additional mitigation for this problem, we preserve
3812  * plugging for a special symmetric case that may suddenly turn into
3813  * asymmetric: the case where only bfqq is busy. In this case, not
3814  * expiring bfqq does not cause any harm to any other queues in terms
3815  * of service guarantees. In contrast, it avoids the following unlucky
3816  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3817  * lower weight than bfqq becomes busy (or more queues), (3) the new
3818  * queue is served until a new request arrives for bfqq, (4) when bfqq
3819  * is finally served, there are so many requests of the new queue in
3820  * the drive that the pending requests for bfqq take a lot of time to
3821  * be served. In particular, event (2) may case even already
3822  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3823  * avoid this series of events, the scenario is preventively declared
3824  * as asymmetric also if bfqq is the only busy queues
3825  */
3826 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3827 						 struct bfq_queue *bfqq)
3828 {
3829 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3830 
3831 	/* No point in idling for bfqq if it won't get requests any longer */
3832 	if (unlikely(!bfqq_process_refs(bfqq)))
3833 		return false;
3834 
3835 	return (bfqq->wr_coeff > 1 &&
3836 		(bfqd->wr_busy_queues <
3837 		 tot_busy_queues ||
3838 		 bfqd->rq_in_driver >=
3839 		 bfqq->dispatched + 4)) ||
3840 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3841 		tot_busy_queues == 1;
3842 }
3843 
3844 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3845 			      enum bfqq_expiration reason)
3846 {
3847 	/*
3848 	 * If this bfqq is shared between multiple processes, check
3849 	 * to make sure that those processes are still issuing I/Os
3850 	 * within the mean seek distance. If not, it may be time to
3851 	 * break the queues apart again.
3852 	 */
3853 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3854 		bfq_mark_bfqq_split_coop(bfqq);
3855 
3856 	/*
3857 	 * Consider queues with a higher finish virtual time than
3858 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3859 	 * true, then bfqq's bandwidth would be violated if an
3860 	 * uncontrolled amount of I/O from these queues were
3861 	 * dispatched while bfqq is waiting for its new I/O to
3862 	 * arrive. This is exactly what may happen if this is a forced
3863 	 * expiration caused by a preemption attempt, and if bfqq is
3864 	 * not re-scheduled. To prevent this from happening, re-queue
3865 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3866 	 * empty. By doing so, bfqq is granted to be served before the
3867 	 * above queues (provided that bfqq is of course eligible).
3868 	 */
3869 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3870 	    !(reason == BFQQE_PREEMPTED &&
3871 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3872 		if (bfqq->dispatched == 0)
3873 			/*
3874 			 * Overloading budget_timeout field to store
3875 			 * the time at which the queue remains with no
3876 			 * backlog and no outstanding request; used by
3877 			 * the weight-raising mechanism.
3878 			 */
3879 			bfqq->budget_timeout = jiffies;
3880 
3881 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3882 	} else {
3883 		bfq_requeue_bfqq(bfqd, bfqq, true);
3884 		/*
3885 		 * Resort priority tree of potential close cooperators.
3886 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3887 		 */
3888 		if (unlikely(!bfqd->nonrot_with_queueing &&
3889 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3890 			bfq_pos_tree_add_move(bfqd, bfqq);
3891 	}
3892 
3893 	/*
3894 	 * All in-service entities must have been properly deactivated
3895 	 * or requeued before executing the next function, which
3896 	 * resets all in-service entities as no more in service. This
3897 	 * may cause bfqq to be freed. If this happens, the next
3898 	 * function returns true.
3899 	 */
3900 	return __bfq_bfqd_reset_in_service(bfqd);
3901 }
3902 
3903 /**
3904  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3905  * @bfqd: device data.
3906  * @bfqq: queue to update.
3907  * @reason: reason for expiration.
3908  *
3909  * Handle the feedback on @bfqq budget at queue expiration.
3910  * See the body for detailed comments.
3911  */
3912 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3913 				     struct bfq_queue *bfqq,
3914 				     enum bfqq_expiration reason)
3915 {
3916 	struct request *next_rq;
3917 	int budget, min_budget;
3918 
3919 	min_budget = bfq_min_budget(bfqd);
3920 
3921 	if (bfqq->wr_coeff == 1)
3922 		budget = bfqq->max_budget;
3923 	else /*
3924 	      * Use a constant, low budget for weight-raised queues,
3925 	      * to help achieve a low latency. Keep it slightly higher
3926 	      * than the minimum possible budget, to cause a little
3927 	      * bit fewer expirations.
3928 	      */
3929 		budget = 2 * min_budget;
3930 
3931 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3932 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3933 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3934 		budget, bfq_min_budget(bfqd));
3935 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3936 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3937 
3938 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3939 		switch (reason) {
3940 		/*
3941 		 * Caveat: in all the following cases we trade latency
3942 		 * for throughput.
3943 		 */
3944 		case BFQQE_TOO_IDLE:
3945 			/*
3946 			 * This is the only case where we may reduce
3947 			 * the budget: if there is no request of the
3948 			 * process still waiting for completion, then
3949 			 * we assume (tentatively) that the timer has
3950 			 * expired because the batch of requests of
3951 			 * the process could have been served with a
3952 			 * smaller budget.  Hence, betting that
3953 			 * process will behave in the same way when it
3954 			 * becomes backlogged again, we reduce its
3955 			 * next budget.  As long as we guess right,
3956 			 * this budget cut reduces the latency
3957 			 * experienced by the process.
3958 			 *
3959 			 * However, if there are still outstanding
3960 			 * requests, then the process may have not yet
3961 			 * issued its next request just because it is
3962 			 * still waiting for the completion of some of
3963 			 * the still outstanding ones.  So in this
3964 			 * subcase we do not reduce its budget, on the
3965 			 * contrary we increase it to possibly boost
3966 			 * the throughput, as discussed in the
3967 			 * comments to the BUDGET_TIMEOUT case.
3968 			 */
3969 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3970 				budget = min(budget * 2, bfqd->bfq_max_budget);
3971 			else {
3972 				if (budget > 5 * min_budget)
3973 					budget -= 4 * min_budget;
3974 				else
3975 					budget = min_budget;
3976 			}
3977 			break;
3978 		case BFQQE_BUDGET_TIMEOUT:
3979 			/*
3980 			 * We double the budget here because it gives
3981 			 * the chance to boost the throughput if this
3982 			 * is not a seeky process (and has bumped into
3983 			 * this timeout because of, e.g., ZBR).
3984 			 */
3985 			budget = min(budget * 2, bfqd->bfq_max_budget);
3986 			break;
3987 		case BFQQE_BUDGET_EXHAUSTED:
3988 			/*
3989 			 * The process still has backlog, and did not
3990 			 * let either the budget timeout or the disk
3991 			 * idling timeout expire. Hence it is not
3992 			 * seeky, has a short thinktime and may be
3993 			 * happy with a higher budget too. So
3994 			 * definitely increase the budget of this good
3995 			 * candidate to boost the disk throughput.
3996 			 */
3997 			budget = min(budget * 4, bfqd->bfq_max_budget);
3998 			break;
3999 		case BFQQE_NO_MORE_REQUESTS:
4000 			/*
4001 			 * For queues that expire for this reason, it
4002 			 * is particularly important to keep the
4003 			 * budget close to the actual service they
4004 			 * need. Doing so reduces the timestamp
4005 			 * misalignment problem described in the
4006 			 * comments in the body of
4007 			 * __bfq_activate_entity. In fact, suppose
4008 			 * that a queue systematically expires for
4009 			 * BFQQE_NO_MORE_REQUESTS and presents a
4010 			 * new request in time to enjoy timestamp
4011 			 * back-shifting. The larger the budget of the
4012 			 * queue is with respect to the service the
4013 			 * queue actually requests in each service
4014 			 * slot, the more times the queue can be
4015 			 * reactivated with the same virtual finish
4016 			 * time. It follows that, even if this finish
4017 			 * time is pushed to the system virtual time
4018 			 * to reduce the consequent timestamp
4019 			 * misalignment, the queue unjustly enjoys for
4020 			 * many re-activations a lower finish time
4021 			 * than all newly activated queues.
4022 			 *
4023 			 * The service needed by bfqq is measured
4024 			 * quite precisely by bfqq->entity.service.
4025 			 * Since bfqq does not enjoy device idling,
4026 			 * bfqq->entity.service is equal to the number
4027 			 * of sectors that the process associated with
4028 			 * bfqq requested to read/write before waiting
4029 			 * for request completions, or blocking for
4030 			 * other reasons.
4031 			 */
4032 			budget = max_t(int, bfqq->entity.service, min_budget);
4033 			break;
4034 		default:
4035 			return;
4036 		}
4037 	} else if (!bfq_bfqq_sync(bfqq)) {
4038 		/*
4039 		 * Async queues get always the maximum possible
4040 		 * budget, as for them we do not care about latency
4041 		 * (in addition, their ability to dispatch is limited
4042 		 * by the charging factor).
4043 		 */
4044 		budget = bfqd->bfq_max_budget;
4045 	}
4046 
4047 	bfqq->max_budget = budget;
4048 
4049 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4050 	    !bfqd->bfq_user_max_budget)
4051 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4052 
4053 	/*
4054 	 * If there is still backlog, then assign a new budget, making
4055 	 * sure that it is large enough for the next request.  Since
4056 	 * the finish time of bfqq must be kept in sync with the
4057 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4058 	 * update.
4059 	 *
4060 	 * If there is no backlog, then no need to update the budget;
4061 	 * it will be updated on the arrival of a new request.
4062 	 */
4063 	next_rq = bfqq->next_rq;
4064 	if (next_rq)
4065 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4066 					    bfq_serv_to_charge(next_rq, bfqq));
4067 
4068 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4069 			next_rq ? blk_rq_sectors(next_rq) : 0,
4070 			bfqq->entity.budget);
4071 }
4072 
4073 /*
4074  * Return true if the process associated with bfqq is "slow". The slow
4075  * flag is used, in addition to the budget timeout, to reduce the
4076  * amount of service provided to seeky processes, and thus reduce
4077  * their chances to lower the throughput. More details in the comments
4078  * on the function bfq_bfqq_expire().
4079  *
4080  * An important observation is in order: as discussed in the comments
4081  * on the function bfq_update_peak_rate(), with devices with internal
4082  * queues, it is hard if ever possible to know when and for how long
4083  * an I/O request is processed by the device (apart from the trivial
4084  * I/O pattern where a new request is dispatched only after the
4085  * previous one has been completed). This makes it hard to evaluate
4086  * the real rate at which the I/O requests of each bfq_queue are
4087  * served.  In fact, for an I/O scheduler like BFQ, serving a
4088  * bfq_queue means just dispatching its requests during its service
4089  * slot (i.e., until the budget of the queue is exhausted, or the
4090  * queue remains idle, or, finally, a timeout fires). But, during the
4091  * service slot of a bfq_queue, around 100 ms at most, the device may
4092  * be even still processing requests of bfq_queues served in previous
4093  * service slots. On the opposite end, the requests of the in-service
4094  * bfq_queue may be completed after the service slot of the queue
4095  * finishes.
4096  *
4097  * Anyway, unless more sophisticated solutions are used
4098  * (where possible), the sum of the sizes of the requests dispatched
4099  * during the service slot of a bfq_queue is probably the only
4100  * approximation available for the service received by the bfq_queue
4101  * during its service slot. And this sum is the quantity used in this
4102  * function to evaluate the I/O speed of a process.
4103  */
4104 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4105 				 bool compensate, enum bfqq_expiration reason,
4106 				 unsigned long *delta_ms)
4107 {
4108 	ktime_t delta_ktime;
4109 	u32 delta_usecs;
4110 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4111 
4112 	if (!bfq_bfqq_sync(bfqq))
4113 		return false;
4114 
4115 	if (compensate)
4116 		delta_ktime = bfqd->last_idling_start;
4117 	else
4118 		delta_ktime = ktime_get();
4119 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4120 	delta_usecs = ktime_to_us(delta_ktime);
4121 
4122 	/* don't use too short time intervals */
4123 	if (delta_usecs < 1000) {
4124 		if (blk_queue_nonrot(bfqd->queue))
4125 			 /*
4126 			  * give same worst-case guarantees as idling
4127 			  * for seeky
4128 			  */
4129 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4130 		else /* charge at least one seek */
4131 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4132 
4133 		return slow;
4134 	}
4135 
4136 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4137 
4138 	/*
4139 	 * Use only long (> 20ms) intervals to filter out excessive
4140 	 * spikes in service rate estimation.
4141 	 */
4142 	if (delta_usecs > 20000) {
4143 		/*
4144 		 * Caveat for rotational devices: processes doing I/O
4145 		 * in the slower disk zones tend to be slow(er) even
4146 		 * if not seeky. In this respect, the estimated peak
4147 		 * rate is likely to be an average over the disk
4148 		 * surface. Accordingly, to not be too harsh with
4149 		 * unlucky processes, a process is deemed slow only if
4150 		 * its rate has been lower than half of the estimated
4151 		 * peak rate.
4152 		 */
4153 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4154 	}
4155 
4156 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4157 
4158 	return slow;
4159 }
4160 
4161 /*
4162  * To be deemed as soft real-time, an application must meet two
4163  * requirements. First, the application must not require an average
4164  * bandwidth higher than the approximate bandwidth required to playback or
4165  * record a compressed high-definition video.
4166  * The next function is invoked on the completion of the last request of a
4167  * batch, to compute the next-start time instant, soft_rt_next_start, such
4168  * that, if the next request of the application does not arrive before
4169  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4170  *
4171  * The second requirement is that the request pattern of the application is
4172  * isochronous, i.e., that, after issuing a request or a batch of requests,
4173  * the application stops issuing new requests until all its pending requests
4174  * have been completed. After that, the application may issue a new batch,
4175  * and so on.
4176  * For this reason the next function is invoked to compute
4177  * soft_rt_next_start only for applications that meet this requirement,
4178  * whereas soft_rt_next_start is set to infinity for applications that do
4179  * not.
4180  *
4181  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4182  * happen to meet, occasionally or systematically, both the above
4183  * bandwidth and isochrony requirements. This may happen at least in
4184  * the following circumstances. First, if the CPU load is high. The
4185  * application may stop issuing requests while the CPUs are busy
4186  * serving other processes, then restart, then stop again for a while,
4187  * and so on. The other circumstances are related to the storage
4188  * device: the storage device is highly loaded or reaches a low-enough
4189  * throughput with the I/O of the application (e.g., because the I/O
4190  * is random and/or the device is slow). In all these cases, the
4191  * I/O of the application may be simply slowed down enough to meet
4192  * the bandwidth and isochrony requirements. To reduce the probability
4193  * that greedy applications are deemed as soft real-time in these
4194  * corner cases, a further rule is used in the computation of
4195  * soft_rt_next_start: the return value of this function is forced to
4196  * be higher than the maximum between the following two quantities.
4197  *
4198  * (a) Current time plus: (1) the maximum time for which the arrival
4199  *     of a request is waited for when a sync queue becomes idle,
4200  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4201  *     postpone for a moment the reason for adding a few extra
4202  *     jiffies; we get back to it after next item (b).  Lower-bounding
4203  *     the return value of this function with the current time plus
4204  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4205  *     because the latter issue their next request as soon as possible
4206  *     after the last one has been completed. In contrast, a soft
4207  *     real-time application spends some time processing data, after a
4208  *     batch of its requests has been completed.
4209  *
4210  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4211  *     above, greedy applications may happen to meet both the
4212  *     bandwidth and isochrony requirements under heavy CPU or
4213  *     storage-device load. In more detail, in these scenarios, these
4214  *     applications happen, only for limited time periods, to do I/O
4215  *     slowly enough to meet all the requirements described so far,
4216  *     including the filtering in above item (a). These slow-speed
4217  *     time intervals are usually interspersed between other time
4218  *     intervals during which these applications do I/O at a very high
4219  *     speed. Fortunately, exactly because of the high speed of the
4220  *     I/O in the high-speed intervals, the values returned by this
4221  *     function happen to be so high, near the end of any such
4222  *     high-speed interval, to be likely to fall *after* the end of
4223  *     the low-speed time interval that follows. These high values are
4224  *     stored in bfqq->soft_rt_next_start after each invocation of
4225  *     this function. As a consequence, if the last value of
4226  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4227  *     next value that this function may return, then, from the very
4228  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4229  *     likely to be constantly kept so high that any I/O request
4230  *     issued during the low-speed interval is considered as arriving
4231  *     to soon for the application to be deemed as soft
4232  *     real-time. Then, in the high-speed interval that follows, the
4233  *     application will not be deemed as soft real-time, just because
4234  *     it will do I/O at a high speed. And so on.
4235  *
4236  * Getting back to the filtering in item (a), in the following two
4237  * cases this filtering might be easily passed by a greedy
4238  * application, if the reference quantity was just
4239  * bfqd->bfq_slice_idle:
4240  * 1) HZ is so low that the duration of a jiffy is comparable to or
4241  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4242  *    devices with HZ=100. The time granularity may be so coarse
4243  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4244  *    is rather lower than the exact value.
4245  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4246  *    for a while, then suddenly 'jump' by several units to recover the lost
4247  *    increments. This seems to happen, e.g., inside virtual machines.
4248  * To address this issue, in the filtering in (a) we do not use as a
4249  * reference time interval just bfqd->bfq_slice_idle, but
4250  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4251  * minimum number of jiffies for which the filter seems to be quite
4252  * precise also in embedded systems and KVM/QEMU virtual machines.
4253  */
4254 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4255 						struct bfq_queue *bfqq)
4256 {
4257 	return max3(bfqq->soft_rt_next_start,
4258 		    bfqq->last_idle_bklogged +
4259 		    HZ * bfqq->service_from_backlogged /
4260 		    bfqd->bfq_wr_max_softrt_rate,
4261 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4262 }
4263 
4264 /**
4265  * bfq_bfqq_expire - expire a queue.
4266  * @bfqd: device owning the queue.
4267  * @bfqq: the queue to expire.
4268  * @compensate: if true, compensate for the time spent idling.
4269  * @reason: the reason causing the expiration.
4270  *
4271  * If the process associated with bfqq does slow I/O (e.g., because it
4272  * issues random requests), we charge bfqq with the time it has been
4273  * in service instead of the service it has received (see
4274  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4275  * a consequence, bfqq will typically get higher timestamps upon
4276  * reactivation, and hence it will be rescheduled as if it had
4277  * received more service than what it has actually received. In the
4278  * end, bfqq receives less service in proportion to how slowly its
4279  * associated process consumes its budgets (and hence how seriously it
4280  * tends to lower the throughput). In addition, this time-charging
4281  * strategy guarantees time fairness among slow processes. In
4282  * contrast, if the process associated with bfqq is not slow, we
4283  * charge bfqq exactly with the service it has received.
4284  *
4285  * Charging time to the first type of queues and the exact service to
4286  * the other has the effect of using the WF2Q+ policy to schedule the
4287  * former on a timeslice basis, without violating service domain
4288  * guarantees among the latter.
4289  */
4290 void bfq_bfqq_expire(struct bfq_data *bfqd,
4291 		     struct bfq_queue *bfqq,
4292 		     bool compensate,
4293 		     enum bfqq_expiration reason)
4294 {
4295 	bool slow;
4296 	unsigned long delta = 0;
4297 	struct bfq_entity *entity = &bfqq->entity;
4298 
4299 	/*
4300 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4301 	 */
4302 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4303 
4304 	/*
4305 	 * As above explained, charge slow (typically seeky) and
4306 	 * timed-out queues with the time and not the service
4307 	 * received, to favor sequential workloads.
4308 	 *
4309 	 * Processes doing I/O in the slower disk zones will tend to
4310 	 * be slow(er) even if not seeky. Therefore, since the
4311 	 * estimated peak rate is actually an average over the disk
4312 	 * surface, these processes may timeout just for bad luck. To
4313 	 * avoid punishing them, do not charge time to processes that
4314 	 * succeeded in consuming at least 2/3 of their budget. This
4315 	 * allows BFQ to preserve enough elasticity to still perform
4316 	 * bandwidth, and not time, distribution with little unlucky
4317 	 * or quasi-sequential processes.
4318 	 */
4319 	if (bfqq->wr_coeff == 1 &&
4320 	    (slow ||
4321 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4322 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4323 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4324 
4325 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4326 		bfqq->last_wr_start_finish = jiffies;
4327 
4328 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4329 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4330 		/*
4331 		 * If we get here, and there are no outstanding
4332 		 * requests, then the request pattern is isochronous
4333 		 * (see the comments on the function
4334 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4335 		 * compute soft_rt_next_start.
4336 		 *
4337 		 * If, instead, the queue still has outstanding
4338 		 * requests, then we have to wait for the completion
4339 		 * of all the outstanding requests to discover whether
4340 		 * the request pattern is actually isochronous.
4341 		 */
4342 		if (bfqq->dispatched == 0)
4343 			bfqq->soft_rt_next_start =
4344 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4345 		else if (bfqq->dispatched > 0) {
4346 			/*
4347 			 * Schedule an update of soft_rt_next_start to when
4348 			 * the task may be discovered to be isochronous.
4349 			 */
4350 			bfq_mark_bfqq_softrt_update(bfqq);
4351 		}
4352 	}
4353 
4354 	bfq_log_bfqq(bfqd, bfqq,
4355 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4356 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4357 
4358 	/*
4359 	 * bfqq expired, so no total service time needs to be computed
4360 	 * any longer: reset state machine for measuring total service
4361 	 * times.
4362 	 */
4363 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4364 	bfqd->waited_rq = NULL;
4365 
4366 	/*
4367 	 * Increase, decrease or leave budget unchanged according to
4368 	 * reason.
4369 	 */
4370 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4371 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4372 		/* bfqq is gone, no more actions on it */
4373 		return;
4374 
4375 	/* mark bfqq as waiting a request only if a bic still points to it */
4376 	if (!bfq_bfqq_busy(bfqq) &&
4377 	    reason != BFQQE_BUDGET_TIMEOUT &&
4378 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4379 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4380 		/*
4381 		 * Not setting service to 0, because, if the next rq
4382 		 * arrives in time, the queue will go on receiving
4383 		 * service with this same budget (as if it never expired)
4384 		 */
4385 	} else
4386 		entity->service = 0;
4387 
4388 	/*
4389 	 * Reset the received-service counter for every parent entity.
4390 	 * Differently from what happens with bfqq->entity.service,
4391 	 * the resetting of this counter never needs to be postponed
4392 	 * for parent entities. In fact, in case bfqq may have a
4393 	 * chance to go on being served using the last, partially
4394 	 * consumed budget, bfqq->entity.service needs to be kept,
4395 	 * because if bfqq then actually goes on being served using
4396 	 * the same budget, the last value of bfqq->entity.service is
4397 	 * needed to properly decrement bfqq->entity.budget by the
4398 	 * portion already consumed. In contrast, it is not necessary
4399 	 * to keep entity->service for parent entities too, because
4400 	 * the bubble up of the new value of bfqq->entity.budget will
4401 	 * make sure that the budgets of parent entities are correct,
4402 	 * even in case bfqq and thus parent entities go on receiving
4403 	 * service with the same budget.
4404 	 */
4405 	entity = entity->parent;
4406 	for_each_entity(entity)
4407 		entity->service = 0;
4408 }
4409 
4410 /*
4411  * Budget timeout is not implemented through a dedicated timer, but
4412  * just checked on request arrivals and completions, as well as on
4413  * idle timer expirations.
4414  */
4415 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4416 {
4417 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4418 }
4419 
4420 /*
4421  * If we expire a queue that is actively waiting (i.e., with the
4422  * device idled) for the arrival of a new request, then we may incur
4423  * the timestamp misalignment problem described in the body of the
4424  * function __bfq_activate_entity. Hence we return true only if this
4425  * condition does not hold, or if the queue is slow enough to deserve
4426  * only to be kicked off for preserving a high throughput.
4427  */
4428 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4429 {
4430 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4431 		"may_budget_timeout: wait_request %d left %d timeout %d",
4432 		bfq_bfqq_wait_request(bfqq),
4433 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4434 		bfq_bfqq_budget_timeout(bfqq));
4435 
4436 	return (!bfq_bfqq_wait_request(bfqq) ||
4437 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4438 		&&
4439 		bfq_bfqq_budget_timeout(bfqq);
4440 }
4441 
4442 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4443 					     struct bfq_queue *bfqq)
4444 {
4445 	bool rot_without_queueing =
4446 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4447 		bfqq_sequential_and_IO_bound,
4448 		idling_boosts_thr;
4449 
4450 	/* No point in idling for bfqq if it won't get requests any longer */
4451 	if (unlikely(!bfqq_process_refs(bfqq)))
4452 		return false;
4453 
4454 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4455 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4456 
4457 	/*
4458 	 * The next variable takes into account the cases where idling
4459 	 * boosts the throughput.
4460 	 *
4461 	 * The value of the variable is computed considering, first, that
4462 	 * idling is virtually always beneficial for the throughput if:
4463 	 * (a) the device is not NCQ-capable and rotational, or
4464 	 * (b) regardless of the presence of NCQ, the device is rotational and
4465 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4466 	 * (c) regardless of whether it is rotational, the device is
4467 	 *     not NCQ-capable and the request pattern for bfqq is
4468 	 *     I/O-bound and sequential.
4469 	 *
4470 	 * Secondly, and in contrast to the above item (b), idling an
4471 	 * NCQ-capable flash-based device would not boost the
4472 	 * throughput even with sequential I/O; rather it would lower
4473 	 * the throughput in proportion to how fast the device
4474 	 * is. Accordingly, the next variable is true if any of the
4475 	 * above conditions (a), (b) or (c) is true, and, in
4476 	 * particular, happens to be false if bfqd is an NCQ-capable
4477 	 * flash-based device.
4478 	 */
4479 	idling_boosts_thr = rot_without_queueing ||
4480 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4481 		 bfqq_sequential_and_IO_bound);
4482 
4483 	/*
4484 	 * The return value of this function is equal to that of
4485 	 * idling_boosts_thr, unless a special case holds. In this
4486 	 * special case, described below, idling may cause problems to
4487 	 * weight-raised queues.
4488 	 *
4489 	 * When the request pool is saturated (e.g., in the presence
4490 	 * of write hogs), if the processes associated with
4491 	 * non-weight-raised queues ask for requests at a lower rate,
4492 	 * then processes associated with weight-raised queues have a
4493 	 * higher probability to get a request from the pool
4494 	 * immediately (or at least soon) when they need one. Thus
4495 	 * they have a higher probability to actually get a fraction
4496 	 * of the device throughput proportional to their high
4497 	 * weight. This is especially true with NCQ-capable drives,
4498 	 * which enqueue several requests in advance, and further
4499 	 * reorder internally-queued requests.
4500 	 *
4501 	 * For this reason, we force to false the return value if
4502 	 * there are weight-raised busy queues. In this case, and if
4503 	 * bfqq is not weight-raised, this guarantees that the device
4504 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4505 	 * then idling will be guaranteed by another variable, see
4506 	 * below). Combined with the timestamping rules of BFQ (see
4507 	 * [1] for details), this behavior causes bfqq, and hence any
4508 	 * sync non-weight-raised queue, to get a lower number of
4509 	 * requests served, and thus to ask for a lower number of
4510 	 * requests from the request pool, before the busy
4511 	 * weight-raised queues get served again. This often mitigates
4512 	 * starvation problems in the presence of heavy write
4513 	 * workloads and NCQ, thereby guaranteeing a higher
4514 	 * application and system responsiveness in these hostile
4515 	 * scenarios.
4516 	 */
4517 	return idling_boosts_thr &&
4518 		bfqd->wr_busy_queues == 0;
4519 }
4520 
4521 /*
4522  * For a queue that becomes empty, device idling is allowed only if
4523  * this function returns true for that queue. As a consequence, since
4524  * device idling plays a critical role for both throughput boosting
4525  * and service guarantees, the return value of this function plays a
4526  * critical role as well.
4527  *
4528  * In a nutshell, this function returns true only if idling is
4529  * beneficial for throughput or, even if detrimental for throughput,
4530  * idling is however necessary to preserve service guarantees (low
4531  * latency, desired throughput distribution, ...). In particular, on
4532  * NCQ-capable devices, this function tries to return false, so as to
4533  * help keep the drives' internal queues full, whenever this helps the
4534  * device boost the throughput without causing any service-guarantee
4535  * issue.
4536  *
4537  * Most of the issues taken into account to get the return value of
4538  * this function are not trivial. We discuss these issues in the two
4539  * functions providing the main pieces of information needed by this
4540  * function.
4541  */
4542 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4543 {
4544 	struct bfq_data *bfqd = bfqq->bfqd;
4545 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4546 
4547 	/* No point in idling for bfqq if it won't get requests any longer */
4548 	if (unlikely(!bfqq_process_refs(bfqq)))
4549 		return false;
4550 
4551 	if (unlikely(bfqd->strict_guarantees))
4552 		return true;
4553 
4554 	/*
4555 	 * Idling is performed only if slice_idle > 0. In addition, we
4556 	 * do not idle if
4557 	 * (a) bfqq is async
4558 	 * (b) bfqq is in the idle io prio class: in this case we do
4559 	 * not idle because we want to minimize the bandwidth that
4560 	 * queues in this class can steal to higher-priority queues
4561 	 */
4562 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4563 	   bfq_class_idle(bfqq))
4564 		return false;
4565 
4566 	idling_boosts_thr_with_no_issue =
4567 		idling_boosts_thr_without_issues(bfqd, bfqq);
4568 
4569 	idling_needed_for_service_guar =
4570 		idling_needed_for_service_guarantees(bfqd, bfqq);
4571 
4572 	/*
4573 	 * We have now the two components we need to compute the
4574 	 * return value of the function, which is true only if idling
4575 	 * either boosts the throughput (without issues), or is
4576 	 * necessary to preserve service guarantees.
4577 	 */
4578 	return idling_boosts_thr_with_no_issue ||
4579 		idling_needed_for_service_guar;
4580 }
4581 
4582 /*
4583  * If the in-service queue is empty but the function bfq_better_to_idle
4584  * returns true, then:
4585  * 1) the queue must remain in service and cannot be expired, and
4586  * 2) the device must be idled to wait for the possible arrival of a new
4587  *    request for the queue.
4588  * See the comments on the function bfq_better_to_idle for the reasons
4589  * why performing device idling is the best choice to boost the throughput
4590  * and preserve service guarantees when bfq_better_to_idle itself
4591  * returns true.
4592  */
4593 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4594 {
4595 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4596 }
4597 
4598 /*
4599  * This function chooses the queue from which to pick the next extra
4600  * I/O request to inject, if it finds a compatible queue. See the
4601  * comments on bfq_update_inject_limit() for details on the injection
4602  * mechanism, and for the definitions of the quantities mentioned
4603  * below.
4604  */
4605 static struct bfq_queue *
4606 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4607 {
4608 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4609 	unsigned int limit = in_serv_bfqq->inject_limit;
4610 	/*
4611 	 * If
4612 	 * - bfqq is not weight-raised and therefore does not carry
4613 	 *   time-critical I/O,
4614 	 * or
4615 	 * - regardless of whether bfqq is weight-raised, bfqq has
4616 	 *   however a long think time, during which it can absorb the
4617 	 *   effect of an appropriate number of extra I/O requests
4618 	 *   from other queues (see bfq_update_inject_limit for
4619 	 *   details on the computation of this number);
4620 	 * then injection can be performed without restrictions.
4621 	 */
4622 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4623 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4624 
4625 	/*
4626 	 * If
4627 	 * - the baseline total service time could not be sampled yet,
4628 	 *   so the inject limit happens to be still 0, and
4629 	 * - a lot of time has elapsed since the plugging of I/O
4630 	 *   dispatching started, so drive speed is being wasted
4631 	 *   significantly;
4632 	 * then temporarily raise inject limit to one request.
4633 	 */
4634 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4635 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4636 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4637 				      bfqd->bfq_slice_idle)
4638 		)
4639 		limit = 1;
4640 
4641 	if (bfqd->rq_in_driver >= limit)
4642 		return NULL;
4643 
4644 	/*
4645 	 * Linear search of the source queue for injection; but, with
4646 	 * a high probability, very few steps are needed to find a
4647 	 * candidate queue, i.e., a queue with enough budget left for
4648 	 * its next request. In fact:
4649 	 * - BFQ dynamically updates the budget of every queue so as
4650 	 *   to accommodate the expected backlog of the queue;
4651 	 * - if a queue gets all its requests dispatched as injected
4652 	 *   service, then the queue is removed from the active list
4653 	 *   (and re-added only if it gets new requests, but then it
4654 	 *   is assigned again enough budget for its new backlog).
4655 	 */
4656 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4657 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4658 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4659 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4660 		    bfq_bfqq_budget_left(bfqq)) {
4661 			/*
4662 			 * Allow for only one large in-flight request
4663 			 * on non-rotational devices, for the
4664 			 * following reason. On non-rotationl drives,
4665 			 * large requests take much longer than
4666 			 * smaller requests to be served. In addition,
4667 			 * the drive prefers to serve large requests
4668 			 * w.r.t. to small ones, if it can choose. So,
4669 			 * having more than one large requests queued
4670 			 * in the drive may easily make the next first
4671 			 * request of the in-service queue wait for so
4672 			 * long to break bfqq's service guarantees. On
4673 			 * the bright side, large requests let the
4674 			 * drive reach a very high throughput, even if
4675 			 * there is only one in-flight large request
4676 			 * at a time.
4677 			 */
4678 			if (blk_queue_nonrot(bfqd->queue) &&
4679 			    blk_rq_sectors(bfqq->next_rq) >=
4680 			    BFQQ_SECT_THR_NONROT)
4681 				limit = min_t(unsigned int, 1, limit);
4682 			else
4683 				limit = in_serv_bfqq->inject_limit;
4684 
4685 			if (bfqd->rq_in_driver < limit) {
4686 				bfqd->rqs_injected = true;
4687 				return bfqq;
4688 			}
4689 		}
4690 
4691 	return NULL;
4692 }
4693 
4694 /*
4695  * Select a queue for service.  If we have a current queue in service,
4696  * check whether to continue servicing it, or retrieve and set a new one.
4697  */
4698 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4699 {
4700 	struct bfq_queue *bfqq;
4701 	struct request *next_rq;
4702 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4703 
4704 	bfqq = bfqd->in_service_queue;
4705 	if (!bfqq)
4706 		goto new_queue;
4707 
4708 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4709 
4710 	/*
4711 	 * Do not expire bfqq for budget timeout if bfqq may be about
4712 	 * to enjoy device idling. The reason why, in this case, we
4713 	 * prevent bfqq from expiring is the same as in the comments
4714 	 * on the case where bfq_bfqq_must_idle() returns true, in
4715 	 * bfq_completed_request().
4716 	 */
4717 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4718 	    !bfq_bfqq_must_idle(bfqq))
4719 		goto expire;
4720 
4721 check_queue:
4722 	/*
4723 	 * This loop is rarely executed more than once. Even when it
4724 	 * happens, it is much more convenient to re-execute this loop
4725 	 * than to return NULL and trigger a new dispatch to get a
4726 	 * request served.
4727 	 */
4728 	next_rq = bfqq->next_rq;
4729 	/*
4730 	 * If bfqq has requests queued and it has enough budget left to
4731 	 * serve them, keep the queue, otherwise expire it.
4732 	 */
4733 	if (next_rq) {
4734 		if (bfq_serv_to_charge(next_rq, bfqq) >
4735 			bfq_bfqq_budget_left(bfqq)) {
4736 			/*
4737 			 * Expire the queue for budget exhaustion,
4738 			 * which makes sure that the next budget is
4739 			 * enough to serve the next request, even if
4740 			 * it comes from the fifo expired path.
4741 			 */
4742 			reason = BFQQE_BUDGET_EXHAUSTED;
4743 			goto expire;
4744 		} else {
4745 			/*
4746 			 * The idle timer may be pending because we may
4747 			 * not disable disk idling even when a new request
4748 			 * arrives.
4749 			 */
4750 			if (bfq_bfqq_wait_request(bfqq)) {
4751 				/*
4752 				 * If we get here: 1) at least a new request
4753 				 * has arrived but we have not disabled the
4754 				 * timer because the request was too small,
4755 				 * 2) then the block layer has unplugged
4756 				 * the device, causing the dispatch to be
4757 				 * invoked.
4758 				 *
4759 				 * Since the device is unplugged, now the
4760 				 * requests are probably large enough to
4761 				 * provide a reasonable throughput.
4762 				 * So we disable idling.
4763 				 */
4764 				bfq_clear_bfqq_wait_request(bfqq);
4765 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4766 			}
4767 			goto keep_queue;
4768 		}
4769 	}
4770 
4771 	/*
4772 	 * No requests pending. However, if the in-service queue is idling
4773 	 * for a new request, or has requests waiting for a completion and
4774 	 * may idle after their completion, then keep it anyway.
4775 	 *
4776 	 * Yet, inject service from other queues if it boosts
4777 	 * throughput and is possible.
4778 	 */
4779 	if (bfq_bfqq_wait_request(bfqq) ||
4780 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4781 		struct bfq_queue *async_bfqq =
4782 			bfqq->bic && bfqq->bic->bfqq[0] &&
4783 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4784 			bfqq->bic->bfqq[0]->next_rq ?
4785 			bfqq->bic->bfqq[0] : NULL;
4786 		struct bfq_queue *blocked_bfqq =
4787 			!hlist_empty(&bfqq->woken_list) ?
4788 			container_of(bfqq->woken_list.first,
4789 				     struct bfq_queue,
4790 				     woken_list_node)
4791 			: NULL;
4792 
4793 		/*
4794 		 * The next four mutually-exclusive ifs decide
4795 		 * whether to try injection, and choose the queue to
4796 		 * pick an I/O request from.
4797 		 *
4798 		 * The first if checks whether the process associated
4799 		 * with bfqq has also async I/O pending. If so, it
4800 		 * injects such I/O unconditionally. Injecting async
4801 		 * I/O from the same process can cause no harm to the
4802 		 * process. On the contrary, it can only increase
4803 		 * bandwidth and reduce latency for the process.
4804 		 *
4805 		 * The second if checks whether there happens to be a
4806 		 * non-empty waker queue for bfqq, i.e., a queue whose
4807 		 * I/O needs to be completed for bfqq to receive new
4808 		 * I/O. This happens, e.g., if bfqq is associated with
4809 		 * a process that does some sync. A sync generates
4810 		 * extra blocking I/O, which must be completed before
4811 		 * the process associated with bfqq can go on with its
4812 		 * I/O. If the I/O of the waker queue is not served,
4813 		 * then bfqq remains empty, and no I/O is dispatched,
4814 		 * until the idle timeout fires for bfqq. This is
4815 		 * likely to result in lower bandwidth and higher
4816 		 * latencies for bfqq, and in a severe loss of total
4817 		 * throughput. The best action to take is therefore to
4818 		 * serve the waker queue as soon as possible. So do it
4819 		 * (without relying on the third alternative below for
4820 		 * eventually serving waker_bfqq's I/O; see the last
4821 		 * paragraph for further details). This systematic
4822 		 * injection of I/O from the waker queue does not
4823 		 * cause any delay to bfqq's I/O. On the contrary,
4824 		 * next bfqq's I/O is brought forward dramatically,
4825 		 * for it is not blocked for milliseconds.
4826 		 *
4827 		 * The third if checks whether there is a queue woken
4828 		 * by bfqq, and currently with pending I/O. Such a
4829 		 * woken queue does not steal bandwidth from bfqq,
4830 		 * because it remains soon without I/O if bfqq is not
4831 		 * served. So there is virtually no risk of loss of
4832 		 * bandwidth for bfqq if this woken queue has I/O
4833 		 * dispatched while bfqq is waiting for new I/O.
4834 		 *
4835 		 * The fourth if checks whether bfqq is a queue for
4836 		 * which it is better to avoid injection. It is so if
4837 		 * bfqq delivers more throughput when served without
4838 		 * any further I/O from other queues in the middle, or
4839 		 * if the service times of bfqq's I/O requests both
4840 		 * count more than overall throughput, and may be
4841 		 * easily increased by injection (this happens if bfqq
4842 		 * has a short think time). If none of these
4843 		 * conditions holds, then a candidate queue for
4844 		 * injection is looked for through
4845 		 * bfq_choose_bfqq_for_injection(). Note that the
4846 		 * latter may return NULL (for example if the inject
4847 		 * limit for bfqq is currently 0).
4848 		 *
4849 		 * NOTE: motivation for the second alternative
4850 		 *
4851 		 * Thanks to the way the inject limit is updated in
4852 		 * bfq_update_has_short_ttime(), it is rather likely
4853 		 * that, if I/O is being plugged for bfqq and the
4854 		 * waker queue has pending I/O requests that are
4855 		 * blocking bfqq's I/O, then the fourth alternative
4856 		 * above lets the waker queue get served before the
4857 		 * I/O-plugging timeout fires. So one may deem the
4858 		 * second alternative superfluous. It is not, because
4859 		 * the fourth alternative may be way less effective in
4860 		 * case of a synchronization. For two main
4861 		 * reasons. First, throughput may be low because the
4862 		 * inject limit may be too low to guarantee the same
4863 		 * amount of injected I/O, from the waker queue or
4864 		 * other queues, that the second alternative
4865 		 * guarantees (the second alternative unconditionally
4866 		 * injects a pending I/O request of the waker queue
4867 		 * for each bfq_dispatch_request()). Second, with the
4868 		 * fourth alternative, the duration of the plugging,
4869 		 * i.e., the time before bfqq finally receives new I/O,
4870 		 * may not be minimized, because the waker queue may
4871 		 * happen to be served only after other queues.
4872 		 */
4873 		if (async_bfqq &&
4874 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4875 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4876 		    bfq_bfqq_budget_left(async_bfqq))
4877 			bfqq = bfqq->bic->bfqq[0];
4878 		else if (bfqq->waker_bfqq &&
4879 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4880 			   bfqq->waker_bfqq->next_rq &&
4881 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4882 					      bfqq->waker_bfqq) <=
4883 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4884 			)
4885 			bfqq = bfqq->waker_bfqq;
4886 		else if (blocked_bfqq &&
4887 			   bfq_bfqq_busy(blocked_bfqq) &&
4888 			   blocked_bfqq->next_rq &&
4889 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4890 					      blocked_bfqq) <=
4891 			   bfq_bfqq_budget_left(blocked_bfqq)
4892 			)
4893 			bfqq = blocked_bfqq;
4894 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4895 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4896 			  !bfq_bfqq_has_short_ttime(bfqq)))
4897 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4898 		else
4899 			bfqq = NULL;
4900 
4901 		goto keep_queue;
4902 	}
4903 
4904 	reason = BFQQE_NO_MORE_REQUESTS;
4905 expire:
4906 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4907 new_queue:
4908 	bfqq = bfq_set_in_service_queue(bfqd);
4909 	if (bfqq) {
4910 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4911 		goto check_queue;
4912 	}
4913 keep_queue:
4914 	if (bfqq)
4915 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4916 	else
4917 		bfq_log(bfqd, "select_queue: no queue returned");
4918 
4919 	return bfqq;
4920 }
4921 
4922 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4923 {
4924 	struct bfq_entity *entity = &bfqq->entity;
4925 
4926 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4927 		bfq_log_bfqq(bfqd, bfqq,
4928 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4929 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4930 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4931 			bfqq->wr_coeff,
4932 			bfqq->entity.weight, bfqq->entity.orig_weight);
4933 
4934 		if (entity->prio_changed)
4935 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4936 
4937 		/*
4938 		 * If the queue was activated in a burst, or too much
4939 		 * time has elapsed from the beginning of this
4940 		 * weight-raising period, then end weight raising.
4941 		 */
4942 		if (bfq_bfqq_in_large_burst(bfqq))
4943 			bfq_bfqq_end_wr(bfqq);
4944 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4945 						bfqq->wr_cur_max_time)) {
4946 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4947 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4948 					       bfq_wr_duration(bfqd))) {
4949 				/*
4950 				 * Either in interactive weight
4951 				 * raising, or in soft_rt weight
4952 				 * raising with the
4953 				 * interactive-weight-raising period
4954 				 * elapsed (so no switch back to
4955 				 * interactive weight raising).
4956 				 */
4957 				bfq_bfqq_end_wr(bfqq);
4958 			} else { /*
4959 				  * soft_rt finishing while still in
4960 				  * interactive period, switch back to
4961 				  * interactive weight raising
4962 				  */
4963 				switch_back_to_interactive_wr(bfqq, bfqd);
4964 				bfqq->entity.prio_changed = 1;
4965 			}
4966 		}
4967 		if (bfqq->wr_coeff > 1 &&
4968 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4969 		    bfqq->service_from_wr > max_service_from_wr) {
4970 			/* see comments on max_service_from_wr */
4971 			bfq_bfqq_end_wr(bfqq);
4972 		}
4973 	}
4974 	/*
4975 	 * To improve latency (for this or other queues), immediately
4976 	 * update weight both if it must be raised and if it must be
4977 	 * lowered. Since, entity may be on some active tree here, and
4978 	 * might have a pending change of its ioprio class, invoke
4979 	 * next function with the last parameter unset (see the
4980 	 * comments on the function).
4981 	 */
4982 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4983 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4984 						entity, false);
4985 }
4986 
4987 /*
4988  * Dispatch next request from bfqq.
4989  */
4990 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4991 						 struct bfq_queue *bfqq)
4992 {
4993 	struct request *rq = bfqq->next_rq;
4994 	unsigned long service_to_charge;
4995 
4996 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4997 
4998 	bfq_bfqq_served(bfqq, service_to_charge);
4999 
5000 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5001 		bfqd->wait_dispatch = false;
5002 		bfqd->waited_rq = rq;
5003 	}
5004 
5005 	bfq_dispatch_remove(bfqd->queue, rq);
5006 
5007 	if (bfqq != bfqd->in_service_queue)
5008 		goto return_rq;
5009 
5010 	/*
5011 	 * If weight raising has to terminate for bfqq, then next
5012 	 * function causes an immediate update of bfqq's weight,
5013 	 * without waiting for next activation. As a consequence, on
5014 	 * expiration, bfqq will be timestamped as if has never been
5015 	 * weight-raised during this service slot, even if it has
5016 	 * received part or even most of the service as a
5017 	 * weight-raised queue. This inflates bfqq's timestamps, which
5018 	 * is beneficial, as bfqq is then more willing to leave the
5019 	 * device immediately to possible other weight-raised queues.
5020 	 */
5021 	bfq_update_wr_data(bfqd, bfqq);
5022 
5023 	/*
5024 	 * Expire bfqq, pretending that its budget expired, if bfqq
5025 	 * belongs to CLASS_IDLE and other queues are waiting for
5026 	 * service.
5027 	 */
5028 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
5029 		goto return_rq;
5030 
5031 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5032 
5033 return_rq:
5034 	return rq;
5035 }
5036 
5037 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5038 {
5039 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5040 
5041 	/*
5042 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
5043 	 * most a call to dispatch for nothing
5044 	 */
5045 	return !list_empty_careful(&bfqd->dispatch) ||
5046 		bfq_tot_busy_queues(bfqd) > 0;
5047 }
5048 
5049 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5050 {
5051 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5052 	struct request *rq = NULL;
5053 	struct bfq_queue *bfqq = NULL;
5054 
5055 	if (!list_empty(&bfqd->dispatch)) {
5056 		rq = list_first_entry(&bfqd->dispatch, struct request,
5057 				      queuelist);
5058 		list_del_init(&rq->queuelist);
5059 
5060 		bfqq = RQ_BFQQ(rq);
5061 
5062 		if (bfqq) {
5063 			/*
5064 			 * Increment counters here, because this
5065 			 * dispatch does not follow the standard
5066 			 * dispatch flow (where counters are
5067 			 * incremented)
5068 			 */
5069 			bfqq->dispatched++;
5070 
5071 			goto inc_in_driver_start_rq;
5072 		}
5073 
5074 		/*
5075 		 * We exploit the bfq_finish_requeue_request hook to
5076 		 * decrement rq_in_driver, but
5077 		 * bfq_finish_requeue_request will not be invoked on
5078 		 * this request. So, to avoid unbalance, just start
5079 		 * this request, without incrementing rq_in_driver. As
5080 		 * a negative consequence, rq_in_driver is deceptively
5081 		 * lower than it should be while this request is in
5082 		 * service. This may cause bfq_schedule_dispatch to be
5083 		 * invoked uselessly.
5084 		 *
5085 		 * As for implementing an exact solution, the
5086 		 * bfq_finish_requeue_request hook, if defined, is
5087 		 * probably invoked also on this request. So, by
5088 		 * exploiting this hook, we could 1) increment
5089 		 * rq_in_driver here, and 2) decrement it in
5090 		 * bfq_finish_requeue_request. Such a solution would
5091 		 * let the value of the counter be always accurate,
5092 		 * but it would entail using an extra interface
5093 		 * function. This cost seems higher than the benefit,
5094 		 * being the frequency of non-elevator-private
5095 		 * requests very low.
5096 		 */
5097 		goto start_rq;
5098 	}
5099 
5100 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5101 		bfq_tot_busy_queues(bfqd));
5102 
5103 	if (bfq_tot_busy_queues(bfqd) == 0)
5104 		goto exit;
5105 
5106 	/*
5107 	 * Force device to serve one request at a time if
5108 	 * strict_guarantees is true. Forcing this service scheme is
5109 	 * currently the ONLY way to guarantee that the request
5110 	 * service order enforced by the scheduler is respected by a
5111 	 * queueing device. Otherwise the device is free even to make
5112 	 * some unlucky request wait for as long as the device
5113 	 * wishes.
5114 	 *
5115 	 * Of course, serving one request at a time may cause loss of
5116 	 * throughput.
5117 	 */
5118 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5119 		goto exit;
5120 
5121 	bfqq = bfq_select_queue(bfqd);
5122 	if (!bfqq)
5123 		goto exit;
5124 
5125 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5126 
5127 	if (rq) {
5128 inc_in_driver_start_rq:
5129 		bfqd->rq_in_driver++;
5130 start_rq:
5131 		rq->rq_flags |= RQF_STARTED;
5132 	}
5133 exit:
5134 	return rq;
5135 }
5136 
5137 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5138 static void bfq_update_dispatch_stats(struct request_queue *q,
5139 				      struct request *rq,
5140 				      struct bfq_queue *in_serv_queue,
5141 				      bool idle_timer_disabled)
5142 {
5143 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5144 
5145 	if (!idle_timer_disabled && !bfqq)
5146 		return;
5147 
5148 	/*
5149 	 * rq and bfqq are guaranteed to exist until this function
5150 	 * ends, for the following reasons. First, rq can be
5151 	 * dispatched to the device, and then can be completed and
5152 	 * freed, only after this function ends. Second, rq cannot be
5153 	 * merged (and thus freed because of a merge) any longer,
5154 	 * because it has already started. Thus rq cannot be freed
5155 	 * before this function ends, and, since rq has a reference to
5156 	 * bfqq, the same guarantee holds for bfqq too.
5157 	 *
5158 	 * In addition, the following queue lock guarantees that
5159 	 * bfqq_group(bfqq) exists as well.
5160 	 */
5161 	spin_lock_irq(&q->queue_lock);
5162 	if (idle_timer_disabled)
5163 		/*
5164 		 * Since the idle timer has been disabled,
5165 		 * in_serv_queue contained some request when
5166 		 * __bfq_dispatch_request was invoked above, which
5167 		 * implies that rq was picked exactly from
5168 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5169 		 * therefore guaranteed to exist because of the above
5170 		 * arguments.
5171 		 */
5172 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5173 	if (bfqq) {
5174 		struct bfq_group *bfqg = bfqq_group(bfqq);
5175 
5176 		bfqg_stats_update_avg_queue_size(bfqg);
5177 		bfqg_stats_set_start_empty_time(bfqg);
5178 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5179 	}
5180 	spin_unlock_irq(&q->queue_lock);
5181 }
5182 #else
5183 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5184 					     struct request *rq,
5185 					     struct bfq_queue *in_serv_queue,
5186 					     bool idle_timer_disabled) {}
5187 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5188 
5189 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5190 {
5191 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5192 	struct request *rq;
5193 	struct bfq_queue *in_serv_queue;
5194 	bool waiting_rq, idle_timer_disabled = false;
5195 
5196 	spin_lock_irq(&bfqd->lock);
5197 
5198 	in_serv_queue = bfqd->in_service_queue;
5199 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5200 
5201 	rq = __bfq_dispatch_request(hctx);
5202 	if (in_serv_queue == bfqd->in_service_queue) {
5203 		idle_timer_disabled =
5204 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5205 	}
5206 
5207 	spin_unlock_irq(&bfqd->lock);
5208 	bfq_update_dispatch_stats(hctx->queue, rq,
5209 			idle_timer_disabled ? in_serv_queue : NULL,
5210 				idle_timer_disabled);
5211 
5212 	return rq;
5213 }
5214 
5215 /*
5216  * Task holds one reference to the queue, dropped when task exits.  Each rq
5217  * in-flight on this queue also holds a reference, dropped when rq is freed.
5218  *
5219  * Scheduler lock must be held here. Recall not to use bfqq after calling
5220  * this function on it.
5221  */
5222 void bfq_put_queue(struct bfq_queue *bfqq)
5223 {
5224 	struct bfq_queue *item;
5225 	struct hlist_node *n;
5226 	struct bfq_group *bfqg = bfqq_group(bfqq);
5227 
5228 	if (bfqq->bfqd)
5229 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5230 			     bfqq, bfqq->ref);
5231 
5232 	bfqq->ref--;
5233 	if (bfqq->ref)
5234 		return;
5235 
5236 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5237 		hlist_del_init(&bfqq->burst_list_node);
5238 		/*
5239 		 * Decrement also burst size after the removal, if the
5240 		 * process associated with bfqq is exiting, and thus
5241 		 * does not contribute to the burst any longer. This
5242 		 * decrement helps filter out false positives of large
5243 		 * bursts, when some short-lived process (often due to
5244 		 * the execution of commands by some service) happens
5245 		 * to start and exit while a complex application is
5246 		 * starting, and thus spawning several processes that
5247 		 * do I/O (and that *must not* be treated as a large
5248 		 * burst, see comments on bfq_handle_burst).
5249 		 *
5250 		 * In particular, the decrement is performed only if:
5251 		 * 1) bfqq is not a merged queue, because, if it is,
5252 		 * then this free of bfqq is not triggered by the exit
5253 		 * of the process bfqq is associated with, but exactly
5254 		 * by the fact that bfqq has just been merged.
5255 		 * 2) burst_size is greater than 0, to handle
5256 		 * unbalanced decrements. Unbalanced decrements may
5257 		 * happen in te following case: bfqq is inserted into
5258 		 * the current burst list--without incrementing
5259 		 * bust_size--because of a split, but the current
5260 		 * burst list is not the burst list bfqq belonged to
5261 		 * (see comments on the case of a split in
5262 		 * bfq_set_request).
5263 		 */
5264 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5265 			bfqq->bfqd->burst_size--;
5266 	}
5267 
5268 	/*
5269 	 * bfqq does not exist any longer, so it cannot be woken by
5270 	 * any other queue, and cannot wake any other queue. Then bfqq
5271 	 * must be removed from the woken list of its possible waker
5272 	 * queue, and all queues in the woken list of bfqq must stop
5273 	 * having a waker queue. Strictly speaking, these updates
5274 	 * should be performed when bfqq remains with no I/O source
5275 	 * attached to it, which happens before bfqq gets freed. In
5276 	 * particular, this happens when the last process associated
5277 	 * with bfqq exits or gets associated with a different
5278 	 * queue. However, both events lead to bfqq being freed soon,
5279 	 * and dangling references would come out only after bfqq gets
5280 	 * freed. So these updates are done here, as a simple and safe
5281 	 * way to handle all cases.
5282 	 */
5283 	/* remove bfqq from woken list */
5284 	if (!hlist_unhashed(&bfqq->woken_list_node))
5285 		hlist_del_init(&bfqq->woken_list_node);
5286 
5287 	/* reset waker for all queues in woken list */
5288 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5289 				  woken_list_node) {
5290 		item->waker_bfqq = NULL;
5291 		hlist_del_init(&item->woken_list_node);
5292 	}
5293 
5294 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5295 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5296 
5297 	kmem_cache_free(bfq_pool, bfqq);
5298 	bfqg_and_blkg_put(bfqg);
5299 }
5300 
5301 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5302 {
5303 	bfqq->stable_ref--;
5304 	bfq_put_queue(bfqq);
5305 }
5306 
5307 static void bfq_put_cooperator(struct bfq_queue *bfqq)
5308 {
5309 	struct bfq_queue *__bfqq, *next;
5310 
5311 	/*
5312 	 * If this queue was scheduled to merge with another queue, be
5313 	 * sure to drop the reference taken on that queue (and others in
5314 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5315 	 */
5316 	__bfqq = bfqq->new_bfqq;
5317 	while (__bfqq) {
5318 		if (__bfqq == bfqq)
5319 			break;
5320 		next = __bfqq->new_bfqq;
5321 		bfq_put_queue(__bfqq);
5322 		__bfqq = next;
5323 	}
5324 }
5325 
5326 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5327 {
5328 	if (bfqq == bfqd->in_service_queue) {
5329 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5330 		bfq_schedule_dispatch(bfqd);
5331 	}
5332 
5333 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5334 
5335 	bfq_put_cooperator(bfqq);
5336 
5337 	bfq_release_process_ref(bfqd, bfqq);
5338 }
5339 
5340 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5341 {
5342 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5343 	struct bfq_data *bfqd;
5344 
5345 	if (bfqq)
5346 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5347 
5348 	if (bfqq && bfqd) {
5349 		unsigned long flags;
5350 
5351 		spin_lock_irqsave(&bfqd->lock, flags);
5352 		bfqq->bic = NULL;
5353 		bfq_exit_bfqq(bfqd, bfqq);
5354 		bic_set_bfqq(bic, NULL, is_sync);
5355 		spin_unlock_irqrestore(&bfqd->lock, flags);
5356 	}
5357 }
5358 
5359 static void bfq_exit_icq(struct io_cq *icq)
5360 {
5361 	struct bfq_io_cq *bic = icq_to_bic(icq);
5362 
5363 	if (bic->stable_merge_bfqq) {
5364 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5365 
5366 		/*
5367 		 * bfqd is NULL if scheduler already exited, and in
5368 		 * that case this is the last time bfqq is accessed.
5369 		 */
5370 		if (bfqd) {
5371 			unsigned long flags;
5372 
5373 			spin_lock_irqsave(&bfqd->lock, flags);
5374 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5375 			spin_unlock_irqrestore(&bfqd->lock, flags);
5376 		} else {
5377 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5378 		}
5379 	}
5380 
5381 	bfq_exit_icq_bfqq(bic, true);
5382 	bfq_exit_icq_bfqq(bic, false);
5383 }
5384 
5385 /*
5386  * Update the entity prio values; note that the new values will not
5387  * be used until the next (re)activation.
5388  */
5389 static void
5390 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5391 {
5392 	struct task_struct *tsk = current;
5393 	int ioprio_class;
5394 	struct bfq_data *bfqd = bfqq->bfqd;
5395 
5396 	if (!bfqd)
5397 		return;
5398 
5399 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5400 	switch (ioprio_class) {
5401 	default:
5402 		pr_err("bdi %s: bfq: bad prio class %d\n",
5403 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5404 			ioprio_class);
5405 		fallthrough;
5406 	case IOPRIO_CLASS_NONE:
5407 		/*
5408 		 * No prio set, inherit CPU scheduling settings.
5409 		 */
5410 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5411 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5412 		break;
5413 	case IOPRIO_CLASS_RT:
5414 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5415 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5416 		break;
5417 	case IOPRIO_CLASS_BE:
5418 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5419 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5420 		break;
5421 	case IOPRIO_CLASS_IDLE:
5422 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5423 		bfqq->new_ioprio = 7;
5424 		break;
5425 	}
5426 
5427 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5428 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5429 			bfqq->new_ioprio);
5430 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5431 	}
5432 
5433 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5434 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5435 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5436 	bfqq->entity.prio_changed = 1;
5437 }
5438 
5439 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5440 				       struct bio *bio, bool is_sync,
5441 				       struct bfq_io_cq *bic,
5442 				       bool respawn);
5443 
5444 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5445 {
5446 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5447 	struct bfq_queue *bfqq;
5448 	int ioprio = bic->icq.ioc->ioprio;
5449 
5450 	/*
5451 	 * This condition may trigger on a newly created bic, be sure to
5452 	 * drop the lock before returning.
5453 	 */
5454 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5455 		return;
5456 
5457 	bic->ioprio = ioprio;
5458 
5459 	bfqq = bic_to_bfqq(bic, false);
5460 	if (bfqq) {
5461 		bfq_release_process_ref(bfqd, bfqq);
5462 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5463 		bic_set_bfqq(bic, bfqq, false);
5464 	}
5465 
5466 	bfqq = bic_to_bfqq(bic, true);
5467 	if (bfqq)
5468 		bfq_set_next_ioprio_data(bfqq, bic);
5469 }
5470 
5471 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5472 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5473 {
5474 	u64 now_ns = ktime_get_ns();
5475 
5476 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5477 	INIT_LIST_HEAD(&bfqq->fifo);
5478 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5479 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5480 	INIT_HLIST_HEAD(&bfqq->woken_list);
5481 
5482 	bfqq->ref = 0;
5483 	bfqq->bfqd = bfqd;
5484 
5485 	if (bic)
5486 		bfq_set_next_ioprio_data(bfqq, bic);
5487 
5488 	if (is_sync) {
5489 		/*
5490 		 * No need to mark as has_short_ttime if in
5491 		 * idle_class, because no device idling is performed
5492 		 * for queues in idle class
5493 		 */
5494 		if (!bfq_class_idle(bfqq))
5495 			/* tentatively mark as has_short_ttime */
5496 			bfq_mark_bfqq_has_short_ttime(bfqq);
5497 		bfq_mark_bfqq_sync(bfqq);
5498 		bfq_mark_bfqq_just_created(bfqq);
5499 	} else
5500 		bfq_clear_bfqq_sync(bfqq);
5501 
5502 	/* set end request to minus infinity from now */
5503 	bfqq->ttime.last_end_request = now_ns + 1;
5504 
5505 	bfqq->creation_time = jiffies;
5506 
5507 	bfqq->io_start_time = now_ns;
5508 
5509 	bfq_mark_bfqq_IO_bound(bfqq);
5510 
5511 	bfqq->pid = pid;
5512 
5513 	/* Tentative initial value to trade off between thr and lat */
5514 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5515 	bfqq->budget_timeout = bfq_smallest_from_now();
5516 
5517 	bfqq->wr_coeff = 1;
5518 	bfqq->last_wr_start_finish = jiffies;
5519 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5520 	bfqq->split_time = bfq_smallest_from_now();
5521 
5522 	/*
5523 	 * To not forget the possibly high bandwidth consumed by a
5524 	 * process/queue in the recent past,
5525 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5526 	 * to the current value of bfqq->soft_rt_next_start (see
5527 	 * comments on bfq_bfqq_softrt_next_start).  Set
5528 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5529 	 * no bandwidth so far.
5530 	 */
5531 	bfqq->soft_rt_next_start = jiffies;
5532 
5533 	/* first request is almost certainly seeky */
5534 	bfqq->seek_history = 1;
5535 }
5536 
5537 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5538 					       struct bfq_group *bfqg,
5539 					       int ioprio_class, int ioprio)
5540 {
5541 	switch (ioprio_class) {
5542 	case IOPRIO_CLASS_RT:
5543 		return &bfqg->async_bfqq[0][ioprio];
5544 	case IOPRIO_CLASS_NONE:
5545 		ioprio = IOPRIO_BE_NORM;
5546 		fallthrough;
5547 	case IOPRIO_CLASS_BE:
5548 		return &bfqg->async_bfqq[1][ioprio];
5549 	case IOPRIO_CLASS_IDLE:
5550 		return &bfqg->async_idle_bfqq;
5551 	default:
5552 		return NULL;
5553 	}
5554 }
5555 
5556 static struct bfq_queue *
5557 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5558 			  struct bfq_io_cq *bic,
5559 			  struct bfq_queue *last_bfqq_created)
5560 {
5561 	struct bfq_queue *new_bfqq =
5562 		bfq_setup_merge(bfqq, last_bfqq_created);
5563 
5564 	if (!new_bfqq)
5565 		return bfqq;
5566 
5567 	if (new_bfqq->bic)
5568 		new_bfqq->bic->stably_merged = true;
5569 	bic->stably_merged = true;
5570 
5571 	/*
5572 	 * Reusing merge functions. This implies that
5573 	 * bfqq->bic must be set too, for
5574 	 * bfq_merge_bfqqs to correctly save bfqq's
5575 	 * state before killing it.
5576 	 */
5577 	bfqq->bic = bic;
5578 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5579 
5580 	return new_bfqq;
5581 }
5582 
5583 /*
5584  * Many throughput-sensitive workloads are made of several parallel
5585  * I/O flows, with all flows generated by the same application, or
5586  * more generically by the same task (e.g., system boot). The most
5587  * counterproductive action with these workloads is plugging I/O
5588  * dispatch when one of the bfq_queues associated with these flows
5589  * remains temporarily empty.
5590  *
5591  * To avoid this plugging, BFQ has been using a burst-handling
5592  * mechanism for years now. This mechanism has proven effective for
5593  * throughput, and not detrimental for service guarantees. The
5594  * following function pushes this mechanism a little bit further,
5595  * basing on the following two facts.
5596  *
5597  * First, all the I/O flows of a the same application or task
5598  * contribute to the execution/completion of that common application
5599  * or task. So the performance figures that matter are total
5600  * throughput of the flows and task-wide I/O latency.  In particular,
5601  * these flows do not need to be protected from each other, in terms
5602  * of individual bandwidth or latency.
5603  *
5604  * Second, the above fact holds regardless of the number of flows.
5605  *
5606  * Putting these two facts together, this commits merges stably the
5607  * bfq_queues associated with these I/O flows, i.e., with the
5608  * processes that generate these IO/ flows, regardless of how many the
5609  * involved processes are.
5610  *
5611  * To decide whether a set of bfq_queues is actually associated with
5612  * the I/O flows of a common application or task, and to merge these
5613  * queues stably, this function operates as follows: given a bfq_queue,
5614  * say Q2, currently being created, and the last bfq_queue, say Q1,
5615  * created before Q2, Q2 is merged stably with Q1 if
5616  * - very little time has elapsed since when Q1 was created
5617  * - Q2 has the same ioprio as Q1
5618  * - Q2 belongs to the same group as Q1
5619  *
5620  * Merging bfq_queues also reduces scheduling overhead. A fio test
5621  * with ten random readers on /dev/nullb shows a throughput boost of
5622  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5623  * the total per-request processing time, the above throughput boost
5624  * implies that BFQ's overhead is reduced by more than 50%.
5625  *
5626  * This new mechanism most certainly obsoletes the current
5627  * burst-handling heuristics. We keep those heuristics for the moment.
5628  */
5629 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5630 						      struct bfq_queue *bfqq,
5631 						      struct bfq_io_cq *bic)
5632 {
5633 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5634 		&bfqq->entity.parent->last_bfqq_created :
5635 		&bfqd->last_bfqq_created;
5636 
5637 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5638 
5639 	/*
5640 	 * If last_bfqq_created has not been set yet, then init it. If
5641 	 * it has been set already, but too long ago, then move it
5642 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5643 	 * different group than last_bfqq_created, or if bfqq has a
5644 	 * different ioprio or ioprio_class. If none of these
5645 	 * conditions holds true, then try an early stable merge or
5646 	 * schedule a delayed stable merge.
5647 	 *
5648 	 * A delayed merge is scheduled (instead of performing an
5649 	 * early merge), in case bfqq might soon prove to be more
5650 	 * throughput-beneficial if not merged. Currently this is
5651 	 * possible only if bfqd is rotational with no queueing. For
5652 	 * such a drive, not merging bfqq is better for throughput if
5653 	 * bfqq happens to contain sequential I/O. So, we wait a
5654 	 * little bit for enough I/O to flow through bfqq. After that,
5655 	 * if such an I/O is sequential, then the merge is
5656 	 * canceled. Otherwise the merge is finally performed.
5657 	 */
5658 	if (!last_bfqq_created ||
5659 	    time_before(last_bfqq_created->creation_time +
5660 			msecs_to_jiffies(bfq_activation_stable_merging),
5661 			bfqq->creation_time) ||
5662 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5663 		bfqq->ioprio != last_bfqq_created->ioprio ||
5664 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5665 		*source_bfqq = bfqq;
5666 	else if (time_after_eq(last_bfqq_created->creation_time +
5667 				 bfqd->bfq_burst_interval,
5668 				 bfqq->creation_time)) {
5669 		if (likely(bfqd->nonrot_with_queueing))
5670 			/*
5671 			 * With this type of drive, leaving
5672 			 * bfqq alone may provide no
5673 			 * throughput benefits compared with
5674 			 * merging bfqq. So merge bfqq now.
5675 			 */
5676 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5677 							 bic,
5678 							 last_bfqq_created);
5679 		else { /* schedule tentative stable merge */
5680 			/*
5681 			 * get reference on last_bfqq_created,
5682 			 * to prevent it from being freed,
5683 			 * until we decide whether to merge
5684 			 */
5685 			last_bfqq_created->ref++;
5686 			/*
5687 			 * need to keep track of stable refs, to
5688 			 * compute process refs correctly
5689 			 */
5690 			last_bfqq_created->stable_ref++;
5691 			/*
5692 			 * Record the bfqq to merge to.
5693 			 */
5694 			bic->stable_merge_bfqq = last_bfqq_created;
5695 		}
5696 	}
5697 
5698 	return bfqq;
5699 }
5700 
5701 
5702 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5703 				       struct bio *bio, bool is_sync,
5704 				       struct bfq_io_cq *bic,
5705 				       bool respawn)
5706 {
5707 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5708 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5709 	struct bfq_queue **async_bfqq = NULL;
5710 	struct bfq_queue *bfqq;
5711 	struct bfq_group *bfqg;
5712 
5713 	rcu_read_lock();
5714 
5715 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5716 	if (!bfqg) {
5717 		bfqq = &bfqd->oom_bfqq;
5718 		goto out;
5719 	}
5720 
5721 	if (!is_sync) {
5722 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5723 						  ioprio);
5724 		bfqq = *async_bfqq;
5725 		if (bfqq)
5726 			goto out;
5727 	}
5728 
5729 	bfqq = kmem_cache_alloc_node(bfq_pool,
5730 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5731 				     bfqd->queue->node);
5732 
5733 	if (bfqq) {
5734 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5735 			      is_sync);
5736 		bfq_init_entity(&bfqq->entity, bfqg);
5737 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5738 	} else {
5739 		bfqq = &bfqd->oom_bfqq;
5740 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5741 		goto out;
5742 	}
5743 
5744 	/*
5745 	 * Pin the queue now that it's allocated, scheduler exit will
5746 	 * prune it.
5747 	 */
5748 	if (async_bfqq) {
5749 		bfqq->ref++; /*
5750 			      * Extra group reference, w.r.t. sync
5751 			      * queue. This extra reference is removed
5752 			      * only if bfqq->bfqg disappears, to
5753 			      * guarantee that this queue is not freed
5754 			      * until its group goes away.
5755 			      */
5756 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5757 			     bfqq, bfqq->ref);
5758 		*async_bfqq = bfqq;
5759 	}
5760 
5761 out:
5762 	bfqq->ref++; /* get a process reference to this queue */
5763 
5764 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5765 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5766 
5767 	rcu_read_unlock();
5768 	return bfqq;
5769 }
5770 
5771 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5772 				    struct bfq_queue *bfqq)
5773 {
5774 	struct bfq_ttime *ttime = &bfqq->ttime;
5775 	u64 elapsed;
5776 
5777 	/*
5778 	 * We are really interested in how long it takes for the queue to
5779 	 * become busy when there is no outstanding IO for this queue. So
5780 	 * ignore cases when the bfq queue has already IO queued.
5781 	 */
5782 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5783 		return;
5784 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5785 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5786 
5787 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5788 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5789 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5790 				     ttime->ttime_samples);
5791 }
5792 
5793 static void
5794 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5795 		       struct request *rq)
5796 {
5797 	bfqq->seek_history <<= 1;
5798 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5799 
5800 	if (bfqq->wr_coeff > 1 &&
5801 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5802 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5803 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5804 					   bfq_wr_duration(bfqd))) {
5805 			/*
5806 			 * In soft_rt weight raising with the
5807 			 * interactive-weight-raising period
5808 			 * elapsed (so no switch back to
5809 			 * interactive weight raising).
5810 			 */
5811 			bfq_bfqq_end_wr(bfqq);
5812 		} else { /*
5813 			  * stopping soft_rt weight raising
5814 			  * while still in interactive period,
5815 			  * switch back to interactive weight
5816 			  * raising
5817 			  */
5818 			switch_back_to_interactive_wr(bfqq, bfqd);
5819 			bfqq->entity.prio_changed = 1;
5820 		}
5821 	}
5822 }
5823 
5824 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5825 				       struct bfq_queue *bfqq,
5826 				       struct bfq_io_cq *bic)
5827 {
5828 	bool has_short_ttime = true, state_changed;
5829 
5830 	/*
5831 	 * No need to update has_short_ttime if bfqq is async or in
5832 	 * idle io prio class, or if bfq_slice_idle is zero, because
5833 	 * no device idling is performed for bfqq in this case.
5834 	 */
5835 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5836 	    bfqd->bfq_slice_idle == 0)
5837 		return;
5838 
5839 	/* Idle window just restored, statistics are meaningless. */
5840 	if (time_is_after_eq_jiffies(bfqq->split_time +
5841 				     bfqd->bfq_wr_min_idle_time))
5842 		return;
5843 
5844 	/* Think time is infinite if no process is linked to
5845 	 * bfqq. Otherwise check average think time to decide whether
5846 	 * to mark as has_short_ttime. To this goal, compare average
5847 	 * think time with half the I/O-plugging timeout.
5848 	 */
5849 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5850 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5851 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5852 		has_short_ttime = false;
5853 
5854 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5855 
5856 	if (has_short_ttime)
5857 		bfq_mark_bfqq_has_short_ttime(bfqq);
5858 	else
5859 		bfq_clear_bfqq_has_short_ttime(bfqq);
5860 
5861 	/*
5862 	 * Until the base value for the total service time gets
5863 	 * finally computed for bfqq, the inject limit does depend on
5864 	 * the think-time state (short|long). In particular, the limit
5865 	 * is 0 or 1 if the think time is deemed, respectively, as
5866 	 * short or long (details in the comments in
5867 	 * bfq_update_inject_limit()). Accordingly, the next
5868 	 * instructions reset the inject limit if the think-time state
5869 	 * has changed and the above base value is still to be
5870 	 * computed.
5871 	 *
5872 	 * However, the reset is performed only if more than 100 ms
5873 	 * have elapsed since the last update of the inject limit, or
5874 	 * (inclusive) if the change is from short to long think
5875 	 * time. The reason for this waiting is as follows.
5876 	 *
5877 	 * bfqq may have a long think time because of a
5878 	 * synchronization with some other queue, i.e., because the
5879 	 * I/O of some other queue may need to be completed for bfqq
5880 	 * to receive new I/O. Details in the comments on the choice
5881 	 * of the queue for injection in bfq_select_queue().
5882 	 *
5883 	 * As stressed in those comments, if such a synchronization is
5884 	 * actually in place, then, without injection on bfqq, the
5885 	 * blocking I/O cannot happen to served while bfqq is in
5886 	 * service. As a consequence, if bfqq is granted
5887 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5888 	 * is dispatched, until the idle timeout fires. This is likely
5889 	 * to result in lower bandwidth and higher latencies for bfqq,
5890 	 * and in a severe loss of total throughput.
5891 	 *
5892 	 * On the opposite end, a non-zero inject limit may allow the
5893 	 * I/O that blocks bfqq to be executed soon, and therefore
5894 	 * bfqq to receive new I/O soon.
5895 	 *
5896 	 * But, if the blocking gets actually eliminated, then the
5897 	 * next think-time sample for bfqq may be very low. This in
5898 	 * turn may cause bfqq's think time to be deemed
5899 	 * short. Without the 100 ms barrier, this new state change
5900 	 * would cause the body of the next if to be executed
5901 	 * immediately. But this would set to 0 the inject
5902 	 * limit. Without injection, the blocking I/O would cause the
5903 	 * think time of bfqq to become long again, and therefore the
5904 	 * inject limit to be raised again, and so on. The only effect
5905 	 * of such a steady oscillation between the two think-time
5906 	 * states would be to prevent effective injection on bfqq.
5907 	 *
5908 	 * In contrast, if the inject limit is not reset during such a
5909 	 * long time interval as 100 ms, then the number of short
5910 	 * think time samples can grow significantly before the reset
5911 	 * is performed. As a consequence, the think time state can
5912 	 * become stable before the reset. Therefore there will be no
5913 	 * state change when the 100 ms elapse, and no reset of the
5914 	 * inject limit. The inject limit remains steadily equal to 1
5915 	 * both during and after the 100 ms. So injection can be
5916 	 * performed at all times, and throughput gets boosted.
5917 	 *
5918 	 * An inject limit equal to 1 is however in conflict, in
5919 	 * general, with the fact that the think time of bfqq is
5920 	 * short, because injection may be likely to delay bfqq's I/O
5921 	 * (as explained in the comments in
5922 	 * bfq_update_inject_limit()). But this does not happen in
5923 	 * this special case, because bfqq's low think time is due to
5924 	 * an effective handling of a synchronization, through
5925 	 * injection. In this special case, bfqq's I/O does not get
5926 	 * delayed by injection; on the contrary, bfqq's I/O is
5927 	 * brought forward, because it is not blocked for
5928 	 * milliseconds.
5929 	 *
5930 	 * In addition, serving the blocking I/O much sooner, and much
5931 	 * more frequently than once per I/O-plugging timeout, makes
5932 	 * it much quicker to detect a waker queue (the concept of
5933 	 * waker queue is defined in the comments in
5934 	 * bfq_add_request()). This makes it possible to start sooner
5935 	 * to boost throughput more effectively, by injecting the I/O
5936 	 * of the waker queue unconditionally on every
5937 	 * bfq_dispatch_request().
5938 	 *
5939 	 * One last, important benefit of not resetting the inject
5940 	 * limit before 100 ms is that, during this time interval, the
5941 	 * base value for the total service time is likely to get
5942 	 * finally computed for bfqq, freeing the inject limit from
5943 	 * its relation with the think time.
5944 	 */
5945 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5946 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5947 				      msecs_to_jiffies(100)) ||
5948 	     !has_short_ttime))
5949 		bfq_reset_inject_limit(bfqd, bfqq);
5950 }
5951 
5952 /*
5953  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5954  * something we should do about it.
5955  */
5956 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5957 			    struct request *rq)
5958 {
5959 	if (rq->cmd_flags & REQ_META)
5960 		bfqq->meta_pending++;
5961 
5962 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5963 
5964 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5965 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5966 				 blk_rq_sectors(rq) < 32;
5967 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5968 
5969 		/*
5970 		 * There is just this request queued: if
5971 		 * - the request is small, and
5972 		 * - we are idling to boost throughput, and
5973 		 * - the queue is not to be expired,
5974 		 * then just exit.
5975 		 *
5976 		 * In this way, if the device is being idled to wait
5977 		 * for a new request from the in-service queue, we
5978 		 * avoid unplugging the device and committing the
5979 		 * device to serve just a small request. In contrast
5980 		 * we wait for the block layer to decide when to
5981 		 * unplug the device: hopefully, new requests will be
5982 		 * merged to this one quickly, then the device will be
5983 		 * unplugged and larger requests will be dispatched.
5984 		 */
5985 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5986 		    !budget_timeout)
5987 			return;
5988 
5989 		/*
5990 		 * A large enough request arrived, or idling is being
5991 		 * performed to preserve service guarantees, or
5992 		 * finally the queue is to be expired: in all these
5993 		 * cases disk idling is to be stopped, so clear
5994 		 * wait_request flag and reset timer.
5995 		 */
5996 		bfq_clear_bfqq_wait_request(bfqq);
5997 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5998 
5999 		/*
6000 		 * The queue is not empty, because a new request just
6001 		 * arrived. Hence we can safely expire the queue, in
6002 		 * case of budget timeout, without risking that the
6003 		 * timestamps of the queue are not updated correctly.
6004 		 * See [1] for more details.
6005 		 */
6006 		if (budget_timeout)
6007 			bfq_bfqq_expire(bfqd, bfqq, false,
6008 					BFQQE_BUDGET_TIMEOUT);
6009 	}
6010 }
6011 
6012 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6013 {
6014 	struct bfq_entity *entity = &bfqq->entity;
6015 
6016 	for_each_entity(entity)
6017 		entity->allocated++;
6018 }
6019 
6020 static void bfqq_request_freed(struct bfq_queue *bfqq)
6021 {
6022 	struct bfq_entity *entity = &bfqq->entity;
6023 
6024 	for_each_entity(entity)
6025 		entity->allocated--;
6026 }
6027 
6028 /* returns true if it causes the idle timer to be disabled */
6029 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6030 {
6031 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6032 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6033 						 RQ_BIC(rq));
6034 	bool waiting, idle_timer_disabled = false;
6035 
6036 	if (new_bfqq) {
6037 		/*
6038 		 * Release the request's reference to the old bfqq
6039 		 * and make sure one is taken to the shared queue.
6040 		 */
6041 		bfqq_request_allocated(new_bfqq);
6042 		bfqq_request_freed(bfqq);
6043 		new_bfqq->ref++;
6044 		/*
6045 		 * If the bic associated with the process
6046 		 * issuing this request still points to bfqq
6047 		 * (and thus has not been already redirected
6048 		 * to new_bfqq or even some other bfq_queue),
6049 		 * then complete the merge and redirect it to
6050 		 * new_bfqq.
6051 		 */
6052 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6053 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6054 					bfqq, new_bfqq);
6055 
6056 		bfq_clear_bfqq_just_created(bfqq);
6057 		/*
6058 		 * rq is about to be enqueued into new_bfqq,
6059 		 * release rq reference on bfqq
6060 		 */
6061 		bfq_put_queue(bfqq);
6062 		rq->elv.priv[1] = new_bfqq;
6063 		bfqq = new_bfqq;
6064 	}
6065 
6066 	bfq_update_io_thinktime(bfqd, bfqq);
6067 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6068 	bfq_update_io_seektime(bfqd, bfqq, rq);
6069 
6070 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6071 	bfq_add_request(rq);
6072 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6073 
6074 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6075 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6076 
6077 	bfq_rq_enqueued(bfqd, bfqq, rq);
6078 
6079 	return idle_timer_disabled;
6080 }
6081 
6082 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6083 static void bfq_update_insert_stats(struct request_queue *q,
6084 				    struct bfq_queue *bfqq,
6085 				    bool idle_timer_disabled,
6086 				    unsigned int cmd_flags)
6087 {
6088 	if (!bfqq)
6089 		return;
6090 
6091 	/*
6092 	 * bfqq still exists, because it can disappear only after
6093 	 * either it is merged with another queue, or the process it
6094 	 * is associated with exits. But both actions must be taken by
6095 	 * the same process currently executing this flow of
6096 	 * instructions.
6097 	 *
6098 	 * In addition, the following queue lock guarantees that
6099 	 * bfqq_group(bfqq) exists as well.
6100 	 */
6101 	spin_lock_irq(&q->queue_lock);
6102 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6103 	if (idle_timer_disabled)
6104 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6105 	spin_unlock_irq(&q->queue_lock);
6106 }
6107 #else
6108 static inline void bfq_update_insert_stats(struct request_queue *q,
6109 					   struct bfq_queue *bfqq,
6110 					   bool idle_timer_disabled,
6111 					   unsigned int cmd_flags) {}
6112 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6113 
6114 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6115 			       bool at_head)
6116 {
6117 	struct request_queue *q = hctx->queue;
6118 	struct bfq_data *bfqd = q->elevator->elevator_data;
6119 	struct bfq_queue *bfqq;
6120 	bool idle_timer_disabled = false;
6121 	unsigned int cmd_flags;
6122 	LIST_HEAD(free);
6123 
6124 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6125 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6126 		bfqg_stats_update_legacy_io(q, rq);
6127 #endif
6128 	spin_lock_irq(&bfqd->lock);
6129 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6130 		spin_unlock_irq(&bfqd->lock);
6131 		blk_mq_free_requests(&free);
6132 		return;
6133 	}
6134 
6135 	spin_unlock_irq(&bfqd->lock);
6136 
6137 	trace_block_rq_insert(rq);
6138 
6139 	spin_lock_irq(&bfqd->lock);
6140 	bfqq = bfq_init_rq(rq);
6141 	if (!bfqq || at_head) {
6142 		if (at_head)
6143 			list_add(&rq->queuelist, &bfqd->dispatch);
6144 		else
6145 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6146 	} else {
6147 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6148 		/*
6149 		 * Update bfqq, because, if a queue merge has occurred
6150 		 * in __bfq_insert_request, then rq has been
6151 		 * redirected into a new queue.
6152 		 */
6153 		bfqq = RQ_BFQQ(rq);
6154 
6155 		if (rq_mergeable(rq)) {
6156 			elv_rqhash_add(q, rq);
6157 			if (!q->last_merge)
6158 				q->last_merge = rq;
6159 		}
6160 	}
6161 
6162 	/*
6163 	 * Cache cmd_flags before releasing scheduler lock, because rq
6164 	 * may disappear afterwards (for example, because of a request
6165 	 * merge).
6166 	 */
6167 	cmd_flags = rq->cmd_flags;
6168 	spin_unlock_irq(&bfqd->lock);
6169 
6170 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6171 				cmd_flags);
6172 }
6173 
6174 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6175 				struct list_head *list, bool at_head)
6176 {
6177 	while (!list_empty(list)) {
6178 		struct request *rq;
6179 
6180 		rq = list_first_entry(list, struct request, queuelist);
6181 		list_del_init(&rq->queuelist);
6182 		bfq_insert_request(hctx, rq, at_head);
6183 	}
6184 }
6185 
6186 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6187 {
6188 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6189 
6190 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6191 				       bfqd->rq_in_driver);
6192 
6193 	if (bfqd->hw_tag == 1)
6194 		return;
6195 
6196 	/*
6197 	 * This sample is valid if the number of outstanding requests
6198 	 * is large enough to allow a queueing behavior.  Note that the
6199 	 * sum is not exact, as it's not taking into account deactivated
6200 	 * requests.
6201 	 */
6202 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6203 		return;
6204 
6205 	/*
6206 	 * If active queue hasn't enough requests and can idle, bfq might not
6207 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6208 	 * case
6209 	 */
6210 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6211 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6212 	    BFQ_HW_QUEUE_THRESHOLD &&
6213 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6214 		return;
6215 
6216 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6217 		return;
6218 
6219 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6220 	bfqd->max_rq_in_driver = 0;
6221 	bfqd->hw_tag_samples = 0;
6222 
6223 	bfqd->nonrot_with_queueing =
6224 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6225 }
6226 
6227 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6228 {
6229 	u64 now_ns;
6230 	u32 delta_us;
6231 
6232 	bfq_update_hw_tag(bfqd);
6233 
6234 	bfqd->rq_in_driver--;
6235 	bfqq->dispatched--;
6236 
6237 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6238 		/*
6239 		 * Set budget_timeout (which we overload to store the
6240 		 * time at which the queue remains with no backlog and
6241 		 * no outstanding request; used by the weight-raising
6242 		 * mechanism).
6243 		 */
6244 		bfqq->budget_timeout = jiffies;
6245 
6246 		bfq_weights_tree_remove(bfqd, bfqq);
6247 	}
6248 
6249 	now_ns = ktime_get_ns();
6250 
6251 	bfqq->ttime.last_end_request = now_ns;
6252 
6253 	/*
6254 	 * Using us instead of ns, to get a reasonable precision in
6255 	 * computing rate in next check.
6256 	 */
6257 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6258 
6259 	/*
6260 	 * If the request took rather long to complete, and, according
6261 	 * to the maximum request size recorded, this completion latency
6262 	 * implies that the request was certainly served at a very low
6263 	 * rate (less than 1M sectors/sec), then the whole observation
6264 	 * interval that lasts up to this time instant cannot be a
6265 	 * valid time interval for computing a new peak rate.  Invoke
6266 	 * bfq_update_rate_reset to have the following three steps
6267 	 * taken:
6268 	 * - close the observation interval at the last (previous)
6269 	 *   request dispatch or completion
6270 	 * - compute rate, if possible, for that observation interval
6271 	 * - reset to zero samples, which will trigger a proper
6272 	 *   re-initialization of the observation interval on next
6273 	 *   dispatch
6274 	 */
6275 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6276 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6277 			1UL<<(BFQ_RATE_SHIFT - 10))
6278 		bfq_update_rate_reset(bfqd, NULL);
6279 	bfqd->last_completion = now_ns;
6280 	/*
6281 	 * Shared queues are likely to receive I/O at a high
6282 	 * rate. This may deceptively let them be considered as wakers
6283 	 * of other queues. But a false waker will unjustly steal
6284 	 * bandwidth to its supposedly woken queue. So considering
6285 	 * also shared queues in the waking mechanism may cause more
6286 	 * control troubles than throughput benefits. Then reset
6287 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6288 	 */
6289 	if (!bfq_bfqq_coop(bfqq))
6290 		bfqd->last_completed_rq_bfqq = bfqq;
6291 	else
6292 		bfqd->last_completed_rq_bfqq = NULL;
6293 
6294 	/*
6295 	 * If we are waiting to discover whether the request pattern
6296 	 * of the task associated with the queue is actually
6297 	 * isochronous, and both requisites for this condition to hold
6298 	 * are now satisfied, then compute soft_rt_next_start (see the
6299 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6300 	 * do not compute soft_rt_next_start if bfqq is in interactive
6301 	 * weight raising (see the comments in bfq_bfqq_expire() for
6302 	 * an explanation). We schedule this delayed update when bfqq
6303 	 * expires, if it still has in-flight requests.
6304 	 */
6305 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6306 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6307 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6308 		bfqq->soft_rt_next_start =
6309 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6310 
6311 	/*
6312 	 * If this is the in-service queue, check if it needs to be expired,
6313 	 * or if we want to idle in case it has no pending requests.
6314 	 */
6315 	if (bfqd->in_service_queue == bfqq) {
6316 		if (bfq_bfqq_must_idle(bfqq)) {
6317 			if (bfqq->dispatched == 0)
6318 				bfq_arm_slice_timer(bfqd);
6319 			/*
6320 			 * If we get here, we do not expire bfqq, even
6321 			 * if bfqq was in budget timeout or had no
6322 			 * more requests (as controlled in the next
6323 			 * conditional instructions). The reason for
6324 			 * not expiring bfqq is as follows.
6325 			 *
6326 			 * Here bfqq->dispatched > 0 holds, but
6327 			 * bfq_bfqq_must_idle() returned true. This
6328 			 * implies that, even if no request arrives
6329 			 * for bfqq before bfqq->dispatched reaches 0,
6330 			 * bfqq will, however, not be expired on the
6331 			 * completion event that causes bfqq->dispatch
6332 			 * to reach zero. In contrast, on this event,
6333 			 * bfqq will start enjoying device idling
6334 			 * (I/O-dispatch plugging).
6335 			 *
6336 			 * But, if we expired bfqq here, bfqq would
6337 			 * not have the chance to enjoy device idling
6338 			 * when bfqq->dispatched finally reaches
6339 			 * zero. This would expose bfqq to violation
6340 			 * of its reserved service guarantees.
6341 			 */
6342 			return;
6343 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6344 			bfq_bfqq_expire(bfqd, bfqq, false,
6345 					BFQQE_BUDGET_TIMEOUT);
6346 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6347 			 (bfqq->dispatched == 0 ||
6348 			  !bfq_better_to_idle(bfqq)))
6349 			bfq_bfqq_expire(bfqd, bfqq, false,
6350 					BFQQE_NO_MORE_REQUESTS);
6351 	}
6352 
6353 	if (!bfqd->rq_in_driver)
6354 		bfq_schedule_dispatch(bfqd);
6355 }
6356 
6357 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6358 {
6359 	bfqq_request_freed(bfqq);
6360 	bfq_put_queue(bfqq);
6361 }
6362 
6363 /*
6364  * The processes associated with bfqq may happen to generate their
6365  * cumulative I/O at a lower rate than the rate at which the device
6366  * could serve the same I/O. This is rather probable, e.g., if only
6367  * one process is associated with bfqq and the device is an SSD. It
6368  * results in bfqq becoming often empty while in service. In this
6369  * respect, if BFQ is allowed to switch to another queue when bfqq
6370  * remains empty, then the device goes on being fed with I/O requests,
6371  * and the throughput is not affected. In contrast, if BFQ is not
6372  * allowed to switch to another queue---because bfqq is sync and
6373  * I/O-dispatch needs to be plugged while bfqq is temporarily
6374  * empty---then, during the service of bfqq, there will be frequent
6375  * "service holes", i.e., time intervals during which bfqq gets empty
6376  * and the device can only consume the I/O already queued in its
6377  * hardware queues. During service holes, the device may even get to
6378  * remaining idle. In the end, during the service of bfqq, the device
6379  * is driven at a lower speed than the one it can reach with the kind
6380  * of I/O flowing through bfqq.
6381  *
6382  * To counter this loss of throughput, BFQ implements a "request
6383  * injection mechanism", which tries to fill the above service holes
6384  * with I/O requests taken from other queues. The hard part in this
6385  * mechanism is finding the right amount of I/O to inject, so as to
6386  * both boost throughput and not break bfqq's bandwidth and latency
6387  * guarantees. In this respect, the mechanism maintains a per-queue
6388  * inject limit, computed as below. While bfqq is empty, the injection
6389  * mechanism dispatches extra I/O requests only until the total number
6390  * of I/O requests in flight---i.e., already dispatched but not yet
6391  * completed---remains lower than this limit.
6392  *
6393  * A first definition comes in handy to introduce the algorithm by
6394  * which the inject limit is computed.  We define as first request for
6395  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6396  * service, and causes bfqq to switch from empty to non-empty. The
6397  * algorithm updates the limit as a function of the effect of
6398  * injection on the service times of only the first requests of
6399  * bfqq. The reason for this restriction is that these are the
6400  * requests whose service time is affected most, because they are the
6401  * first to arrive after injection possibly occurred.
6402  *
6403  * To evaluate the effect of injection, the algorithm measures the
6404  * "total service time" of first requests. We define as total service
6405  * time of an I/O request, the time that elapses since when the
6406  * request is enqueued into bfqq, to when it is completed. This
6407  * quantity allows the whole effect of injection to be measured. It is
6408  * easy to see why. Suppose that some requests of other queues are
6409  * actually injected while bfqq is empty, and that a new request R
6410  * then arrives for bfqq. If the device does start to serve all or
6411  * part of the injected requests during the service hole, then,
6412  * because of this extra service, it may delay the next invocation of
6413  * the dispatch hook of BFQ. Then, even after R gets eventually
6414  * dispatched, the device may delay the actual service of R if it is
6415  * still busy serving the extra requests, or if it decides to serve,
6416  * before R, some extra request still present in its queues. As a
6417  * conclusion, the cumulative extra delay caused by injection can be
6418  * easily evaluated by just comparing the total service time of first
6419  * requests with and without injection.
6420  *
6421  * The limit-update algorithm works as follows. On the arrival of a
6422  * first request of bfqq, the algorithm measures the total time of the
6423  * request only if one of the three cases below holds, and, for each
6424  * case, it updates the limit as described below:
6425  *
6426  * (1) If there is no in-flight request. This gives a baseline for the
6427  *     total service time of the requests of bfqq. If the baseline has
6428  *     not been computed yet, then, after computing it, the limit is
6429  *     set to 1, to start boosting throughput, and to prepare the
6430  *     ground for the next case. If the baseline has already been
6431  *     computed, then it is updated, in case it results to be lower
6432  *     than the previous value.
6433  *
6434  * (2) If the limit is higher than 0 and there are in-flight
6435  *     requests. By comparing the total service time in this case with
6436  *     the above baseline, it is possible to know at which extent the
6437  *     current value of the limit is inflating the total service
6438  *     time. If the inflation is below a certain threshold, then bfqq
6439  *     is assumed to be suffering from no perceivable loss of its
6440  *     service guarantees, and the limit is even tentatively
6441  *     increased. If the inflation is above the threshold, then the
6442  *     limit is decreased. Due to the lack of any hysteresis, this
6443  *     logic makes the limit oscillate even in steady workload
6444  *     conditions. Yet we opted for it, because it is fast in reaching
6445  *     the best value for the limit, as a function of the current I/O
6446  *     workload. To reduce oscillations, this step is disabled for a
6447  *     short time interval after the limit happens to be decreased.
6448  *
6449  * (3) Periodically, after resetting the limit, to make sure that the
6450  *     limit eventually drops in case the workload changes. This is
6451  *     needed because, after the limit has gone safely up for a
6452  *     certain workload, it is impossible to guess whether the
6453  *     baseline total service time may have changed, without measuring
6454  *     it again without injection. A more effective version of this
6455  *     step might be to just sample the baseline, by interrupting
6456  *     injection only once, and then to reset/lower the limit only if
6457  *     the total service time with the current limit does happen to be
6458  *     too large.
6459  *
6460  * More details on each step are provided in the comments on the
6461  * pieces of code that implement these steps: the branch handling the
6462  * transition from empty to non empty in bfq_add_request(), the branch
6463  * handling injection in bfq_select_queue(), and the function
6464  * bfq_choose_bfqq_for_injection(). These comments also explain some
6465  * exceptions, made by the injection mechanism in some special cases.
6466  */
6467 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6468 				    struct bfq_queue *bfqq)
6469 {
6470 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6471 	unsigned int old_limit = bfqq->inject_limit;
6472 
6473 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6474 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6475 
6476 		if (tot_time_ns >= threshold && old_limit > 0) {
6477 			bfqq->inject_limit--;
6478 			bfqq->decrease_time_jif = jiffies;
6479 		} else if (tot_time_ns < threshold &&
6480 			   old_limit <= bfqd->max_rq_in_driver)
6481 			bfqq->inject_limit++;
6482 	}
6483 
6484 	/*
6485 	 * Either we still have to compute the base value for the
6486 	 * total service time, and there seem to be the right
6487 	 * conditions to do it, or we can lower the last base value
6488 	 * computed.
6489 	 *
6490 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6491 	 * request in flight, because this function is in the code
6492 	 * path that handles the completion of a request of bfqq, and,
6493 	 * in particular, this function is executed before
6494 	 * bfqd->rq_in_driver is decremented in such a code path.
6495 	 */
6496 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6497 	    tot_time_ns < bfqq->last_serv_time_ns) {
6498 		if (bfqq->last_serv_time_ns == 0) {
6499 			/*
6500 			 * Now we certainly have a base value: make sure we
6501 			 * start trying injection.
6502 			 */
6503 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6504 		}
6505 		bfqq->last_serv_time_ns = tot_time_ns;
6506 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6507 		/*
6508 		 * No I/O injected and no request still in service in
6509 		 * the drive: these are the exact conditions for
6510 		 * computing the base value of the total service time
6511 		 * for bfqq. So let's update this value, because it is
6512 		 * rather variable. For example, it varies if the size
6513 		 * or the spatial locality of the I/O requests in bfqq
6514 		 * change.
6515 		 */
6516 		bfqq->last_serv_time_ns = tot_time_ns;
6517 
6518 
6519 	/* update complete, not waiting for any request completion any longer */
6520 	bfqd->waited_rq = NULL;
6521 	bfqd->rqs_injected = false;
6522 }
6523 
6524 /*
6525  * Handle either a requeue or a finish for rq. The things to do are
6526  * the same in both cases: all references to rq are to be dropped. In
6527  * particular, rq is considered completed from the point of view of
6528  * the scheduler.
6529  */
6530 static void bfq_finish_requeue_request(struct request *rq)
6531 {
6532 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6533 	struct bfq_data *bfqd;
6534 	unsigned long flags;
6535 
6536 	/*
6537 	 * rq either is not associated with any icq, or is an already
6538 	 * requeued request that has not (yet) been re-inserted into
6539 	 * a bfq_queue.
6540 	 */
6541 	if (!rq->elv.icq || !bfqq)
6542 		return;
6543 
6544 	bfqd = bfqq->bfqd;
6545 
6546 	if (rq->rq_flags & RQF_STARTED)
6547 		bfqg_stats_update_completion(bfqq_group(bfqq),
6548 					     rq->start_time_ns,
6549 					     rq->io_start_time_ns,
6550 					     rq->cmd_flags);
6551 
6552 	spin_lock_irqsave(&bfqd->lock, flags);
6553 	if (likely(rq->rq_flags & RQF_STARTED)) {
6554 		if (rq == bfqd->waited_rq)
6555 			bfq_update_inject_limit(bfqd, bfqq);
6556 
6557 		bfq_completed_request(bfqq, bfqd);
6558 	}
6559 	bfq_finish_requeue_request_body(bfqq);
6560 	spin_unlock_irqrestore(&bfqd->lock, flags);
6561 
6562 	/*
6563 	 * Reset private fields. In case of a requeue, this allows
6564 	 * this function to correctly do nothing if it is spuriously
6565 	 * invoked again on this same request (see the check at the
6566 	 * beginning of the function). Probably, a better general
6567 	 * design would be to prevent blk-mq from invoking the requeue
6568 	 * or finish hooks of an elevator, for a request that is not
6569 	 * referred by that elevator.
6570 	 *
6571 	 * Resetting the following fields would break the
6572 	 * request-insertion logic if rq is re-inserted into a bfq
6573 	 * internal queue, without a re-preparation. Here we assume
6574 	 * that re-insertions of requeued requests, without
6575 	 * re-preparation, can happen only for pass_through or at_head
6576 	 * requests (which are not re-inserted into bfq internal
6577 	 * queues).
6578 	 */
6579 	rq->elv.priv[0] = NULL;
6580 	rq->elv.priv[1] = NULL;
6581 }
6582 
6583 static void bfq_finish_request(struct request *rq)
6584 {
6585 	bfq_finish_requeue_request(rq);
6586 
6587 	if (rq->elv.icq) {
6588 		put_io_context(rq->elv.icq->ioc);
6589 		rq->elv.icq = NULL;
6590 	}
6591 }
6592 
6593 /*
6594  * Removes the association between the current task and bfqq, assuming
6595  * that bic points to the bfq iocontext of the task.
6596  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6597  * was the last process referring to that bfqq.
6598  */
6599 static struct bfq_queue *
6600 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6601 {
6602 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6603 
6604 	if (bfqq_process_refs(bfqq) == 1) {
6605 		bfqq->pid = current->pid;
6606 		bfq_clear_bfqq_coop(bfqq);
6607 		bfq_clear_bfqq_split_coop(bfqq);
6608 		return bfqq;
6609 	}
6610 
6611 	bic_set_bfqq(bic, NULL, 1);
6612 
6613 	bfq_put_cooperator(bfqq);
6614 
6615 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6616 	return NULL;
6617 }
6618 
6619 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6620 						   struct bfq_io_cq *bic,
6621 						   struct bio *bio,
6622 						   bool split, bool is_sync,
6623 						   bool *new_queue)
6624 {
6625 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6626 
6627 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6628 		return bfqq;
6629 
6630 	if (new_queue)
6631 		*new_queue = true;
6632 
6633 	if (bfqq)
6634 		bfq_put_queue(bfqq);
6635 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6636 
6637 	bic_set_bfqq(bic, bfqq, is_sync);
6638 	if (split && is_sync) {
6639 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6640 		    bic->saved_in_large_burst)
6641 			bfq_mark_bfqq_in_large_burst(bfqq);
6642 		else {
6643 			bfq_clear_bfqq_in_large_burst(bfqq);
6644 			if (bic->was_in_burst_list)
6645 				/*
6646 				 * If bfqq was in the current
6647 				 * burst list before being
6648 				 * merged, then we have to add
6649 				 * it back. And we do not need
6650 				 * to increase burst_size, as
6651 				 * we did not decrement
6652 				 * burst_size when we removed
6653 				 * bfqq from the burst list as
6654 				 * a consequence of a merge
6655 				 * (see comments in
6656 				 * bfq_put_queue). In this
6657 				 * respect, it would be rather
6658 				 * costly to know whether the
6659 				 * current burst list is still
6660 				 * the same burst list from
6661 				 * which bfqq was removed on
6662 				 * the merge. To avoid this
6663 				 * cost, if bfqq was in a
6664 				 * burst list, then we add
6665 				 * bfqq to the current burst
6666 				 * list without any further
6667 				 * check. This can cause
6668 				 * inappropriate insertions,
6669 				 * but rarely enough to not
6670 				 * harm the detection of large
6671 				 * bursts significantly.
6672 				 */
6673 				hlist_add_head(&bfqq->burst_list_node,
6674 					       &bfqd->burst_list);
6675 		}
6676 		bfqq->split_time = jiffies;
6677 	}
6678 
6679 	return bfqq;
6680 }
6681 
6682 /*
6683  * Only reset private fields. The actual request preparation will be
6684  * performed by bfq_init_rq, when rq is either inserted or merged. See
6685  * comments on bfq_init_rq for the reason behind this delayed
6686  * preparation.
6687  */
6688 static void bfq_prepare_request(struct request *rq)
6689 {
6690 	rq->elv.icq = ioc_find_get_icq(rq->q);
6691 
6692 	/*
6693 	 * Regardless of whether we have an icq attached, we have to
6694 	 * clear the scheduler pointers, as they might point to
6695 	 * previously allocated bic/bfqq structs.
6696 	 */
6697 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6698 }
6699 
6700 /*
6701  * If needed, init rq, allocate bfq data structures associated with
6702  * rq, and increment reference counters in the destination bfq_queue
6703  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6704  * not associated with any bfq_queue.
6705  *
6706  * This function is invoked by the functions that perform rq insertion
6707  * or merging. One may have expected the above preparation operations
6708  * to be performed in bfq_prepare_request, and not delayed to when rq
6709  * is inserted or merged. The rationale behind this delayed
6710  * preparation is that, after the prepare_request hook is invoked for
6711  * rq, rq may still be transformed into a request with no icq, i.e., a
6712  * request not associated with any queue. No bfq hook is invoked to
6713  * signal this transformation. As a consequence, should these
6714  * preparation operations be performed when the prepare_request hook
6715  * is invoked, and should rq be transformed one moment later, bfq
6716  * would end up in an inconsistent state, because it would have
6717  * incremented some queue counters for an rq destined to
6718  * transformation, without any chance to correctly lower these
6719  * counters back. In contrast, no transformation can still happen for
6720  * rq after rq has been inserted or merged. So, it is safe to execute
6721  * these preparation operations when rq is finally inserted or merged.
6722  */
6723 static struct bfq_queue *bfq_init_rq(struct request *rq)
6724 {
6725 	struct request_queue *q = rq->q;
6726 	struct bio *bio = rq->bio;
6727 	struct bfq_data *bfqd = q->elevator->elevator_data;
6728 	struct bfq_io_cq *bic;
6729 	const int is_sync = rq_is_sync(rq);
6730 	struct bfq_queue *bfqq;
6731 	bool new_queue = false;
6732 	bool bfqq_already_existing = false, split = false;
6733 
6734 	if (unlikely(!rq->elv.icq))
6735 		return NULL;
6736 
6737 	/*
6738 	 * Assuming that elv.priv[1] is set only if everything is set
6739 	 * for this rq. This holds true, because this function is
6740 	 * invoked only for insertion or merging, and, after such
6741 	 * events, a request cannot be manipulated any longer before
6742 	 * being removed from bfq.
6743 	 */
6744 	if (rq->elv.priv[1])
6745 		return rq->elv.priv[1];
6746 
6747 	bic = icq_to_bic(rq->elv.icq);
6748 
6749 	bfq_check_ioprio_change(bic, bio);
6750 
6751 	bfq_bic_update_cgroup(bic, bio);
6752 
6753 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6754 					 &new_queue);
6755 
6756 	if (likely(!new_queue)) {
6757 		/* If the queue was seeky for too long, break it apart. */
6758 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6759 			!bic->stably_merged) {
6760 			struct bfq_queue *old_bfqq = bfqq;
6761 
6762 			/* Update bic before losing reference to bfqq */
6763 			if (bfq_bfqq_in_large_burst(bfqq))
6764 				bic->saved_in_large_burst = true;
6765 
6766 			bfqq = bfq_split_bfqq(bic, bfqq);
6767 			split = true;
6768 
6769 			if (!bfqq) {
6770 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6771 								 true, is_sync,
6772 								 NULL);
6773 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6774 				bfqq->tentative_waker_bfqq = NULL;
6775 
6776 				/*
6777 				 * If the waker queue disappears, then
6778 				 * new_bfqq->waker_bfqq must be
6779 				 * reset. So insert new_bfqq into the
6780 				 * woken_list of the waker. See
6781 				 * bfq_check_waker for details.
6782 				 */
6783 				if (bfqq->waker_bfqq)
6784 					hlist_add_head(&bfqq->woken_list_node,
6785 						       &bfqq->waker_bfqq->woken_list);
6786 			} else
6787 				bfqq_already_existing = true;
6788 		}
6789 	}
6790 
6791 	bfqq_request_allocated(bfqq);
6792 	bfqq->ref++;
6793 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6794 		     rq, bfqq, bfqq->ref);
6795 
6796 	rq->elv.priv[0] = bic;
6797 	rq->elv.priv[1] = bfqq;
6798 
6799 	/*
6800 	 * If a bfq_queue has only one process reference, it is owned
6801 	 * by only this bic: we can then set bfqq->bic = bic. in
6802 	 * addition, if the queue has also just been split, we have to
6803 	 * resume its state.
6804 	 */
6805 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6806 		bfqq->bic = bic;
6807 		if (split) {
6808 			/*
6809 			 * The queue has just been split from a shared
6810 			 * queue: restore the idle window and the
6811 			 * possible weight raising period.
6812 			 */
6813 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6814 					      bfqq_already_existing);
6815 		}
6816 	}
6817 
6818 	/*
6819 	 * Consider bfqq as possibly belonging to a burst of newly
6820 	 * created queues only if:
6821 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6822 	 * or
6823 	 * 2) There is no other active queue. In fact, if, in
6824 	 *    contrast, there are active queues not belonging to the
6825 	 *    possible burst bfqq may belong to, then there is no gain
6826 	 *    in considering bfqq as belonging to a burst, and
6827 	 *    therefore in not weight-raising bfqq. See comments on
6828 	 *    bfq_handle_burst().
6829 	 *
6830 	 * This filtering also helps eliminating false positives,
6831 	 * occurring when bfqq does not belong to an actual large
6832 	 * burst, but some background task (e.g., a service) happens
6833 	 * to trigger the creation of new queues very close to when
6834 	 * bfqq and its possible companion queues are created. See
6835 	 * comments on bfq_handle_burst() for further details also on
6836 	 * this issue.
6837 	 */
6838 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6839 		     (bfqd->burst_size > 0 ||
6840 		      bfq_tot_busy_queues(bfqd) == 0)))
6841 		bfq_handle_burst(bfqd, bfqq);
6842 
6843 	return bfqq;
6844 }
6845 
6846 static void
6847 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6848 {
6849 	enum bfqq_expiration reason;
6850 	unsigned long flags;
6851 
6852 	spin_lock_irqsave(&bfqd->lock, flags);
6853 
6854 	/*
6855 	 * Considering that bfqq may be in race, we should firstly check
6856 	 * whether bfqq is in service before doing something on it. If
6857 	 * the bfqq in race is not in service, it has already been expired
6858 	 * through __bfq_bfqq_expire func and its wait_request flags has
6859 	 * been cleared in __bfq_bfqd_reset_in_service func.
6860 	 */
6861 	if (bfqq != bfqd->in_service_queue) {
6862 		spin_unlock_irqrestore(&bfqd->lock, flags);
6863 		return;
6864 	}
6865 
6866 	bfq_clear_bfqq_wait_request(bfqq);
6867 
6868 	if (bfq_bfqq_budget_timeout(bfqq))
6869 		/*
6870 		 * Also here the queue can be safely expired
6871 		 * for budget timeout without wasting
6872 		 * guarantees
6873 		 */
6874 		reason = BFQQE_BUDGET_TIMEOUT;
6875 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6876 		/*
6877 		 * The queue may not be empty upon timer expiration,
6878 		 * because we may not disable the timer when the
6879 		 * first request of the in-service queue arrives
6880 		 * during disk idling.
6881 		 */
6882 		reason = BFQQE_TOO_IDLE;
6883 	else
6884 		goto schedule_dispatch;
6885 
6886 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6887 
6888 schedule_dispatch:
6889 	spin_unlock_irqrestore(&bfqd->lock, flags);
6890 	bfq_schedule_dispatch(bfqd);
6891 }
6892 
6893 /*
6894  * Handler of the expiration of the timer running if the in-service queue
6895  * is idling inside its time slice.
6896  */
6897 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6898 {
6899 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6900 					     idle_slice_timer);
6901 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6902 
6903 	/*
6904 	 * Theoretical race here: the in-service queue can be NULL or
6905 	 * different from the queue that was idling if a new request
6906 	 * arrives for the current queue and there is a full dispatch
6907 	 * cycle that changes the in-service queue.  This can hardly
6908 	 * happen, but in the worst case we just expire a queue too
6909 	 * early.
6910 	 */
6911 	if (bfqq)
6912 		bfq_idle_slice_timer_body(bfqd, bfqq);
6913 
6914 	return HRTIMER_NORESTART;
6915 }
6916 
6917 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6918 				 struct bfq_queue **bfqq_ptr)
6919 {
6920 	struct bfq_queue *bfqq = *bfqq_ptr;
6921 
6922 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6923 	if (bfqq) {
6924 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6925 
6926 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6927 			     bfqq, bfqq->ref);
6928 		bfq_put_queue(bfqq);
6929 		*bfqq_ptr = NULL;
6930 	}
6931 }
6932 
6933 /*
6934  * Release all the bfqg references to its async queues.  If we are
6935  * deallocating the group these queues may still contain requests, so
6936  * we reparent them to the root cgroup (i.e., the only one that will
6937  * exist for sure until all the requests on a device are gone).
6938  */
6939 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6940 {
6941 	int i, j;
6942 
6943 	for (i = 0; i < 2; i++)
6944 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6945 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6946 
6947 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6948 }
6949 
6950 /*
6951  * See the comments on bfq_limit_depth for the purpose of
6952  * the depths set in the function. Return minimum shallow depth we'll use.
6953  */
6954 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
6955 {
6956 	unsigned int depth = 1U << bt->sb.shift;
6957 
6958 	bfqd->full_depth_shift = bt->sb.shift;
6959 	/*
6960 	 * In-word depths if no bfq_queue is being weight-raised:
6961 	 * leaving 25% of tags only for sync reads.
6962 	 *
6963 	 * In next formulas, right-shift the value
6964 	 * (1U<<bt->sb.shift), instead of computing directly
6965 	 * (1U<<(bt->sb.shift - something)), to be robust against
6966 	 * any possible value of bt->sb.shift, without having to
6967 	 * limit 'something'.
6968 	 */
6969 	/* no more than 50% of tags for async I/O */
6970 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
6971 	/*
6972 	 * no more than 75% of tags for sync writes (25% extra tags
6973 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6974 	 * writes)
6975 	 */
6976 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
6977 
6978 	/*
6979 	 * In-word depths in case some bfq_queue is being weight-
6980 	 * raised: leaving ~63% of tags for sync reads. This is the
6981 	 * highest percentage for which, in our tests, application
6982 	 * start-up times didn't suffer from any regression due to tag
6983 	 * shortage.
6984 	 */
6985 	/* no more than ~18% of tags for async I/O */
6986 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
6987 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6988 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
6989 }
6990 
6991 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6992 {
6993 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6994 	struct blk_mq_tags *tags = hctx->sched_tags;
6995 
6996 	bfq_update_depths(bfqd, &tags->bitmap_tags);
6997 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
6998 }
6999 
7000 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7001 {
7002 	bfq_depth_updated(hctx);
7003 	return 0;
7004 }
7005 
7006 static void bfq_exit_queue(struct elevator_queue *e)
7007 {
7008 	struct bfq_data *bfqd = e->elevator_data;
7009 	struct bfq_queue *bfqq, *n;
7010 
7011 	hrtimer_cancel(&bfqd->idle_slice_timer);
7012 
7013 	spin_lock_irq(&bfqd->lock);
7014 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7015 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7016 	spin_unlock_irq(&bfqd->lock);
7017 
7018 	hrtimer_cancel(&bfqd->idle_slice_timer);
7019 
7020 	/* release oom-queue reference to root group */
7021 	bfqg_and_blkg_put(bfqd->root_group);
7022 
7023 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7024 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
7025 #else
7026 	spin_lock_irq(&bfqd->lock);
7027 	bfq_put_async_queues(bfqd, bfqd->root_group);
7028 	kfree(bfqd->root_group);
7029 	spin_unlock_irq(&bfqd->lock);
7030 #endif
7031 
7032 	wbt_enable_default(bfqd->queue);
7033 
7034 	kfree(bfqd);
7035 }
7036 
7037 static void bfq_init_root_group(struct bfq_group *root_group,
7038 				struct bfq_data *bfqd)
7039 {
7040 	int i;
7041 
7042 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7043 	root_group->entity.parent = NULL;
7044 	root_group->my_entity = NULL;
7045 	root_group->bfqd = bfqd;
7046 #endif
7047 	root_group->rq_pos_tree = RB_ROOT;
7048 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7049 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7050 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7051 }
7052 
7053 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7054 {
7055 	struct bfq_data *bfqd;
7056 	struct elevator_queue *eq;
7057 
7058 	eq = elevator_alloc(q, e);
7059 	if (!eq)
7060 		return -ENOMEM;
7061 
7062 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7063 	if (!bfqd) {
7064 		kobject_put(&eq->kobj);
7065 		return -ENOMEM;
7066 	}
7067 	eq->elevator_data = bfqd;
7068 
7069 	spin_lock_irq(&q->queue_lock);
7070 	q->elevator = eq;
7071 	spin_unlock_irq(&q->queue_lock);
7072 
7073 	/*
7074 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7075 	 * Grab a permanent reference to it, so that the normal code flow
7076 	 * will not attempt to free it.
7077 	 */
7078 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7079 	bfqd->oom_bfqq.ref++;
7080 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7081 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7082 	bfqd->oom_bfqq.entity.new_weight =
7083 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7084 
7085 	/* oom_bfqq does not participate to bursts */
7086 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7087 
7088 	/*
7089 	 * Trigger weight initialization, according to ioprio, at the
7090 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7091 	 * class won't be changed any more.
7092 	 */
7093 	bfqd->oom_bfqq.entity.prio_changed = 1;
7094 
7095 	bfqd->queue = q;
7096 
7097 	INIT_LIST_HEAD(&bfqd->dispatch);
7098 
7099 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7100 		     HRTIMER_MODE_REL);
7101 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7102 
7103 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7104 	bfqd->num_groups_with_pending_reqs = 0;
7105 
7106 	INIT_LIST_HEAD(&bfqd->active_list);
7107 	INIT_LIST_HEAD(&bfqd->idle_list);
7108 	INIT_HLIST_HEAD(&bfqd->burst_list);
7109 
7110 	bfqd->hw_tag = -1;
7111 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7112 
7113 	bfqd->bfq_max_budget = bfq_default_max_budget;
7114 
7115 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7116 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7117 	bfqd->bfq_back_max = bfq_back_max;
7118 	bfqd->bfq_back_penalty = bfq_back_penalty;
7119 	bfqd->bfq_slice_idle = bfq_slice_idle;
7120 	bfqd->bfq_timeout = bfq_timeout;
7121 
7122 	bfqd->bfq_large_burst_thresh = 8;
7123 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7124 
7125 	bfqd->low_latency = true;
7126 
7127 	/*
7128 	 * Trade-off between responsiveness and fairness.
7129 	 */
7130 	bfqd->bfq_wr_coeff = 30;
7131 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7132 	bfqd->bfq_wr_max_time = 0;
7133 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7134 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7135 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7136 					      * Approximate rate required
7137 					      * to playback or record a
7138 					      * high-definition compressed
7139 					      * video.
7140 					      */
7141 	bfqd->wr_busy_queues = 0;
7142 
7143 	/*
7144 	 * Begin by assuming, optimistically, that the device peak
7145 	 * rate is equal to 2/3 of the highest reference rate.
7146 	 */
7147 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7148 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7149 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7150 
7151 	spin_lock_init(&bfqd->lock);
7152 
7153 	/*
7154 	 * The invocation of the next bfq_create_group_hierarchy
7155 	 * function is the head of a chain of function calls
7156 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7157 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7158 	 * has_work hook function. For this reason,
7159 	 * bfq_create_group_hierarchy is invoked only after all
7160 	 * scheduler data has been initialized, apart from the fields
7161 	 * that can be initialized only after invoking
7162 	 * bfq_create_group_hierarchy. This, in particular, enables
7163 	 * has_work to correctly return false. Of course, to avoid
7164 	 * other inconsistencies, the blk-mq stack must then refrain
7165 	 * from invoking further scheduler hooks before this init
7166 	 * function is finished.
7167 	 */
7168 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7169 	if (!bfqd->root_group)
7170 		goto out_free;
7171 	bfq_init_root_group(bfqd->root_group, bfqd);
7172 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7173 
7174 	wbt_disable_default(q);
7175 	return 0;
7176 
7177 out_free:
7178 	kfree(bfqd);
7179 	kobject_put(&eq->kobj);
7180 	return -ENOMEM;
7181 }
7182 
7183 static void bfq_slab_kill(void)
7184 {
7185 	kmem_cache_destroy(bfq_pool);
7186 }
7187 
7188 static int __init bfq_slab_setup(void)
7189 {
7190 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7191 	if (!bfq_pool)
7192 		return -ENOMEM;
7193 	return 0;
7194 }
7195 
7196 static ssize_t bfq_var_show(unsigned int var, char *page)
7197 {
7198 	return sprintf(page, "%u\n", var);
7199 }
7200 
7201 static int bfq_var_store(unsigned long *var, const char *page)
7202 {
7203 	unsigned long new_val;
7204 	int ret = kstrtoul(page, 10, &new_val);
7205 
7206 	if (ret)
7207 		return ret;
7208 	*var = new_val;
7209 	return 0;
7210 }
7211 
7212 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7213 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7214 {									\
7215 	struct bfq_data *bfqd = e->elevator_data;			\
7216 	u64 __data = __VAR;						\
7217 	if (__CONV == 1)						\
7218 		__data = jiffies_to_msecs(__data);			\
7219 	else if (__CONV == 2)						\
7220 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7221 	return bfq_var_show(__data, (page));				\
7222 }
7223 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7224 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7225 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7226 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7227 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7228 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7229 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7230 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7231 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7232 #undef SHOW_FUNCTION
7233 
7234 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7235 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7236 {									\
7237 	struct bfq_data *bfqd = e->elevator_data;			\
7238 	u64 __data = __VAR;						\
7239 	__data = div_u64(__data, NSEC_PER_USEC);			\
7240 	return bfq_var_show(__data, (page));				\
7241 }
7242 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7243 #undef USEC_SHOW_FUNCTION
7244 
7245 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7246 static ssize_t								\
7247 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7248 {									\
7249 	struct bfq_data *bfqd = e->elevator_data;			\
7250 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7251 	int ret;							\
7252 									\
7253 	ret = bfq_var_store(&__data, (page));				\
7254 	if (ret)							\
7255 		return ret;						\
7256 	if (__data < __min)						\
7257 		__data = __min;						\
7258 	else if (__data > __max)					\
7259 		__data = __max;						\
7260 	if (__CONV == 1)						\
7261 		*(__PTR) = msecs_to_jiffies(__data);			\
7262 	else if (__CONV == 2)						\
7263 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7264 	else								\
7265 		*(__PTR) = __data;					\
7266 	return count;							\
7267 }
7268 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7269 		INT_MAX, 2);
7270 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7271 		INT_MAX, 2);
7272 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7273 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7274 		INT_MAX, 0);
7275 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7276 #undef STORE_FUNCTION
7277 
7278 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7279 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7280 {									\
7281 	struct bfq_data *bfqd = e->elevator_data;			\
7282 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7283 	int ret;							\
7284 									\
7285 	ret = bfq_var_store(&__data, (page));				\
7286 	if (ret)							\
7287 		return ret;						\
7288 	if (__data < __min)						\
7289 		__data = __min;						\
7290 	else if (__data > __max)					\
7291 		__data = __max;						\
7292 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7293 	return count;							\
7294 }
7295 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7296 		    UINT_MAX);
7297 #undef USEC_STORE_FUNCTION
7298 
7299 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7300 				    const char *page, size_t count)
7301 {
7302 	struct bfq_data *bfqd = e->elevator_data;
7303 	unsigned long __data;
7304 	int ret;
7305 
7306 	ret = bfq_var_store(&__data, (page));
7307 	if (ret)
7308 		return ret;
7309 
7310 	if (__data == 0)
7311 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7312 	else {
7313 		if (__data > INT_MAX)
7314 			__data = INT_MAX;
7315 		bfqd->bfq_max_budget = __data;
7316 	}
7317 
7318 	bfqd->bfq_user_max_budget = __data;
7319 
7320 	return count;
7321 }
7322 
7323 /*
7324  * Leaving this name to preserve name compatibility with cfq
7325  * parameters, but this timeout is used for both sync and async.
7326  */
7327 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7328 				      const char *page, size_t count)
7329 {
7330 	struct bfq_data *bfqd = e->elevator_data;
7331 	unsigned long __data;
7332 	int ret;
7333 
7334 	ret = bfq_var_store(&__data, (page));
7335 	if (ret)
7336 		return ret;
7337 
7338 	if (__data < 1)
7339 		__data = 1;
7340 	else if (__data > INT_MAX)
7341 		__data = INT_MAX;
7342 
7343 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7344 	if (bfqd->bfq_user_max_budget == 0)
7345 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7346 
7347 	return count;
7348 }
7349 
7350 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7351 				     const char *page, size_t count)
7352 {
7353 	struct bfq_data *bfqd = e->elevator_data;
7354 	unsigned long __data;
7355 	int ret;
7356 
7357 	ret = bfq_var_store(&__data, (page));
7358 	if (ret)
7359 		return ret;
7360 
7361 	if (__data > 1)
7362 		__data = 1;
7363 	if (!bfqd->strict_guarantees && __data == 1
7364 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7365 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7366 
7367 	bfqd->strict_guarantees = __data;
7368 
7369 	return count;
7370 }
7371 
7372 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7373 				     const char *page, size_t count)
7374 {
7375 	struct bfq_data *bfqd = e->elevator_data;
7376 	unsigned long __data;
7377 	int ret;
7378 
7379 	ret = bfq_var_store(&__data, (page));
7380 	if (ret)
7381 		return ret;
7382 
7383 	if (__data > 1)
7384 		__data = 1;
7385 	if (__data == 0 && bfqd->low_latency != 0)
7386 		bfq_end_wr(bfqd);
7387 	bfqd->low_latency = __data;
7388 
7389 	return count;
7390 }
7391 
7392 #define BFQ_ATTR(name) \
7393 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7394 
7395 static struct elv_fs_entry bfq_attrs[] = {
7396 	BFQ_ATTR(fifo_expire_sync),
7397 	BFQ_ATTR(fifo_expire_async),
7398 	BFQ_ATTR(back_seek_max),
7399 	BFQ_ATTR(back_seek_penalty),
7400 	BFQ_ATTR(slice_idle),
7401 	BFQ_ATTR(slice_idle_us),
7402 	BFQ_ATTR(max_budget),
7403 	BFQ_ATTR(timeout_sync),
7404 	BFQ_ATTR(strict_guarantees),
7405 	BFQ_ATTR(low_latency),
7406 	__ATTR_NULL
7407 };
7408 
7409 static struct elevator_type iosched_bfq_mq = {
7410 	.ops = {
7411 		.limit_depth		= bfq_limit_depth,
7412 		.prepare_request	= bfq_prepare_request,
7413 		.requeue_request        = bfq_finish_requeue_request,
7414 		.finish_request		= bfq_finish_request,
7415 		.exit_icq		= bfq_exit_icq,
7416 		.insert_requests	= bfq_insert_requests,
7417 		.dispatch_request	= bfq_dispatch_request,
7418 		.next_request		= elv_rb_latter_request,
7419 		.former_request		= elv_rb_former_request,
7420 		.allow_merge		= bfq_allow_bio_merge,
7421 		.bio_merge		= bfq_bio_merge,
7422 		.request_merge		= bfq_request_merge,
7423 		.requests_merged	= bfq_requests_merged,
7424 		.request_merged		= bfq_request_merged,
7425 		.has_work		= bfq_has_work,
7426 		.depth_updated		= bfq_depth_updated,
7427 		.init_hctx		= bfq_init_hctx,
7428 		.init_sched		= bfq_init_queue,
7429 		.exit_sched		= bfq_exit_queue,
7430 	},
7431 
7432 	.icq_size =		sizeof(struct bfq_io_cq),
7433 	.icq_align =		__alignof__(struct bfq_io_cq),
7434 	.elevator_attrs =	bfq_attrs,
7435 	.elevator_name =	"bfq",
7436 	.elevator_owner =	THIS_MODULE,
7437 };
7438 MODULE_ALIAS("bfq-iosched");
7439 
7440 static int __init bfq_init(void)
7441 {
7442 	int ret;
7443 
7444 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7445 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7446 	if (ret)
7447 		return ret;
7448 #endif
7449 
7450 	ret = -ENOMEM;
7451 	if (bfq_slab_setup())
7452 		goto err_pol_unreg;
7453 
7454 	/*
7455 	 * Times to load large popular applications for the typical
7456 	 * systems installed on the reference devices (see the
7457 	 * comments before the definition of the next
7458 	 * array). Actually, we use slightly lower values, as the
7459 	 * estimated peak rate tends to be smaller than the actual
7460 	 * peak rate.  The reason for this last fact is that estimates
7461 	 * are computed over much shorter time intervals than the long
7462 	 * intervals typically used for benchmarking. Why? First, to
7463 	 * adapt more quickly to variations. Second, because an I/O
7464 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7465 	 * be run for a long time.
7466 	 */
7467 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7468 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7469 
7470 	ret = elv_register(&iosched_bfq_mq);
7471 	if (ret)
7472 		goto slab_kill;
7473 
7474 	return 0;
7475 
7476 slab_kill:
7477 	bfq_slab_kill();
7478 err_pol_unreg:
7479 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7480 	blkcg_policy_unregister(&blkcg_policy_bfq);
7481 #endif
7482 	return ret;
7483 }
7484 
7485 static void __exit bfq_exit(void)
7486 {
7487 	elv_unregister(&iosched_bfq_mq);
7488 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7489 	blkcg_policy_unregister(&blkcg_policy_bfq);
7490 #endif
7491 	bfq_slab_kill();
7492 }
7493 
7494 module_init(bfq_init);
7495 module_exit(bfq_exit);
7496 
7497 MODULE_AUTHOR("Paolo Valente");
7498 MODULE_LICENSE("GPL");
7499 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7500