xref: /openbmc/linux/block/bfq-iosched.c (revision aaa746ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	/*
390 	 * If bfqq != NULL, then a non-stable queue merge between
391 	 * bic->bfqq and bfqq is happening here. This causes troubles
392 	 * in the following case: bic->bfqq has also been scheduled
393 	 * for a possible stable merge with bic->stable_merge_bfqq,
394 	 * and bic->stable_merge_bfqq == bfqq happens to
395 	 * hold. Troubles occur because bfqq may then undergo a split,
396 	 * thereby becoming eligible for a stable merge. Yet, if
397 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
398 	 * would be stably merged with itself. To avoid this anomaly,
399 	 * we cancel the stable merge if
400 	 * bic->stable_merge_bfqq == bfqq.
401 	 */
402 	bic->bfqq[is_sync] = bfqq;
403 
404 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
405 		/*
406 		 * Actually, these same instructions are executed also
407 		 * in bfq_setup_cooperator, in case of abort or actual
408 		 * execution of a stable merge. We could avoid
409 		 * repeating these instructions there too, but if we
410 		 * did so, we would nest even more complexity in this
411 		 * function.
412 		 */
413 		bfq_put_stable_ref(bic->stable_merge_bfqq);
414 
415 		bic->stable_merge_bfqq = NULL;
416 	}
417 }
418 
419 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
420 {
421 	return bic->icq.q->elevator->elevator_data;
422 }
423 
424 /**
425  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
426  * @icq: the iocontext queue.
427  */
428 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
429 {
430 	/* bic->icq is the first member, %NULL will convert to %NULL */
431 	return container_of(icq, struct bfq_io_cq, icq);
432 }
433 
434 /**
435  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
436  * @q: the request queue.
437  */
438 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
439 {
440 	struct bfq_io_cq *icq;
441 	unsigned long flags;
442 
443 	if (!current->io_context)
444 		return NULL;
445 
446 	spin_lock_irqsave(&q->queue_lock, flags);
447 	icq = icq_to_bic(ioc_lookup_icq(q));
448 	spin_unlock_irqrestore(&q->queue_lock, flags);
449 
450 	return icq;
451 }
452 
453 /*
454  * Scheduler run of queue, if there are requests pending and no one in the
455  * driver that will restart queueing.
456  */
457 void bfq_schedule_dispatch(struct bfq_data *bfqd)
458 {
459 	lockdep_assert_held(&bfqd->lock);
460 
461 	if (bfqd->queued != 0) {
462 		bfq_log(bfqd, "schedule dispatch");
463 		blk_mq_run_hw_queues(bfqd->queue, true);
464 	}
465 }
466 
467 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
468 
469 #define bfq_sample_valid(samples)	((samples) > 80)
470 
471 /*
472  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
473  * We choose the request that is closer to the head right now.  Distance
474  * behind the head is penalized and only allowed to a certain extent.
475  */
476 static struct request *bfq_choose_req(struct bfq_data *bfqd,
477 				      struct request *rq1,
478 				      struct request *rq2,
479 				      sector_t last)
480 {
481 	sector_t s1, s2, d1 = 0, d2 = 0;
482 	unsigned long back_max;
483 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
484 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
485 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
486 
487 	if (!rq1 || rq1 == rq2)
488 		return rq2;
489 	if (!rq2)
490 		return rq1;
491 
492 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
493 		return rq1;
494 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
495 		return rq2;
496 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
497 		return rq1;
498 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
499 		return rq2;
500 
501 	s1 = blk_rq_pos(rq1);
502 	s2 = blk_rq_pos(rq2);
503 
504 	/*
505 	 * By definition, 1KiB is 2 sectors.
506 	 */
507 	back_max = bfqd->bfq_back_max * 2;
508 
509 	/*
510 	 * Strict one way elevator _except_ in the case where we allow
511 	 * short backward seeks which are biased as twice the cost of a
512 	 * similar forward seek.
513 	 */
514 	if (s1 >= last)
515 		d1 = s1 - last;
516 	else if (s1 + back_max >= last)
517 		d1 = (last - s1) * bfqd->bfq_back_penalty;
518 	else
519 		wrap |= BFQ_RQ1_WRAP;
520 
521 	if (s2 >= last)
522 		d2 = s2 - last;
523 	else if (s2 + back_max >= last)
524 		d2 = (last - s2) * bfqd->bfq_back_penalty;
525 	else
526 		wrap |= BFQ_RQ2_WRAP;
527 
528 	/* Found required data */
529 
530 	/*
531 	 * By doing switch() on the bit mask "wrap" we avoid having to
532 	 * check two variables for all permutations: --> faster!
533 	 */
534 	switch (wrap) {
535 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
536 		if (d1 < d2)
537 			return rq1;
538 		else if (d2 < d1)
539 			return rq2;
540 
541 		if (s1 >= s2)
542 			return rq1;
543 		else
544 			return rq2;
545 
546 	case BFQ_RQ2_WRAP:
547 		return rq1;
548 	case BFQ_RQ1_WRAP:
549 		return rq2;
550 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
551 	default:
552 		/*
553 		 * Since both rqs are wrapped,
554 		 * start with the one that's further behind head
555 		 * (--> only *one* back seek required),
556 		 * since back seek takes more time than forward.
557 		 */
558 		if (s1 <= s2)
559 			return rq1;
560 		else
561 			return rq2;
562 	}
563 }
564 
565 #define BFQ_LIMIT_INLINE_DEPTH 16
566 
567 #ifdef CONFIG_BFQ_GROUP_IOSCHED
568 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
569 {
570 	struct bfq_data *bfqd = bfqq->bfqd;
571 	struct bfq_entity *entity = &bfqq->entity;
572 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
573 	struct bfq_entity **entities = inline_entities;
574 	int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
575 	int class_idx = bfqq->ioprio_class - 1;
576 	struct bfq_sched_data *sched_data;
577 	unsigned long wsum;
578 	bool ret = false;
579 
580 	if (!entity->on_st_or_in_serv)
581 		return false;
582 
583 retry:
584 	spin_lock_irq(&bfqd->lock);
585 	/* +1 for bfqq entity, root cgroup not included */
586 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
587 	if (depth > alloc_depth) {
588 		spin_unlock_irq(&bfqd->lock);
589 		if (entities != inline_entities)
590 			kfree(entities);
591 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
592 		if (!entities)
593 			return false;
594 		alloc_depth = depth;
595 		goto retry;
596 	}
597 
598 	sched_data = entity->sched_data;
599 	/* Gather our ancestors as we need to traverse them in reverse order */
600 	level = 0;
601 	for_each_entity(entity) {
602 		/*
603 		 * If at some level entity is not even active, allow request
604 		 * queueing so that BFQ knows there's work to do and activate
605 		 * entities.
606 		 */
607 		if (!entity->on_st_or_in_serv)
608 			goto out;
609 		/* Uh, more parents than cgroup subsystem thinks? */
610 		if (WARN_ON_ONCE(level >= depth))
611 			break;
612 		entities[level++] = entity;
613 	}
614 	WARN_ON_ONCE(level != depth);
615 	for (level--; level >= 0; level--) {
616 		entity = entities[level];
617 		if (level > 0) {
618 			wsum = bfq_entity_service_tree(entity)->wsum;
619 		} else {
620 			int i;
621 			/*
622 			 * For bfqq itself we take into account service trees
623 			 * of all higher priority classes and multiply their
624 			 * weights so that low prio queue from higher class
625 			 * gets more requests than high prio queue from lower
626 			 * class.
627 			 */
628 			wsum = 0;
629 			for (i = 0; i <= class_idx; i++) {
630 				wsum = wsum * IOPRIO_BE_NR +
631 					sched_data->service_tree[i].wsum;
632 			}
633 		}
634 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
635 		if (entity->allocated >= limit) {
636 			bfq_log_bfqq(bfqq->bfqd, bfqq,
637 				"too many requests: allocated %d limit %d level %d",
638 				entity->allocated, limit, level);
639 			ret = true;
640 			break;
641 		}
642 	}
643 out:
644 	spin_unlock_irq(&bfqd->lock);
645 	if (entities != inline_entities)
646 		kfree(entities);
647 	return ret;
648 }
649 #else
650 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
651 {
652 	return false;
653 }
654 #endif
655 
656 /*
657  * Async I/O can easily starve sync I/O (both sync reads and sync
658  * writes), by consuming all tags. Similarly, storms of sync writes,
659  * such as those that sync(2) may trigger, can starve sync reads.
660  * Limit depths of async I/O and sync writes so as to counter both
661  * problems.
662  *
663  * Also if a bfq queue or its parent cgroup consume more tags than would be
664  * appropriate for their weight, we trim the available tag depth to 1. This
665  * avoids a situation where one cgroup can starve another cgroup from tags and
666  * thus block service differentiation among cgroups. Note that because the
667  * queue / cgroup already has many requests allocated and queued, this does not
668  * significantly affect service guarantees coming from the BFQ scheduling
669  * algorithm.
670  */
671 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
672 {
673 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
674 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
675 	struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(opf)) : NULL;
676 	int depth;
677 	unsigned limit = data->q->nr_requests;
678 
679 	/* Sync reads have full depth available */
680 	if (op_is_sync(opf) && !op_is_write(opf)) {
681 		depth = 0;
682 	} else {
683 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
684 		limit = (limit * depth) >> bfqd->full_depth_shift;
685 	}
686 
687 	/*
688 	 * Does queue (or any parent entity) exceed number of requests that
689 	 * should be available to it? Heavily limit depth so that it cannot
690 	 * consume more available requests and thus starve other entities.
691 	 */
692 	if (bfqq && bfqq_request_over_limit(bfqq, limit))
693 		depth = 1;
694 
695 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
696 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), depth);
697 	if (depth)
698 		data->shallow_depth = depth;
699 }
700 
701 static struct bfq_queue *
702 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
703 		     sector_t sector, struct rb_node **ret_parent,
704 		     struct rb_node ***rb_link)
705 {
706 	struct rb_node **p, *parent;
707 	struct bfq_queue *bfqq = NULL;
708 
709 	parent = NULL;
710 	p = &root->rb_node;
711 	while (*p) {
712 		struct rb_node **n;
713 
714 		parent = *p;
715 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
716 
717 		/*
718 		 * Sort strictly based on sector. Smallest to the left,
719 		 * largest to the right.
720 		 */
721 		if (sector > blk_rq_pos(bfqq->next_rq))
722 			n = &(*p)->rb_right;
723 		else if (sector < blk_rq_pos(bfqq->next_rq))
724 			n = &(*p)->rb_left;
725 		else
726 			break;
727 		p = n;
728 		bfqq = NULL;
729 	}
730 
731 	*ret_parent = parent;
732 	if (rb_link)
733 		*rb_link = p;
734 
735 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
736 		(unsigned long long)sector,
737 		bfqq ? bfqq->pid : 0);
738 
739 	return bfqq;
740 }
741 
742 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
743 {
744 	return bfqq->service_from_backlogged > 0 &&
745 		time_is_before_jiffies(bfqq->first_IO_time +
746 				       bfq_merge_time_limit);
747 }
748 
749 /*
750  * The following function is not marked as __cold because it is
751  * actually cold, but for the same performance goal described in the
752  * comments on the likely() at the beginning of
753  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
754  * execution time for the case where this function is not invoked, we
755  * had to add an unlikely() in each involved if().
756  */
757 void __cold
758 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
759 {
760 	struct rb_node **p, *parent;
761 	struct bfq_queue *__bfqq;
762 
763 	if (bfqq->pos_root) {
764 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
765 		bfqq->pos_root = NULL;
766 	}
767 
768 	/* oom_bfqq does not participate in queue merging */
769 	if (bfqq == &bfqd->oom_bfqq)
770 		return;
771 
772 	/*
773 	 * bfqq cannot be merged any longer (see comments in
774 	 * bfq_setup_cooperator): no point in adding bfqq into the
775 	 * position tree.
776 	 */
777 	if (bfq_too_late_for_merging(bfqq))
778 		return;
779 
780 	if (bfq_class_idle(bfqq))
781 		return;
782 	if (!bfqq->next_rq)
783 		return;
784 
785 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
786 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
787 			blk_rq_pos(bfqq->next_rq), &parent, &p);
788 	if (!__bfqq) {
789 		rb_link_node(&bfqq->pos_node, parent, p);
790 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
791 	} else
792 		bfqq->pos_root = NULL;
793 }
794 
795 /*
796  * The following function returns false either if every active queue
797  * must receive the same share of the throughput (symmetric scenario),
798  * or, as a special case, if bfqq must receive a share of the
799  * throughput lower than or equal to the share that every other active
800  * queue must receive.  If bfqq does sync I/O, then these are the only
801  * two cases where bfqq happens to be guaranteed its share of the
802  * throughput even if I/O dispatching is not plugged when bfqq remains
803  * temporarily empty (for more details, see the comments in the
804  * function bfq_better_to_idle()). For this reason, the return value
805  * of this function is used to check whether I/O-dispatch plugging can
806  * be avoided.
807  *
808  * The above first case (symmetric scenario) occurs when:
809  * 1) all active queues have the same weight,
810  * 2) all active queues belong to the same I/O-priority class,
811  * 3) all active groups at the same level in the groups tree have the same
812  *    weight,
813  * 4) all active groups at the same level in the groups tree have the same
814  *    number of children.
815  *
816  * Unfortunately, keeping the necessary state for evaluating exactly
817  * the last two symmetry sub-conditions above would be quite complex
818  * and time consuming. Therefore this function evaluates, instead,
819  * only the following stronger three sub-conditions, for which it is
820  * much easier to maintain the needed state:
821  * 1) all active queues have the same weight,
822  * 2) all active queues belong to the same I/O-priority class,
823  * 3) there is at most one active group.
824  * In particular, the last condition is always true if hierarchical
825  * support or the cgroups interface are not enabled, thus no state
826  * needs to be maintained in this case.
827  */
828 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
829 				   struct bfq_queue *bfqq)
830 {
831 	bool smallest_weight = bfqq &&
832 		bfqq->weight_counter &&
833 		bfqq->weight_counter ==
834 		container_of(
835 			rb_first_cached(&bfqd->queue_weights_tree),
836 			struct bfq_weight_counter,
837 			weights_node);
838 
839 	/*
840 	 * For queue weights to differ, queue_weights_tree must contain
841 	 * at least two nodes.
842 	 */
843 	bool varied_queue_weights = !smallest_weight &&
844 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
845 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
846 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
847 
848 	bool multiple_classes_busy =
849 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
850 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
851 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
852 
853 	return varied_queue_weights || multiple_classes_busy
854 #ifdef CONFIG_BFQ_GROUP_IOSCHED
855 	       || bfqd->num_groups_with_pending_reqs > 1
856 #endif
857 		;
858 }
859 
860 /*
861  * If the weight-counter tree passed as input contains no counter for
862  * the weight of the input queue, then add that counter; otherwise just
863  * increment the existing counter.
864  *
865  * Note that weight-counter trees contain few nodes in mostly symmetric
866  * scenarios. For example, if all queues have the same weight, then the
867  * weight-counter tree for the queues may contain at most one node.
868  * This holds even if low_latency is on, because weight-raised queues
869  * are not inserted in the tree.
870  * In most scenarios, the rate at which nodes are created/destroyed
871  * should be low too.
872  */
873 void bfq_weights_tree_add(struct bfq_queue *bfqq)
874 {
875 	struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree;
876 	struct bfq_entity *entity = &bfqq->entity;
877 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
878 	bool leftmost = true;
879 
880 	/*
881 	 * Do not insert if the queue is already associated with a
882 	 * counter, which happens if:
883 	 *   1) a request arrival has caused the queue to become both
884 	 *      non-weight-raised, and hence change its weight, and
885 	 *      backlogged; in this respect, each of the two events
886 	 *      causes an invocation of this function,
887 	 *   2) this is the invocation of this function caused by the
888 	 *      second event. This second invocation is actually useless,
889 	 *      and we handle this fact by exiting immediately. More
890 	 *      efficient or clearer solutions might possibly be adopted.
891 	 */
892 	if (bfqq->weight_counter)
893 		return;
894 
895 	while (*new) {
896 		struct bfq_weight_counter *__counter = container_of(*new,
897 						struct bfq_weight_counter,
898 						weights_node);
899 		parent = *new;
900 
901 		if (entity->weight == __counter->weight) {
902 			bfqq->weight_counter = __counter;
903 			goto inc_counter;
904 		}
905 		if (entity->weight < __counter->weight)
906 			new = &((*new)->rb_left);
907 		else {
908 			new = &((*new)->rb_right);
909 			leftmost = false;
910 		}
911 	}
912 
913 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
914 				       GFP_ATOMIC);
915 
916 	/*
917 	 * In the unlucky event of an allocation failure, we just
918 	 * exit. This will cause the weight of queue to not be
919 	 * considered in bfq_asymmetric_scenario, which, in its turn,
920 	 * causes the scenario to be deemed wrongly symmetric in case
921 	 * bfqq's weight would have been the only weight making the
922 	 * scenario asymmetric.  On the bright side, no unbalance will
923 	 * however occur when bfqq becomes inactive again (the
924 	 * invocation of this function is triggered by an activation
925 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
926 	 * if !bfqq->weight_counter.
927 	 */
928 	if (unlikely(!bfqq->weight_counter))
929 		return;
930 
931 	bfqq->weight_counter->weight = entity->weight;
932 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
933 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
934 				leftmost);
935 
936 inc_counter:
937 	bfqq->weight_counter->num_active++;
938 	bfqq->ref++;
939 }
940 
941 /*
942  * Decrement the weight counter associated with the queue, and, if the
943  * counter reaches 0, remove the counter from the tree.
944  * See the comments to the function bfq_weights_tree_add() for considerations
945  * about overhead.
946  */
947 void bfq_weights_tree_remove(struct bfq_queue *bfqq)
948 {
949 	struct rb_root_cached *root;
950 
951 	if (!bfqq->weight_counter)
952 		return;
953 
954 	root = &bfqq->bfqd->queue_weights_tree;
955 	bfqq->weight_counter->num_active--;
956 	if (bfqq->weight_counter->num_active > 0)
957 		goto reset_entity_pointer;
958 
959 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
960 	kfree(bfqq->weight_counter);
961 
962 reset_entity_pointer:
963 	bfqq->weight_counter = NULL;
964 	bfq_put_queue(bfqq);
965 }
966 
967 /*
968  * Return expired entry, or NULL to just start from scratch in rbtree.
969  */
970 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
971 				      struct request *last)
972 {
973 	struct request *rq;
974 
975 	if (bfq_bfqq_fifo_expire(bfqq))
976 		return NULL;
977 
978 	bfq_mark_bfqq_fifo_expire(bfqq);
979 
980 	rq = rq_entry_fifo(bfqq->fifo.next);
981 
982 	if (rq == last || ktime_get_ns() < rq->fifo_time)
983 		return NULL;
984 
985 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
986 	return rq;
987 }
988 
989 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
990 					struct bfq_queue *bfqq,
991 					struct request *last)
992 {
993 	struct rb_node *rbnext = rb_next(&last->rb_node);
994 	struct rb_node *rbprev = rb_prev(&last->rb_node);
995 	struct request *next, *prev = NULL;
996 
997 	/* Follow expired path, else get first next available. */
998 	next = bfq_check_fifo(bfqq, last);
999 	if (next)
1000 		return next;
1001 
1002 	if (rbprev)
1003 		prev = rb_entry_rq(rbprev);
1004 
1005 	if (rbnext)
1006 		next = rb_entry_rq(rbnext);
1007 	else {
1008 		rbnext = rb_first(&bfqq->sort_list);
1009 		if (rbnext && rbnext != &last->rb_node)
1010 			next = rb_entry_rq(rbnext);
1011 	}
1012 
1013 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1014 }
1015 
1016 /* see the definition of bfq_async_charge_factor for details */
1017 static unsigned long bfq_serv_to_charge(struct request *rq,
1018 					struct bfq_queue *bfqq)
1019 {
1020 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1021 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1022 		return blk_rq_sectors(rq);
1023 
1024 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1025 }
1026 
1027 /**
1028  * bfq_updated_next_req - update the queue after a new next_rq selection.
1029  * @bfqd: the device data the queue belongs to.
1030  * @bfqq: the queue to update.
1031  *
1032  * If the first request of a queue changes we make sure that the queue
1033  * has enough budget to serve at least its first request (if the
1034  * request has grown).  We do this because if the queue has not enough
1035  * budget for its first request, it has to go through two dispatch
1036  * rounds to actually get it dispatched.
1037  */
1038 static void bfq_updated_next_req(struct bfq_data *bfqd,
1039 				 struct bfq_queue *bfqq)
1040 {
1041 	struct bfq_entity *entity = &bfqq->entity;
1042 	struct request *next_rq = bfqq->next_rq;
1043 	unsigned long new_budget;
1044 
1045 	if (!next_rq)
1046 		return;
1047 
1048 	if (bfqq == bfqd->in_service_queue)
1049 		/*
1050 		 * In order not to break guarantees, budgets cannot be
1051 		 * changed after an entity has been selected.
1052 		 */
1053 		return;
1054 
1055 	new_budget = max_t(unsigned long,
1056 			   max_t(unsigned long, bfqq->max_budget,
1057 				 bfq_serv_to_charge(next_rq, bfqq)),
1058 			   entity->service);
1059 	if (entity->budget != new_budget) {
1060 		entity->budget = new_budget;
1061 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1062 					 new_budget);
1063 		bfq_requeue_bfqq(bfqd, bfqq, false);
1064 	}
1065 }
1066 
1067 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1068 {
1069 	u64 dur;
1070 
1071 	if (bfqd->bfq_wr_max_time > 0)
1072 		return bfqd->bfq_wr_max_time;
1073 
1074 	dur = bfqd->rate_dur_prod;
1075 	do_div(dur, bfqd->peak_rate);
1076 
1077 	/*
1078 	 * Limit duration between 3 and 25 seconds. The upper limit
1079 	 * has been conservatively set after the following worst case:
1080 	 * on a QEMU/KVM virtual machine
1081 	 * - running in a slow PC
1082 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1083 	 * - serving a heavy I/O workload, such as the sequential reading
1084 	 *   of several files
1085 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1086 	 *
1087 	 * As for higher values than that accommodating the above bad
1088 	 * scenario, tests show that higher values would often yield
1089 	 * the opposite of the desired result, i.e., would worsen
1090 	 * responsiveness by allowing non-interactive applications to
1091 	 * preserve weight raising for too long.
1092 	 *
1093 	 * On the other end, lower values than 3 seconds make it
1094 	 * difficult for most interactive tasks to complete their jobs
1095 	 * before weight-raising finishes.
1096 	 */
1097 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1098 }
1099 
1100 /* switch back from soft real-time to interactive weight raising */
1101 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1102 					  struct bfq_data *bfqd)
1103 {
1104 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1105 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1106 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1107 }
1108 
1109 static void
1110 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1111 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1112 {
1113 	unsigned int old_wr_coeff = 1;
1114 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1115 
1116 	if (bic->saved_has_short_ttime)
1117 		bfq_mark_bfqq_has_short_ttime(bfqq);
1118 	else
1119 		bfq_clear_bfqq_has_short_ttime(bfqq);
1120 
1121 	if (bic->saved_IO_bound)
1122 		bfq_mark_bfqq_IO_bound(bfqq);
1123 	else
1124 		bfq_clear_bfqq_IO_bound(bfqq);
1125 
1126 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1127 	bfqq->inject_limit = bic->saved_inject_limit;
1128 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1129 
1130 	bfqq->entity.new_weight = bic->saved_weight;
1131 	bfqq->ttime = bic->saved_ttime;
1132 	bfqq->io_start_time = bic->saved_io_start_time;
1133 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1134 	/*
1135 	 * Restore weight coefficient only if low_latency is on
1136 	 */
1137 	if (bfqd->low_latency) {
1138 		old_wr_coeff = bfqq->wr_coeff;
1139 		bfqq->wr_coeff = bic->saved_wr_coeff;
1140 	}
1141 	bfqq->service_from_wr = bic->saved_service_from_wr;
1142 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1143 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1144 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1145 
1146 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1147 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1148 				   bfqq->wr_cur_max_time))) {
1149 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1150 		    !bfq_bfqq_in_large_burst(bfqq) &&
1151 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1152 					     bfq_wr_duration(bfqd))) {
1153 			switch_back_to_interactive_wr(bfqq, bfqd);
1154 		} else {
1155 			bfqq->wr_coeff = 1;
1156 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1157 				     "resume state: switching off wr");
1158 		}
1159 	}
1160 
1161 	/* make sure weight will be updated, however we got here */
1162 	bfqq->entity.prio_changed = 1;
1163 
1164 	if (likely(!busy))
1165 		return;
1166 
1167 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1168 		bfqd->wr_busy_queues++;
1169 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1170 		bfqd->wr_busy_queues--;
1171 }
1172 
1173 static int bfqq_process_refs(struct bfq_queue *bfqq)
1174 {
1175 	return bfqq->ref - bfqq->entity.allocated -
1176 		bfqq->entity.on_st_or_in_serv -
1177 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1178 }
1179 
1180 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1181 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1182 {
1183 	struct bfq_queue *item;
1184 	struct hlist_node *n;
1185 
1186 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1187 		hlist_del_init(&item->burst_list_node);
1188 
1189 	/*
1190 	 * Start the creation of a new burst list only if there is no
1191 	 * active queue. See comments on the conditional invocation of
1192 	 * bfq_handle_burst().
1193 	 */
1194 	if (bfq_tot_busy_queues(bfqd) == 0) {
1195 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1196 		bfqd->burst_size = 1;
1197 	} else
1198 		bfqd->burst_size = 0;
1199 
1200 	bfqd->burst_parent_entity = bfqq->entity.parent;
1201 }
1202 
1203 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1204 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1205 {
1206 	/* Increment burst size to take into account also bfqq */
1207 	bfqd->burst_size++;
1208 
1209 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1210 		struct bfq_queue *pos, *bfqq_item;
1211 		struct hlist_node *n;
1212 
1213 		/*
1214 		 * Enough queues have been activated shortly after each
1215 		 * other to consider this burst as large.
1216 		 */
1217 		bfqd->large_burst = true;
1218 
1219 		/*
1220 		 * We can now mark all queues in the burst list as
1221 		 * belonging to a large burst.
1222 		 */
1223 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1224 				     burst_list_node)
1225 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1226 		bfq_mark_bfqq_in_large_burst(bfqq);
1227 
1228 		/*
1229 		 * From now on, and until the current burst finishes, any
1230 		 * new queue being activated shortly after the last queue
1231 		 * was inserted in the burst can be immediately marked as
1232 		 * belonging to a large burst. So the burst list is not
1233 		 * needed any more. Remove it.
1234 		 */
1235 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1236 					  burst_list_node)
1237 			hlist_del_init(&pos->burst_list_node);
1238 	} else /*
1239 		* Burst not yet large: add bfqq to the burst list. Do
1240 		* not increment the ref counter for bfqq, because bfqq
1241 		* is removed from the burst list before freeing bfqq
1242 		* in put_queue.
1243 		*/
1244 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1245 }
1246 
1247 /*
1248  * If many queues belonging to the same group happen to be created
1249  * shortly after each other, then the processes associated with these
1250  * queues have typically a common goal. In particular, bursts of queue
1251  * creations are usually caused by services or applications that spawn
1252  * many parallel threads/processes. Examples are systemd during boot,
1253  * or git grep. To help these processes get their job done as soon as
1254  * possible, it is usually better to not grant either weight-raising
1255  * or device idling to their queues, unless these queues must be
1256  * protected from the I/O flowing through other active queues.
1257  *
1258  * In this comment we describe, firstly, the reasons why this fact
1259  * holds, and, secondly, the next function, which implements the main
1260  * steps needed to properly mark these queues so that they can then be
1261  * treated in a different way.
1262  *
1263  * The above services or applications benefit mostly from a high
1264  * throughput: the quicker the requests of the activated queues are
1265  * cumulatively served, the sooner the target job of these queues gets
1266  * completed. As a consequence, weight-raising any of these queues,
1267  * which also implies idling the device for it, is almost always
1268  * counterproductive, unless there are other active queues to isolate
1269  * these new queues from. If there no other active queues, then
1270  * weight-raising these new queues just lowers throughput in most
1271  * cases.
1272  *
1273  * On the other hand, a burst of queue creations may be caused also by
1274  * the start of an application that does not consist of a lot of
1275  * parallel I/O-bound threads. In fact, with a complex application,
1276  * several short processes may need to be executed to start-up the
1277  * application. In this respect, to start an application as quickly as
1278  * possible, the best thing to do is in any case to privilege the I/O
1279  * related to the application with respect to all other
1280  * I/O. Therefore, the best strategy to start as quickly as possible
1281  * an application that causes a burst of queue creations is to
1282  * weight-raise all the queues created during the burst. This is the
1283  * exact opposite of the best strategy for the other type of bursts.
1284  *
1285  * In the end, to take the best action for each of the two cases, the
1286  * two types of bursts need to be distinguished. Fortunately, this
1287  * seems relatively easy, by looking at the sizes of the bursts. In
1288  * particular, we found a threshold such that only bursts with a
1289  * larger size than that threshold are apparently caused by
1290  * services or commands such as systemd or git grep. For brevity,
1291  * hereafter we call just 'large' these bursts. BFQ *does not*
1292  * weight-raise queues whose creation occurs in a large burst. In
1293  * addition, for each of these queues BFQ performs or does not perform
1294  * idling depending on which choice boosts the throughput more. The
1295  * exact choice depends on the device and request pattern at
1296  * hand.
1297  *
1298  * Unfortunately, false positives may occur while an interactive task
1299  * is starting (e.g., an application is being started). The
1300  * consequence is that the queues associated with the task do not
1301  * enjoy weight raising as expected. Fortunately these false positives
1302  * are very rare. They typically occur if some service happens to
1303  * start doing I/O exactly when the interactive task starts.
1304  *
1305  * Turning back to the next function, it is invoked only if there are
1306  * no active queues (apart from active queues that would belong to the
1307  * same, possible burst bfqq would belong to), and it implements all
1308  * the steps needed to detect the occurrence of a large burst and to
1309  * properly mark all the queues belonging to it (so that they can then
1310  * be treated in a different way). This goal is achieved by
1311  * maintaining a "burst list" that holds, temporarily, the queues that
1312  * belong to the burst in progress. The list is then used to mark
1313  * these queues as belonging to a large burst if the burst does become
1314  * large. The main steps are the following.
1315  *
1316  * . when the very first queue is created, the queue is inserted into the
1317  *   list (as it could be the first queue in a possible burst)
1318  *
1319  * . if the current burst has not yet become large, and a queue Q that does
1320  *   not yet belong to the burst is activated shortly after the last time
1321  *   at which a new queue entered the burst list, then the function appends
1322  *   Q to the burst list
1323  *
1324  * . if, as a consequence of the previous step, the burst size reaches
1325  *   the large-burst threshold, then
1326  *
1327  *     . all the queues in the burst list are marked as belonging to a
1328  *       large burst
1329  *
1330  *     . the burst list is deleted; in fact, the burst list already served
1331  *       its purpose (keeping temporarily track of the queues in a burst,
1332  *       so as to be able to mark them as belonging to a large burst in the
1333  *       previous sub-step), and now is not needed any more
1334  *
1335  *     . the device enters a large-burst mode
1336  *
1337  * . if a queue Q that does not belong to the burst is created while
1338  *   the device is in large-burst mode and shortly after the last time
1339  *   at which a queue either entered the burst list or was marked as
1340  *   belonging to the current large burst, then Q is immediately marked
1341  *   as belonging to a large burst.
1342  *
1343  * . if a queue Q that does not belong to the burst is created a while
1344  *   later, i.e., not shortly after, than the last time at which a queue
1345  *   either entered the burst list or was marked as belonging to the
1346  *   current large burst, then the current burst is deemed as finished and:
1347  *
1348  *        . the large-burst mode is reset if set
1349  *
1350  *        . the burst list is emptied
1351  *
1352  *        . Q is inserted in the burst list, as Q may be the first queue
1353  *          in a possible new burst (then the burst list contains just Q
1354  *          after this step).
1355  */
1356 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1357 {
1358 	/*
1359 	 * If bfqq is already in the burst list or is part of a large
1360 	 * burst, or finally has just been split, then there is
1361 	 * nothing else to do.
1362 	 */
1363 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1364 	    bfq_bfqq_in_large_burst(bfqq) ||
1365 	    time_is_after_eq_jiffies(bfqq->split_time +
1366 				     msecs_to_jiffies(10)))
1367 		return;
1368 
1369 	/*
1370 	 * If bfqq's creation happens late enough, or bfqq belongs to
1371 	 * a different group than the burst group, then the current
1372 	 * burst is finished, and related data structures must be
1373 	 * reset.
1374 	 *
1375 	 * In this respect, consider the special case where bfqq is
1376 	 * the very first queue created after BFQ is selected for this
1377 	 * device. In this case, last_ins_in_burst and
1378 	 * burst_parent_entity are not yet significant when we get
1379 	 * here. But it is easy to verify that, whether or not the
1380 	 * following condition is true, bfqq will end up being
1381 	 * inserted into the burst list. In particular the list will
1382 	 * happen to contain only bfqq. And this is exactly what has
1383 	 * to happen, as bfqq may be the first queue of the first
1384 	 * burst.
1385 	 */
1386 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1387 	    bfqd->bfq_burst_interval) ||
1388 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1389 		bfqd->large_burst = false;
1390 		bfq_reset_burst_list(bfqd, bfqq);
1391 		goto end;
1392 	}
1393 
1394 	/*
1395 	 * If we get here, then bfqq is being activated shortly after the
1396 	 * last queue. So, if the current burst is also large, we can mark
1397 	 * bfqq as belonging to this large burst immediately.
1398 	 */
1399 	if (bfqd->large_burst) {
1400 		bfq_mark_bfqq_in_large_burst(bfqq);
1401 		goto end;
1402 	}
1403 
1404 	/*
1405 	 * If we get here, then a large-burst state has not yet been
1406 	 * reached, but bfqq is being activated shortly after the last
1407 	 * queue. Then we add bfqq to the burst.
1408 	 */
1409 	bfq_add_to_burst(bfqd, bfqq);
1410 end:
1411 	/*
1412 	 * At this point, bfqq either has been added to the current
1413 	 * burst or has caused the current burst to terminate and a
1414 	 * possible new burst to start. In particular, in the second
1415 	 * case, bfqq has become the first queue in the possible new
1416 	 * burst.  In both cases last_ins_in_burst needs to be moved
1417 	 * forward.
1418 	 */
1419 	bfqd->last_ins_in_burst = jiffies;
1420 }
1421 
1422 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1423 {
1424 	struct bfq_entity *entity = &bfqq->entity;
1425 
1426 	return entity->budget - entity->service;
1427 }
1428 
1429 /*
1430  * If enough samples have been computed, return the current max budget
1431  * stored in bfqd, which is dynamically updated according to the
1432  * estimated disk peak rate; otherwise return the default max budget
1433  */
1434 static int bfq_max_budget(struct bfq_data *bfqd)
1435 {
1436 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1437 		return bfq_default_max_budget;
1438 	else
1439 		return bfqd->bfq_max_budget;
1440 }
1441 
1442 /*
1443  * Return min budget, which is a fraction of the current or default
1444  * max budget (trying with 1/32)
1445  */
1446 static int bfq_min_budget(struct bfq_data *bfqd)
1447 {
1448 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1449 		return bfq_default_max_budget / 32;
1450 	else
1451 		return bfqd->bfq_max_budget / 32;
1452 }
1453 
1454 /*
1455  * The next function, invoked after the input queue bfqq switches from
1456  * idle to busy, updates the budget of bfqq. The function also tells
1457  * whether the in-service queue should be expired, by returning
1458  * true. The purpose of expiring the in-service queue is to give bfqq
1459  * the chance to possibly preempt the in-service queue, and the reason
1460  * for preempting the in-service queue is to achieve one of the two
1461  * goals below.
1462  *
1463  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1464  * expired because it has remained idle. In particular, bfqq may have
1465  * expired for one of the following two reasons:
1466  *
1467  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1468  *   and did not make it to issue a new request before its last
1469  *   request was served;
1470  *
1471  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1472  *   a new request before the expiration of the idling-time.
1473  *
1474  * Even if bfqq has expired for one of the above reasons, the process
1475  * associated with the queue may be however issuing requests greedily,
1476  * and thus be sensitive to the bandwidth it receives (bfqq may have
1477  * remained idle for other reasons: CPU high load, bfqq not enjoying
1478  * idling, I/O throttling somewhere in the path from the process to
1479  * the I/O scheduler, ...). But if, after every expiration for one of
1480  * the above two reasons, bfqq has to wait for the service of at least
1481  * one full budget of another queue before being served again, then
1482  * bfqq is likely to get a much lower bandwidth or resource time than
1483  * its reserved ones. To address this issue, two countermeasures need
1484  * to be taken.
1485  *
1486  * First, the budget and the timestamps of bfqq need to be updated in
1487  * a special way on bfqq reactivation: they need to be updated as if
1488  * bfqq did not remain idle and did not expire. In fact, if they are
1489  * computed as if bfqq expired and remained idle until reactivation,
1490  * then the process associated with bfqq is treated as if, instead of
1491  * being greedy, it stopped issuing requests when bfqq remained idle,
1492  * and restarts issuing requests only on this reactivation. In other
1493  * words, the scheduler does not help the process recover the "service
1494  * hole" between bfqq expiration and reactivation. As a consequence,
1495  * the process receives a lower bandwidth than its reserved one. In
1496  * contrast, to recover this hole, the budget must be updated as if
1497  * bfqq was not expired at all before this reactivation, i.e., it must
1498  * be set to the value of the remaining budget when bfqq was
1499  * expired. Along the same line, timestamps need to be assigned the
1500  * value they had the last time bfqq was selected for service, i.e.,
1501  * before last expiration. Thus timestamps need to be back-shifted
1502  * with respect to their normal computation (see [1] for more details
1503  * on this tricky aspect).
1504  *
1505  * Secondly, to allow the process to recover the hole, the in-service
1506  * queue must be expired too, to give bfqq the chance to preempt it
1507  * immediately. In fact, if bfqq has to wait for a full budget of the
1508  * in-service queue to be completed, then it may become impossible to
1509  * let the process recover the hole, even if the back-shifted
1510  * timestamps of bfqq are lower than those of the in-service queue. If
1511  * this happens for most or all of the holes, then the process may not
1512  * receive its reserved bandwidth. In this respect, it is worth noting
1513  * that, being the service of outstanding requests unpreemptible, a
1514  * little fraction of the holes may however be unrecoverable, thereby
1515  * causing a little loss of bandwidth.
1516  *
1517  * The last important point is detecting whether bfqq does need this
1518  * bandwidth recovery. In this respect, the next function deems the
1519  * process associated with bfqq greedy, and thus allows it to recover
1520  * the hole, if: 1) the process is waiting for the arrival of a new
1521  * request (which implies that bfqq expired for one of the above two
1522  * reasons), and 2) such a request has arrived soon. The first
1523  * condition is controlled through the flag non_blocking_wait_rq,
1524  * while the second through the flag arrived_in_time. If both
1525  * conditions hold, then the function computes the budget in the
1526  * above-described special way, and signals that the in-service queue
1527  * should be expired. Timestamp back-shifting is done later in
1528  * __bfq_activate_entity.
1529  *
1530  * 2. Reduce latency. Even if timestamps are not backshifted to let
1531  * the process associated with bfqq recover a service hole, bfqq may
1532  * however happen to have, after being (re)activated, a lower finish
1533  * timestamp than the in-service queue.	 That is, the next budget of
1534  * bfqq may have to be completed before the one of the in-service
1535  * queue. If this is the case, then preempting the in-service queue
1536  * allows this goal to be achieved, apart from the unpreemptible,
1537  * outstanding requests mentioned above.
1538  *
1539  * Unfortunately, regardless of which of the above two goals one wants
1540  * to achieve, service trees need first to be updated to know whether
1541  * the in-service queue must be preempted. To have service trees
1542  * correctly updated, the in-service queue must be expired and
1543  * rescheduled, and bfqq must be scheduled too. This is one of the
1544  * most costly operations (in future versions, the scheduling
1545  * mechanism may be re-designed in such a way to make it possible to
1546  * know whether preemption is needed without needing to update service
1547  * trees). In addition, queue preemptions almost always cause random
1548  * I/O, which may in turn cause loss of throughput. Finally, there may
1549  * even be no in-service queue when the next function is invoked (so,
1550  * no queue to compare timestamps with). Because of these facts, the
1551  * next function adopts the following simple scheme to avoid costly
1552  * operations, too frequent preemptions and too many dependencies on
1553  * the state of the scheduler: it requests the expiration of the
1554  * in-service queue (unconditionally) only for queues that need to
1555  * recover a hole. Then it delegates to other parts of the code the
1556  * responsibility of handling the above case 2.
1557  */
1558 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1559 						struct bfq_queue *bfqq,
1560 						bool arrived_in_time)
1561 {
1562 	struct bfq_entity *entity = &bfqq->entity;
1563 
1564 	/*
1565 	 * In the next compound condition, we check also whether there
1566 	 * is some budget left, because otherwise there is no point in
1567 	 * trying to go on serving bfqq with this same budget: bfqq
1568 	 * would be expired immediately after being selected for
1569 	 * service. This would only cause useless overhead.
1570 	 */
1571 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1572 	    bfq_bfqq_budget_left(bfqq) > 0) {
1573 		/*
1574 		 * We do not clear the flag non_blocking_wait_rq here, as
1575 		 * the latter is used in bfq_activate_bfqq to signal
1576 		 * that timestamps need to be back-shifted (and is
1577 		 * cleared right after).
1578 		 */
1579 
1580 		/*
1581 		 * In next assignment we rely on that either
1582 		 * entity->service or entity->budget are not updated
1583 		 * on expiration if bfqq is empty (see
1584 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1585 		 * remain unchanged after such an expiration, and the
1586 		 * following statement therefore assigns to
1587 		 * entity->budget the remaining budget on such an
1588 		 * expiration.
1589 		 */
1590 		entity->budget = min_t(unsigned long,
1591 				       bfq_bfqq_budget_left(bfqq),
1592 				       bfqq->max_budget);
1593 
1594 		/*
1595 		 * At this point, we have used entity->service to get
1596 		 * the budget left (needed for updating
1597 		 * entity->budget). Thus we finally can, and have to,
1598 		 * reset entity->service. The latter must be reset
1599 		 * because bfqq would otherwise be charged again for
1600 		 * the service it has received during its previous
1601 		 * service slot(s).
1602 		 */
1603 		entity->service = 0;
1604 
1605 		return true;
1606 	}
1607 
1608 	/*
1609 	 * We can finally complete expiration, by setting service to 0.
1610 	 */
1611 	entity->service = 0;
1612 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1613 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1614 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1615 	return false;
1616 }
1617 
1618 /*
1619  * Return the farthest past time instant according to jiffies
1620  * macros.
1621  */
1622 static unsigned long bfq_smallest_from_now(void)
1623 {
1624 	return jiffies - MAX_JIFFY_OFFSET;
1625 }
1626 
1627 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1628 					     struct bfq_queue *bfqq,
1629 					     unsigned int old_wr_coeff,
1630 					     bool wr_or_deserves_wr,
1631 					     bool interactive,
1632 					     bool in_burst,
1633 					     bool soft_rt)
1634 {
1635 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1636 		/* start a weight-raising period */
1637 		if (interactive) {
1638 			bfqq->service_from_wr = 0;
1639 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1640 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1641 		} else {
1642 			/*
1643 			 * No interactive weight raising in progress
1644 			 * here: assign minus infinity to
1645 			 * wr_start_at_switch_to_srt, to make sure
1646 			 * that, at the end of the soft-real-time
1647 			 * weight raising periods that is starting
1648 			 * now, no interactive weight-raising period
1649 			 * may be wrongly considered as still in
1650 			 * progress (and thus actually started by
1651 			 * mistake).
1652 			 */
1653 			bfqq->wr_start_at_switch_to_srt =
1654 				bfq_smallest_from_now();
1655 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1656 				BFQ_SOFTRT_WEIGHT_FACTOR;
1657 			bfqq->wr_cur_max_time =
1658 				bfqd->bfq_wr_rt_max_time;
1659 		}
1660 
1661 		/*
1662 		 * If needed, further reduce budget to make sure it is
1663 		 * close to bfqq's backlog, so as to reduce the
1664 		 * scheduling-error component due to a too large
1665 		 * budget. Do not care about throughput consequences,
1666 		 * but only about latency. Finally, do not assign a
1667 		 * too small budget either, to avoid increasing
1668 		 * latency by causing too frequent expirations.
1669 		 */
1670 		bfqq->entity.budget = min_t(unsigned long,
1671 					    bfqq->entity.budget,
1672 					    2 * bfq_min_budget(bfqd));
1673 	} else if (old_wr_coeff > 1) {
1674 		if (interactive) { /* update wr coeff and duration */
1675 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1676 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1677 		} else if (in_burst)
1678 			bfqq->wr_coeff = 1;
1679 		else if (soft_rt) {
1680 			/*
1681 			 * The application is now or still meeting the
1682 			 * requirements for being deemed soft rt.  We
1683 			 * can then correctly and safely (re)charge
1684 			 * the weight-raising duration for the
1685 			 * application with the weight-raising
1686 			 * duration for soft rt applications.
1687 			 *
1688 			 * In particular, doing this recharge now, i.e.,
1689 			 * before the weight-raising period for the
1690 			 * application finishes, reduces the probability
1691 			 * of the following negative scenario:
1692 			 * 1) the weight of a soft rt application is
1693 			 *    raised at startup (as for any newly
1694 			 *    created application),
1695 			 * 2) since the application is not interactive,
1696 			 *    at a certain time weight-raising is
1697 			 *    stopped for the application,
1698 			 * 3) at that time the application happens to
1699 			 *    still have pending requests, and hence
1700 			 *    is destined to not have a chance to be
1701 			 *    deemed soft rt before these requests are
1702 			 *    completed (see the comments to the
1703 			 *    function bfq_bfqq_softrt_next_start()
1704 			 *    for details on soft rt detection),
1705 			 * 4) these pending requests experience a high
1706 			 *    latency because the application is not
1707 			 *    weight-raised while they are pending.
1708 			 */
1709 			if (bfqq->wr_cur_max_time !=
1710 				bfqd->bfq_wr_rt_max_time) {
1711 				bfqq->wr_start_at_switch_to_srt =
1712 					bfqq->last_wr_start_finish;
1713 
1714 				bfqq->wr_cur_max_time =
1715 					bfqd->bfq_wr_rt_max_time;
1716 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1717 					BFQ_SOFTRT_WEIGHT_FACTOR;
1718 			}
1719 			bfqq->last_wr_start_finish = jiffies;
1720 		}
1721 	}
1722 }
1723 
1724 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1725 					struct bfq_queue *bfqq)
1726 {
1727 	return bfqq->dispatched == 0 &&
1728 		time_is_before_jiffies(
1729 			bfqq->budget_timeout +
1730 			bfqd->bfq_wr_min_idle_time);
1731 }
1732 
1733 
1734 /*
1735  * Return true if bfqq is in a higher priority class, or has a higher
1736  * weight than the in-service queue.
1737  */
1738 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1739 					    struct bfq_queue *in_serv_bfqq)
1740 {
1741 	int bfqq_weight, in_serv_weight;
1742 
1743 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1744 		return true;
1745 
1746 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1747 		bfqq_weight = bfqq->entity.weight;
1748 		in_serv_weight = in_serv_bfqq->entity.weight;
1749 	} else {
1750 		if (bfqq->entity.parent)
1751 			bfqq_weight = bfqq->entity.parent->weight;
1752 		else
1753 			bfqq_weight = bfqq->entity.weight;
1754 		if (in_serv_bfqq->entity.parent)
1755 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1756 		else
1757 			in_serv_weight = in_serv_bfqq->entity.weight;
1758 	}
1759 
1760 	return bfqq_weight > in_serv_weight;
1761 }
1762 
1763 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1764 
1765 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1766 					     struct bfq_queue *bfqq,
1767 					     int old_wr_coeff,
1768 					     struct request *rq,
1769 					     bool *interactive)
1770 {
1771 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1772 		bfqq_wants_to_preempt,
1773 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1774 		/*
1775 		 * See the comments on
1776 		 * bfq_bfqq_update_budg_for_activation for
1777 		 * details on the usage of the next variable.
1778 		 */
1779 		arrived_in_time =  ktime_get_ns() <=
1780 			bfqq->ttime.last_end_request +
1781 			bfqd->bfq_slice_idle * 3;
1782 
1783 
1784 	/*
1785 	 * bfqq deserves to be weight-raised if:
1786 	 * - it is sync,
1787 	 * - it does not belong to a large burst,
1788 	 * - it has been idle for enough time or is soft real-time,
1789 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1790 	 * - has a default weight (otherwise we assume the user wanted
1791 	 *   to control its weight explicitly)
1792 	 */
1793 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1794 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1795 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1796 		!in_burst &&
1797 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1798 		bfqq->dispatched == 0 &&
1799 		bfqq->entity.new_weight == 40;
1800 	*interactive = !in_burst && idle_for_long_time &&
1801 		bfqq->entity.new_weight == 40;
1802 	/*
1803 	 * Merged bfq_queues are kept out of weight-raising
1804 	 * (low-latency) mechanisms. The reason is that these queues
1805 	 * are usually created for non-interactive and
1806 	 * non-soft-real-time tasks. Yet this is not the case for
1807 	 * stably-merged queues. These queues are merged just because
1808 	 * they are created shortly after each other. So they may
1809 	 * easily serve the I/O of an interactive or soft-real time
1810 	 * application, if the application happens to spawn multiple
1811 	 * processes. So let also stably-merged queued enjoy weight
1812 	 * raising.
1813 	 */
1814 	wr_or_deserves_wr = bfqd->low_latency &&
1815 		(bfqq->wr_coeff > 1 ||
1816 		 (bfq_bfqq_sync(bfqq) &&
1817 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1818 		   (*interactive || soft_rt)));
1819 
1820 	/*
1821 	 * Using the last flag, update budget and check whether bfqq
1822 	 * may want to preempt the in-service queue.
1823 	 */
1824 	bfqq_wants_to_preempt =
1825 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1826 						    arrived_in_time);
1827 
1828 	/*
1829 	 * If bfqq happened to be activated in a burst, but has been
1830 	 * idle for much more than an interactive queue, then we
1831 	 * assume that, in the overall I/O initiated in the burst, the
1832 	 * I/O associated with bfqq is finished. So bfqq does not need
1833 	 * to be treated as a queue belonging to a burst
1834 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1835 	 * if set, and remove bfqq from the burst list if it's
1836 	 * there. We do not decrement burst_size, because the fact
1837 	 * that bfqq does not need to belong to the burst list any
1838 	 * more does not invalidate the fact that bfqq was created in
1839 	 * a burst.
1840 	 */
1841 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1842 	    idle_for_long_time &&
1843 	    time_is_before_jiffies(
1844 		    bfqq->budget_timeout +
1845 		    msecs_to_jiffies(10000))) {
1846 		hlist_del_init(&bfqq->burst_list_node);
1847 		bfq_clear_bfqq_in_large_burst(bfqq);
1848 	}
1849 
1850 	bfq_clear_bfqq_just_created(bfqq);
1851 
1852 	if (bfqd->low_latency) {
1853 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1854 			/* wraparound */
1855 			bfqq->split_time =
1856 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1857 
1858 		if (time_is_before_jiffies(bfqq->split_time +
1859 					   bfqd->bfq_wr_min_idle_time)) {
1860 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1861 							 old_wr_coeff,
1862 							 wr_or_deserves_wr,
1863 							 *interactive,
1864 							 in_burst,
1865 							 soft_rt);
1866 
1867 			if (old_wr_coeff != bfqq->wr_coeff)
1868 				bfqq->entity.prio_changed = 1;
1869 		}
1870 	}
1871 
1872 	bfqq->last_idle_bklogged = jiffies;
1873 	bfqq->service_from_backlogged = 0;
1874 	bfq_clear_bfqq_softrt_update(bfqq);
1875 
1876 	bfq_add_bfqq_busy(bfqq);
1877 
1878 	/*
1879 	 * Expire in-service queue if preemption may be needed for
1880 	 * guarantees or throughput. As for guarantees, we care
1881 	 * explicitly about two cases. The first is that bfqq has to
1882 	 * recover a service hole, as explained in the comments on
1883 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1884 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1885 	 * carry time-critical I/O, then bfqq's bandwidth is less
1886 	 * important than that of queues that carry time-critical I/O.
1887 	 * So, as a further constraint, we consider this case only if
1888 	 * bfqq is at least as weight-raised, i.e., at least as time
1889 	 * critical, as the in-service queue.
1890 	 *
1891 	 * The second case is that bfqq is in a higher priority class,
1892 	 * or has a higher weight than the in-service queue. If this
1893 	 * condition does not hold, we don't care because, even if
1894 	 * bfqq does not start to be served immediately, the resulting
1895 	 * delay for bfqq's I/O is however lower or much lower than
1896 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1897 	 *
1898 	 * In both cases, preemption is needed only if, according to
1899 	 * the timestamps of both bfqq and of the in-service queue,
1900 	 * bfqq actually is the next queue to serve. So, to reduce
1901 	 * useless preemptions, the return value of
1902 	 * next_queue_may_preempt() is considered in the next compound
1903 	 * condition too. Yet next_queue_may_preempt() just checks a
1904 	 * simple, necessary condition for bfqq to be the next queue
1905 	 * to serve. In fact, to evaluate a sufficient condition, the
1906 	 * timestamps of the in-service queue would need to be
1907 	 * updated, and this operation is quite costly (see the
1908 	 * comments on bfq_bfqq_update_budg_for_activation()).
1909 	 *
1910 	 * As for throughput, we ask bfq_better_to_idle() whether we
1911 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1912 	 * says no, then plugging is not needed any longer, either to
1913 	 * boost throughput or to perserve service guarantees. Then
1914 	 * the best option is to stop plugging I/O, as not doing so
1915 	 * would certainly lower throughput. We may end up in this
1916 	 * case if: (1) upon a dispatch attempt, we detected that it
1917 	 * was better to plug I/O dispatch, and to wait for a new
1918 	 * request to arrive for the currently in-service queue, but
1919 	 * (2) this switch of bfqq to busy changes the scenario.
1920 	 */
1921 	if (bfqd->in_service_queue &&
1922 	    ((bfqq_wants_to_preempt &&
1923 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1924 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1925 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1926 	    next_queue_may_preempt(bfqd))
1927 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1928 				false, BFQQE_PREEMPTED);
1929 }
1930 
1931 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1932 				   struct bfq_queue *bfqq)
1933 {
1934 	/* invalidate baseline total service time */
1935 	bfqq->last_serv_time_ns = 0;
1936 
1937 	/*
1938 	 * Reset pointer in case we are waiting for
1939 	 * some request completion.
1940 	 */
1941 	bfqd->waited_rq = NULL;
1942 
1943 	/*
1944 	 * If bfqq has a short think time, then start by setting the
1945 	 * inject limit to 0 prudentially, because the service time of
1946 	 * an injected I/O request may be higher than the think time
1947 	 * of bfqq, and therefore, if one request was injected when
1948 	 * bfqq remains empty, this injected request might delay the
1949 	 * service of the next I/O request for bfqq significantly. In
1950 	 * case bfqq can actually tolerate some injection, then the
1951 	 * adaptive update will however raise the limit soon. This
1952 	 * lucky circumstance holds exactly because bfqq has a short
1953 	 * think time, and thus, after remaining empty, is likely to
1954 	 * get new I/O enqueued---and then completed---before being
1955 	 * expired. This is the very pattern that gives the
1956 	 * limit-update algorithm the chance to measure the effect of
1957 	 * injection on request service times, and then to update the
1958 	 * limit accordingly.
1959 	 *
1960 	 * However, in the following special case, the inject limit is
1961 	 * left to 1 even if the think time is short: bfqq's I/O is
1962 	 * synchronized with that of some other queue, i.e., bfqq may
1963 	 * receive new I/O only after the I/O of the other queue is
1964 	 * completed. Keeping the inject limit to 1 allows the
1965 	 * blocking I/O to be served while bfqq is in service. And
1966 	 * this is very convenient both for bfqq and for overall
1967 	 * throughput, as explained in detail in the comments in
1968 	 * bfq_update_has_short_ttime().
1969 	 *
1970 	 * On the opposite end, if bfqq has a long think time, then
1971 	 * start directly by 1, because:
1972 	 * a) on the bright side, keeping at most one request in
1973 	 * service in the drive is unlikely to cause any harm to the
1974 	 * latency of bfqq's requests, as the service time of a single
1975 	 * request is likely to be lower than the think time of bfqq;
1976 	 * b) on the downside, after becoming empty, bfqq is likely to
1977 	 * expire before getting its next request. With this request
1978 	 * arrival pattern, it is very hard to sample total service
1979 	 * times and update the inject limit accordingly (see comments
1980 	 * on bfq_update_inject_limit()). So the limit is likely to be
1981 	 * never, or at least seldom, updated.  As a consequence, by
1982 	 * setting the limit to 1, we avoid that no injection ever
1983 	 * occurs with bfqq. On the downside, this proactive step
1984 	 * further reduces chances to actually compute the baseline
1985 	 * total service time. Thus it reduces chances to execute the
1986 	 * limit-update algorithm and possibly raise the limit to more
1987 	 * than 1.
1988 	 */
1989 	if (bfq_bfqq_has_short_ttime(bfqq))
1990 		bfqq->inject_limit = 0;
1991 	else
1992 		bfqq->inject_limit = 1;
1993 
1994 	bfqq->decrease_time_jif = jiffies;
1995 }
1996 
1997 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1998 {
1999 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2000 
2001 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2002 		bfqq->tot_idle_time +=
2003 			now_ns - bfqq->ttime.last_end_request;
2004 
2005 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2006 		return;
2007 
2008 	/*
2009 	 * Must be busy for at least about 80% of the time to be
2010 	 * considered I/O bound.
2011 	 */
2012 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2013 		bfq_clear_bfqq_IO_bound(bfqq);
2014 	else
2015 		bfq_mark_bfqq_IO_bound(bfqq);
2016 
2017 	/*
2018 	 * Keep an observation window of at most 200 ms in the past
2019 	 * from now.
2020 	 */
2021 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2022 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2023 		bfqq->tot_idle_time >>= 1;
2024 	}
2025 }
2026 
2027 /*
2028  * Detect whether bfqq's I/O seems synchronized with that of some
2029  * other queue, i.e., whether bfqq, after remaining empty, happens to
2030  * receive new I/O only right after some I/O request of the other
2031  * queue has been completed. We call waker queue the other queue, and
2032  * we assume, for simplicity, that bfqq may have at most one waker
2033  * queue.
2034  *
2035  * A remarkable throughput boost can be reached by unconditionally
2036  * injecting the I/O of the waker queue, every time a new
2037  * bfq_dispatch_request happens to be invoked while I/O is being
2038  * plugged for bfqq.  In addition to boosting throughput, this
2039  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2040  * bfqq. Note that these same results may be achieved with the general
2041  * injection mechanism, but less effectively. For details on this
2042  * aspect, see the comments on the choice of the queue for injection
2043  * in bfq_select_queue().
2044  *
2045  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2046  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2047  * non empty right after a request of Q has been completed within given
2048  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2049  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2050  * still being served by the drive, and may receive new I/O on the completion
2051  * of some of the in-flight requests. In particular, on the first time, Q is
2052  * tentatively set as a candidate waker queue, while on the third consecutive
2053  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2054  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2055  * has a long think time, so as to make it more likely that bfqq's I/O is
2056  * actually being blocked by a synchronization. This last filter, plus the
2057  * above three-times requirement and time limit for detection, make false
2058  * positives less likely.
2059  *
2060  * NOTE
2061  *
2062  * The sooner a waker queue is detected, the sooner throughput can be
2063  * boosted by injecting I/O from the waker queue. Fortunately,
2064  * detection is likely to be actually fast, for the following
2065  * reasons. While blocked by synchronization, bfqq has a long think
2066  * time. This implies that bfqq's inject limit is at least equal to 1
2067  * (see the comments in bfq_update_inject_limit()). So, thanks to
2068  * injection, the waker queue is likely to be served during the very
2069  * first I/O-plugging time interval for bfqq. This triggers the first
2070  * step of the detection mechanism. Thanks again to injection, the
2071  * candidate waker queue is then likely to be confirmed no later than
2072  * during the next I/O-plugging interval for bfqq.
2073  *
2074  * ISSUE
2075  *
2076  * On queue merging all waker information is lost.
2077  */
2078 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2079 			    u64 now_ns)
2080 {
2081 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2082 
2083 	if (!bfqd->last_completed_rq_bfqq ||
2084 	    bfqd->last_completed_rq_bfqq == bfqq ||
2085 	    bfq_bfqq_has_short_ttime(bfqq) ||
2086 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2087 	    bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq ||
2088 	    bfqq == &bfqd->oom_bfqq)
2089 		return;
2090 
2091 	/*
2092 	 * We reset waker detection logic also if too much time has passed
2093  	 * since the first detection. If wakeups are rare, pointless idling
2094 	 * doesn't hurt throughput that much. The condition below makes sure
2095 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2096 	 */
2097 	if (bfqd->last_completed_rq_bfqq !=
2098 	    bfqq->tentative_waker_bfqq ||
2099 	    now_ns > bfqq->waker_detection_started +
2100 					128 * (u64)bfqd->bfq_slice_idle) {
2101 		/*
2102 		 * First synchronization detected with a
2103 		 * candidate waker queue, or with a different
2104 		 * candidate waker queue from the current one.
2105 		 */
2106 		bfqq->tentative_waker_bfqq =
2107 			bfqd->last_completed_rq_bfqq;
2108 		bfqq->num_waker_detections = 1;
2109 		bfqq->waker_detection_started = now_ns;
2110 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2111 			      MAX_BFQQ_NAME_LENGTH);
2112 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2113 	} else /* Same tentative waker queue detected again */
2114 		bfqq->num_waker_detections++;
2115 
2116 	if (bfqq->num_waker_detections == 3) {
2117 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2118 		bfqq->tentative_waker_bfqq = NULL;
2119 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2120 			      MAX_BFQQ_NAME_LENGTH);
2121 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2122 
2123 		/*
2124 		 * If the waker queue disappears, then
2125 		 * bfqq->waker_bfqq must be reset. To
2126 		 * this goal, we maintain in each
2127 		 * waker queue a list, woken_list, of
2128 		 * all the queues that reference the
2129 		 * waker queue through their
2130 		 * waker_bfqq pointer. When the waker
2131 		 * queue exits, the waker_bfqq pointer
2132 		 * of all the queues in the woken_list
2133 		 * is reset.
2134 		 *
2135 		 * In addition, if bfqq is already in
2136 		 * the woken_list of a waker queue,
2137 		 * then, before being inserted into
2138 		 * the woken_list of a new waker
2139 		 * queue, bfqq must be removed from
2140 		 * the woken_list of the old waker
2141 		 * queue.
2142 		 */
2143 		if (!hlist_unhashed(&bfqq->woken_list_node))
2144 			hlist_del_init(&bfqq->woken_list_node);
2145 		hlist_add_head(&bfqq->woken_list_node,
2146 			       &bfqd->last_completed_rq_bfqq->woken_list);
2147 	}
2148 }
2149 
2150 static void bfq_add_request(struct request *rq)
2151 {
2152 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2153 	struct bfq_data *bfqd = bfqq->bfqd;
2154 	struct request *next_rq, *prev;
2155 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2156 	bool interactive = false;
2157 	u64 now_ns = ktime_get_ns();
2158 
2159 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2160 	bfqq->queued[rq_is_sync(rq)]++;
2161 	/*
2162 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2163 	 * may be read without holding the lock in bfq_has_work().
2164 	 */
2165 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2166 
2167 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2168 		bfq_check_waker(bfqd, bfqq, now_ns);
2169 
2170 		/*
2171 		 * Periodically reset inject limit, to make sure that
2172 		 * the latter eventually drops in case workload
2173 		 * changes, see step (3) in the comments on
2174 		 * bfq_update_inject_limit().
2175 		 */
2176 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2177 					     msecs_to_jiffies(1000)))
2178 			bfq_reset_inject_limit(bfqd, bfqq);
2179 
2180 		/*
2181 		 * The following conditions must hold to setup a new
2182 		 * sampling of total service time, and then a new
2183 		 * update of the inject limit:
2184 		 * - bfqq is in service, because the total service
2185 		 *   time is evaluated only for the I/O requests of
2186 		 *   the queues in service;
2187 		 * - this is the right occasion to compute or to
2188 		 *   lower the baseline total service time, because
2189 		 *   there are actually no requests in the drive,
2190 		 *   or
2191 		 *   the baseline total service time is available, and
2192 		 *   this is the right occasion to compute the other
2193 		 *   quantity needed to update the inject limit, i.e.,
2194 		 *   the total service time caused by the amount of
2195 		 *   injection allowed by the current value of the
2196 		 *   limit. It is the right occasion because injection
2197 		 *   has actually been performed during the service
2198 		 *   hole, and there are still in-flight requests,
2199 		 *   which are very likely to be exactly the injected
2200 		 *   requests, or part of them;
2201 		 * - the minimum interval for sampling the total
2202 		 *   service time and updating the inject limit has
2203 		 *   elapsed.
2204 		 */
2205 		if (bfqq == bfqd->in_service_queue &&
2206 		    (bfqd->rq_in_driver == 0 ||
2207 		     (bfqq->last_serv_time_ns > 0 &&
2208 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2209 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2210 					      msecs_to_jiffies(10))) {
2211 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2212 			/*
2213 			 * Start the state machine for measuring the
2214 			 * total service time of rq: setting
2215 			 * wait_dispatch will cause bfqd->waited_rq to
2216 			 * be set when rq will be dispatched.
2217 			 */
2218 			bfqd->wait_dispatch = true;
2219 			/*
2220 			 * If there is no I/O in service in the drive,
2221 			 * then possible injection occurred before the
2222 			 * arrival of rq will not affect the total
2223 			 * service time of rq. So the injection limit
2224 			 * must not be updated as a function of such
2225 			 * total service time, unless new injection
2226 			 * occurs before rq is completed. To have the
2227 			 * injection limit updated only in the latter
2228 			 * case, reset rqs_injected here (rqs_injected
2229 			 * will be set in case injection is performed
2230 			 * on bfqq before rq is completed).
2231 			 */
2232 			if (bfqd->rq_in_driver == 0)
2233 				bfqd->rqs_injected = false;
2234 		}
2235 	}
2236 
2237 	if (bfq_bfqq_sync(bfqq))
2238 		bfq_update_io_intensity(bfqq, now_ns);
2239 
2240 	elv_rb_add(&bfqq->sort_list, rq);
2241 
2242 	/*
2243 	 * Check if this request is a better next-serve candidate.
2244 	 */
2245 	prev = bfqq->next_rq;
2246 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2247 	bfqq->next_rq = next_rq;
2248 
2249 	/*
2250 	 * Adjust priority tree position, if next_rq changes.
2251 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2252 	 */
2253 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2254 		bfq_pos_tree_add_move(bfqd, bfqq);
2255 
2256 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2257 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2258 						 rq, &interactive);
2259 	else {
2260 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2261 		    time_is_before_jiffies(
2262 				bfqq->last_wr_start_finish +
2263 				bfqd->bfq_wr_min_inter_arr_async)) {
2264 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2265 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2266 
2267 			bfqd->wr_busy_queues++;
2268 			bfqq->entity.prio_changed = 1;
2269 		}
2270 		if (prev != bfqq->next_rq)
2271 			bfq_updated_next_req(bfqd, bfqq);
2272 	}
2273 
2274 	/*
2275 	 * Assign jiffies to last_wr_start_finish in the following
2276 	 * cases:
2277 	 *
2278 	 * . if bfqq is not going to be weight-raised, because, for
2279 	 *   non weight-raised queues, last_wr_start_finish stores the
2280 	 *   arrival time of the last request; as of now, this piece
2281 	 *   of information is used only for deciding whether to
2282 	 *   weight-raise async queues
2283 	 *
2284 	 * . if bfqq is not weight-raised, because, if bfqq is now
2285 	 *   switching to weight-raised, then last_wr_start_finish
2286 	 *   stores the time when weight-raising starts
2287 	 *
2288 	 * . if bfqq is interactive, because, regardless of whether
2289 	 *   bfqq is currently weight-raised, the weight-raising
2290 	 *   period must start or restart (this case is considered
2291 	 *   separately because it is not detected by the above
2292 	 *   conditions, if bfqq is already weight-raised)
2293 	 *
2294 	 * last_wr_start_finish has to be updated also if bfqq is soft
2295 	 * real-time, because the weight-raising period is constantly
2296 	 * restarted on idle-to-busy transitions for these queues, but
2297 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2298 	 * needed.
2299 	 */
2300 	if (bfqd->low_latency &&
2301 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2302 		bfqq->last_wr_start_finish = jiffies;
2303 }
2304 
2305 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2306 					  struct bio *bio,
2307 					  struct request_queue *q)
2308 {
2309 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2310 
2311 
2312 	if (bfqq)
2313 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2314 
2315 	return NULL;
2316 }
2317 
2318 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2319 {
2320 	if (last_pos)
2321 		return abs(blk_rq_pos(rq) - last_pos);
2322 
2323 	return 0;
2324 }
2325 
2326 static void bfq_remove_request(struct request_queue *q,
2327 			       struct request *rq)
2328 {
2329 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2330 	struct bfq_data *bfqd = bfqq->bfqd;
2331 	const int sync = rq_is_sync(rq);
2332 
2333 	if (bfqq->next_rq == rq) {
2334 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2335 		bfq_updated_next_req(bfqd, bfqq);
2336 	}
2337 
2338 	if (rq->queuelist.prev != &rq->queuelist)
2339 		list_del_init(&rq->queuelist);
2340 	bfqq->queued[sync]--;
2341 	/*
2342 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2343 	 * may be read without holding the lock in bfq_has_work().
2344 	 */
2345 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2346 	elv_rb_del(&bfqq->sort_list, rq);
2347 
2348 	elv_rqhash_del(q, rq);
2349 	if (q->last_merge == rq)
2350 		q->last_merge = NULL;
2351 
2352 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2353 		bfqq->next_rq = NULL;
2354 
2355 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2356 			bfq_del_bfqq_busy(bfqq, false);
2357 			/*
2358 			 * bfqq emptied. In normal operation, when
2359 			 * bfqq is empty, bfqq->entity.service and
2360 			 * bfqq->entity.budget must contain,
2361 			 * respectively, the service received and the
2362 			 * budget used last time bfqq emptied. These
2363 			 * facts do not hold in this case, as at least
2364 			 * this last removal occurred while bfqq is
2365 			 * not in service. To avoid inconsistencies,
2366 			 * reset both bfqq->entity.service and
2367 			 * bfqq->entity.budget, if bfqq has still a
2368 			 * process that may issue I/O requests to it.
2369 			 */
2370 			bfqq->entity.budget = bfqq->entity.service = 0;
2371 		}
2372 
2373 		/*
2374 		 * Remove queue from request-position tree as it is empty.
2375 		 */
2376 		if (bfqq->pos_root) {
2377 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2378 			bfqq->pos_root = NULL;
2379 		}
2380 	} else {
2381 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2382 		if (unlikely(!bfqd->nonrot_with_queueing))
2383 			bfq_pos_tree_add_move(bfqd, bfqq);
2384 	}
2385 
2386 	if (rq->cmd_flags & REQ_META)
2387 		bfqq->meta_pending--;
2388 
2389 }
2390 
2391 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2392 		unsigned int nr_segs)
2393 {
2394 	struct bfq_data *bfqd = q->elevator->elevator_data;
2395 	struct request *free = NULL;
2396 	/*
2397 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2398 	 * store its return value for later use, to avoid nesting
2399 	 * queue_lock inside the bfqd->lock. We assume that the bic
2400 	 * returned by bfq_bic_lookup does not go away before
2401 	 * bfqd->lock is taken.
2402 	 */
2403 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2404 	bool ret;
2405 
2406 	spin_lock_irq(&bfqd->lock);
2407 
2408 	if (bic) {
2409 		/*
2410 		 * Make sure cgroup info is uptodate for current process before
2411 		 * considering the merge.
2412 		 */
2413 		bfq_bic_update_cgroup(bic, bio);
2414 
2415 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2416 	} else {
2417 		bfqd->bio_bfqq = NULL;
2418 	}
2419 	bfqd->bio_bic = bic;
2420 
2421 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2422 
2423 	spin_unlock_irq(&bfqd->lock);
2424 	if (free)
2425 		blk_mq_free_request(free);
2426 
2427 	return ret;
2428 }
2429 
2430 static int bfq_request_merge(struct request_queue *q, struct request **req,
2431 			     struct bio *bio)
2432 {
2433 	struct bfq_data *bfqd = q->elevator->elevator_data;
2434 	struct request *__rq;
2435 
2436 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2437 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2438 		*req = __rq;
2439 
2440 		if (blk_discard_mergable(__rq))
2441 			return ELEVATOR_DISCARD_MERGE;
2442 		return ELEVATOR_FRONT_MERGE;
2443 	}
2444 
2445 	return ELEVATOR_NO_MERGE;
2446 }
2447 
2448 static void bfq_request_merged(struct request_queue *q, struct request *req,
2449 			       enum elv_merge type)
2450 {
2451 	if (type == ELEVATOR_FRONT_MERGE &&
2452 	    rb_prev(&req->rb_node) &&
2453 	    blk_rq_pos(req) <
2454 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2455 				    struct request, rb_node))) {
2456 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2457 		struct bfq_data *bfqd;
2458 		struct request *prev, *next_rq;
2459 
2460 		if (!bfqq)
2461 			return;
2462 
2463 		bfqd = bfqq->bfqd;
2464 
2465 		/* Reposition request in its sort_list */
2466 		elv_rb_del(&bfqq->sort_list, req);
2467 		elv_rb_add(&bfqq->sort_list, req);
2468 
2469 		/* Choose next request to be served for bfqq */
2470 		prev = bfqq->next_rq;
2471 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2472 					 bfqd->last_position);
2473 		bfqq->next_rq = next_rq;
2474 		/*
2475 		 * If next_rq changes, update both the queue's budget to
2476 		 * fit the new request and the queue's position in its
2477 		 * rq_pos_tree.
2478 		 */
2479 		if (prev != bfqq->next_rq) {
2480 			bfq_updated_next_req(bfqd, bfqq);
2481 			/*
2482 			 * See comments on bfq_pos_tree_add_move() for
2483 			 * the unlikely().
2484 			 */
2485 			if (unlikely(!bfqd->nonrot_with_queueing))
2486 				bfq_pos_tree_add_move(bfqd, bfqq);
2487 		}
2488 	}
2489 }
2490 
2491 /*
2492  * This function is called to notify the scheduler that the requests
2493  * rq and 'next' have been merged, with 'next' going away.  BFQ
2494  * exploits this hook to address the following issue: if 'next' has a
2495  * fifo_time lower that rq, then the fifo_time of rq must be set to
2496  * the value of 'next', to not forget the greater age of 'next'.
2497  *
2498  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2499  * on that rq is picked from the hash table q->elevator->hash, which,
2500  * in its turn, is filled only with I/O requests present in
2501  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2502  * the function that fills this hash table (elv_rqhash_add) is called
2503  * only by bfq_insert_request.
2504  */
2505 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2506 				struct request *next)
2507 {
2508 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2509 		*next_bfqq = RQ_BFQQ(next);
2510 
2511 	if (!bfqq)
2512 		goto remove;
2513 
2514 	/*
2515 	 * If next and rq belong to the same bfq_queue and next is older
2516 	 * than rq, then reposition rq in the fifo (by substituting next
2517 	 * with rq). Otherwise, if next and rq belong to different
2518 	 * bfq_queues, never reposition rq: in fact, we would have to
2519 	 * reposition it with respect to next's position in its own fifo,
2520 	 * which would most certainly be too expensive with respect to
2521 	 * the benefits.
2522 	 */
2523 	if (bfqq == next_bfqq &&
2524 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2525 	    next->fifo_time < rq->fifo_time) {
2526 		list_del_init(&rq->queuelist);
2527 		list_replace_init(&next->queuelist, &rq->queuelist);
2528 		rq->fifo_time = next->fifo_time;
2529 	}
2530 
2531 	if (bfqq->next_rq == next)
2532 		bfqq->next_rq = rq;
2533 
2534 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2535 remove:
2536 	/* Merged request may be in the IO scheduler. Remove it. */
2537 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2538 		bfq_remove_request(next->q, next);
2539 		if (next_bfqq)
2540 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2541 						    next->cmd_flags);
2542 	}
2543 }
2544 
2545 /* Must be called with bfqq != NULL */
2546 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2547 {
2548 	/*
2549 	 * If bfqq has been enjoying interactive weight-raising, then
2550 	 * reset soft_rt_next_start. We do it for the following
2551 	 * reason. bfqq may have been conveying the I/O needed to load
2552 	 * a soft real-time application. Such an application actually
2553 	 * exhibits a soft real-time I/O pattern after it finishes
2554 	 * loading, and finally starts doing its job. But, if bfqq has
2555 	 * been receiving a lot of bandwidth so far (likely to happen
2556 	 * on a fast device), then soft_rt_next_start now contains a
2557 	 * high value that. So, without this reset, bfqq would be
2558 	 * prevented from being possibly considered as soft_rt for a
2559 	 * very long time.
2560 	 */
2561 
2562 	if (bfqq->wr_cur_max_time !=
2563 	    bfqq->bfqd->bfq_wr_rt_max_time)
2564 		bfqq->soft_rt_next_start = jiffies;
2565 
2566 	if (bfq_bfqq_busy(bfqq))
2567 		bfqq->bfqd->wr_busy_queues--;
2568 	bfqq->wr_coeff = 1;
2569 	bfqq->wr_cur_max_time = 0;
2570 	bfqq->last_wr_start_finish = jiffies;
2571 	/*
2572 	 * Trigger a weight change on the next invocation of
2573 	 * __bfq_entity_update_weight_prio.
2574 	 */
2575 	bfqq->entity.prio_changed = 1;
2576 }
2577 
2578 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2579 			     struct bfq_group *bfqg)
2580 {
2581 	int i, j;
2582 
2583 	for (i = 0; i < 2; i++)
2584 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2585 			if (bfqg->async_bfqq[i][j])
2586 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2587 	if (bfqg->async_idle_bfqq)
2588 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2589 }
2590 
2591 static void bfq_end_wr(struct bfq_data *bfqd)
2592 {
2593 	struct bfq_queue *bfqq;
2594 
2595 	spin_lock_irq(&bfqd->lock);
2596 
2597 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2598 		bfq_bfqq_end_wr(bfqq);
2599 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2600 		bfq_bfqq_end_wr(bfqq);
2601 	bfq_end_wr_async(bfqd);
2602 
2603 	spin_unlock_irq(&bfqd->lock);
2604 }
2605 
2606 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2607 {
2608 	if (request)
2609 		return blk_rq_pos(io_struct);
2610 	else
2611 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2612 }
2613 
2614 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2615 				  sector_t sector)
2616 {
2617 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2618 	       BFQQ_CLOSE_THR;
2619 }
2620 
2621 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2622 					 struct bfq_queue *bfqq,
2623 					 sector_t sector)
2624 {
2625 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2626 	struct rb_node *parent, *node;
2627 	struct bfq_queue *__bfqq;
2628 
2629 	if (RB_EMPTY_ROOT(root))
2630 		return NULL;
2631 
2632 	/*
2633 	 * First, if we find a request starting at the end of the last
2634 	 * request, choose it.
2635 	 */
2636 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2637 	if (__bfqq)
2638 		return __bfqq;
2639 
2640 	/*
2641 	 * If the exact sector wasn't found, the parent of the NULL leaf
2642 	 * will contain the closest sector (rq_pos_tree sorted by
2643 	 * next_request position).
2644 	 */
2645 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2646 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2647 		return __bfqq;
2648 
2649 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2650 		node = rb_next(&__bfqq->pos_node);
2651 	else
2652 		node = rb_prev(&__bfqq->pos_node);
2653 	if (!node)
2654 		return NULL;
2655 
2656 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2657 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2658 		return __bfqq;
2659 
2660 	return NULL;
2661 }
2662 
2663 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2664 						   struct bfq_queue *cur_bfqq,
2665 						   sector_t sector)
2666 {
2667 	struct bfq_queue *bfqq;
2668 
2669 	/*
2670 	 * We shall notice if some of the queues are cooperating,
2671 	 * e.g., working closely on the same area of the device. In
2672 	 * that case, we can group them together and: 1) don't waste
2673 	 * time idling, and 2) serve the union of their requests in
2674 	 * the best possible order for throughput.
2675 	 */
2676 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2677 	if (!bfqq || bfqq == cur_bfqq)
2678 		return NULL;
2679 
2680 	return bfqq;
2681 }
2682 
2683 static struct bfq_queue *
2684 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2685 {
2686 	int process_refs, new_process_refs;
2687 	struct bfq_queue *__bfqq;
2688 
2689 	/*
2690 	 * If there are no process references on the new_bfqq, then it is
2691 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2692 	 * may have dropped their last reference (not just their last process
2693 	 * reference).
2694 	 */
2695 	if (!bfqq_process_refs(new_bfqq))
2696 		return NULL;
2697 
2698 	/* Avoid a circular list and skip interim queue merges. */
2699 	while ((__bfqq = new_bfqq->new_bfqq)) {
2700 		if (__bfqq == bfqq)
2701 			return NULL;
2702 		new_bfqq = __bfqq;
2703 	}
2704 
2705 	process_refs = bfqq_process_refs(bfqq);
2706 	new_process_refs = bfqq_process_refs(new_bfqq);
2707 	/*
2708 	 * If the process for the bfqq has gone away, there is no
2709 	 * sense in merging the queues.
2710 	 */
2711 	if (process_refs == 0 || new_process_refs == 0)
2712 		return NULL;
2713 
2714 	/*
2715 	 * Make sure merged queues belong to the same parent. Parents could
2716 	 * have changed since the time we decided the two queues are suitable
2717 	 * for merging.
2718 	 */
2719 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2720 		return NULL;
2721 
2722 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2723 		new_bfqq->pid);
2724 
2725 	/*
2726 	 * Merging is just a redirection: the requests of the process
2727 	 * owning one of the two queues are redirected to the other queue.
2728 	 * The latter queue, in its turn, is set as shared if this is the
2729 	 * first time that the requests of some process are redirected to
2730 	 * it.
2731 	 *
2732 	 * We redirect bfqq to new_bfqq and not the opposite, because
2733 	 * we are in the context of the process owning bfqq, thus we
2734 	 * have the io_cq of this process. So we can immediately
2735 	 * configure this io_cq to redirect the requests of the
2736 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2737 	 * not available any more (new_bfqq->bic == NULL).
2738 	 *
2739 	 * Anyway, even in case new_bfqq coincides with the in-service
2740 	 * queue, redirecting requests the in-service queue is the
2741 	 * best option, as we feed the in-service queue with new
2742 	 * requests close to the last request served and, by doing so,
2743 	 * are likely to increase the throughput.
2744 	 */
2745 	bfqq->new_bfqq = new_bfqq;
2746 	/*
2747 	 * The above assignment schedules the following redirections:
2748 	 * each time some I/O for bfqq arrives, the process that
2749 	 * generated that I/O is disassociated from bfqq and
2750 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2751 	 * in advance, adding the number of processes that are
2752 	 * expected to be associated with new_bfqq as they happen to
2753 	 * issue I/O.
2754 	 */
2755 	new_bfqq->ref += process_refs;
2756 	return new_bfqq;
2757 }
2758 
2759 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2760 					struct bfq_queue *new_bfqq)
2761 {
2762 	if (bfq_too_late_for_merging(new_bfqq))
2763 		return false;
2764 
2765 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2766 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2767 		return false;
2768 
2769 	/*
2770 	 * If either of the queues has already been detected as seeky,
2771 	 * then merging it with the other queue is unlikely to lead to
2772 	 * sequential I/O.
2773 	 */
2774 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2775 		return false;
2776 
2777 	/*
2778 	 * Interleaved I/O is known to be done by (some) applications
2779 	 * only for reads, so it does not make sense to merge async
2780 	 * queues.
2781 	 */
2782 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2783 		return false;
2784 
2785 	return true;
2786 }
2787 
2788 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2789 					     struct bfq_queue *bfqq);
2790 
2791 /*
2792  * Attempt to schedule a merge of bfqq with the currently in-service
2793  * queue or with a close queue among the scheduled queues.  Return
2794  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2795  * structure otherwise.
2796  *
2797  * The OOM queue is not allowed to participate to cooperation: in fact, since
2798  * the requests temporarily redirected to the OOM queue could be redirected
2799  * again to dedicated queues at any time, the state needed to correctly
2800  * handle merging with the OOM queue would be quite complex and expensive
2801  * to maintain. Besides, in such a critical condition as an out of memory,
2802  * the benefits of queue merging may be little relevant, or even negligible.
2803  *
2804  * WARNING: queue merging may impair fairness among non-weight raised
2805  * queues, for at least two reasons: 1) the original weight of a
2806  * merged queue may change during the merged state, 2) even being the
2807  * weight the same, a merged queue may be bloated with many more
2808  * requests than the ones produced by its originally-associated
2809  * process.
2810  */
2811 static struct bfq_queue *
2812 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2813 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2814 {
2815 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2816 
2817 	/* if a merge has already been setup, then proceed with that first */
2818 	if (bfqq->new_bfqq)
2819 		return bfqq->new_bfqq;
2820 
2821 	/*
2822 	 * Check delayed stable merge for rotational or non-queueing
2823 	 * devs. For this branch to be executed, bfqq must not be
2824 	 * currently merged with some other queue (i.e., bfqq->bic
2825 	 * must be non null). If we considered also merged queues,
2826 	 * then we should also check whether bfqq has already been
2827 	 * merged with bic->stable_merge_bfqq. But this would be
2828 	 * costly and complicated.
2829 	 */
2830 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2831 		/*
2832 		 * Make sure also that bfqq is sync, because
2833 		 * bic->stable_merge_bfqq may point to some queue (for
2834 		 * stable merging) also if bic is associated with a
2835 		 * sync queue, but this bfqq is async
2836 		 */
2837 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2838 		    !bfq_bfqq_just_created(bfqq) &&
2839 		    time_is_before_jiffies(bfqq->split_time +
2840 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2841 		    time_is_before_jiffies(bfqq->creation_time +
2842 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2843 			struct bfq_queue *stable_merge_bfqq =
2844 				bic->stable_merge_bfqq;
2845 			int proc_ref = min(bfqq_process_refs(bfqq),
2846 					   bfqq_process_refs(stable_merge_bfqq));
2847 
2848 			/* deschedule stable merge, because done or aborted here */
2849 			bfq_put_stable_ref(stable_merge_bfqq);
2850 
2851 			bic->stable_merge_bfqq = NULL;
2852 
2853 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2854 			    proc_ref > 0) {
2855 				/* next function will take at least one ref */
2856 				struct bfq_queue *new_bfqq =
2857 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2858 
2859 				if (new_bfqq) {
2860 					bic->stably_merged = true;
2861 					if (new_bfqq->bic)
2862 						new_bfqq->bic->stably_merged =
2863 									true;
2864 				}
2865 				return new_bfqq;
2866 			} else
2867 				return NULL;
2868 		}
2869 	}
2870 
2871 	/*
2872 	 * Do not perform queue merging if the device is non
2873 	 * rotational and performs internal queueing. In fact, such a
2874 	 * device reaches a high speed through internal parallelism
2875 	 * and pipelining. This means that, to reach a high
2876 	 * throughput, it must have many requests enqueued at the same
2877 	 * time. But, in this configuration, the internal scheduling
2878 	 * algorithm of the device does exactly the job of queue
2879 	 * merging: it reorders requests so as to obtain as much as
2880 	 * possible a sequential I/O pattern. As a consequence, with
2881 	 * the workload generated by processes doing interleaved I/O,
2882 	 * the throughput reached by the device is likely to be the
2883 	 * same, with and without queue merging.
2884 	 *
2885 	 * Disabling merging also provides a remarkable benefit in
2886 	 * terms of throughput. Merging tends to make many workloads
2887 	 * artificially more uneven, because of shared queues
2888 	 * remaining non empty for incomparably more time than
2889 	 * non-merged queues. This may accentuate workload
2890 	 * asymmetries. For example, if one of the queues in a set of
2891 	 * merged queues has a higher weight than a normal queue, then
2892 	 * the shared queue may inherit such a high weight and, by
2893 	 * staying almost always active, may force BFQ to perform I/O
2894 	 * plugging most of the time. This evidently makes it harder
2895 	 * for BFQ to let the device reach a high throughput.
2896 	 *
2897 	 * Finally, the likely() macro below is not used because one
2898 	 * of the two branches is more likely than the other, but to
2899 	 * have the code path after the following if() executed as
2900 	 * fast as possible for the case of a non rotational device
2901 	 * with queueing. We want it because this is the fastest kind
2902 	 * of device. On the opposite end, the likely() may lengthen
2903 	 * the execution time of BFQ for the case of slower devices
2904 	 * (rotational or at least without queueing). But in this case
2905 	 * the execution time of BFQ matters very little, if not at
2906 	 * all.
2907 	 */
2908 	if (likely(bfqd->nonrot_with_queueing))
2909 		return NULL;
2910 
2911 	/*
2912 	 * Prevent bfqq from being merged if it has been created too
2913 	 * long ago. The idea is that true cooperating processes, and
2914 	 * thus their associated bfq_queues, are supposed to be
2915 	 * created shortly after each other. This is the case, e.g.,
2916 	 * for KVM/QEMU and dump I/O threads. Basing on this
2917 	 * assumption, the following filtering greatly reduces the
2918 	 * probability that two non-cooperating processes, which just
2919 	 * happen to do close I/O for some short time interval, have
2920 	 * their queues merged by mistake.
2921 	 */
2922 	if (bfq_too_late_for_merging(bfqq))
2923 		return NULL;
2924 
2925 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2926 		return NULL;
2927 
2928 	/* If there is only one backlogged queue, don't search. */
2929 	if (bfq_tot_busy_queues(bfqd) == 1)
2930 		return NULL;
2931 
2932 	in_service_bfqq = bfqd->in_service_queue;
2933 
2934 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2935 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2936 	    bfq_rq_close_to_sector(io_struct, request,
2937 				   bfqd->in_serv_last_pos) &&
2938 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2939 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2940 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2941 		if (new_bfqq)
2942 			return new_bfqq;
2943 	}
2944 	/*
2945 	 * Check whether there is a cooperator among currently scheduled
2946 	 * queues. The only thing we need is that the bio/request is not
2947 	 * NULL, as we need it to establish whether a cooperator exists.
2948 	 */
2949 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2950 			bfq_io_struct_pos(io_struct, request));
2951 
2952 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2953 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2954 		return bfq_setup_merge(bfqq, new_bfqq);
2955 
2956 	return NULL;
2957 }
2958 
2959 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2960 {
2961 	struct bfq_io_cq *bic = bfqq->bic;
2962 
2963 	/*
2964 	 * If !bfqq->bic, the queue is already shared or its requests
2965 	 * have already been redirected to a shared queue; both idle window
2966 	 * and weight raising state have already been saved. Do nothing.
2967 	 */
2968 	if (!bic)
2969 		return;
2970 
2971 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2972 	bic->saved_inject_limit = bfqq->inject_limit;
2973 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2974 
2975 	bic->saved_weight = bfqq->entity.orig_weight;
2976 	bic->saved_ttime = bfqq->ttime;
2977 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2978 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2979 	bic->saved_io_start_time = bfqq->io_start_time;
2980 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2981 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2982 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2983 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2984 		     !bfq_bfqq_in_large_burst(bfqq) &&
2985 		     bfqq->bfqd->low_latency)) {
2986 		/*
2987 		 * bfqq being merged right after being created: bfqq
2988 		 * would have deserved interactive weight raising, but
2989 		 * did not make it to be set in a weight-raised state,
2990 		 * because of this early merge.	Store directly the
2991 		 * weight-raising state that would have been assigned
2992 		 * to bfqq, so that to avoid that bfqq unjustly fails
2993 		 * to enjoy weight raising if split soon.
2994 		 */
2995 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2996 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2997 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2998 		bic->saved_last_wr_start_finish = jiffies;
2999 	} else {
3000 		bic->saved_wr_coeff = bfqq->wr_coeff;
3001 		bic->saved_wr_start_at_switch_to_srt =
3002 			bfqq->wr_start_at_switch_to_srt;
3003 		bic->saved_service_from_wr = bfqq->service_from_wr;
3004 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3005 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3006 	}
3007 }
3008 
3009 
3010 static void
3011 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3012 {
3013 	if (cur_bfqq->entity.parent &&
3014 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3015 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3016 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3017 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3018 }
3019 
3020 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3021 {
3022 	/*
3023 	 * To prevent bfqq's service guarantees from being violated,
3024 	 * bfqq may be left busy, i.e., queued for service, even if
3025 	 * empty (see comments in __bfq_bfqq_expire() for
3026 	 * details). But, if no process will send requests to bfqq any
3027 	 * longer, then there is no point in keeping bfqq queued for
3028 	 * service. In addition, keeping bfqq queued for service, but
3029 	 * with no process ref any longer, may have caused bfqq to be
3030 	 * freed when dequeued from service. But this is assumed to
3031 	 * never happen.
3032 	 */
3033 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3034 	    bfqq != bfqd->in_service_queue)
3035 		bfq_del_bfqq_busy(bfqq, false);
3036 
3037 	bfq_reassign_last_bfqq(bfqq, NULL);
3038 
3039 	bfq_put_queue(bfqq);
3040 }
3041 
3042 static void
3043 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3044 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3045 {
3046 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3047 		(unsigned long)new_bfqq->pid);
3048 	/* Save weight raising and idle window of the merged queues */
3049 	bfq_bfqq_save_state(bfqq);
3050 	bfq_bfqq_save_state(new_bfqq);
3051 	if (bfq_bfqq_IO_bound(bfqq))
3052 		bfq_mark_bfqq_IO_bound(new_bfqq);
3053 	bfq_clear_bfqq_IO_bound(bfqq);
3054 
3055 	/*
3056 	 * The processes associated with bfqq are cooperators of the
3057 	 * processes associated with new_bfqq. So, if bfqq has a
3058 	 * waker, then assume that all these processes will be happy
3059 	 * to let bfqq's waker freely inject I/O when they have no
3060 	 * I/O.
3061 	 */
3062 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3063 	    bfqq->waker_bfqq != new_bfqq) {
3064 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3065 		new_bfqq->tentative_waker_bfqq = NULL;
3066 
3067 		/*
3068 		 * If the waker queue disappears, then
3069 		 * new_bfqq->waker_bfqq must be reset. So insert
3070 		 * new_bfqq into the woken_list of the waker. See
3071 		 * bfq_check_waker for details.
3072 		 */
3073 		hlist_add_head(&new_bfqq->woken_list_node,
3074 			       &new_bfqq->waker_bfqq->woken_list);
3075 
3076 	}
3077 
3078 	/*
3079 	 * If bfqq is weight-raised, then let new_bfqq inherit
3080 	 * weight-raising. To reduce false positives, neglect the case
3081 	 * where bfqq has just been created, but has not yet made it
3082 	 * to be weight-raised (which may happen because EQM may merge
3083 	 * bfqq even before bfq_add_request is executed for the first
3084 	 * time for bfqq). Handling this case would however be very
3085 	 * easy, thanks to the flag just_created.
3086 	 */
3087 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3088 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3089 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3090 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3091 		new_bfqq->wr_start_at_switch_to_srt =
3092 			bfqq->wr_start_at_switch_to_srt;
3093 		if (bfq_bfqq_busy(new_bfqq))
3094 			bfqd->wr_busy_queues++;
3095 		new_bfqq->entity.prio_changed = 1;
3096 	}
3097 
3098 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3099 		bfqq->wr_coeff = 1;
3100 		bfqq->entity.prio_changed = 1;
3101 		if (bfq_bfqq_busy(bfqq))
3102 			bfqd->wr_busy_queues--;
3103 	}
3104 
3105 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3106 		     bfqd->wr_busy_queues);
3107 
3108 	/*
3109 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3110 	 */
3111 	bic_set_bfqq(bic, new_bfqq, 1);
3112 	bfq_mark_bfqq_coop(new_bfqq);
3113 	/*
3114 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3115 	 * set new_bfqq->bic to NULL. bfqq either:
3116 	 * - does not belong to any bic any more, and hence bfqq->bic must
3117 	 *   be set to NULL, or
3118 	 * - is a queue whose owning bics have already been redirected to a
3119 	 *   different queue, hence the queue is destined to not belong to
3120 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3121 	 *   assignment causes no harm).
3122 	 */
3123 	new_bfqq->bic = NULL;
3124 	/*
3125 	 * If the queue is shared, the pid is the pid of one of the associated
3126 	 * processes. Which pid depends on the exact sequence of merge events
3127 	 * the queue underwent. So printing such a pid is useless and confusing
3128 	 * because it reports a random pid between those of the associated
3129 	 * processes.
3130 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3131 	 * a pid in logging messages.
3132 	 */
3133 	new_bfqq->pid = -1;
3134 	bfqq->bic = NULL;
3135 
3136 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3137 
3138 	bfq_release_process_ref(bfqd, bfqq);
3139 }
3140 
3141 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3142 				struct bio *bio)
3143 {
3144 	struct bfq_data *bfqd = q->elevator->elevator_data;
3145 	bool is_sync = op_is_sync(bio->bi_opf);
3146 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3147 
3148 	/*
3149 	 * Disallow merge of a sync bio into an async request.
3150 	 */
3151 	if (is_sync && !rq_is_sync(rq))
3152 		return false;
3153 
3154 	/*
3155 	 * Lookup the bfqq that this bio will be queued with. Allow
3156 	 * merge only if rq is queued there.
3157 	 */
3158 	if (!bfqq)
3159 		return false;
3160 
3161 	/*
3162 	 * We take advantage of this function to perform an early merge
3163 	 * of the queues of possible cooperating processes.
3164 	 */
3165 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3166 	if (new_bfqq) {
3167 		/*
3168 		 * bic still points to bfqq, then it has not yet been
3169 		 * redirected to some other bfq_queue, and a queue
3170 		 * merge between bfqq and new_bfqq can be safely
3171 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3172 		 * and bfqq can be put.
3173 		 */
3174 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3175 				new_bfqq);
3176 		/*
3177 		 * If we get here, bio will be queued into new_queue,
3178 		 * so use new_bfqq to decide whether bio and rq can be
3179 		 * merged.
3180 		 */
3181 		bfqq = new_bfqq;
3182 
3183 		/*
3184 		 * Change also bqfd->bio_bfqq, as
3185 		 * bfqd->bio_bic now points to new_bfqq, and
3186 		 * this function may be invoked again (and then may
3187 		 * use again bqfd->bio_bfqq).
3188 		 */
3189 		bfqd->bio_bfqq = bfqq;
3190 	}
3191 
3192 	return bfqq == RQ_BFQQ(rq);
3193 }
3194 
3195 /*
3196  * Set the maximum time for the in-service queue to consume its
3197  * budget. This prevents seeky processes from lowering the throughput.
3198  * In practice, a time-slice service scheme is used with seeky
3199  * processes.
3200  */
3201 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3202 				   struct bfq_queue *bfqq)
3203 {
3204 	unsigned int timeout_coeff;
3205 
3206 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3207 		timeout_coeff = 1;
3208 	else
3209 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3210 
3211 	bfqd->last_budget_start = ktime_get();
3212 
3213 	bfqq->budget_timeout = jiffies +
3214 		bfqd->bfq_timeout * timeout_coeff;
3215 }
3216 
3217 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3218 				       struct bfq_queue *bfqq)
3219 {
3220 	if (bfqq) {
3221 		bfq_clear_bfqq_fifo_expire(bfqq);
3222 
3223 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3224 
3225 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3226 		    bfqq->wr_coeff > 1 &&
3227 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3228 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3229 			/*
3230 			 * For soft real-time queues, move the start
3231 			 * of the weight-raising period forward by the
3232 			 * time the queue has not received any
3233 			 * service. Otherwise, a relatively long
3234 			 * service delay is likely to cause the
3235 			 * weight-raising period of the queue to end,
3236 			 * because of the short duration of the
3237 			 * weight-raising period of a soft real-time
3238 			 * queue.  It is worth noting that this move
3239 			 * is not so dangerous for the other queues,
3240 			 * because soft real-time queues are not
3241 			 * greedy.
3242 			 *
3243 			 * To not add a further variable, we use the
3244 			 * overloaded field budget_timeout to
3245 			 * determine for how long the queue has not
3246 			 * received service, i.e., how much time has
3247 			 * elapsed since the queue expired. However,
3248 			 * this is a little imprecise, because
3249 			 * budget_timeout is set to jiffies if bfqq
3250 			 * not only expires, but also remains with no
3251 			 * request.
3252 			 */
3253 			if (time_after(bfqq->budget_timeout,
3254 				       bfqq->last_wr_start_finish))
3255 				bfqq->last_wr_start_finish +=
3256 					jiffies - bfqq->budget_timeout;
3257 			else
3258 				bfqq->last_wr_start_finish = jiffies;
3259 		}
3260 
3261 		bfq_set_budget_timeout(bfqd, bfqq);
3262 		bfq_log_bfqq(bfqd, bfqq,
3263 			     "set_in_service_queue, cur-budget = %d",
3264 			     bfqq->entity.budget);
3265 	}
3266 
3267 	bfqd->in_service_queue = bfqq;
3268 	bfqd->in_serv_last_pos = 0;
3269 }
3270 
3271 /*
3272  * Get and set a new queue for service.
3273  */
3274 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3275 {
3276 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3277 
3278 	__bfq_set_in_service_queue(bfqd, bfqq);
3279 	return bfqq;
3280 }
3281 
3282 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3283 {
3284 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3285 	u32 sl;
3286 
3287 	bfq_mark_bfqq_wait_request(bfqq);
3288 
3289 	/*
3290 	 * We don't want to idle for seeks, but we do want to allow
3291 	 * fair distribution of slice time for a process doing back-to-back
3292 	 * seeks. So allow a little bit of time for him to submit a new rq.
3293 	 */
3294 	sl = bfqd->bfq_slice_idle;
3295 	/*
3296 	 * Unless the queue is being weight-raised or the scenario is
3297 	 * asymmetric, grant only minimum idle time if the queue
3298 	 * is seeky. A long idling is preserved for a weight-raised
3299 	 * queue, or, more in general, in an asymmetric scenario,
3300 	 * because a long idling is needed for guaranteeing to a queue
3301 	 * its reserved share of the throughput (in particular, it is
3302 	 * needed if the queue has a higher weight than some other
3303 	 * queue).
3304 	 */
3305 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3306 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3307 		sl = min_t(u64, sl, BFQ_MIN_TT);
3308 	else if (bfqq->wr_coeff > 1)
3309 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3310 
3311 	bfqd->last_idling_start = ktime_get();
3312 	bfqd->last_idling_start_jiffies = jiffies;
3313 
3314 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3315 		      HRTIMER_MODE_REL);
3316 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3317 }
3318 
3319 /*
3320  * In autotuning mode, max_budget is dynamically recomputed as the
3321  * amount of sectors transferred in timeout at the estimated peak
3322  * rate. This enables BFQ to utilize a full timeslice with a full
3323  * budget, even if the in-service queue is served at peak rate. And
3324  * this maximises throughput with sequential workloads.
3325  */
3326 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3327 {
3328 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3329 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3330 }
3331 
3332 /*
3333  * Update parameters related to throughput and responsiveness, as a
3334  * function of the estimated peak rate. See comments on
3335  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3336  */
3337 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3338 {
3339 	if (bfqd->bfq_user_max_budget == 0) {
3340 		bfqd->bfq_max_budget =
3341 			bfq_calc_max_budget(bfqd);
3342 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3343 	}
3344 }
3345 
3346 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3347 				       struct request *rq)
3348 {
3349 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3350 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3351 		bfqd->peak_rate_samples = 1;
3352 		bfqd->sequential_samples = 0;
3353 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3354 			blk_rq_sectors(rq);
3355 	} else /* no new rq dispatched, just reset the number of samples */
3356 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3357 
3358 	bfq_log(bfqd,
3359 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3360 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3361 		bfqd->tot_sectors_dispatched);
3362 }
3363 
3364 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3365 {
3366 	u32 rate, weight, divisor;
3367 
3368 	/*
3369 	 * For the convergence property to hold (see comments on
3370 	 * bfq_update_peak_rate()) and for the assessment to be
3371 	 * reliable, a minimum number of samples must be present, and
3372 	 * a minimum amount of time must have elapsed. If not so, do
3373 	 * not compute new rate. Just reset parameters, to get ready
3374 	 * for a new evaluation attempt.
3375 	 */
3376 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3377 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3378 		goto reset_computation;
3379 
3380 	/*
3381 	 * If a new request completion has occurred after last
3382 	 * dispatch, then, to approximate the rate at which requests
3383 	 * have been served by the device, it is more precise to
3384 	 * extend the observation interval to the last completion.
3385 	 */
3386 	bfqd->delta_from_first =
3387 		max_t(u64, bfqd->delta_from_first,
3388 		      bfqd->last_completion - bfqd->first_dispatch);
3389 
3390 	/*
3391 	 * Rate computed in sects/usec, and not sects/nsec, for
3392 	 * precision issues.
3393 	 */
3394 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3395 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3396 
3397 	/*
3398 	 * Peak rate not updated if:
3399 	 * - the percentage of sequential dispatches is below 3/4 of the
3400 	 *   total, and rate is below the current estimated peak rate
3401 	 * - rate is unreasonably high (> 20M sectors/sec)
3402 	 */
3403 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3404 	     rate <= bfqd->peak_rate) ||
3405 		rate > 20<<BFQ_RATE_SHIFT)
3406 		goto reset_computation;
3407 
3408 	/*
3409 	 * We have to update the peak rate, at last! To this purpose,
3410 	 * we use a low-pass filter. We compute the smoothing constant
3411 	 * of the filter as a function of the 'weight' of the new
3412 	 * measured rate.
3413 	 *
3414 	 * As can be seen in next formulas, we define this weight as a
3415 	 * quantity proportional to how sequential the workload is,
3416 	 * and to how long the observation time interval is.
3417 	 *
3418 	 * The weight runs from 0 to 8. The maximum value of the
3419 	 * weight, 8, yields the minimum value for the smoothing
3420 	 * constant. At this minimum value for the smoothing constant,
3421 	 * the measured rate contributes for half of the next value of
3422 	 * the estimated peak rate.
3423 	 *
3424 	 * So, the first step is to compute the weight as a function
3425 	 * of how sequential the workload is. Note that the weight
3426 	 * cannot reach 9, because bfqd->sequential_samples cannot
3427 	 * become equal to bfqd->peak_rate_samples, which, in its
3428 	 * turn, holds true because bfqd->sequential_samples is not
3429 	 * incremented for the first sample.
3430 	 */
3431 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3432 
3433 	/*
3434 	 * Second step: further refine the weight as a function of the
3435 	 * duration of the observation interval.
3436 	 */
3437 	weight = min_t(u32, 8,
3438 		       div_u64(weight * bfqd->delta_from_first,
3439 			       BFQ_RATE_REF_INTERVAL));
3440 
3441 	/*
3442 	 * Divisor ranging from 10, for minimum weight, to 2, for
3443 	 * maximum weight.
3444 	 */
3445 	divisor = 10 - weight;
3446 
3447 	/*
3448 	 * Finally, update peak rate:
3449 	 *
3450 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3451 	 */
3452 	bfqd->peak_rate *= divisor-1;
3453 	bfqd->peak_rate /= divisor;
3454 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3455 
3456 	bfqd->peak_rate += rate;
3457 
3458 	/*
3459 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3460 	 * the minimum representable values reported in the comments
3461 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3462 	 * divisions by zero where bfqd->peak_rate is used as a
3463 	 * divisor.
3464 	 */
3465 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3466 
3467 	update_thr_responsiveness_params(bfqd);
3468 
3469 reset_computation:
3470 	bfq_reset_rate_computation(bfqd, rq);
3471 }
3472 
3473 /*
3474  * Update the read/write peak rate (the main quantity used for
3475  * auto-tuning, see update_thr_responsiveness_params()).
3476  *
3477  * It is not trivial to estimate the peak rate (correctly): because of
3478  * the presence of sw and hw queues between the scheduler and the
3479  * device components that finally serve I/O requests, it is hard to
3480  * say exactly when a given dispatched request is served inside the
3481  * device, and for how long. As a consequence, it is hard to know
3482  * precisely at what rate a given set of requests is actually served
3483  * by the device.
3484  *
3485  * On the opposite end, the dispatch time of any request is trivially
3486  * available, and, from this piece of information, the "dispatch rate"
3487  * of requests can be immediately computed. So, the idea in the next
3488  * function is to use what is known, namely request dispatch times
3489  * (plus, when useful, request completion times), to estimate what is
3490  * unknown, namely in-device request service rate.
3491  *
3492  * The main issue is that, because of the above facts, the rate at
3493  * which a certain set of requests is dispatched over a certain time
3494  * interval can vary greatly with respect to the rate at which the
3495  * same requests are then served. But, since the size of any
3496  * intermediate queue is limited, and the service scheme is lossless
3497  * (no request is silently dropped), the following obvious convergence
3498  * property holds: the number of requests dispatched MUST become
3499  * closer and closer to the number of requests completed as the
3500  * observation interval grows. This is the key property used in
3501  * the next function to estimate the peak service rate as a function
3502  * of the observed dispatch rate. The function assumes to be invoked
3503  * on every request dispatch.
3504  */
3505 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3506 {
3507 	u64 now_ns = ktime_get_ns();
3508 
3509 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3510 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3511 			bfqd->peak_rate_samples);
3512 		bfq_reset_rate_computation(bfqd, rq);
3513 		goto update_last_values; /* will add one sample */
3514 	}
3515 
3516 	/*
3517 	 * Device idle for very long: the observation interval lasting
3518 	 * up to this dispatch cannot be a valid observation interval
3519 	 * for computing a new peak rate (similarly to the late-
3520 	 * completion event in bfq_completed_request()). Go to
3521 	 * update_rate_and_reset to have the following three steps
3522 	 * taken:
3523 	 * - close the observation interval at the last (previous)
3524 	 *   request dispatch or completion
3525 	 * - compute rate, if possible, for that observation interval
3526 	 * - start a new observation interval with this dispatch
3527 	 */
3528 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3529 	    bfqd->rq_in_driver == 0)
3530 		goto update_rate_and_reset;
3531 
3532 	/* Update sampling information */
3533 	bfqd->peak_rate_samples++;
3534 
3535 	if ((bfqd->rq_in_driver > 0 ||
3536 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3537 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3538 		bfqd->sequential_samples++;
3539 
3540 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3541 
3542 	/* Reset max observed rq size every 32 dispatches */
3543 	if (likely(bfqd->peak_rate_samples % 32))
3544 		bfqd->last_rq_max_size =
3545 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3546 	else
3547 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3548 
3549 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3550 
3551 	/* Target observation interval not yet reached, go on sampling */
3552 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3553 		goto update_last_values;
3554 
3555 update_rate_and_reset:
3556 	bfq_update_rate_reset(bfqd, rq);
3557 update_last_values:
3558 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3559 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3560 		bfqd->in_serv_last_pos = bfqd->last_position;
3561 	bfqd->last_dispatch = now_ns;
3562 }
3563 
3564 /*
3565  * Remove request from internal lists.
3566  */
3567 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3568 {
3569 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3570 
3571 	/*
3572 	 * For consistency, the next instruction should have been
3573 	 * executed after removing the request from the queue and
3574 	 * dispatching it.  We execute instead this instruction before
3575 	 * bfq_remove_request() (and hence introduce a temporary
3576 	 * inconsistency), for efficiency.  In fact, should this
3577 	 * dispatch occur for a non in-service bfqq, this anticipated
3578 	 * increment prevents two counters related to bfqq->dispatched
3579 	 * from risking to be, first, uselessly decremented, and then
3580 	 * incremented again when the (new) value of bfqq->dispatched
3581 	 * happens to be taken into account.
3582 	 */
3583 	bfqq->dispatched++;
3584 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3585 
3586 	bfq_remove_request(q, rq);
3587 }
3588 
3589 /*
3590  * There is a case where idling does not have to be performed for
3591  * throughput concerns, but to preserve the throughput share of
3592  * the process associated with bfqq.
3593  *
3594  * To introduce this case, we can note that allowing the drive
3595  * to enqueue more than one request at a time, and hence
3596  * delegating de facto final scheduling decisions to the
3597  * drive's internal scheduler, entails loss of control on the
3598  * actual request service order. In particular, the critical
3599  * situation is when requests from different processes happen
3600  * to be present, at the same time, in the internal queue(s)
3601  * of the drive. In such a situation, the drive, by deciding
3602  * the service order of the internally-queued requests, does
3603  * determine also the actual throughput distribution among
3604  * these processes. But the drive typically has no notion or
3605  * concern about per-process throughput distribution, and
3606  * makes its decisions only on a per-request basis. Therefore,
3607  * the service distribution enforced by the drive's internal
3608  * scheduler is likely to coincide with the desired throughput
3609  * distribution only in a completely symmetric, or favorably
3610  * skewed scenario where:
3611  * (i-a) each of these processes must get the same throughput as
3612  *	 the others,
3613  * (i-b) in case (i-a) does not hold, it holds that the process
3614  *       associated with bfqq must receive a lower or equal
3615  *	 throughput than any of the other processes;
3616  * (ii)  the I/O of each process has the same properties, in
3617  *       terms of locality (sequential or random), direction
3618  *       (reads or writes), request sizes, greediness
3619  *       (from I/O-bound to sporadic), and so on;
3620 
3621  * In fact, in such a scenario, the drive tends to treat the requests
3622  * of each process in about the same way as the requests of the
3623  * others, and thus to provide each of these processes with about the
3624  * same throughput.  This is exactly the desired throughput
3625  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3626  * even more convenient distribution for (the process associated with)
3627  * bfqq.
3628  *
3629  * In contrast, in any asymmetric or unfavorable scenario, device
3630  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3631  * that bfqq receives its assigned fraction of the device throughput
3632  * (see [1] for details).
3633  *
3634  * The problem is that idling may significantly reduce throughput with
3635  * certain combinations of types of I/O and devices. An important
3636  * example is sync random I/O on flash storage with command
3637  * queueing. So, unless bfqq falls in cases where idling also boosts
3638  * throughput, it is important to check conditions (i-a), i(-b) and
3639  * (ii) accurately, so as to avoid idling when not strictly needed for
3640  * service guarantees.
3641  *
3642  * Unfortunately, it is extremely difficult to thoroughly check
3643  * condition (ii). And, in case there are active groups, it becomes
3644  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3645  * if there are active groups, then, for conditions (i-a) or (i-b) to
3646  * become false 'indirectly', it is enough that an active group
3647  * contains more active processes or sub-groups than some other active
3648  * group. More precisely, for conditions (i-a) or (i-b) to become
3649  * false because of such a group, it is not even necessary that the
3650  * group is (still) active: it is sufficient that, even if the group
3651  * has become inactive, some of its descendant processes still have
3652  * some request already dispatched but still waiting for
3653  * completion. In fact, requests have still to be guaranteed their
3654  * share of the throughput even after being dispatched. In this
3655  * respect, it is easy to show that, if a group frequently becomes
3656  * inactive while still having in-flight requests, and if, when this
3657  * happens, the group is not considered in the calculation of whether
3658  * the scenario is asymmetric, then the group may fail to be
3659  * guaranteed its fair share of the throughput (basically because
3660  * idling may not be performed for the descendant processes of the
3661  * group, but it had to be).  We address this issue with the following
3662  * bi-modal behavior, implemented in the function
3663  * bfq_asymmetric_scenario().
3664  *
3665  * If there are groups with requests waiting for completion
3666  * (as commented above, some of these groups may even be
3667  * already inactive), then the scenario is tagged as
3668  * asymmetric, conservatively, without checking any of the
3669  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3670  * This behavior matches also the fact that groups are created
3671  * exactly if controlling I/O is a primary concern (to
3672  * preserve bandwidth and latency guarantees).
3673  *
3674  * On the opposite end, if there are no groups with requests waiting
3675  * for completion, then only conditions (i-a) and (i-b) are actually
3676  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3677  * idling is not performed, regardless of whether condition (ii)
3678  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3679  * hold, then idling is allowed, and the device tends to be prevented
3680  * from queueing many requests, possibly of several processes. Since
3681  * there are no groups with requests waiting for completion, then, to
3682  * control conditions (i-a) and (i-b) it is enough to check just
3683  * whether all the queues with requests waiting for completion also
3684  * have the same weight.
3685  *
3686  * Not checking condition (ii) evidently exposes bfqq to the
3687  * risk of getting less throughput than its fair share.
3688  * However, for queues with the same weight, a further
3689  * mechanism, preemption, mitigates or even eliminates this
3690  * problem. And it does so without consequences on overall
3691  * throughput. This mechanism and its benefits are explained
3692  * in the next three paragraphs.
3693  *
3694  * Even if a queue, say Q, is expired when it remains idle, Q
3695  * can still preempt the new in-service queue if the next
3696  * request of Q arrives soon (see the comments on
3697  * bfq_bfqq_update_budg_for_activation). If all queues and
3698  * groups have the same weight, this form of preemption,
3699  * combined with the hole-recovery heuristic described in the
3700  * comments on function bfq_bfqq_update_budg_for_activation,
3701  * are enough to preserve a correct bandwidth distribution in
3702  * the mid term, even without idling. In fact, even if not
3703  * idling allows the internal queues of the device to contain
3704  * many requests, and thus to reorder requests, we can rather
3705  * safely assume that the internal scheduler still preserves a
3706  * minimum of mid-term fairness.
3707  *
3708  * More precisely, this preemption-based, idleless approach
3709  * provides fairness in terms of IOPS, and not sectors per
3710  * second. This can be seen with a simple example. Suppose
3711  * that there are two queues with the same weight, but that
3712  * the first queue receives requests of 8 sectors, while the
3713  * second queue receives requests of 1024 sectors. In
3714  * addition, suppose that each of the two queues contains at
3715  * most one request at a time, which implies that each queue
3716  * always remains idle after it is served. Finally, after
3717  * remaining idle, each queue receives very quickly a new
3718  * request. It follows that the two queues are served
3719  * alternatively, preempting each other if needed. This
3720  * implies that, although both queues have the same weight,
3721  * the queue with large requests receives a service that is
3722  * 1024/8 times as high as the service received by the other
3723  * queue.
3724  *
3725  * The motivation for using preemption instead of idling (for
3726  * queues with the same weight) is that, by not idling,
3727  * service guarantees are preserved (completely or at least in
3728  * part) without minimally sacrificing throughput. And, if
3729  * there is no active group, then the primary expectation for
3730  * this device is probably a high throughput.
3731  *
3732  * We are now left only with explaining the two sub-conditions in the
3733  * additional compound condition that is checked below for deciding
3734  * whether the scenario is asymmetric. To explain the first
3735  * sub-condition, we need to add that the function
3736  * bfq_asymmetric_scenario checks the weights of only
3737  * non-weight-raised queues, for efficiency reasons (see comments on
3738  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3739  * is checked explicitly here. More precisely, the compound condition
3740  * below takes into account also the fact that, even if bfqq is being
3741  * weight-raised, the scenario is still symmetric if all queues with
3742  * requests waiting for completion happen to be
3743  * weight-raised. Actually, we should be even more precise here, and
3744  * differentiate between interactive weight raising and soft real-time
3745  * weight raising.
3746  *
3747  * The second sub-condition checked in the compound condition is
3748  * whether there is a fair amount of already in-flight I/O not
3749  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3750  * following reason. The drive may decide to serve in-flight
3751  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3752  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3753  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3754  * basically uncontrolled amount of I/O from other queues may be
3755  * dispatched too, possibly causing the service of bfqq's I/O to be
3756  * delayed even longer in the drive. This problem gets more and more
3757  * serious as the speed and the queue depth of the drive grow,
3758  * because, as these two quantities grow, the probability to find no
3759  * queue busy but many requests in flight grows too. By contrast,
3760  * plugging I/O dispatching minimizes the delay induced by already
3761  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3762  * lose because of this delay.
3763  *
3764  * As a side note, it is worth considering that the above
3765  * device-idling countermeasures may however fail in the following
3766  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3767  * in a time period during which all symmetry sub-conditions hold, and
3768  * therefore the device is allowed to enqueue many requests, but at
3769  * some later point in time some sub-condition stops to hold, then it
3770  * may become impossible to make requests be served in the desired
3771  * order until all the requests already queued in the device have been
3772  * served. The last sub-condition commented above somewhat mitigates
3773  * this problem for weight-raised queues.
3774  *
3775  * However, as an additional mitigation for this problem, we preserve
3776  * plugging for a special symmetric case that may suddenly turn into
3777  * asymmetric: the case where only bfqq is busy. In this case, not
3778  * expiring bfqq does not cause any harm to any other queues in terms
3779  * of service guarantees. In contrast, it avoids the following unlucky
3780  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3781  * lower weight than bfqq becomes busy (or more queues), (3) the new
3782  * queue is served until a new request arrives for bfqq, (4) when bfqq
3783  * is finally served, there are so many requests of the new queue in
3784  * the drive that the pending requests for bfqq take a lot of time to
3785  * be served. In particular, event (2) may case even already
3786  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3787  * avoid this series of events, the scenario is preventively declared
3788  * as asymmetric also if bfqq is the only busy queues
3789  */
3790 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3791 						 struct bfq_queue *bfqq)
3792 {
3793 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3794 
3795 	/* No point in idling for bfqq if it won't get requests any longer */
3796 	if (unlikely(!bfqq_process_refs(bfqq)))
3797 		return false;
3798 
3799 	return (bfqq->wr_coeff > 1 &&
3800 		(bfqd->wr_busy_queues <
3801 		 tot_busy_queues ||
3802 		 bfqd->rq_in_driver >=
3803 		 bfqq->dispatched + 4)) ||
3804 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3805 		tot_busy_queues == 1;
3806 }
3807 
3808 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3809 			      enum bfqq_expiration reason)
3810 {
3811 	/*
3812 	 * If this bfqq is shared between multiple processes, check
3813 	 * to make sure that those processes are still issuing I/Os
3814 	 * within the mean seek distance. If not, it may be time to
3815 	 * break the queues apart again.
3816 	 */
3817 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3818 		bfq_mark_bfqq_split_coop(bfqq);
3819 
3820 	/*
3821 	 * Consider queues with a higher finish virtual time than
3822 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3823 	 * true, then bfqq's bandwidth would be violated if an
3824 	 * uncontrolled amount of I/O from these queues were
3825 	 * dispatched while bfqq is waiting for its new I/O to
3826 	 * arrive. This is exactly what may happen if this is a forced
3827 	 * expiration caused by a preemption attempt, and if bfqq is
3828 	 * not re-scheduled. To prevent this from happening, re-queue
3829 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3830 	 * empty. By doing so, bfqq is granted to be served before the
3831 	 * above queues (provided that bfqq is of course eligible).
3832 	 */
3833 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3834 	    !(reason == BFQQE_PREEMPTED &&
3835 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3836 		if (bfqq->dispatched == 0)
3837 			/*
3838 			 * Overloading budget_timeout field to store
3839 			 * the time at which the queue remains with no
3840 			 * backlog and no outstanding request; used by
3841 			 * the weight-raising mechanism.
3842 			 */
3843 			bfqq->budget_timeout = jiffies;
3844 
3845 		bfq_del_bfqq_busy(bfqq, true);
3846 	} else {
3847 		bfq_requeue_bfqq(bfqd, bfqq, true);
3848 		/*
3849 		 * Resort priority tree of potential close cooperators.
3850 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3851 		 */
3852 		if (unlikely(!bfqd->nonrot_with_queueing &&
3853 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3854 			bfq_pos_tree_add_move(bfqd, bfqq);
3855 	}
3856 
3857 	/*
3858 	 * All in-service entities must have been properly deactivated
3859 	 * or requeued before executing the next function, which
3860 	 * resets all in-service entities as no more in service. This
3861 	 * may cause bfqq to be freed. If this happens, the next
3862 	 * function returns true.
3863 	 */
3864 	return __bfq_bfqd_reset_in_service(bfqd);
3865 }
3866 
3867 /**
3868  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3869  * @bfqd: device data.
3870  * @bfqq: queue to update.
3871  * @reason: reason for expiration.
3872  *
3873  * Handle the feedback on @bfqq budget at queue expiration.
3874  * See the body for detailed comments.
3875  */
3876 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3877 				     struct bfq_queue *bfqq,
3878 				     enum bfqq_expiration reason)
3879 {
3880 	struct request *next_rq;
3881 	int budget, min_budget;
3882 
3883 	min_budget = bfq_min_budget(bfqd);
3884 
3885 	if (bfqq->wr_coeff == 1)
3886 		budget = bfqq->max_budget;
3887 	else /*
3888 	      * Use a constant, low budget for weight-raised queues,
3889 	      * to help achieve a low latency. Keep it slightly higher
3890 	      * than the minimum possible budget, to cause a little
3891 	      * bit fewer expirations.
3892 	      */
3893 		budget = 2 * min_budget;
3894 
3895 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3896 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3897 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3898 		budget, bfq_min_budget(bfqd));
3899 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3900 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3901 
3902 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3903 		switch (reason) {
3904 		/*
3905 		 * Caveat: in all the following cases we trade latency
3906 		 * for throughput.
3907 		 */
3908 		case BFQQE_TOO_IDLE:
3909 			/*
3910 			 * This is the only case where we may reduce
3911 			 * the budget: if there is no request of the
3912 			 * process still waiting for completion, then
3913 			 * we assume (tentatively) that the timer has
3914 			 * expired because the batch of requests of
3915 			 * the process could have been served with a
3916 			 * smaller budget.  Hence, betting that
3917 			 * process will behave in the same way when it
3918 			 * becomes backlogged again, we reduce its
3919 			 * next budget.  As long as we guess right,
3920 			 * this budget cut reduces the latency
3921 			 * experienced by the process.
3922 			 *
3923 			 * However, if there are still outstanding
3924 			 * requests, then the process may have not yet
3925 			 * issued its next request just because it is
3926 			 * still waiting for the completion of some of
3927 			 * the still outstanding ones.  So in this
3928 			 * subcase we do not reduce its budget, on the
3929 			 * contrary we increase it to possibly boost
3930 			 * the throughput, as discussed in the
3931 			 * comments to the BUDGET_TIMEOUT case.
3932 			 */
3933 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3934 				budget = min(budget * 2, bfqd->bfq_max_budget);
3935 			else {
3936 				if (budget > 5 * min_budget)
3937 					budget -= 4 * min_budget;
3938 				else
3939 					budget = min_budget;
3940 			}
3941 			break;
3942 		case BFQQE_BUDGET_TIMEOUT:
3943 			/*
3944 			 * We double the budget here because it gives
3945 			 * the chance to boost the throughput if this
3946 			 * is not a seeky process (and has bumped into
3947 			 * this timeout because of, e.g., ZBR).
3948 			 */
3949 			budget = min(budget * 2, bfqd->bfq_max_budget);
3950 			break;
3951 		case BFQQE_BUDGET_EXHAUSTED:
3952 			/*
3953 			 * The process still has backlog, and did not
3954 			 * let either the budget timeout or the disk
3955 			 * idling timeout expire. Hence it is not
3956 			 * seeky, has a short thinktime and may be
3957 			 * happy with a higher budget too. So
3958 			 * definitely increase the budget of this good
3959 			 * candidate to boost the disk throughput.
3960 			 */
3961 			budget = min(budget * 4, bfqd->bfq_max_budget);
3962 			break;
3963 		case BFQQE_NO_MORE_REQUESTS:
3964 			/*
3965 			 * For queues that expire for this reason, it
3966 			 * is particularly important to keep the
3967 			 * budget close to the actual service they
3968 			 * need. Doing so reduces the timestamp
3969 			 * misalignment problem described in the
3970 			 * comments in the body of
3971 			 * __bfq_activate_entity. In fact, suppose
3972 			 * that a queue systematically expires for
3973 			 * BFQQE_NO_MORE_REQUESTS and presents a
3974 			 * new request in time to enjoy timestamp
3975 			 * back-shifting. The larger the budget of the
3976 			 * queue is with respect to the service the
3977 			 * queue actually requests in each service
3978 			 * slot, the more times the queue can be
3979 			 * reactivated with the same virtual finish
3980 			 * time. It follows that, even if this finish
3981 			 * time is pushed to the system virtual time
3982 			 * to reduce the consequent timestamp
3983 			 * misalignment, the queue unjustly enjoys for
3984 			 * many re-activations a lower finish time
3985 			 * than all newly activated queues.
3986 			 *
3987 			 * The service needed by bfqq is measured
3988 			 * quite precisely by bfqq->entity.service.
3989 			 * Since bfqq does not enjoy device idling,
3990 			 * bfqq->entity.service is equal to the number
3991 			 * of sectors that the process associated with
3992 			 * bfqq requested to read/write before waiting
3993 			 * for request completions, or blocking for
3994 			 * other reasons.
3995 			 */
3996 			budget = max_t(int, bfqq->entity.service, min_budget);
3997 			break;
3998 		default:
3999 			return;
4000 		}
4001 	} else if (!bfq_bfqq_sync(bfqq)) {
4002 		/*
4003 		 * Async queues get always the maximum possible
4004 		 * budget, as for them we do not care about latency
4005 		 * (in addition, their ability to dispatch is limited
4006 		 * by the charging factor).
4007 		 */
4008 		budget = bfqd->bfq_max_budget;
4009 	}
4010 
4011 	bfqq->max_budget = budget;
4012 
4013 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4014 	    !bfqd->bfq_user_max_budget)
4015 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4016 
4017 	/*
4018 	 * If there is still backlog, then assign a new budget, making
4019 	 * sure that it is large enough for the next request.  Since
4020 	 * the finish time of bfqq must be kept in sync with the
4021 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4022 	 * update.
4023 	 *
4024 	 * If there is no backlog, then no need to update the budget;
4025 	 * it will be updated on the arrival of a new request.
4026 	 */
4027 	next_rq = bfqq->next_rq;
4028 	if (next_rq)
4029 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4030 					    bfq_serv_to_charge(next_rq, bfqq));
4031 
4032 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4033 			next_rq ? blk_rq_sectors(next_rq) : 0,
4034 			bfqq->entity.budget);
4035 }
4036 
4037 /*
4038  * Return true if the process associated with bfqq is "slow". The slow
4039  * flag is used, in addition to the budget timeout, to reduce the
4040  * amount of service provided to seeky processes, and thus reduce
4041  * their chances to lower the throughput. More details in the comments
4042  * on the function bfq_bfqq_expire().
4043  *
4044  * An important observation is in order: as discussed in the comments
4045  * on the function bfq_update_peak_rate(), with devices with internal
4046  * queues, it is hard if ever possible to know when and for how long
4047  * an I/O request is processed by the device (apart from the trivial
4048  * I/O pattern where a new request is dispatched only after the
4049  * previous one has been completed). This makes it hard to evaluate
4050  * the real rate at which the I/O requests of each bfq_queue are
4051  * served.  In fact, for an I/O scheduler like BFQ, serving a
4052  * bfq_queue means just dispatching its requests during its service
4053  * slot (i.e., until the budget of the queue is exhausted, or the
4054  * queue remains idle, or, finally, a timeout fires). But, during the
4055  * service slot of a bfq_queue, around 100 ms at most, the device may
4056  * be even still processing requests of bfq_queues served in previous
4057  * service slots. On the opposite end, the requests of the in-service
4058  * bfq_queue may be completed after the service slot of the queue
4059  * finishes.
4060  *
4061  * Anyway, unless more sophisticated solutions are used
4062  * (where possible), the sum of the sizes of the requests dispatched
4063  * during the service slot of a bfq_queue is probably the only
4064  * approximation available for the service received by the bfq_queue
4065  * during its service slot. And this sum is the quantity used in this
4066  * function to evaluate the I/O speed of a process.
4067  */
4068 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4069 				 bool compensate, enum bfqq_expiration reason,
4070 				 unsigned long *delta_ms)
4071 {
4072 	ktime_t delta_ktime;
4073 	u32 delta_usecs;
4074 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4075 
4076 	if (!bfq_bfqq_sync(bfqq))
4077 		return false;
4078 
4079 	if (compensate)
4080 		delta_ktime = bfqd->last_idling_start;
4081 	else
4082 		delta_ktime = ktime_get();
4083 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4084 	delta_usecs = ktime_to_us(delta_ktime);
4085 
4086 	/* don't use too short time intervals */
4087 	if (delta_usecs < 1000) {
4088 		if (blk_queue_nonrot(bfqd->queue))
4089 			 /*
4090 			  * give same worst-case guarantees as idling
4091 			  * for seeky
4092 			  */
4093 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4094 		else /* charge at least one seek */
4095 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4096 
4097 		return slow;
4098 	}
4099 
4100 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4101 
4102 	/*
4103 	 * Use only long (> 20ms) intervals to filter out excessive
4104 	 * spikes in service rate estimation.
4105 	 */
4106 	if (delta_usecs > 20000) {
4107 		/*
4108 		 * Caveat for rotational devices: processes doing I/O
4109 		 * in the slower disk zones tend to be slow(er) even
4110 		 * if not seeky. In this respect, the estimated peak
4111 		 * rate is likely to be an average over the disk
4112 		 * surface. Accordingly, to not be too harsh with
4113 		 * unlucky processes, a process is deemed slow only if
4114 		 * its rate has been lower than half of the estimated
4115 		 * peak rate.
4116 		 */
4117 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4118 	}
4119 
4120 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4121 
4122 	return slow;
4123 }
4124 
4125 /*
4126  * To be deemed as soft real-time, an application must meet two
4127  * requirements. First, the application must not require an average
4128  * bandwidth higher than the approximate bandwidth required to playback or
4129  * record a compressed high-definition video.
4130  * The next function is invoked on the completion of the last request of a
4131  * batch, to compute the next-start time instant, soft_rt_next_start, such
4132  * that, if the next request of the application does not arrive before
4133  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4134  *
4135  * The second requirement is that the request pattern of the application is
4136  * isochronous, i.e., that, after issuing a request or a batch of requests,
4137  * the application stops issuing new requests until all its pending requests
4138  * have been completed. After that, the application may issue a new batch,
4139  * and so on.
4140  * For this reason the next function is invoked to compute
4141  * soft_rt_next_start only for applications that meet this requirement,
4142  * whereas soft_rt_next_start is set to infinity for applications that do
4143  * not.
4144  *
4145  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4146  * happen to meet, occasionally or systematically, both the above
4147  * bandwidth and isochrony requirements. This may happen at least in
4148  * the following circumstances. First, if the CPU load is high. The
4149  * application may stop issuing requests while the CPUs are busy
4150  * serving other processes, then restart, then stop again for a while,
4151  * and so on. The other circumstances are related to the storage
4152  * device: the storage device is highly loaded or reaches a low-enough
4153  * throughput with the I/O of the application (e.g., because the I/O
4154  * is random and/or the device is slow). In all these cases, the
4155  * I/O of the application may be simply slowed down enough to meet
4156  * the bandwidth and isochrony requirements. To reduce the probability
4157  * that greedy applications are deemed as soft real-time in these
4158  * corner cases, a further rule is used in the computation of
4159  * soft_rt_next_start: the return value of this function is forced to
4160  * be higher than the maximum between the following two quantities.
4161  *
4162  * (a) Current time plus: (1) the maximum time for which the arrival
4163  *     of a request is waited for when a sync queue becomes idle,
4164  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4165  *     postpone for a moment the reason for adding a few extra
4166  *     jiffies; we get back to it after next item (b).  Lower-bounding
4167  *     the return value of this function with the current time plus
4168  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4169  *     because the latter issue their next request as soon as possible
4170  *     after the last one has been completed. In contrast, a soft
4171  *     real-time application spends some time processing data, after a
4172  *     batch of its requests has been completed.
4173  *
4174  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4175  *     above, greedy applications may happen to meet both the
4176  *     bandwidth and isochrony requirements under heavy CPU or
4177  *     storage-device load. In more detail, in these scenarios, these
4178  *     applications happen, only for limited time periods, to do I/O
4179  *     slowly enough to meet all the requirements described so far,
4180  *     including the filtering in above item (a). These slow-speed
4181  *     time intervals are usually interspersed between other time
4182  *     intervals during which these applications do I/O at a very high
4183  *     speed. Fortunately, exactly because of the high speed of the
4184  *     I/O in the high-speed intervals, the values returned by this
4185  *     function happen to be so high, near the end of any such
4186  *     high-speed interval, to be likely to fall *after* the end of
4187  *     the low-speed time interval that follows. These high values are
4188  *     stored in bfqq->soft_rt_next_start after each invocation of
4189  *     this function. As a consequence, if the last value of
4190  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4191  *     next value that this function may return, then, from the very
4192  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4193  *     likely to be constantly kept so high that any I/O request
4194  *     issued during the low-speed interval is considered as arriving
4195  *     to soon for the application to be deemed as soft
4196  *     real-time. Then, in the high-speed interval that follows, the
4197  *     application will not be deemed as soft real-time, just because
4198  *     it will do I/O at a high speed. And so on.
4199  *
4200  * Getting back to the filtering in item (a), in the following two
4201  * cases this filtering might be easily passed by a greedy
4202  * application, if the reference quantity was just
4203  * bfqd->bfq_slice_idle:
4204  * 1) HZ is so low that the duration of a jiffy is comparable to or
4205  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4206  *    devices with HZ=100. The time granularity may be so coarse
4207  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4208  *    is rather lower than the exact value.
4209  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4210  *    for a while, then suddenly 'jump' by several units to recover the lost
4211  *    increments. This seems to happen, e.g., inside virtual machines.
4212  * To address this issue, in the filtering in (a) we do not use as a
4213  * reference time interval just bfqd->bfq_slice_idle, but
4214  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4215  * minimum number of jiffies for which the filter seems to be quite
4216  * precise also in embedded systems and KVM/QEMU virtual machines.
4217  */
4218 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4219 						struct bfq_queue *bfqq)
4220 {
4221 	return max3(bfqq->soft_rt_next_start,
4222 		    bfqq->last_idle_bklogged +
4223 		    HZ * bfqq->service_from_backlogged /
4224 		    bfqd->bfq_wr_max_softrt_rate,
4225 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4226 }
4227 
4228 /**
4229  * bfq_bfqq_expire - expire a queue.
4230  * @bfqd: device owning the queue.
4231  * @bfqq: the queue to expire.
4232  * @compensate: if true, compensate for the time spent idling.
4233  * @reason: the reason causing the expiration.
4234  *
4235  * If the process associated with bfqq does slow I/O (e.g., because it
4236  * issues random requests), we charge bfqq with the time it has been
4237  * in service instead of the service it has received (see
4238  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4239  * a consequence, bfqq will typically get higher timestamps upon
4240  * reactivation, and hence it will be rescheduled as if it had
4241  * received more service than what it has actually received. In the
4242  * end, bfqq receives less service in proportion to how slowly its
4243  * associated process consumes its budgets (and hence how seriously it
4244  * tends to lower the throughput). In addition, this time-charging
4245  * strategy guarantees time fairness among slow processes. In
4246  * contrast, if the process associated with bfqq is not slow, we
4247  * charge bfqq exactly with the service it has received.
4248  *
4249  * Charging time to the first type of queues and the exact service to
4250  * the other has the effect of using the WF2Q+ policy to schedule the
4251  * former on a timeslice basis, without violating service domain
4252  * guarantees among the latter.
4253  */
4254 void bfq_bfqq_expire(struct bfq_data *bfqd,
4255 		     struct bfq_queue *bfqq,
4256 		     bool compensate,
4257 		     enum bfqq_expiration reason)
4258 {
4259 	bool slow;
4260 	unsigned long delta = 0;
4261 	struct bfq_entity *entity = &bfqq->entity;
4262 
4263 	/*
4264 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4265 	 */
4266 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4267 
4268 	/*
4269 	 * As above explained, charge slow (typically seeky) and
4270 	 * timed-out queues with the time and not the service
4271 	 * received, to favor sequential workloads.
4272 	 *
4273 	 * Processes doing I/O in the slower disk zones will tend to
4274 	 * be slow(er) even if not seeky. Therefore, since the
4275 	 * estimated peak rate is actually an average over the disk
4276 	 * surface, these processes may timeout just for bad luck. To
4277 	 * avoid punishing them, do not charge time to processes that
4278 	 * succeeded in consuming at least 2/3 of their budget. This
4279 	 * allows BFQ to preserve enough elasticity to still perform
4280 	 * bandwidth, and not time, distribution with little unlucky
4281 	 * or quasi-sequential processes.
4282 	 */
4283 	if (bfqq->wr_coeff == 1 &&
4284 	    (slow ||
4285 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4286 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4287 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4288 
4289 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4290 		bfqq->last_wr_start_finish = jiffies;
4291 
4292 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4293 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4294 		/*
4295 		 * If we get here, and there are no outstanding
4296 		 * requests, then the request pattern is isochronous
4297 		 * (see the comments on the function
4298 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4299 		 * compute soft_rt_next_start.
4300 		 *
4301 		 * If, instead, the queue still has outstanding
4302 		 * requests, then we have to wait for the completion
4303 		 * of all the outstanding requests to discover whether
4304 		 * the request pattern is actually isochronous.
4305 		 */
4306 		if (bfqq->dispatched == 0)
4307 			bfqq->soft_rt_next_start =
4308 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4309 		else if (bfqq->dispatched > 0) {
4310 			/*
4311 			 * Schedule an update of soft_rt_next_start to when
4312 			 * the task may be discovered to be isochronous.
4313 			 */
4314 			bfq_mark_bfqq_softrt_update(bfqq);
4315 		}
4316 	}
4317 
4318 	bfq_log_bfqq(bfqd, bfqq,
4319 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4320 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4321 
4322 	/*
4323 	 * bfqq expired, so no total service time needs to be computed
4324 	 * any longer: reset state machine for measuring total service
4325 	 * times.
4326 	 */
4327 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4328 	bfqd->waited_rq = NULL;
4329 
4330 	/*
4331 	 * Increase, decrease or leave budget unchanged according to
4332 	 * reason.
4333 	 */
4334 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4335 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4336 		/* bfqq is gone, no more actions on it */
4337 		return;
4338 
4339 	/* mark bfqq as waiting a request only if a bic still points to it */
4340 	if (!bfq_bfqq_busy(bfqq) &&
4341 	    reason != BFQQE_BUDGET_TIMEOUT &&
4342 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4343 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4344 		/*
4345 		 * Not setting service to 0, because, if the next rq
4346 		 * arrives in time, the queue will go on receiving
4347 		 * service with this same budget (as if it never expired)
4348 		 */
4349 	} else
4350 		entity->service = 0;
4351 
4352 	/*
4353 	 * Reset the received-service counter for every parent entity.
4354 	 * Differently from what happens with bfqq->entity.service,
4355 	 * the resetting of this counter never needs to be postponed
4356 	 * for parent entities. In fact, in case bfqq may have a
4357 	 * chance to go on being served using the last, partially
4358 	 * consumed budget, bfqq->entity.service needs to be kept,
4359 	 * because if bfqq then actually goes on being served using
4360 	 * the same budget, the last value of bfqq->entity.service is
4361 	 * needed to properly decrement bfqq->entity.budget by the
4362 	 * portion already consumed. In contrast, it is not necessary
4363 	 * to keep entity->service for parent entities too, because
4364 	 * the bubble up of the new value of bfqq->entity.budget will
4365 	 * make sure that the budgets of parent entities are correct,
4366 	 * even in case bfqq and thus parent entities go on receiving
4367 	 * service with the same budget.
4368 	 */
4369 	entity = entity->parent;
4370 	for_each_entity(entity)
4371 		entity->service = 0;
4372 }
4373 
4374 /*
4375  * Budget timeout is not implemented through a dedicated timer, but
4376  * just checked on request arrivals and completions, as well as on
4377  * idle timer expirations.
4378  */
4379 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4380 {
4381 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4382 }
4383 
4384 /*
4385  * If we expire a queue that is actively waiting (i.e., with the
4386  * device idled) for the arrival of a new request, then we may incur
4387  * the timestamp misalignment problem described in the body of the
4388  * function __bfq_activate_entity. Hence we return true only if this
4389  * condition does not hold, or if the queue is slow enough to deserve
4390  * only to be kicked off for preserving a high throughput.
4391  */
4392 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4393 {
4394 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4395 		"may_budget_timeout: wait_request %d left %d timeout %d",
4396 		bfq_bfqq_wait_request(bfqq),
4397 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4398 		bfq_bfqq_budget_timeout(bfqq));
4399 
4400 	return (!bfq_bfqq_wait_request(bfqq) ||
4401 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4402 		&&
4403 		bfq_bfqq_budget_timeout(bfqq);
4404 }
4405 
4406 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4407 					     struct bfq_queue *bfqq)
4408 {
4409 	bool rot_without_queueing =
4410 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4411 		bfqq_sequential_and_IO_bound,
4412 		idling_boosts_thr;
4413 
4414 	/* No point in idling for bfqq if it won't get requests any longer */
4415 	if (unlikely(!bfqq_process_refs(bfqq)))
4416 		return false;
4417 
4418 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4419 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4420 
4421 	/*
4422 	 * The next variable takes into account the cases where idling
4423 	 * boosts the throughput.
4424 	 *
4425 	 * The value of the variable is computed considering, first, that
4426 	 * idling is virtually always beneficial for the throughput if:
4427 	 * (a) the device is not NCQ-capable and rotational, or
4428 	 * (b) regardless of the presence of NCQ, the device is rotational and
4429 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4430 	 * (c) regardless of whether it is rotational, the device is
4431 	 *     not NCQ-capable and the request pattern for bfqq is
4432 	 *     I/O-bound and sequential.
4433 	 *
4434 	 * Secondly, and in contrast to the above item (b), idling an
4435 	 * NCQ-capable flash-based device would not boost the
4436 	 * throughput even with sequential I/O; rather it would lower
4437 	 * the throughput in proportion to how fast the device
4438 	 * is. Accordingly, the next variable is true if any of the
4439 	 * above conditions (a), (b) or (c) is true, and, in
4440 	 * particular, happens to be false if bfqd is an NCQ-capable
4441 	 * flash-based device.
4442 	 */
4443 	idling_boosts_thr = rot_without_queueing ||
4444 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4445 		 bfqq_sequential_and_IO_bound);
4446 
4447 	/*
4448 	 * The return value of this function is equal to that of
4449 	 * idling_boosts_thr, unless a special case holds. In this
4450 	 * special case, described below, idling may cause problems to
4451 	 * weight-raised queues.
4452 	 *
4453 	 * When the request pool is saturated (e.g., in the presence
4454 	 * of write hogs), if the processes associated with
4455 	 * non-weight-raised queues ask for requests at a lower rate,
4456 	 * then processes associated with weight-raised queues have a
4457 	 * higher probability to get a request from the pool
4458 	 * immediately (or at least soon) when they need one. Thus
4459 	 * they have a higher probability to actually get a fraction
4460 	 * of the device throughput proportional to their high
4461 	 * weight. This is especially true with NCQ-capable drives,
4462 	 * which enqueue several requests in advance, and further
4463 	 * reorder internally-queued requests.
4464 	 *
4465 	 * For this reason, we force to false the return value if
4466 	 * there are weight-raised busy queues. In this case, and if
4467 	 * bfqq is not weight-raised, this guarantees that the device
4468 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4469 	 * then idling will be guaranteed by another variable, see
4470 	 * below). Combined with the timestamping rules of BFQ (see
4471 	 * [1] for details), this behavior causes bfqq, and hence any
4472 	 * sync non-weight-raised queue, to get a lower number of
4473 	 * requests served, and thus to ask for a lower number of
4474 	 * requests from the request pool, before the busy
4475 	 * weight-raised queues get served again. This often mitigates
4476 	 * starvation problems in the presence of heavy write
4477 	 * workloads and NCQ, thereby guaranteeing a higher
4478 	 * application and system responsiveness in these hostile
4479 	 * scenarios.
4480 	 */
4481 	return idling_boosts_thr &&
4482 		bfqd->wr_busy_queues == 0;
4483 }
4484 
4485 /*
4486  * For a queue that becomes empty, device idling is allowed only if
4487  * this function returns true for that queue. As a consequence, since
4488  * device idling plays a critical role for both throughput boosting
4489  * and service guarantees, the return value of this function plays a
4490  * critical role as well.
4491  *
4492  * In a nutshell, this function returns true only if idling is
4493  * beneficial for throughput or, even if detrimental for throughput,
4494  * idling is however necessary to preserve service guarantees (low
4495  * latency, desired throughput distribution, ...). In particular, on
4496  * NCQ-capable devices, this function tries to return false, so as to
4497  * help keep the drives' internal queues full, whenever this helps the
4498  * device boost the throughput without causing any service-guarantee
4499  * issue.
4500  *
4501  * Most of the issues taken into account to get the return value of
4502  * this function are not trivial. We discuss these issues in the two
4503  * functions providing the main pieces of information needed by this
4504  * function.
4505  */
4506 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4507 {
4508 	struct bfq_data *bfqd = bfqq->bfqd;
4509 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4510 
4511 	/* No point in idling for bfqq if it won't get requests any longer */
4512 	if (unlikely(!bfqq_process_refs(bfqq)))
4513 		return false;
4514 
4515 	if (unlikely(bfqd->strict_guarantees))
4516 		return true;
4517 
4518 	/*
4519 	 * Idling is performed only if slice_idle > 0. In addition, we
4520 	 * do not idle if
4521 	 * (a) bfqq is async
4522 	 * (b) bfqq is in the idle io prio class: in this case we do
4523 	 * not idle because we want to minimize the bandwidth that
4524 	 * queues in this class can steal to higher-priority queues
4525 	 */
4526 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4527 	   bfq_class_idle(bfqq))
4528 		return false;
4529 
4530 	idling_boosts_thr_with_no_issue =
4531 		idling_boosts_thr_without_issues(bfqd, bfqq);
4532 
4533 	idling_needed_for_service_guar =
4534 		idling_needed_for_service_guarantees(bfqd, bfqq);
4535 
4536 	/*
4537 	 * We have now the two components we need to compute the
4538 	 * return value of the function, which is true only if idling
4539 	 * either boosts the throughput (without issues), or is
4540 	 * necessary to preserve service guarantees.
4541 	 */
4542 	return idling_boosts_thr_with_no_issue ||
4543 		idling_needed_for_service_guar;
4544 }
4545 
4546 /*
4547  * If the in-service queue is empty but the function bfq_better_to_idle
4548  * returns true, then:
4549  * 1) the queue must remain in service and cannot be expired, and
4550  * 2) the device must be idled to wait for the possible arrival of a new
4551  *    request for the queue.
4552  * See the comments on the function bfq_better_to_idle for the reasons
4553  * why performing device idling is the best choice to boost the throughput
4554  * and preserve service guarantees when bfq_better_to_idle itself
4555  * returns true.
4556  */
4557 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4558 {
4559 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4560 }
4561 
4562 /*
4563  * This function chooses the queue from which to pick the next extra
4564  * I/O request to inject, if it finds a compatible queue. See the
4565  * comments on bfq_update_inject_limit() for details on the injection
4566  * mechanism, and for the definitions of the quantities mentioned
4567  * below.
4568  */
4569 static struct bfq_queue *
4570 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4571 {
4572 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4573 	unsigned int limit = in_serv_bfqq->inject_limit;
4574 	/*
4575 	 * If
4576 	 * - bfqq is not weight-raised and therefore does not carry
4577 	 *   time-critical I/O,
4578 	 * or
4579 	 * - regardless of whether bfqq is weight-raised, bfqq has
4580 	 *   however a long think time, during which it can absorb the
4581 	 *   effect of an appropriate number of extra I/O requests
4582 	 *   from other queues (see bfq_update_inject_limit for
4583 	 *   details on the computation of this number);
4584 	 * then injection can be performed without restrictions.
4585 	 */
4586 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4587 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4588 
4589 	/*
4590 	 * If
4591 	 * - the baseline total service time could not be sampled yet,
4592 	 *   so the inject limit happens to be still 0, and
4593 	 * - a lot of time has elapsed since the plugging of I/O
4594 	 *   dispatching started, so drive speed is being wasted
4595 	 *   significantly;
4596 	 * then temporarily raise inject limit to one request.
4597 	 */
4598 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4599 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4600 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4601 				      bfqd->bfq_slice_idle)
4602 		)
4603 		limit = 1;
4604 
4605 	if (bfqd->rq_in_driver >= limit)
4606 		return NULL;
4607 
4608 	/*
4609 	 * Linear search of the source queue for injection; but, with
4610 	 * a high probability, very few steps are needed to find a
4611 	 * candidate queue, i.e., a queue with enough budget left for
4612 	 * its next request. In fact:
4613 	 * - BFQ dynamically updates the budget of every queue so as
4614 	 *   to accommodate the expected backlog of the queue;
4615 	 * - if a queue gets all its requests dispatched as injected
4616 	 *   service, then the queue is removed from the active list
4617 	 *   (and re-added only if it gets new requests, but then it
4618 	 *   is assigned again enough budget for its new backlog).
4619 	 */
4620 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4621 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4622 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4623 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4624 		    bfq_bfqq_budget_left(bfqq)) {
4625 			/*
4626 			 * Allow for only one large in-flight request
4627 			 * on non-rotational devices, for the
4628 			 * following reason. On non-rotationl drives,
4629 			 * large requests take much longer than
4630 			 * smaller requests to be served. In addition,
4631 			 * the drive prefers to serve large requests
4632 			 * w.r.t. to small ones, if it can choose. So,
4633 			 * having more than one large requests queued
4634 			 * in the drive may easily make the next first
4635 			 * request of the in-service queue wait for so
4636 			 * long to break bfqq's service guarantees. On
4637 			 * the bright side, large requests let the
4638 			 * drive reach a very high throughput, even if
4639 			 * there is only one in-flight large request
4640 			 * at a time.
4641 			 */
4642 			if (blk_queue_nonrot(bfqd->queue) &&
4643 			    blk_rq_sectors(bfqq->next_rq) >=
4644 			    BFQQ_SECT_THR_NONROT)
4645 				limit = min_t(unsigned int, 1, limit);
4646 			else
4647 				limit = in_serv_bfqq->inject_limit;
4648 
4649 			if (bfqd->rq_in_driver < limit) {
4650 				bfqd->rqs_injected = true;
4651 				return bfqq;
4652 			}
4653 		}
4654 
4655 	return NULL;
4656 }
4657 
4658 /*
4659  * Select a queue for service.  If we have a current queue in service,
4660  * check whether to continue servicing it, or retrieve and set a new one.
4661  */
4662 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4663 {
4664 	struct bfq_queue *bfqq;
4665 	struct request *next_rq;
4666 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4667 
4668 	bfqq = bfqd->in_service_queue;
4669 	if (!bfqq)
4670 		goto new_queue;
4671 
4672 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4673 
4674 	/*
4675 	 * Do not expire bfqq for budget timeout if bfqq may be about
4676 	 * to enjoy device idling. The reason why, in this case, we
4677 	 * prevent bfqq from expiring is the same as in the comments
4678 	 * on the case where bfq_bfqq_must_idle() returns true, in
4679 	 * bfq_completed_request().
4680 	 */
4681 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4682 	    !bfq_bfqq_must_idle(bfqq))
4683 		goto expire;
4684 
4685 check_queue:
4686 	/*
4687 	 * This loop is rarely executed more than once. Even when it
4688 	 * happens, it is much more convenient to re-execute this loop
4689 	 * than to return NULL and trigger a new dispatch to get a
4690 	 * request served.
4691 	 */
4692 	next_rq = bfqq->next_rq;
4693 	/*
4694 	 * If bfqq has requests queued and it has enough budget left to
4695 	 * serve them, keep the queue, otherwise expire it.
4696 	 */
4697 	if (next_rq) {
4698 		if (bfq_serv_to_charge(next_rq, bfqq) >
4699 			bfq_bfqq_budget_left(bfqq)) {
4700 			/*
4701 			 * Expire the queue for budget exhaustion,
4702 			 * which makes sure that the next budget is
4703 			 * enough to serve the next request, even if
4704 			 * it comes from the fifo expired path.
4705 			 */
4706 			reason = BFQQE_BUDGET_EXHAUSTED;
4707 			goto expire;
4708 		} else {
4709 			/*
4710 			 * The idle timer may be pending because we may
4711 			 * not disable disk idling even when a new request
4712 			 * arrives.
4713 			 */
4714 			if (bfq_bfqq_wait_request(bfqq)) {
4715 				/*
4716 				 * If we get here: 1) at least a new request
4717 				 * has arrived but we have not disabled the
4718 				 * timer because the request was too small,
4719 				 * 2) then the block layer has unplugged
4720 				 * the device, causing the dispatch to be
4721 				 * invoked.
4722 				 *
4723 				 * Since the device is unplugged, now the
4724 				 * requests are probably large enough to
4725 				 * provide a reasonable throughput.
4726 				 * So we disable idling.
4727 				 */
4728 				bfq_clear_bfqq_wait_request(bfqq);
4729 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4730 			}
4731 			goto keep_queue;
4732 		}
4733 	}
4734 
4735 	/*
4736 	 * No requests pending. However, if the in-service queue is idling
4737 	 * for a new request, or has requests waiting for a completion and
4738 	 * may idle after their completion, then keep it anyway.
4739 	 *
4740 	 * Yet, inject service from other queues if it boosts
4741 	 * throughput and is possible.
4742 	 */
4743 	if (bfq_bfqq_wait_request(bfqq) ||
4744 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4745 		struct bfq_queue *async_bfqq =
4746 			bfqq->bic && bfqq->bic->bfqq[0] &&
4747 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4748 			bfqq->bic->bfqq[0]->next_rq ?
4749 			bfqq->bic->bfqq[0] : NULL;
4750 		struct bfq_queue *blocked_bfqq =
4751 			!hlist_empty(&bfqq->woken_list) ?
4752 			container_of(bfqq->woken_list.first,
4753 				     struct bfq_queue,
4754 				     woken_list_node)
4755 			: NULL;
4756 
4757 		/*
4758 		 * The next four mutually-exclusive ifs decide
4759 		 * whether to try injection, and choose the queue to
4760 		 * pick an I/O request from.
4761 		 *
4762 		 * The first if checks whether the process associated
4763 		 * with bfqq has also async I/O pending. If so, it
4764 		 * injects such I/O unconditionally. Injecting async
4765 		 * I/O from the same process can cause no harm to the
4766 		 * process. On the contrary, it can only increase
4767 		 * bandwidth and reduce latency for the process.
4768 		 *
4769 		 * The second if checks whether there happens to be a
4770 		 * non-empty waker queue for bfqq, i.e., a queue whose
4771 		 * I/O needs to be completed for bfqq to receive new
4772 		 * I/O. This happens, e.g., if bfqq is associated with
4773 		 * a process that does some sync. A sync generates
4774 		 * extra blocking I/O, which must be completed before
4775 		 * the process associated with bfqq can go on with its
4776 		 * I/O. If the I/O of the waker queue is not served,
4777 		 * then bfqq remains empty, and no I/O is dispatched,
4778 		 * until the idle timeout fires for bfqq. This is
4779 		 * likely to result in lower bandwidth and higher
4780 		 * latencies for bfqq, and in a severe loss of total
4781 		 * throughput. The best action to take is therefore to
4782 		 * serve the waker queue as soon as possible. So do it
4783 		 * (without relying on the third alternative below for
4784 		 * eventually serving waker_bfqq's I/O; see the last
4785 		 * paragraph for further details). This systematic
4786 		 * injection of I/O from the waker queue does not
4787 		 * cause any delay to bfqq's I/O. On the contrary,
4788 		 * next bfqq's I/O is brought forward dramatically,
4789 		 * for it is not blocked for milliseconds.
4790 		 *
4791 		 * The third if checks whether there is a queue woken
4792 		 * by bfqq, and currently with pending I/O. Such a
4793 		 * woken queue does not steal bandwidth from bfqq,
4794 		 * because it remains soon without I/O if bfqq is not
4795 		 * served. So there is virtually no risk of loss of
4796 		 * bandwidth for bfqq if this woken queue has I/O
4797 		 * dispatched while bfqq is waiting for new I/O.
4798 		 *
4799 		 * The fourth if checks whether bfqq is a queue for
4800 		 * which it is better to avoid injection. It is so if
4801 		 * bfqq delivers more throughput when served without
4802 		 * any further I/O from other queues in the middle, or
4803 		 * if the service times of bfqq's I/O requests both
4804 		 * count more than overall throughput, and may be
4805 		 * easily increased by injection (this happens if bfqq
4806 		 * has a short think time). If none of these
4807 		 * conditions holds, then a candidate queue for
4808 		 * injection is looked for through
4809 		 * bfq_choose_bfqq_for_injection(). Note that the
4810 		 * latter may return NULL (for example if the inject
4811 		 * limit for bfqq is currently 0).
4812 		 *
4813 		 * NOTE: motivation for the second alternative
4814 		 *
4815 		 * Thanks to the way the inject limit is updated in
4816 		 * bfq_update_has_short_ttime(), it is rather likely
4817 		 * that, if I/O is being plugged for bfqq and the
4818 		 * waker queue has pending I/O requests that are
4819 		 * blocking bfqq's I/O, then the fourth alternative
4820 		 * above lets the waker queue get served before the
4821 		 * I/O-plugging timeout fires. So one may deem the
4822 		 * second alternative superfluous. It is not, because
4823 		 * the fourth alternative may be way less effective in
4824 		 * case of a synchronization. For two main
4825 		 * reasons. First, throughput may be low because the
4826 		 * inject limit may be too low to guarantee the same
4827 		 * amount of injected I/O, from the waker queue or
4828 		 * other queues, that the second alternative
4829 		 * guarantees (the second alternative unconditionally
4830 		 * injects a pending I/O request of the waker queue
4831 		 * for each bfq_dispatch_request()). Second, with the
4832 		 * fourth alternative, the duration of the plugging,
4833 		 * i.e., the time before bfqq finally receives new I/O,
4834 		 * may not be minimized, because the waker queue may
4835 		 * happen to be served only after other queues.
4836 		 */
4837 		if (async_bfqq &&
4838 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4839 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4840 		    bfq_bfqq_budget_left(async_bfqq))
4841 			bfqq = bfqq->bic->bfqq[0];
4842 		else if (bfqq->waker_bfqq &&
4843 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4844 			   bfqq->waker_bfqq->next_rq &&
4845 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4846 					      bfqq->waker_bfqq) <=
4847 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4848 			)
4849 			bfqq = bfqq->waker_bfqq;
4850 		else if (blocked_bfqq &&
4851 			   bfq_bfqq_busy(blocked_bfqq) &&
4852 			   blocked_bfqq->next_rq &&
4853 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4854 					      blocked_bfqq) <=
4855 			   bfq_bfqq_budget_left(blocked_bfqq)
4856 			)
4857 			bfqq = blocked_bfqq;
4858 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4859 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4860 			  !bfq_bfqq_has_short_ttime(bfqq)))
4861 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4862 		else
4863 			bfqq = NULL;
4864 
4865 		goto keep_queue;
4866 	}
4867 
4868 	reason = BFQQE_NO_MORE_REQUESTS;
4869 expire:
4870 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4871 new_queue:
4872 	bfqq = bfq_set_in_service_queue(bfqd);
4873 	if (bfqq) {
4874 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4875 		goto check_queue;
4876 	}
4877 keep_queue:
4878 	if (bfqq)
4879 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4880 	else
4881 		bfq_log(bfqd, "select_queue: no queue returned");
4882 
4883 	return bfqq;
4884 }
4885 
4886 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4887 {
4888 	struct bfq_entity *entity = &bfqq->entity;
4889 
4890 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4891 		bfq_log_bfqq(bfqd, bfqq,
4892 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4893 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4894 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4895 			bfqq->wr_coeff,
4896 			bfqq->entity.weight, bfqq->entity.orig_weight);
4897 
4898 		if (entity->prio_changed)
4899 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4900 
4901 		/*
4902 		 * If the queue was activated in a burst, or too much
4903 		 * time has elapsed from the beginning of this
4904 		 * weight-raising period, then end weight raising.
4905 		 */
4906 		if (bfq_bfqq_in_large_burst(bfqq))
4907 			bfq_bfqq_end_wr(bfqq);
4908 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4909 						bfqq->wr_cur_max_time)) {
4910 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4911 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4912 					       bfq_wr_duration(bfqd))) {
4913 				/*
4914 				 * Either in interactive weight
4915 				 * raising, or in soft_rt weight
4916 				 * raising with the
4917 				 * interactive-weight-raising period
4918 				 * elapsed (so no switch back to
4919 				 * interactive weight raising).
4920 				 */
4921 				bfq_bfqq_end_wr(bfqq);
4922 			} else { /*
4923 				  * soft_rt finishing while still in
4924 				  * interactive period, switch back to
4925 				  * interactive weight raising
4926 				  */
4927 				switch_back_to_interactive_wr(bfqq, bfqd);
4928 				bfqq->entity.prio_changed = 1;
4929 			}
4930 		}
4931 		if (bfqq->wr_coeff > 1 &&
4932 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4933 		    bfqq->service_from_wr > max_service_from_wr) {
4934 			/* see comments on max_service_from_wr */
4935 			bfq_bfqq_end_wr(bfqq);
4936 		}
4937 	}
4938 	/*
4939 	 * To improve latency (for this or other queues), immediately
4940 	 * update weight both if it must be raised and if it must be
4941 	 * lowered. Since, entity may be on some active tree here, and
4942 	 * might have a pending change of its ioprio class, invoke
4943 	 * next function with the last parameter unset (see the
4944 	 * comments on the function).
4945 	 */
4946 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4947 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4948 						entity, false);
4949 }
4950 
4951 /*
4952  * Dispatch next request from bfqq.
4953  */
4954 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4955 						 struct bfq_queue *bfqq)
4956 {
4957 	struct request *rq = bfqq->next_rq;
4958 	unsigned long service_to_charge;
4959 
4960 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4961 
4962 	bfq_bfqq_served(bfqq, service_to_charge);
4963 
4964 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4965 		bfqd->wait_dispatch = false;
4966 		bfqd->waited_rq = rq;
4967 	}
4968 
4969 	bfq_dispatch_remove(bfqd->queue, rq);
4970 
4971 	if (bfqq != bfqd->in_service_queue)
4972 		goto return_rq;
4973 
4974 	/*
4975 	 * If weight raising has to terminate for bfqq, then next
4976 	 * function causes an immediate update of bfqq's weight,
4977 	 * without waiting for next activation. As a consequence, on
4978 	 * expiration, bfqq will be timestamped as if has never been
4979 	 * weight-raised during this service slot, even if it has
4980 	 * received part or even most of the service as a
4981 	 * weight-raised queue. This inflates bfqq's timestamps, which
4982 	 * is beneficial, as bfqq is then more willing to leave the
4983 	 * device immediately to possible other weight-raised queues.
4984 	 */
4985 	bfq_update_wr_data(bfqd, bfqq);
4986 
4987 	/*
4988 	 * Expire bfqq, pretending that its budget expired, if bfqq
4989 	 * belongs to CLASS_IDLE and other queues are waiting for
4990 	 * service.
4991 	 */
4992 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4993 		goto return_rq;
4994 
4995 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4996 
4997 return_rq:
4998 	return rq;
4999 }
5000 
5001 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5002 {
5003 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5004 
5005 	/*
5006 	 * Avoiding lock: a race on bfqd->queued should cause at
5007 	 * most a call to dispatch for nothing
5008 	 */
5009 	return !list_empty_careful(&bfqd->dispatch) ||
5010 		READ_ONCE(bfqd->queued);
5011 }
5012 
5013 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5014 {
5015 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5016 	struct request *rq = NULL;
5017 	struct bfq_queue *bfqq = NULL;
5018 
5019 	if (!list_empty(&bfqd->dispatch)) {
5020 		rq = list_first_entry(&bfqd->dispatch, struct request,
5021 				      queuelist);
5022 		list_del_init(&rq->queuelist);
5023 
5024 		bfqq = RQ_BFQQ(rq);
5025 
5026 		if (bfqq) {
5027 			/*
5028 			 * Increment counters here, because this
5029 			 * dispatch does not follow the standard
5030 			 * dispatch flow (where counters are
5031 			 * incremented)
5032 			 */
5033 			bfqq->dispatched++;
5034 
5035 			goto inc_in_driver_start_rq;
5036 		}
5037 
5038 		/*
5039 		 * We exploit the bfq_finish_requeue_request hook to
5040 		 * decrement rq_in_driver, but
5041 		 * bfq_finish_requeue_request will not be invoked on
5042 		 * this request. So, to avoid unbalance, just start
5043 		 * this request, without incrementing rq_in_driver. As
5044 		 * a negative consequence, rq_in_driver is deceptively
5045 		 * lower than it should be while this request is in
5046 		 * service. This may cause bfq_schedule_dispatch to be
5047 		 * invoked uselessly.
5048 		 *
5049 		 * As for implementing an exact solution, the
5050 		 * bfq_finish_requeue_request hook, if defined, is
5051 		 * probably invoked also on this request. So, by
5052 		 * exploiting this hook, we could 1) increment
5053 		 * rq_in_driver here, and 2) decrement it in
5054 		 * bfq_finish_requeue_request. Such a solution would
5055 		 * let the value of the counter be always accurate,
5056 		 * but it would entail using an extra interface
5057 		 * function. This cost seems higher than the benefit,
5058 		 * being the frequency of non-elevator-private
5059 		 * requests very low.
5060 		 */
5061 		goto start_rq;
5062 	}
5063 
5064 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5065 		bfq_tot_busy_queues(bfqd));
5066 
5067 	if (bfq_tot_busy_queues(bfqd) == 0)
5068 		goto exit;
5069 
5070 	/*
5071 	 * Force device to serve one request at a time if
5072 	 * strict_guarantees is true. Forcing this service scheme is
5073 	 * currently the ONLY way to guarantee that the request
5074 	 * service order enforced by the scheduler is respected by a
5075 	 * queueing device. Otherwise the device is free even to make
5076 	 * some unlucky request wait for as long as the device
5077 	 * wishes.
5078 	 *
5079 	 * Of course, serving one request at a time may cause loss of
5080 	 * throughput.
5081 	 */
5082 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5083 		goto exit;
5084 
5085 	bfqq = bfq_select_queue(bfqd);
5086 	if (!bfqq)
5087 		goto exit;
5088 
5089 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5090 
5091 	if (rq) {
5092 inc_in_driver_start_rq:
5093 		bfqd->rq_in_driver++;
5094 start_rq:
5095 		rq->rq_flags |= RQF_STARTED;
5096 	}
5097 exit:
5098 	return rq;
5099 }
5100 
5101 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5102 static void bfq_update_dispatch_stats(struct request_queue *q,
5103 				      struct request *rq,
5104 				      struct bfq_queue *in_serv_queue,
5105 				      bool idle_timer_disabled)
5106 {
5107 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5108 
5109 	if (!idle_timer_disabled && !bfqq)
5110 		return;
5111 
5112 	/*
5113 	 * rq and bfqq are guaranteed to exist until this function
5114 	 * ends, for the following reasons. First, rq can be
5115 	 * dispatched to the device, and then can be completed and
5116 	 * freed, only after this function ends. Second, rq cannot be
5117 	 * merged (and thus freed because of a merge) any longer,
5118 	 * because it has already started. Thus rq cannot be freed
5119 	 * before this function ends, and, since rq has a reference to
5120 	 * bfqq, the same guarantee holds for bfqq too.
5121 	 *
5122 	 * In addition, the following queue lock guarantees that
5123 	 * bfqq_group(bfqq) exists as well.
5124 	 */
5125 	spin_lock_irq(&q->queue_lock);
5126 	if (idle_timer_disabled)
5127 		/*
5128 		 * Since the idle timer has been disabled,
5129 		 * in_serv_queue contained some request when
5130 		 * __bfq_dispatch_request was invoked above, which
5131 		 * implies that rq was picked exactly from
5132 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5133 		 * therefore guaranteed to exist because of the above
5134 		 * arguments.
5135 		 */
5136 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5137 	if (bfqq) {
5138 		struct bfq_group *bfqg = bfqq_group(bfqq);
5139 
5140 		bfqg_stats_update_avg_queue_size(bfqg);
5141 		bfqg_stats_set_start_empty_time(bfqg);
5142 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5143 	}
5144 	spin_unlock_irq(&q->queue_lock);
5145 }
5146 #else
5147 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5148 					     struct request *rq,
5149 					     struct bfq_queue *in_serv_queue,
5150 					     bool idle_timer_disabled) {}
5151 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5152 
5153 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5154 {
5155 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5156 	struct request *rq;
5157 	struct bfq_queue *in_serv_queue;
5158 	bool waiting_rq, idle_timer_disabled = false;
5159 
5160 	spin_lock_irq(&bfqd->lock);
5161 
5162 	in_serv_queue = bfqd->in_service_queue;
5163 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5164 
5165 	rq = __bfq_dispatch_request(hctx);
5166 	if (in_serv_queue == bfqd->in_service_queue) {
5167 		idle_timer_disabled =
5168 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5169 	}
5170 
5171 	spin_unlock_irq(&bfqd->lock);
5172 	bfq_update_dispatch_stats(hctx->queue, rq,
5173 			idle_timer_disabled ? in_serv_queue : NULL,
5174 				idle_timer_disabled);
5175 
5176 	return rq;
5177 }
5178 
5179 /*
5180  * Task holds one reference to the queue, dropped when task exits.  Each rq
5181  * in-flight on this queue also holds a reference, dropped when rq is freed.
5182  *
5183  * Scheduler lock must be held here. Recall not to use bfqq after calling
5184  * this function on it.
5185  */
5186 void bfq_put_queue(struct bfq_queue *bfqq)
5187 {
5188 	struct bfq_queue *item;
5189 	struct hlist_node *n;
5190 	struct bfq_group *bfqg = bfqq_group(bfqq);
5191 
5192 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5193 
5194 	bfqq->ref--;
5195 	if (bfqq->ref)
5196 		return;
5197 
5198 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5199 		hlist_del_init(&bfqq->burst_list_node);
5200 		/*
5201 		 * Decrement also burst size after the removal, if the
5202 		 * process associated with bfqq is exiting, and thus
5203 		 * does not contribute to the burst any longer. This
5204 		 * decrement helps filter out false positives of large
5205 		 * bursts, when some short-lived process (often due to
5206 		 * the execution of commands by some service) happens
5207 		 * to start and exit while a complex application is
5208 		 * starting, and thus spawning several processes that
5209 		 * do I/O (and that *must not* be treated as a large
5210 		 * burst, see comments on bfq_handle_burst).
5211 		 *
5212 		 * In particular, the decrement is performed only if:
5213 		 * 1) bfqq is not a merged queue, because, if it is,
5214 		 * then this free of bfqq is not triggered by the exit
5215 		 * of the process bfqq is associated with, but exactly
5216 		 * by the fact that bfqq has just been merged.
5217 		 * 2) burst_size is greater than 0, to handle
5218 		 * unbalanced decrements. Unbalanced decrements may
5219 		 * happen in te following case: bfqq is inserted into
5220 		 * the current burst list--without incrementing
5221 		 * bust_size--because of a split, but the current
5222 		 * burst list is not the burst list bfqq belonged to
5223 		 * (see comments on the case of a split in
5224 		 * bfq_set_request).
5225 		 */
5226 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5227 			bfqq->bfqd->burst_size--;
5228 	}
5229 
5230 	/*
5231 	 * bfqq does not exist any longer, so it cannot be woken by
5232 	 * any other queue, and cannot wake any other queue. Then bfqq
5233 	 * must be removed from the woken list of its possible waker
5234 	 * queue, and all queues in the woken list of bfqq must stop
5235 	 * having a waker queue. Strictly speaking, these updates
5236 	 * should be performed when bfqq remains with no I/O source
5237 	 * attached to it, which happens before bfqq gets freed. In
5238 	 * particular, this happens when the last process associated
5239 	 * with bfqq exits or gets associated with a different
5240 	 * queue. However, both events lead to bfqq being freed soon,
5241 	 * and dangling references would come out only after bfqq gets
5242 	 * freed. So these updates are done here, as a simple and safe
5243 	 * way to handle all cases.
5244 	 */
5245 	/* remove bfqq from woken list */
5246 	if (!hlist_unhashed(&bfqq->woken_list_node))
5247 		hlist_del_init(&bfqq->woken_list_node);
5248 
5249 	/* reset waker for all queues in woken list */
5250 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5251 				  woken_list_node) {
5252 		item->waker_bfqq = NULL;
5253 		hlist_del_init(&item->woken_list_node);
5254 	}
5255 
5256 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5257 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5258 
5259 	kmem_cache_free(bfq_pool, bfqq);
5260 	bfqg_and_blkg_put(bfqg);
5261 }
5262 
5263 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5264 {
5265 	bfqq->stable_ref--;
5266 	bfq_put_queue(bfqq);
5267 }
5268 
5269 void bfq_put_cooperator(struct bfq_queue *bfqq)
5270 {
5271 	struct bfq_queue *__bfqq, *next;
5272 
5273 	/*
5274 	 * If this queue was scheduled to merge with another queue, be
5275 	 * sure to drop the reference taken on that queue (and others in
5276 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5277 	 */
5278 	__bfqq = bfqq->new_bfqq;
5279 	while (__bfqq) {
5280 		if (__bfqq == bfqq)
5281 			break;
5282 		next = __bfqq->new_bfqq;
5283 		bfq_put_queue(__bfqq);
5284 		__bfqq = next;
5285 	}
5286 }
5287 
5288 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5289 {
5290 	if (bfqq == bfqd->in_service_queue) {
5291 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5292 		bfq_schedule_dispatch(bfqd);
5293 	}
5294 
5295 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5296 
5297 	bfq_put_cooperator(bfqq);
5298 
5299 	bfq_release_process_ref(bfqd, bfqq);
5300 }
5301 
5302 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5303 {
5304 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5305 	struct bfq_data *bfqd;
5306 
5307 	if (bfqq)
5308 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5309 
5310 	if (bfqq && bfqd) {
5311 		unsigned long flags;
5312 
5313 		spin_lock_irqsave(&bfqd->lock, flags);
5314 		bfqq->bic = NULL;
5315 		bfq_exit_bfqq(bfqd, bfqq);
5316 		bic_set_bfqq(bic, NULL, is_sync);
5317 		spin_unlock_irqrestore(&bfqd->lock, flags);
5318 	}
5319 }
5320 
5321 static void bfq_exit_icq(struct io_cq *icq)
5322 {
5323 	struct bfq_io_cq *bic = icq_to_bic(icq);
5324 
5325 	if (bic->stable_merge_bfqq) {
5326 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5327 
5328 		/*
5329 		 * bfqd is NULL if scheduler already exited, and in
5330 		 * that case this is the last time bfqq is accessed.
5331 		 */
5332 		if (bfqd) {
5333 			unsigned long flags;
5334 
5335 			spin_lock_irqsave(&bfqd->lock, flags);
5336 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5337 			spin_unlock_irqrestore(&bfqd->lock, flags);
5338 		} else {
5339 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5340 		}
5341 	}
5342 
5343 	bfq_exit_icq_bfqq(bic, true);
5344 	bfq_exit_icq_bfqq(bic, false);
5345 }
5346 
5347 /*
5348  * Update the entity prio values; note that the new values will not
5349  * be used until the next (re)activation.
5350  */
5351 static void
5352 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5353 {
5354 	struct task_struct *tsk = current;
5355 	int ioprio_class;
5356 	struct bfq_data *bfqd = bfqq->bfqd;
5357 
5358 	if (!bfqd)
5359 		return;
5360 
5361 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5362 	switch (ioprio_class) {
5363 	default:
5364 		pr_err("bdi %s: bfq: bad prio class %d\n",
5365 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5366 			ioprio_class);
5367 		fallthrough;
5368 	case IOPRIO_CLASS_NONE:
5369 		/*
5370 		 * No prio set, inherit CPU scheduling settings.
5371 		 */
5372 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5373 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5374 		break;
5375 	case IOPRIO_CLASS_RT:
5376 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5377 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5378 		break;
5379 	case IOPRIO_CLASS_BE:
5380 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5381 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5382 		break;
5383 	case IOPRIO_CLASS_IDLE:
5384 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5385 		bfqq->new_ioprio = 7;
5386 		break;
5387 	}
5388 
5389 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5390 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5391 			bfqq->new_ioprio);
5392 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5393 	}
5394 
5395 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5396 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5397 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5398 	bfqq->entity.prio_changed = 1;
5399 }
5400 
5401 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5402 				       struct bio *bio, bool is_sync,
5403 				       struct bfq_io_cq *bic,
5404 				       bool respawn);
5405 
5406 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5407 {
5408 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5409 	struct bfq_queue *bfqq;
5410 	int ioprio = bic->icq.ioc->ioprio;
5411 
5412 	/*
5413 	 * This condition may trigger on a newly created bic, be sure to
5414 	 * drop the lock before returning.
5415 	 */
5416 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5417 		return;
5418 
5419 	bic->ioprio = ioprio;
5420 
5421 	bfqq = bic_to_bfqq(bic, false);
5422 	if (bfqq) {
5423 		bfq_release_process_ref(bfqd, bfqq);
5424 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5425 		bic_set_bfqq(bic, bfqq, false);
5426 	}
5427 
5428 	bfqq = bic_to_bfqq(bic, true);
5429 	if (bfqq)
5430 		bfq_set_next_ioprio_data(bfqq, bic);
5431 }
5432 
5433 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5434 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5435 {
5436 	u64 now_ns = ktime_get_ns();
5437 
5438 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5439 	INIT_LIST_HEAD(&bfqq->fifo);
5440 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5441 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5442 	INIT_HLIST_HEAD(&bfqq->woken_list);
5443 
5444 	bfqq->ref = 0;
5445 	bfqq->bfqd = bfqd;
5446 
5447 	if (bic)
5448 		bfq_set_next_ioprio_data(bfqq, bic);
5449 
5450 	if (is_sync) {
5451 		/*
5452 		 * No need to mark as has_short_ttime if in
5453 		 * idle_class, because no device idling is performed
5454 		 * for queues in idle class
5455 		 */
5456 		if (!bfq_class_idle(bfqq))
5457 			/* tentatively mark as has_short_ttime */
5458 			bfq_mark_bfqq_has_short_ttime(bfqq);
5459 		bfq_mark_bfqq_sync(bfqq);
5460 		bfq_mark_bfqq_just_created(bfqq);
5461 	} else
5462 		bfq_clear_bfqq_sync(bfqq);
5463 
5464 	/* set end request to minus infinity from now */
5465 	bfqq->ttime.last_end_request = now_ns + 1;
5466 
5467 	bfqq->creation_time = jiffies;
5468 
5469 	bfqq->io_start_time = now_ns;
5470 
5471 	bfq_mark_bfqq_IO_bound(bfqq);
5472 
5473 	bfqq->pid = pid;
5474 
5475 	/* Tentative initial value to trade off between thr and lat */
5476 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5477 	bfqq->budget_timeout = bfq_smallest_from_now();
5478 
5479 	bfqq->wr_coeff = 1;
5480 	bfqq->last_wr_start_finish = jiffies;
5481 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5482 	bfqq->split_time = bfq_smallest_from_now();
5483 
5484 	/*
5485 	 * To not forget the possibly high bandwidth consumed by a
5486 	 * process/queue in the recent past,
5487 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5488 	 * to the current value of bfqq->soft_rt_next_start (see
5489 	 * comments on bfq_bfqq_softrt_next_start).  Set
5490 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5491 	 * no bandwidth so far.
5492 	 */
5493 	bfqq->soft_rt_next_start = jiffies;
5494 
5495 	/* first request is almost certainly seeky */
5496 	bfqq->seek_history = 1;
5497 }
5498 
5499 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5500 					       struct bfq_group *bfqg,
5501 					       int ioprio_class, int ioprio)
5502 {
5503 	switch (ioprio_class) {
5504 	case IOPRIO_CLASS_RT:
5505 		return &bfqg->async_bfqq[0][ioprio];
5506 	case IOPRIO_CLASS_NONE:
5507 		ioprio = IOPRIO_BE_NORM;
5508 		fallthrough;
5509 	case IOPRIO_CLASS_BE:
5510 		return &bfqg->async_bfqq[1][ioprio];
5511 	case IOPRIO_CLASS_IDLE:
5512 		return &bfqg->async_idle_bfqq;
5513 	default:
5514 		return NULL;
5515 	}
5516 }
5517 
5518 static struct bfq_queue *
5519 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5520 			  struct bfq_io_cq *bic,
5521 			  struct bfq_queue *last_bfqq_created)
5522 {
5523 	struct bfq_queue *new_bfqq =
5524 		bfq_setup_merge(bfqq, last_bfqq_created);
5525 
5526 	if (!new_bfqq)
5527 		return bfqq;
5528 
5529 	if (new_bfqq->bic)
5530 		new_bfqq->bic->stably_merged = true;
5531 	bic->stably_merged = true;
5532 
5533 	/*
5534 	 * Reusing merge functions. This implies that
5535 	 * bfqq->bic must be set too, for
5536 	 * bfq_merge_bfqqs to correctly save bfqq's
5537 	 * state before killing it.
5538 	 */
5539 	bfqq->bic = bic;
5540 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5541 
5542 	return new_bfqq;
5543 }
5544 
5545 /*
5546  * Many throughput-sensitive workloads are made of several parallel
5547  * I/O flows, with all flows generated by the same application, or
5548  * more generically by the same task (e.g., system boot). The most
5549  * counterproductive action with these workloads is plugging I/O
5550  * dispatch when one of the bfq_queues associated with these flows
5551  * remains temporarily empty.
5552  *
5553  * To avoid this plugging, BFQ has been using a burst-handling
5554  * mechanism for years now. This mechanism has proven effective for
5555  * throughput, and not detrimental for service guarantees. The
5556  * following function pushes this mechanism a little bit further,
5557  * basing on the following two facts.
5558  *
5559  * First, all the I/O flows of a the same application or task
5560  * contribute to the execution/completion of that common application
5561  * or task. So the performance figures that matter are total
5562  * throughput of the flows and task-wide I/O latency.  In particular,
5563  * these flows do not need to be protected from each other, in terms
5564  * of individual bandwidth or latency.
5565  *
5566  * Second, the above fact holds regardless of the number of flows.
5567  *
5568  * Putting these two facts together, this commits merges stably the
5569  * bfq_queues associated with these I/O flows, i.e., with the
5570  * processes that generate these IO/ flows, regardless of how many the
5571  * involved processes are.
5572  *
5573  * To decide whether a set of bfq_queues is actually associated with
5574  * the I/O flows of a common application or task, and to merge these
5575  * queues stably, this function operates as follows: given a bfq_queue,
5576  * say Q2, currently being created, and the last bfq_queue, say Q1,
5577  * created before Q2, Q2 is merged stably with Q1 if
5578  * - very little time has elapsed since when Q1 was created
5579  * - Q2 has the same ioprio as Q1
5580  * - Q2 belongs to the same group as Q1
5581  *
5582  * Merging bfq_queues also reduces scheduling overhead. A fio test
5583  * with ten random readers on /dev/nullb shows a throughput boost of
5584  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5585  * the total per-request processing time, the above throughput boost
5586  * implies that BFQ's overhead is reduced by more than 50%.
5587  *
5588  * This new mechanism most certainly obsoletes the current
5589  * burst-handling heuristics. We keep those heuristics for the moment.
5590  */
5591 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5592 						      struct bfq_queue *bfqq,
5593 						      struct bfq_io_cq *bic)
5594 {
5595 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5596 		&bfqq->entity.parent->last_bfqq_created :
5597 		&bfqd->last_bfqq_created;
5598 
5599 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5600 
5601 	/*
5602 	 * If last_bfqq_created has not been set yet, then init it. If
5603 	 * it has been set already, but too long ago, then move it
5604 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5605 	 * different group than last_bfqq_created, or if bfqq has a
5606 	 * different ioprio or ioprio_class. If none of these
5607 	 * conditions holds true, then try an early stable merge or
5608 	 * schedule a delayed stable merge.
5609 	 *
5610 	 * A delayed merge is scheduled (instead of performing an
5611 	 * early merge), in case bfqq might soon prove to be more
5612 	 * throughput-beneficial if not merged. Currently this is
5613 	 * possible only if bfqd is rotational with no queueing. For
5614 	 * such a drive, not merging bfqq is better for throughput if
5615 	 * bfqq happens to contain sequential I/O. So, we wait a
5616 	 * little bit for enough I/O to flow through bfqq. After that,
5617 	 * if such an I/O is sequential, then the merge is
5618 	 * canceled. Otherwise the merge is finally performed.
5619 	 */
5620 	if (!last_bfqq_created ||
5621 	    time_before(last_bfqq_created->creation_time +
5622 			msecs_to_jiffies(bfq_activation_stable_merging),
5623 			bfqq->creation_time) ||
5624 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5625 		bfqq->ioprio != last_bfqq_created->ioprio ||
5626 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5627 		*source_bfqq = bfqq;
5628 	else if (time_after_eq(last_bfqq_created->creation_time +
5629 				 bfqd->bfq_burst_interval,
5630 				 bfqq->creation_time)) {
5631 		if (likely(bfqd->nonrot_with_queueing))
5632 			/*
5633 			 * With this type of drive, leaving
5634 			 * bfqq alone may provide no
5635 			 * throughput benefits compared with
5636 			 * merging bfqq. So merge bfqq now.
5637 			 */
5638 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5639 							 bic,
5640 							 last_bfqq_created);
5641 		else { /* schedule tentative stable merge */
5642 			/*
5643 			 * get reference on last_bfqq_created,
5644 			 * to prevent it from being freed,
5645 			 * until we decide whether to merge
5646 			 */
5647 			last_bfqq_created->ref++;
5648 			/*
5649 			 * need to keep track of stable refs, to
5650 			 * compute process refs correctly
5651 			 */
5652 			last_bfqq_created->stable_ref++;
5653 			/*
5654 			 * Record the bfqq to merge to.
5655 			 */
5656 			bic->stable_merge_bfqq = last_bfqq_created;
5657 		}
5658 	}
5659 
5660 	return bfqq;
5661 }
5662 
5663 
5664 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5665 				       struct bio *bio, bool is_sync,
5666 				       struct bfq_io_cq *bic,
5667 				       bool respawn)
5668 {
5669 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5670 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5671 	struct bfq_queue **async_bfqq = NULL;
5672 	struct bfq_queue *bfqq;
5673 	struct bfq_group *bfqg;
5674 
5675 	bfqg = bfq_bio_bfqg(bfqd, bio);
5676 	if (!is_sync) {
5677 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5678 						  ioprio);
5679 		bfqq = *async_bfqq;
5680 		if (bfqq)
5681 			goto out;
5682 	}
5683 
5684 	bfqq = kmem_cache_alloc_node(bfq_pool,
5685 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5686 				     bfqd->queue->node);
5687 
5688 	if (bfqq) {
5689 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5690 			      is_sync);
5691 		bfq_init_entity(&bfqq->entity, bfqg);
5692 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5693 	} else {
5694 		bfqq = &bfqd->oom_bfqq;
5695 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5696 		goto out;
5697 	}
5698 
5699 	/*
5700 	 * Pin the queue now that it's allocated, scheduler exit will
5701 	 * prune it.
5702 	 */
5703 	if (async_bfqq) {
5704 		bfqq->ref++; /*
5705 			      * Extra group reference, w.r.t. sync
5706 			      * queue. This extra reference is removed
5707 			      * only if bfqq->bfqg disappears, to
5708 			      * guarantee that this queue is not freed
5709 			      * until its group goes away.
5710 			      */
5711 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5712 			     bfqq, bfqq->ref);
5713 		*async_bfqq = bfqq;
5714 	}
5715 
5716 out:
5717 	bfqq->ref++; /* get a process reference to this queue */
5718 
5719 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5720 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5721 	return bfqq;
5722 }
5723 
5724 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5725 				    struct bfq_queue *bfqq)
5726 {
5727 	struct bfq_ttime *ttime = &bfqq->ttime;
5728 	u64 elapsed;
5729 
5730 	/*
5731 	 * We are really interested in how long it takes for the queue to
5732 	 * become busy when there is no outstanding IO for this queue. So
5733 	 * ignore cases when the bfq queue has already IO queued.
5734 	 */
5735 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5736 		return;
5737 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5738 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5739 
5740 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5741 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5742 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5743 				     ttime->ttime_samples);
5744 }
5745 
5746 static void
5747 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5748 		       struct request *rq)
5749 {
5750 	bfqq->seek_history <<= 1;
5751 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5752 
5753 	if (bfqq->wr_coeff > 1 &&
5754 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5755 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5756 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5757 					   bfq_wr_duration(bfqd))) {
5758 			/*
5759 			 * In soft_rt weight raising with the
5760 			 * interactive-weight-raising period
5761 			 * elapsed (so no switch back to
5762 			 * interactive weight raising).
5763 			 */
5764 			bfq_bfqq_end_wr(bfqq);
5765 		} else { /*
5766 			  * stopping soft_rt weight raising
5767 			  * while still in interactive period,
5768 			  * switch back to interactive weight
5769 			  * raising
5770 			  */
5771 			switch_back_to_interactive_wr(bfqq, bfqd);
5772 			bfqq->entity.prio_changed = 1;
5773 		}
5774 	}
5775 }
5776 
5777 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5778 				       struct bfq_queue *bfqq,
5779 				       struct bfq_io_cq *bic)
5780 {
5781 	bool has_short_ttime = true, state_changed;
5782 
5783 	/*
5784 	 * No need to update has_short_ttime if bfqq is async or in
5785 	 * idle io prio class, or if bfq_slice_idle is zero, because
5786 	 * no device idling is performed for bfqq in this case.
5787 	 */
5788 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5789 	    bfqd->bfq_slice_idle == 0)
5790 		return;
5791 
5792 	/* Idle window just restored, statistics are meaningless. */
5793 	if (time_is_after_eq_jiffies(bfqq->split_time +
5794 				     bfqd->bfq_wr_min_idle_time))
5795 		return;
5796 
5797 	/* Think time is infinite if no process is linked to
5798 	 * bfqq. Otherwise check average think time to decide whether
5799 	 * to mark as has_short_ttime. To this goal, compare average
5800 	 * think time with half the I/O-plugging timeout.
5801 	 */
5802 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5803 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5804 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5805 		has_short_ttime = false;
5806 
5807 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5808 
5809 	if (has_short_ttime)
5810 		bfq_mark_bfqq_has_short_ttime(bfqq);
5811 	else
5812 		bfq_clear_bfqq_has_short_ttime(bfqq);
5813 
5814 	/*
5815 	 * Until the base value for the total service time gets
5816 	 * finally computed for bfqq, the inject limit does depend on
5817 	 * the think-time state (short|long). In particular, the limit
5818 	 * is 0 or 1 if the think time is deemed, respectively, as
5819 	 * short or long (details in the comments in
5820 	 * bfq_update_inject_limit()). Accordingly, the next
5821 	 * instructions reset the inject limit if the think-time state
5822 	 * has changed and the above base value is still to be
5823 	 * computed.
5824 	 *
5825 	 * However, the reset is performed only if more than 100 ms
5826 	 * have elapsed since the last update of the inject limit, or
5827 	 * (inclusive) if the change is from short to long think
5828 	 * time. The reason for this waiting is as follows.
5829 	 *
5830 	 * bfqq may have a long think time because of a
5831 	 * synchronization with some other queue, i.e., because the
5832 	 * I/O of some other queue may need to be completed for bfqq
5833 	 * to receive new I/O. Details in the comments on the choice
5834 	 * of the queue for injection in bfq_select_queue().
5835 	 *
5836 	 * As stressed in those comments, if such a synchronization is
5837 	 * actually in place, then, without injection on bfqq, the
5838 	 * blocking I/O cannot happen to served while bfqq is in
5839 	 * service. As a consequence, if bfqq is granted
5840 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5841 	 * is dispatched, until the idle timeout fires. This is likely
5842 	 * to result in lower bandwidth and higher latencies for bfqq,
5843 	 * and in a severe loss of total throughput.
5844 	 *
5845 	 * On the opposite end, a non-zero inject limit may allow the
5846 	 * I/O that blocks bfqq to be executed soon, and therefore
5847 	 * bfqq to receive new I/O soon.
5848 	 *
5849 	 * But, if the blocking gets actually eliminated, then the
5850 	 * next think-time sample for bfqq may be very low. This in
5851 	 * turn may cause bfqq's think time to be deemed
5852 	 * short. Without the 100 ms barrier, this new state change
5853 	 * would cause the body of the next if to be executed
5854 	 * immediately. But this would set to 0 the inject
5855 	 * limit. Without injection, the blocking I/O would cause the
5856 	 * think time of bfqq to become long again, and therefore the
5857 	 * inject limit to be raised again, and so on. The only effect
5858 	 * of such a steady oscillation between the two think-time
5859 	 * states would be to prevent effective injection on bfqq.
5860 	 *
5861 	 * In contrast, if the inject limit is not reset during such a
5862 	 * long time interval as 100 ms, then the number of short
5863 	 * think time samples can grow significantly before the reset
5864 	 * is performed. As a consequence, the think time state can
5865 	 * become stable before the reset. Therefore there will be no
5866 	 * state change when the 100 ms elapse, and no reset of the
5867 	 * inject limit. The inject limit remains steadily equal to 1
5868 	 * both during and after the 100 ms. So injection can be
5869 	 * performed at all times, and throughput gets boosted.
5870 	 *
5871 	 * An inject limit equal to 1 is however in conflict, in
5872 	 * general, with the fact that the think time of bfqq is
5873 	 * short, because injection may be likely to delay bfqq's I/O
5874 	 * (as explained in the comments in
5875 	 * bfq_update_inject_limit()). But this does not happen in
5876 	 * this special case, because bfqq's low think time is due to
5877 	 * an effective handling of a synchronization, through
5878 	 * injection. In this special case, bfqq's I/O does not get
5879 	 * delayed by injection; on the contrary, bfqq's I/O is
5880 	 * brought forward, because it is not blocked for
5881 	 * milliseconds.
5882 	 *
5883 	 * In addition, serving the blocking I/O much sooner, and much
5884 	 * more frequently than once per I/O-plugging timeout, makes
5885 	 * it much quicker to detect a waker queue (the concept of
5886 	 * waker queue is defined in the comments in
5887 	 * bfq_add_request()). This makes it possible to start sooner
5888 	 * to boost throughput more effectively, by injecting the I/O
5889 	 * of the waker queue unconditionally on every
5890 	 * bfq_dispatch_request().
5891 	 *
5892 	 * One last, important benefit of not resetting the inject
5893 	 * limit before 100 ms is that, during this time interval, the
5894 	 * base value for the total service time is likely to get
5895 	 * finally computed for bfqq, freeing the inject limit from
5896 	 * its relation with the think time.
5897 	 */
5898 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5899 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5900 				      msecs_to_jiffies(100)) ||
5901 	     !has_short_ttime))
5902 		bfq_reset_inject_limit(bfqd, bfqq);
5903 }
5904 
5905 /*
5906  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5907  * something we should do about it.
5908  */
5909 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5910 			    struct request *rq)
5911 {
5912 	if (rq->cmd_flags & REQ_META)
5913 		bfqq->meta_pending++;
5914 
5915 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5916 
5917 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5918 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5919 				 blk_rq_sectors(rq) < 32;
5920 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5921 
5922 		/*
5923 		 * There is just this request queued: if
5924 		 * - the request is small, and
5925 		 * - we are idling to boost throughput, and
5926 		 * - the queue is not to be expired,
5927 		 * then just exit.
5928 		 *
5929 		 * In this way, if the device is being idled to wait
5930 		 * for a new request from the in-service queue, we
5931 		 * avoid unplugging the device and committing the
5932 		 * device to serve just a small request. In contrast
5933 		 * we wait for the block layer to decide when to
5934 		 * unplug the device: hopefully, new requests will be
5935 		 * merged to this one quickly, then the device will be
5936 		 * unplugged and larger requests will be dispatched.
5937 		 */
5938 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5939 		    !budget_timeout)
5940 			return;
5941 
5942 		/*
5943 		 * A large enough request arrived, or idling is being
5944 		 * performed to preserve service guarantees, or
5945 		 * finally the queue is to be expired: in all these
5946 		 * cases disk idling is to be stopped, so clear
5947 		 * wait_request flag and reset timer.
5948 		 */
5949 		bfq_clear_bfqq_wait_request(bfqq);
5950 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5951 
5952 		/*
5953 		 * The queue is not empty, because a new request just
5954 		 * arrived. Hence we can safely expire the queue, in
5955 		 * case of budget timeout, without risking that the
5956 		 * timestamps of the queue are not updated correctly.
5957 		 * See [1] for more details.
5958 		 */
5959 		if (budget_timeout)
5960 			bfq_bfqq_expire(bfqd, bfqq, false,
5961 					BFQQE_BUDGET_TIMEOUT);
5962 	}
5963 }
5964 
5965 static void bfqq_request_allocated(struct bfq_queue *bfqq)
5966 {
5967 	struct bfq_entity *entity = &bfqq->entity;
5968 
5969 	for_each_entity(entity)
5970 		entity->allocated++;
5971 }
5972 
5973 static void bfqq_request_freed(struct bfq_queue *bfqq)
5974 {
5975 	struct bfq_entity *entity = &bfqq->entity;
5976 
5977 	for_each_entity(entity)
5978 		entity->allocated--;
5979 }
5980 
5981 /* returns true if it causes the idle timer to be disabled */
5982 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5983 {
5984 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5985 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5986 						 RQ_BIC(rq));
5987 	bool waiting, idle_timer_disabled = false;
5988 
5989 	if (new_bfqq) {
5990 		/*
5991 		 * Release the request's reference to the old bfqq
5992 		 * and make sure one is taken to the shared queue.
5993 		 */
5994 		bfqq_request_allocated(new_bfqq);
5995 		bfqq_request_freed(bfqq);
5996 		new_bfqq->ref++;
5997 		/*
5998 		 * If the bic associated with the process
5999 		 * issuing this request still points to bfqq
6000 		 * (and thus has not been already redirected
6001 		 * to new_bfqq or even some other bfq_queue),
6002 		 * then complete the merge and redirect it to
6003 		 * new_bfqq.
6004 		 */
6005 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6006 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6007 					bfqq, new_bfqq);
6008 
6009 		bfq_clear_bfqq_just_created(bfqq);
6010 		/*
6011 		 * rq is about to be enqueued into new_bfqq,
6012 		 * release rq reference on bfqq
6013 		 */
6014 		bfq_put_queue(bfqq);
6015 		rq->elv.priv[1] = new_bfqq;
6016 		bfqq = new_bfqq;
6017 	}
6018 
6019 	bfq_update_io_thinktime(bfqd, bfqq);
6020 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6021 	bfq_update_io_seektime(bfqd, bfqq, rq);
6022 
6023 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6024 	bfq_add_request(rq);
6025 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6026 
6027 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6028 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6029 
6030 	bfq_rq_enqueued(bfqd, bfqq, rq);
6031 
6032 	return idle_timer_disabled;
6033 }
6034 
6035 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6036 static void bfq_update_insert_stats(struct request_queue *q,
6037 				    struct bfq_queue *bfqq,
6038 				    bool idle_timer_disabled,
6039 				    blk_opf_t cmd_flags)
6040 {
6041 	if (!bfqq)
6042 		return;
6043 
6044 	/*
6045 	 * bfqq still exists, because it can disappear only after
6046 	 * either it is merged with another queue, or the process it
6047 	 * is associated with exits. But both actions must be taken by
6048 	 * the same process currently executing this flow of
6049 	 * instructions.
6050 	 *
6051 	 * In addition, the following queue lock guarantees that
6052 	 * bfqq_group(bfqq) exists as well.
6053 	 */
6054 	spin_lock_irq(&q->queue_lock);
6055 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6056 	if (idle_timer_disabled)
6057 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6058 	spin_unlock_irq(&q->queue_lock);
6059 }
6060 #else
6061 static inline void bfq_update_insert_stats(struct request_queue *q,
6062 					   struct bfq_queue *bfqq,
6063 					   bool idle_timer_disabled,
6064 					   blk_opf_t cmd_flags) {}
6065 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6066 
6067 static struct bfq_queue *bfq_init_rq(struct request *rq);
6068 
6069 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6070 			       bool at_head)
6071 {
6072 	struct request_queue *q = hctx->queue;
6073 	struct bfq_data *bfqd = q->elevator->elevator_data;
6074 	struct bfq_queue *bfqq;
6075 	bool idle_timer_disabled = false;
6076 	blk_opf_t cmd_flags;
6077 	LIST_HEAD(free);
6078 
6079 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6080 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6081 		bfqg_stats_update_legacy_io(q, rq);
6082 #endif
6083 	spin_lock_irq(&bfqd->lock);
6084 	bfqq = bfq_init_rq(rq);
6085 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6086 		spin_unlock_irq(&bfqd->lock);
6087 		blk_mq_free_requests(&free);
6088 		return;
6089 	}
6090 
6091 	trace_block_rq_insert(rq);
6092 
6093 	if (!bfqq || at_head) {
6094 		if (at_head)
6095 			list_add(&rq->queuelist, &bfqd->dispatch);
6096 		else
6097 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6098 	} else {
6099 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6100 		/*
6101 		 * Update bfqq, because, if a queue merge has occurred
6102 		 * in __bfq_insert_request, then rq has been
6103 		 * redirected into a new queue.
6104 		 */
6105 		bfqq = RQ_BFQQ(rq);
6106 
6107 		if (rq_mergeable(rq)) {
6108 			elv_rqhash_add(q, rq);
6109 			if (!q->last_merge)
6110 				q->last_merge = rq;
6111 		}
6112 	}
6113 
6114 	/*
6115 	 * Cache cmd_flags before releasing scheduler lock, because rq
6116 	 * may disappear afterwards (for example, because of a request
6117 	 * merge).
6118 	 */
6119 	cmd_flags = rq->cmd_flags;
6120 	spin_unlock_irq(&bfqd->lock);
6121 
6122 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6123 				cmd_flags);
6124 }
6125 
6126 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6127 				struct list_head *list, bool at_head)
6128 {
6129 	while (!list_empty(list)) {
6130 		struct request *rq;
6131 
6132 		rq = list_first_entry(list, struct request, queuelist);
6133 		list_del_init(&rq->queuelist);
6134 		bfq_insert_request(hctx, rq, at_head);
6135 	}
6136 }
6137 
6138 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6139 {
6140 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6141 
6142 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6143 				       bfqd->rq_in_driver);
6144 
6145 	if (bfqd->hw_tag == 1)
6146 		return;
6147 
6148 	/*
6149 	 * This sample is valid if the number of outstanding requests
6150 	 * is large enough to allow a queueing behavior.  Note that the
6151 	 * sum is not exact, as it's not taking into account deactivated
6152 	 * requests.
6153 	 */
6154 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6155 		return;
6156 
6157 	/*
6158 	 * If active queue hasn't enough requests and can idle, bfq might not
6159 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6160 	 * case
6161 	 */
6162 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6163 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6164 	    BFQ_HW_QUEUE_THRESHOLD &&
6165 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6166 		return;
6167 
6168 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6169 		return;
6170 
6171 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6172 	bfqd->max_rq_in_driver = 0;
6173 	bfqd->hw_tag_samples = 0;
6174 
6175 	bfqd->nonrot_with_queueing =
6176 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6177 }
6178 
6179 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6180 {
6181 	u64 now_ns;
6182 	u32 delta_us;
6183 
6184 	bfq_update_hw_tag(bfqd);
6185 
6186 	bfqd->rq_in_driver--;
6187 	bfqq->dispatched--;
6188 
6189 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6190 		/*
6191 		 * Set budget_timeout (which we overload to store the
6192 		 * time at which the queue remains with no backlog and
6193 		 * no outstanding request; used by the weight-raising
6194 		 * mechanism).
6195 		 */
6196 		bfqq->budget_timeout = jiffies;
6197 
6198 		bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
6199 		bfq_weights_tree_remove(bfqq);
6200 	}
6201 
6202 	now_ns = ktime_get_ns();
6203 
6204 	bfqq->ttime.last_end_request = now_ns;
6205 
6206 	/*
6207 	 * Using us instead of ns, to get a reasonable precision in
6208 	 * computing rate in next check.
6209 	 */
6210 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6211 
6212 	/*
6213 	 * If the request took rather long to complete, and, according
6214 	 * to the maximum request size recorded, this completion latency
6215 	 * implies that the request was certainly served at a very low
6216 	 * rate (less than 1M sectors/sec), then the whole observation
6217 	 * interval that lasts up to this time instant cannot be a
6218 	 * valid time interval for computing a new peak rate.  Invoke
6219 	 * bfq_update_rate_reset to have the following three steps
6220 	 * taken:
6221 	 * - close the observation interval at the last (previous)
6222 	 *   request dispatch or completion
6223 	 * - compute rate, if possible, for that observation interval
6224 	 * - reset to zero samples, which will trigger a proper
6225 	 *   re-initialization of the observation interval on next
6226 	 *   dispatch
6227 	 */
6228 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6229 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6230 			1UL<<(BFQ_RATE_SHIFT - 10))
6231 		bfq_update_rate_reset(bfqd, NULL);
6232 	bfqd->last_completion = now_ns;
6233 	/*
6234 	 * Shared queues are likely to receive I/O at a high
6235 	 * rate. This may deceptively let them be considered as wakers
6236 	 * of other queues. But a false waker will unjustly steal
6237 	 * bandwidth to its supposedly woken queue. So considering
6238 	 * also shared queues in the waking mechanism may cause more
6239 	 * control troubles than throughput benefits. Then reset
6240 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6241 	 */
6242 	if (!bfq_bfqq_coop(bfqq))
6243 		bfqd->last_completed_rq_bfqq = bfqq;
6244 	else
6245 		bfqd->last_completed_rq_bfqq = NULL;
6246 
6247 	/*
6248 	 * If we are waiting to discover whether the request pattern
6249 	 * of the task associated with the queue is actually
6250 	 * isochronous, and both requisites for this condition to hold
6251 	 * are now satisfied, then compute soft_rt_next_start (see the
6252 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6253 	 * do not compute soft_rt_next_start if bfqq is in interactive
6254 	 * weight raising (see the comments in bfq_bfqq_expire() for
6255 	 * an explanation). We schedule this delayed update when bfqq
6256 	 * expires, if it still has in-flight requests.
6257 	 */
6258 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6259 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6260 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6261 		bfqq->soft_rt_next_start =
6262 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6263 
6264 	/*
6265 	 * If this is the in-service queue, check if it needs to be expired,
6266 	 * or if we want to idle in case it has no pending requests.
6267 	 */
6268 	if (bfqd->in_service_queue == bfqq) {
6269 		if (bfq_bfqq_must_idle(bfqq)) {
6270 			if (bfqq->dispatched == 0)
6271 				bfq_arm_slice_timer(bfqd);
6272 			/*
6273 			 * If we get here, we do not expire bfqq, even
6274 			 * if bfqq was in budget timeout or had no
6275 			 * more requests (as controlled in the next
6276 			 * conditional instructions). The reason for
6277 			 * not expiring bfqq is as follows.
6278 			 *
6279 			 * Here bfqq->dispatched > 0 holds, but
6280 			 * bfq_bfqq_must_idle() returned true. This
6281 			 * implies that, even if no request arrives
6282 			 * for bfqq before bfqq->dispatched reaches 0,
6283 			 * bfqq will, however, not be expired on the
6284 			 * completion event that causes bfqq->dispatch
6285 			 * to reach zero. In contrast, on this event,
6286 			 * bfqq will start enjoying device idling
6287 			 * (I/O-dispatch plugging).
6288 			 *
6289 			 * But, if we expired bfqq here, bfqq would
6290 			 * not have the chance to enjoy device idling
6291 			 * when bfqq->dispatched finally reaches
6292 			 * zero. This would expose bfqq to violation
6293 			 * of its reserved service guarantees.
6294 			 */
6295 			return;
6296 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6297 			bfq_bfqq_expire(bfqd, bfqq, false,
6298 					BFQQE_BUDGET_TIMEOUT);
6299 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6300 			 (bfqq->dispatched == 0 ||
6301 			  !bfq_better_to_idle(bfqq)))
6302 			bfq_bfqq_expire(bfqd, bfqq, false,
6303 					BFQQE_NO_MORE_REQUESTS);
6304 	}
6305 
6306 	if (!bfqd->rq_in_driver)
6307 		bfq_schedule_dispatch(bfqd);
6308 }
6309 
6310 /*
6311  * The processes associated with bfqq may happen to generate their
6312  * cumulative I/O at a lower rate than the rate at which the device
6313  * could serve the same I/O. This is rather probable, e.g., if only
6314  * one process is associated with bfqq and the device is an SSD. It
6315  * results in bfqq becoming often empty while in service. In this
6316  * respect, if BFQ is allowed to switch to another queue when bfqq
6317  * remains empty, then the device goes on being fed with I/O requests,
6318  * and the throughput is not affected. In contrast, if BFQ is not
6319  * allowed to switch to another queue---because bfqq is sync and
6320  * I/O-dispatch needs to be plugged while bfqq is temporarily
6321  * empty---then, during the service of bfqq, there will be frequent
6322  * "service holes", i.e., time intervals during which bfqq gets empty
6323  * and the device can only consume the I/O already queued in its
6324  * hardware queues. During service holes, the device may even get to
6325  * remaining idle. In the end, during the service of bfqq, the device
6326  * is driven at a lower speed than the one it can reach with the kind
6327  * of I/O flowing through bfqq.
6328  *
6329  * To counter this loss of throughput, BFQ implements a "request
6330  * injection mechanism", which tries to fill the above service holes
6331  * with I/O requests taken from other queues. The hard part in this
6332  * mechanism is finding the right amount of I/O to inject, so as to
6333  * both boost throughput and not break bfqq's bandwidth and latency
6334  * guarantees. In this respect, the mechanism maintains a per-queue
6335  * inject limit, computed as below. While bfqq is empty, the injection
6336  * mechanism dispatches extra I/O requests only until the total number
6337  * of I/O requests in flight---i.e., already dispatched but not yet
6338  * completed---remains lower than this limit.
6339  *
6340  * A first definition comes in handy to introduce the algorithm by
6341  * which the inject limit is computed.  We define as first request for
6342  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6343  * service, and causes bfqq to switch from empty to non-empty. The
6344  * algorithm updates the limit as a function of the effect of
6345  * injection on the service times of only the first requests of
6346  * bfqq. The reason for this restriction is that these are the
6347  * requests whose service time is affected most, because they are the
6348  * first to arrive after injection possibly occurred.
6349  *
6350  * To evaluate the effect of injection, the algorithm measures the
6351  * "total service time" of first requests. We define as total service
6352  * time of an I/O request, the time that elapses since when the
6353  * request is enqueued into bfqq, to when it is completed. This
6354  * quantity allows the whole effect of injection to be measured. It is
6355  * easy to see why. Suppose that some requests of other queues are
6356  * actually injected while bfqq is empty, and that a new request R
6357  * then arrives for bfqq. If the device does start to serve all or
6358  * part of the injected requests during the service hole, then,
6359  * because of this extra service, it may delay the next invocation of
6360  * the dispatch hook of BFQ. Then, even after R gets eventually
6361  * dispatched, the device may delay the actual service of R if it is
6362  * still busy serving the extra requests, or if it decides to serve,
6363  * before R, some extra request still present in its queues. As a
6364  * conclusion, the cumulative extra delay caused by injection can be
6365  * easily evaluated by just comparing the total service time of first
6366  * requests with and without injection.
6367  *
6368  * The limit-update algorithm works as follows. On the arrival of a
6369  * first request of bfqq, the algorithm measures the total time of the
6370  * request only if one of the three cases below holds, and, for each
6371  * case, it updates the limit as described below:
6372  *
6373  * (1) If there is no in-flight request. This gives a baseline for the
6374  *     total service time of the requests of bfqq. If the baseline has
6375  *     not been computed yet, then, after computing it, the limit is
6376  *     set to 1, to start boosting throughput, and to prepare the
6377  *     ground for the next case. If the baseline has already been
6378  *     computed, then it is updated, in case it results to be lower
6379  *     than the previous value.
6380  *
6381  * (2) If the limit is higher than 0 and there are in-flight
6382  *     requests. By comparing the total service time in this case with
6383  *     the above baseline, it is possible to know at which extent the
6384  *     current value of the limit is inflating the total service
6385  *     time. If the inflation is below a certain threshold, then bfqq
6386  *     is assumed to be suffering from no perceivable loss of its
6387  *     service guarantees, and the limit is even tentatively
6388  *     increased. If the inflation is above the threshold, then the
6389  *     limit is decreased. Due to the lack of any hysteresis, this
6390  *     logic makes the limit oscillate even in steady workload
6391  *     conditions. Yet we opted for it, because it is fast in reaching
6392  *     the best value for the limit, as a function of the current I/O
6393  *     workload. To reduce oscillations, this step is disabled for a
6394  *     short time interval after the limit happens to be decreased.
6395  *
6396  * (3) Periodically, after resetting the limit, to make sure that the
6397  *     limit eventually drops in case the workload changes. This is
6398  *     needed because, after the limit has gone safely up for a
6399  *     certain workload, it is impossible to guess whether the
6400  *     baseline total service time may have changed, without measuring
6401  *     it again without injection. A more effective version of this
6402  *     step might be to just sample the baseline, by interrupting
6403  *     injection only once, and then to reset/lower the limit only if
6404  *     the total service time with the current limit does happen to be
6405  *     too large.
6406  *
6407  * More details on each step are provided in the comments on the
6408  * pieces of code that implement these steps: the branch handling the
6409  * transition from empty to non empty in bfq_add_request(), the branch
6410  * handling injection in bfq_select_queue(), and the function
6411  * bfq_choose_bfqq_for_injection(). These comments also explain some
6412  * exceptions, made by the injection mechanism in some special cases.
6413  */
6414 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6415 				    struct bfq_queue *bfqq)
6416 {
6417 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6418 	unsigned int old_limit = bfqq->inject_limit;
6419 
6420 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6421 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6422 
6423 		if (tot_time_ns >= threshold && old_limit > 0) {
6424 			bfqq->inject_limit--;
6425 			bfqq->decrease_time_jif = jiffies;
6426 		} else if (tot_time_ns < threshold &&
6427 			   old_limit <= bfqd->max_rq_in_driver)
6428 			bfqq->inject_limit++;
6429 	}
6430 
6431 	/*
6432 	 * Either we still have to compute the base value for the
6433 	 * total service time, and there seem to be the right
6434 	 * conditions to do it, or we can lower the last base value
6435 	 * computed.
6436 	 *
6437 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6438 	 * request in flight, because this function is in the code
6439 	 * path that handles the completion of a request of bfqq, and,
6440 	 * in particular, this function is executed before
6441 	 * bfqd->rq_in_driver is decremented in such a code path.
6442 	 */
6443 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6444 	    tot_time_ns < bfqq->last_serv_time_ns) {
6445 		if (bfqq->last_serv_time_ns == 0) {
6446 			/*
6447 			 * Now we certainly have a base value: make sure we
6448 			 * start trying injection.
6449 			 */
6450 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6451 		}
6452 		bfqq->last_serv_time_ns = tot_time_ns;
6453 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6454 		/*
6455 		 * No I/O injected and no request still in service in
6456 		 * the drive: these are the exact conditions for
6457 		 * computing the base value of the total service time
6458 		 * for bfqq. So let's update this value, because it is
6459 		 * rather variable. For example, it varies if the size
6460 		 * or the spatial locality of the I/O requests in bfqq
6461 		 * change.
6462 		 */
6463 		bfqq->last_serv_time_ns = tot_time_ns;
6464 
6465 
6466 	/* update complete, not waiting for any request completion any longer */
6467 	bfqd->waited_rq = NULL;
6468 	bfqd->rqs_injected = false;
6469 }
6470 
6471 /*
6472  * Handle either a requeue or a finish for rq. The things to do are
6473  * the same in both cases: all references to rq are to be dropped. In
6474  * particular, rq is considered completed from the point of view of
6475  * the scheduler.
6476  */
6477 static void bfq_finish_requeue_request(struct request *rq)
6478 {
6479 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6480 	struct bfq_data *bfqd;
6481 	unsigned long flags;
6482 
6483 	/*
6484 	 * rq either is not associated with any icq, or is an already
6485 	 * requeued request that has not (yet) been re-inserted into
6486 	 * a bfq_queue.
6487 	 */
6488 	if (!rq->elv.icq || !bfqq)
6489 		return;
6490 
6491 	bfqd = bfqq->bfqd;
6492 
6493 	if (rq->rq_flags & RQF_STARTED)
6494 		bfqg_stats_update_completion(bfqq_group(bfqq),
6495 					     rq->start_time_ns,
6496 					     rq->io_start_time_ns,
6497 					     rq->cmd_flags);
6498 
6499 	spin_lock_irqsave(&bfqd->lock, flags);
6500 	if (likely(rq->rq_flags & RQF_STARTED)) {
6501 		if (rq == bfqd->waited_rq)
6502 			bfq_update_inject_limit(bfqd, bfqq);
6503 
6504 		bfq_completed_request(bfqq, bfqd);
6505 	}
6506 	bfqq_request_freed(bfqq);
6507 	bfq_put_queue(bfqq);
6508 	RQ_BIC(rq)->requests--;
6509 	spin_unlock_irqrestore(&bfqd->lock, flags);
6510 
6511 	/*
6512 	 * Reset private fields. In case of a requeue, this allows
6513 	 * this function to correctly do nothing if it is spuriously
6514 	 * invoked again on this same request (see the check at the
6515 	 * beginning of the function). Probably, a better general
6516 	 * design would be to prevent blk-mq from invoking the requeue
6517 	 * or finish hooks of an elevator, for a request that is not
6518 	 * referred by that elevator.
6519 	 *
6520 	 * Resetting the following fields would break the
6521 	 * request-insertion logic if rq is re-inserted into a bfq
6522 	 * internal queue, without a re-preparation. Here we assume
6523 	 * that re-insertions of requeued requests, without
6524 	 * re-preparation, can happen only for pass_through or at_head
6525 	 * requests (which are not re-inserted into bfq internal
6526 	 * queues).
6527 	 */
6528 	rq->elv.priv[0] = NULL;
6529 	rq->elv.priv[1] = NULL;
6530 }
6531 
6532 static void bfq_finish_request(struct request *rq)
6533 {
6534 	bfq_finish_requeue_request(rq);
6535 
6536 	if (rq->elv.icq) {
6537 		put_io_context(rq->elv.icq->ioc);
6538 		rq->elv.icq = NULL;
6539 	}
6540 }
6541 
6542 /*
6543  * Removes the association between the current task and bfqq, assuming
6544  * that bic points to the bfq iocontext of the task.
6545  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6546  * was the last process referring to that bfqq.
6547  */
6548 static struct bfq_queue *
6549 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6550 {
6551 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6552 
6553 	if (bfqq_process_refs(bfqq) == 1) {
6554 		bfqq->pid = current->pid;
6555 		bfq_clear_bfqq_coop(bfqq);
6556 		bfq_clear_bfqq_split_coop(bfqq);
6557 		return bfqq;
6558 	}
6559 
6560 	bic_set_bfqq(bic, NULL, 1);
6561 
6562 	bfq_put_cooperator(bfqq);
6563 
6564 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6565 	return NULL;
6566 }
6567 
6568 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6569 						   struct bfq_io_cq *bic,
6570 						   struct bio *bio,
6571 						   bool split, bool is_sync,
6572 						   bool *new_queue)
6573 {
6574 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6575 
6576 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6577 		return bfqq;
6578 
6579 	if (new_queue)
6580 		*new_queue = true;
6581 
6582 	if (bfqq)
6583 		bfq_put_queue(bfqq);
6584 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6585 
6586 	bic_set_bfqq(bic, bfqq, is_sync);
6587 	if (split && is_sync) {
6588 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6589 		    bic->saved_in_large_burst)
6590 			bfq_mark_bfqq_in_large_burst(bfqq);
6591 		else {
6592 			bfq_clear_bfqq_in_large_burst(bfqq);
6593 			if (bic->was_in_burst_list)
6594 				/*
6595 				 * If bfqq was in the current
6596 				 * burst list before being
6597 				 * merged, then we have to add
6598 				 * it back. And we do not need
6599 				 * to increase burst_size, as
6600 				 * we did not decrement
6601 				 * burst_size when we removed
6602 				 * bfqq from the burst list as
6603 				 * a consequence of a merge
6604 				 * (see comments in
6605 				 * bfq_put_queue). In this
6606 				 * respect, it would be rather
6607 				 * costly to know whether the
6608 				 * current burst list is still
6609 				 * the same burst list from
6610 				 * which bfqq was removed on
6611 				 * the merge. To avoid this
6612 				 * cost, if bfqq was in a
6613 				 * burst list, then we add
6614 				 * bfqq to the current burst
6615 				 * list without any further
6616 				 * check. This can cause
6617 				 * inappropriate insertions,
6618 				 * but rarely enough to not
6619 				 * harm the detection of large
6620 				 * bursts significantly.
6621 				 */
6622 				hlist_add_head(&bfqq->burst_list_node,
6623 					       &bfqd->burst_list);
6624 		}
6625 		bfqq->split_time = jiffies;
6626 	}
6627 
6628 	return bfqq;
6629 }
6630 
6631 /*
6632  * Only reset private fields. The actual request preparation will be
6633  * performed by bfq_init_rq, when rq is either inserted or merged. See
6634  * comments on bfq_init_rq for the reason behind this delayed
6635  * preparation.
6636  */
6637 static void bfq_prepare_request(struct request *rq)
6638 {
6639 	rq->elv.icq = ioc_find_get_icq(rq->q);
6640 
6641 	/*
6642 	 * Regardless of whether we have an icq attached, we have to
6643 	 * clear the scheduler pointers, as they might point to
6644 	 * previously allocated bic/bfqq structs.
6645 	 */
6646 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6647 }
6648 
6649 /*
6650  * If needed, init rq, allocate bfq data structures associated with
6651  * rq, and increment reference counters in the destination bfq_queue
6652  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6653  * not associated with any bfq_queue.
6654  *
6655  * This function is invoked by the functions that perform rq insertion
6656  * or merging. One may have expected the above preparation operations
6657  * to be performed in bfq_prepare_request, and not delayed to when rq
6658  * is inserted or merged. The rationale behind this delayed
6659  * preparation is that, after the prepare_request hook is invoked for
6660  * rq, rq may still be transformed into a request with no icq, i.e., a
6661  * request not associated with any queue. No bfq hook is invoked to
6662  * signal this transformation. As a consequence, should these
6663  * preparation operations be performed when the prepare_request hook
6664  * is invoked, and should rq be transformed one moment later, bfq
6665  * would end up in an inconsistent state, because it would have
6666  * incremented some queue counters for an rq destined to
6667  * transformation, without any chance to correctly lower these
6668  * counters back. In contrast, no transformation can still happen for
6669  * rq after rq has been inserted or merged. So, it is safe to execute
6670  * these preparation operations when rq is finally inserted or merged.
6671  */
6672 static struct bfq_queue *bfq_init_rq(struct request *rq)
6673 {
6674 	struct request_queue *q = rq->q;
6675 	struct bio *bio = rq->bio;
6676 	struct bfq_data *bfqd = q->elevator->elevator_data;
6677 	struct bfq_io_cq *bic;
6678 	const int is_sync = rq_is_sync(rq);
6679 	struct bfq_queue *bfqq;
6680 	bool new_queue = false;
6681 	bool bfqq_already_existing = false, split = false;
6682 
6683 	if (unlikely(!rq->elv.icq))
6684 		return NULL;
6685 
6686 	/*
6687 	 * Assuming that elv.priv[1] is set only if everything is set
6688 	 * for this rq. This holds true, because this function is
6689 	 * invoked only for insertion or merging, and, after such
6690 	 * events, a request cannot be manipulated any longer before
6691 	 * being removed from bfq.
6692 	 */
6693 	if (rq->elv.priv[1])
6694 		return rq->elv.priv[1];
6695 
6696 	bic = icq_to_bic(rq->elv.icq);
6697 
6698 	bfq_check_ioprio_change(bic, bio);
6699 
6700 	bfq_bic_update_cgroup(bic, bio);
6701 
6702 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6703 					 &new_queue);
6704 
6705 	if (likely(!new_queue)) {
6706 		/* If the queue was seeky for too long, break it apart. */
6707 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6708 			!bic->stably_merged) {
6709 			struct bfq_queue *old_bfqq = bfqq;
6710 
6711 			/* Update bic before losing reference to bfqq */
6712 			if (bfq_bfqq_in_large_burst(bfqq))
6713 				bic->saved_in_large_burst = true;
6714 
6715 			bfqq = bfq_split_bfqq(bic, bfqq);
6716 			split = true;
6717 
6718 			if (!bfqq) {
6719 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6720 								 true, is_sync,
6721 								 NULL);
6722 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6723 					bfqq_already_existing = true;
6724 			} else
6725 				bfqq_already_existing = true;
6726 
6727 			if (!bfqq_already_existing) {
6728 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6729 				bfqq->tentative_waker_bfqq = NULL;
6730 
6731 				/*
6732 				 * If the waker queue disappears, then
6733 				 * new_bfqq->waker_bfqq must be
6734 				 * reset. So insert new_bfqq into the
6735 				 * woken_list of the waker. See
6736 				 * bfq_check_waker for details.
6737 				 */
6738 				if (bfqq->waker_bfqq)
6739 					hlist_add_head(&bfqq->woken_list_node,
6740 						       &bfqq->waker_bfqq->woken_list);
6741 			}
6742 		}
6743 	}
6744 
6745 	bfqq_request_allocated(bfqq);
6746 	bfqq->ref++;
6747 	bic->requests++;
6748 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6749 		     rq, bfqq, bfqq->ref);
6750 
6751 	rq->elv.priv[0] = bic;
6752 	rq->elv.priv[1] = bfqq;
6753 
6754 	/*
6755 	 * If a bfq_queue has only one process reference, it is owned
6756 	 * by only this bic: we can then set bfqq->bic = bic. in
6757 	 * addition, if the queue has also just been split, we have to
6758 	 * resume its state.
6759 	 */
6760 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6761 		bfqq->bic = bic;
6762 		if (split) {
6763 			/*
6764 			 * The queue has just been split from a shared
6765 			 * queue: restore the idle window and the
6766 			 * possible weight raising period.
6767 			 */
6768 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6769 					      bfqq_already_existing);
6770 		}
6771 	}
6772 
6773 	/*
6774 	 * Consider bfqq as possibly belonging to a burst of newly
6775 	 * created queues only if:
6776 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6777 	 * or
6778 	 * 2) There is no other active queue. In fact, if, in
6779 	 *    contrast, there are active queues not belonging to the
6780 	 *    possible burst bfqq may belong to, then there is no gain
6781 	 *    in considering bfqq as belonging to a burst, and
6782 	 *    therefore in not weight-raising bfqq. See comments on
6783 	 *    bfq_handle_burst().
6784 	 *
6785 	 * This filtering also helps eliminating false positives,
6786 	 * occurring when bfqq does not belong to an actual large
6787 	 * burst, but some background task (e.g., a service) happens
6788 	 * to trigger the creation of new queues very close to when
6789 	 * bfqq and its possible companion queues are created. See
6790 	 * comments on bfq_handle_burst() for further details also on
6791 	 * this issue.
6792 	 */
6793 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6794 		     (bfqd->burst_size > 0 ||
6795 		      bfq_tot_busy_queues(bfqd) == 0)))
6796 		bfq_handle_burst(bfqd, bfqq);
6797 
6798 	return bfqq;
6799 }
6800 
6801 static void
6802 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6803 {
6804 	enum bfqq_expiration reason;
6805 	unsigned long flags;
6806 
6807 	spin_lock_irqsave(&bfqd->lock, flags);
6808 
6809 	/*
6810 	 * Considering that bfqq may be in race, we should firstly check
6811 	 * whether bfqq is in service before doing something on it. If
6812 	 * the bfqq in race is not in service, it has already been expired
6813 	 * through __bfq_bfqq_expire func and its wait_request flags has
6814 	 * been cleared in __bfq_bfqd_reset_in_service func.
6815 	 */
6816 	if (bfqq != bfqd->in_service_queue) {
6817 		spin_unlock_irqrestore(&bfqd->lock, flags);
6818 		return;
6819 	}
6820 
6821 	bfq_clear_bfqq_wait_request(bfqq);
6822 
6823 	if (bfq_bfqq_budget_timeout(bfqq))
6824 		/*
6825 		 * Also here the queue can be safely expired
6826 		 * for budget timeout without wasting
6827 		 * guarantees
6828 		 */
6829 		reason = BFQQE_BUDGET_TIMEOUT;
6830 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6831 		/*
6832 		 * The queue may not be empty upon timer expiration,
6833 		 * because we may not disable the timer when the
6834 		 * first request of the in-service queue arrives
6835 		 * during disk idling.
6836 		 */
6837 		reason = BFQQE_TOO_IDLE;
6838 	else
6839 		goto schedule_dispatch;
6840 
6841 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6842 
6843 schedule_dispatch:
6844 	bfq_schedule_dispatch(bfqd);
6845 	spin_unlock_irqrestore(&bfqd->lock, flags);
6846 }
6847 
6848 /*
6849  * Handler of the expiration of the timer running if the in-service queue
6850  * is idling inside its time slice.
6851  */
6852 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6853 {
6854 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6855 					     idle_slice_timer);
6856 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6857 
6858 	/*
6859 	 * Theoretical race here: the in-service queue can be NULL or
6860 	 * different from the queue that was idling if a new request
6861 	 * arrives for the current queue and there is a full dispatch
6862 	 * cycle that changes the in-service queue.  This can hardly
6863 	 * happen, but in the worst case we just expire a queue too
6864 	 * early.
6865 	 */
6866 	if (bfqq)
6867 		bfq_idle_slice_timer_body(bfqd, bfqq);
6868 
6869 	return HRTIMER_NORESTART;
6870 }
6871 
6872 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6873 				 struct bfq_queue **bfqq_ptr)
6874 {
6875 	struct bfq_queue *bfqq = *bfqq_ptr;
6876 
6877 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6878 	if (bfqq) {
6879 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6880 
6881 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6882 			     bfqq, bfqq->ref);
6883 		bfq_put_queue(bfqq);
6884 		*bfqq_ptr = NULL;
6885 	}
6886 }
6887 
6888 /*
6889  * Release all the bfqg references to its async queues.  If we are
6890  * deallocating the group these queues may still contain requests, so
6891  * we reparent them to the root cgroup (i.e., the only one that will
6892  * exist for sure until all the requests on a device are gone).
6893  */
6894 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6895 {
6896 	int i, j;
6897 
6898 	for (i = 0; i < 2; i++)
6899 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6900 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6901 
6902 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6903 }
6904 
6905 /*
6906  * See the comments on bfq_limit_depth for the purpose of
6907  * the depths set in the function. Return minimum shallow depth we'll use.
6908  */
6909 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
6910 {
6911 	unsigned int depth = 1U << bt->sb.shift;
6912 
6913 	bfqd->full_depth_shift = bt->sb.shift;
6914 	/*
6915 	 * In-word depths if no bfq_queue is being weight-raised:
6916 	 * leaving 25% of tags only for sync reads.
6917 	 *
6918 	 * In next formulas, right-shift the value
6919 	 * (1U<<bt->sb.shift), instead of computing directly
6920 	 * (1U<<(bt->sb.shift - something)), to be robust against
6921 	 * any possible value of bt->sb.shift, without having to
6922 	 * limit 'something'.
6923 	 */
6924 	/* no more than 50% of tags for async I/O */
6925 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
6926 	/*
6927 	 * no more than 75% of tags for sync writes (25% extra tags
6928 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6929 	 * writes)
6930 	 */
6931 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
6932 
6933 	/*
6934 	 * In-word depths in case some bfq_queue is being weight-
6935 	 * raised: leaving ~63% of tags for sync reads. This is the
6936 	 * highest percentage for which, in our tests, application
6937 	 * start-up times didn't suffer from any regression due to tag
6938 	 * shortage.
6939 	 */
6940 	/* no more than ~18% of tags for async I/O */
6941 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
6942 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6943 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
6944 }
6945 
6946 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6947 {
6948 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6949 	struct blk_mq_tags *tags = hctx->sched_tags;
6950 
6951 	bfq_update_depths(bfqd, &tags->bitmap_tags);
6952 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
6953 }
6954 
6955 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6956 {
6957 	bfq_depth_updated(hctx);
6958 	return 0;
6959 }
6960 
6961 static void bfq_exit_queue(struct elevator_queue *e)
6962 {
6963 	struct bfq_data *bfqd = e->elevator_data;
6964 	struct bfq_queue *bfqq, *n;
6965 
6966 	hrtimer_cancel(&bfqd->idle_slice_timer);
6967 
6968 	spin_lock_irq(&bfqd->lock);
6969 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6970 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6971 	spin_unlock_irq(&bfqd->lock);
6972 
6973 	hrtimer_cancel(&bfqd->idle_slice_timer);
6974 
6975 	/* release oom-queue reference to root group */
6976 	bfqg_and_blkg_put(bfqd->root_group);
6977 
6978 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6979 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6980 #else
6981 	spin_lock_irq(&bfqd->lock);
6982 	bfq_put_async_queues(bfqd, bfqd->root_group);
6983 	kfree(bfqd->root_group);
6984 	spin_unlock_irq(&bfqd->lock);
6985 #endif
6986 
6987 	blk_stat_disable_accounting(bfqd->queue);
6988 	clear_bit(ELEVATOR_FLAG_DISABLE_WBT, &e->flags);
6989 	wbt_enable_default(bfqd->queue);
6990 
6991 	kfree(bfqd);
6992 }
6993 
6994 static void bfq_init_root_group(struct bfq_group *root_group,
6995 				struct bfq_data *bfqd)
6996 {
6997 	int i;
6998 
6999 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7000 	root_group->entity.parent = NULL;
7001 	root_group->my_entity = NULL;
7002 	root_group->bfqd = bfqd;
7003 #endif
7004 	root_group->rq_pos_tree = RB_ROOT;
7005 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7006 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7007 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7008 }
7009 
7010 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7011 {
7012 	struct bfq_data *bfqd;
7013 	struct elevator_queue *eq;
7014 
7015 	eq = elevator_alloc(q, e);
7016 	if (!eq)
7017 		return -ENOMEM;
7018 
7019 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7020 	if (!bfqd) {
7021 		kobject_put(&eq->kobj);
7022 		return -ENOMEM;
7023 	}
7024 	eq->elevator_data = bfqd;
7025 
7026 	spin_lock_irq(&q->queue_lock);
7027 	q->elevator = eq;
7028 	spin_unlock_irq(&q->queue_lock);
7029 
7030 	/*
7031 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7032 	 * Grab a permanent reference to it, so that the normal code flow
7033 	 * will not attempt to free it.
7034 	 */
7035 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7036 	bfqd->oom_bfqq.ref++;
7037 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7038 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7039 	bfqd->oom_bfqq.entity.new_weight =
7040 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7041 
7042 	/* oom_bfqq does not participate to bursts */
7043 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7044 
7045 	/*
7046 	 * Trigger weight initialization, according to ioprio, at the
7047 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7048 	 * class won't be changed any more.
7049 	 */
7050 	bfqd->oom_bfqq.entity.prio_changed = 1;
7051 
7052 	bfqd->queue = q;
7053 
7054 	INIT_LIST_HEAD(&bfqd->dispatch);
7055 
7056 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7057 		     HRTIMER_MODE_REL);
7058 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7059 
7060 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7061 	bfqd->num_groups_with_pending_reqs = 0;
7062 
7063 	INIT_LIST_HEAD(&bfqd->active_list);
7064 	INIT_LIST_HEAD(&bfqd->idle_list);
7065 	INIT_HLIST_HEAD(&bfqd->burst_list);
7066 
7067 	bfqd->hw_tag = -1;
7068 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7069 
7070 	bfqd->bfq_max_budget = bfq_default_max_budget;
7071 
7072 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7073 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7074 	bfqd->bfq_back_max = bfq_back_max;
7075 	bfqd->bfq_back_penalty = bfq_back_penalty;
7076 	bfqd->bfq_slice_idle = bfq_slice_idle;
7077 	bfqd->bfq_timeout = bfq_timeout;
7078 
7079 	bfqd->bfq_large_burst_thresh = 8;
7080 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7081 
7082 	bfqd->low_latency = true;
7083 
7084 	/*
7085 	 * Trade-off between responsiveness and fairness.
7086 	 */
7087 	bfqd->bfq_wr_coeff = 30;
7088 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7089 	bfqd->bfq_wr_max_time = 0;
7090 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7091 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7092 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7093 					      * Approximate rate required
7094 					      * to playback or record a
7095 					      * high-definition compressed
7096 					      * video.
7097 					      */
7098 	bfqd->wr_busy_queues = 0;
7099 
7100 	/*
7101 	 * Begin by assuming, optimistically, that the device peak
7102 	 * rate is equal to 2/3 of the highest reference rate.
7103 	 */
7104 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7105 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7106 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7107 
7108 	spin_lock_init(&bfqd->lock);
7109 
7110 	/*
7111 	 * The invocation of the next bfq_create_group_hierarchy
7112 	 * function is the head of a chain of function calls
7113 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7114 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7115 	 * has_work hook function. For this reason,
7116 	 * bfq_create_group_hierarchy is invoked only after all
7117 	 * scheduler data has been initialized, apart from the fields
7118 	 * that can be initialized only after invoking
7119 	 * bfq_create_group_hierarchy. This, in particular, enables
7120 	 * has_work to correctly return false. Of course, to avoid
7121 	 * other inconsistencies, the blk-mq stack must then refrain
7122 	 * from invoking further scheduler hooks before this init
7123 	 * function is finished.
7124 	 */
7125 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7126 	if (!bfqd->root_group)
7127 		goto out_free;
7128 	bfq_init_root_group(bfqd->root_group, bfqd);
7129 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7130 
7131 	/* We dispatch from request queue wide instead of hw queue */
7132 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7133 
7134 	set_bit(ELEVATOR_FLAG_DISABLE_WBT, &eq->flags);
7135 	wbt_disable_default(q);
7136 	blk_stat_enable_accounting(q);
7137 
7138 	return 0;
7139 
7140 out_free:
7141 	kfree(bfqd);
7142 	kobject_put(&eq->kobj);
7143 	return -ENOMEM;
7144 }
7145 
7146 static void bfq_slab_kill(void)
7147 {
7148 	kmem_cache_destroy(bfq_pool);
7149 }
7150 
7151 static int __init bfq_slab_setup(void)
7152 {
7153 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7154 	if (!bfq_pool)
7155 		return -ENOMEM;
7156 	return 0;
7157 }
7158 
7159 static ssize_t bfq_var_show(unsigned int var, char *page)
7160 {
7161 	return sprintf(page, "%u\n", var);
7162 }
7163 
7164 static int bfq_var_store(unsigned long *var, const char *page)
7165 {
7166 	unsigned long new_val;
7167 	int ret = kstrtoul(page, 10, &new_val);
7168 
7169 	if (ret)
7170 		return ret;
7171 	*var = new_val;
7172 	return 0;
7173 }
7174 
7175 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7176 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7177 {									\
7178 	struct bfq_data *bfqd = e->elevator_data;			\
7179 	u64 __data = __VAR;						\
7180 	if (__CONV == 1)						\
7181 		__data = jiffies_to_msecs(__data);			\
7182 	else if (__CONV == 2)						\
7183 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7184 	return bfq_var_show(__data, (page));				\
7185 }
7186 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7187 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7188 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7189 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7190 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7191 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7192 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7193 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7194 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7195 #undef SHOW_FUNCTION
7196 
7197 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7198 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7199 {									\
7200 	struct bfq_data *bfqd = e->elevator_data;			\
7201 	u64 __data = __VAR;						\
7202 	__data = div_u64(__data, NSEC_PER_USEC);			\
7203 	return bfq_var_show(__data, (page));				\
7204 }
7205 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7206 #undef USEC_SHOW_FUNCTION
7207 
7208 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7209 static ssize_t								\
7210 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7211 {									\
7212 	struct bfq_data *bfqd = e->elevator_data;			\
7213 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7214 	int ret;							\
7215 									\
7216 	ret = bfq_var_store(&__data, (page));				\
7217 	if (ret)							\
7218 		return ret;						\
7219 	if (__data < __min)						\
7220 		__data = __min;						\
7221 	else if (__data > __max)					\
7222 		__data = __max;						\
7223 	if (__CONV == 1)						\
7224 		*(__PTR) = msecs_to_jiffies(__data);			\
7225 	else if (__CONV == 2)						\
7226 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7227 	else								\
7228 		*(__PTR) = __data;					\
7229 	return count;							\
7230 }
7231 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7232 		INT_MAX, 2);
7233 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7234 		INT_MAX, 2);
7235 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7236 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7237 		INT_MAX, 0);
7238 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7239 #undef STORE_FUNCTION
7240 
7241 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7242 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7243 {									\
7244 	struct bfq_data *bfqd = e->elevator_data;			\
7245 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7246 	int ret;							\
7247 									\
7248 	ret = bfq_var_store(&__data, (page));				\
7249 	if (ret)							\
7250 		return ret;						\
7251 	if (__data < __min)						\
7252 		__data = __min;						\
7253 	else if (__data > __max)					\
7254 		__data = __max;						\
7255 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7256 	return count;							\
7257 }
7258 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7259 		    UINT_MAX);
7260 #undef USEC_STORE_FUNCTION
7261 
7262 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7263 				    const char *page, size_t count)
7264 {
7265 	struct bfq_data *bfqd = e->elevator_data;
7266 	unsigned long __data;
7267 	int ret;
7268 
7269 	ret = bfq_var_store(&__data, (page));
7270 	if (ret)
7271 		return ret;
7272 
7273 	if (__data == 0)
7274 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7275 	else {
7276 		if (__data > INT_MAX)
7277 			__data = INT_MAX;
7278 		bfqd->bfq_max_budget = __data;
7279 	}
7280 
7281 	bfqd->bfq_user_max_budget = __data;
7282 
7283 	return count;
7284 }
7285 
7286 /*
7287  * Leaving this name to preserve name compatibility with cfq
7288  * parameters, but this timeout is used for both sync and async.
7289  */
7290 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7291 				      const char *page, size_t count)
7292 {
7293 	struct bfq_data *bfqd = e->elevator_data;
7294 	unsigned long __data;
7295 	int ret;
7296 
7297 	ret = bfq_var_store(&__data, (page));
7298 	if (ret)
7299 		return ret;
7300 
7301 	if (__data < 1)
7302 		__data = 1;
7303 	else if (__data > INT_MAX)
7304 		__data = INT_MAX;
7305 
7306 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7307 	if (bfqd->bfq_user_max_budget == 0)
7308 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7309 
7310 	return count;
7311 }
7312 
7313 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7314 				     const char *page, size_t count)
7315 {
7316 	struct bfq_data *bfqd = e->elevator_data;
7317 	unsigned long __data;
7318 	int ret;
7319 
7320 	ret = bfq_var_store(&__data, (page));
7321 	if (ret)
7322 		return ret;
7323 
7324 	if (__data > 1)
7325 		__data = 1;
7326 	if (!bfqd->strict_guarantees && __data == 1
7327 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7328 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7329 
7330 	bfqd->strict_guarantees = __data;
7331 
7332 	return count;
7333 }
7334 
7335 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7336 				     const char *page, size_t count)
7337 {
7338 	struct bfq_data *bfqd = e->elevator_data;
7339 	unsigned long __data;
7340 	int ret;
7341 
7342 	ret = bfq_var_store(&__data, (page));
7343 	if (ret)
7344 		return ret;
7345 
7346 	if (__data > 1)
7347 		__data = 1;
7348 	if (__data == 0 && bfqd->low_latency != 0)
7349 		bfq_end_wr(bfqd);
7350 	bfqd->low_latency = __data;
7351 
7352 	return count;
7353 }
7354 
7355 #define BFQ_ATTR(name) \
7356 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7357 
7358 static struct elv_fs_entry bfq_attrs[] = {
7359 	BFQ_ATTR(fifo_expire_sync),
7360 	BFQ_ATTR(fifo_expire_async),
7361 	BFQ_ATTR(back_seek_max),
7362 	BFQ_ATTR(back_seek_penalty),
7363 	BFQ_ATTR(slice_idle),
7364 	BFQ_ATTR(slice_idle_us),
7365 	BFQ_ATTR(max_budget),
7366 	BFQ_ATTR(timeout_sync),
7367 	BFQ_ATTR(strict_guarantees),
7368 	BFQ_ATTR(low_latency),
7369 	__ATTR_NULL
7370 };
7371 
7372 static struct elevator_type iosched_bfq_mq = {
7373 	.ops = {
7374 		.limit_depth		= bfq_limit_depth,
7375 		.prepare_request	= bfq_prepare_request,
7376 		.requeue_request        = bfq_finish_requeue_request,
7377 		.finish_request		= bfq_finish_request,
7378 		.exit_icq		= bfq_exit_icq,
7379 		.insert_requests	= bfq_insert_requests,
7380 		.dispatch_request	= bfq_dispatch_request,
7381 		.next_request		= elv_rb_latter_request,
7382 		.former_request		= elv_rb_former_request,
7383 		.allow_merge		= bfq_allow_bio_merge,
7384 		.bio_merge		= bfq_bio_merge,
7385 		.request_merge		= bfq_request_merge,
7386 		.requests_merged	= bfq_requests_merged,
7387 		.request_merged		= bfq_request_merged,
7388 		.has_work		= bfq_has_work,
7389 		.depth_updated		= bfq_depth_updated,
7390 		.init_hctx		= bfq_init_hctx,
7391 		.init_sched		= bfq_init_queue,
7392 		.exit_sched		= bfq_exit_queue,
7393 	},
7394 
7395 	.icq_size =		sizeof(struct bfq_io_cq),
7396 	.icq_align =		__alignof__(struct bfq_io_cq),
7397 	.elevator_attrs =	bfq_attrs,
7398 	.elevator_name =	"bfq",
7399 	.elevator_owner =	THIS_MODULE,
7400 };
7401 MODULE_ALIAS("bfq-iosched");
7402 
7403 static int __init bfq_init(void)
7404 {
7405 	int ret;
7406 
7407 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7408 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7409 	if (ret)
7410 		return ret;
7411 #endif
7412 
7413 	ret = -ENOMEM;
7414 	if (bfq_slab_setup())
7415 		goto err_pol_unreg;
7416 
7417 	/*
7418 	 * Times to load large popular applications for the typical
7419 	 * systems installed on the reference devices (see the
7420 	 * comments before the definition of the next
7421 	 * array). Actually, we use slightly lower values, as the
7422 	 * estimated peak rate tends to be smaller than the actual
7423 	 * peak rate.  The reason for this last fact is that estimates
7424 	 * are computed over much shorter time intervals than the long
7425 	 * intervals typically used for benchmarking. Why? First, to
7426 	 * adapt more quickly to variations. Second, because an I/O
7427 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7428 	 * be run for a long time.
7429 	 */
7430 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7431 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7432 
7433 	ret = elv_register(&iosched_bfq_mq);
7434 	if (ret)
7435 		goto slab_kill;
7436 
7437 	return 0;
7438 
7439 slab_kill:
7440 	bfq_slab_kill();
7441 err_pol_unreg:
7442 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7443 	blkcg_policy_unregister(&blkcg_policy_bfq);
7444 #endif
7445 	return ret;
7446 }
7447 
7448 static void __exit bfq_exit(void)
7449 {
7450 	elv_unregister(&iosched_bfq_mq);
7451 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7452 	blkcg_policy_unregister(&blkcg_policy_bfq);
7453 #endif
7454 	bfq_slab_kill();
7455 }
7456 
7457 module_init(bfq_init);
7458 module_exit(bfq_exit);
7459 
7460 MODULE_AUTHOR("Paolo Valente");
7461 MODULE_LICENSE("GPL");
7462 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7463