xref: /openbmc/linux/block/bfq-iosched.c (revision a86854d0)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
142 
143 #define BFQ_BFQQ_FNS(name)						\
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
145 {									\
146 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
147 }									\
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
149 {									\
150 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
151 }									\
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
153 {									\
154 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
155 }
156 
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS						\
170 
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173 
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
176 
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
179 
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182 
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
185 
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
188 
189 /*
190  * Async to sync throughput distribution is controlled as follows:
191  * when an async request is served, the entity is charged the number
192  * of sectors of the request, multiplied by the factor below
193  */
194 static const int bfq_async_charge_factor = 10;
195 
196 /* Default timeout values, in jiffies, approximating CFQ defaults. */
197 const int bfq_timeout = HZ / 8;
198 
199 /*
200  * Time limit for merging (see comments in bfq_setup_cooperator). Set
201  * to the slowest value that, in our tests, proved to be effective in
202  * removing false positives, while not causing true positives to miss
203  * queue merging.
204  *
205  * As can be deduced from the low time limit below, queue merging, if
206  * successful, happens at the very beggining of the I/O of the involved
207  * cooperating processes, as a consequence of the arrival of the very
208  * first requests from each cooperator.  After that, there is very
209  * little chance to find cooperators.
210  */
211 static const unsigned long bfq_merge_time_limit = HZ/10;
212 
213 static struct kmem_cache *bfq_pool;
214 
215 /* Below this threshold (in ns), we consider thinktime immediate. */
216 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
217 
218 /* hw_tag detection: parallel requests threshold and min samples needed. */
219 #define BFQ_HW_QUEUE_THRESHOLD	4
220 #define BFQ_HW_QUEUE_SAMPLES	32
221 
222 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
223 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
224 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
225 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
226 
227 /* Min number of samples required to perform peak-rate update */
228 #define BFQ_RATE_MIN_SAMPLES	32
229 /* Min observation time interval required to perform a peak-rate update (ns) */
230 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
231 /* Target observation time interval for a peak-rate update (ns) */
232 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
233 
234 /*
235  * Shift used for peak-rate fixed precision calculations.
236  * With
237  * - the current shift: 16 positions
238  * - the current type used to store rate: u32
239  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
240  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
241  * the range of rates that can be stored is
242  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
243  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
244  * [15, 65G] sectors/sec
245  * Which, assuming a sector size of 512B, corresponds to a range of
246  * [7.5K, 33T] B/sec
247  */
248 #define BFQ_RATE_SHIFT		16
249 
250 /*
251  * When configured for computing the duration of the weight-raising
252  * for interactive queues automatically (see the comments at the
253  * beginning of this file), BFQ does it using the following formula:
254  * duration = (ref_rate / r) * ref_wr_duration,
255  * where r is the peak rate of the device, and ref_rate and
256  * ref_wr_duration are two reference parameters.  In particular,
257  * ref_rate is the peak rate of the reference storage device (see
258  * below), and ref_wr_duration is about the maximum time needed, with
259  * BFQ and while reading two files in parallel, to load typical large
260  * applications on the reference device (see the comments on
261  * max_service_from_wr below, for more details on how ref_wr_duration
262  * is obtained).  In practice, the slower/faster the device at hand
263  * is, the more/less it takes to load applications with respect to the
264  * reference device.  Accordingly, the longer/shorter BFQ grants
265  * weight raising to interactive applications.
266  *
267  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
268  * depending on whether the device is rotational or non-rotational.
269  *
270  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
271  * are the reference values for a rotational device, whereas
272  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
273  * non-rotational device. The reference rates are not the actual peak
274  * rates of the devices used as a reference, but slightly lower
275  * values. The reason for using slightly lower values is that the
276  * peak-rate estimator tends to yield slightly lower values than the
277  * actual peak rate (it can yield the actual peak rate only if there
278  * is only one process doing I/O, and the process does sequential
279  * I/O).
280  *
281  * The reference peak rates are measured in sectors/usec, left-shifted
282  * by BFQ_RATE_SHIFT.
283  */
284 static int ref_rate[2] = {14000, 33000};
285 /*
286  * To improve readability, a conversion function is used to initialize
287  * the following array, which entails that the array can be
288  * initialized only in a function.
289  */
290 static int ref_wr_duration[2];
291 
292 /*
293  * BFQ uses the above-detailed, time-based weight-raising mechanism to
294  * privilege interactive tasks. This mechanism is vulnerable to the
295  * following false positives: I/O-bound applications that will go on
296  * doing I/O for much longer than the duration of weight
297  * raising. These applications have basically no benefit from being
298  * weight-raised at the beginning of their I/O. On the opposite end,
299  * while being weight-raised, these applications
300  * a) unjustly steal throughput to applications that may actually need
301  * low latency;
302  * b) make BFQ uselessly perform device idling; device idling results
303  * in loss of device throughput with most flash-based storage, and may
304  * increase latencies when used purposelessly.
305  *
306  * BFQ tries to reduce these problems, by adopting the following
307  * countermeasure. To introduce this countermeasure, we need first to
308  * finish explaining how the duration of weight-raising for
309  * interactive tasks is computed.
310  *
311  * For a bfq_queue deemed as interactive, the duration of weight
312  * raising is dynamically adjusted, as a function of the estimated
313  * peak rate of the device, so as to be equal to the time needed to
314  * execute the 'largest' interactive task we benchmarked so far. By
315  * largest task, we mean the task for which each involved process has
316  * to do more I/O than for any of the other tasks we benchmarked. This
317  * reference interactive task is the start-up of LibreOffice Writer,
318  * and in this task each process/bfq_queue needs to have at most ~110K
319  * sectors transferred.
320  *
321  * This last piece of information enables BFQ to reduce the actual
322  * duration of weight-raising for at least one class of I/O-bound
323  * applications: those doing sequential or quasi-sequential I/O. An
324  * example is file copy. In fact, once started, the main I/O-bound
325  * processes of these applications usually consume the above 110K
326  * sectors in much less time than the processes of an application that
327  * is starting, because these I/O-bound processes will greedily devote
328  * almost all their CPU cycles only to their target,
329  * throughput-friendly I/O operations. This is even more true if BFQ
330  * happens to be underestimating the device peak rate, and thus
331  * overestimating the duration of weight raising. But, according to
332  * our measurements, once transferred 110K sectors, these processes
333  * have no right to be weight-raised any longer.
334  *
335  * Basing on the last consideration, BFQ ends weight-raising for a
336  * bfq_queue if the latter happens to have received an amount of
337  * service at least equal to the following constant. The constant is
338  * set to slightly more than 110K, to have a minimum safety margin.
339  *
340  * This early ending of weight-raising reduces the amount of time
341  * during which interactive false positives cause the two problems
342  * described at the beginning of these comments.
343  */
344 static const unsigned long max_service_from_wr = 120000;
345 
346 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
347 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
348 
349 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
350 {
351 	return bic->bfqq[is_sync];
352 }
353 
354 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
355 {
356 	bic->bfqq[is_sync] = bfqq;
357 }
358 
359 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
360 {
361 	return bic->icq.q->elevator->elevator_data;
362 }
363 
364 /**
365  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
366  * @icq: the iocontext queue.
367  */
368 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
369 {
370 	/* bic->icq is the first member, %NULL will convert to %NULL */
371 	return container_of(icq, struct bfq_io_cq, icq);
372 }
373 
374 /**
375  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
376  * @bfqd: the lookup key.
377  * @ioc: the io_context of the process doing I/O.
378  * @q: the request queue.
379  */
380 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
381 					struct io_context *ioc,
382 					struct request_queue *q)
383 {
384 	if (ioc) {
385 		unsigned long flags;
386 		struct bfq_io_cq *icq;
387 
388 		spin_lock_irqsave(q->queue_lock, flags);
389 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
390 		spin_unlock_irqrestore(q->queue_lock, flags);
391 
392 		return icq;
393 	}
394 
395 	return NULL;
396 }
397 
398 /*
399  * Scheduler run of queue, if there are requests pending and no one in the
400  * driver that will restart queueing.
401  */
402 void bfq_schedule_dispatch(struct bfq_data *bfqd)
403 {
404 	if (bfqd->queued != 0) {
405 		bfq_log(bfqd, "schedule dispatch");
406 		blk_mq_run_hw_queues(bfqd->queue, true);
407 	}
408 }
409 
410 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
411 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
412 
413 #define bfq_sample_valid(samples)	((samples) > 80)
414 
415 /*
416  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
417  * We choose the request that is closesr to the head right now.  Distance
418  * behind the head is penalized and only allowed to a certain extent.
419  */
420 static struct request *bfq_choose_req(struct bfq_data *bfqd,
421 				      struct request *rq1,
422 				      struct request *rq2,
423 				      sector_t last)
424 {
425 	sector_t s1, s2, d1 = 0, d2 = 0;
426 	unsigned long back_max;
427 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
428 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
429 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
430 
431 	if (!rq1 || rq1 == rq2)
432 		return rq2;
433 	if (!rq2)
434 		return rq1;
435 
436 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
437 		return rq1;
438 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
439 		return rq2;
440 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
441 		return rq1;
442 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
443 		return rq2;
444 
445 	s1 = blk_rq_pos(rq1);
446 	s2 = blk_rq_pos(rq2);
447 
448 	/*
449 	 * By definition, 1KiB is 2 sectors.
450 	 */
451 	back_max = bfqd->bfq_back_max * 2;
452 
453 	/*
454 	 * Strict one way elevator _except_ in the case where we allow
455 	 * short backward seeks which are biased as twice the cost of a
456 	 * similar forward seek.
457 	 */
458 	if (s1 >= last)
459 		d1 = s1 - last;
460 	else if (s1 + back_max >= last)
461 		d1 = (last - s1) * bfqd->bfq_back_penalty;
462 	else
463 		wrap |= BFQ_RQ1_WRAP;
464 
465 	if (s2 >= last)
466 		d2 = s2 - last;
467 	else if (s2 + back_max >= last)
468 		d2 = (last - s2) * bfqd->bfq_back_penalty;
469 	else
470 		wrap |= BFQ_RQ2_WRAP;
471 
472 	/* Found required data */
473 
474 	/*
475 	 * By doing switch() on the bit mask "wrap" we avoid having to
476 	 * check two variables for all permutations: --> faster!
477 	 */
478 	switch (wrap) {
479 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
480 		if (d1 < d2)
481 			return rq1;
482 		else if (d2 < d1)
483 			return rq2;
484 
485 		if (s1 >= s2)
486 			return rq1;
487 		else
488 			return rq2;
489 
490 	case BFQ_RQ2_WRAP:
491 		return rq1;
492 	case BFQ_RQ1_WRAP:
493 		return rq2;
494 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
495 	default:
496 		/*
497 		 * Since both rqs are wrapped,
498 		 * start with the one that's further behind head
499 		 * (--> only *one* back seek required),
500 		 * since back seek takes more time than forward.
501 		 */
502 		if (s1 <= s2)
503 			return rq1;
504 		else
505 			return rq2;
506 	}
507 }
508 
509 /*
510  * Async I/O can easily starve sync I/O (both sync reads and sync
511  * writes), by consuming all tags. Similarly, storms of sync writes,
512  * such as those that sync(2) may trigger, can starve sync reads.
513  * Limit depths of async I/O and sync writes so as to counter both
514  * problems.
515  */
516 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
517 {
518 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
519 
520 	if (op_is_sync(op) && !op_is_write(op))
521 		return;
522 
523 	data->shallow_depth =
524 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
525 
526 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
527 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
528 			data->shallow_depth);
529 }
530 
531 static struct bfq_queue *
532 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
533 		     sector_t sector, struct rb_node **ret_parent,
534 		     struct rb_node ***rb_link)
535 {
536 	struct rb_node **p, *parent;
537 	struct bfq_queue *bfqq = NULL;
538 
539 	parent = NULL;
540 	p = &root->rb_node;
541 	while (*p) {
542 		struct rb_node **n;
543 
544 		parent = *p;
545 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
546 
547 		/*
548 		 * Sort strictly based on sector. Smallest to the left,
549 		 * largest to the right.
550 		 */
551 		if (sector > blk_rq_pos(bfqq->next_rq))
552 			n = &(*p)->rb_right;
553 		else if (sector < blk_rq_pos(bfqq->next_rq))
554 			n = &(*p)->rb_left;
555 		else
556 			break;
557 		p = n;
558 		bfqq = NULL;
559 	}
560 
561 	*ret_parent = parent;
562 	if (rb_link)
563 		*rb_link = p;
564 
565 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
566 		(unsigned long long)sector,
567 		bfqq ? bfqq->pid : 0);
568 
569 	return bfqq;
570 }
571 
572 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
573 {
574 	return bfqq->service_from_backlogged > 0 &&
575 		time_is_before_jiffies(bfqq->first_IO_time +
576 				       bfq_merge_time_limit);
577 }
578 
579 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
580 {
581 	struct rb_node **p, *parent;
582 	struct bfq_queue *__bfqq;
583 
584 	if (bfqq->pos_root) {
585 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
586 		bfqq->pos_root = NULL;
587 	}
588 
589 	/*
590 	 * bfqq cannot be merged any longer (see comments in
591 	 * bfq_setup_cooperator): no point in adding bfqq into the
592 	 * position tree.
593 	 */
594 	if (bfq_too_late_for_merging(bfqq))
595 		return;
596 
597 	if (bfq_class_idle(bfqq))
598 		return;
599 	if (!bfqq->next_rq)
600 		return;
601 
602 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
603 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
604 			blk_rq_pos(bfqq->next_rq), &parent, &p);
605 	if (!__bfqq) {
606 		rb_link_node(&bfqq->pos_node, parent, p);
607 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
608 	} else
609 		bfqq->pos_root = NULL;
610 }
611 
612 /*
613  * Tell whether there are active queues or groups with differentiated weights.
614  */
615 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
616 {
617 	/*
618 	 * For weights to differ, at least one of the trees must contain
619 	 * at least two nodes.
620 	 */
621 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
622 		(bfqd->queue_weights_tree.rb_node->rb_left ||
623 		 bfqd->queue_weights_tree.rb_node->rb_right)
624 #ifdef CONFIG_BFQ_GROUP_IOSCHED
625 	       ) ||
626 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
627 		(bfqd->group_weights_tree.rb_node->rb_left ||
628 		 bfqd->group_weights_tree.rb_node->rb_right)
629 #endif
630 	       );
631 }
632 
633 /*
634  * The following function returns true if every queue must receive the
635  * same share of the throughput (this condition is used when deciding
636  * whether idling may be disabled, see the comments in the function
637  * bfq_bfqq_may_idle()).
638  *
639  * Such a scenario occurs when:
640  * 1) all active queues have the same weight,
641  * 2) all active groups at the same level in the groups tree have the same
642  *    weight,
643  * 3) all active groups at the same level in the groups tree have the same
644  *    number of children.
645  *
646  * Unfortunately, keeping the necessary state for evaluating exactly the
647  * above symmetry conditions would be quite complex and time-consuming.
648  * Therefore this function evaluates, instead, the following stronger
649  * sub-conditions, for which it is much easier to maintain the needed
650  * state:
651  * 1) all active queues have the same weight,
652  * 2) all active groups have the same weight,
653  * 3) all active groups have at most one active child each.
654  * In particular, the last two conditions are always true if hierarchical
655  * support and the cgroups interface are not enabled, thus no state needs
656  * to be maintained in this case.
657  */
658 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
659 {
660 	return !bfq_differentiated_weights(bfqd);
661 }
662 
663 /*
664  * If the weight-counter tree passed as input contains no counter for
665  * the weight of the input entity, then add that counter; otherwise just
666  * increment the existing counter.
667  *
668  * Note that weight-counter trees contain few nodes in mostly symmetric
669  * scenarios. For example, if all queues have the same weight, then the
670  * weight-counter tree for the queues may contain at most one node.
671  * This holds even if low_latency is on, because weight-raised queues
672  * are not inserted in the tree.
673  * In most scenarios, the rate at which nodes are created/destroyed
674  * should be low too.
675  */
676 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
677 			  struct rb_root *root)
678 {
679 	struct rb_node **new = &(root->rb_node), *parent = NULL;
680 
681 	/*
682 	 * Do not insert if the entity is already associated with a
683 	 * counter, which happens if:
684 	 *   1) the entity is associated with a queue,
685 	 *   2) a request arrival has caused the queue to become both
686 	 *      non-weight-raised, and hence change its weight, and
687 	 *      backlogged; in this respect, each of the two events
688 	 *      causes an invocation of this function,
689 	 *   3) this is the invocation of this function caused by the
690 	 *      second event. This second invocation is actually useless,
691 	 *      and we handle this fact by exiting immediately. More
692 	 *      efficient or clearer solutions might possibly be adopted.
693 	 */
694 	if (entity->weight_counter)
695 		return;
696 
697 	while (*new) {
698 		struct bfq_weight_counter *__counter = container_of(*new,
699 						struct bfq_weight_counter,
700 						weights_node);
701 		parent = *new;
702 
703 		if (entity->weight == __counter->weight) {
704 			entity->weight_counter = __counter;
705 			goto inc_counter;
706 		}
707 		if (entity->weight < __counter->weight)
708 			new = &((*new)->rb_left);
709 		else
710 			new = &((*new)->rb_right);
711 	}
712 
713 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
714 					 GFP_ATOMIC);
715 
716 	/*
717 	 * In the unlucky event of an allocation failure, we just
718 	 * exit. This will cause the weight of entity to not be
719 	 * considered in bfq_differentiated_weights, which, in its
720 	 * turn, causes the scenario to be deemed wrongly symmetric in
721 	 * case entity's weight would have been the only weight making
722 	 * the scenario asymmetric. On the bright side, no unbalance
723 	 * will however occur when entity becomes inactive again (the
724 	 * invocation of this function is triggered by an activation
725 	 * of entity). In fact, bfq_weights_tree_remove does nothing
726 	 * if !entity->weight_counter.
727 	 */
728 	if (unlikely(!entity->weight_counter))
729 		return;
730 
731 	entity->weight_counter->weight = entity->weight;
732 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
733 	rb_insert_color(&entity->weight_counter->weights_node, root);
734 
735 inc_counter:
736 	entity->weight_counter->num_active++;
737 }
738 
739 /*
740  * Decrement the weight counter associated with the entity, and, if the
741  * counter reaches 0, remove the counter from the tree.
742  * See the comments to the function bfq_weights_tree_add() for considerations
743  * about overhead.
744  */
745 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
746 			     struct rb_root *root)
747 {
748 	if (!entity->weight_counter)
749 		return;
750 
751 	entity->weight_counter->num_active--;
752 	if (entity->weight_counter->num_active > 0)
753 		goto reset_entity_pointer;
754 
755 	rb_erase(&entity->weight_counter->weights_node, root);
756 	kfree(entity->weight_counter);
757 
758 reset_entity_pointer:
759 	entity->weight_counter = NULL;
760 }
761 
762 /*
763  * Return expired entry, or NULL to just start from scratch in rbtree.
764  */
765 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
766 				      struct request *last)
767 {
768 	struct request *rq;
769 
770 	if (bfq_bfqq_fifo_expire(bfqq))
771 		return NULL;
772 
773 	bfq_mark_bfqq_fifo_expire(bfqq);
774 
775 	rq = rq_entry_fifo(bfqq->fifo.next);
776 
777 	if (rq == last || ktime_get_ns() < rq->fifo_time)
778 		return NULL;
779 
780 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
781 	return rq;
782 }
783 
784 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
785 					struct bfq_queue *bfqq,
786 					struct request *last)
787 {
788 	struct rb_node *rbnext = rb_next(&last->rb_node);
789 	struct rb_node *rbprev = rb_prev(&last->rb_node);
790 	struct request *next, *prev = NULL;
791 
792 	/* Follow expired path, else get first next available. */
793 	next = bfq_check_fifo(bfqq, last);
794 	if (next)
795 		return next;
796 
797 	if (rbprev)
798 		prev = rb_entry_rq(rbprev);
799 
800 	if (rbnext)
801 		next = rb_entry_rq(rbnext);
802 	else {
803 		rbnext = rb_first(&bfqq->sort_list);
804 		if (rbnext && rbnext != &last->rb_node)
805 			next = rb_entry_rq(rbnext);
806 	}
807 
808 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
809 }
810 
811 /* see the definition of bfq_async_charge_factor for details */
812 static unsigned long bfq_serv_to_charge(struct request *rq,
813 					struct bfq_queue *bfqq)
814 {
815 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
816 		return blk_rq_sectors(rq);
817 
818 	/*
819 	 * If there are no weight-raised queues, then amplify service
820 	 * by just the async charge factor; otherwise amplify service
821 	 * by twice the async charge factor, to further reduce latency
822 	 * for weight-raised queues.
823 	 */
824 	if (bfqq->bfqd->wr_busy_queues == 0)
825 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
826 
827 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
828 }
829 
830 /**
831  * bfq_updated_next_req - update the queue after a new next_rq selection.
832  * @bfqd: the device data the queue belongs to.
833  * @bfqq: the queue to update.
834  *
835  * If the first request of a queue changes we make sure that the queue
836  * has enough budget to serve at least its first request (if the
837  * request has grown).  We do this because if the queue has not enough
838  * budget for its first request, it has to go through two dispatch
839  * rounds to actually get it dispatched.
840  */
841 static void bfq_updated_next_req(struct bfq_data *bfqd,
842 				 struct bfq_queue *bfqq)
843 {
844 	struct bfq_entity *entity = &bfqq->entity;
845 	struct request *next_rq = bfqq->next_rq;
846 	unsigned long new_budget;
847 
848 	if (!next_rq)
849 		return;
850 
851 	if (bfqq == bfqd->in_service_queue)
852 		/*
853 		 * In order not to break guarantees, budgets cannot be
854 		 * changed after an entity has been selected.
855 		 */
856 		return;
857 
858 	new_budget = max_t(unsigned long, bfqq->max_budget,
859 			   bfq_serv_to_charge(next_rq, bfqq));
860 	if (entity->budget != new_budget) {
861 		entity->budget = new_budget;
862 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
863 					 new_budget);
864 		bfq_requeue_bfqq(bfqd, bfqq, false);
865 	}
866 }
867 
868 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
869 {
870 	u64 dur;
871 
872 	if (bfqd->bfq_wr_max_time > 0)
873 		return bfqd->bfq_wr_max_time;
874 
875 	dur = bfqd->rate_dur_prod;
876 	do_div(dur, bfqd->peak_rate);
877 
878 	/*
879 	 * Limit duration between 3 and 25 seconds. The upper limit
880 	 * has been conservatively set after the following worst case:
881 	 * on a QEMU/KVM virtual machine
882 	 * - running in a slow PC
883 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
884 	 * - serving a heavy I/O workload, such as the sequential reading
885 	 *   of several files
886 	 * mplayer took 23 seconds to start, if constantly weight-raised.
887 	 *
888 	 * As for higher values than that accomodating the above bad
889 	 * scenario, tests show that higher values would often yield
890 	 * the opposite of the desired result, i.e., would worsen
891 	 * responsiveness by allowing non-interactive applications to
892 	 * preserve weight raising for too long.
893 	 *
894 	 * On the other end, lower values than 3 seconds make it
895 	 * difficult for most interactive tasks to complete their jobs
896 	 * before weight-raising finishes.
897 	 */
898 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
899 }
900 
901 /* switch back from soft real-time to interactive weight raising */
902 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
903 					  struct bfq_data *bfqd)
904 {
905 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
906 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
907 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
908 }
909 
910 static void
911 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
912 		      struct bfq_io_cq *bic, bool bfq_already_existing)
913 {
914 	unsigned int old_wr_coeff = bfqq->wr_coeff;
915 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
916 
917 	if (bic->saved_has_short_ttime)
918 		bfq_mark_bfqq_has_short_ttime(bfqq);
919 	else
920 		bfq_clear_bfqq_has_short_ttime(bfqq);
921 
922 	if (bic->saved_IO_bound)
923 		bfq_mark_bfqq_IO_bound(bfqq);
924 	else
925 		bfq_clear_bfqq_IO_bound(bfqq);
926 
927 	bfqq->ttime = bic->saved_ttime;
928 	bfqq->wr_coeff = bic->saved_wr_coeff;
929 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
930 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
931 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
932 
933 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
934 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
935 				   bfqq->wr_cur_max_time))) {
936 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
937 		    !bfq_bfqq_in_large_burst(bfqq) &&
938 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
939 					     bfq_wr_duration(bfqd))) {
940 			switch_back_to_interactive_wr(bfqq, bfqd);
941 		} else {
942 			bfqq->wr_coeff = 1;
943 			bfq_log_bfqq(bfqq->bfqd, bfqq,
944 				     "resume state: switching off wr");
945 		}
946 	}
947 
948 	/* make sure weight will be updated, however we got here */
949 	bfqq->entity.prio_changed = 1;
950 
951 	if (likely(!busy))
952 		return;
953 
954 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
955 		bfqd->wr_busy_queues++;
956 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
957 		bfqd->wr_busy_queues--;
958 }
959 
960 static int bfqq_process_refs(struct bfq_queue *bfqq)
961 {
962 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
963 }
964 
965 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
966 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
967 {
968 	struct bfq_queue *item;
969 	struct hlist_node *n;
970 
971 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
972 		hlist_del_init(&item->burst_list_node);
973 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
974 	bfqd->burst_size = 1;
975 	bfqd->burst_parent_entity = bfqq->entity.parent;
976 }
977 
978 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
979 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
980 {
981 	/* Increment burst size to take into account also bfqq */
982 	bfqd->burst_size++;
983 
984 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
985 		struct bfq_queue *pos, *bfqq_item;
986 		struct hlist_node *n;
987 
988 		/*
989 		 * Enough queues have been activated shortly after each
990 		 * other to consider this burst as large.
991 		 */
992 		bfqd->large_burst = true;
993 
994 		/*
995 		 * We can now mark all queues in the burst list as
996 		 * belonging to a large burst.
997 		 */
998 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
999 				     burst_list_node)
1000 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1001 		bfq_mark_bfqq_in_large_burst(bfqq);
1002 
1003 		/*
1004 		 * From now on, and until the current burst finishes, any
1005 		 * new queue being activated shortly after the last queue
1006 		 * was inserted in the burst can be immediately marked as
1007 		 * belonging to a large burst. So the burst list is not
1008 		 * needed any more. Remove it.
1009 		 */
1010 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1011 					  burst_list_node)
1012 			hlist_del_init(&pos->burst_list_node);
1013 	} else /*
1014 		* Burst not yet large: add bfqq to the burst list. Do
1015 		* not increment the ref counter for bfqq, because bfqq
1016 		* is removed from the burst list before freeing bfqq
1017 		* in put_queue.
1018 		*/
1019 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1020 }
1021 
1022 /*
1023  * If many queues belonging to the same group happen to be created
1024  * shortly after each other, then the processes associated with these
1025  * queues have typically a common goal. In particular, bursts of queue
1026  * creations are usually caused by services or applications that spawn
1027  * many parallel threads/processes. Examples are systemd during boot,
1028  * or git grep. To help these processes get their job done as soon as
1029  * possible, it is usually better to not grant either weight-raising
1030  * or device idling to their queues.
1031  *
1032  * In this comment we describe, firstly, the reasons why this fact
1033  * holds, and, secondly, the next function, which implements the main
1034  * steps needed to properly mark these queues so that they can then be
1035  * treated in a different way.
1036  *
1037  * The above services or applications benefit mostly from a high
1038  * throughput: the quicker the requests of the activated queues are
1039  * cumulatively served, the sooner the target job of these queues gets
1040  * completed. As a consequence, weight-raising any of these queues,
1041  * which also implies idling the device for it, is almost always
1042  * counterproductive. In most cases it just lowers throughput.
1043  *
1044  * On the other hand, a burst of queue creations may be caused also by
1045  * the start of an application that does not consist of a lot of
1046  * parallel I/O-bound threads. In fact, with a complex application,
1047  * several short processes may need to be executed to start-up the
1048  * application. In this respect, to start an application as quickly as
1049  * possible, the best thing to do is in any case to privilege the I/O
1050  * related to the application with respect to all other
1051  * I/O. Therefore, the best strategy to start as quickly as possible
1052  * an application that causes a burst of queue creations is to
1053  * weight-raise all the queues created during the burst. This is the
1054  * exact opposite of the best strategy for the other type of bursts.
1055  *
1056  * In the end, to take the best action for each of the two cases, the
1057  * two types of bursts need to be distinguished. Fortunately, this
1058  * seems relatively easy, by looking at the sizes of the bursts. In
1059  * particular, we found a threshold such that only bursts with a
1060  * larger size than that threshold are apparently caused by
1061  * services or commands such as systemd or git grep. For brevity,
1062  * hereafter we call just 'large' these bursts. BFQ *does not*
1063  * weight-raise queues whose creation occurs in a large burst. In
1064  * addition, for each of these queues BFQ performs or does not perform
1065  * idling depending on which choice boosts the throughput more. The
1066  * exact choice depends on the device and request pattern at
1067  * hand.
1068  *
1069  * Unfortunately, false positives may occur while an interactive task
1070  * is starting (e.g., an application is being started). The
1071  * consequence is that the queues associated with the task do not
1072  * enjoy weight raising as expected. Fortunately these false positives
1073  * are very rare. They typically occur if some service happens to
1074  * start doing I/O exactly when the interactive task starts.
1075  *
1076  * Turning back to the next function, it implements all the steps
1077  * needed to detect the occurrence of a large burst and to properly
1078  * mark all the queues belonging to it (so that they can then be
1079  * treated in a different way). This goal is achieved by maintaining a
1080  * "burst list" that holds, temporarily, the queues that belong to the
1081  * burst in progress. The list is then used to mark these queues as
1082  * belonging to a large burst if the burst does become large. The main
1083  * steps are the following.
1084  *
1085  * . when the very first queue is created, the queue is inserted into the
1086  *   list (as it could be the first queue in a possible burst)
1087  *
1088  * . if the current burst has not yet become large, and a queue Q that does
1089  *   not yet belong to the burst is activated shortly after the last time
1090  *   at which a new queue entered the burst list, then the function appends
1091  *   Q to the burst list
1092  *
1093  * . if, as a consequence of the previous step, the burst size reaches
1094  *   the large-burst threshold, then
1095  *
1096  *     . all the queues in the burst list are marked as belonging to a
1097  *       large burst
1098  *
1099  *     . the burst list is deleted; in fact, the burst list already served
1100  *       its purpose (keeping temporarily track of the queues in a burst,
1101  *       so as to be able to mark them as belonging to a large burst in the
1102  *       previous sub-step), and now is not needed any more
1103  *
1104  *     . the device enters a large-burst mode
1105  *
1106  * . if a queue Q that does not belong to the burst is created while
1107  *   the device is in large-burst mode and shortly after the last time
1108  *   at which a queue either entered the burst list or was marked as
1109  *   belonging to the current large burst, then Q is immediately marked
1110  *   as belonging to a large burst.
1111  *
1112  * . if a queue Q that does not belong to the burst is created a while
1113  *   later, i.e., not shortly after, than the last time at which a queue
1114  *   either entered the burst list or was marked as belonging to the
1115  *   current large burst, then the current burst is deemed as finished and:
1116  *
1117  *        . the large-burst mode is reset if set
1118  *
1119  *        . the burst list is emptied
1120  *
1121  *        . Q is inserted in the burst list, as Q may be the first queue
1122  *          in a possible new burst (then the burst list contains just Q
1123  *          after this step).
1124  */
1125 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1126 {
1127 	/*
1128 	 * If bfqq is already in the burst list or is part of a large
1129 	 * burst, or finally has just been split, then there is
1130 	 * nothing else to do.
1131 	 */
1132 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1133 	    bfq_bfqq_in_large_burst(bfqq) ||
1134 	    time_is_after_eq_jiffies(bfqq->split_time +
1135 				     msecs_to_jiffies(10)))
1136 		return;
1137 
1138 	/*
1139 	 * If bfqq's creation happens late enough, or bfqq belongs to
1140 	 * a different group than the burst group, then the current
1141 	 * burst is finished, and related data structures must be
1142 	 * reset.
1143 	 *
1144 	 * In this respect, consider the special case where bfqq is
1145 	 * the very first queue created after BFQ is selected for this
1146 	 * device. In this case, last_ins_in_burst and
1147 	 * burst_parent_entity are not yet significant when we get
1148 	 * here. But it is easy to verify that, whether or not the
1149 	 * following condition is true, bfqq will end up being
1150 	 * inserted into the burst list. In particular the list will
1151 	 * happen to contain only bfqq. And this is exactly what has
1152 	 * to happen, as bfqq may be the first queue of the first
1153 	 * burst.
1154 	 */
1155 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1156 	    bfqd->bfq_burst_interval) ||
1157 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1158 		bfqd->large_burst = false;
1159 		bfq_reset_burst_list(bfqd, bfqq);
1160 		goto end;
1161 	}
1162 
1163 	/*
1164 	 * If we get here, then bfqq is being activated shortly after the
1165 	 * last queue. So, if the current burst is also large, we can mark
1166 	 * bfqq as belonging to this large burst immediately.
1167 	 */
1168 	if (bfqd->large_burst) {
1169 		bfq_mark_bfqq_in_large_burst(bfqq);
1170 		goto end;
1171 	}
1172 
1173 	/*
1174 	 * If we get here, then a large-burst state has not yet been
1175 	 * reached, but bfqq is being activated shortly after the last
1176 	 * queue. Then we add bfqq to the burst.
1177 	 */
1178 	bfq_add_to_burst(bfqd, bfqq);
1179 end:
1180 	/*
1181 	 * At this point, bfqq either has been added to the current
1182 	 * burst or has caused the current burst to terminate and a
1183 	 * possible new burst to start. In particular, in the second
1184 	 * case, bfqq has become the first queue in the possible new
1185 	 * burst.  In both cases last_ins_in_burst needs to be moved
1186 	 * forward.
1187 	 */
1188 	bfqd->last_ins_in_burst = jiffies;
1189 }
1190 
1191 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1192 {
1193 	struct bfq_entity *entity = &bfqq->entity;
1194 
1195 	return entity->budget - entity->service;
1196 }
1197 
1198 /*
1199  * If enough samples have been computed, return the current max budget
1200  * stored in bfqd, which is dynamically updated according to the
1201  * estimated disk peak rate; otherwise return the default max budget
1202  */
1203 static int bfq_max_budget(struct bfq_data *bfqd)
1204 {
1205 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1206 		return bfq_default_max_budget;
1207 	else
1208 		return bfqd->bfq_max_budget;
1209 }
1210 
1211 /*
1212  * Return min budget, which is a fraction of the current or default
1213  * max budget (trying with 1/32)
1214  */
1215 static int bfq_min_budget(struct bfq_data *bfqd)
1216 {
1217 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1218 		return bfq_default_max_budget / 32;
1219 	else
1220 		return bfqd->bfq_max_budget / 32;
1221 }
1222 
1223 /*
1224  * The next function, invoked after the input queue bfqq switches from
1225  * idle to busy, updates the budget of bfqq. The function also tells
1226  * whether the in-service queue should be expired, by returning
1227  * true. The purpose of expiring the in-service queue is to give bfqq
1228  * the chance to possibly preempt the in-service queue, and the reason
1229  * for preempting the in-service queue is to achieve one of the two
1230  * goals below.
1231  *
1232  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1233  * expired because it has remained idle. In particular, bfqq may have
1234  * expired for one of the following two reasons:
1235  *
1236  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1237  *   and did not make it to issue a new request before its last
1238  *   request was served;
1239  *
1240  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1241  *   a new request before the expiration of the idling-time.
1242  *
1243  * Even if bfqq has expired for one of the above reasons, the process
1244  * associated with the queue may be however issuing requests greedily,
1245  * and thus be sensitive to the bandwidth it receives (bfqq may have
1246  * remained idle for other reasons: CPU high load, bfqq not enjoying
1247  * idling, I/O throttling somewhere in the path from the process to
1248  * the I/O scheduler, ...). But if, after every expiration for one of
1249  * the above two reasons, bfqq has to wait for the service of at least
1250  * one full budget of another queue before being served again, then
1251  * bfqq is likely to get a much lower bandwidth or resource time than
1252  * its reserved ones. To address this issue, two countermeasures need
1253  * to be taken.
1254  *
1255  * First, the budget and the timestamps of bfqq need to be updated in
1256  * a special way on bfqq reactivation: they need to be updated as if
1257  * bfqq did not remain idle and did not expire. In fact, if they are
1258  * computed as if bfqq expired and remained idle until reactivation,
1259  * then the process associated with bfqq is treated as if, instead of
1260  * being greedy, it stopped issuing requests when bfqq remained idle,
1261  * and restarts issuing requests only on this reactivation. In other
1262  * words, the scheduler does not help the process recover the "service
1263  * hole" between bfqq expiration and reactivation. As a consequence,
1264  * the process receives a lower bandwidth than its reserved one. In
1265  * contrast, to recover this hole, the budget must be updated as if
1266  * bfqq was not expired at all before this reactivation, i.e., it must
1267  * be set to the value of the remaining budget when bfqq was
1268  * expired. Along the same line, timestamps need to be assigned the
1269  * value they had the last time bfqq was selected for service, i.e.,
1270  * before last expiration. Thus timestamps need to be back-shifted
1271  * with respect to their normal computation (see [1] for more details
1272  * on this tricky aspect).
1273  *
1274  * Secondly, to allow the process to recover the hole, the in-service
1275  * queue must be expired too, to give bfqq the chance to preempt it
1276  * immediately. In fact, if bfqq has to wait for a full budget of the
1277  * in-service queue to be completed, then it may become impossible to
1278  * let the process recover the hole, even if the back-shifted
1279  * timestamps of bfqq are lower than those of the in-service queue. If
1280  * this happens for most or all of the holes, then the process may not
1281  * receive its reserved bandwidth. In this respect, it is worth noting
1282  * that, being the service of outstanding requests unpreemptible, a
1283  * little fraction of the holes may however be unrecoverable, thereby
1284  * causing a little loss of bandwidth.
1285  *
1286  * The last important point is detecting whether bfqq does need this
1287  * bandwidth recovery. In this respect, the next function deems the
1288  * process associated with bfqq greedy, and thus allows it to recover
1289  * the hole, if: 1) the process is waiting for the arrival of a new
1290  * request (which implies that bfqq expired for one of the above two
1291  * reasons), and 2) such a request has arrived soon. The first
1292  * condition is controlled through the flag non_blocking_wait_rq,
1293  * while the second through the flag arrived_in_time. If both
1294  * conditions hold, then the function computes the budget in the
1295  * above-described special way, and signals that the in-service queue
1296  * should be expired. Timestamp back-shifting is done later in
1297  * __bfq_activate_entity.
1298  *
1299  * 2. Reduce latency. Even if timestamps are not backshifted to let
1300  * the process associated with bfqq recover a service hole, bfqq may
1301  * however happen to have, after being (re)activated, a lower finish
1302  * timestamp than the in-service queue.	 That is, the next budget of
1303  * bfqq may have to be completed before the one of the in-service
1304  * queue. If this is the case, then preempting the in-service queue
1305  * allows this goal to be achieved, apart from the unpreemptible,
1306  * outstanding requests mentioned above.
1307  *
1308  * Unfortunately, regardless of which of the above two goals one wants
1309  * to achieve, service trees need first to be updated to know whether
1310  * the in-service queue must be preempted. To have service trees
1311  * correctly updated, the in-service queue must be expired and
1312  * rescheduled, and bfqq must be scheduled too. This is one of the
1313  * most costly operations (in future versions, the scheduling
1314  * mechanism may be re-designed in such a way to make it possible to
1315  * know whether preemption is needed without needing to update service
1316  * trees). In addition, queue preemptions almost always cause random
1317  * I/O, and thus loss of throughput. Because of these facts, the next
1318  * function adopts the following simple scheme to avoid both costly
1319  * operations and too frequent preemptions: it requests the expiration
1320  * of the in-service queue (unconditionally) only for queues that need
1321  * to recover a hole, or that either are weight-raised or deserve to
1322  * be weight-raised.
1323  */
1324 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1325 						struct bfq_queue *bfqq,
1326 						bool arrived_in_time,
1327 						bool wr_or_deserves_wr)
1328 {
1329 	struct bfq_entity *entity = &bfqq->entity;
1330 
1331 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1332 		/*
1333 		 * We do not clear the flag non_blocking_wait_rq here, as
1334 		 * the latter is used in bfq_activate_bfqq to signal
1335 		 * that timestamps need to be back-shifted (and is
1336 		 * cleared right after).
1337 		 */
1338 
1339 		/*
1340 		 * In next assignment we rely on that either
1341 		 * entity->service or entity->budget are not updated
1342 		 * on expiration if bfqq is empty (see
1343 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1344 		 * remain unchanged after such an expiration, and the
1345 		 * following statement therefore assigns to
1346 		 * entity->budget the remaining budget on such an
1347 		 * expiration. For clarity, entity->service is not
1348 		 * updated on expiration in any case, and, in normal
1349 		 * operation, is reset only when bfqq is selected for
1350 		 * service (see bfq_get_next_queue).
1351 		 */
1352 		entity->budget = min_t(unsigned long,
1353 				       bfq_bfqq_budget_left(bfqq),
1354 				       bfqq->max_budget);
1355 
1356 		return true;
1357 	}
1358 
1359 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1360 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1361 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1362 	return wr_or_deserves_wr;
1363 }
1364 
1365 /*
1366  * Return the farthest past time instant according to jiffies
1367  * macros.
1368  */
1369 static unsigned long bfq_smallest_from_now(void)
1370 {
1371 	return jiffies - MAX_JIFFY_OFFSET;
1372 }
1373 
1374 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1375 					     struct bfq_queue *bfqq,
1376 					     unsigned int old_wr_coeff,
1377 					     bool wr_or_deserves_wr,
1378 					     bool interactive,
1379 					     bool in_burst,
1380 					     bool soft_rt)
1381 {
1382 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1383 		/* start a weight-raising period */
1384 		if (interactive) {
1385 			bfqq->service_from_wr = 0;
1386 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1387 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1388 		} else {
1389 			/*
1390 			 * No interactive weight raising in progress
1391 			 * here: assign minus infinity to
1392 			 * wr_start_at_switch_to_srt, to make sure
1393 			 * that, at the end of the soft-real-time
1394 			 * weight raising periods that is starting
1395 			 * now, no interactive weight-raising period
1396 			 * may be wrongly considered as still in
1397 			 * progress (and thus actually started by
1398 			 * mistake).
1399 			 */
1400 			bfqq->wr_start_at_switch_to_srt =
1401 				bfq_smallest_from_now();
1402 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1403 				BFQ_SOFTRT_WEIGHT_FACTOR;
1404 			bfqq->wr_cur_max_time =
1405 				bfqd->bfq_wr_rt_max_time;
1406 		}
1407 
1408 		/*
1409 		 * If needed, further reduce budget to make sure it is
1410 		 * close to bfqq's backlog, so as to reduce the
1411 		 * scheduling-error component due to a too large
1412 		 * budget. Do not care about throughput consequences,
1413 		 * but only about latency. Finally, do not assign a
1414 		 * too small budget either, to avoid increasing
1415 		 * latency by causing too frequent expirations.
1416 		 */
1417 		bfqq->entity.budget = min_t(unsigned long,
1418 					    bfqq->entity.budget,
1419 					    2 * bfq_min_budget(bfqd));
1420 	} else if (old_wr_coeff > 1) {
1421 		if (interactive) { /* update wr coeff and duration */
1422 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1423 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1424 		} else if (in_burst)
1425 			bfqq->wr_coeff = 1;
1426 		else if (soft_rt) {
1427 			/*
1428 			 * The application is now or still meeting the
1429 			 * requirements for being deemed soft rt.  We
1430 			 * can then correctly and safely (re)charge
1431 			 * the weight-raising duration for the
1432 			 * application with the weight-raising
1433 			 * duration for soft rt applications.
1434 			 *
1435 			 * In particular, doing this recharge now, i.e.,
1436 			 * before the weight-raising period for the
1437 			 * application finishes, reduces the probability
1438 			 * of the following negative scenario:
1439 			 * 1) the weight of a soft rt application is
1440 			 *    raised at startup (as for any newly
1441 			 *    created application),
1442 			 * 2) since the application is not interactive,
1443 			 *    at a certain time weight-raising is
1444 			 *    stopped for the application,
1445 			 * 3) at that time the application happens to
1446 			 *    still have pending requests, and hence
1447 			 *    is destined to not have a chance to be
1448 			 *    deemed soft rt before these requests are
1449 			 *    completed (see the comments to the
1450 			 *    function bfq_bfqq_softrt_next_start()
1451 			 *    for details on soft rt detection),
1452 			 * 4) these pending requests experience a high
1453 			 *    latency because the application is not
1454 			 *    weight-raised while they are pending.
1455 			 */
1456 			if (bfqq->wr_cur_max_time !=
1457 				bfqd->bfq_wr_rt_max_time) {
1458 				bfqq->wr_start_at_switch_to_srt =
1459 					bfqq->last_wr_start_finish;
1460 
1461 				bfqq->wr_cur_max_time =
1462 					bfqd->bfq_wr_rt_max_time;
1463 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1464 					BFQ_SOFTRT_WEIGHT_FACTOR;
1465 			}
1466 			bfqq->last_wr_start_finish = jiffies;
1467 		}
1468 	}
1469 }
1470 
1471 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1472 					struct bfq_queue *bfqq)
1473 {
1474 	return bfqq->dispatched == 0 &&
1475 		time_is_before_jiffies(
1476 			bfqq->budget_timeout +
1477 			bfqd->bfq_wr_min_idle_time);
1478 }
1479 
1480 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1481 					     struct bfq_queue *bfqq,
1482 					     int old_wr_coeff,
1483 					     struct request *rq,
1484 					     bool *interactive)
1485 {
1486 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1487 		bfqq_wants_to_preempt,
1488 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1489 		/*
1490 		 * See the comments on
1491 		 * bfq_bfqq_update_budg_for_activation for
1492 		 * details on the usage of the next variable.
1493 		 */
1494 		arrived_in_time =  ktime_get_ns() <=
1495 			bfqq->ttime.last_end_request +
1496 			bfqd->bfq_slice_idle * 3;
1497 
1498 
1499 	/*
1500 	 * bfqq deserves to be weight-raised if:
1501 	 * - it is sync,
1502 	 * - it does not belong to a large burst,
1503 	 * - it has been idle for enough time or is soft real-time,
1504 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1505 	 */
1506 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1507 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1508 		!in_burst &&
1509 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1510 		bfqq->dispatched == 0;
1511 	*interactive = !in_burst && idle_for_long_time;
1512 	wr_or_deserves_wr = bfqd->low_latency &&
1513 		(bfqq->wr_coeff > 1 ||
1514 		 (bfq_bfqq_sync(bfqq) &&
1515 		  bfqq->bic && (*interactive || soft_rt)));
1516 
1517 	/*
1518 	 * Using the last flag, update budget and check whether bfqq
1519 	 * may want to preempt the in-service queue.
1520 	 */
1521 	bfqq_wants_to_preempt =
1522 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1523 						    arrived_in_time,
1524 						    wr_or_deserves_wr);
1525 
1526 	/*
1527 	 * If bfqq happened to be activated in a burst, but has been
1528 	 * idle for much more than an interactive queue, then we
1529 	 * assume that, in the overall I/O initiated in the burst, the
1530 	 * I/O associated with bfqq is finished. So bfqq does not need
1531 	 * to be treated as a queue belonging to a burst
1532 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1533 	 * if set, and remove bfqq from the burst list if it's
1534 	 * there. We do not decrement burst_size, because the fact
1535 	 * that bfqq does not need to belong to the burst list any
1536 	 * more does not invalidate the fact that bfqq was created in
1537 	 * a burst.
1538 	 */
1539 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1540 	    idle_for_long_time &&
1541 	    time_is_before_jiffies(
1542 		    bfqq->budget_timeout +
1543 		    msecs_to_jiffies(10000))) {
1544 		hlist_del_init(&bfqq->burst_list_node);
1545 		bfq_clear_bfqq_in_large_burst(bfqq);
1546 	}
1547 
1548 	bfq_clear_bfqq_just_created(bfqq);
1549 
1550 
1551 	if (!bfq_bfqq_IO_bound(bfqq)) {
1552 		if (arrived_in_time) {
1553 			bfqq->requests_within_timer++;
1554 			if (bfqq->requests_within_timer >=
1555 			    bfqd->bfq_requests_within_timer)
1556 				bfq_mark_bfqq_IO_bound(bfqq);
1557 		} else
1558 			bfqq->requests_within_timer = 0;
1559 	}
1560 
1561 	if (bfqd->low_latency) {
1562 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1563 			/* wraparound */
1564 			bfqq->split_time =
1565 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1566 
1567 		if (time_is_before_jiffies(bfqq->split_time +
1568 					   bfqd->bfq_wr_min_idle_time)) {
1569 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1570 							 old_wr_coeff,
1571 							 wr_or_deserves_wr,
1572 							 *interactive,
1573 							 in_burst,
1574 							 soft_rt);
1575 
1576 			if (old_wr_coeff != bfqq->wr_coeff)
1577 				bfqq->entity.prio_changed = 1;
1578 		}
1579 	}
1580 
1581 	bfqq->last_idle_bklogged = jiffies;
1582 	bfqq->service_from_backlogged = 0;
1583 	bfq_clear_bfqq_softrt_update(bfqq);
1584 
1585 	bfq_add_bfqq_busy(bfqd, bfqq);
1586 
1587 	/*
1588 	 * Expire in-service queue only if preemption may be needed
1589 	 * for guarantees. In this respect, the function
1590 	 * next_queue_may_preempt just checks a simple, necessary
1591 	 * condition, and not a sufficient condition based on
1592 	 * timestamps. In fact, for the latter condition to be
1593 	 * evaluated, timestamps would need first to be updated, and
1594 	 * this operation is quite costly (see the comments on the
1595 	 * function bfq_bfqq_update_budg_for_activation).
1596 	 */
1597 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1598 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1599 	    next_queue_may_preempt(bfqd))
1600 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1601 				false, BFQQE_PREEMPTED);
1602 }
1603 
1604 static void bfq_add_request(struct request *rq)
1605 {
1606 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1607 	struct bfq_data *bfqd = bfqq->bfqd;
1608 	struct request *next_rq, *prev;
1609 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1610 	bool interactive = false;
1611 
1612 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1613 	bfqq->queued[rq_is_sync(rq)]++;
1614 	bfqd->queued++;
1615 
1616 	elv_rb_add(&bfqq->sort_list, rq);
1617 
1618 	/*
1619 	 * Check if this request is a better next-serve candidate.
1620 	 */
1621 	prev = bfqq->next_rq;
1622 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1623 	bfqq->next_rq = next_rq;
1624 
1625 	/*
1626 	 * Adjust priority tree position, if next_rq changes.
1627 	 */
1628 	if (prev != bfqq->next_rq)
1629 		bfq_pos_tree_add_move(bfqd, bfqq);
1630 
1631 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1632 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1633 						 rq, &interactive);
1634 	else {
1635 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1636 		    time_is_before_jiffies(
1637 				bfqq->last_wr_start_finish +
1638 				bfqd->bfq_wr_min_inter_arr_async)) {
1639 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1640 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1641 
1642 			bfqd->wr_busy_queues++;
1643 			bfqq->entity.prio_changed = 1;
1644 		}
1645 		if (prev != bfqq->next_rq)
1646 			bfq_updated_next_req(bfqd, bfqq);
1647 	}
1648 
1649 	/*
1650 	 * Assign jiffies to last_wr_start_finish in the following
1651 	 * cases:
1652 	 *
1653 	 * . if bfqq is not going to be weight-raised, because, for
1654 	 *   non weight-raised queues, last_wr_start_finish stores the
1655 	 *   arrival time of the last request; as of now, this piece
1656 	 *   of information is used only for deciding whether to
1657 	 *   weight-raise async queues
1658 	 *
1659 	 * . if bfqq is not weight-raised, because, if bfqq is now
1660 	 *   switching to weight-raised, then last_wr_start_finish
1661 	 *   stores the time when weight-raising starts
1662 	 *
1663 	 * . if bfqq is interactive, because, regardless of whether
1664 	 *   bfqq is currently weight-raised, the weight-raising
1665 	 *   period must start or restart (this case is considered
1666 	 *   separately because it is not detected by the above
1667 	 *   conditions, if bfqq is already weight-raised)
1668 	 *
1669 	 * last_wr_start_finish has to be updated also if bfqq is soft
1670 	 * real-time, because the weight-raising period is constantly
1671 	 * restarted on idle-to-busy transitions for these queues, but
1672 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1673 	 * needed.
1674 	 */
1675 	if (bfqd->low_latency &&
1676 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1677 		bfqq->last_wr_start_finish = jiffies;
1678 }
1679 
1680 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1681 					  struct bio *bio,
1682 					  struct request_queue *q)
1683 {
1684 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1685 
1686 
1687 	if (bfqq)
1688 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1689 
1690 	return NULL;
1691 }
1692 
1693 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1694 {
1695 	if (last_pos)
1696 		return abs(blk_rq_pos(rq) - last_pos);
1697 
1698 	return 0;
1699 }
1700 
1701 #if 0 /* Still not clear if we can do without next two functions */
1702 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1703 {
1704 	struct bfq_data *bfqd = q->elevator->elevator_data;
1705 
1706 	bfqd->rq_in_driver++;
1707 }
1708 
1709 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1710 {
1711 	struct bfq_data *bfqd = q->elevator->elevator_data;
1712 
1713 	bfqd->rq_in_driver--;
1714 }
1715 #endif
1716 
1717 static void bfq_remove_request(struct request_queue *q,
1718 			       struct request *rq)
1719 {
1720 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1721 	struct bfq_data *bfqd = bfqq->bfqd;
1722 	const int sync = rq_is_sync(rq);
1723 
1724 	if (bfqq->next_rq == rq) {
1725 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1726 		bfq_updated_next_req(bfqd, bfqq);
1727 	}
1728 
1729 	if (rq->queuelist.prev != &rq->queuelist)
1730 		list_del_init(&rq->queuelist);
1731 	bfqq->queued[sync]--;
1732 	bfqd->queued--;
1733 	elv_rb_del(&bfqq->sort_list, rq);
1734 
1735 	elv_rqhash_del(q, rq);
1736 	if (q->last_merge == rq)
1737 		q->last_merge = NULL;
1738 
1739 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1740 		bfqq->next_rq = NULL;
1741 
1742 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1743 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1744 			/*
1745 			 * bfqq emptied. In normal operation, when
1746 			 * bfqq is empty, bfqq->entity.service and
1747 			 * bfqq->entity.budget must contain,
1748 			 * respectively, the service received and the
1749 			 * budget used last time bfqq emptied. These
1750 			 * facts do not hold in this case, as at least
1751 			 * this last removal occurred while bfqq is
1752 			 * not in service. To avoid inconsistencies,
1753 			 * reset both bfqq->entity.service and
1754 			 * bfqq->entity.budget, if bfqq has still a
1755 			 * process that may issue I/O requests to it.
1756 			 */
1757 			bfqq->entity.budget = bfqq->entity.service = 0;
1758 		}
1759 
1760 		/*
1761 		 * Remove queue from request-position tree as it is empty.
1762 		 */
1763 		if (bfqq->pos_root) {
1764 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1765 			bfqq->pos_root = NULL;
1766 		}
1767 	} else {
1768 		bfq_pos_tree_add_move(bfqd, bfqq);
1769 	}
1770 
1771 	if (rq->cmd_flags & REQ_META)
1772 		bfqq->meta_pending--;
1773 
1774 }
1775 
1776 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1777 {
1778 	struct request_queue *q = hctx->queue;
1779 	struct bfq_data *bfqd = q->elevator->elevator_data;
1780 	struct request *free = NULL;
1781 	/*
1782 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1783 	 * store its return value for later use, to avoid nesting
1784 	 * queue_lock inside the bfqd->lock. We assume that the bic
1785 	 * returned by bfq_bic_lookup does not go away before
1786 	 * bfqd->lock is taken.
1787 	 */
1788 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1789 	bool ret;
1790 
1791 	spin_lock_irq(&bfqd->lock);
1792 
1793 	if (bic)
1794 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1795 	else
1796 		bfqd->bio_bfqq = NULL;
1797 	bfqd->bio_bic = bic;
1798 
1799 	ret = blk_mq_sched_try_merge(q, bio, &free);
1800 
1801 	if (free)
1802 		blk_mq_free_request(free);
1803 	spin_unlock_irq(&bfqd->lock);
1804 
1805 	return ret;
1806 }
1807 
1808 static int bfq_request_merge(struct request_queue *q, struct request **req,
1809 			     struct bio *bio)
1810 {
1811 	struct bfq_data *bfqd = q->elevator->elevator_data;
1812 	struct request *__rq;
1813 
1814 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1815 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1816 		*req = __rq;
1817 		return ELEVATOR_FRONT_MERGE;
1818 	}
1819 
1820 	return ELEVATOR_NO_MERGE;
1821 }
1822 
1823 static struct bfq_queue *bfq_init_rq(struct request *rq);
1824 
1825 static void bfq_request_merged(struct request_queue *q, struct request *req,
1826 			       enum elv_merge type)
1827 {
1828 	if (type == ELEVATOR_FRONT_MERGE &&
1829 	    rb_prev(&req->rb_node) &&
1830 	    blk_rq_pos(req) <
1831 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1832 				    struct request, rb_node))) {
1833 		struct bfq_queue *bfqq = bfq_init_rq(req);
1834 		struct bfq_data *bfqd = bfqq->bfqd;
1835 		struct request *prev, *next_rq;
1836 
1837 		/* Reposition request in its sort_list */
1838 		elv_rb_del(&bfqq->sort_list, req);
1839 		elv_rb_add(&bfqq->sort_list, req);
1840 
1841 		/* Choose next request to be served for bfqq */
1842 		prev = bfqq->next_rq;
1843 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1844 					 bfqd->last_position);
1845 		bfqq->next_rq = next_rq;
1846 		/*
1847 		 * If next_rq changes, update both the queue's budget to
1848 		 * fit the new request and the queue's position in its
1849 		 * rq_pos_tree.
1850 		 */
1851 		if (prev != bfqq->next_rq) {
1852 			bfq_updated_next_req(bfqd, bfqq);
1853 			bfq_pos_tree_add_move(bfqd, bfqq);
1854 		}
1855 	}
1856 }
1857 
1858 /*
1859  * This function is called to notify the scheduler that the requests
1860  * rq and 'next' have been merged, with 'next' going away.  BFQ
1861  * exploits this hook to address the following issue: if 'next' has a
1862  * fifo_time lower that rq, then the fifo_time of rq must be set to
1863  * the value of 'next', to not forget the greater age of 'next'.
1864  *
1865  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1866  * on that rq is picked from the hash table q->elevator->hash, which,
1867  * in its turn, is filled only with I/O requests present in
1868  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1869  * the function that fills this hash table (elv_rqhash_add) is called
1870  * only by bfq_insert_request.
1871  */
1872 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1873 				struct request *next)
1874 {
1875 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1876 		*next_bfqq = bfq_init_rq(next);
1877 
1878 	/*
1879 	 * If next and rq belong to the same bfq_queue and next is older
1880 	 * than rq, then reposition rq in the fifo (by substituting next
1881 	 * with rq). Otherwise, if next and rq belong to different
1882 	 * bfq_queues, never reposition rq: in fact, we would have to
1883 	 * reposition it with respect to next's position in its own fifo,
1884 	 * which would most certainly be too expensive with respect to
1885 	 * the benefits.
1886 	 */
1887 	if (bfqq == next_bfqq &&
1888 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1889 	    next->fifo_time < rq->fifo_time) {
1890 		list_del_init(&rq->queuelist);
1891 		list_replace_init(&next->queuelist, &rq->queuelist);
1892 		rq->fifo_time = next->fifo_time;
1893 	}
1894 
1895 	if (bfqq->next_rq == next)
1896 		bfqq->next_rq = rq;
1897 
1898 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1899 }
1900 
1901 /* Must be called with bfqq != NULL */
1902 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1903 {
1904 	if (bfq_bfqq_busy(bfqq))
1905 		bfqq->bfqd->wr_busy_queues--;
1906 	bfqq->wr_coeff = 1;
1907 	bfqq->wr_cur_max_time = 0;
1908 	bfqq->last_wr_start_finish = jiffies;
1909 	/*
1910 	 * Trigger a weight change on the next invocation of
1911 	 * __bfq_entity_update_weight_prio.
1912 	 */
1913 	bfqq->entity.prio_changed = 1;
1914 }
1915 
1916 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1917 			     struct bfq_group *bfqg)
1918 {
1919 	int i, j;
1920 
1921 	for (i = 0; i < 2; i++)
1922 		for (j = 0; j < IOPRIO_BE_NR; j++)
1923 			if (bfqg->async_bfqq[i][j])
1924 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1925 	if (bfqg->async_idle_bfqq)
1926 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1927 }
1928 
1929 static void bfq_end_wr(struct bfq_data *bfqd)
1930 {
1931 	struct bfq_queue *bfqq;
1932 
1933 	spin_lock_irq(&bfqd->lock);
1934 
1935 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1936 		bfq_bfqq_end_wr(bfqq);
1937 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1938 		bfq_bfqq_end_wr(bfqq);
1939 	bfq_end_wr_async(bfqd);
1940 
1941 	spin_unlock_irq(&bfqd->lock);
1942 }
1943 
1944 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1945 {
1946 	if (request)
1947 		return blk_rq_pos(io_struct);
1948 	else
1949 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1950 }
1951 
1952 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1953 				  sector_t sector)
1954 {
1955 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1956 	       BFQQ_CLOSE_THR;
1957 }
1958 
1959 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1960 					 struct bfq_queue *bfqq,
1961 					 sector_t sector)
1962 {
1963 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1964 	struct rb_node *parent, *node;
1965 	struct bfq_queue *__bfqq;
1966 
1967 	if (RB_EMPTY_ROOT(root))
1968 		return NULL;
1969 
1970 	/*
1971 	 * First, if we find a request starting at the end of the last
1972 	 * request, choose it.
1973 	 */
1974 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1975 	if (__bfqq)
1976 		return __bfqq;
1977 
1978 	/*
1979 	 * If the exact sector wasn't found, the parent of the NULL leaf
1980 	 * will contain the closest sector (rq_pos_tree sorted by
1981 	 * next_request position).
1982 	 */
1983 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1984 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1985 		return __bfqq;
1986 
1987 	if (blk_rq_pos(__bfqq->next_rq) < sector)
1988 		node = rb_next(&__bfqq->pos_node);
1989 	else
1990 		node = rb_prev(&__bfqq->pos_node);
1991 	if (!node)
1992 		return NULL;
1993 
1994 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
1995 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1996 		return __bfqq;
1997 
1998 	return NULL;
1999 }
2000 
2001 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2002 						   struct bfq_queue *cur_bfqq,
2003 						   sector_t sector)
2004 {
2005 	struct bfq_queue *bfqq;
2006 
2007 	/*
2008 	 * We shall notice if some of the queues are cooperating,
2009 	 * e.g., working closely on the same area of the device. In
2010 	 * that case, we can group them together and: 1) don't waste
2011 	 * time idling, and 2) serve the union of their requests in
2012 	 * the best possible order for throughput.
2013 	 */
2014 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2015 	if (!bfqq || bfqq == cur_bfqq)
2016 		return NULL;
2017 
2018 	return bfqq;
2019 }
2020 
2021 static struct bfq_queue *
2022 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2023 {
2024 	int process_refs, new_process_refs;
2025 	struct bfq_queue *__bfqq;
2026 
2027 	/*
2028 	 * If there are no process references on the new_bfqq, then it is
2029 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2030 	 * may have dropped their last reference (not just their last process
2031 	 * reference).
2032 	 */
2033 	if (!bfqq_process_refs(new_bfqq))
2034 		return NULL;
2035 
2036 	/* Avoid a circular list and skip interim queue merges. */
2037 	while ((__bfqq = new_bfqq->new_bfqq)) {
2038 		if (__bfqq == bfqq)
2039 			return NULL;
2040 		new_bfqq = __bfqq;
2041 	}
2042 
2043 	process_refs = bfqq_process_refs(bfqq);
2044 	new_process_refs = bfqq_process_refs(new_bfqq);
2045 	/*
2046 	 * If the process for the bfqq has gone away, there is no
2047 	 * sense in merging the queues.
2048 	 */
2049 	if (process_refs == 0 || new_process_refs == 0)
2050 		return NULL;
2051 
2052 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2053 		new_bfqq->pid);
2054 
2055 	/*
2056 	 * Merging is just a redirection: the requests of the process
2057 	 * owning one of the two queues are redirected to the other queue.
2058 	 * The latter queue, in its turn, is set as shared if this is the
2059 	 * first time that the requests of some process are redirected to
2060 	 * it.
2061 	 *
2062 	 * We redirect bfqq to new_bfqq and not the opposite, because
2063 	 * we are in the context of the process owning bfqq, thus we
2064 	 * have the io_cq of this process. So we can immediately
2065 	 * configure this io_cq to redirect the requests of the
2066 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2067 	 * not available any more (new_bfqq->bic == NULL).
2068 	 *
2069 	 * Anyway, even in case new_bfqq coincides with the in-service
2070 	 * queue, redirecting requests the in-service queue is the
2071 	 * best option, as we feed the in-service queue with new
2072 	 * requests close to the last request served and, by doing so,
2073 	 * are likely to increase the throughput.
2074 	 */
2075 	bfqq->new_bfqq = new_bfqq;
2076 	new_bfqq->ref += process_refs;
2077 	return new_bfqq;
2078 }
2079 
2080 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2081 					struct bfq_queue *new_bfqq)
2082 {
2083 	if (bfq_too_late_for_merging(new_bfqq))
2084 		return false;
2085 
2086 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2087 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2088 		return false;
2089 
2090 	/*
2091 	 * If either of the queues has already been detected as seeky,
2092 	 * then merging it with the other queue is unlikely to lead to
2093 	 * sequential I/O.
2094 	 */
2095 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2096 		return false;
2097 
2098 	/*
2099 	 * Interleaved I/O is known to be done by (some) applications
2100 	 * only for reads, so it does not make sense to merge async
2101 	 * queues.
2102 	 */
2103 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2104 		return false;
2105 
2106 	return true;
2107 }
2108 
2109 /*
2110  * Attempt to schedule a merge of bfqq with the currently in-service
2111  * queue or with a close queue among the scheduled queues.  Return
2112  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2113  * structure otherwise.
2114  *
2115  * The OOM queue is not allowed to participate to cooperation: in fact, since
2116  * the requests temporarily redirected to the OOM queue could be redirected
2117  * again to dedicated queues at any time, the state needed to correctly
2118  * handle merging with the OOM queue would be quite complex and expensive
2119  * to maintain. Besides, in such a critical condition as an out of memory,
2120  * the benefits of queue merging may be little relevant, or even negligible.
2121  *
2122  * WARNING: queue merging may impair fairness among non-weight raised
2123  * queues, for at least two reasons: 1) the original weight of a
2124  * merged queue may change during the merged state, 2) even being the
2125  * weight the same, a merged queue may be bloated with many more
2126  * requests than the ones produced by its originally-associated
2127  * process.
2128  */
2129 static struct bfq_queue *
2130 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2131 		     void *io_struct, bool request)
2132 {
2133 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2134 
2135 	/*
2136 	 * Prevent bfqq from being merged if it has been created too
2137 	 * long ago. The idea is that true cooperating processes, and
2138 	 * thus their associated bfq_queues, are supposed to be
2139 	 * created shortly after each other. This is the case, e.g.,
2140 	 * for KVM/QEMU and dump I/O threads. Basing on this
2141 	 * assumption, the following filtering greatly reduces the
2142 	 * probability that two non-cooperating processes, which just
2143 	 * happen to do close I/O for some short time interval, have
2144 	 * their queues merged by mistake.
2145 	 */
2146 	if (bfq_too_late_for_merging(bfqq))
2147 		return NULL;
2148 
2149 	if (bfqq->new_bfqq)
2150 		return bfqq->new_bfqq;
2151 
2152 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2153 		return NULL;
2154 
2155 	/* If there is only one backlogged queue, don't search. */
2156 	if (bfqd->busy_queues == 1)
2157 		return NULL;
2158 
2159 	in_service_bfqq = bfqd->in_service_queue;
2160 
2161 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2162 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2163 	    bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2164 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2165 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2166 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2167 		if (new_bfqq)
2168 			return new_bfqq;
2169 	}
2170 	/*
2171 	 * Check whether there is a cooperator among currently scheduled
2172 	 * queues. The only thing we need is that the bio/request is not
2173 	 * NULL, as we need it to establish whether a cooperator exists.
2174 	 */
2175 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2176 			bfq_io_struct_pos(io_struct, request));
2177 
2178 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2179 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2180 		return bfq_setup_merge(bfqq, new_bfqq);
2181 
2182 	return NULL;
2183 }
2184 
2185 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2186 {
2187 	struct bfq_io_cq *bic = bfqq->bic;
2188 
2189 	/*
2190 	 * If !bfqq->bic, the queue is already shared or its requests
2191 	 * have already been redirected to a shared queue; both idle window
2192 	 * and weight raising state have already been saved. Do nothing.
2193 	 */
2194 	if (!bic)
2195 		return;
2196 
2197 	bic->saved_ttime = bfqq->ttime;
2198 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2199 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2200 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2201 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2202 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2203 		     !bfq_bfqq_in_large_burst(bfqq) &&
2204 		     bfqq->bfqd->low_latency)) {
2205 		/*
2206 		 * bfqq being merged right after being created: bfqq
2207 		 * would have deserved interactive weight raising, but
2208 		 * did not make it to be set in a weight-raised state,
2209 		 * because of this early merge.	Store directly the
2210 		 * weight-raising state that would have been assigned
2211 		 * to bfqq, so that to avoid that bfqq unjustly fails
2212 		 * to enjoy weight raising if split soon.
2213 		 */
2214 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2215 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2216 		bic->saved_last_wr_start_finish = jiffies;
2217 	} else {
2218 		bic->saved_wr_coeff = bfqq->wr_coeff;
2219 		bic->saved_wr_start_at_switch_to_srt =
2220 			bfqq->wr_start_at_switch_to_srt;
2221 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2222 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2223 	}
2224 }
2225 
2226 static void
2227 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2228 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2229 {
2230 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2231 		(unsigned long)new_bfqq->pid);
2232 	/* Save weight raising and idle window of the merged queues */
2233 	bfq_bfqq_save_state(bfqq);
2234 	bfq_bfqq_save_state(new_bfqq);
2235 	if (bfq_bfqq_IO_bound(bfqq))
2236 		bfq_mark_bfqq_IO_bound(new_bfqq);
2237 	bfq_clear_bfqq_IO_bound(bfqq);
2238 
2239 	/*
2240 	 * If bfqq is weight-raised, then let new_bfqq inherit
2241 	 * weight-raising. To reduce false positives, neglect the case
2242 	 * where bfqq has just been created, but has not yet made it
2243 	 * to be weight-raised (which may happen because EQM may merge
2244 	 * bfqq even before bfq_add_request is executed for the first
2245 	 * time for bfqq). Handling this case would however be very
2246 	 * easy, thanks to the flag just_created.
2247 	 */
2248 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2249 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2250 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2251 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2252 		new_bfqq->wr_start_at_switch_to_srt =
2253 			bfqq->wr_start_at_switch_to_srt;
2254 		if (bfq_bfqq_busy(new_bfqq))
2255 			bfqd->wr_busy_queues++;
2256 		new_bfqq->entity.prio_changed = 1;
2257 	}
2258 
2259 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2260 		bfqq->wr_coeff = 1;
2261 		bfqq->entity.prio_changed = 1;
2262 		if (bfq_bfqq_busy(bfqq))
2263 			bfqd->wr_busy_queues--;
2264 	}
2265 
2266 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2267 		     bfqd->wr_busy_queues);
2268 
2269 	/*
2270 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2271 	 */
2272 	bic_set_bfqq(bic, new_bfqq, 1);
2273 	bfq_mark_bfqq_coop(new_bfqq);
2274 	/*
2275 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2276 	 * set new_bfqq->bic to NULL. bfqq either:
2277 	 * - does not belong to any bic any more, and hence bfqq->bic must
2278 	 *   be set to NULL, or
2279 	 * - is a queue whose owning bics have already been redirected to a
2280 	 *   different queue, hence the queue is destined to not belong to
2281 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2282 	 *   assignment causes no harm).
2283 	 */
2284 	new_bfqq->bic = NULL;
2285 	bfqq->bic = NULL;
2286 	/* release process reference to bfqq */
2287 	bfq_put_queue(bfqq);
2288 }
2289 
2290 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2291 				struct bio *bio)
2292 {
2293 	struct bfq_data *bfqd = q->elevator->elevator_data;
2294 	bool is_sync = op_is_sync(bio->bi_opf);
2295 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2296 
2297 	/*
2298 	 * Disallow merge of a sync bio into an async request.
2299 	 */
2300 	if (is_sync && !rq_is_sync(rq))
2301 		return false;
2302 
2303 	/*
2304 	 * Lookup the bfqq that this bio will be queued with. Allow
2305 	 * merge only if rq is queued there.
2306 	 */
2307 	if (!bfqq)
2308 		return false;
2309 
2310 	/*
2311 	 * We take advantage of this function to perform an early merge
2312 	 * of the queues of possible cooperating processes.
2313 	 */
2314 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2315 	if (new_bfqq) {
2316 		/*
2317 		 * bic still points to bfqq, then it has not yet been
2318 		 * redirected to some other bfq_queue, and a queue
2319 		 * merge beween bfqq and new_bfqq can be safely
2320 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2321 		 * and bfqq can be put.
2322 		 */
2323 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2324 				new_bfqq);
2325 		/*
2326 		 * If we get here, bio will be queued into new_queue,
2327 		 * so use new_bfqq to decide whether bio and rq can be
2328 		 * merged.
2329 		 */
2330 		bfqq = new_bfqq;
2331 
2332 		/*
2333 		 * Change also bqfd->bio_bfqq, as
2334 		 * bfqd->bio_bic now points to new_bfqq, and
2335 		 * this function may be invoked again (and then may
2336 		 * use again bqfd->bio_bfqq).
2337 		 */
2338 		bfqd->bio_bfqq = bfqq;
2339 	}
2340 
2341 	return bfqq == RQ_BFQQ(rq);
2342 }
2343 
2344 /*
2345  * Set the maximum time for the in-service queue to consume its
2346  * budget. This prevents seeky processes from lowering the throughput.
2347  * In practice, a time-slice service scheme is used with seeky
2348  * processes.
2349  */
2350 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2351 				   struct bfq_queue *bfqq)
2352 {
2353 	unsigned int timeout_coeff;
2354 
2355 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2356 		timeout_coeff = 1;
2357 	else
2358 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2359 
2360 	bfqd->last_budget_start = ktime_get();
2361 
2362 	bfqq->budget_timeout = jiffies +
2363 		bfqd->bfq_timeout * timeout_coeff;
2364 }
2365 
2366 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2367 				       struct bfq_queue *bfqq)
2368 {
2369 	if (bfqq) {
2370 		bfq_clear_bfqq_fifo_expire(bfqq);
2371 
2372 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2373 
2374 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2375 		    bfqq->wr_coeff > 1 &&
2376 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2377 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2378 			/*
2379 			 * For soft real-time queues, move the start
2380 			 * of the weight-raising period forward by the
2381 			 * time the queue has not received any
2382 			 * service. Otherwise, a relatively long
2383 			 * service delay is likely to cause the
2384 			 * weight-raising period of the queue to end,
2385 			 * because of the short duration of the
2386 			 * weight-raising period of a soft real-time
2387 			 * queue.  It is worth noting that this move
2388 			 * is not so dangerous for the other queues,
2389 			 * because soft real-time queues are not
2390 			 * greedy.
2391 			 *
2392 			 * To not add a further variable, we use the
2393 			 * overloaded field budget_timeout to
2394 			 * determine for how long the queue has not
2395 			 * received service, i.e., how much time has
2396 			 * elapsed since the queue expired. However,
2397 			 * this is a little imprecise, because
2398 			 * budget_timeout is set to jiffies if bfqq
2399 			 * not only expires, but also remains with no
2400 			 * request.
2401 			 */
2402 			if (time_after(bfqq->budget_timeout,
2403 				       bfqq->last_wr_start_finish))
2404 				bfqq->last_wr_start_finish +=
2405 					jiffies - bfqq->budget_timeout;
2406 			else
2407 				bfqq->last_wr_start_finish = jiffies;
2408 		}
2409 
2410 		bfq_set_budget_timeout(bfqd, bfqq);
2411 		bfq_log_bfqq(bfqd, bfqq,
2412 			     "set_in_service_queue, cur-budget = %d",
2413 			     bfqq->entity.budget);
2414 	}
2415 
2416 	bfqd->in_service_queue = bfqq;
2417 }
2418 
2419 /*
2420  * Get and set a new queue for service.
2421  */
2422 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2423 {
2424 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2425 
2426 	__bfq_set_in_service_queue(bfqd, bfqq);
2427 	return bfqq;
2428 }
2429 
2430 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2431 {
2432 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2433 	u32 sl;
2434 
2435 	bfq_mark_bfqq_wait_request(bfqq);
2436 
2437 	/*
2438 	 * We don't want to idle for seeks, but we do want to allow
2439 	 * fair distribution of slice time for a process doing back-to-back
2440 	 * seeks. So allow a little bit of time for him to submit a new rq.
2441 	 */
2442 	sl = bfqd->bfq_slice_idle;
2443 	/*
2444 	 * Unless the queue is being weight-raised or the scenario is
2445 	 * asymmetric, grant only minimum idle time if the queue
2446 	 * is seeky. A long idling is preserved for a weight-raised
2447 	 * queue, or, more in general, in an asymmetric scenario,
2448 	 * because a long idling is needed for guaranteeing to a queue
2449 	 * its reserved share of the throughput (in particular, it is
2450 	 * needed if the queue has a higher weight than some other
2451 	 * queue).
2452 	 */
2453 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2454 	    bfq_symmetric_scenario(bfqd))
2455 		sl = min_t(u64, sl, BFQ_MIN_TT);
2456 
2457 	bfqd->last_idling_start = ktime_get();
2458 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2459 		      HRTIMER_MODE_REL);
2460 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2461 }
2462 
2463 /*
2464  * In autotuning mode, max_budget is dynamically recomputed as the
2465  * amount of sectors transferred in timeout at the estimated peak
2466  * rate. This enables BFQ to utilize a full timeslice with a full
2467  * budget, even if the in-service queue is served at peak rate. And
2468  * this maximises throughput with sequential workloads.
2469  */
2470 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2471 {
2472 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2473 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2474 }
2475 
2476 /*
2477  * Update parameters related to throughput and responsiveness, as a
2478  * function of the estimated peak rate. See comments on
2479  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2480  */
2481 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2482 {
2483 	if (bfqd->bfq_user_max_budget == 0) {
2484 		bfqd->bfq_max_budget =
2485 			bfq_calc_max_budget(bfqd);
2486 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2487 	}
2488 }
2489 
2490 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2491 				       struct request *rq)
2492 {
2493 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2494 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2495 		bfqd->peak_rate_samples = 1;
2496 		bfqd->sequential_samples = 0;
2497 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2498 			blk_rq_sectors(rq);
2499 	} else /* no new rq dispatched, just reset the number of samples */
2500 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2501 
2502 	bfq_log(bfqd,
2503 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2504 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2505 		bfqd->tot_sectors_dispatched);
2506 }
2507 
2508 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2509 {
2510 	u32 rate, weight, divisor;
2511 
2512 	/*
2513 	 * For the convergence property to hold (see comments on
2514 	 * bfq_update_peak_rate()) and for the assessment to be
2515 	 * reliable, a minimum number of samples must be present, and
2516 	 * a minimum amount of time must have elapsed. If not so, do
2517 	 * not compute new rate. Just reset parameters, to get ready
2518 	 * for a new evaluation attempt.
2519 	 */
2520 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2521 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2522 		goto reset_computation;
2523 
2524 	/*
2525 	 * If a new request completion has occurred after last
2526 	 * dispatch, then, to approximate the rate at which requests
2527 	 * have been served by the device, it is more precise to
2528 	 * extend the observation interval to the last completion.
2529 	 */
2530 	bfqd->delta_from_first =
2531 		max_t(u64, bfqd->delta_from_first,
2532 		      bfqd->last_completion - bfqd->first_dispatch);
2533 
2534 	/*
2535 	 * Rate computed in sects/usec, and not sects/nsec, for
2536 	 * precision issues.
2537 	 */
2538 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2539 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2540 
2541 	/*
2542 	 * Peak rate not updated if:
2543 	 * - the percentage of sequential dispatches is below 3/4 of the
2544 	 *   total, and rate is below the current estimated peak rate
2545 	 * - rate is unreasonably high (> 20M sectors/sec)
2546 	 */
2547 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2548 	     rate <= bfqd->peak_rate) ||
2549 		rate > 20<<BFQ_RATE_SHIFT)
2550 		goto reset_computation;
2551 
2552 	/*
2553 	 * We have to update the peak rate, at last! To this purpose,
2554 	 * we use a low-pass filter. We compute the smoothing constant
2555 	 * of the filter as a function of the 'weight' of the new
2556 	 * measured rate.
2557 	 *
2558 	 * As can be seen in next formulas, we define this weight as a
2559 	 * quantity proportional to how sequential the workload is,
2560 	 * and to how long the observation time interval is.
2561 	 *
2562 	 * The weight runs from 0 to 8. The maximum value of the
2563 	 * weight, 8, yields the minimum value for the smoothing
2564 	 * constant. At this minimum value for the smoothing constant,
2565 	 * the measured rate contributes for half of the next value of
2566 	 * the estimated peak rate.
2567 	 *
2568 	 * So, the first step is to compute the weight as a function
2569 	 * of how sequential the workload is. Note that the weight
2570 	 * cannot reach 9, because bfqd->sequential_samples cannot
2571 	 * become equal to bfqd->peak_rate_samples, which, in its
2572 	 * turn, holds true because bfqd->sequential_samples is not
2573 	 * incremented for the first sample.
2574 	 */
2575 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2576 
2577 	/*
2578 	 * Second step: further refine the weight as a function of the
2579 	 * duration of the observation interval.
2580 	 */
2581 	weight = min_t(u32, 8,
2582 		       div_u64(weight * bfqd->delta_from_first,
2583 			       BFQ_RATE_REF_INTERVAL));
2584 
2585 	/*
2586 	 * Divisor ranging from 10, for minimum weight, to 2, for
2587 	 * maximum weight.
2588 	 */
2589 	divisor = 10 - weight;
2590 
2591 	/*
2592 	 * Finally, update peak rate:
2593 	 *
2594 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2595 	 */
2596 	bfqd->peak_rate *= divisor-1;
2597 	bfqd->peak_rate /= divisor;
2598 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2599 
2600 	bfqd->peak_rate += rate;
2601 
2602 	/*
2603 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2604 	 * the minimum representable values reported in the comments
2605 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2606 	 * divisions by zero where bfqd->peak_rate is used as a
2607 	 * divisor.
2608 	 */
2609 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2610 
2611 	update_thr_responsiveness_params(bfqd);
2612 
2613 reset_computation:
2614 	bfq_reset_rate_computation(bfqd, rq);
2615 }
2616 
2617 /*
2618  * Update the read/write peak rate (the main quantity used for
2619  * auto-tuning, see update_thr_responsiveness_params()).
2620  *
2621  * It is not trivial to estimate the peak rate (correctly): because of
2622  * the presence of sw and hw queues between the scheduler and the
2623  * device components that finally serve I/O requests, it is hard to
2624  * say exactly when a given dispatched request is served inside the
2625  * device, and for how long. As a consequence, it is hard to know
2626  * precisely at what rate a given set of requests is actually served
2627  * by the device.
2628  *
2629  * On the opposite end, the dispatch time of any request is trivially
2630  * available, and, from this piece of information, the "dispatch rate"
2631  * of requests can be immediately computed. So, the idea in the next
2632  * function is to use what is known, namely request dispatch times
2633  * (plus, when useful, request completion times), to estimate what is
2634  * unknown, namely in-device request service rate.
2635  *
2636  * The main issue is that, because of the above facts, the rate at
2637  * which a certain set of requests is dispatched over a certain time
2638  * interval can vary greatly with respect to the rate at which the
2639  * same requests are then served. But, since the size of any
2640  * intermediate queue is limited, and the service scheme is lossless
2641  * (no request is silently dropped), the following obvious convergence
2642  * property holds: the number of requests dispatched MUST become
2643  * closer and closer to the number of requests completed as the
2644  * observation interval grows. This is the key property used in
2645  * the next function to estimate the peak service rate as a function
2646  * of the observed dispatch rate. The function assumes to be invoked
2647  * on every request dispatch.
2648  */
2649 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2650 {
2651 	u64 now_ns = ktime_get_ns();
2652 
2653 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2654 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2655 			bfqd->peak_rate_samples);
2656 		bfq_reset_rate_computation(bfqd, rq);
2657 		goto update_last_values; /* will add one sample */
2658 	}
2659 
2660 	/*
2661 	 * Device idle for very long: the observation interval lasting
2662 	 * up to this dispatch cannot be a valid observation interval
2663 	 * for computing a new peak rate (similarly to the late-
2664 	 * completion event in bfq_completed_request()). Go to
2665 	 * update_rate_and_reset to have the following three steps
2666 	 * taken:
2667 	 * - close the observation interval at the last (previous)
2668 	 *   request dispatch or completion
2669 	 * - compute rate, if possible, for that observation interval
2670 	 * - start a new observation interval with this dispatch
2671 	 */
2672 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2673 	    bfqd->rq_in_driver == 0)
2674 		goto update_rate_and_reset;
2675 
2676 	/* Update sampling information */
2677 	bfqd->peak_rate_samples++;
2678 
2679 	if ((bfqd->rq_in_driver > 0 ||
2680 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2681 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2682 		bfqd->sequential_samples++;
2683 
2684 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2685 
2686 	/* Reset max observed rq size every 32 dispatches */
2687 	if (likely(bfqd->peak_rate_samples % 32))
2688 		bfqd->last_rq_max_size =
2689 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2690 	else
2691 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2692 
2693 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2694 
2695 	/* Target observation interval not yet reached, go on sampling */
2696 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2697 		goto update_last_values;
2698 
2699 update_rate_and_reset:
2700 	bfq_update_rate_reset(bfqd, rq);
2701 update_last_values:
2702 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2703 	bfqd->last_dispatch = now_ns;
2704 }
2705 
2706 /*
2707  * Remove request from internal lists.
2708  */
2709 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2710 {
2711 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2712 
2713 	/*
2714 	 * For consistency, the next instruction should have been
2715 	 * executed after removing the request from the queue and
2716 	 * dispatching it.  We execute instead this instruction before
2717 	 * bfq_remove_request() (and hence introduce a temporary
2718 	 * inconsistency), for efficiency.  In fact, should this
2719 	 * dispatch occur for a non in-service bfqq, this anticipated
2720 	 * increment prevents two counters related to bfqq->dispatched
2721 	 * from risking to be, first, uselessly decremented, and then
2722 	 * incremented again when the (new) value of bfqq->dispatched
2723 	 * happens to be taken into account.
2724 	 */
2725 	bfqq->dispatched++;
2726 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2727 
2728 	bfq_remove_request(q, rq);
2729 }
2730 
2731 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2732 {
2733 	/*
2734 	 * If this bfqq is shared between multiple processes, check
2735 	 * to make sure that those processes are still issuing I/Os
2736 	 * within the mean seek distance. If not, it may be time to
2737 	 * break the queues apart again.
2738 	 */
2739 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2740 		bfq_mark_bfqq_split_coop(bfqq);
2741 
2742 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2743 		if (bfqq->dispatched == 0)
2744 			/*
2745 			 * Overloading budget_timeout field to store
2746 			 * the time at which the queue remains with no
2747 			 * backlog and no outstanding request; used by
2748 			 * the weight-raising mechanism.
2749 			 */
2750 			bfqq->budget_timeout = jiffies;
2751 
2752 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2753 	} else {
2754 		bfq_requeue_bfqq(bfqd, bfqq, true);
2755 		/*
2756 		 * Resort priority tree of potential close cooperators.
2757 		 */
2758 		bfq_pos_tree_add_move(bfqd, bfqq);
2759 	}
2760 
2761 	/*
2762 	 * All in-service entities must have been properly deactivated
2763 	 * or requeued before executing the next function, which
2764 	 * resets all in-service entites as no more in service.
2765 	 */
2766 	__bfq_bfqd_reset_in_service(bfqd);
2767 }
2768 
2769 /**
2770  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2771  * @bfqd: device data.
2772  * @bfqq: queue to update.
2773  * @reason: reason for expiration.
2774  *
2775  * Handle the feedback on @bfqq budget at queue expiration.
2776  * See the body for detailed comments.
2777  */
2778 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2779 				     struct bfq_queue *bfqq,
2780 				     enum bfqq_expiration reason)
2781 {
2782 	struct request *next_rq;
2783 	int budget, min_budget;
2784 
2785 	min_budget = bfq_min_budget(bfqd);
2786 
2787 	if (bfqq->wr_coeff == 1)
2788 		budget = bfqq->max_budget;
2789 	else /*
2790 	      * Use a constant, low budget for weight-raised queues,
2791 	      * to help achieve a low latency. Keep it slightly higher
2792 	      * than the minimum possible budget, to cause a little
2793 	      * bit fewer expirations.
2794 	      */
2795 		budget = 2 * min_budget;
2796 
2797 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2798 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2799 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2800 		budget, bfq_min_budget(bfqd));
2801 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2802 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2803 
2804 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2805 		switch (reason) {
2806 		/*
2807 		 * Caveat: in all the following cases we trade latency
2808 		 * for throughput.
2809 		 */
2810 		case BFQQE_TOO_IDLE:
2811 			/*
2812 			 * This is the only case where we may reduce
2813 			 * the budget: if there is no request of the
2814 			 * process still waiting for completion, then
2815 			 * we assume (tentatively) that the timer has
2816 			 * expired because the batch of requests of
2817 			 * the process could have been served with a
2818 			 * smaller budget.  Hence, betting that
2819 			 * process will behave in the same way when it
2820 			 * becomes backlogged again, we reduce its
2821 			 * next budget.  As long as we guess right,
2822 			 * this budget cut reduces the latency
2823 			 * experienced by the process.
2824 			 *
2825 			 * However, if there are still outstanding
2826 			 * requests, then the process may have not yet
2827 			 * issued its next request just because it is
2828 			 * still waiting for the completion of some of
2829 			 * the still outstanding ones.  So in this
2830 			 * subcase we do not reduce its budget, on the
2831 			 * contrary we increase it to possibly boost
2832 			 * the throughput, as discussed in the
2833 			 * comments to the BUDGET_TIMEOUT case.
2834 			 */
2835 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2836 				budget = min(budget * 2, bfqd->bfq_max_budget);
2837 			else {
2838 				if (budget > 5 * min_budget)
2839 					budget -= 4 * min_budget;
2840 				else
2841 					budget = min_budget;
2842 			}
2843 			break;
2844 		case BFQQE_BUDGET_TIMEOUT:
2845 			/*
2846 			 * We double the budget here because it gives
2847 			 * the chance to boost the throughput if this
2848 			 * is not a seeky process (and has bumped into
2849 			 * this timeout because of, e.g., ZBR).
2850 			 */
2851 			budget = min(budget * 2, bfqd->bfq_max_budget);
2852 			break;
2853 		case BFQQE_BUDGET_EXHAUSTED:
2854 			/*
2855 			 * The process still has backlog, and did not
2856 			 * let either the budget timeout or the disk
2857 			 * idling timeout expire. Hence it is not
2858 			 * seeky, has a short thinktime and may be
2859 			 * happy with a higher budget too. So
2860 			 * definitely increase the budget of this good
2861 			 * candidate to boost the disk throughput.
2862 			 */
2863 			budget = min(budget * 4, bfqd->bfq_max_budget);
2864 			break;
2865 		case BFQQE_NO_MORE_REQUESTS:
2866 			/*
2867 			 * For queues that expire for this reason, it
2868 			 * is particularly important to keep the
2869 			 * budget close to the actual service they
2870 			 * need. Doing so reduces the timestamp
2871 			 * misalignment problem described in the
2872 			 * comments in the body of
2873 			 * __bfq_activate_entity. In fact, suppose
2874 			 * that a queue systematically expires for
2875 			 * BFQQE_NO_MORE_REQUESTS and presents a
2876 			 * new request in time to enjoy timestamp
2877 			 * back-shifting. The larger the budget of the
2878 			 * queue is with respect to the service the
2879 			 * queue actually requests in each service
2880 			 * slot, the more times the queue can be
2881 			 * reactivated with the same virtual finish
2882 			 * time. It follows that, even if this finish
2883 			 * time is pushed to the system virtual time
2884 			 * to reduce the consequent timestamp
2885 			 * misalignment, the queue unjustly enjoys for
2886 			 * many re-activations a lower finish time
2887 			 * than all newly activated queues.
2888 			 *
2889 			 * The service needed by bfqq is measured
2890 			 * quite precisely by bfqq->entity.service.
2891 			 * Since bfqq does not enjoy device idling,
2892 			 * bfqq->entity.service is equal to the number
2893 			 * of sectors that the process associated with
2894 			 * bfqq requested to read/write before waiting
2895 			 * for request completions, or blocking for
2896 			 * other reasons.
2897 			 */
2898 			budget = max_t(int, bfqq->entity.service, min_budget);
2899 			break;
2900 		default:
2901 			return;
2902 		}
2903 	} else if (!bfq_bfqq_sync(bfqq)) {
2904 		/*
2905 		 * Async queues get always the maximum possible
2906 		 * budget, as for them we do not care about latency
2907 		 * (in addition, their ability to dispatch is limited
2908 		 * by the charging factor).
2909 		 */
2910 		budget = bfqd->bfq_max_budget;
2911 	}
2912 
2913 	bfqq->max_budget = budget;
2914 
2915 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2916 	    !bfqd->bfq_user_max_budget)
2917 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2918 
2919 	/*
2920 	 * If there is still backlog, then assign a new budget, making
2921 	 * sure that it is large enough for the next request.  Since
2922 	 * the finish time of bfqq must be kept in sync with the
2923 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2924 	 * update.
2925 	 *
2926 	 * If there is no backlog, then no need to update the budget;
2927 	 * it will be updated on the arrival of a new request.
2928 	 */
2929 	next_rq = bfqq->next_rq;
2930 	if (next_rq)
2931 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2932 					    bfq_serv_to_charge(next_rq, bfqq));
2933 
2934 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2935 			next_rq ? blk_rq_sectors(next_rq) : 0,
2936 			bfqq->entity.budget);
2937 }
2938 
2939 /*
2940  * Return true if the process associated with bfqq is "slow". The slow
2941  * flag is used, in addition to the budget timeout, to reduce the
2942  * amount of service provided to seeky processes, and thus reduce
2943  * their chances to lower the throughput. More details in the comments
2944  * on the function bfq_bfqq_expire().
2945  *
2946  * An important observation is in order: as discussed in the comments
2947  * on the function bfq_update_peak_rate(), with devices with internal
2948  * queues, it is hard if ever possible to know when and for how long
2949  * an I/O request is processed by the device (apart from the trivial
2950  * I/O pattern where a new request is dispatched only after the
2951  * previous one has been completed). This makes it hard to evaluate
2952  * the real rate at which the I/O requests of each bfq_queue are
2953  * served.  In fact, for an I/O scheduler like BFQ, serving a
2954  * bfq_queue means just dispatching its requests during its service
2955  * slot (i.e., until the budget of the queue is exhausted, or the
2956  * queue remains idle, or, finally, a timeout fires). But, during the
2957  * service slot of a bfq_queue, around 100 ms at most, the device may
2958  * be even still processing requests of bfq_queues served in previous
2959  * service slots. On the opposite end, the requests of the in-service
2960  * bfq_queue may be completed after the service slot of the queue
2961  * finishes.
2962  *
2963  * Anyway, unless more sophisticated solutions are used
2964  * (where possible), the sum of the sizes of the requests dispatched
2965  * during the service slot of a bfq_queue is probably the only
2966  * approximation available for the service received by the bfq_queue
2967  * during its service slot. And this sum is the quantity used in this
2968  * function to evaluate the I/O speed of a process.
2969  */
2970 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2971 				 bool compensate, enum bfqq_expiration reason,
2972 				 unsigned long *delta_ms)
2973 {
2974 	ktime_t delta_ktime;
2975 	u32 delta_usecs;
2976 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
2977 
2978 	if (!bfq_bfqq_sync(bfqq))
2979 		return false;
2980 
2981 	if (compensate)
2982 		delta_ktime = bfqd->last_idling_start;
2983 	else
2984 		delta_ktime = ktime_get();
2985 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2986 	delta_usecs = ktime_to_us(delta_ktime);
2987 
2988 	/* don't use too short time intervals */
2989 	if (delta_usecs < 1000) {
2990 		if (blk_queue_nonrot(bfqd->queue))
2991 			 /*
2992 			  * give same worst-case guarantees as idling
2993 			  * for seeky
2994 			  */
2995 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2996 		else /* charge at least one seek */
2997 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2998 
2999 		return slow;
3000 	}
3001 
3002 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3003 
3004 	/*
3005 	 * Use only long (> 20ms) intervals to filter out excessive
3006 	 * spikes in service rate estimation.
3007 	 */
3008 	if (delta_usecs > 20000) {
3009 		/*
3010 		 * Caveat for rotational devices: processes doing I/O
3011 		 * in the slower disk zones tend to be slow(er) even
3012 		 * if not seeky. In this respect, the estimated peak
3013 		 * rate is likely to be an average over the disk
3014 		 * surface. Accordingly, to not be too harsh with
3015 		 * unlucky processes, a process is deemed slow only if
3016 		 * its rate has been lower than half of the estimated
3017 		 * peak rate.
3018 		 */
3019 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3020 	}
3021 
3022 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3023 
3024 	return slow;
3025 }
3026 
3027 /*
3028  * To be deemed as soft real-time, an application must meet two
3029  * requirements. First, the application must not require an average
3030  * bandwidth higher than the approximate bandwidth required to playback or
3031  * record a compressed high-definition video.
3032  * The next function is invoked on the completion of the last request of a
3033  * batch, to compute the next-start time instant, soft_rt_next_start, such
3034  * that, if the next request of the application does not arrive before
3035  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3036  *
3037  * The second requirement is that the request pattern of the application is
3038  * isochronous, i.e., that, after issuing a request or a batch of requests,
3039  * the application stops issuing new requests until all its pending requests
3040  * have been completed. After that, the application may issue a new batch,
3041  * and so on.
3042  * For this reason the next function is invoked to compute
3043  * soft_rt_next_start only for applications that meet this requirement,
3044  * whereas soft_rt_next_start is set to infinity for applications that do
3045  * not.
3046  *
3047  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3048  * happen to meet, occasionally or systematically, both the above
3049  * bandwidth and isochrony requirements. This may happen at least in
3050  * the following circumstances. First, if the CPU load is high. The
3051  * application may stop issuing requests while the CPUs are busy
3052  * serving other processes, then restart, then stop again for a while,
3053  * and so on. The other circumstances are related to the storage
3054  * device: the storage device is highly loaded or reaches a low-enough
3055  * throughput with the I/O of the application (e.g., because the I/O
3056  * is random and/or the device is slow). In all these cases, the
3057  * I/O of the application may be simply slowed down enough to meet
3058  * the bandwidth and isochrony requirements. To reduce the probability
3059  * that greedy applications are deemed as soft real-time in these
3060  * corner cases, a further rule is used in the computation of
3061  * soft_rt_next_start: the return value of this function is forced to
3062  * be higher than the maximum between the following two quantities.
3063  *
3064  * (a) Current time plus: (1) the maximum time for which the arrival
3065  *     of a request is waited for when a sync queue becomes idle,
3066  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3067  *     postpone for a moment the reason for adding a few extra
3068  *     jiffies; we get back to it after next item (b).  Lower-bounding
3069  *     the return value of this function with the current time plus
3070  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3071  *     because the latter issue their next request as soon as possible
3072  *     after the last one has been completed. In contrast, a soft
3073  *     real-time application spends some time processing data, after a
3074  *     batch of its requests has been completed.
3075  *
3076  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3077  *     above, greedy applications may happen to meet both the
3078  *     bandwidth and isochrony requirements under heavy CPU or
3079  *     storage-device load. In more detail, in these scenarios, these
3080  *     applications happen, only for limited time periods, to do I/O
3081  *     slowly enough to meet all the requirements described so far,
3082  *     including the filtering in above item (a). These slow-speed
3083  *     time intervals are usually interspersed between other time
3084  *     intervals during which these applications do I/O at a very high
3085  *     speed. Fortunately, exactly because of the high speed of the
3086  *     I/O in the high-speed intervals, the values returned by this
3087  *     function happen to be so high, near the end of any such
3088  *     high-speed interval, to be likely to fall *after* the end of
3089  *     the low-speed time interval that follows. These high values are
3090  *     stored in bfqq->soft_rt_next_start after each invocation of
3091  *     this function. As a consequence, if the last value of
3092  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3093  *     next value that this function may return, then, from the very
3094  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3095  *     likely to be constantly kept so high that any I/O request
3096  *     issued during the low-speed interval is considered as arriving
3097  *     to soon for the application to be deemed as soft
3098  *     real-time. Then, in the high-speed interval that follows, the
3099  *     application will not be deemed as soft real-time, just because
3100  *     it will do I/O at a high speed. And so on.
3101  *
3102  * Getting back to the filtering in item (a), in the following two
3103  * cases this filtering might be easily passed by a greedy
3104  * application, if the reference quantity was just
3105  * bfqd->bfq_slice_idle:
3106  * 1) HZ is so low that the duration of a jiffy is comparable to or
3107  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3108  *    devices with HZ=100. The time granularity may be so coarse
3109  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3110  *    is rather lower than the exact value.
3111  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3112  *    for a while, then suddenly 'jump' by several units to recover the lost
3113  *    increments. This seems to happen, e.g., inside virtual machines.
3114  * To address this issue, in the filtering in (a) we do not use as a
3115  * reference time interval just bfqd->bfq_slice_idle, but
3116  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3117  * minimum number of jiffies for which the filter seems to be quite
3118  * precise also in embedded systems and KVM/QEMU virtual machines.
3119  */
3120 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3121 						struct bfq_queue *bfqq)
3122 {
3123 	return max3(bfqq->soft_rt_next_start,
3124 		    bfqq->last_idle_bklogged +
3125 		    HZ * bfqq->service_from_backlogged /
3126 		    bfqd->bfq_wr_max_softrt_rate,
3127 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3128 }
3129 
3130 /**
3131  * bfq_bfqq_expire - expire a queue.
3132  * @bfqd: device owning the queue.
3133  * @bfqq: the queue to expire.
3134  * @compensate: if true, compensate for the time spent idling.
3135  * @reason: the reason causing the expiration.
3136  *
3137  * If the process associated with bfqq does slow I/O (e.g., because it
3138  * issues random requests), we charge bfqq with the time it has been
3139  * in service instead of the service it has received (see
3140  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3141  * a consequence, bfqq will typically get higher timestamps upon
3142  * reactivation, and hence it will be rescheduled as if it had
3143  * received more service than what it has actually received. In the
3144  * end, bfqq receives less service in proportion to how slowly its
3145  * associated process consumes its budgets (and hence how seriously it
3146  * tends to lower the throughput). In addition, this time-charging
3147  * strategy guarantees time fairness among slow processes. In
3148  * contrast, if the process associated with bfqq is not slow, we
3149  * charge bfqq exactly with the service it has received.
3150  *
3151  * Charging time to the first type of queues and the exact service to
3152  * the other has the effect of using the WF2Q+ policy to schedule the
3153  * former on a timeslice basis, without violating service domain
3154  * guarantees among the latter.
3155  */
3156 void bfq_bfqq_expire(struct bfq_data *bfqd,
3157 		     struct bfq_queue *bfqq,
3158 		     bool compensate,
3159 		     enum bfqq_expiration reason)
3160 {
3161 	bool slow;
3162 	unsigned long delta = 0;
3163 	struct bfq_entity *entity = &bfqq->entity;
3164 	int ref;
3165 
3166 	/*
3167 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3168 	 */
3169 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3170 
3171 	/*
3172 	 * As above explained, charge slow (typically seeky) and
3173 	 * timed-out queues with the time and not the service
3174 	 * received, to favor sequential workloads.
3175 	 *
3176 	 * Processes doing I/O in the slower disk zones will tend to
3177 	 * be slow(er) even if not seeky. Therefore, since the
3178 	 * estimated peak rate is actually an average over the disk
3179 	 * surface, these processes may timeout just for bad luck. To
3180 	 * avoid punishing them, do not charge time to processes that
3181 	 * succeeded in consuming at least 2/3 of their budget. This
3182 	 * allows BFQ to preserve enough elasticity to still perform
3183 	 * bandwidth, and not time, distribution with little unlucky
3184 	 * or quasi-sequential processes.
3185 	 */
3186 	if (bfqq->wr_coeff == 1 &&
3187 	    (slow ||
3188 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3189 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3190 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3191 
3192 	if (reason == BFQQE_TOO_IDLE &&
3193 	    entity->service <= 2 * entity->budget / 10)
3194 		bfq_clear_bfqq_IO_bound(bfqq);
3195 
3196 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3197 		bfqq->last_wr_start_finish = jiffies;
3198 
3199 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3200 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3201 		/*
3202 		 * If we get here, and there are no outstanding
3203 		 * requests, then the request pattern is isochronous
3204 		 * (see the comments on the function
3205 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3206 		 * soft_rt_next_start. If, instead, the queue still
3207 		 * has outstanding requests, then we have to wait for
3208 		 * the completion of all the outstanding requests to
3209 		 * discover whether the request pattern is actually
3210 		 * isochronous.
3211 		 */
3212 		if (bfqq->dispatched == 0)
3213 			bfqq->soft_rt_next_start =
3214 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3215 		else {
3216 			/*
3217 			 * Schedule an update of soft_rt_next_start to when
3218 			 * the task may be discovered to be isochronous.
3219 			 */
3220 			bfq_mark_bfqq_softrt_update(bfqq);
3221 		}
3222 	}
3223 
3224 	bfq_log_bfqq(bfqd, bfqq,
3225 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3226 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3227 
3228 	/*
3229 	 * Increase, decrease or leave budget unchanged according to
3230 	 * reason.
3231 	 */
3232 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3233 	ref = bfqq->ref;
3234 	__bfq_bfqq_expire(bfqd, bfqq);
3235 
3236 	/* mark bfqq as waiting a request only if a bic still points to it */
3237 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3238 	    reason != BFQQE_BUDGET_TIMEOUT &&
3239 	    reason != BFQQE_BUDGET_EXHAUSTED)
3240 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3241 }
3242 
3243 /*
3244  * Budget timeout is not implemented through a dedicated timer, but
3245  * just checked on request arrivals and completions, as well as on
3246  * idle timer expirations.
3247  */
3248 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3249 {
3250 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3251 }
3252 
3253 /*
3254  * If we expire a queue that is actively waiting (i.e., with the
3255  * device idled) for the arrival of a new request, then we may incur
3256  * the timestamp misalignment problem described in the body of the
3257  * function __bfq_activate_entity. Hence we return true only if this
3258  * condition does not hold, or if the queue is slow enough to deserve
3259  * only to be kicked off for preserving a high throughput.
3260  */
3261 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3262 {
3263 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3264 		"may_budget_timeout: wait_request %d left %d timeout %d",
3265 		bfq_bfqq_wait_request(bfqq),
3266 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3267 		bfq_bfqq_budget_timeout(bfqq));
3268 
3269 	return (!bfq_bfqq_wait_request(bfqq) ||
3270 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3271 		&&
3272 		bfq_bfqq_budget_timeout(bfqq);
3273 }
3274 
3275 /*
3276  * For a queue that becomes empty, device idling is allowed only if
3277  * this function returns true for the queue. As a consequence, since
3278  * device idling plays a critical role in both throughput boosting and
3279  * service guarantees, the return value of this function plays a
3280  * critical role in both these aspects as well.
3281  *
3282  * In a nutshell, this function returns true only if idling is
3283  * beneficial for throughput or, even if detrimental for throughput,
3284  * idling is however necessary to preserve service guarantees (low
3285  * latency, desired throughput distribution, ...). In particular, on
3286  * NCQ-capable devices, this function tries to return false, so as to
3287  * help keep the drives' internal queues full, whenever this helps the
3288  * device boost the throughput without causing any service-guarantee
3289  * issue.
3290  *
3291  * In more detail, the return value of this function is obtained by,
3292  * first, computing a number of boolean variables that take into
3293  * account throughput and service-guarantee issues, and, then,
3294  * combining these variables in a logical expression. Most of the
3295  * issues taken into account are not trivial. We discuss these issues
3296  * individually while introducing the variables.
3297  */
3298 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3299 {
3300 	struct bfq_data *bfqd = bfqq->bfqd;
3301 	bool rot_without_queueing =
3302 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3303 		bfqq_sequential_and_IO_bound,
3304 		idling_boosts_thr, idling_boosts_thr_without_issues,
3305 		idling_needed_for_service_guarantees,
3306 		asymmetric_scenario;
3307 
3308 	if (bfqd->strict_guarantees)
3309 		return true;
3310 
3311 	/*
3312 	 * Idling is performed only if slice_idle > 0. In addition, we
3313 	 * do not idle if
3314 	 * (a) bfqq is async
3315 	 * (b) bfqq is in the idle io prio class: in this case we do
3316 	 * not idle because we want to minimize the bandwidth that
3317 	 * queues in this class can steal to higher-priority queues
3318 	 */
3319 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3320 	    bfq_class_idle(bfqq))
3321 		return false;
3322 
3323 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3324 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3325 
3326 	/*
3327 	 * The next variable takes into account the cases where idling
3328 	 * boosts the throughput.
3329 	 *
3330 	 * The value of the variable is computed considering, first, that
3331 	 * idling is virtually always beneficial for the throughput if:
3332 	 * (a) the device is not NCQ-capable and rotational, or
3333 	 * (b) regardless of the presence of NCQ, the device is rotational and
3334 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3335 	 * (c) regardless of whether it is rotational, the device is
3336 	 *     not NCQ-capable and the request pattern for bfqq is
3337 	 *     I/O-bound and sequential.
3338 	 *
3339 	 * Secondly, and in contrast to the above item (b), idling an
3340 	 * NCQ-capable flash-based device would not boost the
3341 	 * throughput even with sequential I/O; rather it would lower
3342 	 * the throughput in proportion to how fast the device
3343 	 * is. Accordingly, the next variable is true if any of the
3344 	 * above conditions (a), (b) or (c) is true, and, in
3345 	 * particular, happens to be false if bfqd is an NCQ-capable
3346 	 * flash-based device.
3347 	 */
3348 	idling_boosts_thr = rot_without_queueing ||
3349 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3350 		 bfqq_sequential_and_IO_bound);
3351 
3352 	/*
3353 	 * The value of the next variable,
3354 	 * idling_boosts_thr_without_issues, is equal to that of
3355 	 * idling_boosts_thr, unless a special case holds. In this
3356 	 * special case, described below, idling may cause problems to
3357 	 * weight-raised queues.
3358 	 *
3359 	 * When the request pool is saturated (e.g., in the presence
3360 	 * of write hogs), if the processes associated with
3361 	 * non-weight-raised queues ask for requests at a lower rate,
3362 	 * then processes associated with weight-raised queues have a
3363 	 * higher probability to get a request from the pool
3364 	 * immediately (or at least soon) when they need one. Thus
3365 	 * they have a higher probability to actually get a fraction
3366 	 * of the device throughput proportional to their high
3367 	 * weight. This is especially true with NCQ-capable drives,
3368 	 * which enqueue several requests in advance, and further
3369 	 * reorder internally-queued requests.
3370 	 *
3371 	 * For this reason, we force to false the value of
3372 	 * idling_boosts_thr_without_issues if there are weight-raised
3373 	 * busy queues. In this case, and if bfqq is not weight-raised,
3374 	 * this guarantees that the device is not idled for bfqq (if,
3375 	 * instead, bfqq is weight-raised, then idling will be
3376 	 * guaranteed by another variable, see below). Combined with
3377 	 * the timestamping rules of BFQ (see [1] for details), this
3378 	 * behavior causes bfqq, and hence any sync non-weight-raised
3379 	 * queue, to get a lower number of requests served, and thus
3380 	 * to ask for a lower number of requests from the request
3381 	 * pool, before the busy weight-raised queues get served
3382 	 * again. This often mitigates starvation problems in the
3383 	 * presence of heavy write workloads and NCQ, thereby
3384 	 * guaranteeing a higher application and system responsiveness
3385 	 * in these hostile scenarios.
3386 	 */
3387 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3388 		bfqd->wr_busy_queues == 0;
3389 
3390 	/*
3391 	 * There is then a case where idling must be performed not
3392 	 * for throughput concerns, but to preserve service
3393 	 * guarantees.
3394 	 *
3395 	 * To introduce this case, we can note that allowing the drive
3396 	 * to enqueue more than one request at a time, and hence
3397 	 * delegating de facto final scheduling decisions to the
3398 	 * drive's internal scheduler, entails loss of control on the
3399 	 * actual request service order. In particular, the critical
3400 	 * situation is when requests from different processes happen
3401 	 * to be present, at the same time, in the internal queue(s)
3402 	 * of the drive. In such a situation, the drive, by deciding
3403 	 * the service order of the internally-queued requests, does
3404 	 * determine also the actual throughput distribution among
3405 	 * these processes. But the drive typically has no notion or
3406 	 * concern about per-process throughput distribution, and
3407 	 * makes its decisions only on a per-request basis. Therefore,
3408 	 * the service distribution enforced by the drive's internal
3409 	 * scheduler is likely to coincide with the desired
3410 	 * device-throughput distribution only in a completely
3411 	 * symmetric scenario where:
3412 	 * (i)  each of these processes must get the same throughput as
3413 	 *      the others;
3414 	 * (ii) all these processes have the same I/O pattern
3415 		(either sequential or random).
3416 	 * In fact, in such a scenario, the drive will tend to treat
3417 	 * the requests of each of these processes in about the same
3418 	 * way as the requests of the others, and thus to provide
3419 	 * each of these processes with about the same throughput
3420 	 * (which is exactly the desired throughput distribution). In
3421 	 * contrast, in any asymmetric scenario, device idling is
3422 	 * certainly needed to guarantee that bfqq receives its
3423 	 * assigned fraction of the device throughput (see [1] for
3424 	 * details).
3425 	 *
3426 	 * We address this issue by controlling, actually, only the
3427 	 * symmetry sub-condition (i), i.e., provided that
3428 	 * sub-condition (i) holds, idling is not performed,
3429 	 * regardless of whether sub-condition (ii) holds. In other
3430 	 * words, only if sub-condition (i) holds, then idling is
3431 	 * allowed, and the device tends to be prevented from queueing
3432 	 * many requests, possibly of several processes. The reason
3433 	 * for not controlling also sub-condition (ii) is that we
3434 	 * exploit preemption to preserve guarantees in case of
3435 	 * symmetric scenarios, even if (ii) does not hold, as
3436 	 * explained in the next two paragraphs.
3437 	 *
3438 	 * Even if a queue, say Q, is expired when it remains idle, Q
3439 	 * can still preempt the new in-service queue if the next
3440 	 * request of Q arrives soon (see the comments on
3441 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3442 	 * groups have the same weight, this form of preemption,
3443 	 * combined with the hole-recovery heuristic described in the
3444 	 * comments on function bfq_bfqq_update_budg_for_activation,
3445 	 * are enough to preserve a correct bandwidth distribution in
3446 	 * the mid term, even without idling. In fact, even if not
3447 	 * idling allows the internal queues of the device to contain
3448 	 * many requests, and thus to reorder requests, we can rather
3449 	 * safely assume that the internal scheduler still preserves a
3450 	 * minimum of mid-term fairness. The motivation for using
3451 	 * preemption instead of idling is that, by not idling,
3452 	 * service guarantees are preserved without minimally
3453 	 * sacrificing throughput. In other words, both a high
3454 	 * throughput and its desired distribution are obtained.
3455 	 *
3456 	 * More precisely, this preemption-based, idleless approach
3457 	 * provides fairness in terms of IOPS, and not sectors per
3458 	 * second. This can be seen with a simple example. Suppose
3459 	 * that there are two queues with the same weight, but that
3460 	 * the first queue receives requests of 8 sectors, while the
3461 	 * second queue receives requests of 1024 sectors. In
3462 	 * addition, suppose that each of the two queues contains at
3463 	 * most one request at a time, which implies that each queue
3464 	 * always remains idle after it is served. Finally, after
3465 	 * remaining idle, each queue receives very quickly a new
3466 	 * request. It follows that the two queues are served
3467 	 * alternatively, preempting each other if needed. This
3468 	 * implies that, although both queues have the same weight,
3469 	 * the queue with large requests receives a service that is
3470 	 * 1024/8 times as high as the service received by the other
3471 	 * queue.
3472 	 *
3473 	 * On the other hand, device idling is performed, and thus
3474 	 * pure sector-domain guarantees are provided, for the
3475 	 * following queues, which are likely to need stronger
3476 	 * throughput guarantees: weight-raised queues, and queues
3477 	 * with a higher weight than other queues. When such queues
3478 	 * are active, sub-condition (i) is false, which triggers
3479 	 * device idling.
3480 	 *
3481 	 * According to the above considerations, the next variable is
3482 	 * true (only) if sub-condition (i) holds. To compute the
3483 	 * value of this variable, we not only use the return value of
3484 	 * the function bfq_symmetric_scenario(), but also check
3485 	 * whether bfqq is being weight-raised, because
3486 	 * bfq_symmetric_scenario() does not take into account also
3487 	 * weight-raised queues (see comments on
3488 	 * bfq_weights_tree_add()).
3489 	 *
3490 	 * As a side note, it is worth considering that the above
3491 	 * device-idling countermeasures may however fail in the
3492 	 * following unlucky scenario: if idling is (correctly)
3493 	 * disabled in a time period during which all symmetry
3494 	 * sub-conditions hold, and hence the device is allowed to
3495 	 * enqueue many requests, but at some later point in time some
3496 	 * sub-condition stops to hold, then it may become impossible
3497 	 * to let requests be served in the desired order until all
3498 	 * the requests already queued in the device have been served.
3499 	 */
3500 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3501 		!bfq_symmetric_scenario(bfqd);
3502 
3503 	/*
3504 	 * Finally, there is a case where maximizing throughput is the
3505 	 * best choice even if it may cause unfairness toward
3506 	 * bfqq. Such a case is when bfqq became active in a burst of
3507 	 * queue activations. Queues that became active during a large
3508 	 * burst benefit only from throughput, as discussed in the
3509 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3510 	 * in a burst and not idling the device maximizes throughput,
3511 	 * then the device must no be idled, because not idling the
3512 	 * device provides bfqq and all other queues in the burst with
3513 	 * maximum benefit. Combining this and the above case, we can
3514 	 * now establish when idling is actually needed to preserve
3515 	 * service guarantees.
3516 	 */
3517 	idling_needed_for_service_guarantees =
3518 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3519 
3520 	/*
3521 	 * We have now all the components we need to compute the
3522 	 * return value of the function, which is true only if idling
3523 	 * either boosts the throughput (without issues), or is
3524 	 * necessary to preserve service guarantees.
3525 	 */
3526 	return idling_boosts_thr_without_issues ||
3527 		idling_needed_for_service_guarantees;
3528 }
3529 
3530 /*
3531  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3532  * returns true, then:
3533  * 1) the queue must remain in service and cannot be expired, and
3534  * 2) the device must be idled to wait for the possible arrival of a new
3535  *    request for the queue.
3536  * See the comments on the function bfq_bfqq_may_idle for the reasons
3537  * why performing device idling is the best choice to boost the throughput
3538  * and preserve service guarantees when bfq_bfqq_may_idle itself
3539  * returns true.
3540  */
3541 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3542 {
3543 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
3544 }
3545 
3546 /*
3547  * Select a queue for service.  If we have a current queue in service,
3548  * check whether to continue servicing it, or retrieve and set a new one.
3549  */
3550 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3551 {
3552 	struct bfq_queue *bfqq;
3553 	struct request *next_rq;
3554 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3555 
3556 	bfqq = bfqd->in_service_queue;
3557 	if (!bfqq)
3558 		goto new_queue;
3559 
3560 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3561 
3562 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3563 	    !bfq_bfqq_wait_request(bfqq) &&
3564 	    !bfq_bfqq_must_idle(bfqq))
3565 		goto expire;
3566 
3567 check_queue:
3568 	/*
3569 	 * This loop is rarely executed more than once. Even when it
3570 	 * happens, it is much more convenient to re-execute this loop
3571 	 * than to return NULL and trigger a new dispatch to get a
3572 	 * request served.
3573 	 */
3574 	next_rq = bfqq->next_rq;
3575 	/*
3576 	 * If bfqq has requests queued and it has enough budget left to
3577 	 * serve them, keep the queue, otherwise expire it.
3578 	 */
3579 	if (next_rq) {
3580 		if (bfq_serv_to_charge(next_rq, bfqq) >
3581 			bfq_bfqq_budget_left(bfqq)) {
3582 			/*
3583 			 * Expire the queue for budget exhaustion,
3584 			 * which makes sure that the next budget is
3585 			 * enough to serve the next request, even if
3586 			 * it comes from the fifo expired path.
3587 			 */
3588 			reason = BFQQE_BUDGET_EXHAUSTED;
3589 			goto expire;
3590 		} else {
3591 			/*
3592 			 * The idle timer may be pending because we may
3593 			 * not disable disk idling even when a new request
3594 			 * arrives.
3595 			 */
3596 			if (bfq_bfqq_wait_request(bfqq)) {
3597 				/*
3598 				 * If we get here: 1) at least a new request
3599 				 * has arrived but we have not disabled the
3600 				 * timer because the request was too small,
3601 				 * 2) then the block layer has unplugged
3602 				 * the device, causing the dispatch to be
3603 				 * invoked.
3604 				 *
3605 				 * Since the device is unplugged, now the
3606 				 * requests are probably large enough to
3607 				 * provide a reasonable throughput.
3608 				 * So we disable idling.
3609 				 */
3610 				bfq_clear_bfqq_wait_request(bfqq);
3611 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3612 			}
3613 			goto keep_queue;
3614 		}
3615 	}
3616 
3617 	/*
3618 	 * No requests pending. However, if the in-service queue is idling
3619 	 * for a new request, or has requests waiting for a completion and
3620 	 * may idle after their completion, then keep it anyway.
3621 	 */
3622 	if (bfq_bfqq_wait_request(bfqq) ||
3623 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3624 		bfqq = NULL;
3625 		goto keep_queue;
3626 	}
3627 
3628 	reason = BFQQE_NO_MORE_REQUESTS;
3629 expire:
3630 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3631 new_queue:
3632 	bfqq = bfq_set_in_service_queue(bfqd);
3633 	if (bfqq) {
3634 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3635 		goto check_queue;
3636 	}
3637 keep_queue:
3638 	if (bfqq)
3639 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3640 	else
3641 		bfq_log(bfqd, "select_queue: no queue returned");
3642 
3643 	return bfqq;
3644 }
3645 
3646 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3647 {
3648 	struct bfq_entity *entity = &bfqq->entity;
3649 
3650 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3651 		bfq_log_bfqq(bfqd, bfqq,
3652 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3653 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3654 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3655 			bfqq->wr_coeff,
3656 			bfqq->entity.weight, bfqq->entity.orig_weight);
3657 
3658 		if (entity->prio_changed)
3659 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3660 
3661 		/*
3662 		 * If the queue was activated in a burst, or too much
3663 		 * time has elapsed from the beginning of this
3664 		 * weight-raising period, then end weight raising.
3665 		 */
3666 		if (bfq_bfqq_in_large_burst(bfqq))
3667 			bfq_bfqq_end_wr(bfqq);
3668 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3669 						bfqq->wr_cur_max_time)) {
3670 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3671 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3672 					       bfq_wr_duration(bfqd)))
3673 				bfq_bfqq_end_wr(bfqq);
3674 			else {
3675 				switch_back_to_interactive_wr(bfqq, bfqd);
3676 				bfqq->entity.prio_changed = 1;
3677 			}
3678 		}
3679 		if (bfqq->wr_coeff > 1 &&
3680 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3681 		    bfqq->service_from_wr > max_service_from_wr) {
3682 			/* see comments on max_service_from_wr */
3683 			bfq_bfqq_end_wr(bfqq);
3684 		}
3685 	}
3686 	/*
3687 	 * To improve latency (for this or other queues), immediately
3688 	 * update weight both if it must be raised and if it must be
3689 	 * lowered. Since, entity may be on some active tree here, and
3690 	 * might have a pending change of its ioprio class, invoke
3691 	 * next function with the last parameter unset (see the
3692 	 * comments on the function).
3693 	 */
3694 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3695 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3696 						entity, false);
3697 }
3698 
3699 /*
3700  * Dispatch next request from bfqq.
3701  */
3702 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3703 						 struct bfq_queue *bfqq)
3704 {
3705 	struct request *rq = bfqq->next_rq;
3706 	unsigned long service_to_charge;
3707 
3708 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3709 
3710 	bfq_bfqq_served(bfqq, service_to_charge);
3711 
3712 	bfq_dispatch_remove(bfqd->queue, rq);
3713 
3714 	/*
3715 	 * If weight raising has to terminate for bfqq, then next
3716 	 * function causes an immediate update of bfqq's weight,
3717 	 * without waiting for next activation. As a consequence, on
3718 	 * expiration, bfqq will be timestamped as if has never been
3719 	 * weight-raised during this service slot, even if it has
3720 	 * received part or even most of the service as a
3721 	 * weight-raised queue. This inflates bfqq's timestamps, which
3722 	 * is beneficial, as bfqq is then more willing to leave the
3723 	 * device immediately to possible other weight-raised queues.
3724 	 */
3725 	bfq_update_wr_data(bfqd, bfqq);
3726 
3727 	/*
3728 	 * Expire bfqq, pretending that its budget expired, if bfqq
3729 	 * belongs to CLASS_IDLE and other queues are waiting for
3730 	 * service.
3731 	 */
3732 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3733 		goto expire;
3734 
3735 	return rq;
3736 
3737 expire:
3738 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3739 	return rq;
3740 }
3741 
3742 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3743 {
3744 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3745 
3746 	/*
3747 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3748 	 * most a call to dispatch for nothing
3749 	 */
3750 	return !list_empty_careful(&bfqd->dispatch) ||
3751 		bfqd->busy_queues > 0;
3752 }
3753 
3754 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3755 {
3756 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3757 	struct request *rq = NULL;
3758 	struct bfq_queue *bfqq = NULL;
3759 
3760 	if (!list_empty(&bfqd->dispatch)) {
3761 		rq = list_first_entry(&bfqd->dispatch, struct request,
3762 				      queuelist);
3763 		list_del_init(&rq->queuelist);
3764 
3765 		bfqq = RQ_BFQQ(rq);
3766 
3767 		if (bfqq) {
3768 			/*
3769 			 * Increment counters here, because this
3770 			 * dispatch does not follow the standard
3771 			 * dispatch flow (where counters are
3772 			 * incremented)
3773 			 */
3774 			bfqq->dispatched++;
3775 
3776 			goto inc_in_driver_start_rq;
3777 		}
3778 
3779 		/*
3780 		 * We exploit the bfq_finish_requeue_request hook to
3781 		 * decrement rq_in_driver, but
3782 		 * bfq_finish_requeue_request will not be invoked on
3783 		 * this request. So, to avoid unbalance, just start
3784 		 * this request, without incrementing rq_in_driver. As
3785 		 * a negative consequence, rq_in_driver is deceptively
3786 		 * lower than it should be while this request is in
3787 		 * service. This may cause bfq_schedule_dispatch to be
3788 		 * invoked uselessly.
3789 		 *
3790 		 * As for implementing an exact solution, the
3791 		 * bfq_finish_requeue_request hook, if defined, is
3792 		 * probably invoked also on this request. So, by
3793 		 * exploiting this hook, we could 1) increment
3794 		 * rq_in_driver here, and 2) decrement it in
3795 		 * bfq_finish_requeue_request. Such a solution would
3796 		 * let the value of the counter be always accurate,
3797 		 * but it would entail using an extra interface
3798 		 * function. This cost seems higher than the benefit,
3799 		 * being the frequency of non-elevator-private
3800 		 * requests very low.
3801 		 */
3802 		goto start_rq;
3803 	}
3804 
3805 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3806 
3807 	if (bfqd->busy_queues == 0)
3808 		goto exit;
3809 
3810 	/*
3811 	 * Force device to serve one request at a time if
3812 	 * strict_guarantees is true. Forcing this service scheme is
3813 	 * currently the ONLY way to guarantee that the request
3814 	 * service order enforced by the scheduler is respected by a
3815 	 * queueing device. Otherwise the device is free even to make
3816 	 * some unlucky request wait for as long as the device
3817 	 * wishes.
3818 	 *
3819 	 * Of course, serving one request at at time may cause loss of
3820 	 * throughput.
3821 	 */
3822 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3823 		goto exit;
3824 
3825 	bfqq = bfq_select_queue(bfqd);
3826 	if (!bfqq)
3827 		goto exit;
3828 
3829 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3830 
3831 	if (rq) {
3832 inc_in_driver_start_rq:
3833 		bfqd->rq_in_driver++;
3834 start_rq:
3835 		rq->rq_flags |= RQF_STARTED;
3836 	}
3837 exit:
3838 	return rq;
3839 }
3840 
3841 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3842 static void bfq_update_dispatch_stats(struct request_queue *q,
3843 				      struct request *rq,
3844 				      struct bfq_queue *in_serv_queue,
3845 				      bool idle_timer_disabled)
3846 {
3847 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
3848 
3849 	if (!idle_timer_disabled && !bfqq)
3850 		return;
3851 
3852 	/*
3853 	 * rq and bfqq are guaranteed to exist until this function
3854 	 * ends, for the following reasons. First, rq can be
3855 	 * dispatched to the device, and then can be completed and
3856 	 * freed, only after this function ends. Second, rq cannot be
3857 	 * merged (and thus freed because of a merge) any longer,
3858 	 * because it has already started. Thus rq cannot be freed
3859 	 * before this function ends, and, since rq has a reference to
3860 	 * bfqq, the same guarantee holds for bfqq too.
3861 	 *
3862 	 * In addition, the following queue lock guarantees that
3863 	 * bfqq_group(bfqq) exists as well.
3864 	 */
3865 	spin_lock_irq(q->queue_lock);
3866 	if (idle_timer_disabled)
3867 		/*
3868 		 * Since the idle timer has been disabled,
3869 		 * in_serv_queue contained some request when
3870 		 * __bfq_dispatch_request was invoked above, which
3871 		 * implies that rq was picked exactly from
3872 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3873 		 * therefore guaranteed to exist because of the above
3874 		 * arguments.
3875 		 */
3876 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3877 	if (bfqq) {
3878 		struct bfq_group *bfqg = bfqq_group(bfqq);
3879 
3880 		bfqg_stats_update_avg_queue_size(bfqg);
3881 		bfqg_stats_set_start_empty_time(bfqg);
3882 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3883 	}
3884 	spin_unlock_irq(q->queue_lock);
3885 }
3886 #else
3887 static inline void bfq_update_dispatch_stats(struct request_queue *q,
3888 					     struct request *rq,
3889 					     struct bfq_queue *in_serv_queue,
3890 					     bool idle_timer_disabled) {}
3891 #endif
3892 
3893 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3894 {
3895 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3896 	struct request *rq;
3897 	struct bfq_queue *in_serv_queue;
3898 	bool waiting_rq, idle_timer_disabled;
3899 
3900 	spin_lock_irq(&bfqd->lock);
3901 
3902 	in_serv_queue = bfqd->in_service_queue;
3903 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3904 
3905 	rq = __bfq_dispatch_request(hctx);
3906 
3907 	idle_timer_disabled =
3908 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3909 
3910 	spin_unlock_irq(&bfqd->lock);
3911 
3912 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3913 				  idle_timer_disabled);
3914 
3915 	return rq;
3916 }
3917 
3918 /*
3919  * Task holds one reference to the queue, dropped when task exits.  Each rq
3920  * in-flight on this queue also holds a reference, dropped when rq is freed.
3921  *
3922  * Scheduler lock must be held here. Recall not to use bfqq after calling
3923  * this function on it.
3924  */
3925 void bfq_put_queue(struct bfq_queue *bfqq)
3926 {
3927 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3928 	struct bfq_group *bfqg = bfqq_group(bfqq);
3929 #endif
3930 
3931 	if (bfqq->bfqd)
3932 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3933 			     bfqq, bfqq->ref);
3934 
3935 	bfqq->ref--;
3936 	if (bfqq->ref)
3937 		return;
3938 
3939 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
3940 		hlist_del_init(&bfqq->burst_list_node);
3941 		/*
3942 		 * Decrement also burst size after the removal, if the
3943 		 * process associated with bfqq is exiting, and thus
3944 		 * does not contribute to the burst any longer. This
3945 		 * decrement helps filter out false positives of large
3946 		 * bursts, when some short-lived process (often due to
3947 		 * the execution of commands by some service) happens
3948 		 * to start and exit while a complex application is
3949 		 * starting, and thus spawning several processes that
3950 		 * do I/O (and that *must not* be treated as a large
3951 		 * burst, see comments on bfq_handle_burst).
3952 		 *
3953 		 * In particular, the decrement is performed only if:
3954 		 * 1) bfqq is not a merged queue, because, if it is,
3955 		 * then this free of bfqq is not triggered by the exit
3956 		 * of the process bfqq is associated with, but exactly
3957 		 * by the fact that bfqq has just been merged.
3958 		 * 2) burst_size is greater than 0, to handle
3959 		 * unbalanced decrements. Unbalanced decrements may
3960 		 * happen in te following case: bfqq is inserted into
3961 		 * the current burst list--without incrementing
3962 		 * bust_size--because of a split, but the current
3963 		 * burst list is not the burst list bfqq belonged to
3964 		 * (see comments on the case of a split in
3965 		 * bfq_set_request).
3966 		 */
3967 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3968 			bfqq->bfqd->burst_size--;
3969 	}
3970 
3971 	kmem_cache_free(bfq_pool, bfqq);
3972 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3973 	bfqg_and_blkg_put(bfqg);
3974 #endif
3975 }
3976 
3977 static void bfq_put_cooperator(struct bfq_queue *bfqq)
3978 {
3979 	struct bfq_queue *__bfqq, *next;
3980 
3981 	/*
3982 	 * If this queue was scheduled to merge with another queue, be
3983 	 * sure to drop the reference taken on that queue (and others in
3984 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3985 	 */
3986 	__bfqq = bfqq->new_bfqq;
3987 	while (__bfqq) {
3988 		if (__bfqq == bfqq)
3989 			break;
3990 		next = __bfqq->new_bfqq;
3991 		bfq_put_queue(__bfqq);
3992 		__bfqq = next;
3993 	}
3994 }
3995 
3996 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3997 {
3998 	if (bfqq == bfqd->in_service_queue) {
3999 		__bfq_bfqq_expire(bfqd, bfqq);
4000 		bfq_schedule_dispatch(bfqd);
4001 	}
4002 
4003 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4004 
4005 	bfq_put_cooperator(bfqq);
4006 
4007 	bfq_put_queue(bfqq); /* release process reference */
4008 }
4009 
4010 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4011 {
4012 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4013 	struct bfq_data *bfqd;
4014 
4015 	if (bfqq)
4016 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4017 
4018 	if (bfqq && bfqd) {
4019 		unsigned long flags;
4020 
4021 		spin_lock_irqsave(&bfqd->lock, flags);
4022 		bfq_exit_bfqq(bfqd, bfqq);
4023 		bic_set_bfqq(bic, NULL, is_sync);
4024 		spin_unlock_irqrestore(&bfqd->lock, flags);
4025 	}
4026 }
4027 
4028 static void bfq_exit_icq(struct io_cq *icq)
4029 {
4030 	struct bfq_io_cq *bic = icq_to_bic(icq);
4031 
4032 	bfq_exit_icq_bfqq(bic, true);
4033 	bfq_exit_icq_bfqq(bic, false);
4034 }
4035 
4036 /*
4037  * Update the entity prio values; note that the new values will not
4038  * be used until the next (re)activation.
4039  */
4040 static void
4041 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4042 {
4043 	struct task_struct *tsk = current;
4044 	int ioprio_class;
4045 	struct bfq_data *bfqd = bfqq->bfqd;
4046 
4047 	if (!bfqd)
4048 		return;
4049 
4050 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4051 	switch (ioprio_class) {
4052 	default:
4053 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4054 			"bfq: bad prio class %d\n", ioprio_class);
4055 		/* fall through */
4056 	case IOPRIO_CLASS_NONE:
4057 		/*
4058 		 * No prio set, inherit CPU scheduling settings.
4059 		 */
4060 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4061 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4062 		break;
4063 	case IOPRIO_CLASS_RT:
4064 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4065 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4066 		break;
4067 	case IOPRIO_CLASS_BE:
4068 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4069 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4070 		break;
4071 	case IOPRIO_CLASS_IDLE:
4072 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4073 		bfqq->new_ioprio = 7;
4074 		break;
4075 	}
4076 
4077 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4078 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4079 			bfqq->new_ioprio);
4080 		bfqq->new_ioprio = IOPRIO_BE_NR;
4081 	}
4082 
4083 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4084 	bfqq->entity.prio_changed = 1;
4085 }
4086 
4087 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4088 				       struct bio *bio, bool is_sync,
4089 				       struct bfq_io_cq *bic);
4090 
4091 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4092 {
4093 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4094 	struct bfq_queue *bfqq;
4095 	int ioprio = bic->icq.ioc->ioprio;
4096 
4097 	/*
4098 	 * This condition may trigger on a newly created bic, be sure to
4099 	 * drop the lock before returning.
4100 	 */
4101 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4102 		return;
4103 
4104 	bic->ioprio = ioprio;
4105 
4106 	bfqq = bic_to_bfqq(bic, false);
4107 	if (bfqq) {
4108 		/* release process reference on this queue */
4109 		bfq_put_queue(bfqq);
4110 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4111 		bic_set_bfqq(bic, bfqq, false);
4112 	}
4113 
4114 	bfqq = bic_to_bfqq(bic, true);
4115 	if (bfqq)
4116 		bfq_set_next_ioprio_data(bfqq, bic);
4117 }
4118 
4119 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4120 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4121 {
4122 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4123 	INIT_LIST_HEAD(&bfqq->fifo);
4124 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4125 
4126 	bfqq->ref = 0;
4127 	bfqq->bfqd = bfqd;
4128 
4129 	if (bic)
4130 		bfq_set_next_ioprio_data(bfqq, bic);
4131 
4132 	if (is_sync) {
4133 		/*
4134 		 * No need to mark as has_short_ttime if in
4135 		 * idle_class, because no device idling is performed
4136 		 * for queues in idle class
4137 		 */
4138 		if (!bfq_class_idle(bfqq))
4139 			/* tentatively mark as has_short_ttime */
4140 			bfq_mark_bfqq_has_short_ttime(bfqq);
4141 		bfq_mark_bfqq_sync(bfqq);
4142 		bfq_mark_bfqq_just_created(bfqq);
4143 	} else
4144 		bfq_clear_bfqq_sync(bfqq);
4145 
4146 	/* set end request to minus infinity from now */
4147 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4148 
4149 	bfq_mark_bfqq_IO_bound(bfqq);
4150 
4151 	bfqq->pid = pid;
4152 
4153 	/* Tentative initial value to trade off between thr and lat */
4154 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4155 	bfqq->budget_timeout = bfq_smallest_from_now();
4156 
4157 	bfqq->wr_coeff = 1;
4158 	bfqq->last_wr_start_finish = jiffies;
4159 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4160 	bfqq->split_time = bfq_smallest_from_now();
4161 
4162 	/*
4163 	 * To not forget the possibly high bandwidth consumed by a
4164 	 * process/queue in the recent past,
4165 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4166 	 * to the current value of bfqq->soft_rt_next_start (see
4167 	 * comments on bfq_bfqq_softrt_next_start).  Set
4168 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4169 	 * no bandwidth so far.
4170 	 */
4171 	bfqq->soft_rt_next_start = jiffies;
4172 
4173 	/* first request is almost certainly seeky */
4174 	bfqq->seek_history = 1;
4175 }
4176 
4177 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4178 					       struct bfq_group *bfqg,
4179 					       int ioprio_class, int ioprio)
4180 {
4181 	switch (ioprio_class) {
4182 	case IOPRIO_CLASS_RT:
4183 		return &bfqg->async_bfqq[0][ioprio];
4184 	case IOPRIO_CLASS_NONE:
4185 		ioprio = IOPRIO_NORM;
4186 		/* fall through */
4187 	case IOPRIO_CLASS_BE:
4188 		return &bfqg->async_bfqq[1][ioprio];
4189 	case IOPRIO_CLASS_IDLE:
4190 		return &bfqg->async_idle_bfqq;
4191 	default:
4192 		return NULL;
4193 	}
4194 }
4195 
4196 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4197 				       struct bio *bio, bool is_sync,
4198 				       struct bfq_io_cq *bic)
4199 {
4200 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4201 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4202 	struct bfq_queue **async_bfqq = NULL;
4203 	struct bfq_queue *bfqq;
4204 	struct bfq_group *bfqg;
4205 
4206 	rcu_read_lock();
4207 
4208 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4209 	if (!bfqg) {
4210 		bfqq = &bfqd->oom_bfqq;
4211 		goto out;
4212 	}
4213 
4214 	if (!is_sync) {
4215 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4216 						  ioprio);
4217 		bfqq = *async_bfqq;
4218 		if (bfqq)
4219 			goto out;
4220 	}
4221 
4222 	bfqq = kmem_cache_alloc_node(bfq_pool,
4223 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4224 				     bfqd->queue->node);
4225 
4226 	if (bfqq) {
4227 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4228 			      is_sync);
4229 		bfq_init_entity(&bfqq->entity, bfqg);
4230 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4231 	} else {
4232 		bfqq = &bfqd->oom_bfqq;
4233 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4234 		goto out;
4235 	}
4236 
4237 	/*
4238 	 * Pin the queue now that it's allocated, scheduler exit will
4239 	 * prune it.
4240 	 */
4241 	if (async_bfqq) {
4242 		bfqq->ref++; /*
4243 			      * Extra group reference, w.r.t. sync
4244 			      * queue. This extra reference is removed
4245 			      * only if bfqq->bfqg disappears, to
4246 			      * guarantee that this queue is not freed
4247 			      * until its group goes away.
4248 			      */
4249 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4250 			     bfqq, bfqq->ref);
4251 		*async_bfqq = bfqq;
4252 	}
4253 
4254 out:
4255 	bfqq->ref++; /* get a process reference to this queue */
4256 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4257 	rcu_read_unlock();
4258 	return bfqq;
4259 }
4260 
4261 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4262 				    struct bfq_queue *bfqq)
4263 {
4264 	struct bfq_ttime *ttime = &bfqq->ttime;
4265 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4266 
4267 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4268 
4269 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4270 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4271 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4272 				     ttime->ttime_samples);
4273 }
4274 
4275 static void
4276 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4277 		       struct request *rq)
4278 {
4279 	bfqq->seek_history <<= 1;
4280 	bfqq->seek_history |=
4281 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4282 		(!blk_queue_nonrot(bfqd->queue) ||
4283 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4284 }
4285 
4286 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4287 				       struct bfq_queue *bfqq,
4288 				       struct bfq_io_cq *bic)
4289 {
4290 	bool has_short_ttime = true;
4291 
4292 	/*
4293 	 * No need to update has_short_ttime if bfqq is async or in
4294 	 * idle io prio class, or if bfq_slice_idle is zero, because
4295 	 * no device idling is performed for bfqq in this case.
4296 	 */
4297 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4298 	    bfqd->bfq_slice_idle == 0)
4299 		return;
4300 
4301 	/* Idle window just restored, statistics are meaningless. */
4302 	if (time_is_after_eq_jiffies(bfqq->split_time +
4303 				     bfqd->bfq_wr_min_idle_time))
4304 		return;
4305 
4306 	/* Think time is infinite if no process is linked to
4307 	 * bfqq. Otherwise check average think time to
4308 	 * decide whether to mark as has_short_ttime
4309 	 */
4310 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4311 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4312 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4313 		has_short_ttime = false;
4314 
4315 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4316 		     has_short_ttime);
4317 
4318 	if (has_short_ttime)
4319 		bfq_mark_bfqq_has_short_ttime(bfqq);
4320 	else
4321 		bfq_clear_bfqq_has_short_ttime(bfqq);
4322 }
4323 
4324 /*
4325  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4326  * something we should do about it.
4327  */
4328 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4329 			    struct request *rq)
4330 {
4331 	struct bfq_io_cq *bic = RQ_BIC(rq);
4332 
4333 	if (rq->cmd_flags & REQ_META)
4334 		bfqq->meta_pending++;
4335 
4336 	bfq_update_io_thinktime(bfqd, bfqq);
4337 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4338 	bfq_update_io_seektime(bfqd, bfqq, rq);
4339 
4340 	bfq_log_bfqq(bfqd, bfqq,
4341 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4342 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4343 
4344 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4345 
4346 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4347 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4348 				 blk_rq_sectors(rq) < 32;
4349 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4350 
4351 		/*
4352 		 * There is just this request queued: if the request
4353 		 * is small and the queue is not to be expired, then
4354 		 * just exit.
4355 		 *
4356 		 * In this way, if the device is being idled to wait
4357 		 * for a new request from the in-service queue, we
4358 		 * avoid unplugging the device and committing the
4359 		 * device to serve just a small request. On the
4360 		 * contrary, we wait for the block layer to decide
4361 		 * when to unplug the device: hopefully, new requests
4362 		 * will be merged to this one quickly, then the device
4363 		 * will be unplugged and larger requests will be
4364 		 * dispatched.
4365 		 */
4366 		if (small_req && !budget_timeout)
4367 			return;
4368 
4369 		/*
4370 		 * A large enough request arrived, or the queue is to
4371 		 * be expired: in both cases disk idling is to be
4372 		 * stopped, so clear wait_request flag and reset
4373 		 * timer.
4374 		 */
4375 		bfq_clear_bfqq_wait_request(bfqq);
4376 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4377 
4378 		/*
4379 		 * The queue is not empty, because a new request just
4380 		 * arrived. Hence we can safely expire the queue, in
4381 		 * case of budget timeout, without risking that the
4382 		 * timestamps of the queue are not updated correctly.
4383 		 * See [1] for more details.
4384 		 */
4385 		if (budget_timeout)
4386 			bfq_bfqq_expire(bfqd, bfqq, false,
4387 					BFQQE_BUDGET_TIMEOUT);
4388 	}
4389 }
4390 
4391 /* returns true if it causes the idle timer to be disabled */
4392 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4393 {
4394 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4395 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4396 	bool waiting, idle_timer_disabled = false;
4397 
4398 	if (new_bfqq) {
4399 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4400 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4401 		/*
4402 		 * Release the request's reference to the old bfqq
4403 		 * and make sure one is taken to the shared queue.
4404 		 */
4405 		new_bfqq->allocated++;
4406 		bfqq->allocated--;
4407 		new_bfqq->ref++;
4408 		/*
4409 		 * If the bic associated with the process
4410 		 * issuing this request still points to bfqq
4411 		 * (and thus has not been already redirected
4412 		 * to new_bfqq or even some other bfq_queue),
4413 		 * then complete the merge and redirect it to
4414 		 * new_bfqq.
4415 		 */
4416 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4417 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4418 					bfqq, new_bfqq);
4419 
4420 		bfq_clear_bfqq_just_created(bfqq);
4421 		/*
4422 		 * rq is about to be enqueued into new_bfqq,
4423 		 * release rq reference on bfqq
4424 		 */
4425 		bfq_put_queue(bfqq);
4426 		rq->elv.priv[1] = new_bfqq;
4427 		bfqq = new_bfqq;
4428 	}
4429 
4430 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4431 	bfq_add_request(rq);
4432 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4433 
4434 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4435 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4436 
4437 	bfq_rq_enqueued(bfqd, bfqq, rq);
4438 
4439 	return idle_timer_disabled;
4440 }
4441 
4442 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4443 static void bfq_update_insert_stats(struct request_queue *q,
4444 				    struct bfq_queue *bfqq,
4445 				    bool idle_timer_disabled,
4446 				    unsigned int cmd_flags)
4447 {
4448 	if (!bfqq)
4449 		return;
4450 
4451 	/*
4452 	 * bfqq still exists, because it can disappear only after
4453 	 * either it is merged with another queue, or the process it
4454 	 * is associated with exits. But both actions must be taken by
4455 	 * the same process currently executing this flow of
4456 	 * instructions.
4457 	 *
4458 	 * In addition, the following queue lock guarantees that
4459 	 * bfqq_group(bfqq) exists as well.
4460 	 */
4461 	spin_lock_irq(q->queue_lock);
4462 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4463 	if (idle_timer_disabled)
4464 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4465 	spin_unlock_irq(q->queue_lock);
4466 }
4467 #else
4468 static inline void bfq_update_insert_stats(struct request_queue *q,
4469 					   struct bfq_queue *bfqq,
4470 					   bool idle_timer_disabled,
4471 					   unsigned int cmd_flags) {}
4472 #endif
4473 
4474 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4475 			       bool at_head)
4476 {
4477 	struct request_queue *q = hctx->queue;
4478 	struct bfq_data *bfqd = q->elevator->elevator_data;
4479 	struct bfq_queue *bfqq;
4480 	bool idle_timer_disabled = false;
4481 	unsigned int cmd_flags;
4482 
4483 	spin_lock_irq(&bfqd->lock);
4484 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4485 		spin_unlock_irq(&bfqd->lock);
4486 		return;
4487 	}
4488 
4489 	spin_unlock_irq(&bfqd->lock);
4490 
4491 	blk_mq_sched_request_inserted(rq);
4492 
4493 	spin_lock_irq(&bfqd->lock);
4494 	bfqq = bfq_init_rq(rq);
4495 	if (at_head || blk_rq_is_passthrough(rq)) {
4496 		if (at_head)
4497 			list_add(&rq->queuelist, &bfqd->dispatch);
4498 		else
4499 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4500 	} else { /* bfqq is assumed to be non null here */
4501 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4502 		/*
4503 		 * Update bfqq, because, if a queue merge has occurred
4504 		 * in __bfq_insert_request, then rq has been
4505 		 * redirected into a new queue.
4506 		 */
4507 		bfqq = RQ_BFQQ(rq);
4508 
4509 		if (rq_mergeable(rq)) {
4510 			elv_rqhash_add(q, rq);
4511 			if (!q->last_merge)
4512 				q->last_merge = rq;
4513 		}
4514 	}
4515 
4516 	/*
4517 	 * Cache cmd_flags before releasing scheduler lock, because rq
4518 	 * may disappear afterwards (for example, because of a request
4519 	 * merge).
4520 	 */
4521 	cmd_flags = rq->cmd_flags;
4522 
4523 	spin_unlock_irq(&bfqd->lock);
4524 
4525 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4526 				cmd_flags);
4527 }
4528 
4529 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4530 				struct list_head *list, bool at_head)
4531 {
4532 	while (!list_empty(list)) {
4533 		struct request *rq;
4534 
4535 		rq = list_first_entry(list, struct request, queuelist);
4536 		list_del_init(&rq->queuelist);
4537 		bfq_insert_request(hctx, rq, at_head);
4538 	}
4539 }
4540 
4541 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4542 {
4543 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4544 				       bfqd->rq_in_driver);
4545 
4546 	if (bfqd->hw_tag == 1)
4547 		return;
4548 
4549 	/*
4550 	 * This sample is valid if the number of outstanding requests
4551 	 * is large enough to allow a queueing behavior.  Note that the
4552 	 * sum is not exact, as it's not taking into account deactivated
4553 	 * requests.
4554 	 */
4555 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4556 		return;
4557 
4558 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4559 		return;
4560 
4561 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4562 	bfqd->max_rq_in_driver = 0;
4563 	bfqd->hw_tag_samples = 0;
4564 }
4565 
4566 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4567 {
4568 	u64 now_ns;
4569 	u32 delta_us;
4570 
4571 	bfq_update_hw_tag(bfqd);
4572 
4573 	bfqd->rq_in_driver--;
4574 	bfqq->dispatched--;
4575 
4576 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4577 		/*
4578 		 * Set budget_timeout (which we overload to store the
4579 		 * time at which the queue remains with no backlog and
4580 		 * no outstanding request; used by the weight-raising
4581 		 * mechanism).
4582 		 */
4583 		bfqq->budget_timeout = jiffies;
4584 
4585 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4586 					&bfqd->queue_weights_tree);
4587 	}
4588 
4589 	now_ns = ktime_get_ns();
4590 
4591 	bfqq->ttime.last_end_request = now_ns;
4592 
4593 	/*
4594 	 * Using us instead of ns, to get a reasonable precision in
4595 	 * computing rate in next check.
4596 	 */
4597 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4598 
4599 	/*
4600 	 * If the request took rather long to complete, and, according
4601 	 * to the maximum request size recorded, this completion latency
4602 	 * implies that the request was certainly served at a very low
4603 	 * rate (less than 1M sectors/sec), then the whole observation
4604 	 * interval that lasts up to this time instant cannot be a
4605 	 * valid time interval for computing a new peak rate.  Invoke
4606 	 * bfq_update_rate_reset to have the following three steps
4607 	 * taken:
4608 	 * - close the observation interval at the last (previous)
4609 	 *   request dispatch or completion
4610 	 * - compute rate, if possible, for that observation interval
4611 	 * - reset to zero samples, which will trigger a proper
4612 	 *   re-initialization of the observation interval on next
4613 	 *   dispatch
4614 	 */
4615 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4616 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4617 			1UL<<(BFQ_RATE_SHIFT - 10))
4618 		bfq_update_rate_reset(bfqd, NULL);
4619 	bfqd->last_completion = now_ns;
4620 
4621 	/*
4622 	 * If we are waiting to discover whether the request pattern
4623 	 * of the task associated with the queue is actually
4624 	 * isochronous, and both requisites for this condition to hold
4625 	 * are now satisfied, then compute soft_rt_next_start (see the
4626 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4627 	 * schedule this delayed check when bfqq expires, if it still
4628 	 * has in-flight requests.
4629 	 */
4630 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4631 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4632 		bfqq->soft_rt_next_start =
4633 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4634 
4635 	/*
4636 	 * If this is the in-service queue, check if it needs to be expired,
4637 	 * or if we want to idle in case it has no pending requests.
4638 	 */
4639 	if (bfqd->in_service_queue == bfqq) {
4640 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4641 			bfq_arm_slice_timer(bfqd);
4642 			return;
4643 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4644 			bfq_bfqq_expire(bfqd, bfqq, false,
4645 					BFQQE_BUDGET_TIMEOUT);
4646 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4647 			 (bfqq->dispatched == 0 ||
4648 			  !bfq_bfqq_may_idle(bfqq)))
4649 			bfq_bfqq_expire(bfqd, bfqq, false,
4650 					BFQQE_NO_MORE_REQUESTS);
4651 	}
4652 
4653 	if (!bfqd->rq_in_driver)
4654 		bfq_schedule_dispatch(bfqd);
4655 }
4656 
4657 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4658 {
4659 	bfqq->allocated--;
4660 
4661 	bfq_put_queue(bfqq);
4662 }
4663 
4664 /*
4665  * Handle either a requeue or a finish for rq. The things to do are
4666  * the same in both cases: all references to rq are to be dropped. In
4667  * particular, rq is considered completed from the point of view of
4668  * the scheduler.
4669  */
4670 static void bfq_finish_requeue_request(struct request *rq)
4671 {
4672 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4673 	struct bfq_data *bfqd;
4674 
4675 	/*
4676 	 * Requeue and finish hooks are invoked in blk-mq without
4677 	 * checking whether the involved request is actually still
4678 	 * referenced in the scheduler. To handle this fact, the
4679 	 * following two checks make this function exit in case of
4680 	 * spurious invocations, for which there is nothing to do.
4681 	 *
4682 	 * First, check whether rq has nothing to do with an elevator.
4683 	 */
4684 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4685 		return;
4686 
4687 	/*
4688 	 * rq either is not associated with any icq, or is an already
4689 	 * requeued request that has not (yet) been re-inserted into
4690 	 * a bfq_queue.
4691 	 */
4692 	if (!rq->elv.icq || !bfqq)
4693 		return;
4694 
4695 	bfqd = bfqq->bfqd;
4696 
4697 	if (rq->rq_flags & RQF_STARTED)
4698 		bfqg_stats_update_completion(bfqq_group(bfqq),
4699 					     rq->start_time_ns,
4700 					     rq->io_start_time_ns,
4701 					     rq->cmd_flags);
4702 
4703 	if (likely(rq->rq_flags & RQF_STARTED)) {
4704 		unsigned long flags;
4705 
4706 		spin_lock_irqsave(&bfqd->lock, flags);
4707 
4708 		bfq_completed_request(bfqq, bfqd);
4709 		bfq_finish_requeue_request_body(bfqq);
4710 
4711 		spin_unlock_irqrestore(&bfqd->lock, flags);
4712 	} else {
4713 		/*
4714 		 * Request rq may be still/already in the scheduler,
4715 		 * in which case we need to remove it (this should
4716 		 * never happen in case of requeue). And we cannot
4717 		 * defer such a check and removal, to avoid
4718 		 * inconsistencies in the time interval from the end
4719 		 * of this function to the start of the deferred work.
4720 		 * This situation seems to occur only in process
4721 		 * context, as a consequence of a merge. In the
4722 		 * current version of the code, this implies that the
4723 		 * lock is held.
4724 		 */
4725 
4726 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4727 			bfq_remove_request(rq->q, rq);
4728 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
4729 						    rq->cmd_flags);
4730 		}
4731 		bfq_finish_requeue_request_body(bfqq);
4732 	}
4733 
4734 	/*
4735 	 * Reset private fields. In case of a requeue, this allows
4736 	 * this function to correctly do nothing if it is spuriously
4737 	 * invoked again on this same request (see the check at the
4738 	 * beginning of the function). Probably, a better general
4739 	 * design would be to prevent blk-mq from invoking the requeue
4740 	 * or finish hooks of an elevator, for a request that is not
4741 	 * referred by that elevator.
4742 	 *
4743 	 * Resetting the following fields would break the
4744 	 * request-insertion logic if rq is re-inserted into a bfq
4745 	 * internal queue, without a re-preparation. Here we assume
4746 	 * that re-insertions of requeued requests, without
4747 	 * re-preparation, can happen only for pass_through or at_head
4748 	 * requests (which are not re-inserted into bfq internal
4749 	 * queues).
4750 	 */
4751 	rq->elv.priv[0] = NULL;
4752 	rq->elv.priv[1] = NULL;
4753 }
4754 
4755 /*
4756  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4757  * was the last process referring to that bfqq.
4758  */
4759 static struct bfq_queue *
4760 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4761 {
4762 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4763 
4764 	if (bfqq_process_refs(bfqq) == 1) {
4765 		bfqq->pid = current->pid;
4766 		bfq_clear_bfqq_coop(bfqq);
4767 		bfq_clear_bfqq_split_coop(bfqq);
4768 		return bfqq;
4769 	}
4770 
4771 	bic_set_bfqq(bic, NULL, 1);
4772 
4773 	bfq_put_cooperator(bfqq);
4774 
4775 	bfq_put_queue(bfqq);
4776 	return NULL;
4777 }
4778 
4779 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4780 						   struct bfq_io_cq *bic,
4781 						   struct bio *bio,
4782 						   bool split, bool is_sync,
4783 						   bool *new_queue)
4784 {
4785 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4786 
4787 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4788 		return bfqq;
4789 
4790 	if (new_queue)
4791 		*new_queue = true;
4792 
4793 	if (bfqq)
4794 		bfq_put_queue(bfqq);
4795 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4796 
4797 	bic_set_bfqq(bic, bfqq, is_sync);
4798 	if (split && is_sync) {
4799 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4800 		    bic->saved_in_large_burst)
4801 			bfq_mark_bfqq_in_large_burst(bfqq);
4802 		else {
4803 			bfq_clear_bfqq_in_large_burst(bfqq);
4804 			if (bic->was_in_burst_list)
4805 				/*
4806 				 * If bfqq was in the current
4807 				 * burst list before being
4808 				 * merged, then we have to add
4809 				 * it back. And we do not need
4810 				 * to increase burst_size, as
4811 				 * we did not decrement
4812 				 * burst_size when we removed
4813 				 * bfqq from the burst list as
4814 				 * a consequence of a merge
4815 				 * (see comments in
4816 				 * bfq_put_queue). In this
4817 				 * respect, it would be rather
4818 				 * costly to know whether the
4819 				 * current burst list is still
4820 				 * the same burst list from
4821 				 * which bfqq was removed on
4822 				 * the merge. To avoid this
4823 				 * cost, if bfqq was in a
4824 				 * burst list, then we add
4825 				 * bfqq to the current burst
4826 				 * list without any further
4827 				 * check. This can cause
4828 				 * inappropriate insertions,
4829 				 * but rarely enough to not
4830 				 * harm the detection of large
4831 				 * bursts significantly.
4832 				 */
4833 				hlist_add_head(&bfqq->burst_list_node,
4834 					       &bfqd->burst_list);
4835 		}
4836 		bfqq->split_time = jiffies;
4837 	}
4838 
4839 	return bfqq;
4840 }
4841 
4842 /*
4843  * Only reset private fields. The actual request preparation will be
4844  * performed by bfq_init_rq, when rq is either inserted or merged. See
4845  * comments on bfq_init_rq for the reason behind this delayed
4846  * preparation.
4847  */
4848 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4849 {
4850 	/*
4851 	 * Regardless of whether we have an icq attached, we have to
4852 	 * clear the scheduler pointers, as they might point to
4853 	 * previously allocated bic/bfqq structs.
4854 	 */
4855 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4856 }
4857 
4858 /*
4859  * If needed, init rq, allocate bfq data structures associated with
4860  * rq, and increment reference counters in the destination bfq_queue
4861  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4862  * not associated with any bfq_queue.
4863  *
4864  * This function is invoked by the functions that perform rq insertion
4865  * or merging. One may have expected the above preparation operations
4866  * to be performed in bfq_prepare_request, and not delayed to when rq
4867  * is inserted or merged. The rationale behind this delayed
4868  * preparation is that, after the prepare_request hook is invoked for
4869  * rq, rq may still be transformed into a request with no icq, i.e., a
4870  * request not associated with any queue. No bfq hook is invoked to
4871  * signal this tranformation. As a consequence, should these
4872  * preparation operations be performed when the prepare_request hook
4873  * is invoked, and should rq be transformed one moment later, bfq
4874  * would end up in an inconsistent state, because it would have
4875  * incremented some queue counters for an rq destined to
4876  * transformation, without any chance to correctly lower these
4877  * counters back. In contrast, no transformation can still happen for
4878  * rq after rq has been inserted or merged. So, it is safe to execute
4879  * these preparation operations when rq is finally inserted or merged.
4880  */
4881 static struct bfq_queue *bfq_init_rq(struct request *rq)
4882 {
4883 	struct request_queue *q = rq->q;
4884 	struct bio *bio = rq->bio;
4885 	struct bfq_data *bfqd = q->elevator->elevator_data;
4886 	struct bfq_io_cq *bic;
4887 	const int is_sync = rq_is_sync(rq);
4888 	struct bfq_queue *bfqq;
4889 	bool new_queue = false;
4890 	bool bfqq_already_existing = false, split = false;
4891 
4892 	if (unlikely(!rq->elv.icq))
4893 		return NULL;
4894 
4895 	/*
4896 	 * Assuming that elv.priv[1] is set only if everything is set
4897 	 * for this rq. This holds true, because this function is
4898 	 * invoked only for insertion or merging, and, after such
4899 	 * events, a request cannot be manipulated any longer before
4900 	 * being removed from bfq.
4901 	 */
4902 	if (rq->elv.priv[1])
4903 		return rq->elv.priv[1];
4904 
4905 	bic = icq_to_bic(rq->elv.icq);
4906 
4907 	bfq_check_ioprio_change(bic, bio);
4908 
4909 	bfq_bic_update_cgroup(bic, bio);
4910 
4911 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4912 					 &new_queue);
4913 
4914 	if (likely(!new_queue)) {
4915 		/* If the queue was seeky for too long, break it apart. */
4916 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4917 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4918 
4919 			/* Update bic before losing reference to bfqq */
4920 			if (bfq_bfqq_in_large_burst(bfqq))
4921 				bic->saved_in_large_burst = true;
4922 
4923 			bfqq = bfq_split_bfqq(bic, bfqq);
4924 			split = true;
4925 
4926 			if (!bfqq)
4927 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4928 								 true, is_sync,
4929 								 NULL);
4930 			else
4931 				bfqq_already_existing = true;
4932 		}
4933 	}
4934 
4935 	bfqq->allocated++;
4936 	bfqq->ref++;
4937 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4938 		     rq, bfqq, bfqq->ref);
4939 
4940 	rq->elv.priv[0] = bic;
4941 	rq->elv.priv[1] = bfqq;
4942 
4943 	/*
4944 	 * If a bfq_queue has only one process reference, it is owned
4945 	 * by only this bic: we can then set bfqq->bic = bic. in
4946 	 * addition, if the queue has also just been split, we have to
4947 	 * resume its state.
4948 	 */
4949 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4950 		bfqq->bic = bic;
4951 		if (split) {
4952 			/*
4953 			 * The queue has just been split from a shared
4954 			 * queue: restore the idle window and the
4955 			 * possible weight raising period.
4956 			 */
4957 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
4958 					      bfqq_already_existing);
4959 		}
4960 	}
4961 
4962 	if (unlikely(bfq_bfqq_just_created(bfqq)))
4963 		bfq_handle_burst(bfqd, bfqq);
4964 
4965 	return bfqq;
4966 }
4967 
4968 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4969 {
4970 	struct bfq_data *bfqd = bfqq->bfqd;
4971 	enum bfqq_expiration reason;
4972 	unsigned long flags;
4973 
4974 	spin_lock_irqsave(&bfqd->lock, flags);
4975 	bfq_clear_bfqq_wait_request(bfqq);
4976 
4977 	if (bfqq != bfqd->in_service_queue) {
4978 		spin_unlock_irqrestore(&bfqd->lock, flags);
4979 		return;
4980 	}
4981 
4982 	if (bfq_bfqq_budget_timeout(bfqq))
4983 		/*
4984 		 * Also here the queue can be safely expired
4985 		 * for budget timeout without wasting
4986 		 * guarantees
4987 		 */
4988 		reason = BFQQE_BUDGET_TIMEOUT;
4989 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4990 		/*
4991 		 * The queue may not be empty upon timer expiration,
4992 		 * because we may not disable the timer when the
4993 		 * first request of the in-service queue arrives
4994 		 * during disk idling.
4995 		 */
4996 		reason = BFQQE_TOO_IDLE;
4997 	else
4998 		goto schedule_dispatch;
4999 
5000 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5001 
5002 schedule_dispatch:
5003 	spin_unlock_irqrestore(&bfqd->lock, flags);
5004 	bfq_schedule_dispatch(bfqd);
5005 }
5006 
5007 /*
5008  * Handler of the expiration of the timer running if the in-service queue
5009  * is idling inside its time slice.
5010  */
5011 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5012 {
5013 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5014 					     idle_slice_timer);
5015 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5016 
5017 	/*
5018 	 * Theoretical race here: the in-service queue can be NULL or
5019 	 * different from the queue that was idling if a new request
5020 	 * arrives for the current queue and there is a full dispatch
5021 	 * cycle that changes the in-service queue.  This can hardly
5022 	 * happen, but in the worst case we just expire a queue too
5023 	 * early.
5024 	 */
5025 	if (bfqq)
5026 		bfq_idle_slice_timer_body(bfqq);
5027 
5028 	return HRTIMER_NORESTART;
5029 }
5030 
5031 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5032 				 struct bfq_queue **bfqq_ptr)
5033 {
5034 	struct bfq_queue *bfqq = *bfqq_ptr;
5035 
5036 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5037 	if (bfqq) {
5038 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5039 
5040 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5041 			     bfqq, bfqq->ref);
5042 		bfq_put_queue(bfqq);
5043 		*bfqq_ptr = NULL;
5044 	}
5045 }
5046 
5047 /*
5048  * Release all the bfqg references to its async queues.  If we are
5049  * deallocating the group these queues may still contain requests, so
5050  * we reparent them to the root cgroup (i.e., the only one that will
5051  * exist for sure until all the requests on a device are gone).
5052  */
5053 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5054 {
5055 	int i, j;
5056 
5057 	for (i = 0; i < 2; i++)
5058 		for (j = 0; j < IOPRIO_BE_NR; j++)
5059 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5060 
5061 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5062 }
5063 
5064 /*
5065  * See the comments on bfq_limit_depth for the purpose of
5066  * the depths set in the function. Return minimum shallow depth we'll use.
5067  */
5068 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5069 				      struct sbitmap_queue *bt)
5070 {
5071 	unsigned int i, j, min_shallow = UINT_MAX;
5072 
5073 	/*
5074 	 * In-word depths if no bfq_queue is being weight-raised:
5075 	 * leaving 25% of tags only for sync reads.
5076 	 *
5077 	 * In next formulas, right-shift the value
5078 	 * (1U<<bt->sb.shift), instead of computing directly
5079 	 * (1U<<(bt->sb.shift - something)), to be robust against
5080 	 * any possible value of bt->sb.shift, without having to
5081 	 * limit 'something'.
5082 	 */
5083 	/* no more than 50% of tags for async I/O */
5084 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5085 	/*
5086 	 * no more than 75% of tags for sync writes (25% extra tags
5087 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5088 	 * writes)
5089 	 */
5090 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5091 
5092 	/*
5093 	 * In-word depths in case some bfq_queue is being weight-
5094 	 * raised: leaving ~63% of tags for sync reads. This is the
5095 	 * highest percentage for which, in our tests, application
5096 	 * start-up times didn't suffer from any regression due to tag
5097 	 * shortage.
5098 	 */
5099 	/* no more than ~18% of tags for async I/O */
5100 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5101 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5102 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5103 
5104 	for (i = 0; i < 2; i++)
5105 		for (j = 0; j < 2; j++)
5106 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5107 
5108 	return min_shallow;
5109 }
5110 
5111 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5112 {
5113 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5114 	struct blk_mq_tags *tags = hctx->sched_tags;
5115 	unsigned int min_shallow;
5116 
5117 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5118 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5119 	return 0;
5120 }
5121 
5122 static void bfq_exit_queue(struct elevator_queue *e)
5123 {
5124 	struct bfq_data *bfqd = e->elevator_data;
5125 	struct bfq_queue *bfqq, *n;
5126 
5127 	hrtimer_cancel(&bfqd->idle_slice_timer);
5128 
5129 	spin_lock_irq(&bfqd->lock);
5130 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5131 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5132 	spin_unlock_irq(&bfqd->lock);
5133 
5134 	hrtimer_cancel(&bfqd->idle_slice_timer);
5135 
5136 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5137 	/* release oom-queue reference to root group */
5138 	bfqg_and_blkg_put(bfqd->root_group);
5139 
5140 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5141 #else
5142 	spin_lock_irq(&bfqd->lock);
5143 	bfq_put_async_queues(bfqd, bfqd->root_group);
5144 	kfree(bfqd->root_group);
5145 	spin_unlock_irq(&bfqd->lock);
5146 #endif
5147 
5148 	kfree(bfqd);
5149 }
5150 
5151 static void bfq_init_root_group(struct bfq_group *root_group,
5152 				struct bfq_data *bfqd)
5153 {
5154 	int i;
5155 
5156 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5157 	root_group->entity.parent = NULL;
5158 	root_group->my_entity = NULL;
5159 	root_group->bfqd = bfqd;
5160 #endif
5161 	root_group->rq_pos_tree = RB_ROOT;
5162 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5163 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5164 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5165 }
5166 
5167 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5168 {
5169 	struct bfq_data *bfqd;
5170 	struct elevator_queue *eq;
5171 
5172 	eq = elevator_alloc(q, e);
5173 	if (!eq)
5174 		return -ENOMEM;
5175 
5176 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5177 	if (!bfqd) {
5178 		kobject_put(&eq->kobj);
5179 		return -ENOMEM;
5180 	}
5181 	eq->elevator_data = bfqd;
5182 
5183 	spin_lock_irq(q->queue_lock);
5184 	q->elevator = eq;
5185 	spin_unlock_irq(q->queue_lock);
5186 
5187 	/*
5188 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5189 	 * Grab a permanent reference to it, so that the normal code flow
5190 	 * will not attempt to free it.
5191 	 */
5192 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5193 	bfqd->oom_bfqq.ref++;
5194 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5195 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5196 	bfqd->oom_bfqq.entity.new_weight =
5197 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5198 
5199 	/* oom_bfqq does not participate to bursts */
5200 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5201 
5202 	/*
5203 	 * Trigger weight initialization, according to ioprio, at the
5204 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5205 	 * class won't be changed any more.
5206 	 */
5207 	bfqd->oom_bfqq.entity.prio_changed = 1;
5208 
5209 	bfqd->queue = q;
5210 
5211 	INIT_LIST_HEAD(&bfqd->dispatch);
5212 
5213 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5214 		     HRTIMER_MODE_REL);
5215 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5216 
5217 	bfqd->queue_weights_tree = RB_ROOT;
5218 	bfqd->group_weights_tree = RB_ROOT;
5219 
5220 	INIT_LIST_HEAD(&bfqd->active_list);
5221 	INIT_LIST_HEAD(&bfqd->idle_list);
5222 	INIT_HLIST_HEAD(&bfqd->burst_list);
5223 
5224 	bfqd->hw_tag = -1;
5225 
5226 	bfqd->bfq_max_budget = bfq_default_max_budget;
5227 
5228 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5229 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5230 	bfqd->bfq_back_max = bfq_back_max;
5231 	bfqd->bfq_back_penalty = bfq_back_penalty;
5232 	bfqd->bfq_slice_idle = bfq_slice_idle;
5233 	bfqd->bfq_timeout = bfq_timeout;
5234 
5235 	bfqd->bfq_requests_within_timer = 120;
5236 
5237 	bfqd->bfq_large_burst_thresh = 8;
5238 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5239 
5240 	bfqd->low_latency = true;
5241 
5242 	/*
5243 	 * Trade-off between responsiveness and fairness.
5244 	 */
5245 	bfqd->bfq_wr_coeff = 30;
5246 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5247 	bfqd->bfq_wr_max_time = 0;
5248 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5249 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5250 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5251 					      * Approximate rate required
5252 					      * to playback or record a
5253 					      * high-definition compressed
5254 					      * video.
5255 					      */
5256 	bfqd->wr_busy_queues = 0;
5257 
5258 	/*
5259 	 * Begin by assuming, optimistically, that the device peak
5260 	 * rate is equal to 2/3 of the highest reference rate.
5261 	 */
5262 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5263 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5264 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5265 
5266 	spin_lock_init(&bfqd->lock);
5267 
5268 	/*
5269 	 * The invocation of the next bfq_create_group_hierarchy
5270 	 * function is the head of a chain of function calls
5271 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5272 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5273 	 * has_work hook function. For this reason,
5274 	 * bfq_create_group_hierarchy is invoked only after all
5275 	 * scheduler data has been initialized, apart from the fields
5276 	 * that can be initialized only after invoking
5277 	 * bfq_create_group_hierarchy. This, in particular, enables
5278 	 * has_work to correctly return false. Of course, to avoid
5279 	 * other inconsistencies, the blk-mq stack must then refrain
5280 	 * from invoking further scheduler hooks before this init
5281 	 * function is finished.
5282 	 */
5283 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5284 	if (!bfqd->root_group)
5285 		goto out_free;
5286 	bfq_init_root_group(bfqd->root_group, bfqd);
5287 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5288 
5289 	wbt_disable_default(q);
5290 	return 0;
5291 
5292 out_free:
5293 	kfree(bfqd);
5294 	kobject_put(&eq->kobj);
5295 	return -ENOMEM;
5296 }
5297 
5298 static void bfq_slab_kill(void)
5299 {
5300 	kmem_cache_destroy(bfq_pool);
5301 }
5302 
5303 static int __init bfq_slab_setup(void)
5304 {
5305 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5306 	if (!bfq_pool)
5307 		return -ENOMEM;
5308 	return 0;
5309 }
5310 
5311 static ssize_t bfq_var_show(unsigned int var, char *page)
5312 {
5313 	return sprintf(page, "%u\n", var);
5314 }
5315 
5316 static int bfq_var_store(unsigned long *var, const char *page)
5317 {
5318 	unsigned long new_val;
5319 	int ret = kstrtoul(page, 10, &new_val);
5320 
5321 	if (ret)
5322 		return ret;
5323 	*var = new_val;
5324 	return 0;
5325 }
5326 
5327 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5328 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5329 {									\
5330 	struct bfq_data *bfqd = e->elevator_data;			\
5331 	u64 __data = __VAR;						\
5332 	if (__CONV == 1)						\
5333 		__data = jiffies_to_msecs(__data);			\
5334 	else if (__CONV == 2)						\
5335 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5336 	return bfq_var_show(__data, (page));				\
5337 }
5338 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5339 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5340 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5341 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5342 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5343 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5344 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5345 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5346 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5347 #undef SHOW_FUNCTION
5348 
5349 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5350 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5351 {									\
5352 	struct bfq_data *bfqd = e->elevator_data;			\
5353 	u64 __data = __VAR;						\
5354 	__data = div_u64(__data, NSEC_PER_USEC);			\
5355 	return bfq_var_show(__data, (page));				\
5356 }
5357 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5358 #undef USEC_SHOW_FUNCTION
5359 
5360 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5361 static ssize_t								\
5362 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5363 {									\
5364 	struct bfq_data *bfqd = e->elevator_data;			\
5365 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5366 	int ret;							\
5367 									\
5368 	ret = bfq_var_store(&__data, (page));				\
5369 	if (ret)							\
5370 		return ret;						\
5371 	if (__data < __min)						\
5372 		__data = __min;						\
5373 	else if (__data > __max)					\
5374 		__data = __max;						\
5375 	if (__CONV == 1)						\
5376 		*(__PTR) = msecs_to_jiffies(__data);			\
5377 	else if (__CONV == 2)						\
5378 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5379 	else								\
5380 		*(__PTR) = __data;					\
5381 	return count;							\
5382 }
5383 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5384 		INT_MAX, 2);
5385 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5386 		INT_MAX, 2);
5387 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5388 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5389 		INT_MAX, 0);
5390 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5391 #undef STORE_FUNCTION
5392 
5393 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5394 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5395 {									\
5396 	struct bfq_data *bfqd = e->elevator_data;			\
5397 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5398 	int ret;							\
5399 									\
5400 	ret = bfq_var_store(&__data, (page));				\
5401 	if (ret)							\
5402 		return ret;						\
5403 	if (__data < __min)						\
5404 		__data = __min;						\
5405 	else if (__data > __max)					\
5406 		__data = __max;						\
5407 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5408 	return count;							\
5409 }
5410 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5411 		    UINT_MAX);
5412 #undef USEC_STORE_FUNCTION
5413 
5414 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5415 				    const char *page, size_t count)
5416 {
5417 	struct bfq_data *bfqd = e->elevator_data;
5418 	unsigned long __data;
5419 	int ret;
5420 
5421 	ret = bfq_var_store(&__data, (page));
5422 	if (ret)
5423 		return ret;
5424 
5425 	if (__data == 0)
5426 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5427 	else {
5428 		if (__data > INT_MAX)
5429 			__data = INT_MAX;
5430 		bfqd->bfq_max_budget = __data;
5431 	}
5432 
5433 	bfqd->bfq_user_max_budget = __data;
5434 
5435 	return count;
5436 }
5437 
5438 /*
5439  * Leaving this name to preserve name compatibility with cfq
5440  * parameters, but this timeout is used for both sync and async.
5441  */
5442 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5443 				      const char *page, size_t count)
5444 {
5445 	struct bfq_data *bfqd = e->elevator_data;
5446 	unsigned long __data;
5447 	int ret;
5448 
5449 	ret = bfq_var_store(&__data, (page));
5450 	if (ret)
5451 		return ret;
5452 
5453 	if (__data < 1)
5454 		__data = 1;
5455 	else if (__data > INT_MAX)
5456 		__data = INT_MAX;
5457 
5458 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5459 	if (bfqd->bfq_user_max_budget == 0)
5460 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5461 
5462 	return count;
5463 }
5464 
5465 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5466 				     const char *page, size_t count)
5467 {
5468 	struct bfq_data *bfqd = e->elevator_data;
5469 	unsigned long __data;
5470 	int ret;
5471 
5472 	ret = bfq_var_store(&__data, (page));
5473 	if (ret)
5474 		return ret;
5475 
5476 	if (__data > 1)
5477 		__data = 1;
5478 	if (!bfqd->strict_guarantees && __data == 1
5479 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5480 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5481 
5482 	bfqd->strict_guarantees = __data;
5483 
5484 	return count;
5485 }
5486 
5487 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5488 				     const char *page, size_t count)
5489 {
5490 	struct bfq_data *bfqd = e->elevator_data;
5491 	unsigned long __data;
5492 	int ret;
5493 
5494 	ret = bfq_var_store(&__data, (page));
5495 	if (ret)
5496 		return ret;
5497 
5498 	if (__data > 1)
5499 		__data = 1;
5500 	if (__data == 0 && bfqd->low_latency != 0)
5501 		bfq_end_wr(bfqd);
5502 	bfqd->low_latency = __data;
5503 
5504 	return count;
5505 }
5506 
5507 #define BFQ_ATTR(name) \
5508 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5509 
5510 static struct elv_fs_entry bfq_attrs[] = {
5511 	BFQ_ATTR(fifo_expire_sync),
5512 	BFQ_ATTR(fifo_expire_async),
5513 	BFQ_ATTR(back_seek_max),
5514 	BFQ_ATTR(back_seek_penalty),
5515 	BFQ_ATTR(slice_idle),
5516 	BFQ_ATTR(slice_idle_us),
5517 	BFQ_ATTR(max_budget),
5518 	BFQ_ATTR(timeout_sync),
5519 	BFQ_ATTR(strict_guarantees),
5520 	BFQ_ATTR(low_latency),
5521 	__ATTR_NULL
5522 };
5523 
5524 static struct elevator_type iosched_bfq_mq = {
5525 	.ops.mq = {
5526 		.limit_depth		= bfq_limit_depth,
5527 		.prepare_request	= bfq_prepare_request,
5528 		.requeue_request        = bfq_finish_requeue_request,
5529 		.finish_request		= bfq_finish_requeue_request,
5530 		.exit_icq		= bfq_exit_icq,
5531 		.insert_requests	= bfq_insert_requests,
5532 		.dispatch_request	= bfq_dispatch_request,
5533 		.next_request		= elv_rb_latter_request,
5534 		.former_request		= elv_rb_former_request,
5535 		.allow_merge		= bfq_allow_bio_merge,
5536 		.bio_merge		= bfq_bio_merge,
5537 		.request_merge		= bfq_request_merge,
5538 		.requests_merged	= bfq_requests_merged,
5539 		.request_merged		= bfq_request_merged,
5540 		.has_work		= bfq_has_work,
5541 		.init_hctx		= bfq_init_hctx,
5542 		.init_sched		= bfq_init_queue,
5543 		.exit_sched		= bfq_exit_queue,
5544 	},
5545 
5546 	.uses_mq =		true,
5547 	.icq_size =		sizeof(struct bfq_io_cq),
5548 	.icq_align =		__alignof__(struct bfq_io_cq),
5549 	.elevator_attrs =	bfq_attrs,
5550 	.elevator_name =	"bfq",
5551 	.elevator_owner =	THIS_MODULE,
5552 };
5553 MODULE_ALIAS("bfq-iosched");
5554 
5555 static int __init bfq_init(void)
5556 {
5557 	int ret;
5558 
5559 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5560 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5561 	if (ret)
5562 		return ret;
5563 #endif
5564 
5565 	ret = -ENOMEM;
5566 	if (bfq_slab_setup())
5567 		goto err_pol_unreg;
5568 
5569 	/*
5570 	 * Times to load large popular applications for the typical
5571 	 * systems installed on the reference devices (see the
5572 	 * comments before the definition of the next
5573 	 * array). Actually, we use slightly lower values, as the
5574 	 * estimated peak rate tends to be smaller than the actual
5575 	 * peak rate.  The reason for this last fact is that estimates
5576 	 * are computed over much shorter time intervals than the long
5577 	 * intervals typically used for benchmarking. Why? First, to
5578 	 * adapt more quickly to variations. Second, because an I/O
5579 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5580 	 * be run for a long time.
5581 	 */
5582 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5583 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5584 
5585 	ret = elv_register(&iosched_bfq_mq);
5586 	if (ret)
5587 		goto slab_kill;
5588 
5589 	return 0;
5590 
5591 slab_kill:
5592 	bfq_slab_kill();
5593 err_pol_unreg:
5594 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5595 	blkcg_policy_unregister(&blkcg_policy_bfq);
5596 #endif
5597 	return ret;
5598 }
5599 
5600 static void __exit bfq_exit(void)
5601 {
5602 	elv_unregister(&iosched_bfq_mq);
5603 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5604 	blkcg_policy_unregister(&blkcg_policy_bfq);
5605 #endif
5606 	bfq_slab_kill();
5607 }
5608 
5609 module_init(bfq_init);
5610 module_exit(bfq_exit);
5611 
5612 MODULE_AUTHOR("Paolo Valente");
5613 MODULE_LICENSE("GPL");
5614 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5615