1 /* 2 * Budget Fair Queueing (BFQ) I/O scheduler. 3 * 4 * Based on ideas and code from CFQ: 5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 6 * 7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 8 * Paolo Valente <paolo.valente@unimore.it> 9 * 10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 11 * Arianna Avanzini <avanzini@google.com> 12 * 13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License as 17 * published by the Free Software Foundation; either version 2 of the 18 * License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * BFQ is a proportional-share I/O scheduler, with some extra 26 * low-latency capabilities. BFQ also supports full hierarchical 27 * scheduling through cgroups. Next paragraphs provide an introduction 28 * on BFQ inner workings. Details on BFQ benefits, usage and 29 * limitations can be found in Documentation/block/bfq-iosched.txt. 30 * 31 * BFQ is a proportional-share storage-I/O scheduling algorithm based 32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns 33 * budgets, measured in number of sectors, to processes instead of 34 * time slices. The device is not granted to the in-service process 35 * for a given time slice, but until it has exhausted its assigned 36 * budget. This change from the time to the service domain enables BFQ 37 * to distribute the device throughput among processes as desired, 38 * without any distortion due to throughput fluctuations, or to device 39 * internal queueing. BFQ uses an ad hoc internal scheduler, called 40 * B-WF2Q+, to schedule processes according to their budgets. More 41 * precisely, BFQ schedules queues associated with processes. Each 42 * process/queue is assigned a user-configurable weight, and B-WF2Q+ 43 * guarantees that each queue receives a fraction of the throughput 44 * proportional to its weight. Thanks to the accurate policy of 45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 46 * processes issuing sequential requests (to boost the throughput), 47 * and yet guarantee a low latency to interactive and soft real-time 48 * applications. 49 * 50 * In particular, to provide these low-latency guarantees, BFQ 51 * explicitly privileges the I/O of two classes of time-sensitive 52 * applications: interactive and soft real-time. This feature enables 53 * BFQ to provide applications in these classes with a very low 54 * latency. Finally, BFQ also features additional heuristics for 55 * preserving both a low latency and a high throughput on NCQ-capable, 56 * rotational or flash-based devices, and to get the job done quickly 57 * for applications consisting in many I/O-bound processes. 58 * 59 * NOTE: if the main or only goal, with a given device, is to achieve 60 * the maximum-possible throughput at all times, then do switch off 61 * all low-latency heuristics for that device, by setting low_latency 62 * to 0. 63 * 64 * BFQ is described in [1], where also a reference to the initial, more 65 * theoretical paper on BFQ can be found. The interested reader can find 66 * in the latter paper full details on the main algorithm, as well as 67 * formulas of the guarantees and formal proofs of all the properties. 68 * With respect to the version of BFQ presented in these papers, this 69 * implementation adds a few more heuristics, such as the one that 70 * guarantees a low latency to soft real-time applications, and a 71 * hierarchical extension based on H-WF2Q+. 72 * 73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 75 * with O(log N) complexity derives from the one introduced with EEVDF 76 * in [3]. 77 * 78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 79 * Scheduler", Proceedings of the First Workshop on Mobile System 80 * Technologies (MST-2015), May 2015. 81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 82 * 83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 85 * Oct 1997. 86 * 87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 88 * 89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 90 * First: A Flexible and Accurate Mechanism for Proportional Share 91 * Resource Allocation", technical report. 92 * 93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 94 */ 95 #include <linux/module.h> 96 #include <linux/slab.h> 97 #include <linux/blkdev.h> 98 #include <linux/cgroup.h> 99 #include <linux/elevator.h> 100 #include <linux/ktime.h> 101 #include <linux/rbtree.h> 102 #include <linux/ioprio.h> 103 #include <linux/sbitmap.h> 104 #include <linux/delay.h> 105 106 #include "blk.h" 107 #include "blk-mq.h" 108 #include "blk-mq-tag.h" 109 #include "blk-mq-sched.h" 110 #include "bfq-iosched.h" 111 112 #define BFQ_BFQQ_FNS(name) \ 113 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 114 { \ 115 __set_bit(BFQQF_##name, &(bfqq)->flags); \ 116 } \ 117 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 118 { \ 119 __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 120 } \ 121 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 122 { \ 123 return test_bit(BFQQF_##name, &(bfqq)->flags); \ 124 } 125 126 BFQ_BFQQ_FNS(just_created); 127 BFQ_BFQQ_FNS(busy); 128 BFQ_BFQQ_FNS(wait_request); 129 BFQ_BFQQ_FNS(non_blocking_wait_rq); 130 BFQ_BFQQ_FNS(fifo_expire); 131 BFQ_BFQQ_FNS(idle_window); 132 BFQ_BFQQ_FNS(sync); 133 BFQ_BFQQ_FNS(IO_bound); 134 BFQ_BFQQ_FNS(in_large_burst); 135 BFQ_BFQQ_FNS(coop); 136 BFQ_BFQQ_FNS(split_coop); 137 BFQ_BFQQ_FNS(softrt_update); 138 #undef BFQ_BFQQ_FNS \ 139 140 /* Expiration time of sync (0) and async (1) requests, in ns. */ 141 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 142 143 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 144 static const int bfq_back_max = 16 * 1024; 145 146 /* Penalty of a backwards seek, in number of sectors. */ 147 static const int bfq_back_penalty = 2; 148 149 /* Idling period duration, in ns. */ 150 static u64 bfq_slice_idle = NSEC_PER_SEC / 125; 151 152 /* Minimum number of assigned budgets for which stats are safe to compute. */ 153 static const int bfq_stats_min_budgets = 194; 154 155 /* Default maximum budget values, in sectors and number of requests. */ 156 static const int bfq_default_max_budget = 16 * 1024; 157 158 /* 159 * Async to sync throughput distribution is controlled as follows: 160 * when an async request is served, the entity is charged the number 161 * of sectors of the request, multiplied by the factor below 162 */ 163 static const int bfq_async_charge_factor = 10; 164 165 /* Default timeout values, in jiffies, approximating CFQ defaults. */ 166 const int bfq_timeout = HZ / 8; 167 168 static struct kmem_cache *bfq_pool; 169 170 /* Below this threshold (in ns), we consider thinktime immediate. */ 171 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 172 173 /* hw_tag detection: parallel requests threshold and min samples needed. */ 174 #define BFQ_HW_QUEUE_THRESHOLD 4 175 #define BFQ_HW_QUEUE_SAMPLES 32 176 177 #define BFQQ_SEEK_THR (sector_t)(8 * 100) 178 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 179 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 180 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) 181 182 /* Min number of samples required to perform peak-rate update */ 183 #define BFQ_RATE_MIN_SAMPLES 32 184 /* Min observation time interval required to perform a peak-rate update (ns) */ 185 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 186 /* Target observation time interval for a peak-rate update (ns) */ 187 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 188 189 /* Shift used for peak rate fixed precision calculations. */ 190 #define BFQ_RATE_SHIFT 16 191 192 /* 193 * By default, BFQ computes the duration of the weight raising for 194 * interactive applications automatically, using the following formula: 195 * duration = (R / r) * T, where r is the peak rate of the device, and 196 * R and T are two reference parameters. 197 * In particular, R is the peak rate of the reference device (see below), 198 * and T is a reference time: given the systems that are likely to be 199 * installed on the reference device according to its speed class, T is 200 * about the maximum time needed, under BFQ and while reading two files in 201 * parallel, to load typical large applications on these systems. 202 * In practice, the slower/faster the device at hand is, the more/less it 203 * takes to load applications with respect to the reference device. 204 * Accordingly, the longer/shorter BFQ grants weight raising to interactive 205 * applications. 206 * 207 * BFQ uses four different reference pairs (R, T), depending on: 208 * . whether the device is rotational or non-rotational; 209 * . whether the device is slow, such as old or portable HDDs, as well as 210 * SD cards, or fast, such as newer HDDs and SSDs. 211 * 212 * The device's speed class is dynamically (re)detected in 213 * bfq_update_peak_rate() every time the estimated peak rate is updated. 214 * 215 * In the following definitions, R_slow[0]/R_fast[0] and 216 * T_slow[0]/T_fast[0] are the reference values for a slow/fast 217 * rotational device, whereas R_slow[1]/R_fast[1] and 218 * T_slow[1]/T_fast[1] are the reference values for a slow/fast 219 * non-rotational device. Finally, device_speed_thresh are the 220 * thresholds used to switch between speed classes. The reference 221 * rates are not the actual peak rates of the devices used as a 222 * reference, but slightly lower values. The reason for using these 223 * slightly lower values is that the peak-rate estimator tends to 224 * yield slightly lower values than the actual peak rate (it can yield 225 * the actual peak rate only if there is only one process doing I/O, 226 * and the process does sequential I/O). 227 * 228 * Both the reference peak rates and the thresholds are measured in 229 * sectors/usec, left-shifted by BFQ_RATE_SHIFT. 230 */ 231 static int R_slow[2] = {1000, 10700}; 232 static int R_fast[2] = {14000, 33000}; 233 /* 234 * To improve readability, a conversion function is used to initialize the 235 * following arrays, which entails that they can be initialized only in a 236 * function. 237 */ 238 static int T_slow[2]; 239 static int T_fast[2]; 240 static int device_speed_thresh[2]; 241 242 #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) 243 #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 244 245 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) 246 { 247 return bic->bfqq[is_sync]; 248 } 249 250 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) 251 { 252 bic->bfqq[is_sync] = bfqq; 253 } 254 255 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 256 { 257 return bic->icq.q->elevator->elevator_data; 258 } 259 260 /** 261 * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 262 * @icq: the iocontext queue. 263 */ 264 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 265 { 266 /* bic->icq is the first member, %NULL will convert to %NULL */ 267 return container_of(icq, struct bfq_io_cq, icq); 268 } 269 270 /** 271 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 272 * @bfqd: the lookup key. 273 * @ioc: the io_context of the process doing I/O. 274 * @q: the request queue. 275 */ 276 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, 277 struct io_context *ioc, 278 struct request_queue *q) 279 { 280 if (ioc) { 281 unsigned long flags; 282 struct bfq_io_cq *icq; 283 284 spin_lock_irqsave(q->queue_lock, flags); 285 icq = icq_to_bic(ioc_lookup_icq(ioc, q)); 286 spin_unlock_irqrestore(q->queue_lock, flags); 287 288 return icq; 289 } 290 291 return NULL; 292 } 293 294 /* 295 * Scheduler run of queue, if there are requests pending and no one in the 296 * driver that will restart queueing. 297 */ 298 void bfq_schedule_dispatch(struct bfq_data *bfqd) 299 { 300 if (bfqd->queued != 0) { 301 bfq_log(bfqd, "schedule dispatch"); 302 blk_mq_run_hw_queues(bfqd->queue, true); 303 } 304 } 305 306 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 307 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) 308 309 #define bfq_sample_valid(samples) ((samples) > 80) 310 311 /* 312 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 313 * We choose the request that is closesr to the head right now. Distance 314 * behind the head is penalized and only allowed to a certain extent. 315 */ 316 static struct request *bfq_choose_req(struct bfq_data *bfqd, 317 struct request *rq1, 318 struct request *rq2, 319 sector_t last) 320 { 321 sector_t s1, s2, d1 = 0, d2 = 0; 322 unsigned long back_max; 323 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 324 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 325 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 326 327 if (!rq1 || rq1 == rq2) 328 return rq2; 329 if (!rq2) 330 return rq1; 331 332 if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 333 return rq1; 334 else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 335 return rq2; 336 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 337 return rq1; 338 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 339 return rq2; 340 341 s1 = blk_rq_pos(rq1); 342 s2 = blk_rq_pos(rq2); 343 344 /* 345 * By definition, 1KiB is 2 sectors. 346 */ 347 back_max = bfqd->bfq_back_max * 2; 348 349 /* 350 * Strict one way elevator _except_ in the case where we allow 351 * short backward seeks which are biased as twice the cost of a 352 * similar forward seek. 353 */ 354 if (s1 >= last) 355 d1 = s1 - last; 356 else if (s1 + back_max >= last) 357 d1 = (last - s1) * bfqd->bfq_back_penalty; 358 else 359 wrap |= BFQ_RQ1_WRAP; 360 361 if (s2 >= last) 362 d2 = s2 - last; 363 else if (s2 + back_max >= last) 364 d2 = (last - s2) * bfqd->bfq_back_penalty; 365 else 366 wrap |= BFQ_RQ2_WRAP; 367 368 /* Found required data */ 369 370 /* 371 * By doing switch() on the bit mask "wrap" we avoid having to 372 * check two variables for all permutations: --> faster! 373 */ 374 switch (wrap) { 375 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 376 if (d1 < d2) 377 return rq1; 378 else if (d2 < d1) 379 return rq2; 380 381 if (s1 >= s2) 382 return rq1; 383 else 384 return rq2; 385 386 case BFQ_RQ2_WRAP: 387 return rq1; 388 case BFQ_RQ1_WRAP: 389 return rq2; 390 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 391 default: 392 /* 393 * Since both rqs are wrapped, 394 * start with the one that's further behind head 395 * (--> only *one* back seek required), 396 * since back seek takes more time than forward. 397 */ 398 if (s1 <= s2) 399 return rq1; 400 else 401 return rq2; 402 } 403 } 404 405 static struct bfq_queue * 406 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 407 sector_t sector, struct rb_node **ret_parent, 408 struct rb_node ***rb_link) 409 { 410 struct rb_node **p, *parent; 411 struct bfq_queue *bfqq = NULL; 412 413 parent = NULL; 414 p = &root->rb_node; 415 while (*p) { 416 struct rb_node **n; 417 418 parent = *p; 419 bfqq = rb_entry(parent, struct bfq_queue, pos_node); 420 421 /* 422 * Sort strictly based on sector. Smallest to the left, 423 * largest to the right. 424 */ 425 if (sector > blk_rq_pos(bfqq->next_rq)) 426 n = &(*p)->rb_right; 427 else if (sector < blk_rq_pos(bfqq->next_rq)) 428 n = &(*p)->rb_left; 429 else 430 break; 431 p = n; 432 bfqq = NULL; 433 } 434 435 *ret_parent = parent; 436 if (rb_link) 437 *rb_link = p; 438 439 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 440 (unsigned long long)sector, 441 bfqq ? bfqq->pid : 0); 442 443 return bfqq; 444 } 445 446 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 447 { 448 struct rb_node **p, *parent; 449 struct bfq_queue *__bfqq; 450 451 if (bfqq->pos_root) { 452 rb_erase(&bfqq->pos_node, bfqq->pos_root); 453 bfqq->pos_root = NULL; 454 } 455 456 if (bfq_class_idle(bfqq)) 457 return; 458 if (!bfqq->next_rq) 459 return; 460 461 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 462 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 463 blk_rq_pos(bfqq->next_rq), &parent, &p); 464 if (!__bfqq) { 465 rb_link_node(&bfqq->pos_node, parent, p); 466 rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 467 } else 468 bfqq->pos_root = NULL; 469 } 470 471 /* 472 * Tell whether there are active queues or groups with differentiated weights. 473 */ 474 static bool bfq_differentiated_weights(struct bfq_data *bfqd) 475 { 476 /* 477 * For weights to differ, at least one of the trees must contain 478 * at least two nodes. 479 */ 480 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) && 481 (bfqd->queue_weights_tree.rb_node->rb_left || 482 bfqd->queue_weights_tree.rb_node->rb_right) 483 #ifdef CONFIG_BFQ_GROUP_IOSCHED 484 ) || 485 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) && 486 (bfqd->group_weights_tree.rb_node->rb_left || 487 bfqd->group_weights_tree.rb_node->rb_right) 488 #endif 489 ); 490 } 491 492 /* 493 * The following function returns true if every queue must receive the 494 * same share of the throughput (this condition is used when deciding 495 * whether idling may be disabled, see the comments in the function 496 * bfq_bfqq_may_idle()). 497 * 498 * Such a scenario occurs when: 499 * 1) all active queues have the same weight, 500 * 2) all active groups at the same level in the groups tree have the same 501 * weight, 502 * 3) all active groups at the same level in the groups tree have the same 503 * number of children. 504 * 505 * Unfortunately, keeping the necessary state for evaluating exactly the 506 * above symmetry conditions would be quite complex and time-consuming. 507 * Therefore this function evaluates, instead, the following stronger 508 * sub-conditions, for which it is much easier to maintain the needed 509 * state: 510 * 1) all active queues have the same weight, 511 * 2) all active groups have the same weight, 512 * 3) all active groups have at most one active child each. 513 * In particular, the last two conditions are always true if hierarchical 514 * support and the cgroups interface are not enabled, thus no state needs 515 * to be maintained in this case. 516 */ 517 static bool bfq_symmetric_scenario(struct bfq_data *bfqd) 518 { 519 return !bfq_differentiated_weights(bfqd); 520 } 521 522 /* 523 * If the weight-counter tree passed as input contains no counter for 524 * the weight of the input entity, then add that counter; otherwise just 525 * increment the existing counter. 526 * 527 * Note that weight-counter trees contain few nodes in mostly symmetric 528 * scenarios. For example, if all queues have the same weight, then the 529 * weight-counter tree for the queues may contain at most one node. 530 * This holds even if low_latency is on, because weight-raised queues 531 * are not inserted in the tree. 532 * In most scenarios, the rate at which nodes are created/destroyed 533 * should be low too. 534 */ 535 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, 536 struct rb_root *root) 537 { 538 struct rb_node **new = &(root->rb_node), *parent = NULL; 539 540 /* 541 * Do not insert if the entity is already associated with a 542 * counter, which happens if: 543 * 1) the entity is associated with a queue, 544 * 2) a request arrival has caused the queue to become both 545 * non-weight-raised, and hence change its weight, and 546 * backlogged; in this respect, each of the two events 547 * causes an invocation of this function, 548 * 3) this is the invocation of this function caused by the 549 * second event. This second invocation is actually useless, 550 * and we handle this fact by exiting immediately. More 551 * efficient or clearer solutions might possibly be adopted. 552 */ 553 if (entity->weight_counter) 554 return; 555 556 while (*new) { 557 struct bfq_weight_counter *__counter = container_of(*new, 558 struct bfq_weight_counter, 559 weights_node); 560 parent = *new; 561 562 if (entity->weight == __counter->weight) { 563 entity->weight_counter = __counter; 564 goto inc_counter; 565 } 566 if (entity->weight < __counter->weight) 567 new = &((*new)->rb_left); 568 else 569 new = &((*new)->rb_right); 570 } 571 572 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 573 GFP_ATOMIC); 574 575 /* 576 * In the unlucky event of an allocation failure, we just 577 * exit. This will cause the weight of entity to not be 578 * considered in bfq_differentiated_weights, which, in its 579 * turn, causes the scenario to be deemed wrongly symmetric in 580 * case entity's weight would have been the only weight making 581 * the scenario asymmetric. On the bright side, no unbalance 582 * will however occur when entity becomes inactive again (the 583 * invocation of this function is triggered by an activation 584 * of entity). In fact, bfq_weights_tree_remove does nothing 585 * if !entity->weight_counter. 586 */ 587 if (unlikely(!entity->weight_counter)) 588 return; 589 590 entity->weight_counter->weight = entity->weight; 591 rb_link_node(&entity->weight_counter->weights_node, parent, new); 592 rb_insert_color(&entity->weight_counter->weights_node, root); 593 594 inc_counter: 595 entity->weight_counter->num_active++; 596 } 597 598 /* 599 * Decrement the weight counter associated with the entity, and, if the 600 * counter reaches 0, remove the counter from the tree. 601 * See the comments to the function bfq_weights_tree_add() for considerations 602 * about overhead. 603 */ 604 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, 605 struct rb_root *root) 606 { 607 if (!entity->weight_counter) 608 return; 609 610 entity->weight_counter->num_active--; 611 if (entity->weight_counter->num_active > 0) 612 goto reset_entity_pointer; 613 614 rb_erase(&entity->weight_counter->weights_node, root); 615 kfree(entity->weight_counter); 616 617 reset_entity_pointer: 618 entity->weight_counter = NULL; 619 } 620 621 /* 622 * Return expired entry, or NULL to just start from scratch in rbtree. 623 */ 624 static struct request *bfq_check_fifo(struct bfq_queue *bfqq, 625 struct request *last) 626 { 627 struct request *rq; 628 629 if (bfq_bfqq_fifo_expire(bfqq)) 630 return NULL; 631 632 bfq_mark_bfqq_fifo_expire(bfqq); 633 634 rq = rq_entry_fifo(bfqq->fifo.next); 635 636 if (rq == last || ktime_get_ns() < rq->fifo_time) 637 return NULL; 638 639 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 640 return rq; 641 } 642 643 static struct request *bfq_find_next_rq(struct bfq_data *bfqd, 644 struct bfq_queue *bfqq, 645 struct request *last) 646 { 647 struct rb_node *rbnext = rb_next(&last->rb_node); 648 struct rb_node *rbprev = rb_prev(&last->rb_node); 649 struct request *next, *prev = NULL; 650 651 /* Follow expired path, else get first next available. */ 652 next = bfq_check_fifo(bfqq, last); 653 if (next) 654 return next; 655 656 if (rbprev) 657 prev = rb_entry_rq(rbprev); 658 659 if (rbnext) 660 next = rb_entry_rq(rbnext); 661 else { 662 rbnext = rb_first(&bfqq->sort_list); 663 if (rbnext && rbnext != &last->rb_node) 664 next = rb_entry_rq(rbnext); 665 } 666 667 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 668 } 669 670 /* see the definition of bfq_async_charge_factor for details */ 671 static unsigned long bfq_serv_to_charge(struct request *rq, 672 struct bfq_queue *bfqq) 673 { 674 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) 675 return blk_rq_sectors(rq); 676 677 /* 678 * If there are no weight-raised queues, then amplify service 679 * by just the async charge factor; otherwise amplify service 680 * by twice the async charge factor, to further reduce latency 681 * for weight-raised queues. 682 */ 683 if (bfqq->bfqd->wr_busy_queues == 0) 684 return blk_rq_sectors(rq) * bfq_async_charge_factor; 685 686 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor; 687 } 688 689 /** 690 * bfq_updated_next_req - update the queue after a new next_rq selection. 691 * @bfqd: the device data the queue belongs to. 692 * @bfqq: the queue to update. 693 * 694 * If the first request of a queue changes we make sure that the queue 695 * has enough budget to serve at least its first request (if the 696 * request has grown). We do this because if the queue has not enough 697 * budget for its first request, it has to go through two dispatch 698 * rounds to actually get it dispatched. 699 */ 700 static void bfq_updated_next_req(struct bfq_data *bfqd, 701 struct bfq_queue *bfqq) 702 { 703 struct bfq_entity *entity = &bfqq->entity; 704 struct request *next_rq = bfqq->next_rq; 705 unsigned long new_budget; 706 707 if (!next_rq) 708 return; 709 710 if (bfqq == bfqd->in_service_queue) 711 /* 712 * In order not to break guarantees, budgets cannot be 713 * changed after an entity has been selected. 714 */ 715 return; 716 717 new_budget = max_t(unsigned long, bfqq->max_budget, 718 bfq_serv_to_charge(next_rq, bfqq)); 719 if (entity->budget != new_budget) { 720 entity->budget = new_budget; 721 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 722 new_budget); 723 bfq_requeue_bfqq(bfqd, bfqq); 724 } 725 } 726 727 static void 728 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 729 { 730 if (bic->saved_idle_window) 731 bfq_mark_bfqq_idle_window(bfqq); 732 else 733 bfq_clear_bfqq_idle_window(bfqq); 734 735 if (bic->saved_IO_bound) 736 bfq_mark_bfqq_IO_bound(bfqq); 737 else 738 bfq_clear_bfqq_IO_bound(bfqq); 739 740 bfqq->ttime = bic->saved_ttime; 741 bfqq->wr_coeff = bic->saved_wr_coeff; 742 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt; 743 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish; 744 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time; 745 746 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 747 time_is_before_jiffies(bfqq->last_wr_start_finish + 748 bfqq->wr_cur_max_time))) { 749 bfq_log_bfqq(bfqq->bfqd, bfqq, 750 "resume state: switching off wr"); 751 752 bfqq->wr_coeff = 1; 753 } 754 755 /* make sure weight will be updated, however we got here */ 756 bfqq->entity.prio_changed = 1; 757 } 758 759 static int bfqq_process_refs(struct bfq_queue *bfqq) 760 { 761 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st; 762 } 763 764 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 765 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 766 { 767 struct bfq_queue *item; 768 struct hlist_node *n; 769 770 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 771 hlist_del_init(&item->burst_list_node); 772 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 773 bfqd->burst_size = 1; 774 bfqd->burst_parent_entity = bfqq->entity.parent; 775 } 776 777 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 778 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 779 { 780 /* Increment burst size to take into account also bfqq */ 781 bfqd->burst_size++; 782 783 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 784 struct bfq_queue *pos, *bfqq_item; 785 struct hlist_node *n; 786 787 /* 788 * Enough queues have been activated shortly after each 789 * other to consider this burst as large. 790 */ 791 bfqd->large_burst = true; 792 793 /* 794 * We can now mark all queues in the burst list as 795 * belonging to a large burst. 796 */ 797 hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 798 burst_list_node) 799 bfq_mark_bfqq_in_large_burst(bfqq_item); 800 bfq_mark_bfqq_in_large_burst(bfqq); 801 802 /* 803 * From now on, and until the current burst finishes, any 804 * new queue being activated shortly after the last queue 805 * was inserted in the burst can be immediately marked as 806 * belonging to a large burst. So the burst list is not 807 * needed any more. Remove it. 808 */ 809 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 810 burst_list_node) 811 hlist_del_init(&pos->burst_list_node); 812 } else /* 813 * Burst not yet large: add bfqq to the burst list. Do 814 * not increment the ref counter for bfqq, because bfqq 815 * is removed from the burst list before freeing bfqq 816 * in put_queue. 817 */ 818 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 819 } 820 821 /* 822 * If many queues belonging to the same group happen to be created 823 * shortly after each other, then the processes associated with these 824 * queues have typically a common goal. In particular, bursts of queue 825 * creations are usually caused by services or applications that spawn 826 * many parallel threads/processes. Examples are systemd during boot, 827 * or git grep. To help these processes get their job done as soon as 828 * possible, it is usually better to not grant either weight-raising 829 * or device idling to their queues. 830 * 831 * In this comment we describe, firstly, the reasons why this fact 832 * holds, and, secondly, the next function, which implements the main 833 * steps needed to properly mark these queues so that they can then be 834 * treated in a different way. 835 * 836 * The above services or applications benefit mostly from a high 837 * throughput: the quicker the requests of the activated queues are 838 * cumulatively served, the sooner the target job of these queues gets 839 * completed. As a consequence, weight-raising any of these queues, 840 * which also implies idling the device for it, is almost always 841 * counterproductive. In most cases it just lowers throughput. 842 * 843 * On the other hand, a burst of queue creations may be caused also by 844 * the start of an application that does not consist of a lot of 845 * parallel I/O-bound threads. In fact, with a complex application, 846 * several short processes may need to be executed to start-up the 847 * application. In this respect, to start an application as quickly as 848 * possible, the best thing to do is in any case to privilege the I/O 849 * related to the application with respect to all other 850 * I/O. Therefore, the best strategy to start as quickly as possible 851 * an application that causes a burst of queue creations is to 852 * weight-raise all the queues created during the burst. This is the 853 * exact opposite of the best strategy for the other type of bursts. 854 * 855 * In the end, to take the best action for each of the two cases, the 856 * two types of bursts need to be distinguished. Fortunately, this 857 * seems relatively easy, by looking at the sizes of the bursts. In 858 * particular, we found a threshold such that only bursts with a 859 * larger size than that threshold are apparently caused by 860 * services or commands such as systemd or git grep. For brevity, 861 * hereafter we call just 'large' these bursts. BFQ *does not* 862 * weight-raise queues whose creation occurs in a large burst. In 863 * addition, for each of these queues BFQ performs or does not perform 864 * idling depending on which choice boosts the throughput more. The 865 * exact choice depends on the device and request pattern at 866 * hand. 867 * 868 * Unfortunately, false positives may occur while an interactive task 869 * is starting (e.g., an application is being started). The 870 * consequence is that the queues associated with the task do not 871 * enjoy weight raising as expected. Fortunately these false positives 872 * are very rare. They typically occur if some service happens to 873 * start doing I/O exactly when the interactive task starts. 874 * 875 * Turning back to the next function, it implements all the steps 876 * needed to detect the occurrence of a large burst and to properly 877 * mark all the queues belonging to it (so that they can then be 878 * treated in a different way). This goal is achieved by maintaining a 879 * "burst list" that holds, temporarily, the queues that belong to the 880 * burst in progress. The list is then used to mark these queues as 881 * belonging to a large burst if the burst does become large. The main 882 * steps are the following. 883 * 884 * . when the very first queue is created, the queue is inserted into the 885 * list (as it could be the first queue in a possible burst) 886 * 887 * . if the current burst has not yet become large, and a queue Q that does 888 * not yet belong to the burst is activated shortly after the last time 889 * at which a new queue entered the burst list, then the function appends 890 * Q to the burst list 891 * 892 * . if, as a consequence of the previous step, the burst size reaches 893 * the large-burst threshold, then 894 * 895 * . all the queues in the burst list are marked as belonging to a 896 * large burst 897 * 898 * . the burst list is deleted; in fact, the burst list already served 899 * its purpose (keeping temporarily track of the queues in a burst, 900 * so as to be able to mark them as belonging to a large burst in the 901 * previous sub-step), and now is not needed any more 902 * 903 * . the device enters a large-burst mode 904 * 905 * . if a queue Q that does not belong to the burst is created while 906 * the device is in large-burst mode and shortly after the last time 907 * at which a queue either entered the burst list or was marked as 908 * belonging to the current large burst, then Q is immediately marked 909 * as belonging to a large burst. 910 * 911 * . if a queue Q that does not belong to the burst is created a while 912 * later, i.e., not shortly after, than the last time at which a queue 913 * either entered the burst list or was marked as belonging to the 914 * current large burst, then the current burst is deemed as finished and: 915 * 916 * . the large-burst mode is reset if set 917 * 918 * . the burst list is emptied 919 * 920 * . Q is inserted in the burst list, as Q may be the first queue 921 * in a possible new burst (then the burst list contains just Q 922 * after this step). 923 */ 924 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 925 { 926 /* 927 * If bfqq is already in the burst list or is part of a large 928 * burst, or finally has just been split, then there is 929 * nothing else to do. 930 */ 931 if (!hlist_unhashed(&bfqq->burst_list_node) || 932 bfq_bfqq_in_large_burst(bfqq) || 933 time_is_after_eq_jiffies(bfqq->split_time + 934 msecs_to_jiffies(10))) 935 return; 936 937 /* 938 * If bfqq's creation happens late enough, or bfqq belongs to 939 * a different group than the burst group, then the current 940 * burst is finished, and related data structures must be 941 * reset. 942 * 943 * In this respect, consider the special case where bfqq is 944 * the very first queue created after BFQ is selected for this 945 * device. In this case, last_ins_in_burst and 946 * burst_parent_entity are not yet significant when we get 947 * here. But it is easy to verify that, whether or not the 948 * following condition is true, bfqq will end up being 949 * inserted into the burst list. In particular the list will 950 * happen to contain only bfqq. And this is exactly what has 951 * to happen, as bfqq may be the first queue of the first 952 * burst. 953 */ 954 if (time_is_before_jiffies(bfqd->last_ins_in_burst + 955 bfqd->bfq_burst_interval) || 956 bfqq->entity.parent != bfqd->burst_parent_entity) { 957 bfqd->large_burst = false; 958 bfq_reset_burst_list(bfqd, bfqq); 959 goto end; 960 } 961 962 /* 963 * If we get here, then bfqq is being activated shortly after the 964 * last queue. So, if the current burst is also large, we can mark 965 * bfqq as belonging to this large burst immediately. 966 */ 967 if (bfqd->large_burst) { 968 bfq_mark_bfqq_in_large_burst(bfqq); 969 goto end; 970 } 971 972 /* 973 * If we get here, then a large-burst state has not yet been 974 * reached, but bfqq is being activated shortly after the last 975 * queue. Then we add bfqq to the burst. 976 */ 977 bfq_add_to_burst(bfqd, bfqq); 978 end: 979 /* 980 * At this point, bfqq either has been added to the current 981 * burst or has caused the current burst to terminate and a 982 * possible new burst to start. In particular, in the second 983 * case, bfqq has become the first queue in the possible new 984 * burst. In both cases last_ins_in_burst needs to be moved 985 * forward. 986 */ 987 bfqd->last_ins_in_burst = jiffies; 988 } 989 990 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 991 { 992 struct bfq_entity *entity = &bfqq->entity; 993 994 return entity->budget - entity->service; 995 } 996 997 /* 998 * If enough samples have been computed, return the current max budget 999 * stored in bfqd, which is dynamically updated according to the 1000 * estimated disk peak rate; otherwise return the default max budget 1001 */ 1002 static int bfq_max_budget(struct bfq_data *bfqd) 1003 { 1004 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1005 return bfq_default_max_budget; 1006 else 1007 return bfqd->bfq_max_budget; 1008 } 1009 1010 /* 1011 * Return min budget, which is a fraction of the current or default 1012 * max budget (trying with 1/32) 1013 */ 1014 static int bfq_min_budget(struct bfq_data *bfqd) 1015 { 1016 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1017 return bfq_default_max_budget / 32; 1018 else 1019 return bfqd->bfq_max_budget / 32; 1020 } 1021 1022 /* 1023 * The next function, invoked after the input queue bfqq switches from 1024 * idle to busy, updates the budget of bfqq. The function also tells 1025 * whether the in-service queue should be expired, by returning 1026 * true. The purpose of expiring the in-service queue is to give bfqq 1027 * the chance to possibly preempt the in-service queue, and the reason 1028 * for preempting the in-service queue is to achieve one of the two 1029 * goals below. 1030 * 1031 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 1032 * expired because it has remained idle. In particular, bfqq may have 1033 * expired for one of the following two reasons: 1034 * 1035 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 1036 * and did not make it to issue a new request before its last 1037 * request was served; 1038 * 1039 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 1040 * a new request before the expiration of the idling-time. 1041 * 1042 * Even if bfqq has expired for one of the above reasons, the process 1043 * associated with the queue may be however issuing requests greedily, 1044 * and thus be sensitive to the bandwidth it receives (bfqq may have 1045 * remained idle for other reasons: CPU high load, bfqq not enjoying 1046 * idling, I/O throttling somewhere in the path from the process to 1047 * the I/O scheduler, ...). But if, after every expiration for one of 1048 * the above two reasons, bfqq has to wait for the service of at least 1049 * one full budget of another queue before being served again, then 1050 * bfqq is likely to get a much lower bandwidth or resource time than 1051 * its reserved ones. To address this issue, two countermeasures need 1052 * to be taken. 1053 * 1054 * First, the budget and the timestamps of bfqq need to be updated in 1055 * a special way on bfqq reactivation: they need to be updated as if 1056 * bfqq did not remain idle and did not expire. In fact, if they are 1057 * computed as if bfqq expired and remained idle until reactivation, 1058 * then the process associated with bfqq is treated as if, instead of 1059 * being greedy, it stopped issuing requests when bfqq remained idle, 1060 * and restarts issuing requests only on this reactivation. In other 1061 * words, the scheduler does not help the process recover the "service 1062 * hole" between bfqq expiration and reactivation. As a consequence, 1063 * the process receives a lower bandwidth than its reserved one. In 1064 * contrast, to recover this hole, the budget must be updated as if 1065 * bfqq was not expired at all before this reactivation, i.e., it must 1066 * be set to the value of the remaining budget when bfqq was 1067 * expired. Along the same line, timestamps need to be assigned the 1068 * value they had the last time bfqq was selected for service, i.e., 1069 * before last expiration. Thus timestamps need to be back-shifted 1070 * with respect to their normal computation (see [1] for more details 1071 * on this tricky aspect). 1072 * 1073 * Secondly, to allow the process to recover the hole, the in-service 1074 * queue must be expired too, to give bfqq the chance to preempt it 1075 * immediately. In fact, if bfqq has to wait for a full budget of the 1076 * in-service queue to be completed, then it may become impossible to 1077 * let the process recover the hole, even if the back-shifted 1078 * timestamps of bfqq are lower than those of the in-service queue. If 1079 * this happens for most or all of the holes, then the process may not 1080 * receive its reserved bandwidth. In this respect, it is worth noting 1081 * that, being the service of outstanding requests unpreemptible, a 1082 * little fraction of the holes may however be unrecoverable, thereby 1083 * causing a little loss of bandwidth. 1084 * 1085 * The last important point is detecting whether bfqq does need this 1086 * bandwidth recovery. In this respect, the next function deems the 1087 * process associated with bfqq greedy, and thus allows it to recover 1088 * the hole, if: 1) the process is waiting for the arrival of a new 1089 * request (which implies that bfqq expired for one of the above two 1090 * reasons), and 2) such a request has arrived soon. The first 1091 * condition is controlled through the flag non_blocking_wait_rq, 1092 * while the second through the flag arrived_in_time. If both 1093 * conditions hold, then the function computes the budget in the 1094 * above-described special way, and signals that the in-service queue 1095 * should be expired. Timestamp back-shifting is done later in 1096 * __bfq_activate_entity. 1097 * 1098 * 2. Reduce latency. Even if timestamps are not backshifted to let 1099 * the process associated with bfqq recover a service hole, bfqq may 1100 * however happen to have, after being (re)activated, a lower finish 1101 * timestamp than the in-service queue. That is, the next budget of 1102 * bfqq may have to be completed before the one of the in-service 1103 * queue. If this is the case, then preempting the in-service queue 1104 * allows this goal to be achieved, apart from the unpreemptible, 1105 * outstanding requests mentioned above. 1106 * 1107 * Unfortunately, regardless of which of the above two goals one wants 1108 * to achieve, service trees need first to be updated to know whether 1109 * the in-service queue must be preempted. To have service trees 1110 * correctly updated, the in-service queue must be expired and 1111 * rescheduled, and bfqq must be scheduled too. This is one of the 1112 * most costly operations (in future versions, the scheduling 1113 * mechanism may be re-designed in such a way to make it possible to 1114 * know whether preemption is needed without needing to update service 1115 * trees). In addition, queue preemptions almost always cause random 1116 * I/O, and thus loss of throughput. Because of these facts, the next 1117 * function adopts the following simple scheme to avoid both costly 1118 * operations and too frequent preemptions: it requests the expiration 1119 * of the in-service queue (unconditionally) only for queues that need 1120 * to recover a hole, or that either are weight-raised or deserve to 1121 * be weight-raised. 1122 */ 1123 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 1124 struct bfq_queue *bfqq, 1125 bool arrived_in_time, 1126 bool wr_or_deserves_wr) 1127 { 1128 struct bfq_entity *entity = &bfqq->entity; 1129 1130 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { 1131 /* 1132 * We do not clear the flag non_blocking_wait_rq here, as 1133 * the latter is used in bfq_activate_bfqq to signal 1134 * that timestamps need to be back-shifted (and is 1135 * cleared right after). 1136 */ 1137 1138 /* 1139 * In next assignment we rely on that either 1140 * entity->service or entity->budget are not updated 1141 * on expiration if bfqq is empty (see 1142 * __bfq_bfqq_recalc_budget). Thus both quantities 1143 * remain unchanged after such an expiration, and the 1144 * following statement therefore assigns to 1145 * entity->budget the remaining budget on such an 1146 * expiration. For clarity, entity->service is not 1147 * updated on expiration in any case, and, in normal 1148 * operation, is reset only when bfqq is selected for 1149 * service (see bfq_get_next_queue). 1150 */ 1151 entity->budget = min_t(unsigned long, 1152 bfq_bfqq_budget_left(bfqq), 1153 bfqq->max_budget); 1154 1155 return true; 1156 } 1157 1158 entity->budget = max_t(unsigned long, bfqq->max_budget, 1159 bfq_serv_to_charge(bfqq->next_rq, bfqq)); 1160 bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 1161 return wr_or_deserves_wr; 1162 } 1163 1164 static unsigned int bfq_wr_duration(struct bfq_data *bfqd) 1165 { 1166 u64 dur; 1167 1168 if (bfqd->bfq_wr_max_time > 0) 1169 return bfqd->bfq_wr_max_time; 1170 1171 dur = bfqd->RT_prod; 1172 do_div(dur, bfqd->peak_rate); 1173 1174 /* 1175 * Limit duration between 3 and 13 seconds. Tests show that 1176 * higher values than 13 seconds often yield the opposite of 1177 * the desired result, i.e., worsen responsiveness by letting 1178 * non-interactive and non-soft-real-time applications 1179 * preserve weight raising for a too long time interval. 1180 * 1181 * On the other end, lower values than 3 seconds make it 1182 * difficult for most interactive tasks to complete their jobs 1183 * before weight-raising finishes. 1184 */ 1185 if (dur > msecs_to_jiffies(13000)) 1186 dur = msecs_to_jiffies(13000); 1187 else if (dur < msecs_to_jiffies(3000)) 1188 dur = msecs_to_jiffies(3000); 1189 1190 return dur; 1191 } 1192 1193 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 1194 struct bfq_queue *bfqq, 1195 unsigned int old_wr_coeff, 1196 bool wr_or_deserves_wr, 1197 bool interactive, 1198 bool in_burst, 1199 bool soft_rt) 1200 { 1201 if (old_wr_coeff == 1 && wr_or_deserves_wr) { 1202 /* start a weight-raising period */ 1203 if (interactive) { 1204 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1205 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1206 } else { 1207 bfqq->wr_start_at_switch_to_srt = jiffies; 1208 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1209 BFQ_SOFTRT_WEIGHT_FACTOR; 1210 bfqq->wr_cur_max_time = 1211 bfqd->bfq_wr_rt_max_time; 1212 } 1213 1214 /* 1215 * If needed, further reduce budget to make sure it is 1216 * close to bfqq's backlog, so as to reduce the 1217 * scheduling-error component due to a too large 1218 * budget. Do not care about throughput consequences, 1219 * but only about latency. Finally, do not assign a 1220 * too small budget either, to avoid increasing 1221 * latency by causing too frequent expirations. 1222 */ 1223 bfqq->entity.budget = min_t(unsigned long, 1224 bfqq->entity.budget, 1225 2 * bfq_min_budget(bfqd)); 1226 } else if (old_wr_coeff > 1) { 1227 if (interactive) { /* update wr coeff and duration */ 1228 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1229 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1230 } else if (in_burst) 1231 bfqq->wr_coeff = 1; 1232 else if (soft_rt) { 1233 /* 1234 * The application is now or still meeting the 1235 * requirements for being deemed soft rt. We 1236 * can then correctly and safely (re)charge 1237 * the weight-raising duration for the 1238 * application with the weight-raising 1239 * duration for soft rt applications. 1240 * 1241 * In particular, doing this recharge now, i.e., 1242 * before the weight-raising period for the 1243 * application finishes, reduces the probability 1244 * of the following negative scenario: 1245 * 1) the weight of a soft rt application is 1246 * raised at startup (as for any newly 1247 * created application), 1248 * 2) since the application is not interactive, 1249 * at a certain time weight-raising is 1250 * stopped for the application, 1251 * 3) at that time the application happens to 1252 * still have pending requests, and hence 1253 * is destined to not have a chance to be 1254 * deemed soft rt before these requests are 1255 * completed (see the comments to the 1256 * function bfq_bfqq_softrt_next_start() 1257 * for details on soft rt detection), 1258 * 4) these pending requests experience a high 1259 * latency because the application is not 1260 * weight-raised while they are pending. 1261 */ 1262 if (bfqq->wr_cur_max_time != 1263 bfqd->bfq_wr_rt_max_time) { 1264 bfqq->wr_start_at_switch_to_srt = 1265 bfqq->last_wr_start_finish; 1266 1267 bfqq->wr_cur_max_time = 1268 bfqd->bfq_wr_rt_max_time; 1269 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1270 BFQ_SOFTRT_WEIGHT_FACTOR; 1271 } 1272 bfqq->last_wr_start_finish = jiffies; 1273 } 1274 } 1275 } 1276 1277 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 1278 struct bfq_queue *bfqq) 1279 { 1280 return bfqq->dispatched == 0 && 1281 time_is_before_jiffies( 1282 bfqq->budget_timeout + 1283 bfqd->bfq_wr_min_idle_time); 1284 } 1285 1286 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 1287 struct bfq_queue *bfqq, 1288 int old_wr_coeff, 1289 struct request *rq, 1290 bool *interactive) 1291 { 1292 bool soft_rt, in_burst, wr_or_deserves_wr, 1293 bfqq_wants_to_preempt, 1294 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 1295 /* 1296 * See the comments on 1297 * bfq_bfqq_update_budg_for_activation for 1298 * details on the usage of the next variable. 1299 */ 1300 arrived_in_time = ktime_get_ns() <= 1301 bfqq->ttime.last_end_request + 1302 bfqd->bfq_slice_idle * 3; 1303 1304 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); 1305 1306 /* 1307 * bfqq deserves to be weight-raised if: 1308 * - it is sync, 1309 * - it does not belong to a large burst, 1310 * - it has been idle for enough time or is soft real-time, 1311 * - is linked to a bfq_io_cq (it is not shared in any sense). 1312 */ 1313 in_burst = bfq_bfqq_in_large_burst(bfqq); 1314 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 1315 !in_burst && 1316 time_is_before_jiffies(bfqq->soft_rt_next_start); 1317 *interactive = !in_burst && idle_for_long_time; 1318 wr_or_deserves_wr = bfqd->low_latency && 1319 (bfqq->wr_coeff > 1 || 1320 (bfq_bfqq_sync(bfqq) && 1321 bfqq->bic && (*interactive || soft_rt))); 1322 1323 /* 1324 * Using the last flag, update budget and check whether bfqq 1325 * may want to preempt the in-service queue. 1326 */ 1327 bfqq_wants_to_preempt = 1328 bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 1329 arrived_in_time, 1330 wr_or_deserves_wr); 1331 1332 /* 1333 * If bfqq happened to be activated in a burst, but has been 1334 * idle for much more than an interactive queue, then we 1335 * assume that, in the overall I/O initiated in the burst, the 1336 * I/O associated with bfqq is finished. So bfqq does not need 1337 * to be treated as a queue belonging to a burst 1338 * anymore. Accordingly, we reset bfqq's in_large_burst flag 1339 * if set, and remove bfqq from the burst list if it's 1340 * there. We do not decrement burst_size, because the fact 1341 * that bfqq does not need to belong to the burst list any 1342 * more does not invalidate the fact that bfqq was created in 1343 * a burst. 1344 */ 1345 if (likely(!bfq_bfqq_just_created(bfqq)) && 1346 idle_for_long_time && 1347 time_is_before_jiffies( 1348 bfqq->budget_timeout + 1349 msecs_to_jiffies(10000))) { 1350 hlist_del_init(&bfqq->burst_list_node); 1351 bfq_clear_bfqq_in_large_burst(bfqq); 1352 } 1353 1354 bfq_clear_bfqq_just_created(bfqq); 1355 1356 1357 if (!bfq_bfqq_IO_bound(bfqq)) { 1358 if (arrived_in_time) { 1359 bfqq->requests_within_timer++; 1360 if (bfqq->requests_within_timer >= 1361 bfqd->bfq_requests_within_timer) 1362 bfq_mark_bfqq_IO_bound(bfqq); 1363 } else 1364 bfqq->requests_within_timer = 0; 1365 } 1366 1367 if (bfqd->low_latency) { 1368 if (unlikely(time_is_after_jiffies(bfqq->split_time))) 1369 /* wraparound */ 1370 bfqq->split_time = 1371 jiffies - bfqd->bfq_wr_min_idle_time - 1; 1372 1373 if (time_is_before_jiffies(bfqq->split_time + 1374 bfqd->bfq_wr_min_idle_time)) { 1375 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 1376 old_wr_coeff, 1377 wr_or_deserves_wr, 1378 *interactive, 1379 in_burst, 1380 soft_rt); 1381 1382 if (old_wr_coeff != bfqq->wr_coeff) 1383 bfqq->entity.prio_changed = 1; 1384 } 1385 } 1386 1387 bfqq->last_idle_bklogged = jiffies; 1388 bfqq->service_from_backlogged = 0; 1389 bfq_clear_bfqq_softrt_update(bfqq); 1390 1391 bfq_add_bfqq_busy(bfqd, bfqq); 1392 1393 /* 1394 * Expire in-service queue only if preemption may be needed 1395 * for guarantees. In this respect, the function 1396 * next_queue_may_preempt just checks a simple, necessary 1397 * condition, and not a sufficient condition based on 1398 * timestamps. In fact, for the latter condition to be 1399 * evaluated, timestamps would need first to be updated, and 1400 * this operation is quite costly (see the comments on the 1401 * function bfq_bfqq_update_budg_for_activation). 1402 */ 1403 if (bfqd->in_service_queue && bfqq_wants_to_preempt && 1404 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && 1405 next_queue_may_preempt(bfqd)) 1406 bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 1407 false, BFQQE_PREEMPTED); 1408 } 1409 1410 static void bfq_add_request(struct request *rq) 1411 { 1412 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1413 struct bfq_data *bfqd = bfqq->bfqd; 1414 struct request *next_rq, *prev; 1415 unsigned int old_wr_coeff = bfqq->wr_coeff; 1416 bool interactive = false; 1417 1418 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 1419 bfqq->queued[rq_is_sync(rq)]++; 1420 bfqd->queued++; 1421 1422 elv_rb_add(&bfqq->sort_list, rq); 1423 1424 /* 1425 * Check if this request is a better next-serve candidate. 1426 */ 1427 prev = bfqq->next_rq; 1428 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 1429 bfqq->next_rq = next_rq; 1430 1431 /* 1432 * Adjust priority tree position, if next_rq changes. 1433 */ 1434 if (prev != bfqq->next_rq) 1435 bfq_pos_tree_add_move(bfqd, bfqq); 1436 1437 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 1438 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 1439 rq, &interactive); 1440 else { 1441 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 1442 time_is_before_jiffies( 1443 bfqq->last_wr_start_finish + 1444 bfqd->bfq_wr_min_inter_arr_async)) { 1445 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1446 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1447 1448 bfqd->wr_busy_queues++; 1449 bfqq->entity.prio_changed = 1; 1450 } 1451 if (prev != bfqq->next_rq) 1452 bfq_updated_next_req(bfqd, bfqq); 1453 } 1454 1455 /* 1456 * Assign jiffies to last_wr_start_finish in the following 1457 * cases: 1458 * 1459 * . if bfqq is not going to be weight-raised, because, for 1460 * non weight-raised queues, last_wr_start_finish stores the 1461 * arrival time of the last request; as of now, this piece 1462 * of information is used only for deciding whether to 1463 * weight-raise async queues 1464 * 1465 * . if bfqq is not weight-raised, because, if bfqq is now 1466 * switching to weight-raised, then last_wr_start_finish 1467 * stores the time when weight-raising starts 1468 * 1469 * . if bfqq is interactive, because, regardless of whether 1470 * bfqq is currently weight-raised, the weight-raising 1471 * period must start or restart (this case is considered 1472 * separately because it is not detected by the above 1473 * conditions, if bfqq is already weight-raised) 1474 * 1475 * last_wr_start_finish has to be updated also if bfqq is soft 1476 * real-time, because the weight-raising period is constantly 1477 * restarted on idle-to-busy transitions for these queues, but 1478 * this is already done in bfq_bfqq_handle_idle_busy_switch if 1479 * needed. 1480 */ 1481 if (bfqd->low_latency && 1482 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 1483 bfqq->last_wr_start_finish = jiffies; 1484 } 1485 1486 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 1487 struct bio *bio, 1488 struct request_queue *q) 1489 { 1490 struct bfq_queue *bfqq = bfqd->bio_bfqq; 1491 1492 1493 if (bfqq) 1494 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 1495 1496 return NULL; 1497 } 1498 1499 static sector_t get_sdist(sector_t last_pos, struct request *rq) 1500 { 1501 if (last_pos) 1502 return abs(blk_rq_pos(rq) - last_pos); 1503 1504 return 0; 1505 } 1506 1507 #if 0 /* Still not clear if we can do without next two functions */ 1508 static void bfq_activate_request(struct request_queue *q, struct request *rq) 1509 { 1510 struct bfq_data *bfqd = q->elevator->elevator_data; 1511 1512 bfqd->rq_in_driver++; 1513 } 1514 1515 static void bfq_deactivate_request(struct request_queue *q, struct request *rq) 1516 { 1517 struct bfq_data *bfqd = q->elevator->elevator_data; 1518 1519 bfqd->rq_in_driver--; 1520 } 1521 #endif 1522 1523 static void bfq_remove_request(struct request_queue *q, 1524 struct request *rq) 1525 { 1526 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1527 struct bfq_data *bfqd = bfqq->bfqd; 1528 const int sync = rq_is_sync(rq); 1529 1530 if (bfqq->next_rq == rq) { 1531 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 1532 bfq_updated_next_req(bfqd, bfqq); 1533 } 1534 1535 if (rq->queuelist.prev != &rq->queuelist) 1536 list_del_init(&rq->queuelist); 1537 bfqq->queued[sync]--; 1538 bfqd->queued--; 1539 elv_rb_del(&bfqq->sort_list, rq); 1540 1541 elv_rqhash_del(q, rq); 1542 if (q->last_merge == rq) 1543 q->last_merge = NULL; 1544 1545 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 1546 bfqq->next_rq = NULL; 1547 1548 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 1549 bfq_del_bfqq_busy(bfqd, bfqq, false); 1550 /* 1551 * bfqq emptied. In normal operation, when 1552 * bfqq is empty, bfqq->entity.service and 1553 * bfqq->entity.budget must contain, 1554 * respectively, the service received and the 1555 * budget used last time bfqq emptied. These 1556 * facts do not hold in this case, as at least 1557 * this last removal occurred while bfqq is 1558 * not in service. To avoid inconsistencies, 1559 * reset both bfqq->entity.service and 1560 * bfqq->entity.budget, if bfqq has still a 1561 * process that may issue I/O requests to it. 1562 */ 1563 bfqq->entity.budget = bfqq->entity.service = 0; 1564 } 1565 1566 /* 1567 * Remove queue from request-position tree as it is empty. 1568 */ 1569 if (bfqq->pos_root) { 1570 rb_erase(&bfqq->pos_node, bfqq->pos_root); 1571 bfqq->pos_root = NULL; 1572 } 1573 } 1574 1575 if (rq->cmd_flags & REQ_META) 1576 bfqq->meta_pending--; 1577 1578 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); 1579 } 1580 1581 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 1582 { 1583 struct request_queue *q = hctx->queue; 1584 struct bfq_data *bfqd = q->elevator->elevator_data; 1585 struct request *free = NULL; 1586 /* 1587 * bfq_bic_lookup grabs the queue_lock: invoke it now and 1588 * store its return value for later use, to avoid nesting 1589 * queue_lock inside the bfqd->lock. We assume that the bic 1590 * returned by bfq_bic_lookup does not go away before 1591 * bfqd->lock is taken. 1592 */ 1593 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); 1594 bool ret; 1595 1596 spin_lock_irq(&bfqd->lock); 1597 1598 if (bic) 1599 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); 1600 else 1601 bfqd->bio_bfqq = NULL; 1602 bfqd->bio_bic = bic; 1603 1604 ret = blk_mq_sched_try_merge(q, bio, &free); 1605 1606 if (free) 1607 blk_mq_free_request(free); 1608 spin_unlock_irq(&bfqd->lock); 1609 1610 return ret; 1611 } 1612 1613 static int bfq_request_merge(struct request_queue *q, struct request **req, 1614 struct bio *bio) 1615 { 1616 struct bfq_data *bfqd = q->elevator->elevator_data; 1617 struct request *__rq; 1618 1619 __rq = bfq_find_rq_fmerge(bfqd, bio, q); 1620 if (__rq && elv_bio_merge_ok(__rq, bio)) { 1621 *req = __rq; 1622 return ELEVATOR_FRONT_MERGE; 1623 } 1624 1625 return ELEVATOR_NO_MERGE; 1626 } 1627 1628 static void bfq_request_merged(struct request_queue *q, struct request *req, 1629 enum elv_merge type) 1630 { 1631 if (type == ELEVATOR_FRONT_MERGE && 1632 rb_prev(&req->rb_node) && 1633 blk_rq_pos(req) < 1634 blk_rq_pos(container_of(rb_prev(&req->rb_node), 1635 struct request, rb_node))) { 1636 struct bfq_queue *bfqq = RQ_BFQQ(req); 1637 struct bfq_data *bfqd = bfqq->bfqd; 1638 struct request *prev, *next_rq; 1639 1640 /* Reposition request in its sort_list */ 1641 elv_rb_del(&bfqq->sort_list, req); 1642 elv_rb_add(&bfqq->sort_list, req); 1643 1644 /* Choose next request to be served for bfqq */ 1645 prev = bfqq->next_rq; 1646 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 1647 bfqd->last_position); 1648 bfqq->next_rq = next_rq; 1649 /* 1650 * If next_rq changes, update both the queue's budget to 1651 * fit the new request and the queue's position in its 1652 * rq_pos_tree. 1653 */ 1654 if (prev != bfqq->next_rq) { 1655 bfq_updated_next_req(bfqd, bfqq); 1656 bfq_pos_tree_add_move(bfqd, bfqq); 1657 } 1658 } 1659 } 1660 1661 static void bfq_requests_merged(struct request_queue *q, struct request *rq, 1662 struct request *next) 1663 { 1664 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); 1665 1666 if (!RB_EMPTY_NODE(&rq->rb_node)) 1667 goto end; 1668 spin_lock_irq(&bfqq->bfqd->lock); 1669 1670 /* 1671 * If next and rq belong to the same bfq_queue and next is older 1672 * than rq, then reposition rq in the fifo (by substituting next 1673 * with rq). Otherwise, if next and rq belong to different 1674 * bfq_queues, never reposition rq: in fact, we would have to 1675 * reposition it with respect to next's position in its own fifo, 1676 * which would most certainly be too expensive with respect to 1677 * the benefits. 1678 */ 1679 if (bfqq == next_bfqq && 1680 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 1681 next->fifo_time < rq->fifo_time) { 1682 list_del_init(&rq->queuelist); 1683 list_replace_init(&next->queuelist, &rq->queuelist); 1684 rq->fifo_time = next->fifo_time; 1685 } 1686 1687 if (bfqq->next_rq == next) 1688 bfqq->next_rq = rq; 1689 1690 bfq_remove_request(q, next); 1691 1692 spin_unlock_irq(&bfqq->bfqd->lock); 1693 end: 1694 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 1695 } 1696 1697 /* Must be called with bfqq != NULL */ 1698 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 1699 { 1700 if (bfq_bfqq_busy(bfqq)) 1701 bfqq->bfqd->wr_busy_queues--; 1702 bfqq->wr_coeff = 1; 1703 bfqq->wr_cur_max_time = 0; 1704 bfqq->last_wr_start_finish = jiffies; 1705 /* 1706 * Trigger a weight change on the next invocation of 1707 * __bfq_entity_update_weight_prio. 1708 */ 1709 bfqq->entity.prio_changed = 1; 1710 } 1711 1712 void bfq_end_wr_async_queues(struct bfq_data *bfqd, 1713 struct bfq_group *bfqg) 1714 { 1715 int i, j; 1716 1717 for (i = 0; i < 2; i++) 1718 for (j = 0; j < IOPRIO_BE_NR; j++) 1719 if (bfqg->async_bfqq[i][j]) 1720 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); 1721 if (bfqg->async_idle_bfqq) 1722 bfq_bfqq_end_wr(bfqg->async_idle_bfqq); 1723 } 1724 1725 static void bfq_end_wr(struct bfq_data *bfqd) 1726 { 1727 struct bfq_queue *bfqq; 1728 1729 spin_lock_irq(&bfqd->lock); 1730 1731 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) 1732 bfq_bfqq_end_wr(bfqq); 1733 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 1734 bfq_bfqq_end_wr(bfqq); 1735 bfq_end_wr_async(bfqd); 1736 1737 spin_unlock_irq(&bfqd->lock); 1738 } 1739 1740 static sector_t bfq_io_struct_pos(void *io_struct, bool request) 1741 { 1742 if (request) 1743 return blk_rq_pos(io_struct); 1744 else 1745 return ((struct bio *)io_struct)->bi_iter.bi_sector; 1746 } 1747 1748 static int bfq_rq_close_to_sector(void *io_struct, bool request, 1749 sector_t sector) 1750 { 1751 return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 1752 BFQQ_CLOSE_THR; 1753 } 1754 1755 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 1756 struct bfq_queue *bfqq, 1757 sector_t sector) 1758 { 1759 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 1760 struct rb_node *parent, *node; 1761 struct bfq_queue *__bfqq; 1762 1763 if (RB_EMPTY_ROOT(root)) 1764 return NULL; 1765 1766 /* 1767 * First, if we find a request starting at the end of the last 1768 * request, choose it. 1769 */ 1770 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 1771 if (__bfqq) 1772 return __bfqq; 1773 1774 /* 1775 * If the exact sector wasn't found, the parent of the NULL leaf 1776 * will contain the closest sector (rq_pos_tree sorted by 1777 * next_request position). 1778 */ 1779 __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 1780 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1781 return __bfqq; 1782 1783 if (blk_rq_pos(__bfqq->next_rq) < sector) 1784 node = rb_next(&__bfqq->pos_node); 1785 else 1786 node = rb_prev(&__bfqq->pos_node); 1787 if (!node) 1788 return NULL; 1789 1790 __bfqq = rb_entry(node, struct bfq_queue, pos_node); 1791 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1792 return __bfqq; 1793 1794 return NULL; 1795 } 1796 1797 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 1798 struct bfq_queue *cur_bfqq, 1799 sector_t sector) 1800 { 1801 struct bfq_queue *bfqq; 1802 1803 /* 1804 * We shall notice if some of the queues are cooperating, 1805 * e.g., working closely on the same area of the device. In 1806 * that case, we can group them together and: 1) don't waste 1807 * time idling, and 2) serve the union of their requests in 1808 * the best possible order for throughput. 1809 */ 1810 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 1811 if (!bfqq || bfqq == cur_bfqq) 1812 return NULL; 1813 1814 return bfqq; 1815 } 1816 1817 static struct bfq_queue * 1818 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 1819 { 1820 int process_refs, new_process_refs; 1821 struct bfq_queue *__bfqq; 1822 1823 /* 1824 * If there are no process references on the new_bfqq, then it is 1825 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 1826 * may have dropped their last reference (not just their last process 1827 * reference). 1828 */ 1829 if (!bfqq_process_refs(new_bfqq)) 1830 return NULL; 1831 1832 /* Avoid a circular list and skip interim queue merges. */ 1833 while ((__bfqq = new_bfqq->new_bfqq)) { 1834 if (__bfqq == bfqq) 1835 return NULL; 1836 new_bfqq = __bfqq; 1837 } 1838 1839 process_refs = bfqq_process_refs(bfqq); 1840 new_process_refs = bfqq_process_refs(new_bfqq); 1841 /* 1842 * If the process for the bfqq has gone away, there is no 1843 * sense in merging the queues. 1844 */ 1845 if (process_refs == 0 || new_process_refs == 0) 1846 return NULL; 1847 1848 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 1849 new_bfqq->pid); 1850 1851 /* 1852 * Merging is just a redirection: the requests of the process 1853 * owning one of the two queues are redirected to the other queue. 1854 * The latter queue, in its turn, is set as shared if this is the 1855 * first time that the requests of some process are redirected to 1856 * it. 1857 * 1858 * We redirect bfqq to new_bfqq and not the opposite, because 1859 * we are in the context of the process owning bfqq, thus we 1860 * have the io_cq of this process. So we can immediately 1861 * configure this io_cq to redirect the requests of the 1862 * process to new_bfqq. In contrast, the io_cq of new_bfqq is 1863 * not available any more (new_bfqq->bic == NULL). 1864 * 1865 * Anyway, even in case new_bfqq coincides with the in-service 1866 * queue, redirecting requests the in-service queue is the 1867 * best option, as we feed the in-service queue with new 1868 * requests close to the last request served and, by doing so, 1869 * are likely to increase the throughput. 1870 */ 1871 bfqq->new_bfqq = new_bfqq; 1872 new_bfqq->ref += process_refs; 1873 return new_bfqq; 1874 } 1875 1876 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 1877 struct bfq_queue *new_bfqq) 1878 { 1879 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 1880 (bfqq->ioprio_class != new_bfqq->ioprio_class)) 1881 return false; 1882 1883 /* 1884 * If either of the queues has already been detected as seeky, 1885 * then merging it with the other queue is unlikely to lead to 1886 * sequential I/O. 1887 */ 1888 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 1889 return false; 1890 1891 /* 1892 * Interleaved I/O is known to be done by (some) applications 1893 * only for reads, so it does not make sense to merge async 1894 * queues. 1895 */ 1896 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 1897 return false; 1898 1899 return true; 1900 } 1901 1902 /* 1903 * If this function returns true, then bfqq cannot be merged. The idea 1904 * is that true cooperation happens very early after processes start 1905 * to do I/O. Usually, late cooperations are just accidental false 1906 * positives. In case bfqq is weight-raised, such false positives 1907 * would evidently degrade latency guarantees for bfqq. 1908 */ 1909 static bool wr_from_too_long(struct bfq_queue *bfqq) 1910 { 1911 return bfqq->wr_coeff > 1 && 1912 time_is_before_jiffies(bfqq->last_wr_start_finish + 1913 msecs_to_jiffies(100)); 1914 } 1915 1916 /* 1917 * Attempt to schedule a merge of bfqq with the currently in-service 1918 * queue or with a close queue among the scheduled queues. Return 1919 * NULL if no merge was scheduled, a pointer to the shared bfq_queue 1920 * structure otherwise. 1921 * 1922 * The OOM queue is not allowed to participate to cooperation: in fact, since 1923 * the requests temporarily redirected to the OOM queue could be redirected 1924 * again to dedicated queues at any time, the state needed to correctly 1925 * handle merging with the OOM queue would be quite complex and expensive 1926 * to maintain. Besides, in such a critical condition as an out of memory, 1927 * the benefits of queue merging may be little relevant, or even negligible. 1928 * 1929 * Weight-raised queues can be merged only if their weight-raising 1930 * period has just started. In fact cooperating processes are usually 1931 * started together. Thus, with this filter we avoid false positives 1932 * that would jeopardize low-latency guarantees. 1933 * 1934 * WARNING: queue merging may impair fairness among non-weight raised 1935 * queues, for at least two reasons: 1) the original weight of a 1936 * merged queue may change during the merged state, 2) even being the 1937 * weight the same, a merged queue may be bloated with many more 1938 * requests than the ones produced by its originally-associated 1939 * process. 1940 */ 1941 static struct bfq_queue * 1942 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1943 void *io_struct, bool request) 1944 { 1945 struct bfq_queue *in_service_bfqq, *new_bfqq; 1946 1947 if (bfqq->new_bfqq) 1948 return bfqq->new_bfqq; 1949 1950 if (!io_struct || 1951 wr_from_too_long(bfqq) || 1952 unlikely(bfqq == &bfqd->oom_bfqq)) 1953 return NULL; 1954 1955 /* If there is only one backlogged queue, don't search. */ 1956 if (bfqd->busy_queues == 1) 1957 return NULL; 1958 1959 in_service_bfqq = bfqd->in_service_queue; 1960 1961 if (!in_service_bfqq || in_service_bfqq == bfqq 1962 || wr_from_too_long(in_service_bfqq) || 1963 unlikely(in_service_bfqq == &bfqd->oom_bfqq)) 1964 goto check_scheduled; 1965 1966 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) && 1967 bfqq->entity.parent == in_service_bfqq->entity.parent && 1968 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 1969 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 1970 if (new_bfqq) 1971 return new_bfqq; 1972 } 1973 /* 1974 * Check whether there is a cooperator among currently scheduled 1975 * queues. The only thing we need is that the bio/request is not 1976 * NULL, as we need it to establish whether a cooperator exists. 1977 */ 1978 check_scheduled: 1979 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 1980 bfq_io_struct_pos(io_struct, request)); 1981 1982 if (new_bfqq && !wr_from_too_long(new_bfqq) && 1983 likely(new_bfqq != &bfqd->oom_bfqq) && 1984 bfq_may_be_close_cooperator(bfqq, new_bfqq)) 1985 return bfq_setup_merge(bfqq, new_bfqq); 1986 1987 return NULL; 1988 } 1989 1990 static void bfq_bfqq_save_state(struct bfq_queue *bfqq) 1991 { 1992 struct bfq_io_cq *bic = bfqq->bic; 1993 1994 /* 1995 * If !bfqq->bic, the queue is already shared or its requests 1996 * have already been redirected to a shared queue; both idle window 1997 * and weight raising state have already been saved. Do nothing. 1998 */ 1999 if (!bic) 2000 return; 2001 2002 bic->saved_ttime = bfqq->ttime; 2003 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq); 2004 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 2005 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 2006 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node); 2007 bic->saved_wr_coeff = bfqq->wr_coeff; 2008 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt; 2009 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish; 2010 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 2011 } 2012 2013 static void 2014 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 2015 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 2016 { 2017 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 2018 (unsigned long)new_bfqq->pid); 2019 /* Save weight raising and idle window of the merged queues */ 2020 bfq_bfqq_save_state(bfqq); 2021 bfq_bfqq_save_state(new_bfqq); 2022 if (bfq_bfqq_IO_bound(bfqq)) 2023 bfq_mark_bfqq_IO_bound(new_bfqq); 2024 bfq_clear_bfqq_IO_bound(bfqq); 2025 2026 /* 2027 * If bfqq is weight-raised, then let new_bfqq inherit 2028 * weight-raising. To reduce false positives, neglect the case 2029 * where bfqq has just been created, but has not yet made it 2030 * to be weight-raised (which may happen because EQM may merge 2031 * bfqq even before bfq_add_request is executed for the first 2032 * time for bfqq). Handling this case would however be very 2033 * easy, thanks to the flag just_created. 2034 */ 2035 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 2036 new_bfqq->wr_coeff = bfqq->wr_coeff; 2037 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 2038 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 2039 new_bfqq->wr_start_at_switch_to_srt = 2040 bfqq->wr_start_at_switch_to_srt; 2041 if (bfq_bfqq_busy(new_bfqq)) 2042 bfqd->wr_busy_queues++; 2043 new_bfqq->entity.prio_changed = 1; 2044 } 2045 2046 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 2047 bfqq->wr_coeff = 1; 2048 bfqq->entity.prio_changed = 1; 2049 if (bfq_bfqq_busy(bfqq)) 2050 bfqd->wr_busy_queues--; 2051 } 2052 2053 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 2054 bfqd->wr_busy_queues); 2055 2056 /* 2057 * Merge queues (that is, let bic redirect its requests to new_bfqq) 2058 */ 2059 bic_set_bfqq(bic, new_bfqq, 1); 2060 bfq_mark_bfqq_coop(new_bfqq); 2061 /* 2062 * new_bfqq now belongs to at least two bics (it is a shared queue): 2063 * set new_bfqq->bic to NULL. bfqq either: 2064 * - does not belong to any bic any more, and hence bfqq->bic must 2065 * be set to NULL, or 2066 * - is a queue whose owning bics have already been redirected to a 2067 * different queue, hence the queue is destined to not belong to 2068 * any bic soon and bfqq->bic is already NULL (therefore the next 2069 * assignment causes no harm). 2070 */ 2071 new_bfqq->bic = NULL; 2072 bfqq->bic = NULL; 2073 /* release process reference to bfqq */ 2074 bfq_put_queue(bfqq); 2075 } 2076 2077 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2078 struct bio *bio) 2079 { 2080 struct bfq_data *bfqd = q->elevator->elevator_data; 2081 bool is_sync = op_is_sync(bio->bi_opf); 2082 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 2083 2084 /* 2085 * Disallow merge of a sync bio into an async request. 2086 */ 2087 if (is_sync && !rq_is_sync(rq)) 2088 return false; 2089 2090 /* 2091 * Lookup the bfqq that this bio will be queued with. Allow 2092 * merge only if rq is queued there. 2093 */ 2094 if (!bfqq) 2095 return false; 2096 2097 /* 2098 * We take advantage of this function to perform an early merge 2099 * of the queues of possible cooperating processes. 2100 */ 2101 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false); 2102 if (new_bfqq) { 2103 /* 2104 * bic still points to bfqq, then it has not yet been 2105 * redirected to some other bfq_queue, and a queue 2106 * merge beween bfqq and new_bfqq can be safely 2107 * fulfillled, i.e., bic can be redirected to new_bfqq 2108 * and bfqq can be put. 2109 */ 2110 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 2111 new_bfqq); 2112 /* 2113 * If we get here, bio will be queued into new_queue, 2114 * so use new_bfqq to decide whether bio and rq can be 2115 * merged. 2116 */ 2117 bfqq = new_bfqq; 2118 2119 /* 2120 * Change also bqfd->bio_bfqq, as 2121 * bfqd->bio_bic now points to new_bfqq, and 2122 * this function may be invoked again (and then may 2123 * use again bqfd->bio_bfqq). 2124 */ 2125 bfqd->bio_bfqq = bfqq; 2126 } 2127 2128 return bfqq == RQ_BFQQ(rq); 2129 } 2130 2131 /* 2132 * Set the maximum time for the in-service queue to consume its 2133 * budget. This prevents seeky processes from lowering the throughput. 2134 * In practice, a time-slice service scheme is used with seeky 2135 * processes. 2136 */ 2137 static void bfq_set_budget_timeout(struct bfq_data *bfqd, 2138 struct bfq_queue *bfqq) 2139 { 2140 unsigned int timeout_coeff; 2141 2142 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 2143 timeout_coeff = 1; 2144 else 2145 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 2146 2147 bfqd->last_budget_start = ktime_get(); 2148 2149 bfqq->budget_timeout = jiffies + 2150 bfqd->bfq_timeout * timeout_coeff; 2151 } 2152 2153 static void __bfq_set_in_service_queue(struct bfq_data *bfqd, 2154 struct bfq_queue *bfqq) 2155 { 2156 if (bfqq) { 2157 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); 2158 bfq_clear_bfqq_fifo_expire(bfqq); 2159 2160 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 2161 2162 if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 2163 bfqq->wr_coeff > 1 && 2164 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 2165 time_is_before_jiffies(bfqq->budget_timeout)) { 2166 /* 2167 * For soft real-time queues, move the start 2168 * of the weight-raising period forward by the 2169 * time the queue has not received any 2170 * service. Otherwise, a relatively long 2171 * service delay is likely to cause the 2172 * weight-raising period of the queue to end, 2173 * because of the short duration of the 2174 * weight-raising period of a soft real-time 2175 * queue. It is worth noting that this move 2176 * is not so dangerous for the other queues, 2177 * because soft real-time queues are not 2178 * greedy. 2179 * 2180 * To not add a further variable, we use the 2181 * overloaded field budget_timeout to 2182 * determine for how long the queue has not 2183 * received service, i.e., how much time has 2184 * elapsed since the queue expired. However, 2185 * this is a little imprecise, because 2186 * budget_timeout is set to jiffies if bfqq 2187 * not only expires, but also remains with no 2188 * request. 2189 */ 2190 if (time_after(bfqq->budget_timeout, 2191 bfqq->last_wr_start_finish)) 2192 bfqq->last_wr_start_finish += 2193 jiffies - bfqq->budget_timeout; 2194 else 2195 bfqq->last_wr_start_finish = jiffies; 2196 } 2197 2198 bfq_set_budget_timeout(bfqd, bfqq); 2199 bfq_log_bfqq(bfqd, bfqq, 2200 "set_in_service_queue, cur-budget = %d", 2201 bfqq->entity.budget); 2202 } 2203 2204 bfqd->in_service_queue = bfqq; 2205 } 2206 2207 /* 2208 * Get and set a new queue for service. 2209 */ 2210 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 2211 { 2212 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 2213 2214 __bfq_set_in_service_queue(bfqd, bfqq); 2215 return bfqq; 2216 } 2217 2218 static void bfq_arm_slice_timer(struct bfq_data *bfqd) 2219 { 2220 struct bfq_queue *bfqq = bfqd->in_service_queue; 2221 u32 sl; 2222 2223 bfq_mark_bfqq_wait_request(bfqq); 2224 2225 /* 2226 * We don't want to idle for seeks, but we do want to allow 2227 * fair distribution of slice time for a process doing back-to-back 2228 * seeks. So allow a little bit of time for him to submit a new rq. 2229 */ 2230 sl = bfqd->bfq_slice_idle; 2231 /* 2232 * Unless the queue is being weight-raised or the scenario is 2233 * asymmetric, grant only minimum idle time if the queue 2234 * is seeky. A long idling is preserved for a weight-raised 2235 * queue, or, more in general, in an asymmetric scenario, 2236 * because a long idling is needed for guaranteeing to a queue 2237 * its reserved share of the throughput (in particular, it is 2238 * needed if the queue has a higher weight than some other 2239 * queue). 2240 */ 2241 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 2242 bfq_symmetric_scenario(bfqd)) 2243 sl = min_t(u64, sl, BFQ_MIN_TT); 2244 2245 bfqd->last_idling_start = ktime_get(); 2246 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 2247 HRTIMER_MODE_REL); 2248 bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 2249 } 2250 2251 /* 2252 * In autotuning mode, max_budget is dynamically recomputed as the 2253 * amount of sectors transferred in timeout at the estimated peak 2254 * rate. This enables BFQ to utilize a full timeslice with a full 2255 * budget, even if the in-service queue is served at peak rate. And 2256 * this maximises throughput with sequential workloads. 2257 */ 2258 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 2259 { 2260 return (u64)bfqd->peak_rate * USEC_PER_MSEC * 2261 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 2262 } 2263 2264 /* 2265 * Update parameters related to throughput and responsiveness, as a 2266 * function of the estimated peak rate. See comments on 2267 * bfq_calc_max_budget(), and on T_slow and T_fast arrays. 2268 */ 2269 static void update_thr_responsiveness_params(struct bfq_data *bfqd) 2270 { 2271 int dev_type = blk_queue_nonrot(bfqd->queue); 2272 2273 if (bfqd->bfq_user_max_budget == 0) 2274 bfqd->bfq_max_budget = 2275 bfq_calc_max_budget(bfqd); 2276 2277 if (bfqd->device_speed == BFQ_BFQD_FAST && 2278 bfqd->peak_rate < device_speed_thresh[dev_type]) { 2279 bfqd->device_speed = BFQ_BFQD_SLOW; 2280 bfqd->RT_prod = R_slow[dev_type] * 2281 T_slow[dev_type]; 2282 } else if (bfqd->device_speed == BFQ_BFQD_SLOW && 2283 bfqd->peak_rate > device_speed_thresh[dev_type]) { 2284 bfqd->device_speed = BFQ_BFQD_FAST; 2285 bfqd->RT_prod = R_fast[dev_type] * 2286 T_fast[dev_type]; 2287 } 2288 2289 bfq_log(bfqd, 2290 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", 2291 dev_type == 0 ? "ROT" : "NONROT", 2292 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", 2293 bfqd->device_speed == BFQ_BFQD_FAST ? 2294 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : 2295 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, 2296 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> 2297 BFQ_RATE_SHIFT); 2298 } 2299 2300 static void bfq_reset_rate_computation(struct bfq_data *bfqd, 2301 struct request *rq) 2302 { 2303 if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 2304 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 2305 bfqd->peak_rate_samples = 1; 2306 bfqd->sequential_samples = 0; 2307 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 2308 blk_rq_sectors(rq); 2309 } else /* no new rq dispatched, just reset the number of samples */ 2310 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 2311 2312 bfq_log(bfqd, 2313 "reset_rate_computation at end, sample %u/%u tot_sects %llu", 2314 bfqd->peak_rate_samples, bfqd->sequential_samples, 2315 bfqd->tot_sectors_dispatched); 2316 } 2317 2318 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 2319 { 2320 u32 rate, weight, divisor; 2321 2322 /* 2323 * For the convergence property to hold (see comments on 2324 * bfq_update_peak_rate()) and for the assessment to be 2325 * reliable, a minimum number of samples must be present, and 2326 * a minimum amount of time must have elapsed. If not so, do 2327 * not compute new rate. Just reset parameters, to get ready 2328 * for a new evaluation attempt. 2329 */ 2330 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 2331 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 2332 goto reset_computation; 2333 2334 /* 2335 * If a new request completion has occurred after last 2336 * dispatch, then, to approximate the rate at which requests 2337 * have been served by the device, it is more precise to 2338 * extend the observation interval to the last completion. 2339 */ 2340 bfqd->delta_from_first = 2341 max_t(u64, bfqd->delta_from_first, 2342 bfqd->last_completion - bfqd->first_dispatch); 2343 2344 /* 2345 * Rate computed in sects/usec, and not sects/nsec, for 2346 * precision issues. 2347 */ 2348 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 2349 div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 2350 2351 /* 2352 * Peak rate not updated if: 2353 * - the percentage of sequential dispatches is below 3/4 of the 2354 * total, and rate is below the current estimated peak rate 2355 * - rate is unreasonably high (> 20M sectors/sec) 2356 */ 2357 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 2358 rate <= bfqd->peak_rate) || 2359 rate > 20<<BFQ_RATE_SHIFT) 2360 goto reset_computation; 2361 2362 /* 2363 * We have to update the peak rate, at last! To this purpose, 2364 * we use a low-pass filter. We compute the smoothing constant 2365 * of the filter as a function of the 'weight' of the new 2366 * measured rate. 2367 * 2368 * As can be seen in next formulas, we define this weight as a 2369 * quantity proportional to how sequential the workload is, 2370 * and to how long the observation time interval is. 2371 * 2372 * The weight runs from 0 to 8. The maximum value of the 2373 * weight, 8, yields the minimum value for the smoothing 2374 * constant. At this minimum value for the smoothing constant, 2375 * the measured rate contributes for half of the next value of 2376 * the estimated peak rate. 2377 * 2378 * So, the first step is to compute the weight as a function 2379 * of how sequential the workload is. Note that the weight 2380 * cannot reach 9, because bfqd->sequential_samples cannot 2381 * become equal to bfqd->peak_rate_samples, which, in its 2382 * turn, holds true because bfqd->sequential_samples is not 2383 * incremented for the first sample. 2384 */ 2385 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 2386 2387 /* 2388 * Second step: further refine the weight as a function of the 2389 * duration of the observation interval. 2390 */ 2391 weight = min_t(u32, 8, 2392 div_u64(weight * bfqd->delta_from_first, 2393 BFQ_RATE_REF_INTERVAL)); 2394 2395 /* 2396 * Divisor ranging from 10, for minimum weight, to 2, for 2397 * maximum weight. 2398 */ 2399 divisor = 10 - weight; 2400 2401 /* 2402 * Finally, update peak rate: 2403 * 2404 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 2405 */ 2406 bfqd->peak_rate *= divisor-1; 2407 bfqd->peak_rate /= divisor; 2408 rate /= divisor; /* smoothing constant alpha = 1/divisor */ 2409 2410 bfqd->peak_rate += rate; 2411 update_thr_responsiveness_params(bfqd); 2412 2413 reset_computation: 2414 bfq_reset_rate_computation(bfqd, rq); 2415 } 2416 2417 /* 2418 * Update the read/write peak rate (the main quantity used for 2419 * auto-tuning, see update_thr_responsiveness_params()). 2420 * 2421 * It is not trivial to estimate the peak rate (correctly): because of 2422 * the presence of sw and hw queues between the scheduler and the 2423 * device components that finally serve I/O requests, it is hard to 2424 * say exactly when a given dispatched request is served inside the 2425 * device, and for how long. As a consequence, it is hard to know 2426 * precisely at what rate a given set of requests is actually served 2427 * by the device. 2428 * 2429 * On the opposite end, the dispatch time of any request is trivially 2430 * available, and, from this piece of information, the "dispatch rate" 2431 * of requests can be immediately computed. So, the idea in the next 2432 * function is to use what is known, namely request dispatch times 2433 * (plus, when useful, request completion times), to estimate what is 2434 * unknown, namely in-device request service rate. 2435 * 2436 * The main issue is that, because of the above facts, the rate at 2437 * which a certain set of requests is dispatched over a certain time 2438 * interval can vary greatly with respect to the rate at which the 2439 * same requests are then served. But, since the size of any 2440 * intermediate queue is limited, and the service scheme is lossless 2441 * (no request is silently dropped), the following obvious convergence 2442 * property holds: the number of requests dispatched MUST become 2443 * closer and closer to the number of requests completed as the 2444 * observation interval grows. This is the key property used in 2445 * the next function to estimate the peak service rate as a function 2446 * of the observed dispatch rate. The function assumes to be invoked 2447 * on every request dispatch. 2448 */ 2449 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 2450 { 2451 u64 now_ns = ktime_get_ns(); 2452 2453 if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 2454 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 2455 bfqd->peak_rate_samples); 2456 bfq_reset_rate_computation(bfqd, rq); 2457 goto update_last_values; /* will add one sample */ 2458 } 2459 2460 /* 2461 * Device idle for very long: the observation interval lasting 2462 * up to this dispatch cannot be a valid observation interval 2463 * for computing a new peak rate (similarly to the late- 2464 * completion event in bfq_completed_request()). Go to 2465 * update_rate_and_reset to have the following three steps 2466 * taken: 2467 * - close the observation interval at the last (previous) 2468 * request dispatch or completion 2469 * - compute rate, if possible, for that observation interval 2470 * - start a new observation interval with this dispatch 2471 */ 2472 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 2473 bfqd->rq_in_driver == 0) 2474 goto update_rate_and_reset; 2475 2476 /* Update sampling information */ 2477 bfqd->peak_rate_samples++; 2478 2479 if ((bfqd->rq_in_driver > 0 || 2480 now_ns - bfqd->last_completion < BFQ_MIN_TT) 2481 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) 2482 bfqd->sequential_samples++; 2483 2484 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 2485 2486 /* Reset max observed rq size every 32 dispatches */ 2487 if (likely(bfqd->peak_rate_samples % 32)) 2488 bfqd->last_rq_max_size = 2489 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 2490 else 2491 bfqd->last_rq_max_size = blk_rq_sectors(rq); 2492 2493 bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 2494 2495 /* Target observation interval not yet reached, go on sampling */ 2496 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 2497 goto update_last_values; 2498 2499 update_rate_and_reset: 2500 bfq_update_rate_reset(bfqd, rq); 2501 update_last_values: 2502 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2503 bfqd->last_dispatch = now_ns; 2504 } 2505 2506 /* 2507 * Remove request from internal lists. 2508 */ 2509 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 2510 { 2511 struct bfq_queue *bfqq = RQ_BFQQ(rq); 2512 2513 /* 2514 * For consistency, the next instruction should have been 2515 * executed after removing the request from the queue and 2516 * dispatching it. We execute instead this instruction before 2517 * bfq_remove_request() (and hence introduce a temporary 2518 * inconsistency), for efficiency. In fact, should this 2519 * dispatch occur for a non in-service bfqq, this anticipated 2520 * increment prevents two counters related to bfqq->dispatched 2521 * from risking to be, first, uselessly decremented, and then 2522 * incremented again when the (new) value of bfqq->dispatched 2523 * happens to be taken into account. 2524 */ 2525 bfqq->dispatched++; 2526 bfq_update_peak_rate(q->elevator->elevator_data, rq); 2527 2528 bfq_remove_request(q, rq); 2529 } 2530 2531 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) 2532 { 2533 /* 2534 * If this bfqq is shared between multiple processes, check 2535 * to make sure that those processes are still issuing I/Os 2536 * within the mean seek distance. If not, it may be time to 2537 * break the queues apart again. 2538 */ 2539 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 2540 bfq_mark_bfqq_split_coop(bfqq); 2541 2542 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 2543 if (bfqq->dispatched == 0) 2544 /* 2545 * Overloading budget_timeout field to store 2546 * the time at which the queue remains with no 2547 * backlog and no outstanding request; used by 2548 * the weight-raising mechanism. 2549 */ 2550 bfqq->budget_timeout = jiffies; 2551 2552 bfq_del_bfqq_busy(bfqd, bfqq, true); 2553 } else { 2554 bfq_requeue_bfqq(bfqd, bfqq); 2555 /* 2556 * Resort priority tree of potential close cooperators. 2557 */ 2558 bfq_pos_tree_add_move(bfqd, bfqq); 2559 } 2560 2561 /* 2562 * All in-service entities must have been properly deactivated 2563 * or requeued before executing the next function, which 2564 * resets all in-service entites as no more in service. 2565 */ 2566 __bfq_bfqd_reset_in_service(bfqd); 2567 } 2568 2569 /** 2570 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 2571 * @bfqd: device data. 2572 * @bfqq: queue to update. 2573 * @reason: reason for expiration. 2574 * 2575 * Handle the feedback on @bfqq budget at queue expiration. 2576 * See the body for detailed comments. 2577 */ 2578 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 2579 struct bfq_queue *bfqq, 2580 enum bfqq_expiration reason) 2581 { 2582 struct request *next_rq; 2583 int budget, min_budget; 2584 2585 min_budget = bfq_min_budget(bfqd); 2586 2587 if (bfqq->wr_coeff == 1) 2588 budget = bfqq->max_budget; 2589 else /* 2590 * Use a constant, low budget for weight-raised queues, 2591 * to help achieve a low latency. Keep it slightly higher 2592 * than the minimum possible budget, to cause a little 2593 * bit fewer expirations. 2594 */ 2595 budget = 2 * min_budget; 2596 2597 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 2598 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 2599 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 2600 budget, bfq_min_budget(bfqd)); 2601 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 2602 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 2603 2604 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 2605 switch (reason) { 2606 /* 2607 * Caveat: in all the following cases we trade latency 2608 * for throughput. 2609 */ 2610 case BFQQE_TOO_IDLE: 2611 /* 2612 * This is the only case where we may reduce 2613 * the budget: if there is no request of the 2614 * process still waiting for completion, then 2615 * we assume (tentatively) that the timer has 2616 * expired because the batch of requests of 2617 * the process could have been served with a 2618 * smaller budget. Hence, betting that 2619 * process will behave in the same way when it 2620 * becomes backlogged again, we reduce its 2621 * next budget. As long as we guess right, 2622 * this budget cut reduces the latency 2623 * experienced by the process. 2624 * 2625 * However, if there are still outstanding 2626 * requests, then the process may have not yet 2627 * issued its next request just because it is 2628 * still waiting for the completion of some of 2629 * the still outstanding ones. So in this 2630 * subcase we do not reduce its budget, on the 2631 * contrary we increase it to possibly boost 2632 * the throughput, as discussed in the 2633 * comments to the BUDGET_TIMEOUT case. 2634 */ 2635 if (bfqq->dispatched > 0) /* still outstanding reqs */ 2636 budget = min(budget * 2, bfqd->bfq_max_budget); 2637 else { 2638 if (budget > 5 * min_budget) 2639 budget -= 4 * min_budget; 2640 else 2641 budget = min_budget; 2642 } 2643 break; 2644 case BFQQE_BUDGET_TIMEOUT: 2645 /* 2646 * We double the budget here because it gives 2647 * the chance to boost the throughput if this 2648 * is not a seeky process (and has bumped into 2649 * this timeout because of, e.g., ZBR). 2650 */ 2651 budget = min(budget * 2, bfqd->bfq_max_budget); 2652 break; 2653 case BFQQE_BUDGET_EXHAUSTED: 2654 /* 2655 * The process still has backlog, and did not 2656 * let either the budget timeout or the disk 2657 * idling timeout expire. Hence it is not 2658 * seeky, has a short thinktime and may be 2659 * happy with a higher budget too. So 2660 * definitely increase the budget of this good 2661 * candidate to boost the disk throughput. 2662 */ 2663 budget = min(budget * 4, bfqd->bfq_max_budget); 2664 break; 2665 case BFQQE_NO_MORE_REQUESTS: 2666 /* 2667 * For queues that expire for this reason, it 2668 * is particularly important to keep the 2669 * budget close to the actual service they 2670 * need. Doing so reduces the timestamp 2671 * misalignment problem described in the 2672 * comments in the body of 2673 * __bfq_activate_entity. In fact, suppose 2674 * that a queue systematically expires for 2675 * BFQQE_NO_MORE_REQUESTS and presents a 2676 * new request in time to enjoy timestamp 2677 * back-shifting. The larger the budget of the 2678 * queue is with respect to the service the 2679 * queue actually requests in each service 2680 * slot, the more times the queue can be 2681 * reactivated with the same virtual finish 2682 * time. It follows that, even if this finish 2683 * time is pushed to the system virtual time 2684 * to reduce the consequent timestamp 2685 * misalignment, the queue unjustly enjoys for 2686 * many re-activations a lower finish time 2687 * than all newly activated queues. 2688 * 2689 * The service needed by bfqq is measured 2690 * quite precisely by bfqq->entity.service. 2691 * Since bfqq does not enjoy device idling, 2692 * bfqq->entity.service is equal to the number 2693 * of sectors that the process associated with 2694 * bfqq requested to read/write before waiting 2695 * for request completions, or blocking for 2696 * other reasons. 2697 */ 2698 budget = max_t(int, bfqq->entity.service, min_budget); 2699 break; 2700 default: 2701 return; 2702 } 2703 } else if (!bfq_bfqq_sync(bfqq)) { 2704 /* 2705 * Async queues get always the maximum possible 2706 * budget, as for them we do not care about latency 2707 * (in addition, their ability to dispatch is limited 2708 * by the charging factor). 2709 */ 2710 budget = bfqd->bfq_max_budget; 2711 } 2712 2713 bfqq->max_budget = budget; 2714 2715 if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 2716 !bfqd->bfq_user_max_budget) 2717 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 2718 2719 /* 2720 * If there is still backlog, then assign a new budget, making 2721 * sure that it is large enough for the next request. Since 2722 * the finish time of bfqq must be kept in sync with the 2723 * budget, be sure to call __bfq_bfqq_expire() *after* this 2724 * update. 2725 * 2726 * If there is no backlog, then no need to update the budget; 2727 * it will be updated on the arrival of a new request. 2728 */ 2729 next_rq = bfqq->next_rq; 2730 if (next_rq) 2731 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 2732 bfq_serv_to_charge(next_rq, bfqq)); 2733 2734 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 2735 next_rq ? blk_rq_sectors(next_rq) : 0, 2736 bfqq->entity.budget); 2737 } 2738 2739 /* 2740 * Return true if the process associated with bfqq is "slow". The slow 2741 * flag is used, in addition to the budget timeout, to reduce the 2742 * amount of service provided to seeky processes, and thus reduce 2743 * their chances to lower the throughput. More details in the comments 2744 * on the function bfq_bfqq_expire(). 2745 * 2746 * An important observation is in order: as discussed in the comments 2747 * on the function bfq_update_peak_rate(), with devices with internal 2748 * queues, it is hard if ever possible to know when and for how long 2749 * an I/O request is processed by the device (apart from the trivial 2750 * I/O pattern where a new request is dispatched only after the 2751 * previous one has been completed). This makes it hard to evaluate 2752 * the real rate at which the I/O requests of each bfq_queue are 2753 * served. In fact, for an I/O scheduler like BFQ, serving a 2754 * bfq_queue means just dispatching its requests during its service 2755 * slot (i.e., until the budget of the queue is exhausted, or the 2756 * queue remains idle, or, finally, a timeout fires). But, during the 2757 * service slot of a bfq_queue, around 100 ms at most, the device may 2758 * be even still processing requests of bfq_queues served in previous 2759 * service slots. On the opposite end, the requests of the in-service 2760 * bfq_queue may be completed after the service slot of the queue 2761 * finishes. 2762 * 2763 * Anyway, unless more sophisticated solutions are used 2764 * (where possible), the sum of the sizes of the requests dispatched 2765 * during the service slot of a bfq_queue is probably the only 2766 * approximation available for the service received by the bfq_queue 2767 * during its service slot. And this sum is the quantity used in this 2768 * function to evaluate the I/O speed of a process. 2769 */ 2770 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2771 bool compensate, enum bfqq_expiration reason, 2772 unsigned long *delta_ms) 2773 { 2774 ktime_t delta_ktime; 2775 u32 delta_usecs; 2776 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 2777 2778 if (!bfq_bfqq_sync(bfqq)) 2779 return false; 2780 2781 if (compensate) 2782 delta_ktime = bfqd->last_idling_start; 2783 else 2784 delta_ktime = ktime_get(); 2785 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 2786 delta_usecs = ktime_to_us(delta_ktime); 2787 2788 /* don't use too short time intervals */ 2789 if (delta_usecs < 1000) { 2790 if (blk_queue_nonrot(bfqd->queue)) 2791 /* 2792 * give same worst-case guarantees as idling 2793 * for seeky 2794 */ 2795 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 2796 else /* charge at least one seek */ 2797 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 2798 2799 return slow; 2800 } 2801 2802 *delta_ms = delta_usecs / USEC_PER_MSEC; 2803 2804 /* 2805 * Use only long (> 20ms) intervals to filter out excessive 2806 * spikes in service rate estimation. 2807 */ 2808 if (delta_usecs > 20000) { 2809 /* 2810 * Caveat for rotational devices: processes doing I/O 2811 * in the slower disk zones tend to be slow(er) even 2812 * if not seeky. In this respect, the estimated peak 2813 * rate is likely to be an average over the disk 2814 * surface. Accordingly, to not be too harsh with 2815 * unlucky processes, a process is deemed slow only if 2816 * its rate has been lower than half of the estimated 2817 * peak rate. 2818 */ 2819 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 2820 } 2821 2822 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 2823 2824 return slow; 2825 } 2826 2827 /* 2828 * To be deemed as soft real-time, an application must meet two 2829 * requirements. First, the application must not require an average 2830 * bandwidth higher than the approximate bandwidth required to playback or 2831 * record a compressed high-definition video. 2832 * The next function is invoked on the completion of the last request of a 2833 * batch, to compute the next-start time instant, soft_rt_next_start, such 2834 * that, if the next request of the application does not arrive before 2835 * soft_rt_next_start, then the above requirement on the bandwidth is met. 2836 * 2837 * The second requirement is that the request pattern of the application is 2838 * isochronous, i.e., that, after issuing a request or a batch of requests, 2839 * the application stops issuing new requests until all its pending requests 2840 * have been completed. After that, the application may issue a new batch, 2841 * and so on. 2842 * For this reason the next function is invoked to compute 2843 * soft_rt_next_start only for applications that meet this requirement, 2844 * whereas soft_rt_next_start is set to infinity for applications that do 2845 * not. 2846 * 2847 * Unfortunately, even a greedy application may happen to behave in an 2848 * isochronous way if the CPU load is high. In fact, the application may 2849 * stop issuing requests while the CPUs are busy serving other processes, 2850 * then restart, then stop again for a while, and so on. In addition, if 2851 * the disk achieves a low enough throughput with the request pattern 2852 * issued by the application (e.g., because the request pattern is random 2853 * and/or the device is slow), then the application may meet the above 2854 * bandwidth requirement too. To prevent such a greedy application to be 2855 * deemed as soft real-time, a further rule is used in the computation of 2856 * soft_rt_next_start: soft_rt_next_start must be higher than the current 2857 * time plus the maximum time for which the arrival of a request is waited 2858 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. 2859 * This filters out greedy applications, as the latter issue instead their 2860 * next request as soon as possible after the last one has been completed 2861 * (in contrast, when a batch of requests is completed, a soft real-time 2862 * application spends some time processing data). 2863 * 2864 * Unfortunately, the last filter may easily generate false positives if 2865 * only bfqd->bfq_slice_idle is used as a reference time interval and one 2866 * or both the following cases occur: 2867 * 1) HZ is so low that the duration of a jiffy is comparable to or higher 2868 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with 2869 * HZ=100. 2870 * 2) jiffies, instead of increasing at a constant rate, may stop increasing 2871 * for a while, then suddenly 'jump' by several units to recover the lost 2872 * increments. This seems to happen, e.g., inside virtual machines. 2873 * To address this issue, we do not use as a reference time interval just 2874 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In 2875 * particular we add the minimum number of jiffies for which the filter 2876 * seems to be quite precise also in embedded systems and KVM/QEMU virtual 2877 * machines. 2878 */ 2879 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 2880 struct bfq_queue *bfqq) 2881 { 2882 return max(bfqq->last_idle_bklogged + 2883 HZ * bfqq->service_from_backlogged / 2884 bfqd->bfq_wr_max_softrt_rate, 2885 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 2886 } 2887 2888 /* 2889 * Return the farthest future time instant according to jiffies 2890 * macros. 2891 */ 2892 static unsigned long bfq_greatest_from_now(void) 2893 { 2894 return jiffies + MAX_JIFFY_OFFSET; 2895 } 2896 2897 /* 2898 * Return the farthest past time instant according to jiffies 2899 * macros. 2900 */ 2901 static unsigned long bfq_smallest_from_now(void) 2902 { 2903 return jiffies - MAX_JIFFY_OFFSET; 2904 } 2905 2906 /** 2907 * bfq_bfqq_expire - expire a queue. 2908 * @bfqd: device owning the queue. 2909 * @bfqq: the queue to expire. 2910 * @compensate: if true, compensate for the time spent idling. 2911 * @reason: the reason causing the expiration. 2912 * 2913 * If the process associated with bfqq does slow I/O (e.g., because it 2914 * issues random requests), we charge bfqq with the time it has been 2915 * in service instead of the service it has received (see 2916 * bfq_bfqq_charge_time for details on how this goal is achieved). As 2917 * a consequence, bfqq will typically get higher timestamps upon 2918 * reactivation, and hence it will be rescheduled as if it had 2919 * received more service than what it has actually received. In the 2920 * end, bfqq receives less service in proportion to how slowly its 2921 * associated process consumes its budgets (and hence how seriously it 2922 * tends to lower the throughput). In addition, this time-charging 2923 * strategy guarantees time fairness among slow processes. In 2924 * contrast, if the process associated with bfqq is not slow, we 2925 * charge bfqq exactly with the service it has received. 2926 * 2927 * Charging time to the first type of queues and the exact service to 2928 * the other has the effect of using the WF2Q+ policy to schedule the 2929 * former on a timeslice basis, without violating service domain 2930 * guarantees among the latter. 2931 */ 2932 void bfq_bfqq_expire(struct bfq_data *bfqd, 2933 struct bfq_queue *bfqq, 2934 bool compensate, 2935 enum bfqq_expiration reason) 2936 { 2937 bool slow; 2938 unsigned long delta = 0; 2939 struct bfq_entity *entity = &bfqq->entity; 2940 int ref; 2941 2942 /* 2943 * Check whether the process is slow (see bfq_bfqq_is_slow). 2944 */ 2945 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); 2946 2947 /* 2948 * Increase service_from_backlogged before next statement, 2949 * because the possible next invocation of 2950 * bfq_bfqq_charge_time would likely inflate 2951 * entity->service. In contrast, service_from_backlogged must 2952 * contain real service, to enable the soft real-time 2953 * heuristic to correctly compute the bandwidth consumed by 2954 * bfqq. 2955 */ 2956 bfqq->service_from_backlogged += entity->service; 2957 2958 /* 2959 * As above explained, charge slow (typically seeky) and 2960 * timed-out queues with the time and not the service 2961 * received, to favor sequential workloads. 2962 * 2963 * Processes doing I/O in the slower disk zones will tend to 2964 * be slow(er) even if not seeky. Therefore, since the 2965 * estimated peak rate is actually an average over the disk 2966 * surface, these processes may timeout just for bad luck. To 2967 * avoid punishing them, do not charge time to processes that 2968 * succeeded in consuming at least 2/3 of their budget. This 2969 * allows BFQ to preserve enough elasticity to still perform 2970 * bandwidth, and not time, distribution with little unlucky 2971 * or quasi-sequential processes. 2972 */ 2973 if (bfqq->wr_coeff == 1 && 2974 (slow || 2975 (reason == BFQQE_BUDGET_TIMEOUT && 2976 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 2977 bfq_bfqq_charge_time(bfqd, bfqq, delta); 2978 2979 if (reason == BFQQE_TOO_IDLE && 2980 entity->service <= 2 * entity->budget / 10) 2981 bfq_clear_bfqq_IO_bound(bfqq); 2982 2983 if (bfqd->low_latency && bfqq->wr_coeff == 1) 2984 bfqq->last_wr_start_finish = jiffies; 2985 2986 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 2987 RB_EMPTY_ROOT(&bfqq->sort_list)) { 2988 /* 2989 * If we get here, and there are no outstanding 2990 * requests, then the request pattern is isochronous 2991 * (see the comments on the function 2992 * bfq_bfqq_softrt_next_start()). Thus we can compute 2993 * soft_rt_next_start. If, instead, the queue still 2994 * has outstanding requests, then we have to wait for 2995 * the completion of all the outstanding requests to 2996 * discover whether the request pattern is actually 2997 * isochronous. 2998 */ 2999 if (bfqq->dispatched == 0) 3000 bfqq->soft_rt_next_start = 3001 bfq_bfqq_softrt_next_start(bfqd, bfqq); 3002 else { 3003 /* 3004 * The application is still waiting for the 3005 * completion of one or more requests: 3006 * prevent it from possibly being incorrectly 3007 * deemed as soft real-time by setting its 3008 * soft_rt_next_start to infinity. In fact, 3009 * without this assignment, the application 3010 * would be incorrectly deemed as soft 3011 * real-time if: 3012 * 1) it issued a new request before the 3013 * completion of all its in-flight 3014 * requests, and 3015 * 2) at that time, its soft_rt_next_start 3016 * happened to be in the past. 3017 */ 3018 bfqq->soft_rt_next_start = 3019 bfq_greatest_from_now(); 3020 /* 3021 * Schedule an update of soft_rt_next_start to when 3022 * the task may be discovered to be isochronous. 3023 */ 3024 bfq_mark_bfqq_softrt_update(bfqq); 3025 } 3026 } 3027 3028 bfq_log_bfqq(bfqd, bfqq, 3029 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, 3030 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); 3031 3032 /* 3033 * Increase, decrease or leave budget unchanged according to 3034 * reason. 3035 */ 3036 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 3037 ref = bfqq->ref; 3038 __bfq_bfqq_expire(bfqd, bfqq); 3039 3040 /* mark bfqq as waiting a request only if a bic still points to it */ 3041 if (ref > 1 && !bfq_bfqq_busy(bfqq) && 3042 reason != BFQQE_BUDGET_TIMEOUT && 3043 reason != BFQQE_BUDGET_EXHAUSTED) 3044 bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 3045 } 3046 3047 /* 3048 * Budget timeout is not implemented through a dedicated timer, but 3049 * just checked on request arrivals and completions, as well as on 3050 * idle timer expirations. 3051 */ 3052 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 3053 { 3054 return time_is_before_eq_jiffies(bfqq->budget_timeout); 3055 } 3056 3057 /* 3058 * If we expire a queue that is actively waiting (i.e., with the 3059 * device idled) for the arrival of a new request, then we may incur 3060 * the timestamp misalignment problem described in the body of the 3061 * function __bfq_activate_entity. Hence we return true only if this 3062 * condition does not hold, or if the queue is slow enough to deserve 3063 * only to be kicked off for preserving a high throughput. 3064 */ 3065 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 3066 { 3067 bfq_log_bfqq(bfqq->bfqd, bfqq, 3068 "may_budget_timeout: wait_request %d left %d timeout %d", 3069 bfq_bfqq_wait_request(bfqq), 3070 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 3071 bfq_bfqq_budget_timeout(bfqq)); 3072 3073 return (!bfq_bfqq_wait_request(bfqq) || 3074 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 3075 && 3076 bfq_bfqq_budget_timeout(bfqq); 3077 } 3078 3079 /* 3080 * For a queue that becomes empty, device idling is allowed only if 3081 * this function returns true for the queue. As a consequence, since 3082 * device idling plays a critical role in both throughput boosting and 3083 * service guarantees, the return value of this function plays a 3084 * critical role in both these aspects as well. 3085 * 3086 * In a nutshell, this function returns true only if idling is 3087 * beneficial for throughput or, even if detrimental for throughput, 3088 * idling is however necessary to preserve service guarantees (low 3089 * latency, desired throughput distribution, ...). In particular, on 3090 * NCQ-capable devices, this function tries to return false, so as to 3091 * help keep the drives' internal queues full, whenever this helps the 3092 * device boost the throughput without causing any service-guarantee 3093 * issue. 3094 * 3095 * In more detail, the return value of this function is obtained by, 3096 * first, computing a number of boolean variables that take into 3097 * account throughput and service-guarantee issues, and, then, 3098 * combining these variables in a logical expression. Most of the 3099 * issues taken into account are not trivial. We discuss these issues 3100 * individually while introducing the variables. 3101 */ 3102 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) 3103 { 3104 struct bfq_data *bfqd = bfqq->bfqd; 3105 bool idling_boosts_thr, idling_boosts_thr_without_issues, 3106 idling_needed_for_service_guarantees, 3107 asymmetric_scenario; 3108 3109 if (bfqd->strict_guarantees) 3110 return true; 3111 3112 /* 3113 * The next variable takes into account the cases where idling 3114 * boosts the throughput. 3115 * 3116 * The value of the variable is computed considering, first, that 3117 * idling is virtually always beneficial for the throughput if: 3118 * (a) the device is not NCQ-capable, or 3119 * (b) regardless of the presence of NCQ, the device is rotational 3120 * and the request pattern for bfqq is I/O-bound and sequential. 3121 * 3122 * Secondly, and in contrast to the above item (b), idling an 3123 * NCQ-capable flash-based device would not boost the 3124 * throughput even with sequential I/O; rather it would lower 3125 * the throughput in proportion to how fast the device 3126 * is. Accordingly, the next variable is true if any of the 3127 * above conditions (a) and (b) is true, and, in particular, 3128 * happens to be false if bfqd is an NCQ-capable flash-based 3129 * device. 3130 */ 3131 idling_boosts_thr = !bfqd->hw_tag || 3132 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) && 3133 bfq_bfqq_idle_window(bfqq)); 3134 3135 /* 3136 * The value of the next variable, 3137 * idling_boosts_thr_without_issues, is equal to that of 3138 * idling_boosts_thr, unless a special case holds. In this 3139 * special case, described below, idling may cause problems to 3140 * weight-raised queues. 3141 * 3142 * When the request pool is saturated (e.g., in the presence 3143 * of write hogs), if the processes associated with 3144 * non-weight-raised queues ask for requests at a lower rate, 3145 * then processes associated with weight-raised queues have a 3146 * higher probability to get a request from the pool 3147 * immediately (or at least soon) when they need one. Thus 3148 * they have a higher probability to actually get a fraction 3149 * of the device throughput proportional to their high 3150 * weight. This is especially true with NCQ-capable drives, 3151 * which enqueue several requests in advance, and further 3152 * reorder internally-queued requests. 3153 * 3154 * For this reason, we force to false the value of 3155 * idling_boosts_thr_without_issues if there are weight-raised 3156 * busy queues. In this case, and if bfqq is not weight-raised, 3157 * this guarantees that the device is not idled for bfqq (if, 3158 * instead, bfqq is weight-raised, then idling will be 3159 * guaranteed by another variable, see below). Combined with 3160 * the timestamping rules of BFQ (see [1] for details), this 3161 * behavior causes bfqq, and hence any sync non-weight-raised 3162 * queue, to get a lower number of requests served, and thus 3163 * to ask for a lower number of requests from the request 3164 * pool, before the busy weight-raised queues get served 3165 * again. This often mitigates starvation problems in the 3166 * presence of heavy write workloads and NCQ, thereby 3167 * guaranteeing a higher application and system responsiveness 3168 * in these hostile scenarios. 3169 */ 3170 idling_boosts_thr_without_issues = idling_boosts_thr && 3171 bfqd->wr_busy_queues == 0; 3172 3173 /* 3174 * There is then a case where idling must be performed not 3175 * for throughput concerns, but to preserve service 3176 * guarantees. 3177 * 3178 * To introduce this case, we can note that allowing the drive 3179 * to enqueue more than one request at a time, and hence 3180 * delegating de facto final scheduling decisions to the 3181 * drive's internal scheduler, entails loss of control on the 3182 * actual request service order. In particular, the critical 3183 * situation is when requests from different processes happen 3184 * to be present, at the same time, in the internal queue(s) 3185 * of the drive. In such a situation, the drive, by deciding 3186 * the service order of the internally-queued requests, does 3187 * determine also the actual throughput distribution among 3188 * these processes. But the drive typically has no notion or 3189 * concern about per-process throughput distribution, and 3190 * makes its decisions only on a per-request basis. Therefore, 3191 * the service distribution enforced by the drive's internal 3192 * scheduler is likely to coincide with the desired 3193 * device-throughput distribution only in a completely 3194 * symmetric scenario where: 3195 * (i) each of these processes must get the same throughput as 3196 * the others; 3197 * (ii) all these processes have the same I/O pattern 3198 (either sequential or random). 3199 * In fact, in such a scenario, the drive will tend to treat 3200 * the requests of each of these processes in about the same 3201 * way as the requests of the others, and thus to provide 3202 * each of these processes with about the same throughput 3203 * (which is exactly the desired throughput distribution). In 3204 * contrast, in any asymmetric scenario, device idling is 3205 * certainly needed to guarantee that bfqq receives its 3206 * assigned fraction of the device throughput (see [1] for 3207 * details). 3208 * 3209 * We address this issue by controlling, actually, only the 3210 * symmetry sub-condition (i), i.e., provided that 3211 * sub-condition (i) holds, idling is not performed, 3212 * regardless of whether sub-condition (ii) holds. In other 3213 * words, only if sub-condition (i) holds, then idling is 3214 * allowed, and the device tends to be prevented from queueing 3215 * many requests, possibly of several processes. The reason 3216 * for not controlling also sub-condition (ii) is that we 3217 * exploit preemption to preserve guarantees in case of 3218 * symmetric scenarios, even if (ii) does not hold, as 3219 * explained in the next two paragraphs. 3220 * 3221 * Even if a queue, say Q, is expired when it remains idle, Q 3222 * can still preempt the new in-service queue if the next 3223 * request of Q arrives soon (see the comments on 3224 * bfq_bfqq_update_budg_for_activation). If all queues and 3225 * groups have the same weight, this form of preemption, 3226 * combined with the hole-recovery heuristic described in the 3227 * comments on function bfq_bfqq_update_budg_for_activation, 3228 * are enough to preserve a correct bandwidth distribution in 3229 * the mid term, even without idling. In fact, even if not 3230 * idling allows the internal queues of the device to contain 3231 * many requests, and thus to reorder requests, we can rather 3232 * safely assume that the internal scheduler still preserves a 3233 * minimum of mid-term fairness. The motivation for using 3234 * preemption instead of idling is that, by not idling, 3235 * service guarantees are preserved without minimally 3236 * sacrificing throughput. In other words, both a high 3237 * throughput and its desired distribution are obtained. 3238 * 3239 * More precisely, this preemption-based, idleless approach 3240 * provides fairness in terms of IOPS, and not sectors per 3241 * second. This can be seen with a simple example. Suppose 3242 * that there are two queues with the same weight, but that 3243 * the first queue receives requests of 8 sectors, while the 3244 * second queue receives requests of 1024 sectors. In 3245 * addition, suppose that each of the two queues contains at 3246 * most one request at a time, which implies that each queue 3247 * always remains idle after it is served. Finally, after 3248 * remaining idle, each queue receives very quickly a new 3249 * request. It follows that the two queues are served 3250 * alternatively, preempting each other if needed. This 3251 * implies that, although both queues have the same weight, 3252 * the queue with large requests receives a service that is 3253 * 1024/8 times as high as the service received by the other 3254 * queue. 3255 * 3256 * On the other hand, device idling is performed, and thus 3257 * pure sector-domain guarantees are provided, for the 3258 * following queues, which are likely to need stronger 3259 * throughput guarantees: weight-raised queues, and queues 3260 * with a higher weight than other queues. When such queues 3261 * are active, sub-condition (i) is false, which triggers 3262 * device idling. 3263 * 3264 * According to the above considerations, the next variable is 3265 * true (only) if sub-condition (i) holds. To compute the 3266 * value of this variable, we not only use the return value of 3267 * the function bfq_symmetric_scenario(), but also check 3268 * whether bfqq is being weight-raised, because 3269 * bfq_symmetric_scenario() does not take into account also 3270 * weight-raised queues (see comments on 3271 * bfq_weights_tree_add()). 3272 * 3273 * As a side note, it is worth considering that the above 3274 * device-idling countermeasures may however fail in the 3275 * following unlucky scenario: if idling is (correctly) 3276 * disabled in a time period during which all symmetry 3277 * sub-conditions hold, and hence the device is allowed to 3278 * enqueue many requests, but at some later point in time some 3279 * sub-condition stops to hold, then it may become impossible 3280 * to let requests be served in the desired order until all 3281 * the requests already queued in the device have been served. 3282 */ 3283 asymmetric_scenario = bfqq->wr_coeff > 1 || 3284 !bfq_symmetric_scenario(bfqd); 3285 3286 /* 3287 * Finally, there is a case where maximizing throughput is the 3288 * best choice even if it may cause unfairness toward 3289 * bfqq. Such a case is when bfqq became active in a burst of 3290 * queue activations. Queues that became active during a large 3291 * burst benefit only from throughput, as discussed in the 3292 * comments on bfq_handle_burst. Thus, if bfqq became active 3293 * in a burst and not idling the device maximizes throughput, 3294 * then the device must no be idled, because not idling the 3295 * device provides bfqq and all other queues in the burst with 3296 * maximum benefit. Combining this and the above case, we can 3297 * now establish when idling is actually needed to preserve 3298 * service guarantees. 3299 */ 3300 idling_needed_for_service_guarantees = 3301 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq); 3302 3303 /* 3304 * We have now all the components we need to compute the return 3305 * value of the function, which is true only if both the following 3306 * conditions hold: 3307 * 1) bfqq is sync, because idling make sense only for sync queues; 3308 * 2) idling either boosts the throughput (without issues), or 3309 * is necessary to preserve service guarantees. 3310 */ 3311 return bfq_bfqq_sync(bfqq) && 3312 (idling_boosts_thr_without_issues || 3313 idling_needed_for_service_guarantees); 3314 } 3315 3316 /* 3317 * If the in-service queue is empty but the function bfq_bfqq_may_idle 3318 * returns true, then: 3319 * 1) the queue must remain in service and cannot be expired, and 3320 * 2) the device must be idled to wait for the possible arrival of a new 3321 * request for the queue. 3322 * See the comments on the function bfq_bfqq_may_idle for the reasons 3323 * why performing device idling is the best choice to boost the throughput 3324 * and preserve service guarantees when bfq_bfqq_may_idle itself 3325 * returns true. 3326 */ 3327 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 3328 { 3329 struct bfq_data *bfqd = bfqq->bfqd; 3330 3331 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && 3332 bfq_bfqq_may_idle(bfqq); 3333 } 3334 3335 /* 3336 * Select a queue for service. If we have a current queue in service, 3337 * check whether to continue servicing it, or retrieve and set a new one. 3338 */ 3339 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 3340 { 3341 struct bfq_queue *bfqq; 3342 struct request *next_rq; 3343 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 3344 3345 bfqq = bfqd->in_service_queue; 3346 if (!bfqq) 3347 goto new_queue; 3348 3349 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 3350 3351 if (bfq_may_expire_for_budg_timeout(bfqq) && 3352 !bfq_bfqq_wait_request(bfqq) && 3353 !bfq_bfqq_must_idle(bfqq)) 3354 goto expire; 3355 3356 check_queue: 3357 /* 3358 * This loop is rarely executed more than once. Even when it 3359 * happens, it is much more convenient to re-execute this loop 3360 * than to return NULL and trigger a new dispatch to get a 3361 * request served. 3362 */ 3363 next_rq = bfqq->next_rq; 3364 /* 3365 * If bfqq has requests queued and it has enough budget left to 3366 * serve them, keep the queue, otherwise expire it. 3367 */ 3368 if (next_rq) { 3369 if (bfq_serv_to_charge(next_rq, bfqq) > 3370 bfq_bfqq_budget_left(bfqq)) { 3371 /* 3372 * Expire the queue for budget exhaustion, 3373 * which makes sure that the next budget is 3374 * enough to serve the next request, even if 3375 * it comes from the fifo expired path. 3376 */ 3377 reason = BFQQE_BUDGET_EXHAUSTED; 3378 goto expire; 3379 } else { 3380 /* 3381 * The idle timer may be pending because we may 3382 * not disable disk idling even when a new request 3383 * arrives. 3384 */ 3385 if (bfq_bfqq_wait_request(bfqq)) { 3386 /* 3387 * If we get here: 1) at least a new request 3388 * has arrived but we have not disabled the 3389 * timer because the request was too small, 3390 * 2) then the block layer has unplugged 3391 * the device, causing the dispatch to be 3392 * invoked. 3393 * 3394 * Since the device is unplugged, now the 3395 * requests are probably large enough to 3396 * provide a reasonable throughput. 3397 * So we disable idling. 3398 */ 3399 bfq_clear_bfqq_wait_request(bfqq); 3400 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 3401 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 3402 } 3403 goto keep_queue; 3404 } 3405 } 3406 3407 /* 3408 * No requests pending. However, if the in-service queue is idling 3409 * for a new request, or has requests waiting for a completion and 3410 * may idle after their completion, then keep it anyway. 3411 */ 3412 if (bfq_bfqq_wait_request(bfqq) || 3413 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { 3414 bfqq = NULL; 3415 goto keep_queue; 3416 } 3417 3418 reason = BFQQE_NO_MORE_REQUESTS; 3419 expire: 3420 bfq_bfqq_expire(bfqd, bfqq, false, reason); 3421 new_queue: 3422 bfqq = bfq_set_in_service_queue(bfqd); 3423 if (bfqq) { 3424 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 3425 goto check_queue; 3426 } 3427 keep_queue: 3428 if (bfqq) 3429 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 3430 else 3431 bfq_log(bfqd, "select_queue: no queue returned"); 3432 3433 return bfqq; 3434 } 3435 3436 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3437 { 3438 struct bfq_entity *entity = &bfqq->entity; 3439 3440 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 3441 bfq_log_bfqq(bfqd, bfqq, 3442 "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 3443 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 3444 jiffies_to_msecs(bfqq->wr_cur_max_time), 3445 bfqq->wr_coeff, 3446 bfqq->entity.weight, bfqq->entity.orig_weight); 3447 3448 if (entity->prio_changed) 3449 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 3450 3451 /* 3452 * If the queue was activated in a burst, or too much 3453 * time has elapsed from the beginning of this 3454 * weight-raising period, then end weight raising. 3455 */ 3456 if (bfq_bfqq_in_large_burst(bfqq)) 3457 bfq_bfqq_end_wr(bfqq); 3458 else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 3459 bfqq->wr_cur_max_time)) { 3460 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 3461 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 3462 bfq_wr_duration(bfqd))) 3463 bfq_bfqq_end_wr(bfqq); 3464 else { 3465 /* switch back to interactive wr */ 3466 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 3467 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 3468 bfqq->last_wr_start_finish = 3469 bfqq->wr_start_at_switch_to_srt; 3470 bfqq->entity.prio_changed = 1; 3471 } 3472 } 3473 } 3474 /* Update weight both if it must be raised and if it must be lowered */ 3475 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 3476 __bfq_entity_update_weight_prio( 3477 bfq_entity_service_tree(entity), 3478 entity); 3479 } 3480 3481 /* 3482 * Dispatch next request from bfqq. 3483 */ 3484 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 3485 struct bfq_queue *bfqq) 3486 { 3487 struct request *rq = bfqq->next_rq; 3488 unsigned long service_to_charge; 3489 3490 service_to_charge = bfq_serv_to_charge(rq, bfqq); 3491 3492 bfq_bfqq_served(bfqq, service_to_charge); 3493 3494 bfq_dispatch_remove(bfqd->queue, rq); 3495 3496 /* 3497 * If weight raising has to terminate for bfqq, then next 3498 * function causes an immediate update of bfqq's weight, 3499 * without waiting for next activation. As a consequence, on 3500 * expiration, bfqq will be timestamped as if has never been 3501 * weight-raised during this service slot, even if it has 3502 * received part or even most of the service as a 3503 * weight-raised queue. This inflates bfqq's timestamps, which 3504 * is beneficial, as bfqq is then more willing to leave the 3505 * device immediately to possible other weight-raised queues. 3506 */ 3507 bfq_update_wr_data(bfqd, bfqq); 3508 3509 /* 3510 * Expire bfqq, pretending that its budget expired, if bfqq 3511 * belongs to CLASS_IDLE and other queues are waiting for 3512 * service. 3513 */ 3514 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) 3515 goto expire; 3516 3517 return rq; 3518 3519 expire: 3520 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 3521 return rq; 3522 } 3523 3524 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 3525 { 3526 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3527 3528 /* 3529 * Avoiding lock: a race on bfqd->busy_queues should cause at 3530 * most a call to dispatch for nothing 3531 */ 3532 return !list_empty_careful(&bfqd->dispatch) || 3533 bfqd->busy_queues > 0; 3534 } 3535 3536 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3537 { 3538 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3539 struct request *rq = NULL; 3540 struct bfq_queue *bfqq = NULL; 3541 3542 if (!list_empty(&bfqd->dispatch)) { 3543 rq = list_first_entry(&bfqd->dispatch, struct request, 3544 queuelist); 3545 list_del_init(&rq->queuelist); 3546 3547 bfqq = RQ_BFQQ(rq); 3548 3549 if (bfqq) { 3550 /* 3551 * Increment counters here, because this 3552 * dispatch does not follow the standard 3553 * dispatch flow (where counters are 3554 * incremented) 3555 */ 3556 bfqq->dispatched++; 3557 3558 goto inc_in_driver_start_rq; 3559 } 3560 3561 /* 3562 * We exploit the put_rq_private hook to decrement 3563 * rq_in_driver, but put_rq_private will not be 3564 * invoked on this request. So, to avoid unbalance, 3565 * just start this request, without incrementing 3566 * rq_in_driver. As a negative consequence, 3567 * rq_in_driver is deceptively lower than it should be 3568 * while this request is in service. This may cause 3569 * bfq_schedule_dispatch to be invoked uselessly. 3570 * 3571 * As for implementing an exact solution, the 3572 * put_request hook, if defined, is probably invoked 3573 * also on this request. So, by exploiting this hook, 3574 * we could 1) increment rq_in_driver here, and 2) 3575 * decrement it in put_request. Such a solution would 3576 * let the value of the counter be always accurate, 3577 * but it would entail using an extra interface 3578 * function. This cost seems higher than the benefit, 3579 * being the frequency of non-elevator-private 3580 * requests very low. 3581 */ 3582 goto start_rq; 3583 } 3584 3585 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); 3586 3587 if (bfqd->busy_queues == 0) 3588 goto exit; 3589 3590 /* 3591 * Force device to serve one request at a time if 3592 * strict_guarantees is true. Forcing this service scheme is 3593 * currently the ONLY way to guarantee that the request 3594 * service order enforced by the scheduler is respected by a 3595 * queueing device. Otherwise the device is free even to make 3596 * some unlucky request wait for as long as the device 3597 * wishes. 3598 * 3599 * Of course, serving one request at at time may cause loss of 3600 * throughput. 3601 */ 3602 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) 3603 goto exit; 3604 3605 bfqq = bfq_select_queue(bfqd); 3606 if (!bfqq) 3607 goto exit; 3608 3609 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 3610 3611 if (rq) { 3612 inc_in_driver_start_rq: 3613 bfqd->rq_in_driver++; 3614 start_rq: 3615 rq->rq_flags |= RQF_STARTED; 3616 } 3617 exit: 3618 return rq; 3619 } 3620 3621 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3622 { 3623 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3624 struct request *rq; 3625 3626 spin_lock_irq(&bfqd->lock); 3627 3628 rq = __bfq_dispatch_request(hctx); 3629 spin_unlock_irq(&bfqd->lock); 3630 3631 return rq; 3632 } 3633 3634 /* 3635 * Task holds one reference to the queue, dropped when task exits. Each rq 3636 * in-flight on this queue also holds a reference, dropped when rq is freed. 3637 * 3638 * Scheduler lock must be held here. Recall not to use bfqq after calling 3639 * this function on it. 3640 */ 3641 void bfq_put_queue(struct bfq_queue *bfqq) 3642 { 3643 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3644 struct bfq_group *bfqg = bfqq_group(bfqq); 3645 #endif 3646 3647 if (bfqq->bfqd) 3648 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", 3649 bfqq, bfqq->ref); 3650 3651 bfqq->ref--; 3652 if (bfqq->ref) 3653 return; 3654 3655 if (bfq_bfqq_sync(bfqq)) 3656 /* 3657 * The fact that this queue is being destroyed does not 3658 * invalidate the fact that this queue may have been 3659 * activated during the current burst. As a consequence, 3660 * although the queue does not exist anymore, and hence 3661 * needs to be removed from the burst list if there, 3662 * the burst size has not to be decremented. 3663 */ 3664 hlist_del_init(&bfqq->burst_list_node); 3665 3666 kmem_cache_free(bfq_pool, bfqq); 3667 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3668 bfqg_put(bfqg); 3669 #endif 3670 } 3671 3672 static void bfq_put_cooperator(struct bfq_queue *bfqq) 3673 { 3674 struct bfq_queue *__bfqq, *next; 3675 3676 /* 3677 * If this queue was scheduled to merge with another queue, be 3678 * sure to drop the reference taken on that queue (and others in 3679 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 3680 */ 3681 __bfqq = bfqq->new_bfqq; 3682 while (__bfqq) { 3683 if (__bfqq == bfqq) 3684 break; 3685 next = __bfqq->new_bfqq; 3686 bfq_put_queue(__bfqq); 3687 __bfqq = next; 3688 } 3689 } 3690 3691 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3692 { 3693 if (bfqq == bfqd->in_service_queue) { 3694 __bfq_bfqq_expire(bfqd, bfqq); 3695 bfq_schedule_dispatch(bfqd); 3696 } 3697 3698 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 3699 3700 bfq_put_cooperator(bfqq); 3701 3702 bfq_put_queue(bfqq); /* release process reference */ 3703 } 3704 3705 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) 3706 { 3707 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 3708 struct bfq_data *bfqd; 3709 3710 if (bfqq) 3711 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 3712 3713 if (bfqq && bfqd) { 3714 unsigned long flags; 3715 3716 spin_lock_irqsave(&bfqd->lock, flags); 3717 bfq_exit_bfqq(bfqd, bfqq); 3718 bic_set_bfqq(bic, NULL, is_sync); 3719 spin_unlock_irqrestore(&bfqd->lock, flags); 3720 } 3721 } 3722 3723 static void bfq_exit_icq(struct io_cq *icq) 3724 { 3725 struct bfq_io_cq *bic = icq_to_bic(icq); 3726 3727 bfq_exit_icq_bfqq(bic, true); 3728 bfq_exit_icq_bfqq(bic, false); 3729 } 3730 3731 /* 3732 * Update the entity prio values; note that the new values will not 3733 * be used until the next (re)activation. 3734 */ 3735 static void 3736 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 3737 { 3738 struct task_struct *tsk = current; 3739 int ioprio_class; 3740 struct bfq_data *bfqd = bfqq->bfqd; 3741 3742 if (!bfqd) 3743 return; 3744 3745 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3746 switch (ioprio_class) { 3747 default: 3748 dev_err(bfqq->bfqd->queue->backing_dev_info->dev, 3749 "bfq: bad prio class %d\n", ioprio_class); 3750 case IOPRIO_CLASS_NONE: 3751 /* 3752 * No prio set, inherit CPU scheduling settings. 3753 */ 3754 bfqq->new_ioprio = task_nice_ioprio(tsk); 3755 bfqq->new_ioprio_class = task_nice_ioclass(tsk); 3756 break; 3757 case IOPRIO_CLASS_RT: 3758 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3759 bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 3760 break; 3761 case IOPRIO_CLASS_BE: 3762 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3763 bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 3764 break; 3765 case IOPRIO_CLASS_IDLE: 3766 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 3767 bfqq->new_ioprio = 7; 3768 bfq_clear_bfqq_idle_window(bfqq); 3769 break; 3770 } 3771 3772 if (bfqq->new_ioprio >= IOPRIO_BE_NR) { 3773 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 3774 bfqq->new_ioprio); 3775 bfqq->new_ioprio = IOPRIO_BE_NR; 3776 } 3777 3778 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 3779 bfqq->entity.prio_changed = 1; 3780 } 3781 3782 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3783 struct bio *bio, bool is_sync, 3784 struct bfq_io_cq *bic); 3785 3786 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 3787 { 3788 struct bfq_data *bfqd = bic_to_bfqd(bic); 3789 struct bfq_queue *bfqq; 3790 int ioprio = bic->icq.ioc->ioprio; 3791 3792 /* 3793 * This condition may trigger on a newly created bic, be sure to 3794 * drop the lock before returning. 3795 */ 3796 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 3797 return; 3798 3799 bic->ioprio = ioprio; 3800 3801 bfqq = bic_to_bfqq(bic, false); 3802 if (bfqq) { 3803 /* release process reference on this queue */ 3804 bfq_put_queue(bfqq); 3805 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); 3806 bic_set_bfqq(bic, bfqq, false); 3807 } 3808 3809 bfqq = bic_to_bfqq(bic, true); 3810 if (bfqq) 3811 bfq_set_next_ioprio_data(bfqq, bic); 3812 } 3813 3814 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3815 struct bfq_io_cq *bic, pid_t pid, int is_sync) 3816 { 3817 RB_CLEAR_NODE(&bfqq->entity.rb_node); 3818 INIT_LIST_HEAD(&bfqq->fifo); 3819 INIT_HLIST_NODE(&bfqq->burst_list_node); 3820 3821 bfqq->ref = 0; 3822 bfqq->bfqd = bfqd; 3823 3824 if (bic) 3825 bfq_set_next_ioprio_data(bfqq, bic); 3826 3827 if (is_sync) { 3828 if (!bfq_class_idle(bfqq)) 3829 bfq_mark_bfqq_idle_window(bfqq); 3830 bfq_mark_bfqq_sync(bfqq); 3831 bfq_mark_bfqq_just_created(bfqq); 3832 } else 3833 bfq_clear_bfqq_sync(bfqq); 3834 3835 /* set end request to minus infinity from now */ 3836 bfqq->ttime.last_end_request = ktime_get_ns() + 1; 3837 3838 bfq_mark_bfqq_IO_bound(bfqq); 3839 3840 bfqq->pid = pid; 3841 3842 /* Tentative initial value to trade off between thr and lat */ 3843 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 3844 bfqq->budget_timeout = bfq_smallest_from_now(); 3845 3846 bfqq->wr_coeff = 1; 3847 bfqq->last_wr_start_finish = jiffies; 3848 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 3849 bfqq->split_time = bfq_smallest_from_now(); 3850 3851 /* 3852 * Set to the value for which bfqq will not be deemed as 3853 * soft rt when it becomes backlogged. 3854 */ 3855 bfqq->soft_rt_next_start = bfq_greatest_from_now(); 3856 3857 /* first request is almost certainly seeky */ 3858 bfqq->seek_history = 1; 3859 } 3860 3861 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 3862 struct bfq_group *bfqg, 3863 int ioprio_class, int ioprio) 3864 { 3865 switch (ioprio_class) { 3866 case IOPRIO_CLASS_RT: 3867 return &bfqg->async_bfqq[0][ioprio]; 3868 case IOPRIO_CLASS_NONE: 3869 ioprio = IOPRIO_NORM; 3870 /* fall through */ 3871 case IOPRIO_CLASS_BE: 3872 return &bfqg->async_bfqq[1][ioprio]; 3873 case IOPRIO_CLASS_IDLE: 3874 return &bfqg->async_idle_bfqq; 3875 default: 3876 return NULL; 3877 } 3878 } 3879 3880 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3881 struct bio *bio, bool is_sync, 3882 struct bfq_io_cq *bic) 3883 { 3884 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3885 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3886 struct bfq_queue **async_bfqq = NULL; 3887 struct bfq_queue *bfqq; 3888 struct bfq_group *bfqg; 3889 3890 rcu_read_lock(); 3891 3892 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); 3893 if (!bfqg) { 3894 bfqq = &bfqd->oom_bfqq; 3895 goto out; 3896 } 3897 3898 if (!is_sync) { 3899 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 3900 ioprio); 3901 bfqq = *async_bfqq; 3902 if (bfqq) 3903 goto out; 3904 } 3905 3906 bfqq = kmem_cache_alloc_node(bfq_pool, 3907 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3908 bfqd->queue->node); 3909 3910 if (bfqq) { 3911 bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 3912 is_sync); 3913 bfq_init_entity(&bfqq->entity, bfqg); 3914 bfq_log_bfqq(bfqd, bfqq, "allocated"); 3915 } else { 3916 bfqq = &bfqd->oom_bfqq; 3917 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 3918 goto out; 3919 } 3920 3921 /* 3922 * Pin the queue now that it's allocated, scheduler exit will 3923 * prune it. 3924 */ 3925 if (async_bfqq) { 3926 bfqq->ref++; /* 3927 * Extra group reference, w.r.t. sync 3928 * queue. This extra reference is removed 3929 * only if bfqq->bfqg disappears, to 3930 * guarantee that this queue is not freed 3931 * until its group goes away. 3932 */ 3933 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 3934 bfqq, bfqq->ref); 3935 *async_bfqq = bfqq; 3936 } 3937 3938 out: 3939 bfqq->ref++; /* get a process reference to this queue */ 3940 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); 3941 rcu_read_unlock(); 3942 return bfqq; 3943 } 3944 3945 static void bfq_update_io_thinktime(struct bfq_data *bfqd, 3946 struct bfq_queue *bfqq) 3947 { 3948 struct bfq_ttime *ttime = &bfqq->ttime; 3949 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 3950 3951 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 3952 3953 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; 3954 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3955 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3956 ttime->ttime_samples); 3957 } 3958 3959 static void 3960 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3961 struct request *rq) 3962 { 3963 bfqq->seek_history <<= 1; 3964 bfqq->seek_history |= 3965 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && 3966 (!blk_queue_nonrot(bfqd->queue) || 3967 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); 3968 } 3969 3970 /* 3971 * Disable idle window if the process thinks too long or seeks so much that 3972 * it doesn't matter. 3973 */ 3974 static void bfq_update_idle_window(struct bfq_data *bfqd, 3975 struct bfq_queue *bfqq, 3976 struct bfq_io_cq *bic) 3977 { 3978 int enable_idle; 3979 3980 /* Don't idle for async or idle io prio class. */ 3981 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) 3982 return; 3983 3984 /* Idle window just restored, statistics are meaningless. */ 3985 if (time_is_after_eq_jiffies(bfqq->split_time + 3986 bfqd->bfq_wr_min_idle_time)) 3987 return; 3988 3989 enable_idle = bfq_bfqq_idle_window(bfqq); 3990 3991 if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 3992 bfqd->bfq_slice_idle == 0 || 3993 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) && 3994 bfqq->wr_coeff == 1)) 3995 enable_idle = 0; 3996 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { 3997 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle && 3998 bfqq->wr_coeff == 1) 3999 enable_idle = 0; 4000 else 4001 enable_idle = 1; 4002 } 4003 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", 4004 enable_idle); 4005 4006 if (enable_idle) 4007 bfq_mark_bfqq_idle_window(bfqq); 4008 else 4009 bfq_clear_bfqq_idle_window(bfqq); 4010 } 4011 4012 /* 4013 * Called when a new fs request (rq) is added to bfqq. Check if there's 4014 * something we should do about it. 4015 */ 4016 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4017 struct request *rq) 4018 { 4019 struct bfq_io_cq *bic = RQ_BIC(rq); 4020 4021 if (rq->cmd_flags & REQ_META) 4022 bfqq->meta_pending++; 4023 4024 bfq_update_io_thinktime(bfqd, bfqq); 4025 bfq_update_io_seektime(bfqd, bfqq, rq); 4026 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || 4027 !BFQQ_SEEKY(bfqq)) 4028 bfq_update_idle_window(bfqd, bfqq, bic); 4029 4030 bfq_log_bfqq(bfqd, bfqq, 4031 "rq_enqueued: idle_window=%d (seeky %d)", 4032 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); 4033 4034 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4035 4036 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 4037 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 4038 blk_rq_sectors(rq) < 32; 4039 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 4040 4041 /* 4042 * There is just this request queued: if the request 4043 * is small and the queue is not to be expired, then 4044 * just exit. 4045 * 4046 * In this way, if the device is being idled to wait 4047 * for a new request from the in-service queue, we 4048 * avoid unplugging the device and committing the 4049 * device to serve just a small request. On the 4050 * contrary, we wait for the block layer to decide 4051 * when to unplug the device: hopefully, new requests 4052 * will be merged to this one quickly, then the device 4053 * will be unplugged and larger requests will be 4054 * dispatched. 4055 */ 4056 if (small_req && !budget_timeout) 4057 return; 4058 4059 /* 4060 * A large enough request arrived, or the queue is to 4061 * be expired: in both cases disk idling is to be 4062 * stopped, so clear wait_request flag and reset 4063 * timer. 4064 */ 4065 bfq_clear_bfqq_wait_request(bfqq); 4066 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 4067 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 4068 4069 /* 4070 * The queue is not empty, because a new request just 4071 * arrived. Hence we can safely expire the queue, in 4072 * case of budget timeout, without risking that the 4073 * timestamps of the queue are not updated correctly. 4074 * See [1] for more details. 4075 */ 4076 if (budget_timeout) 4077 bfq_bfqq_expire(bfqd, bfqq, false, 4078 BFQQE_BUDGET_TIMEOUT); 4079 } 4080 } 4081 4082 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 4083 { 4084 struct bfq_queue *bfqq = RQ_BFQQ(rq), 4085 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true); 4086 4087 if (new_bfqq) { 4088 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq) 4089 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1); 4090 /* 4091 * Release the request's reference to the old bfqq 4092 * and make sure one is taken to the shared queue. 4093 */ 4094 new_bfqq->allocated++; 4095 bfqq->allocated--; 4096 new_bfqq->ref++; 4097 bfq_clear_bfqq_just_created(bfqq); 4098 /* 4099 * If the bic associated with the process 4100 * issuing this request still points to bfqq 4101 * (and thus has not been already redirected 4102 * to new_bfqq or even some other bfq_queue), 4103 * then complete the merge and redirect it to 4104 * new_bfqq. 4105 */ 4106 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq) 4107 bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 4108 bfqq, new_bfqq); 4109 /* 4110 * rq is about to be enqueued into new_bfqq, 4111 * release rq reference on bfqq 4112 */ 4113 bfq_put_queue(bfqq); 4114 rq->elv.priv[1] = new_bfqq; 4115 bfqq = new_bfqq; 4116 } 4117 4118 bfq_add_request(rq); 4119 4120 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 4121 list_add_tail(&rq->queuelist, &bfqq->fifo); 4122 4123 bfq_rq_enqueued(bfqd, bfqq, rq); 4124 } 4125 4126 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 4127 bool at_head) 4128 { 4129 struct request_queue *q = hctx->queue; 4130 struct bfq_data *bfqd = q->elevator->elevator_data; 4131 4132 spin_lock_irq(&bfqd->lock); 4133 if (blk_mq_sched_try_insert_merge(q, rq)) { 4134 spin_unlock_irq(&bfqd->lock); 4135 return; 4136 } 4137 4138 spin_unlock_irq(&bfqd->lock); 4139 4140 blk_mq_sched_request_inserted(rq); 4141 4142 spin_lock_irq(&bfqd->lock); 4143 if (at_head || blk_rq_is_passthrough(rq)) { 4144 if (at_head) 4145 list_add(&rq->queuelist, &bfqd->dispatch); 4146 else 4147 list_add_tail(&rq->queuelist, &bfqd->dispatch); 4148 } else { 4149 __bfq_insert_request(bfqd, rq); 4150 4151 if (rq_mergeable(rq)) { 4152 elv_rqhash_add(q, rq); 4153 if (!q->last_merge) 4154 q->last_merge = rq; 4155 } 4156 } 4157 4158 spin_unlock_irq(&bfqd->lock); 4159 } 4160 4161 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 4162 struct list_head *list, bool at_head) 4163 { 4164 while (!list_empty(list)) { 4165 struct request *rq; 4166 4167 rq = list_first_entry(list, struct request, queuelist); 4168 list_del_init(&rq->queuelist); 4169 bfq_insert_request(hctx, rq, at_head); 4170 } 4171 } 4172 4173 static void bfq_update_hw_tag(struct bfq_data *bfqd) 4174 { 4175 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 4176 bfqd->rq_in_driver); 4177 4178 if (bfqd->hw_tag == 1) 4179 return; 4180 4181 /* 4182 * This sample is valid if the number of outstanding requests 4183 * is large enough to allow a queueing behavior. Note that the 4184 * sum is not exact, as it's not taking into account deactivated 4185 * requests. 4186 */ 4187 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) 4188 return; 4189 4190 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 4191 return; 4192 4193 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 4194 bfqd->max_rq_in_driver = 0; 4195 bfqd->hw_tag_samples = 0; 4196 } 4197 4198 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 4199 { 4200 u64 now_ns; 4201 u32 delta_us; 4202 4203 bfq_update_hw_tag(bfqd); 4204 4205 bfqd->rq_in_driver--; 4206 bfqq->dispatched--; 4207 4208 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 4209 /* 4210 * Set budget_timeout (which we overload to store the 4211 * time at which the queue remains with no backlog and 4212 * no outstanding request; used by the weight-raising 4213 * mechanism). 4214 */ 4215 bfqq->budget_timeout = jiffies; 4216 4217 bfq_weights_tree_remove(bfqd, &bfqq->entity, 4218 &bfqd->queue_weights_tree); 4219 } 4220 4221 now_ns = ktime_get_ns(); 4222 4223 bfqq->ttime.last_end_request = now_ns; 4224 4225 /* 4226 * Using us instead of ns, to get a reasonable precision in 4227 * computing rate in next check. 4228 */ 4229 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 4230 4231 /* 4232 * If the request took rather long to complete, and, according 4233 * to the maximum request size recorded, this completion latency 4234 * implies that the request was certainly served at a very low 4235 * rate (less than 1M sectors/sec), then the whole observation 4236 * interval that lasts up to this time instant cannot be a 4237 * valid time interval for computing a new peak rate. Invoke 4238 * bfq_update_rate_reset to have the following three steps 4239 * taken: 4240 * - close the observation interval at the last (previous) 4241 * request dispatch or completion 4242 * - compute rate, if possible, for that observation interval 4243 * - reset to zero samples, which will trigger a proper 4244 * re-initialization of the observation interval on next 4245 * dispatch 4246 */ 4247 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 4248 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 4249 1UL<<(BFQ_RATE_SHIFT - 10)) 4250 bfq_update_rate_reset(bfqd, NULL); 4251 bfqd->last_completion = now_ns; 4252 4253 /* 4254 * If we are waiting to discover whether the request pattern 4255 * of the task associated with the queue is actually 4256 * isochronous, and both requisites for this condition to hold 4257 * are now satisfied, then compute soft_rt_next_start (see the 4258 * comments on the function bfq_bfqq_softrt_next_start()). We 4259 * schedule this delayed check when bfqq expires, if it still 4260 * has in-flight requests. 4261 */ 4262 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 4263 RB_EMPTY_ROOT(&bfqq->sort_list)) 4264 bfqq->soft_rt_next_start = 4265 bfq_bfqq_softrt_next_start(bfqd, bfqq); 4266 4267 /* 4268 * If this is the in-service queue, check if it needs to be expired, 4269 * or if we want to idle in case it has no pending requests. 4270 */ 4271 if (bfqd->in_service_queue == bfqq) { 4272 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { 4273 bfq_arm_slice_timer(bfqd); 4274 return; 4275 } else if (bfq_may_expire_for_budg_timeout(bfqq)) 4276 bfq_bfqq_expire(bfqd, bfqq, false, 4277 BFQQE_BUDGET_TIMEOUT); 4278 else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 4279 (bfqq->dispatched == 0 || 4280 !bfq_bfqq_may_idle(bfqq))) 4281 bfq_bfqq_expire(bfqd, bfqq, false, 4282 BFQQE_NO_MORE_REQUESTS); 4283 } 4284 } 4285 4286 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) 4287 { 4288 bfqq->allocated--; 4289 4290 bfq_put_queue(bfqq); 4291 } 4292 4293 static void bfq_put_rq_private(struct request_queue *q, struct request *rq) 4294 { 4295 struct bfq_queue *bfqq = RQ_BFQQ(rq); 4296 struct bfq_data *bfqd = bfqq->bfqd; 4297 4298 if (rq->rq_flags & RQF_STARTED) 4299 bfqg_stats_update_completion(bfqq_group(bfqq), 4300 rq_start_time_ns(rq), 4301 rq_io_start_time_ns(rq), 4302 rq->cmd_flags); 4303 4304 if (likely(rq->rq_flags & RQF_STARTED)) { 4305 unsigned long flags; 4306 4307 spin_lock_irqsave(&bfqd->lock, flags); 4308 4309 bfq_completed_request(bfqq, bfqd); 4310 bfq_put_rq_priv_body(bfqq); 4311 4312 spin_unlock_irqrestore(&bfqd->lock, flags); 4313 } else { 4314 /* 4315 * Request rq may be still/already in the scheduler, 4316 * in which case we need to remove it. And we cannot 4317 * defer such a check and removal, to avoid 4318 * inconsistencies in the time interval from the end 4319 * of this function to the start of the deferred work. 4320 * This situation seems to occur only in process 4321 * context, as a consequence of a merge. In the 4322 * current version of the code, this implies that the 4323 * lock is held. 4324 */ 4325 4326 if (!RB_EMPTY_NODE(&rq->rb_node)) 4327 bfq_remove_request(q, rq); 4328 bfq_put_rq_priv_body(bfqq); 4329 } 4330 4331 rq->elv.priv[0] = NULL; 4332 rq->elv.priv[1] = NULL; 4333 } 4334 4335 /* 4336 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 4337 * was the last process referring to that bfqq. 4338 */ 4339 static struct bfq_queue * 4340 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 4341 { 4342 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 4343 4344 if (bfqq_process_refs(bfqq) == 1) { 4345 bfqq->pid = current->pid; 4346 bfq_clear_bfqq_coop(bfqq); 4347 bfq_clear_bfqq_split_coop(bfqq); 4348 return bfqq; 4349 } 4350 4351 bic_set_bfqq(bic, NULL, 1); 4352 4353 bfq_put_cooperator(bfqq); 4354 4355 bfq_put_queue(bfqq); 4356 return NULL; 4357 } 4358 4359 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 4360 struct bfq_io_cq *bic, 4361 struct bio *bio, 4362 bool split, bool is_sync, 4363 bool *new_queue) 4364 { 4365 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 4366 4367 if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 4368 return bfqq; 4369 4370 if (new_queue) 4371 *new_queue = true; 4372 4373 if (bfqq) 4374 bfq_put_queue(bfqq); 4375 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); 4376 4377 bic_set_bfqq(bic, bfqq, is_sync); 4378 if (split && is_sync) { 4379 if ((bic->was_in_burst_list && bfqd->large_burst) || 4380 bic->saved_in_large_burst) 4381 bfq_mark_bfqq_in_large_burst(bfqq); 4382 else { 4383 bfq_clear_bfqq_in_large_burst(bfqq); 4384 if (bic->was_in_burst_list) 4385 hlist_add_head(&bfqq->burst_list_node, 4386 &bfqd->burst_list); 4387 } 4388 bfqq->split_time = jiffies; 4389 } 4390 4391 return bfqq; 4392 } 4393 4394 /* 4395 * Allocate bfq data structures associated with this request. 4396 */ 4397 static int bfq_get_rq_private(struct request_queue *q, struct request *rq, 4398 struct bio *bio) 4399 { 4400 struct bfq_data *bfqd = q->elevator->elevator_data; 4401 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); 4402 const int is_sync = rq_is_sync(rq); 4403 struct bfq_queue *bfqq; 4404 bool new_queue = false; 4405 bool split = false; 4406 4407 spin_lock_irq(&bfqd->lock); 4408 4409 if (!bic) 4410 goto queue_fail; 4411 4412 bfq_check_ioprio_change(bic, bio); 4413 4414 bfq_bic_update_cgroup(bic, bio); 4415 4416 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 4417 &new_queue); 4418 4419 if (likely(!new_queue)) { 4420 /* If the queue was seeky for too long, break it apart. */ 4421 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) { 4422 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq"); 4423 4424 /* Update bic before losing reference to bfqq */ 4425 if (bfq_bfqq_in_large_burst(bfqq)) 4426 bic->saved_in_large_burst = true; 4427 4428 bfqq = bfq_split_bfqq(bic, bfqq); 4429 split = true; 4430 4431 if (!bfqq) 4432 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 4433 true, is_sync, 4434 NULL); 4435 } 4436 } 4437 4438 bfqq->allocated++; 4439 bfqq->ref++; 4440 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 4441 rq, bfqq, bfqq->ref); 4442 4443 rq->elv.priv[0] = bic; 4444 rq->elv.priv[1] = bfqq; 4445 4446 /* 4447 * If a bfq_queue has only one process reference, it is owned 4448 * by only this bic: we can then set bfqq->bic = bic. in 4449 * addition, if the queue has also just been split, we have to 4450 * resume its state. 4451 */ 4452 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 4453 bfqq->bic = bic; 4454 if (split) { 4455 /* 4456 * The queue has just been split from a shared 4457 * queue: restore the idle window and the 4458 * possible weight raising period. 4459 */ 4460 bfq_bfqq_resume_state(bfqq, bic); 4461 } 4462 } 4463 4464 if (unlikely(bfq_bfqq_just_created(bfqq))) 4465 bfq_handle_burst(bfqd, bfqq); 4466 4467 spin_unlock_irq(&bfqd->lock); 4468 4469 return 0; 4470 4471 queue_fail: 4472 spin_unlock_irq(&bfqd->lock); 4473 4474 return 1; 4475 } 4476 4477 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) 4478 { 4479 struct bfq_data *bfqd = bfqq->bfqd; 4480 enum bfqq_expiration reason; 4481 unsigned long flags; 4482 4483 spin_lock_irqsave(&bfqd->lock, flags); 4484 bfq_clear_bfqq_wait_request(bfqq); 4485 4486 if (bfqq != bfqd->in_service_queue) { 4487 spin_unlock_irqrestore(&bfqd->lock, flags); 4488 return; 4489 } 4490 4491 if (bfq_bfqq_budget_timeout(bfqq)) 4492 /* 4493 * Also here the queue can be safely expired 4494 * for budget timeout without wasting 4495 * guarantees 4496 */ 4497 reason = BFQQE_BUDGET_TIMEOUT; 4498 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 4499 /* 4500 * The queue may not be empty upon timer expiration, 4501 * because we may not disable the timer when the 4502 * first request of the in-service queue arrives 4503 * during disk idling. 4504 */ 4505 reason = BFQQE_TOO_IDLE; 4506 else 4507 goto schedule_dispatch; 4508 4509 bfq_bfqq_expire(bfqd, bfqq, true, reason); 4510 4511 schedule_dispatch: 4512 spin_unlock_irqrestore(&bfqd->lock, flags); 4513 bfq_schedule_dispatch(bfqd); 4514 } 4515 4516 /* 4517 * Handler of the expiration of the timer running if the in-service queue 4518 * is idling inside its time slice. 4519 */ 4520 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 4521 { 4522 struct bfq_data *bfqd = container_of(timer, struct bfq_data, 4523 idle_slice_timer); 4524 struct bfq_queue *bfqq = bfqd->in_service_queue; 4525 4526 /* 4527 * Theoretical race here: the in-service queue can be NULL or 4528 * different from the queue that was idling if a new request 4529 * arrives for the current queue and there is a full dispatch 4530 * cycle that changes the in-service queue. This can hardly 4531 * happen, but in the worst case we just expire a queue too 4532 * early. 4533 */ 4534 if (bfqq) 4535 bfq_idle_slice_timer_body(bfqq); 4536 4537 return HRTIMER_NORESTART; 4538 } 4539 4540 static void __bfq_put_async_bfqq(struct bfq_data *bfqd, 4541 struct bfq_queue **bfqq_ptr) 4542 { 4543 struct bfq_queue *bfqq = *bfqq_ptr; 4544 4545 bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 4546 if (bfqq) { 4547 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 4548 4549 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 4550 bfqq, bfqq->ref); 4551 bfq_put_queue(bfqq); 4552 *bfqq_ptr = NULL; 4553 } 4554 } 4555 4556 /* 4557 * Release all the bfqg references to its async queues. If we are 4558 * deallocating the group these queues may still contain requests, so 4559 * we reparent them to the root cgroup (i.e., the only one that will 4560 * exist for sure until all the requests on a device are gone). 4561 */ 4562 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 4563 { 4564 int i, j; 4565 4566 for (i = 0; i < 2; i++) 4567 for (j = 0; j < IOPRIO_BE_NR; j++) 4568 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); 4569 4570 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); 4571 } 4572 4573 static void bfq_exit_queue(struct elevator_queue *e) 4574 { 4575 struct bfq_data *bfqd = e->elevator_data; 4576 struct bfq_queue *bfqq, *n; 4577 4578 hrtimer_cancel(&bfqd->idle_slice_timer); 4579 4580 spin_lock_irq(&bfqd->lock); 4581 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 4582 bfq_deactivate_bfqq(bfqd, bfqq, false, false); 4583 spin_unlock_irq(&bfqd->lock); 4584 4585 hrtimer_cancel(&bfqd->idle_slice_timer); 4586 4587 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4588 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); 4589 #else 4590 spin_lock_irq(&bfqd->lock); 4591 bfq_put_async_queues(bfqd, bfqd->root_group); 4592 kfree(bfqd->root_group); 4593 spin_unlock_irq(&bfqd->lock); 4594 #endif 4595 4596 kfree(bfqd); 4597 } 4598 4599 static void bfq_init_root_group(struct bfq_group *root_group, 4600 struct bfq_data *bfqd) 4601 { 4602 int i; 4603 4604 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4605 root_group->entity.parent = NULL; 4606 root_group->my_entity = NULL; 4607 root_group->bfqd = bfqd; 4608 #endif 4609 root_group->rq_pos_tree = RB_ROOT; 4610 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 4611 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 4612 root_group->sched_data.bfq_class_idle_last_service = jiffies; 4613 } 4614 4615 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 4616 { 4617 struct bfq_data *bfqd; 4618 struct elevator_queue *eq; 4619 4620 eq = elevator_alloc(q, e); 4621 if (!eq) 4622 return -ENOMEM; 4623 4624 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 4625 if (!bfqd) { 4626 kobject_put(&eq->kobj); 4627 return -ENOMEM; 4628 } 4629 eq->elevator_data = bfqd; 4630 4631 spin_lock_irq(q->queue_lock); 4632 q->elevator = eq; 4633 spin_unlock_irq(q->queue_lock); 4634 4635 /* 4636 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 4637 * Grab a permanent reference to it, so that the normal code flow 4638 * will not attempt to free it. 4639 */ 4640 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); 4641 bfqd->oom_bfqq.ref++; 4642 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 4643 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 4644 bfqd->oom_bfqq.entity.new_weight = 4645 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 4646 4647 /* oom_bfqq does not participate to bursts */ 4648 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 4649 4650 /* 4651 * Trigger weight initialization, according to ioprio, at the 4652 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 4653 * class won't be changed any more. 4654 */ 4655 bfqd->oom_bfqq.entity.prio_changed = 1; 4656 4657 bfqd->queue = q; 4658 4659 INIT_LIST_HEAD(&bfqd->dispatch); 4660 4661 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 4662 HRTIMER_MODE_REL); 4663 bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 4664 4665 bfqd->queue_weights_tree = RB_ROOT; 4666 bfqd->group_weights_tree = RB_ROOT; 4667 4668 INIT_LIST_HEAD(&bfqd->active_list); 4669 INIT_LIST_HEAD(&bfqd->idle_list); 4670 INIT_HLIST_HEAD(&bfqd->burst_list); 4671 4672 bfqd->hw_tag = -1; 4673 4674 bfqd->bfq_max_budget = bfq_default_max_budget; 4675 4676 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 4677 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 4678 bfqd->bfq_back_max = bfq_back_max; 4679 bfqd->bfq_back_penalty = bfq_back_penalty; 4680 bfqd->bfq_slice_idle = bfq_slice_idle; 4681 bfqd->bfq_timeout = bfq_timeout; 4682 4683 bfqd->bfq_requests_within_timer = 120; 4684 4685 bfqd->bfq_large_burst_thresh = 8; 4686 bfqd->bfq_burst_interval = msecs_to_jiffies(180); 4687 4688 bfqd->low_latency = true; 4689 4690 /* 4691 * Trade-off between responsiveness and fairness. 4692 */ 4693 bfqd->bfq_wr_coeff = 30; 4694 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 4695 bfqd->bfq_wr_max_time = 0; 4696 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 4697 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 4698 bfqd->bfq_wr_max_softrt_rate = 7000; /* 4699 * Approximate rate required 4700 * to playback or record a 4701 * high-definition compressed 4702 * video. 4703 */ 4704 bfqd->wr_busy_queues = 0; 4705 4706 /* 4707 * Begin by assuming, optimistically, that the device is a 4708 * high-speed one, and that its peak rate is equal to 2/3 of 4709 * the highest reference rate. 4710 */ 4711 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * 4712 T_fast[blk_queue_nonrot(bfqd->queue)]; 4713 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 4714 bfqd->device_speed = BFQ_BFQD_FAST; 4715 4716 spin_lock_init(&bfqd->lock); 4717 4718 /* 4719 * The invocation of the next bfq_create_group_hierarchy 4720 * function is the head of a chain of function calls 4721 * (bfq_create_group_hierarchy->blkcg_activate_policy-> 4722 * blk_mq_freeze_queue) that may lead to the invocation of the 4723 * has_work hook function. For this reason, 4724 * bfq_create_group_hierarchy is invoked only after all 4725 * scheduler data has been initialized, apart from the fields 4726 * that can be initialized only after invoking 4727 * bfq_create_group_hierarchy. This, in particular, enables 4728 * has_work to correctly return false. Of course, to avoid 4729 * other inconsistencies, the blk-mq stack must then refrain 4730 * from invoking further scheduler hooks before this init 4731 * function is finished. 4732 */ 4733 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 4734 if (!bfqd->root_group) 4735 goto out_free; 4736 bfq_init_root_group(bfqd->root_group, bfqd); 4737 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 4738 4739 4740 return 0; 4741 4742 out_free: 4743 kfree(bfqd); 4744 kobject_put(&eq->kobj); 4745 return -ENOMEM; 4746 } 4747 4748 static void bfq_slab_kill(void) 4749 { 4750 kmem_cache_destroy(bfq_pool); 4751 } 4752 4753 static int __init bfq_slab_setup(void) 4754 { 4755 bfq_pool = KMEM_CACHE(bfq_queue, 0); 4756 if (!bfq_pool) 4757 return -ENOMEM; 4758 return 0; 4759 } 4760 4761 static ssize_t bfq_var_show(unsigned int var, char *page) 4762 { 4763 return sprintf(page, "%u\n", var); 4764 } 4765 4766 static ssize_t bfq_var_store(unsigned long *var, const char *page, 4767 size_t count) 4768 { 4769 unsigned long new_val; 4770 int ret = kstrtoul(page, 10, &new_val); 4771 4772 if (ret == 0) 4773 *var = new_val; 4774 4775 return count; 4776 } 4777 4778 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4779 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4780 { \ 4781 struct bfq_data *bfqd = e->elevator_data; \ 4782 u64 __data = __VAR; \ 4783 if (__CONV == 1) \ 4784 __data = jiffies_to_msecs(__data); \ 4785 else if (__CONV == 2) \ 4786 __data = div_u64(__data, NSEC_PER_MSEC); \ 4787 return bfq_var_show(__data, (page)); \ 4788 } 4789 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 4790 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 4791 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 4792 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 4793 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 4794 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 4795 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 4796 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 4797 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 4798 #undef SHOW_FUNCTION 4799 4800 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4801 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4802 { \ 4803 struct bfq_data *bfqd = e->elevator_data; \ 4804 u64 __data = __VAR; \ 4805 __data = div_u64(__data, NSEC_PER_USEC); \ 4806 return bfq_var_show(__data, (page)); \ 4807 } 4808 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 4809 #undef USEC_SHOW_FUNCTION 4810 4811 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4812 static ssize_t \ 4813 __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4814 { \ 4815 struct bfq_data *bfqd = e->elevator_data; \ 4816 unsigned long uninitialized_var(__data); \ 4817 int ret = bfq_var_store(&__data, (page), count); \ 4818 if (__data < (MIN)) \ 4819 __data = (MIN); \ 4820 else if (__data > (MAX)) \ 4821 __data = (MAX); \ 4822 if (__CONV == 1) \ 4823 *(__PTR) = msecs_to_jiffies(__data); \ 4824 else if (__CONV == 2) \ 4825 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4826 else \ 4827 *(__PTR) = __data; \ 4828 return ret; \ 4829 } 4830 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 4831 INT_MAX, 2); 4832 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 4833 INT_MAX, 2); 4834 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 4835 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 4836 INT_MAX, 0); 4837 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 4838 #undef STORE_FUNCTION 4839 4840 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4841 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 4842 { \ 4843 struct bfq_data *bfqd = e->elevator_data; \ 4844 unsigned long uninitialized_var(__data); \ 4845 int ret = bfq_var_store(&__data, (page), count); \ 4846 if (__data < (MIN)) \ 4847 __data = (MIN); \ 4848 else if (__data > (MAX)) \ 4849 __data = (MAX); \ 4850 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4851 return ret; \ 4852 } 4853 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 4854 UINT_MAX); 4855 #undef USEC_STORE_FUNCTION 4856 4857 static ssize_t bfq_max_budget_store(struct elevator_queue *e, 4858 const char *page, size_t count) 4859 { 4860 struct bfq_data *bfqd = e->elevator_data; 4861 unsigned long uninitialized_var(__data); 4862 int ret = bfq_var_store(&__data, (page), count); 4863 4864 if (__data == 0) 4865 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4866 else { 4867 if (__data > INT_MAX) 4868 __data = INT_MAX; 4869 bfqd->bfq_max_budget = __data; 4870 } 4871 4872 bfqd->bfq_user_max_budget = __data; 4873 4874 return ret; 4875 } 4876 4877 /* 4878 * Leaving this name to preserve name compatibility with cfq 4879 * parameters, but this timeout is used for both sync and async. 4880 */ 4881 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 4882 const char *page, size_t count) 4883 { 4884 struct bfq_data *bfqd = e->elevator_data; 4885 unsigned long uninitialized_var(__data); 4886 int ret = bfq_var_store(&__data, (page), count); 4887 4888 if (__data < 1) 4889 __data = 1; 4890 else if (__data > INT_MAX) 4891 __data = INT_MAX; 4892 4893 bfqd->bfq_timeout = msecs_to_jiffies(__data); 4894 if (bfqd->bfq_user_max_budget == 0) 4895 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4896 4897 return ret; 4898 } 4899 4900 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 4901 const char *page, size_t count) 4902 { 4903 struct bfq_data *bfqd = e->elevator_data; 4904 unsigned long uninitialized_var(__data); 4905 int ret = bfq_var_store(&__data, (page), count); 4906 4907 if (__data > 1) 4908 __data = 1; 4909 if (!bfqd->strict_guarantees && __data == 1 4910 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 4911 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 4912 4913 bfqd->strict_guarantees = __data; 4914 4915 return ret; 4916 } 4917 4918 static ssize_t bfq_low_latency_store(struct elevator_queue *e, 4919 const char *page, size_t count) 4920 { 4921 struct bfq_data *bfqd = e->elevator_data; 4922 unsigned long uninitialized_var(__data); 4923 int ret = bfq_var_store(&__data, (page), count); 4924 4925 if (__data > 1) 4926 __data = 1; 4927 if (__data == 0 && bfqd->low_latency != 0) 4928 bfq_end_wr(bfqd); 4929 bfqd->low_latency = __data; 4930 4931 return ret; 4932 } 4933 4934 #define BFQ_ATTR(name) \ 4935 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 4936 4937 static struct elv_fs_entry bfq_attrs[] = { 4938 BFQ_ATTR(fifo_expire_sync), 4939 BFQ_ATTR(fifo_expire_async), 4940 BFQ_ATTR(back_seek_max), 4941 BFQ_ATTR(back_seek_penalty), 4942 BFQ_ATTR(slice_idle), 4943 BFQ_ATTR(slice_idle_us), 4944 BFQ_ATTR(max_budget), 4945 BFQ_ATTR(timeout_sync), 4946 BFQ_ATTR(strict_guarantees), 4947 BFQ_ATTR(low_latency), 4948 __ATTR_NULL 4949 }; 4950 4951 static struct elevator_type iosched_bfq_mq = { 4952 .ops.mq = { 4953 .get_rq_priv = bfq_get_rq_private, 4954 .put_rq_priv = bfq_put_rq_private, 4955 .exit_icq = bfq_exit_icq, 4956 .insert_requests = bfq_insert_requests, 4957 .dispatch_request = bfq_dispatch_request, 4958 .next_request = elv_rb_latter_request, 4959 .former_request = elv_rb_former_request, 4960 .allow_merge = bfq_allow_bio_merge, 4961 .bio_merge = bfq_bio_merge, 4962 .request_merge = bfq_request_merge, 4963 .requests_merged = bfq_requests_merged, 4964 .request_merged = bfq_request_merged, 4965 .has_work = bfq_has_work, 4966 .init_sched = bfq_init_queue, 4967 .exit_sched = bfq_exit_queue, 4968 }, 4969 4970 .uses_mq = true, 4971 .icq_size = sizeof(struct bfq_io_cq), 4972 .icq_align = __alignof__(struct bfq_io_cq), 4973 .elevator_attrs = bfq_attrs, 4974 .elevator_name = "bfq", 4975 .elevator_owner = THIS_MODULE, 4976 }; 4977 4978 static int __init bfq_init(void) 4979 { 4980 int ret; 4981 4982 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4983 ret = blkcg_policy_register(&blkcg_policy_bfq); 4984 if (ret) 4985 return ret; 4986 #endif 4987 4988 ret = -ENOMEM; 4989 if (bfq_slab_setup()) 4990 goto err_pol_unreg; 4991 4992 /* 4993 * Times to load large popular applications for the typical 4994 * systems installed on the reference devices (see the 4995 * comments before the definitions of the next two 4996 * arrays). Actually, we use slightly slower values, as the 4997 * estimated peak rate tends to be smaller than the actual 4998 * peak rate. The reason for this last fact is that estimates 4999 * are computed over much shorter time intervals than the long 5000 * intervals typically used for benchmarking. Why? First, to 5001 * adapt more quickly to variations. Second, because an I/O 5002 * scheduler cannot rely on a peak-rate-evaluation workload to 5003 * be run for a long time. 5004 */ 5005 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ 5006 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ 5007 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 5008 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 5009 5010 /* 5011 * Thresholds that determine the switch between speed classes 5012 * (see the comments before the definition of the array 5013 * device_speed_thresh). These thresholds are biased towards 5014 * transitions to the fast class. This is safer than the 5015 * opposite bias. In fact, a wrong transition to the slow 5016 * class results in short weight-raising periods, because the 5017 * speed of the device then tends to be higher that the 5018 * reference peak rate. On the opposite end, a wrong 5019 * transition to the fast class tends to increase 5020 * weight-raising periods, because of the opposite reason. 5021 */ 5022 device_speed_thresh[0] = (4 * R_slow[0]) / 3; 5023 device_speed_thresh[1] = (4 * R_slow[1]) / 3; 5024 5025 ret = elv_register(&iosched_bfq_mq); 5026 if (ret) 5027 goto err_pol_unreg; 5028 5029 return 0; 5030 5031 err_pol_unreg: 5032 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5033 blkcg_policy_unregister(&blkcg_policy_bfq); 5034 #endif 5035 return ret; 5036 } 5037 5038 static void __exit bfq_exit(void) 5039 { 5040 elv_unregister(&iosched_bfq_mq); 5041 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5042 blkcg_policy_unregister(&blkcg_policy_bfq); 5043 #endif 5044 bfq_slab_kill(); 5045 } 5046 5047 module_init(bfq_init); 5048 module_exit(bfq_exit); 5049 5050 MODULE_AUTHOR("Paolo Valente"); 5051 MODULE_LICENSE("GPL"); 5052 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 5053