xref: /openbmc/linux/block/bfq-iosched.c (revision 987abe82)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-sched.h"
133 #include "bfq-iosched.h"
134 #include "blk-wbt.h"
135 
136 #define BFQ_BFQQ_FNS(name)						\
137 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
138 {									\
139 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
140 }									\
141 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
142 {									\
143 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
144 }									\
145 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
146 {									\
147 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
148 }
149 
150 BFQ_BFQQ_FNS(just_created);
151 BFQ_BFQQ_FNS(busy);
152 BFQ_BFQQ_FNS(wait_request);
153 BFQ_BFQQ_FNS(non_blocking_wait_rq);
154 BFQ_BFQQ_FNS(fifo_expire);
155 BFQ_BFQQ_FNS(has_short_ttime);
156 BFQ_BFQQ_FNS(sync);
157 BFQ_BFQQ_FNS(IO_bound);
158 BFQ_BFQQ_FNS(in_large_burst);
159 BFQ_BFQQ_FNS(coop);
160 BFQ_BFQQ_FNS(split_coop);
161 BFQ_BFQQ_FNS(softrt_update);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of async (0) and sync (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 /*
367  * Maximum time between the creation of two queues, for stable merge
368  * to be activated (in ms)
369  */
370 static const unsigned long bfq_activation_stable_merging = 600;
371 /*
372  * Minimum time to be waited before evaluating delayed stable merge (in ms)
373  */
374 static const unsigned long bfq_late_stable_merging = 600;
375 
376 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
377 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
378 
379 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync,
380 			      unsigned int actuator_idx)
381 {
382 	if (is_sync)
383 		return bic->bfqq[1][actuator_idx];
384 
385 	return bic->bfqq[0][actuator_idx];
386 }
387 
388 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
389 
390 void bic_set_bfqq(struct bfq_io_cq *bic,
391 		  struct bfq_queue *bfqq,
392 		  bool is_sync,
393 		  unsigned int actuator_idx)
394 {
395 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync][actuator_idx];
396 
397 	/*
398 	 * If bfqq != NULL, then a non-stable queue merge between
399 	 * bic->bfqq and bfqq is happening here. This causes troubles
400 	 * in the following case: bic->bfqq has also been scheduled
401 	 * for a possible stable merge with bic->stable_merge_bfqq,
402 	 * and bic->stable_merge_bfqq == bfqq happens to
403 	 * hold. Troubles occur because bfqq may then undergo a split,
404 	 * thereby becoming eligible for a stable merge. Yet, if
405 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
406 	 * would be stably merged with itself. To avoid this anomaly,
407 	 * we cancel the stable merge if
408 	 * bic->stable_merge_bfqq == bfqq.
409 	 */
410 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[actuator_idx];
411 
412 	/* Clear bic pointer if bfqq is detached from this bic */
413 	if (old_bfqq && old_bfqq->bic == bic)
414 		old_bfqq->bic = NULL;
415 
416 	if (is_sync)
417 		bic->bfqq[1][actuator_idx] = bfqq;
418 	else
419 		bic->bfqq[0][actuator_idx] = bfqq;
420 
421 	if (bfqq && bfqq_data->stable_merge_bfqq == bfqq) {
422 		/*
423 		 * Actually, these same instructions are executed also
424 		 * in bfq_setup_cooperator, in case of abort or actual
425 		 * execution of a stable merge. We could avoid
426 		 * repeating these instructions there too, but if we
427 		 * did so, we would nest even more complexity in this
428 		 * function.
429 		 */
430 		bfq_put_stable_ref(bfqq_data->stable_merge_bfqq);
431 
432 		bfqq_data->stable_merge_bfqq = NULL;
433 	}
434 }
435 
436 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
437 {
438 	return bic->icq.q->elevator->elevator_data;
439 }
440 
441 /**
442  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
443  * @icq: the iocontext queue.
444  */
445 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
446 {
447 	/* bic->icq is the first member, %NULL will convert to %NULL */
448 	return container_of(icq, struct bfq_io_cq, icq);
449 }
450 
451 /**
452  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
453  * @q: the request queue.
454  */
455 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
456 {
457 	struct bfq_io_cq *icq;
458 	unsigned long flags;
459 
460 	if (!current->io_context)
461 		return NULL;
462 
463 	spin_lock_irqsave(&q->queue_lock, flags);
464 	icq = icq_to_bic(ioc_lookup_icq(q));
465 	spin_unlock_irqrestore(&q->queue_lock, flags);
466 
467 	return icq;
468 }
469 
470 /*
471  * Scheduler run of queue, if there are requests pending and no one in the
472  * driver that will restart queueing.
473  */
474 void bfq_schedule_dispatch(struct bfq_data *bfqd)
475 {
476 	lockdep_assert_held(&bfqd->lock);
477 
478 	if (bfqd->queued != 0) {
479 		bfq_log(bfqd, "schedule dispatch");
480 		blk_mq_run_hw_queues(bfqd->queue, true);
481 	}
482 }
483 
484 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
485 
486 #define bfq_sample_valid(samples)	((samples) > 80)
487 
488 /*
489  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
490  * We choose the request that is closer to the head right now.  Distance
491  * behind the head is penalized and only allowed to a certain extent.
492  */
493 static struct request *bfq_choose_req(struct bfq_data *bfqd,
494 				      struct request *rq1,
495 				      struct request *rq2,
496 				      sector_t last)
497 {
498 	sector_t s1, s2, d1 = 0, d2 = 0;
499 	unsigned long back_max;
500 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
501 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
502 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
503 
504 	if (!rq1 || rq1 == rq2)
505 		return rq2;
506 	if (!rq2)
507 		return rq1;
508 
509 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
510 		return rq1;
511 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
512 		return rq2;
513 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
514 		return rq1;
515 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
516 		return rq2;
517 
518 	s1 = blk_rq_pos(rq1);
519 	s2 = blk_rq_pos(rq2);
520 
521 	/*
522 	 * By definition, 1KiB is 2 sectors.
523 	 */
524 	back_max = bfqd->bfq_back_max * 2;
525 
526 	/*
527 	 * Strict one way elevator _except_ in the case where we allow
528 	 * short backward seeks which are biased as twice the cost of a
529 	 * similar forward seek.
530 	 */
531 	if (s1 >= last)
532 		d1 = s1 - last;
533 	else if (s1 + back_max >= last)
534 		d1 = (last - s1) * bfqd->bfq_back_penalty;
535 	else
536 		wrap |= BFQ_RQ1_WRAP;
537 
538 	if (s2 >= last)
539 		d2 = s2 - last;
540 	else if (s2 + back_max >= last)
541 		d2 = (last - s2) * bfqd->bfq_back_penalty;
542 	else
543 		wrap |= BFQ_RQ2_WRAP;
544 
545 	/* Found required data */
546 
547 	/*
548 	 * By doing switch() on the bit mask "wrap" we avoid having to
549 	 * check two variables for all permutations: --> faster!
550 	 */
551 	switch (wrap) {
552 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
553 		if (d1 < d2)
554 			return rq1;
555 		else if (d2 < d1)
556 			return rq2;
557 
558 		if (s1 >= s2)
559 			return rq1;
560 		else
561 			return rq2;
562 
563 	case BFQ_RQ2_WRAP:
564 		return rq1;
565 	case BFQ_RQ1_WRAP:
566 		return rq2;
567 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
568 	default:
569 		/*
570 		 * Since both rqs are wrapped,
571 		 * start with the one that's further behind head
572 		 * (--> only *one* back seek required),
573 		 * since back seek takes more time than forward.
574 		 */
575 		if (s1 <= s2)
576 			return rq1;
577 		else
578 			return rq2;
579 	}
580 }
581 
582 #define BFQ_LIMIT_INLINE_DEPTH 16
583 
584 #ifdef CONFIG_BFQ_GROUP_IOSCHED
585 static bool bfqq_request_over_limit(struct bfq_data *bfqd,
586 				    struct bfq_io_cq *bic, blk_opf_t opf,
587 				    unsigned int act_idx, int limit)
588 {
589 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
590 	struct bfq_entity **entities = inline_entities;
591 	int alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
592 	struct bfq_sched_data *sched_data;
593 	struct bfq_entity *entity;
594 	struct bfq_queue *bfqq;
595 	unsigned long wsum;
596 	bool ret = false;
597 	int depth;
598 	int level;
599 
600 retry:
601 	spin_lock_irq(&bfqd->lock);
602 	bfqq = bic_to_bfqq(bic, op_is_sync(opf), act_idx);
603 	if (!bfqq)
604 		goto out;
605 
606 	entity = &bfqq->entity;
607 	if (!entity->on_st_or_in_serv)
608 		goto out;
609 
610 	/* +1 for bfqq entity, root cgroup not included */
611 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
612 	if (depth > alloc_depth) {
613 		spin_unlock_irq(&bfqd->lock);
614 		if (entities != inline_entities)
615 			kfree(entities);
616 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
617 		if (!entities)
618 			return false;
619 		alloc_depth = depth;
620 		goto retry;
621 	}
622 
623 	sched_data = entity->sched_data;
624 	/* Gather our ancestors as we need to traverse them in reverse order */
625 	level = 0;
626 	for_each_entity(entity) {
627 		/*
628 		 * If at some level entity is not even active, allow request
629 		 * queueing so that BFQ knows there's work to do and activate
630 		 * entities.
631 		 */
632 		if (!entity->on_st_or_in_serv)
633 			goto out;
634 		/* Uh, more parents than cgroup subsystem thinks? */
635 		if (WARN_ON_ONCE(level >= depth))
636 			break;
637 		entities[level++] = entity;
638 	}
639 	WARN_ON_ONCE(level != depth);
640 	for (level--; level >= 0; level--) {
641 		entity = entities[level];
642 		if (level > 0) {
643 			wsum = bfq_entity_service_tree(entity)->wsum;
644 		} else {
645 			int i;
646 			/*
647 			 * For bfqq itself we take into account service trees
648 			 * of all higher priority classes and multiply their
649 			 * weights so that low prio queue from higher class
650 			 * gets more requests than high prio queue from lower
651 			 * class.
652 			 */
653 			wsum = 0;
654 			for (i = 0; i <= bfqq->ioprio_class - 1; i++) {
655 				wsum = wsum * IOPRIO_BE_NR +
656 					sched_data->service_tree[i].wsum;
657 			}
658 		}
659 		if (!wsum)
660 			continue;
661 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
662 		if (entity->allocated >= limit) {
663 			bfq_log_bfqq(bfqq->bfqd, bfqq,
664 				"too many requests: allocated %d limit %d level %d",
665 				entity->allocated, limit, level);
666 			ret = true;
667 			break;
668 		}
669 	}
670 out:
671 	spin_unlock_irq(&bfqd->lock);
672 	if (entities != inline_entities)
673 		kfree(entities);
674 	return ret;
675 }
676 #else
677 static bool bfqq_request_over_limit(struct bfq_data *bfqd,
678 				    struct bfq_io_cq *bic, blk_opf_t opf,
679 				    unsigned int act_idx, int limit)
680 {
681 	return false;
682 }
683 #endif
684 
685 /*
686  * Async I/O can easily starve sync I/O (both sync reads and sync
687  * writes), by consuming all tags. Similarly, storms of sync writes,
688  * such as those that sync(2) may trigger, can starve sync reads.
689  * Limit depths of async I/O and sync writes so as to counter both
690  * problems.
691  *
692  * Also if a bfq queue or its parent cgroup consume more tags than would be
693  * appropriate for their weight, we trim the available tag depth to 1. This
694  * avoids a situation where one cgroup can starve another cgroup from tags and
695  * thus block service differentiation among cgroups. Note that because the
696  * queue / cgroup already has many requests allocated and queued, this does not
697  * significantly affect service guarantees coming from the BFQ scheduling
698  * algorithm.
699  */
700 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
701 {
702 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
703 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
704 	int depth;
705 	unsigned limit = data->q->nr_requests;
706 	unsigned int act_idx;
707 
708 	/* Sync reads have full depth available */
709 	if (op_is_sync(opf) && !op_is_write(opf)) {
710 		depth = 0;
711 	} else {
712 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
713 		limit = (limit * depth) >> bfqd->full_depth_shift;
714 	}
715 
716 	for (act_idx = 0; bic && act_idx < bfqd->num_actuators; act_idx++) {
717 		/* Fast path to check if bfqq is already allocated. */
718 		if (!bic_to_bfqq(bic, op_is_sync(opf), act_idx))
719 			continue;
720 
721 		/*
722 		 * Does queue (or any parent entity) exceed number of
723 		 * requests that should be available to it? Heavily
724 		 * limit depth so that it cannot consume more
725 		 * available requests and thus starve other entities.
726 		 */
727 		if (bfqq_request_over_limit(bfqd, bic, opf, act_idx, limit)) {
728 			depth = 1;
729 			break;
730 		}
731 	}
732 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
733 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), depth);
734 	if (depth)
735 		data->shallow_depth = depth;
736 }
737 
738 static struct bfq_queue *
739 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
740 		     sector_t sector, struct rb_node **ret_parent,
741 		     struct rb_node ***rb_link)
742 {
743 	struct rb_node **p, *parent;
744 	struct bfq_queue *bfqq = NULL;
745 
746 	parent = NULL;
747 	p = &root->rb_node;
748 	while (*p) {
749 		struct rb_node **n;
750 
751 		parent = *p;
752 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
753 
754 		/*
755 		 * Sort strictly based on sector. Smallest to the left,
756 		 * largest to the right.
757 		 */
758 		if (sector > blk_rq_pos(bfqq->next_rq))
759 			n = &(*p)->rb_right;
760 		else if (sector < blk_rq_pos(bfqq->next_rq))
761 			n = &(*p)->rb_left;
762 		else
763 			break;
764 		p = n;
765 		bfqq = NULL;
766 	}
767 
768 	*ret_parent = parent;
769 	if (rb_link)
770 		*rb_link = p;
771 
772 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
773 		(unsigned long long)sector,
774 		bfqq ? bfqq->pid : 0);
775 
776 	return bfqq;
777 }
778 
779 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
780 {
781 	return bfqq->service_from_backlogged > 0 &&
782 		time_is_before_jiffies(bfqq->first_IO_time +
783 				       bfq_merge_time_limit);
784 }
785 
786 /*
787  * The following function is not marked as __cold because it is
788  * actually cold, but for the same performance goal described in the
789  * comments on the likely() at the beginning of
790  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
791  * execution time for the case where this function is not invoked, we
792  * had to add an unlikely() in each involved if().
793  */
794 void __cold
795 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
796 {
797 	struct rb_node **p, *parent;
798 	struct bfq_queue *__bfqq;
799 
800 	if (bfqq->pos_root) {
801 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
802 		bfqq->pos_root = NULL;
803 	}
804 
805 	/* oom_bfqq does not participate in queue merging */
806 	if (bfqq == &bfqd->oom_bfqq)
807 		return;
808 
809 	/*
810 	 * bfqq cannot be merged any longer (see comments in
811 	 * bfq_setup_cooperator): no point in adding bfqq into the
812 	 * position tree.
813 	 */
814 	if (bfq_too_late_for_merging(bfqq))
815 		return;
816 
817 	if (bfq_class_idle(bfqq))
818 		return;
819 	if (!bfqq->next_rq)
820 		return;
821 
822 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
823 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
824 			blk_rq_pos(bfqq->next_rq), &parent, &p);
825 	if (!__bfqq) {
826 		rb_link_node(&bfqq->pos_node, parent, p);
827 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
828 	} else
829 		bfqq->pos_root = NULL;
830 }
831 
832 /*
833  * The following function returns false either if every active queue
834  * must receive the same share of the throughput (symmetric scenario),
835  * or, as a special case, if bfqq must receive a share of the
836  * throughput lower than or equal to the share that every other active
837  * queue must receive.  If bfqq does sync I/O, then these are the only
838  * two cases where bfqq happens to be guaranteed its share of the
839  * throughput even if I/O dispatching is not plugged when bfqq remains
840  * temporarily empty (for more details, see the comments in the
841  * function bfq_better_to_idle()). For this reason, the return value
842  * of this function is used to check whether I/O-dispatch plugging can
843  * be avoided.
844  *
845  * The above first case (symmetric scenario) occurs when:
846  * 1) all active queues have the same weight,
847  * 2) all active queues belong to the same I/O-priority class,
848  * 3) all active groups at the same level in the groups tree have the same
849  *    weight,
850  * 4) all active groups at the same level in the groups tree have the same
851  *    number of children.
852  *
853  * Unfortunately, keeping the necessary state for evaluating exactly
854  * the last two symmetry sub-conditions above would be quite complex
855  * and time consuming. Therefore this function evaluates, instead,
856  * only the following stronger three sub-conditions, for which it is
857  * much easier to maintain the needed state:
858  * 1) all active queues have the same weight,
859  * 2) all active queues belong to the same I/O-priority class,
860  * 3) there is at most one active group.
861  * In particular, the last condition is always true if hierarchical
862  * support or the cgroups interface are not enabled, thus no state
863  * needs to be maintained in this case.
864  */
865 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
866 				   struct bfq_queue *bfqq)
867 {
868 	bool smallest_weight = bfqq &&
869 		bfqq->weight_counter &&
870 		bfqq->weight_counter ==
871 		container_of(
872 			rb_first_cached(&bfqd->queue_weights_tree),
873 			struct bfq_weight_counter,
874 			weights_node);
875 
876 	/*
877 	 * For queue weights to differ, queue_weights_tree must contain
878 	 * at least two nodes.
879 	 */
880 	bool varied_queue_weights = !smallest_weight &&
881 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
882 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
883 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
884 
885 	bool multiple_classes_busy =
886 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
887 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
888 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
889 
890 	return varied_queue_weights || multiple_classes_busy
891 #ifdef CONFIG_BFQ_GROUP_IOSCHED
892 	       || bfqd->num_groups_with_pending_reqs > 1
893 #endif
894 		;
895 }
896 
897 /*
898  * If the weight-counter tree passed as input contains no counter for
899  * the weight of the input queue, then add that counter; otherwise just
900  * increment the existing counter.
901  *
902  * Note that weight-counter trees contain few nodes in mostly symmetric
903  * scenarios. For example, if all queues have the same weight, then the
904  * weight-counter tree for the queues may contain at most one node.
905  * This holds even if low_latency is on, because weight-raised queues
906  * are not inserted in the tree.
907  * In most scenarios, the rate at which nodes are created/destroyed
908  * should be low too.
909  */
910 void bfq_weights_tree_add(struct bfq_queue *bfqq)
911 {
912 	struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree;
913 	struct bfq_entity *entity = &bfqq->entity;
914 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
915 	bool leftmost = true;
916 
917 	/*
918 	 * Do not insert if the queue is already associated with a
919 	 * counter, which happens if:
920 	 *   1) a request arrival has caused the queue to become both
921 	 *      non-weight-raised, and hence change its weight, and
922 	 *      backlogged; in this respect, each of the two events
923 	 *      causes an invocation of this function,
924 	 *   2) this is the invocation of this function caused by the
925 	 *      second event. This second invocation is actually useless,
926 	 *      and we handle this fact by exiting immediately. More
927 	 *      efficient or clearer solutions might possibly be adopted.
928 	 */
929 	if (bfqq->weight_counter)
930 		return;
931 
932 	while (*new) {
933 		struct bfq_weight_counter *__counter = container_of(*new,
934 						struct bfq_weight_counter,
935 						weights_node);
936 		parent = *new;
937 
938 		if (entity->weight == __counter->weight) {
939 			bfqq->weight_counter = __counter;
940 			goto inc_counter;
941 		}
942 		if (entity->weight < __counter->weight)
943 			new = &((*new)->rb_left);
944 		else {
945 			new = &((*new)->rb_right);
946 			leftmost = false;
947 		}
948 	}
949 
950 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
951 				       GFP_ATOMIC);
952 
953 	/*
954 	 * In the unlucky event of an allocation failure, we just
955 	 * exit. This will cause the weight of queue to not be
956 	 * considered in bfq_asymmetric_scenario, which, in its turn,
957 	 * causes the scenario to be deemed wrongly symmetric in case
958 	 * bfqq's weight would have been the only weight making the
959 	 * scenario asymmetric.  On the bright side, no unbalance will
960 	 * however occur when bfqq becomes inactive again (the
961 	 * invocation of this function is triggered by an activation
962 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
963 	 * if !bfqq->weight_counter.
964 	 */
965 	if (unlikely(!bfqq->weight_counter))
966 		return;
967 
968 	bfqq->weight_counter->weight = entity->weight;
969 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
970 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
971 				leftmost);
972 
973 inc_counter:
974 	bfqq->weight_counter->num_active++;
975 	bfqq->ref++;
976 }
977 
978 /*
979  * Decrement the weight counter associated with the queue, and, if the
980  * counter reaches 0, remove the counter from the tree.
981  * See the comments to the function bfq_weights_tree_add() for considerations
982  * about overhead.
983  */
984 void bfq_weights_tree_remove(struct bfq_queue *bfqq)
985 {
986 	struct rb_root_cached *root;
987 
988 	if (!bfqq->weight_counter)
989 		return;
990 
991 	root = &bfqq->bfqd->queue_weights_tree;
992 	bfqq->weight_counter->num_active--;
993 	if (bfqq->weight_counter->num_active > 0)
994 		goto reset_entity_pointer;
995 
996 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
997 	kfree(bfqq->weight_counter);
998 
999 reset_entity_pointer:
1000 	bfqq->weight_counter = NULL;
1001 	bfq_put_queue(bfqq);
1002 }
1003 
1004 /*
1005  * Return expired entry, or NULL to just start from scratch in rbtree.
1006  */
1007 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
1008 				      struct request *last)
1009 {
1010 	struct request *rq;
1011 
1012 	if (bfq_bfqq_fifo_expire(bfqq))
1013 		return NULL;
1014 
1015 	bfq_mark_bfqq_fifo_expire(bfqq);
1016 
1017 	rq = rq_entry_fifo(bfqq->fifo.next);
1018 
1019 	if (rq == last || ktime_get_ns() < rq->fifo_time)
1020 		return NULL;
1021 
1022 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1023 	return rq;
1024 }
1025 
1026 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1027 					struct bfq_queue *bfqq,
1028 					struct request *last)
1029 {
1030 	struct rb_node *rbnext = rb_next(&last->rb_node);
1031 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1032 	struct request *next, *prev = NULL;
1033 
1034 	/* Follow expired path, else get first next available. */
1035 	next = bfq_check_fifo(bfqq, last);
1036 	if (next)
1037 		return next;
1038 
1039 	if (rbprev)
1040 		prev = rb_entry_rq(rbprev);
1041 
1042 	if (rbnext)
1043 		next = rb_entry_rq(rbnext);
1044 	else {
1045 		rbnext = rb_first(&bfqq->sort_list);
1046 		if (rbnext && rbnext != &last->rb_node)
1047 			next = rb_entry_rq(rbnext);
1048 	}
1049 
1050 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1051 }
1052 
1053 /* see the definition of bfq_async_charge_factor for details */
1054 static unsigned long bfq_serv_to_charge(struct request *rq,
1055 					struct bfq_queue *bfqq)
1056 {
1057 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1058 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1059 		return blk_rq_sectors(rq);
1060 
1061 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1062 }
1063 
1064 /**
1065  * bfq_updated_next_req - update the queue after a new next_rq selection.
1066  * @bfqd: the device data the queue belongs to.
1067  * @bfqq: the queue to update.
1068  *
1069  * If the first request of a queue changes we make sure that the queue
1070  * has enough budget to serve at least its first request (if the
1071  * request has grown).  We do this because if the queue has not enough
1072  * budget for its first request, it has to go through two dispatch
1073  * rounds to actually get it dispatched.
1074  */
1075 static void bfq_updated_next_req(struct bfq_data *bfqd,
1076 				 struct bfq_queue *bfqq)
1077 {
1078 	struct bfq_entity *entity = &bfqq->entity;
1079 	struct request *next_rq = bfqq->next_rq;
1080 	unsigned long new_budget;
1081 
1082 	if (!next_rq)
1083 		return;
1084 
1085 	if (bfqq == bfqd->in_service_queue)
1086 		/*
1087 		 * In order not to break guarantees, budgets cannot be
1088 		 * changed after an entity has been selected.
1089 		 */
1090 		return;
1091 
1092 	new_budget = max_t(unsigned long,
1093 			   max_t(unsigned long, bfqq->max_budget,
1094 				 bfq_serv_to_charge(next_rq, bfqq)),
1095 			   entity->service);
1096 	if (entity->budget != new_budget) {
1097 		entity->budget = new_budget;
1098 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1099 					 new_budget);
1100 		bfq_requeue_bfqq(bfqd, bfqq, false);
1101 	}
1102 }
1103 
1104 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1105 {
1106 	u64 dur;
1107 
1108 	dur = bfqd->rate_dur_prod;
1109 	do_div(dur, bfqd->peak_rate);
1110 
1111 	/*
1112 	 * Limit duration between 3 and 25 seconds. The upper limit
1113 	 * has been conservatively set after the following worst case:
1114 	 * on a QEMU/KVM virtual machine
1115 	 * - running in a slow PC
1116 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1117 	 * - serving a heavy I/O workload, such as the sequential reading
1118 	 *   of several files
1119 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1120 	 *
1121 	 * As for higher values than that accommodating the above bad
1122 	 * scenario, tests show that higher values would often yield
1123 	 * the opposite of the desired result, i.e., would worsen
1124 	 * responsiveness by allowing non-interactive applications to
1125 	 * preserve weight raising for too long.
1126 	 *
1127 	 * On the other end, lower values than 3 seconds make it
1128 	 * difficult for most interactive tasks to complete their jobs
1129 	 * before weight-raising finishes.
1130 	 */
1131 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1132 }
1133 
1134 /* switch back from soft real-time to interactive weight raising */
1135 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1136 					  struct bfq_data *bfqd)
1137 {
1138 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1139 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1140 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1141 }
1142 
1143 static void
1144 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1145 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1146 {
1147 	unsigned int old_wr_coeff = 1;
1148 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1149 	unsigned int a_idx = bfqq->actuator_idx;
1150 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
1151 
1152 	if (bfqq_data->saved_has_short_ttime)
1153 		bfq_mark_bfqq_has_short_ttime(bfqq);
1154 	else
1155 		bfq_clear_bfqq_has_short_ttime(bfqq);
1156 
1157 	if (bfqq_data->saved_IO_bound)
1158 		bfq_mark_bfqq_IO_bound(bfqq);
1159 	else
1160 		bfq_clear_bfqq_IO_bound(bfqq);
1161 
1162 	bfqq->last_serv_time_ns = bfqq_data->saved_last_serv_time_ns;
1163 	bfqq->inject_limit = bfqq_data->saved_inject_limit;
1164 	bfqq->decrease_time_jif = bfqq_data->saved_decrease_time_jif;
1165 
1166 	bfqq->entity.new_weight = bfqq_data->saved_weight;
1167 	bfqq->ttime = bfqq_data->saved_ttime;
1168 	bfqq->io_start_time = bfqq_data->saved_io_start_time;
1169 	bfqq->tot_idle_time = bfqq_data->saved_tot_idle_time;
1170 	/*
1171 	 * Restore weight coefficient only if low_latency is on
1172 	 */
1173 	if (bfqd->low_latency) {
1174 		old_wr_coeff = bfqq->wr_coeff;
1175 		bfqq->wr_coeff = bfqq_data->saved_wr_coeff;
1176 	}
1177 	bfqq->service_from_wr = bfqq_data->saved_service_from_wr;
1178 	bfqq->wr_start_at_switch_to_srt =
1179 		bfqq_data->saved_wr_start_at_switch_to_srt;
1180 	bfqq->last_wr_start_finish = bfqq_data->saved_last_wr_start_finish;
1181 	bfqq->wr_cur_max_time = bfqq_data->saved_wr_cur_max_time;
1182 
1183 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1184 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1185 				   bfqq->wr_cur_max_time))) {
1186 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1187 		    !bfq_bfqq_in_large_burst(bfqq) &&
1188 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1189 					     bfq_wr_duration(bfqd))) {
1190 			switch_back_to_interactive_wr(bfqq, bfqd);
1191 		} else {
1192 			bfqq->wr_coeff = 1;
1193 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1194 				     "resume state: switching off wr");
1195 		}
1196 	}
1197 
1198 	/* make sure weight will be updated, however we got here */
1199 	bfqq->entity.prio_changed = 1;
1200 
1201 	if (likely(!busy))
1202 		return;
1203 
1204 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1205 		bfqd->wr_busy_queues++;
1206 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1207 		bfqd->wr_busy_queues--;
1208 }
1209 
1210 static int bfqq_process_refs(struct bfq_queue *bfqq)
1211 {
1212 	return bfqq->ref - bfqq->entity.allocated -
1213 		bfqq->entity.on_st_or_in_serv -
1214 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1215 }
1216 
1217 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1218 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1219 {
1220 	struct bfq_queue *item;
1221 	struct hlist_node *n;
1222 
1223 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1224 		hlist_del_init(&item->burst_list_node);
1225 
1226 	/*
1227 	 * Start the creation of a new burst list only if there is no
1228 	 * active queue. See comments on the conditional invocation of
1229 	 * bfq_handle_burst().
1230 	 */
1231 	if (bfq_tot_busy_queues(bfqd) == 0) {
1232 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1233 		bfqd->burst_size = 1;
1234 	} else
1235 		bfqd->burst_size = 0;
1236 
1237 	bfqd->burst_parent_entity = bfqq->entity.parent;
1238 }
1239 
1240 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1241 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1242 {
1243 	/* Increment burst size to take into account also bfqq */
1244 	bfqd->burst_size++;
1245 
1246 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1247 		struct bfq_queue *pos, *bfqq_item;
1248 		struct hlist_node *n;
1249 
1250 		/*
1251 		 * Enough queues have been activated shortly after each
1252 		 * other to consider this burst as large.
1253 		 */
1254 		bfqd->large_burst = true;
1255 
1256 		/*
1257 		 * We can now mark all queues in the burst list as
1258 		 * belonging to a large burst.
1259 		 */
1260 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1261 				     burst_list_node)
1262 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1263 		bfq_mark_bfqq_in_large_burst(bfqq);
1264 
1265 		/*
1266 		 * From now on, and until the current burst finishes, any
1267 		 * new queue being activated shortly after the last queue
1268 		 * was inserted in the burst can be immediately marked as
1269 		 * belonging to a large burst. So the burst list is not
1270 		 * needed any more. Remove it.
1271 		 */
1272 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1273 					  burst_list_node)
1274 			hlist_del_init(&pos->burst_list_node);
1275 	} else /*
1276 		* Burst not yet large: add bfqq to the burst list. Do
1277 		* not increment the ref counter for bfqq, because bfqq
1278 		* is removed from the burst list before freeing bfqq
1279 		* in put_queue.
1280 		*/
1281 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1282 }
1283 
1284 /*
1285  * If many queues belonging to the same group happen to be created
1286  * shortly after each other, then the processes associated with these
1287  * queues have typically a common goal. In particular, bursts of queue
1288  * creations are usually caused by services or applications that spawn
1289  * many parallel threads/processes. Examples are systemd during boot,
1290  * or git grep. To help these processes get their job done as soon as
1291  * possible, it is usually better to not grant either weight-raising
1292  * or device idling to their queues, unless these queues must be
1293  * protected from the I/O flowing through other active queues.
1294  *
1295  * In this comment we describe, firstly, the reasons why this fact
1296  * holds, and, secondly, the next function, which implements the main
1297  * steps needed to properly mark these queues so that they can then be
1298  * treated in a different way.
1299  *
1300  * The above services or applications benefit mostly from a high
1301  * throughput: the quicker the requests of the activated queues are
1302  * cumulatively served, the sooner the target job of these queues gets
1303  * completed. As a consequence, weight-raising any of these queues,
1304  * which also implies idling the device for it, is almost always
1305  * counterproductive, unless there are other active queues to isolate
1306  * these new queues from. If there no other active queues, then
1307  * weight-raising these new queues just lowers throughput in most
1308  * cases.
1309  *
1310  * On the other hand, a burst of queue creations may be caused also by
1311  * the start of an application that does not consist of a lot of
1312  * parallel I/O-bound threads. In fact, with a complex application,
1313  * several short processes may need to be executed to start-up the
1314  * application. In this respect, to start an application as quickly as
1315  * possible, the best thing to do is in any case to privilege the I/O
1316  * related to the application with respect to all other
1317  * I/O. Therefore, the best strategy to start as quickly as possible
1318  * an application that causes a burst of queue creations is to
1319  * weight-raise all the queues created during the burst. This is the
1320  * exact opposite of the best strategy for the other type of bursts.
1321  *
1322  * In the end, to take the best action for each of the two cases, the
1323  * two types of bursts need to be distinguished. Fortunately, this
1324  * seems relatively easy, by looking at the sizes of the bursts. In
1325  * particular, we found a threshold such that only bursts with a
1326  * larger size than that threshold are apparently caused by
1327  * services or commands such as systemd or git grep. For brevity,
1328  * hereafter we call just 'large' these bursts. BFQ *does not*
1329  * weight-raise queues whose creation occurs in a large burst. In
1330  * addition, for each of these queues BFQ performs or does not perform
1331  * idling depending on which choice boosts the throughput more. The
1332  * exact choice depends on the device and request pattern at
1333  * hand.
1334  *
1335  * Unfortunately, false positives may occur while an interactive task
1336  * is starting (e.g., an application is being started). The
1337  * consequence is that the queues associated with the task do not
1338  * enjoy weight raising as expected. Fortunately these false positives
1339  * are very rare. They typically occur if some service happens to
1340  * start doing I/O exactly when the interactive task starts.
1341  *
1342  * Turning back to the next function, it is invoked only if there are
1343  * no active queues (apart from active queues that would belong to the
1344  * same, possible burst bfqq would belong to), and it implements all
1345  * the steps needed to detect the occurrence of a large burst and to
1346  * properly mark all the queues belonging to it (so that they can then
1347  * be treated in a different way). This goal is achieved by
1348  * maintaining a "burst list" that holds, temporarily, the queues that
1349  * belong to the burst in progress. The list is then used to mark
1350  * these queues as belonging to a large burst if the burst does become
1351  * large. The main steps are the following.
1352  *
1353  * . when the very first queue is created, the queue is inserted into the
1354  *   list (as it could be the first queue in a possible burst)
1355  *
1356  * . if the current burst has not yet become large, and a queue Q that does
1357  *   not yet belong to the burst is activated shortly after the last time
1358  *   at which a new queue entered the burst list, then the function appends
1359  *   Q to the burst list
1360  *
1361  * . if, as a consequence of the previous step, the burst size reaches
1362  *   the large-burst threshold, then
1363  *
1364  *     . all the queues in the burst list are marked as belonging to a
1365  *       large burst
1366  *
1367  *     . the burst list is deleted; in fact, the burst list already served
1368  *       its purpose (keeping temporarily track of the queues in a burst,
1369  *       so as to be able to mark them as belonging to a large burst in the
1370  *       previous sub-step), and now is not needed any more
1371  *
1372  *     . the device enters a large-burst mode
1373  *
1374  * . if a queue Q that does not belong to the burst is created while
1375  *   the device is in large-burst mode and shortly after the last time
1376  *   at which a queue either entered the burst list or was marked as
1377  *   belonging to the current large burst, then Q is immediately marked
1378  *   as belonging to a large burst.
1379  *
1380  * . if a queue Q that does not belong to the burst is created a while
1381  *   later, i.e., not shortly after, than the last time at which a queue
1382  *   either entered the burst list or was marked as belonging to the
1383  *   current large burst, then the current burst is deemed as finished and:
1384  *
1385  *        . the large-burst mode is reset if set
1386  *
1387  *        . the burst list is emptied
1388  *
1389  *        . Q is inserted in the burst list, as Q may be the first queue
1390  *          in a possible new burst (then the burst list contains just Q
1391  *          after this step).
1392  */
1393 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1394 {
1395 	/*
1396 	 * If bfqq is already in the burst list or is part of a large
1397 	 * burst, or finally has just been split, then there is
1398 	 * nothing else to do.
1399 	 */
1400 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1401 	    bfq_bfqq_in_large_burst(bfqq) ||
1402 	    time_is_after_eq_jiffies(bfqq->split_time +
1403 				     msecs_to_jiffies(10)))
1404 		return;
1405 
1406 	/*
1407 	 * If bfqq's creation happens late enough, or bfqq belongs to
1408 	 * a different group than the burst group, then the current
1409 	 * burst is finished, and related data structures must be
1410 	 * reset.
1411 	 *
1412 	 * In this respect, consider the special case where bfqq is
1413 	 * the very first queue created after BFQ is selected for this
1414 	 * device. In this case, last_ins_in_burst and
1415 	 * burst_parent_entity are not yet significant when we get
1416 	 * here. But it is easy to verify that, whether or not the
1417 	 * following condition is true, bfqq will end up being
1418 	 * inserted into the burst list. In particular the list will
1419 	 * happen to contain only bfqq. And this is exactly what has
1420 	 * to happen, as bfqq may be the first queue of the first
1421 	 * burst.
1422 	 */
1423 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1424 	    bfqd->bfq_burst_interval) ||
1425 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1426 		bfqd->large_burst = false;
1427 		bfq_reset_burst_list(bfqd, bfqq);
1428 		goto end;
1429 	}
1430 
1431 	/*
1432 	 * If we get here, then bfqq is being activated shortly after the
1433 	 * last queue. So, if the current burst is also large, we can mark
1434 	 * bfqq as belonging to this large burst immediately.
1435 	 */
1436 	if (bfqd->large_burst) {
1437 		bfq_mark_bfqq_in_large_burst(bfqq);
1438 		goto end;
1439 	}
1440 
1441 	/*
1442 	 * If we get here, then a large-burst state has not yet been
1443 	 * reached, but bfqq is being activated shortly after the last
1444 	 * queue. Then we add bfqq to the burst.
1445 	 */
1446 	bfq_add_to_burst(bfqd, bfqq);
1447 end:
1448 	/*
1449 	 * At this point, bfqq either has been added to the current
1450 	 * burst or has caused the current burst to terminate and a
1451 	 * possible new burst to start. In particular, in the second
1452 	 * case, bfqq has become the first queue in the possible new
1453 	 * burst.  In both cases last_ins_in_burst needs to be moved
1454 	 * forward.
1455 	 */
1456 	bfqd->last_ins_in_burst = jiffies;
1457 }
1458 
1459 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1460 {
1461 	struct bfq_entity *entity = &bfqq->entity;
1462 
1463 	return entity->budget - entity->service;
1464 }
1465 
1466 /*
1467  * If enough samples have been computed, return the current max budget
1468  * stored in bfqd, which is dynamically updated according to the
1469  * estimated disk peak rate; otherwise return the default max budget
1470  */
1471 static int bfq_max_budget(struct bfq_data *bfqd)
1472 {
1473 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1474 		return bfq_default_max_budget;
1475 	else
1476 		return bfqd->bfq_max_budget;
1477 }
1478 
1479 /*
1480  * Return min budget, which is a fraction of the current or default
1481  * max budget (trying with 1/32)
1482  */
1483 static int bfq_min_budget(struct bfq_data *bfqd)
1484 {
1485 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1486 		return bfq_default_max_budget / 32;
1487 	else
1488 		return bfqd->bfq_max_budget / 32;
1489 }
1490 
1491 /*
1492  * The next function, invoked after the input queue bfqq switches from
1493  * idle to busy, updates the budget of bfqq. The function also tells
1494  * whether the in-service queue should be expired, by returning
1495  * true. The purpose of expiring the in-service queue is to give bfqq
1496  * the chance to possibly preempt the in-service queue, and the reason
1497  * for preempting the in-service queue is to achieve one of the two
1498  * goals below.
1499  *
1500  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1501  * expired because it has remained idle. In particular, bfqq may have
1502  * expired for one of the following two reasons:
1503  *
1504  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1505  *   and did not make it to issue a new request before its last
1506  *   request was served;
1507  *
1508  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1509  *   a new request before the expiration of the idling-time.
1510  *
1511  * Even if bfqq has expired for one of the above reasons, the process
1512  * associated with the queue may be however issuing requests greedily,
1513  * and thus be sensitive to the bandwidth it receives (bfqq may have
1514  * remained idle for other reasons: CPU high load, bfqq not enjoying
1515  * idling, I/O throttling somewhere in the path from the process to
1516  * the I/O scheduler, ...). But if, after every expiration for one of
1517  * the above two reasons, bfqq has to wait for the service of at least
1518  * one full budget of another queue before being served again, then
1519  * bfqq is likely to get a much lower bandwidth or resource time than
1520  * its reserved ones. To address this issue, two countermeasures need
1521  * to be taken.
1522  *
1523  * First, the budget and the timestamps of bfqq need to be updated in
1524  * a special way on bfqq reactivation: they need to be updated as if
1525  * bfqq did not remain idle and did not expire. In fact, if they are
1526  * computed as if bfqq expired and remained idle until reactivation,
1527  * then the process associated with bfqq is treated as if, instead of
1528  * being greedy, it stopped issuing requests when bfqq remained idle,
1529  * and restarts issuing requests only on this reactivation. In other
1530  * words, the scheduler does not help the process recover the "service
1531  * hole" between bfqq expiration and reactivation. As a consequence,
1532  * the process receives a lower bandwidth than its reserved one. In
1533  * contrast, to recover this hole, the budget must be updated as if
1534  * bfqq was not expired at all before this reactivation, i.e., it must
1535  * be set to the value of the remaining budget when bfqq was
1536  * expired. Along the same line, timestamps need to be assigned the
1537  * value they had the last time bfqq was selected for service, i.e.,
1538  * before last expiration. Thus timestamps need to be back-shifted
1539  * with respect to their normal computation (see [1] for more details
1540  * on this tricky aspect).
1541  *
1542  * Secondly, to allow the process to recover the hole, the in-service
1543  * queue must be expired too, to give bfqq the chance to preempt it
1544  * immediately. In fact, if bfqq has to wait for a full budget of the
1545  * in-service queue to be completed, then it may become impossible to
1546  * let the process recover the hole, even if the back-shifted
1547  * timestamps of bfqq are lower than those of the in-service queue. If
1548  * this happens for most or all of the holes, then the process may not
1549  * receive its reserved bandwidth. In this respect, it is worth noting
1550  * that, being the service of outstanding requests unpreemptible, a
1551  * little fraction of the holes may however be unrecoverable, thereby
1552  * causing a little loss of bandwidth.
1553  *
1554  * The last important point is detecting whether bfqq does need this
1555  * bandwidth recovery. In this respect, the next function deems the
1556  * process associated with bfqq greedy, and thus allows it to recover
1557  * the hole, if: 1) the process is waiting for the arrival of a new
1558  * request (which implies that bfqq expired for one of the above two
1559  * reasons), and 2) such a request has arrived soon. The first
1560  * condition is controlled through the flag non_blocking_wait_rq,
1561  * while the second through the flag arrived_in_time. If both
1562  * conditions hold, then the function computes the budget in the
1563  * above-described special way, and signals that the in-service queue
1564  * should be expired. Timestamp back-shifting is done later in
1565  * __bfq_activate_entity.
1566  *
1567  * 2. Reduce latency. Even if timestamps are not backshifted to let
1568  * the process associated with bfqq recover a service hole, bfqq may
1569  * however happen to have, after being (re)activated, a lower finish
1570  * timestamp than the in-service queue.	 That is, the next budget of
1571  * bfqq may have to be completed before the one of the in-service
1572  * queue. If this is the case, then preempting the in-service queue
1573  * allows this goal to be achieved, apart from the unpreemptible,
1574  * outstanding requests mentioned above.
1575  *
1576  * Unfortunately, regardless of which of the above two goals one wants
1577  * to achieve, service trees need first to be updated to know whether
1578  * the in-service queue must be preempted. To have service trees
1579  * correctly updated, the in-service queue must be expired and
1580  * rescheduled, and bfqq must be scheduled too. This is one of the
1581  * most costly operations (in future versions, the scheduling
1582  * mechanism may be re-designed in such a way to make it possible to
1583  * know whether preemption is needed without needing to update service
1584  * trees). In addition, queue preemptions almost always cause random
1585  * I/O, which may in turn cause loss of throughput. Finally, there may
1586  * even be no in-service queue when the next function is invoked (so,
1587  * no queue to compare timestamps with). Because of these facts, the
1588  * next function adopts the following simple scheme to avoid costly
1589  * operations, too frequent preemptions and too many dependencies on
1590  * the state of the scheduler: it requests the expiration of the
1591  * in-service queue (unconditionally) only for queues that need to
1592  * recover a hole. Then it delegates to other parts of the code the
1593  * responsibility of handling the above case 2.
1594  */
1595 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1596 						struct bfq_queue *bfqq,
1597 						bool arrived_in_time)
1598 {
1599 	struct bfq_entity *entity = &bfqq->entity;
1600 
1601 	/*
1602 	 * In the next compound condition, we check also whether there
1603 	 * is some budget left, because otherwise there is no point in
1604 	 * trying to go on serving bfqq with this same budget: bfqq
1605 	 * would be expired immediately after being selected for
1606 	 * service. This would only cause useless overhead.
1607 	 */
1608 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1609 	    bfq_bfqq_budget_left(bfqq) > 0) {
1610 		/*
1611 		 * We do not clear the flag non_blocking_wait_rq here, as
1612 		 * the latter is used in bfq_activate_bfqq to signal
1613 		 * that timestamps need to be back-shifted (and is
1614 		 * cleared right after).
1615 		 */
1616 
1617 		/*
1618 		 * In next assignment we rely on that either
1619 		 * entity->service or entity->budget are not updated
1620 		 * on expiration if bfqq is empty (see
1621 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1622 		 * remain unchanged after such an expiration, and the
1623 		 * following statement therefore assigns to
1624 		 * entity->budget the remaining budget on such an
1625 		 * expiration.
1626 		 */
1627 		entity->budget = min_t(unsigned long,
1628 				       bfq_bfqq_budget_left(bfqq),
1629 				       bfqq->max_budget);
1630 
1631 		/*
1632 		 * At this point, we have used entity->service to get
1633 		 * the budget left (needed for updating
1634 		 * entity->budget). Thus we finally can, and have to,
1635 		 * reset entity->service. The latter must be reset
1636 		 * because bfqq would otherwise be charged again for
1637 		 * the service it has received during its previous
1638 		 * service slot(s).
1639 		 */
1640 		entity->service = 0;
1641 
1642 		return true;
1643 	}
1644 
1645 	/*
1646 	 * We can finally complete expiration, by setting service to 0.
1647 	 */
1648 	entity->service = 0;
1649 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1650 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1651 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1652 	return false;
1653 }
1654 
1655 /*
1656  * Return the farthest past time instant according to jiffies
1657  * macros.
1658  */
1659 static unsigned long bfq_smallest_from_now(void)
1660 {
1661 	return jiffies - MAX_JIFFY_OFFSET;
1662 }
1663 
1664 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1665 					     struct bfq_queue *bfqq,
1666 					     unsigned int old_wr_coeff,
1667 					     bool wr_or_deserves_wr,
1668 					     bool interactive,
1669 					     bool in_burst,
1670 					     bool soft_rt)
1671 {
1672 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1673 		/* start a weight-raising period */
1674 		if (interactive) {
1675 			bfqq->service_from_wr = 0;
1676 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1677 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1678 		} else {
1679 			/*
1680 			 * No interactive weight raising in progress
1681 			 * here: assign minus infinity to
1682 			 * wr_start_at_switch_to_srt, to make sure
1683 			 * that, at the end of the soft-real-time
1684 			 * weight raising periods that is starting
1685 			 * now, no interactive weight-raising period
1686 			 * may be wrongly considered as still in
1687 			 * progress (and thus actually started by
1688 			 * mistake).
1689 			 */
1690 			bfqq->wr_start_at_switch_to_srt =
1691 				bfq_smallest_from_now();
1692 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1693 				BFQ_SOFTRT_WEIGHT_FACTOR;
1694 			bfqq->wr_cur_max_time =
1695 				bfqd->bfq_wr_rt_max_time;
1696 		}
1697 
1698 		/*
1699 		 * If needed, further reduce budget to make sure it is
1700 		 * close to bfqq's backlog, so as to reduce the
1701 		 * scheduling-error component due to a too large
1702 		 * budget. Do not care about throughput consequences,
1703 		 * but only about latency. Finally, do not assign a
1704 		 * too small budget either, to avoid increasing
1705 		 * latency by causing too frequent expirations.
1706 		 */
1707 		bfqq->entity.budget = min_t(unsigned long,
1708 					    bfqq->entity.budget,
1709 					    2 * bfq_min_budget(bfqd));
1710 	} else if (old_wr_coeff > 1) {
1711 		if (interactive) { /* update wr coeff and duration */
1712 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1713 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1714 		} else if (in_burst)
1715 			bfqq->wr_coeff = 1;
1716 		else if (soft_rt) {
1717 			/*
1718 			 * The application is now or still meeting the
1719 			 * requirements for being deemed soft rt.  We
1720 			 * can then correctly and safely (re)charge
1721 			 * the weight-raising duration for the
1722 			 * application with the weight-raising
1723 			 * duration for soft rt applications.
1724 			 *
1725 			 * In particular, doing this recharge now, i.e.,
1726 			 * before the weight-raising period for the
1727 			 * application finishes, reduces the probability
1728 			 * of the following negative scenario:
1729 			 * 1) the weight of a soft rt application is
1730 			 *    raised at startup (as for any newly
1731 			 *    created application),
1732 			 * 2) since the application is not interactive,
1733 			 *    at a certain time weight-raising is
1734 			 *    stopped for the application,
1735 			 * 3) at that time the application happens to
1736 			 *    still have pending requests, and hence
1737 			 *    is destined to not have a chance to be
1738 			 *    deemed soft rt before these requests are
1739 			 *    completed (see the comments to the
1740 			 *    function bfq_bfqq_softrt_next_start()
1741 			 *    for details on soft rt detection),
1742 			 * 4) these pending requests experience a high
1743 			 *    latency because the application is not
1744 			 *    weight-raised while they are pending.
1745 			 */
1746 			if (bfqq->wr_cur_max_time !=
1747 				bfqd->bfq_wr_rt_max_time) {
1748 				bfqq->wr_start_at_switch_to_srt =
1749 					bfqq->last_wr_start_finish;
1750 
1751 				bfqq->wr_cur_max_time =
1752 					bfqd->bfq_wr_rt_max_time;
1753 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1754 					BFQ_SOFTRT_WEIGHT_FACTOR;
1755 			}
1756 			bfqq->last_wr_start_finish = jiffies;
1757 		}
1758 	}
1759 }
1760 
1761 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1762 					struct bfq_queue *bfqq)
1763 {
1764 	return bfqq->dispatched == 0 &&
1765 		time_is_before_jiffies(
1766 			bfqq->budget_timeout +
1767 			bfqd->bfq_wr_min_idle_time);
1768 }
1769 
1770 
1771 /*
1772  * Return true if bfqq is in a higher priority class, or has a higher
1773  * weight than the in-service queue.
1774  */
1775 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1776 					    struct bfq_queue *in_serv_bfqq)
1777 {
1778 	int bfqq_weight, in_serv_weight;
1779 
1780 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1781 		return true;
1782 
1783 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1784 		bfqq_weight = bfqq->entity.weight;
1785 		in_serv_weight = in_serv_bfqq->entity.weight;
1786 	} else {
1787 		if (bfqq->entity.parent)
1788 			bfqq_weight = bfqq->entity.parent->weight;
1789 		else
1790 			bfqq_weight = bfqq->entity.weight;
1791 		if (in_serv_bfqq->entity.parent)
1792 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1793 		else
1794 			in_serv_weight = in_serv_bfqq->entity.weight;
1795 	}
1796 
1797 	return bfqq_weight > in_serv_weight;
1798 }
1799 
1800 /*
1801  * Get the index of the actuator that will serve bio.
1802  */
1803 static unsigned int bfq_actuator_index(struct bfq_data *bfqd, struct bio *bio)
1804 {
1805 	unsigned int i;
1806 	sector_t end;
1807 
1808 	/* no search needed if one or zero ranges present */
1809 	if (bfqd->num_actuators == 1)
1810 		return 0;
1811 
1812 	/* bio_end_sector(bio) gives the sector after the last one */
1813 	end = bio_end_sector(bio) - 1;
1814 
1815 	for (i = 0; i < bfqd->num_actuators; i++) {
1816 		if (end >= bfqd->sector[i] &&
1817 		    end < bfqd->sector[i] + bfqd->nr_sectors[i])
1818 			return i;
1819 	}
1820 
1821 	WARN_ONCE(true,
1822 		  "bfq_actuator_index: bio sector out of ranges: end=%llu\n",
1823 		  end);
1824 	return 0;
1825 }
1826 
1827 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1828 
1829 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1830 					     struct bfq_queue *bfqq,
1831 					     int old_wr_coeff,
1832 					     struct request *rq,
1833 					     bool *interactive)
1834 {
1835 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1836 		bfqq_wants_to_preempt,
1837 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1838 		/*
1839 		 * See the comments on
1840 		 * bfq_bfqq_update_budg_for_activation for
1841 		 * details on the usage of the next variable.
1842 		 */
1843 		arrived_in_time =  ktime_get_ns() <=
1844 			bfqq->ttime.last_end_request +
1845 			bfqd->bfq_slice_idle * 3;
1846 	unsigned int act_idx = bfq_actuator_index(bfqd, rq->bio);
1847 	bool bfqq_non_merged_or_stably_merged =
1848 		bfqq->bic || RQ_BIC(rq)->bfqq_data[act_idx].stably_merged;
1849 
1850 	/*
1851 	 * bfqq deserves to be weight-raised if:
1852 	 * - it is sync,
1853 	 * - it does not belong to a large burst,
1854 	 * - it has been idle for enough time or is soft real-time,
1855 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1856 	 * - has a default weight (otherwise we assume the user wanted
1857 	 *   to control its weight explicitly)
1858 	 */
1859 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1860 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1861 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1862 		!in_burst &&
1863 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1864 		bfqq->dispatched == 0 &&
1865 		bfqq->entity.new_weight == 40;
1866 	*interactive = !in_burst && idle_for_long_time &&
1867 		bfqq->entity.new_weight == 40;
1868 	/*
1869 	 * Merged bfq_queues are kept out of weight-raising
1870 	 * (low-latency) mechanisms. The reason is that these queues
1871 	 * are usually created for non-interactive and
1872 	 * non-soft-real-time tasks. Yet this is not the case for
1873 	 * stably-merged queues. These queues are merged just because
1874 	 * they are created shortly after each other. So they may
1875 	 * easily serve the I/O of an interactive or soft-real time
1876 	 * application, if the application happens to spawn multiple
1877 	 * processes. So let also stably-merged queued enjoy weight
1878 	 * raising.
1879 	 */
1880 	wr_or_deserves_wr = bfqd->low_latency &&
1881 		(bfqq->wr_coeff > 1 ||
1882 		 (bfq_bfqq_sync(bfqq) && bfqq_non_merged_or_stably_merged &&
1883 		  (*interactive || soft_rt)));
1884 
1885 	/*
1886 	 * Using the last flag, update budget and check whether bfqq
1887 	 * may want to preempt the in-service queue.
1888 	 */
1889 	bfqq_wants_to_preempt =
1890 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1891 						    arrived_in_time);
1892 
1893 	/*
1894 	 * If bfqq happened to be activated in a burst, but has been
1895 	 * idle for much more than an interactive queue, then we
1896 	 * assume that, in the overall I/O initiated in the burst, the
1897 	 * I/O associated with bfqq is finished. So bfqq does not need
1898 	 * to be treated as a queue belonging to a burst
1899 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1900 	 * if set, and remove bfqq from the burst list if it's
1901 	 * there. We do not decrement burst_size, because the fact
1902 	 * that bfqq does not need to belong to the burst list any
1903 	 * more does not invalidate the fact that bfqq was created in
1904 	 * a burst.
1905 	 */
1906 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1907 	    idle_for_long_time &&
1908 	    time_is_before_jiffies(
1909 		    bfqq->budget_timeout +
1910 		    msecs_to_jiffies(10000))) {
1911 		hlist_del_init(&bfqq->burst_list_node);
1912 		bfq_clear_bfqq_in_large_burst(bfqq);
1913 	}
1914 
1915 	bfq_clear_bfqq_just_created(bfqq);
1916 
1917 	if (bfqd->low_latency) {
1918 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1919 			/* wraparound */
1920 			bfqq->split_time =
1921 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1922 
1923 		if (time_is_before_jiffies(bfqq->split_time +
1924 					   bfqd->bfq_wr_min_idle_time)) {
1925 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1926 							 old_wr_coeff,
1927 							 wr_or_deserves_wr,
1928 							 *interactive,
1929 							 in_burst,
1930 							 soft_rt);
1931 
1932 			if (old_wr_coeff != bfqq->wr_coeff)
1933 				bfqq->entity.prio_changed = 1;
1934 		}
1935 	}
1936 
1937 	bfqq->last_idle_bklogged = jiffies;
1938 	bfqq->service_from_backlogged = 0;
1939 	bfq_clear_bfqq_softrt_update(bfqq);
1940 
1941 	bfq_add_bfqq_busy(bfqq);
1942 
1943 	/*
1944 	 * Expire in-service queue if preemption may be needed for
1945 	 * guarantees or throughput. As for guarantees, we care
1946 	 * explicitly about two cases. The first is that bfqq has to
1947 	 * recover a service hole, as explained in the comments on
1948 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1949 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1950 	 * carry time-critical I/O, then bfqq's bandwidth is less
1951 	 * important than that of queues that carry time-critical I/O.
1952 	 * So, as a further constraint, we consider this case only if
1953 	 * bfqq is at least as weight-raised, i.e., at least as time
1954 	 * critical, as the in-service queue.
1955 	 *
1956 	 * The second case is that bfqq is in a higher priority class,
1957 	 * or has a higher weight than the in-service queue. If this
1958 	 * condition does not hold, we don't care because, even if
1959 	 * bfqq does not start to be served immediately, the resulting
1960 	 * delay for bfqq's I/O is however lower or much lower than
1961 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1962 	 *
1963 	 * In both cases, preemption is needed only if, according to
1964 	 * the timestamps of both bfqq and of the in-service queue,
1965 	 * bfqq actually is the next queue to serve. So, to reduce
1966 	 * useless preemptions, the return value of
1967 	 * next_queue_may_preempt() is considered in the next compound
1968 	 * condition too. Yet next_queue_may_preempt() just checks a
1969 	 * simple, necessary condition for bfqq to be the next queue
1970 	 * to serve. In fact, to evaluate a sufficient condition, the
1971 	 * timestamps of the in-service queue would need to be
1972 	 * updated, and this operation is quite costly (see the
1973 	 * comments on bfq_bfqq_update_budg_for_activation()).
1974 	 *
1975 	 * As for throughput, we ask bfq_better_to_idle() whether we
1976 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1977 	 * says no, then plugging is not needed any longer, either to
1978 	 * boost throughput or to perserve service guarantees. Then
1979 	 * the best option is to stop plugging I/O, as not doing so
1980 	 * would certainly lower throughput. We may end up in this
1981 	 * case if: (1) upon a dispatch attempt, we detected that it
1982 	 * was better to plug I/O dispatch, and to wait for a new
1983 	 * request to arrive for the currently in-service queue, but
1984 	 * (2) this switch of bfqq to busy changes the scenario.
1985 	 */
1986 	if (bfqd->in_service_queue &&
1987 	    ((bfqq_wants_to_preempt &&
1988 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1989 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1990 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1991 	    next_queue_may_preempt(bfqd))
1992 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1993 				false, BFQQE_PREEMPTED);
1994 }
1995 
1996 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1997 				   struct bfq_queue *bfqq)
1998 {
1999 	/* invalidate baseline total service time */
2000 	bfqq->last_serv_time_ns = 0;
2001 
2002 	/*
2003 	 * Reset pointer in case we are waiting for
2004 	 * some request completion.
2005 	 */
2006 	bfqd->waited_rq = NULL;
2007 
2008 	/*
2009 	 * If bfqq has a short think time, then start by setting the
2010 	 * inject limit to 0 prudentially, because the service time of
2011 	 * an injected I/O request may be higher than the think time
2012 	 * of bfqq, and therefore, if one request was injected when
2013 	 * bfqq remains empty, this injected request might delay the
2014 	 * service of the next I/O request for bfqq significantly. In
2015 	 * case bfqq can actually tolerate some injection, then the
2016 	 * adaptive update will however raise the limit soon. This
2017 	 * lucky circumstance holds exactly because bfqq has a short
2018 	 * think time, and thus, after remaining empty, is likely to
2019 	 * get new I/O enqueued---and then completed---before being
2020 	 * expired. This is the very pattern that gives the
2021 	 * limit-update algorithm the chance to measure the effect of
2022 	 * injection on request service times, and then to update the
2023 	 * limit accordingly.
2024 	 *
2025 	 * However, in the following special case, the inject limit is
2026 	 * left to 1 even if the think time is short: bfqq's I/O is
2027 	 * synchronized with that of some other queue, i.e., bfqq may
2028 	 * receive new I/O only after the I/O of the other queue is
2029 	 * completed. Keeping the inject limit to 1 allows the
2030 	 * blocking I/O to be served while bfqq is in service. And
2031 	 * this is very convenient both for bfqq and for overall
2032 	 * throughput, as explained in detail in the comments in
2033 	 * bfq_update_has_short_ttime().
2034 	 *
2035 	 * On the opposite end, if bfqq has a long think time, then
2036 	 * start directly by 1, because:
2037 	 * a) on the bright side, keeping at most one request in
2038 	 * service in the drive is unlikely to cause any harm to the
2039 	 * latency of bfqq's requests, as the service time of a single
2040 	 * request is likely to be lower than the think time of bfqq;
2041 	 * b) on the downside, after becoming empty, bfqq is likely to
2042 	 * expire before getting its next request. With this request
2043 	 * arrival pattern, it is very hard to sample total service
2044 	 * times and update the inject limit accordingly (see comments
2045 	 * on bfq_update_inject_limit()). So the limit is likely to be
2046 	 * never, or at least seldom, updated.  As a consequence, by
2047 	 * setting the limit to 1, we avoid that no injection ever
2048 	 * occurs with bfqq. On the downside, this proactive step
2049 	 * further reduces chances to actually compute the baseline
2050 	 * total service time. Thus it reduces chances to execute the
2051 	 * limit-update algorithm and possibly raise the limit to more
2052 	 * than 1.
2053 	 */
2054 	if (bfq_bfqq_has_short_ttime(bfqq))
2055 		bfqq->inject_limit = 0;
2056 	else
2057 		bfqq->inject_limit = 1;
2058 
2059 	bfqq->decrease_time_jif = jiffies;
2060 }
2061 
2062 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2063 {
2064 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2065 
2066 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2067 		bfqq->tot_idle_time +=
2068 			now_ns - bfqq->ttime.last_end_request;
2069 
2070 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2071 		return;
2072 
2073 	/*
2074 	 * Must be busy for at least about 80% of the time to be
2075 	 * considered I/O bound.
2076 	 */
2077 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2078 		bfq_clear_bfqq_IO_bound(bfqq);
2079 	else
2080 		bfq_mark_bfqq_IO_bound(bfqq);
2081 
2082 	/*
2083 	 * Keep an observation window of at most 200 ms in the past
2084 	 * from now.
2085 	 */
2086 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2087 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2088 		bfqq->tot_idle_time >>= 1;
2089 	}
2090 }
2091 
2092 /*
2093  * Detect whether bfqq's I/O seems synchronized with that of some
2094  * other queue, i.e., whether bfqq, after remaining empty, happens to
2095  * receive new I/O only right after some I/O request of the other
2096  * queue has been completed. We call waker queue the other queue, and
2097  * we assume, for simplicity, that bfqq may have at most one waker
2098  * queue.
2099  *
2100  * A remarkable throughput boost can be reached by unconditionally
2101  * injecting the I/O of the waker queue, every time a new
2102  * bfq_dispatch_request happens to be invoked while I/O is being
2103  * plugged for bfqq.  In addition to boosting throughput, this
2104  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2105  * bfqq. Note that these same results may be achieved with the general
2106  * injection mechanism, but less effectively. For details on this
2107  * aspect, see the comments on the choice of the queue for injection
2108  * in bfq_select_queue().
2109  *
2110  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2111  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2112  * non empty right after a request of Q has been completed within given
2113  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2114  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2115  * still being served by the drive, and may receive new I/O on the completion
2116  * of some of the in-flight requests. In particular, on the first time, Q is
2117  * tentatively set as a candidate waker queue, while on the third consecutive
2118  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2119  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2120  * has a long think time, so as to make it more likely that bfqq's I/O is
2121  * actually being blocked by a synchronization. This last filter, plus the
2122  * above three-times requirement and time limit for detection, make false
2123  * positives less likely.
2124  *
2125  * NOTE
2126  *
2127  * The sooner a waker queue is detected, the sooner throughput can be
2128  * boosted by injecting I/O from the waker queue. Fortunately,
2129  * detection is likely to be actually fast, for the following
2130  * reasons. While blocked by synchronization, bfqq has a long think
2131  * time. This implies that bfqq's inject limit is at least equal to 1
2132  * (see the comments in bfq_update_inject_limit()). So, thanks to
2133  * injection, the waker queue is likely to be served during the very
2134  * first I/O-plugging time interval for bfqq. This triggers the first
2135  * step of the detection mechanism. Thanks again to injection, the
2136  * candidate waker queue is then likely to be confirmed no later than
2137  * during the next I/O-plugging interval for bfqq.
2138  *
2139  * ISSUE
2140  *
2141  * On queue merging all waker information is lost.
2142  */
2143 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2144 			    u64 now_ns)
2145 {
2146 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2147 
2148 	if (!bfqd->last_completed_rq_bfqq ||
2149 	    bfqd->last_completed_rq_bfqq == bfqq ||
2150 	    bfq_bfqq_has_short_ttime(bfqq) ||
2151 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2152 	    bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq ||
2153 	    bfqq == &bfqd->oom_bfqq)
2154 		return;
2155 
2156 	/*
2157 	 * We reset waker detection logic also if too much time has passed
2158  	 * since the first detection. If wakeups are rare, pointless idling
2159 	 * doesn't hurt throughput that much. The condition below makes sure
2160 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2161 	 */
2162 	if (bfqd->last_completed_rq_bfqq !=
2163 	    bfqq->tentative_waker_bfqq ||
2164 	    now_ns > bfqq->waker_detection_started +
2165 					128 * (u64)bfqd->bfq_slice_idle) {
2166 		/*
2167 		 * First synchronization detected with a
2168 		 * candidate waker queue, or with a different
2169 		 * candidate waker queue from the current one.
2170 		 */
2171 		bfqq->tentative_waker_bfqq =
2172 			bfqd->last_completed_rq_bfqq;
2173 		bfqq->num_waker_detections = 1;
2174 		bfqq->waker_detection_started = now_ns;
2175 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2176 			      MAX_BFQQ_NAME_LENGTH);
2177 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2178 	} else /* Same tentative waker queue detected again */
2179 		bfqq->num_waker_detections++;
2180 
2181 	if (bfqq->num_waker_detections == 3) {
2182 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2183 		bfqq->tentative_waker_bfqq = NULL;
2184 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2185 			      MAX_BFQQ_NAME_LENGTH);
2186 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2187 
2188 		/*
2189 		 * If the waker queue disappears, then
2190 		 * bfqq->waker_bfqq must be reset. To
2191 		 * this goal, we maintain in each
2192 		 * waker queue a list, woken_list, of
2193 		 * all the queues that reference the
2194 		 * waker queue through their
2195 		 * waker_bfqq pointer. When the waker
2196 		 * queue exits, the waker_bfqq pointer
2197 		 * of all the queues in the woken_list
2198 		 * is reset.
2199 		 *
2200 		 * In addition, if bfqq is already in
2201 		 * the woken_list of a waker queue,
2202 		 * then, before being inserted into
2203 		 * the woken_list of a new waker
2204 		 * queue, bfqq must be removed from
2205 		 * the woken_list of the old waker
2206 		 * queue.
2207 		 */
2208 		if (!hlist_unhashed(&bfqq->woken_list_node))
2209 			hlist_del_init(&bfqq->woken_list_node);
2210 		hlist_add_head(&bfqq->woken_list_node,
2211 			       &bfqd->last_completed_rq_bfqq->woken_list);
2212 	}
2213 }
2214 
2215 static void bfq_add_request(struct request *rq)
2216 {
2217 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2218 	struct bfq_data *bfqd = bfqq->bfqd;
2219 	struct request *next_rq, *prev;
2220 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2221 	bool interactive = false;
2222 	u64 now_ns = ktime_get_ns();
2223 
2224 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2225 	bfqq->queued[rq_is_sync(rq)]++;
2226 	/*
2227 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2228 	 * may be read without holding the lock in bfq_has_work().
2229 	 */
2230 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2231 
2232 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2233 		bfq_check_waker(bfqd, bfqq, now_ns);
2234 
2235 		/*
2236 		 * Periodically reset inject limit, to make sure that
2237 		 * the latter eventually drops in case workload
2238 		 * changes, see step (3) in the comments on
2239 		 * bfq_update_inject_limit().
2240 		 */
2241 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2242 					     msecs_to_jiffies(1000)))
2243 			bfq_reset_inject_limit(bfqd, bfqq);
2244 
2245 		/*
2246 		 * The following conditions must hold to setup a new
2247 		 * sampling of total service time, and then a new
2248 		 * update of the inject limit:
2249 		 * - bfqq is in service, because the total service
2250 		 *   time is evaluated only for the I/O requests of
2251 		 *   the queues in service;
2252 		 * - this is the right occasion to compute or to
2253 		 *   lower the baseline total service time, because
2254 		 *   there are actually no requests in the drive,
2255 		 *   or
2256 		 *   the baseline total service time is available, and
2257 		 *   this is the right occasion to compute the other
2258 		 *   quantity needed to update the inject limit, i.e.,
2259 		 *   the total service time caused by the amount of
2260 		 *   injection allowed by the current value of the
2261 		 *   limit. It is the right occasion because injection
2262 		 *   has actually been performed during the service
2263 		 *   hole, and there are still in-flight requests,
2264 		 *   which are very likely to be exactly the injected
2265 		 *   requests, or part of them;
2266 		 * - the minimum interval for sampling the total
2267 		 *   service time and updating the inject limit has
2268 		 *   elapsed.
2269 		 */
2270 		if (bfqq == bfqd->in_service_queue &&
2271 		    (bfqd->tot_rq_in_driver == 0 ||
2272 		     (bfqq->last_serv_time_ns > 0 &&
2273 		      bfqd->rqs_injected && bfqd->tot_rq_in_driver > 0)) &&
2274 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2275 					      msecs_to_jiffies(10))) {
2276 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2277 			/*
2278 			 * Start the state machine for measuring the
2279 			 * total service time of rq: setting
2280 			 * wait_dispatch will cause bfqd->waited_rq to
2281 			 * be set when rq will be dispatched.
2282 			 */
2283 			bfqd->wait_dispatch = true;
2284 			/*
2285 			 * If there is no I/O in service in the drive,
2286 			 * then possible injection occurred before the
2287 			 * arrival of rq will not affect the total
2288 			 * service time of rq. So the injection limit
2289 			 * must not be updated as a function of such
2290 			 * total service time, unless new injection
2291 			 * occurs before rq is completed. To have the
2292 			 * injection limit updated only in the latter
2293 			 * case, reset rqs_injected here (rqs_injected
2294 			 * will be set in case injection is performed
2295 			 * on bfqq before rq is completed).
2296 			 */
2297 			if (bfqd->tot_rq_in_driver == 0)
2298 				bfqd->rqs_injected = false;
2299 		}
2300 	}
2301 
2302 	if (bfq_bfqq_sync(bfqq))
2303 		bfq_update_io_intensity(bfqq, now_ns);
2304 
2305 	elv_rb_add(&bfqq->sort_list, rq);
2306 
2307 	/*
2308 	 * Check if this request is a better next-serve candidate.
2309 	 */
2310 	prev = bfqq->next_rq;
2311 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2312 	bfqq->next_rq = next_rq;
2313 
2314 	/*
2315 	 * Adjust priority tree position, if next_rq changes.
2316 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2317 	 */
2318 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2319 		bfq_pos_tree_add_move(bfqd, bfqq);
2320 
2321 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2322 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2323 						 rq, &interactive);
2324 	else {
2325 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2326 		    time_is_before_jiffies(
2327 				bfqq->last_wr_start_finish +
2328 				bfqd->bfq_wr_min_inter_arr_async)) {
2329 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2330 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2331 
2332 			bfqd->wr_busy_queues++;
2333 			bfqq->entity.prio_changed = 1;
2334 		}
2335 		if (prev != bfqq->next_rq)
2336 			bfq_updated_next_req(bfqd, bfqq);
2337 	}
2338 
2339 	/*
2340 	 * Assign jiffies to last_wr_start_finish in the following
2341 	 * cases:
2342 	 *
2343 	 * . if bfqq is not going to be weight-raised, because, for
2344 	 *   non weight-raised queues, last_wr_start_finish stores the
2345 	 *   arrival time of the last request; as of now, this piece
2346 	 *   of information is used only for deciding whether to
2347 	 *   weight-raise async queues
2348 	 *
2349 	 * . if bfqq is not weight-raised, because, if bfqq is now
2350 	 *   switching to weight-raised, then last_wr_start_finish
2351 	 *   stores the time when weight-raising starts
2352 	 *
2353 	 * . if bfqq is interactive, because, regardless of whether
2354 	 *   bfqq is currently weight-raised, the weight-raising
2355 	 *   period must start or restart (this case is considered
2356 	 *   separately because it is not detected by the above
2357 	 *   conditions, if bfqq is already weight-raised)
2358 	 *
2359 	 * last_wr_start_finish has to be updated also if bfqq is soft
2360 	 * real-time, because the weight-raising period is constantly
2361 	 * restarted on idle-to-busy transitions for these queues, but
2362 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2363 	 * needed.
2364 	 */
2365 	if (bfqd->low_latency &&
2366 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2367 		bfqq->last_wr_start_finish = jiffies;
2368 }
2369 
2370 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2371 					  struct bio *bio,
2372 					  struct request_queue *q)
2373 {
2374 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2375 
2376 
2377 	if (bfqq)
2378 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2379 
2380 	return NULL;
2381 }
2382 
2383 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2384 {
2385 	if (last_pos)
2386 		return abs(blk_rq_pos(rq) - last_pos);
2387 
2388 	return 0;
2389 }
2390 
2391 static void bfq_remove_request(struct request_queue *q,
2392 			       struct request *rq)
2393 {
2394 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2395 	struct bfq_data *bfqd = bfqq->bfqd;
2396 	const int sync = rq_is_sync(rq);
2397 
2398 	if (bfqq->next_rq == rq) {
2399 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2400 		bfq_updated_next_req(bfqd, bfqq);
2401 	}
2402 
2403 	if (rq->queuelist.prev != &rq->queuelist)
2404 		list_del_init(&rq->queuelist);
2405 	bfqq->queued[sync]--;
2406 	/*
2407 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2408 	 * may be read without holding the lock in bfq_has_work().
2409 	 */
2410 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2411 	elv_rb_del(&bfqq->sort_list, rq);
2412 
2413 	elv_rqhash_del(q, rq);
2414 	if (q->last_merge == rq)
2415 		q->last_merge = NULL;
2416 
2417 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2418 		bfqq->next_rq = NULL;
2419 
2420 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2421 			bfq_del_bfqq_busy(bfqq, false);
2422 			/*
2423 			 * bfqq emptied. In normal operation, when
2424 			 * bfqq is empty, bfqq->entity.service and
2425 			 * bfqq->entity.budget must contain,
2426 			 * respectively, the service received and the
2427 			 * budget used last time bfqq emptied. These
2428 			 * facts do not hold in this case, as at least
2429 			 * this last removal occurred while bfqq is
2430 			 * not in service. To avoid inconsistencies,
2431 			 * reset both bfqq->entity.service and
2432 			 * bfqq->entity.budget, if bfqq has still a
2433 			 * process that may issue I/O requests to it.
2434 			 */
2435 			bfqq->entity.budget = bfqq->entity.service = 0;
2436 		}
2437 
2438 		/*
2439 		 * Remove queue from request-position tree as it is empty.
2440 		 */
2441 		if (bfqq->pos_root) {
2442 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2443 			bfqq->pos_root = NULL;
2444 		}
2445 	} else {
2446 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2447 		if (unlikely(!bfqd->nonrot_with_queueing))
2448 			bfq_pos_tree_add_move(bfqd, bfqq);
2449 	}
2450 
2451 	if (rq->cmd_flags & REQ_META)
2452 		bfqq->meta_pending--;
2453 
2454 }
2455 
2456 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2457 		unsigned int nr_segs)
2458 {
2459 	struct bfq_data *bfqd = q->elevator->elevator_data;
2460 	struct request *free = NULL;
2461 	/*
2462 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2463 	 * store its return value for later use, to avoid nesting
2464 	 * queue_lock inside the bfqd->lock. We assume that the bic
2465 	 * returned by bfq_bic_lookup does not go away before
2466 	 * bfqd->lock is taken.
2467 	 */
2468 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2469 	bool ret;
2470 
2471 	spin_lock_irq(&bfqd->lock);
2472 
2473 	if (bic) {
2474 		/*
2475 		 * Make sure cgroup info is uptodate for current process before
2476 		 * considering the merge.
2477 		 */
2478 		bfq_bic_update_cgroup(bic, bio);
2479 
2480 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf),
2481 					     bfq_actuator_index(bfqd, bio));
2482 	} else {
2483 		bfqd->bio_bfqq = NULL;
2484 	}
2485 	bfqd->bio_bic = bic;
2486 
2487 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2488 
2489 	spin_unlock_irq(&bfqd->lock);
2490 	if (free)
2491 		blk_mq_free_request(free);
2492 
2493 	return ret;
2494 }
2495 
2496 static int bfq_request_merge(struct request_queue *q, struct request **req,
2497 			     struct bio *bio)
2498 {
2499 	struct bfq_data *bfqd = q->elevator->elevator_data;
2500 	struct request *__rq;
2501 
2502 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2503 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2504 		*req = __rq;
2505 
2506 		if (blk_discard_mergable(__rq))
2507 			return ELEVATOR_DISCARD_MERGE;
2508 		return ELEVATOR_FRONT_MERGE;
2509 	}
2510 
2511 	return ELEVATOR_NO_MERGE;
2512 }
2513 
2514 static void bfq_request_merged(struct request_queue *q, struct request *req,
2515 			       enum elv_merge type)
2516 {
2517 	if (type == ELEVATOR_FRONT_MERGE &&
2518 	    rb_prev(&req->rb_node) &&
2519 	    blk_rq_pos(req) <
2520 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2521 				    struct request, rb_node))) {
2522 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2523 		struct bfq_data *bfqd;
2524 		struct request *prev, *next_rq;
2525 
2526 		if (!bfqq)
2527 			return;
2528 
2529 		bfqd = bfqq->bfqd;
2530 
2531 		/* Reposition request in its sort_list */
2532 		elv_rb_del(&bfqq->sort_list, req);
2533 		elv_rb_add(&bfqq->sort_list, req);
2534 
2535 		/* Choose next request to be served for bfqq */
2536 		prev = bfqq->next_rq;
2537 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2538 					 bfqd->last_position);
2539 		bfqq->next_rq = next_rq;
2540 		/*
2541 		 * If next_rq changes, update both the queue's budget to
2542 		 * fit the new request and the queue's position in its
2543 		 * rq_pos_tree.
2544 		 */
2545 		if (prev != bfqq->next_rq) {
2546 			bfq_updated_next_req(bfqd, bfqq);
2547 			/*
2548 			 * See comments on bfq_pos_tree_add_move() for
2549 			 * the unlikely().
2550 			 */
2551 			if (unlikely(!bfqd->nonrot_with_queueing))
2552 				bfq_pos_tree_add_move(bfqd, bfqq);
2553 		}
2554 	}
2555 }
2556 
2557 /*
2558  * This function is called to notify the scheduler that the requests
2559  * rq and 'next' have been merged, with 'next' going away.  BFQ
2560  * exploits this hook to address the following issue: if 'next' has a
2561  * fifo_time lower that rq, then the fifo_time of rq must be set to
2562  * the value of 'next', to not forget the greater age of 'next'.
2563  *
2564  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2565  * on that rq is picked from the hash table q->elevator->hash, which,
2566  * in its turn, is filled only with I/O requests present in
2567  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2568  * the function that fills this hash table (elv_rqhash_add) is called
2569  * only by bfq_insert_request.
2570  */
2571 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2572 				struct request *next)
2573 {
2574 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2575 		*next_bfqq = RQ_BFQQ(next);
2576 
2577 	if (!bfqq)
2578 		goto remove;
2579 
2580 	/*
2581 	 * If next and rq belong to the same bfq_queue and next is older
2582 	 * than rq, then reposition rq in the fifo (by substituting next
2583 	 * with rq). Otherwise, if next and rq belong to different
2584 	 * bfq_queues, never reposition rq: in fact, we would have to
2585 	 * reposition it with respect to next's position in its own fifo,
2586 	 * which would most certainly be too expensive with respect to
2587 	 * the benefits.
2588 	 */
2589 	if (bfqq == next_bfqq &&
2590 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2591 	    next->fifo_time < rq->fifo_time) {
2592 		list_del_init(&rq->queuelist);
2593 		list_replace_init(&next->queuelist, &rq->queuelist);
2594 		rq->fifo_time = next->fifo_time;
2595 	}
2596 
2597 	if (bfqq->next_rq == next)
2598 		bfqq->next_rq = rq;
2599 
2600 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2601 remove:
2602 	/* Merged request may be in the IO scheduler. Remove it. */
2603 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2604 		bfq_remove_request(next->q, next);
2605 		if (next_bfqq)
2606 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2607 						    next->cmd_flags);
2608 	}
2609 }
2610 
2611 /* Must be called with bfqq != NULL */
2612 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2613 {
2614 	/*
2615 	 * If bfqq has been enjoying interactive weight-raising, then
2616 	 * reset soft_rt_next_start. We do it for the following
2617 	 * reason. bfqq may have been conveying the I/O needed to load
2618 	 * a soft real-time application. Such an application actually
2619 	 * exhibits a soft real-time I/O pattern after it finishes
2620 	 * loading, and finally starts doing its job. But, if bfqq has
2621 	 * been receiving a lot of bandwidth so far (likely to happen
2622 	 * on a fast device), then soft_rt_next_start now contains a
2623 	 * high value that. So, without this reset, bfqq would be
2624 	 * prevented from being possibly considered as soft_rt for a
2625 	 * very long time.
2626 	 */
2627 
2628 	if (bfqq->wr_cur_max_time !=
2629 	    bfqq->bfqd->bfq_wr_rt_max_time)
2630 		bfqq->soft_rt_next_start = jiffies;
2631 
2632 	if (bfq_bfqq_busy(bfqq))
2633 		bfqq->bfqd->wr_busy_queues--;
2634 	bfqq->wr_coeff = 1;
2635 	bfqq->wr_cur_max_time = 0;
2636 	bfqq->last_wr_start_finish = jiffies;
2637 	/*
2638 	 * Trigger a weight change on the next invocation of
2639 	 * __bfq_entity_update_weight_prio.
2640 	 */
2641 	bfqq->entity.prio_changed = 1;
2642 }
2643 
2644 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2645 			     struct bfq_group *bfqg)
2646 {
2647 	int i, j, k;
2648 
2649 	for (k = 0; k < bfqd->num_actuators; k++) {
2650 		for (i = 0; i < 2; i++)
2651 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2652 				if (bfqg->async_bfqq[i][j][k])
2653 					bfq_bfqq_end_wr(bfqg->async_bfqq[i][j][k]);
2654 		if (bfqg->async_idle_bfqq[k])
2655 			bfq_bfqq_end_wr(bfqg->async_idle_bfqq[k]);
2656 	}
2657 }
2658 
2659 static void bfq_end_wr(struct bfq_data *bfqd)
2660 {
2661 	struct bfq_queue *bfqq;
2662 	int i;
2663 
2664 	spin_lock_irq(&bfqd->lock);
2665 
2666 	for (i = 0; i < bfqd->num_actuators; i++) {
2667 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
2668 			bfq_bfqq_end_wr(bfqq);
2669 	}
2670 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2671 		bfq_bfqq_end_wr(bfqq);
2672 	bfq_end_wr_async(bfqd);
2673 
2674 	spin_unlock_irq(&bfqd->lock);
2675 }
2676 
2677 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2678 {
2679 	if (request)
2680 		return blk_rq_pos(io_struct);
2681 	else
2682 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2683 }
2684 
2685 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2686 				  sector_t sector)
2687 {
2688 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2689 	       BFQQ_CLOSE_THR;
2690 }
2691 
2692 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2693 					 struct bfq_queue *bfqq,
2694 					 sector_t sector)
2695 {
2696 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2697 	struct rb_node *parent, *node;
2698 	struct bfq_queue *__bfqq;
2699 
2700 	if (RB_EMPTY_ROOT(root))
2701 		return NULL;
2702 
2703 	/*
2704 	 * First, if we find a request starting at the end of the last
2705 	 * request, choose it.
2706 	 */
2707 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2708 	if (__bfqq)
2709 		return __bfqq;
2710 
2711 	/*
2712 	 * If the exact sector wasn't found, the parent of the NULL leaf
2713 	 * will contain the closest sector (rq_pos_tree sorted by
2714 	 * next_request position).
2715 	 */
2716 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2717 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2718 		return __bfqq;
2719 
2720 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2721 		node = rb_next(&__bfqq->pos_node);
2722 	else
2723 		node = rb_prev(&__bfqq->pos_node);
2724 	if (!node)
2725 		return NULL;
2726 
2727 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2728 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2729 		return __bfqq;
2730 
2731 	return NULL;
2732 }
2733 
2734 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2735 						   struct bfq_queue *cur_bfqq,
2736 						   sector_t sector)
2737 {
2738 	struct bfq_queue *bfqq;
2739 
2740 	/*
2741 	 * We shall notice if some of the queues are cooperating,
2742 	 * e.g., working closely on the same area of the device. In
2743 	 * that case, we can group them together and: 1) don't waste
2744 	 * time idling, and 2) serve the union of their requests in
2745 	 * the best possible order for throughput.
2746 	 */
2747 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2748 	if (!bfqq || bfqq == cur_bfqq)
2749 		return NULL;
2750 
2751 	return bfqq;
2752 }
2753 
2754 static struct bfq_queue *
2755 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2756 {
2757 	int process_refs, new_process_refs;
2758 	struct bfq_queue *__bfqq;
2759 
2760 	/*
2761 	 * If there are no process references on the new_bfqq, then it is
2762 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2763 	 * may have dropped their last reference (not just their last process
2764 	 * reference).
2765 	 */
2766 	if (!bfqq_process_refs(new_bfqq))
2767 		return NULL;
2768 
2769 	/* Avoid a circular list and skip interim queue merges. */
2770 	while ((__bfqq = new_bfqq->new_bfqq)) {
2771 		if (__bfqq == bfqq)
2772 			return NULL;
2773 		new_bfqq = __bfqq;
2774 	}
2775 
2776 	process_refs = bfqq_process_refs(bfqq);
2777 	new_process_refs = bfqq_process_refs(new_bfqq);
2778 	/*
2779 	 * If the process for the bfqq has gone away, there is no
2780 	 * sense in merging the queues.
2781 	 */
2782 	if (process_refs == 0 || new_process_refs == 0)
2783 		return NULL;
2784 
2785 	/*
2786 	 * Make sure merged queues belong to the same parent. Parents could
2787 	 * have changed since the time we decided the two queues are suitable
2788 	 * for merging.
2789 	 */
2790 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2791 		return NULL;
2792 
2793 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2794 		new_bfqq->pid);
2795 
2796 	/*
2797 	 * Merging is just a redirection: the requests of the process
2798 	 * owning one of the two queues are redirected to the other queue.
2799 	 * The latter queue, in its turn, is set as shared if this is the
2800 	 * first time that the requests of some process are redirected to
2801 	 * it.
2802 	 *
2803 	 * We redirect bfqq to new_bfqq and not the opposite, because
2804 	 * we are in the context of the process owning bfqq, thus we
2805 	 * have the io_cq of this process. So we can immediately
2806 	 * configure this io_cq to redirect the requests of the
2807 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2808 	 * not available any more (new_bfqq->bic == NULL).
2809 	 *
2810 	 * Anyway, even in case new_bfqq coincides with the in-service
2811 	 * queue, redirecting requests the in-service queue is the
2812 	 * best option, as we feed the in-service queue with new
2813 	 * requests close to the last request served and, by doing so,
2814 	 * are likely to increase the throughput.
2815 	 */
2816 	bfqq->new_bfqq = new_bfqq;
2817 	/*
2818 	 * The above assignment schedules the following redirections:
2819 	 * each time some I/O for bfqq arrives, the process that
2820 	 * generated that I/O is disassociated from bfqq and
2821 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2822 	 * in advance, adding the number of processes that are
2823 	 * expected to be associated with new_bfqq as they happen to
2824 	 * issue I/O.
2825 	 */
2826 	new_bfqq->ref += process_refs;
2827 	return new_bfqq;
2828 }
2829 
2830 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2831 					struct bfq_queue *new_bfqq)
2832 {
2833 	if (bfq_too_late_for_merging(new_bfqq))
2834 		return false;
2835 
2836 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2837 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2838 		return false;
2839 
2840 	/*
2841 	 * If either of the queues has already been detected as seeky,
2842 	 * then merging it with the other queue is unlikely to lead to
2843 	 * sequential I/O.
2844 	 */
2845 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2846 		return false;
2847 
2848 	/*
2849 	 * Interleaved I/O is known to be done by (some) applications
2850 	 * only for reads, so it does not make sense to merge async
2851 	 * queues.
2852 	 */
2853 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2854 		return false;
2855 
2856 	return true;
2857 }
2858 
2859 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2860 					     struct bfq_queue *bfqq);
2861 
2862 static struct bfq_queue *
2863 bfq_setup_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2864 		       struct bfq_queue *stable_merge_bfqq,
2865 		       struct bfq_iocq_bfqq_data *bfqq_data)
2866 {
2867 	int proc_ref = min(bfqq_process_refs(bfqq),
2868 			   bfqq_process_refs(stable_merge_bfqq));
2869 	struct bfq_queue *new_bfqq = NULL;
2870 
2871 	bfqq_data->stable_merge_bfqq = NULL;
2872 	if (idling_boosts_thr_without_issues(bfqd, bfqq) || proc_ref == 0)
2873 		goto out;
2874 
2875 	/* next function will take at least one ref */
2876 	new_bfqq = bfq_setup_merge(bfqq, stable_merge_bfqq);
2877 
2878 	if (new_bfqq) {
2879 		bfqq_data->stably_merged = true;
2880 		if (new_bfqq->bic) {
2881 			unsigned int new_a_idx = new_bfqq->actuator_idx;
2882 			struct bfq_iocq_bfqq_data *new_bfqq_data =
2883 				&new_bfqq->bic->bfqq_data[new_a_idx];
2884 
2885 			new_bfqq_data->stably_merged = true;
2886 		}
2887 	}
2888 
2889 out:
2890 	/* deschedule stable merge, because done or aborted here */
2891 	bfq_put_stable_ref(stable_merge_bfqq);
2892 
2893 	return new_bfqq;
2894 }
2895 
2896 /*
2897  * Attempt to schedule a merge of bfqq with the currently in-service
2898  * queue or with a close queue among the scheduled queues.  Return
2899  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2900  * structure otherwise.
2901  *
2902  * The OOM queue is not allowed to participate to cooperation: in fact, since
2903  * the requests temporarily redirected to the OOM queue could be redirected
2904  * again to dedicated queues at any time, the state needed to correctly
2905  * handle merging with the OOM queue would be quite complex and expensive
2906  * to maintain. Besides, in such a critical condition as an out of memory,
2907  * the benefits of queue merging may be little relevant, or even negligible.
2908  *
2909  * WARNING: queue merging may impair fairness among non-weight raised
2910  * queues, for at least two reasons: 1) the original weight of a
2911  * merged queue may change during the merged state, 2) even being the
2912  * weight the same, a merged queue may be bloated with many more
2913  * requests than the ones produced by its originally-associated
2914  * process.
2915  */
2916 static struct bfq_queue *
2917 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2918 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2919 {
2920 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2921 	unsigned int a_idx = bfqq->actuator_idx;
2922 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
2923 
2924 	/* if a merge has already been setup, then proceed with that first */
2925 	new_bfqq = bfqq->new_bfqq;
2926 	if (new_bfqq) {
2927 		while (new_bfqq->new_bfqq)
2928 			new_bfqq = new_bfqq->new_bfqq;
2929 		return new_bfqq;
2930 	}
2931 
2932 	/*
2933 	 * Check delayed stable merge for rotational or non-queueing
2934 	 * devs. For this branch to be executed, bfqq must not be
2935 	 * currently merged with some other queue (i.e., bfqq->bic
2936 	 * must be non null). If we considered also merged queues,
2937 	 * then we should also check whether bfqq has already been
2938 	 * merged with bic->stable_merge_bfqq. But this would be
2939 	 * costly and complicated.
2940 	 */
2941 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2942 		/*
2943 		 * Make sure also that bfqq is sync, because
2944 		 * bic->stable_merge_bfqq may point to some queue (for
2945 		 * stable merging) also if bic is associated with a
2946 		 * sync queue, but this bfqq is async
2947 		 */
2948 		if (bfq_bfqq_sync(bfqq) && bfqq_data->stable_merge_bfqq &&
2949 		    !bfq_bfqq_just_created(bfqq) &&
2950 		    time_is_before_jiffies(bfqq->split_time +
2951 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2952 		    time_is_before_jiffies(bfqq->creation_time +
2953 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2954 			struct bfq_queue *stable_merge_bfqq =
2955 				bfqq_data->stable_merge_bfqq;
2956 
2957 			return bfq_setup_stable_merge(bfqd, bfqq,
2958 						      stable_merge_bfqq,
2959 						      bfqq_data);
2960 		}
2961 	}
2962 
2963 	/*
2964 	 * Do not perform queue merging if the device is non
2965 	 * rotational and performs internal queueing. In fact, such a
2966 	 * device reaches a high speed through internal parallelism
2967 	 * and pipelining. This means that, to reach a high
2968 	 * throughput, it must have many requests enqueued at the same
2969 	 * time. But, in this configuration, the internal scheduling
2970 	 * algorithm of the device does exactly the job of queue
2971 	 * merging: it reorders requests so as to obtain as much as
2972 	 * possible a sequential I/O pattern. As a consequence, with
2973 	 * the workload generated by processes doing interleaved I/O,
2974 	 * the throughput reached by the device is likely to be the
2975 	 * same, with and without queue merging.
2976 	 *
2977 	 * Disabling merging also provides a remarkable benefit in
2978 	 * terms of throughput. Merging tends to make many workloads
2979 	 * artificially more uneven, because of shared queues
2980 	 * remaining non empty for incomparably more time than
2981 	 * non-merged queues. This may accentuate workload
2982 	 * asymmetries. For example, if one of the queues in a set of
2983 	 * merged queues has a higher weight than a normal queue, then
2984 	 * the shared queue may inherit such a high weight and, by
2985 	 * staying almost always active, may force BFQ to perform I/O
2986 	 * plugging most of the time. This evidently makes it harder
2987 	 * for BFQ to let the device reach a high throughput.
2988 	 *
2989 	 * Finally, the likely() macro below is not used because one
2990 	 * of the two branches is more likely than the other, but to
2991 	 * have the code path after the following if() executed as
2992 	 * fast as possible for the case of a non rotational device
2993 	 * with queueing. We want it because this is the fastest kind
2994 	 * of device. On the opposite end, the likely() may lengthen
2995 	 * the execution time of BFQ for the case of slower devices
2996 	 * (rotational or at least without queueing). But in this case
2997 	 * the execution time of BFQ matters very little, if not at
2998 	 * all.
2999 	 */
3000 	if (likely(bfqd->nonrot_with_queueing))
3001 		return NULL;
3002 
3003 	/*
3004 	 * Prevent bfqq from being merged if it has been created too
3005 	 * long ago. The idea is that true cooperating processes, and
3006 	 * thus their associated bfq_queues, are supposed to be
3007 	 * created shortly after each other. This is the case, e.g.,
3008 	 * for KVM/QEMU and dump I/O threads. Basing on this
3009 	 * assumption, the following filtering greatly reduces the
3010 	 * probability that two non-cooperating processes, which just
3011 	 * happen to do close I/O for some short time interval, have
3012 	 * their queues merged by mistake.
3013 	 */
3014 	if (bfq_too_late_for_merging(bfqq))
3015 		return NULL;
3016 
3017 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
3018 		return NULL;
3019 
3020 	/* If there is only one backlogged queue, don't search. */
3021 	if (bfq_tot_busy_queues(bfqd) == 1)
3022 		return NULL;
3023 
3024 	in_service_bfqq = bfqd->in_service_queue;
3025 
3026 	if (in_service_bfqq && in_service_bfqq != bfqq &&
3027 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
3028 	    bfq_rq_close_to_sector(io_struct, request,
3029 				   bfqd->in_serv_last_pos) &&
3030 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
3031 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
3032 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
3033 		if (new_bfqq)
3034 			return new_bfqq;
3035 	}
3036 	/*
3037 	 * Check whether there is a cooperator among currently scheduled
3038 	 * queues. The only thing we need is that the bio/request is not
3039 	 * NULL, as we need it to establish whether a cooperator exists.
3040 	 */
3041 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
3042 			bfq_io_struct_pos(io_struct, request));
3043 
3044 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
3045 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
3046 		return bfq_setup_merge(bfqq, new_bfqq);
3047 
3048 	return NULL;
3049 }
3050 
3051 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
3052 {
3053 	struct bfq_io_cq *bic = bfqq->bic;
3054 	unsigned int a_idx = bfqq->actuator_idx;
3055 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
3056 
3057 	/*
3058 	 * If !bfqq->bic, the queue is already shared or its requests
3059 	 * have already been redirected to a shared queue; both idle window
3060 	 * and weight raising state have already been saved. Do nothing.
3061 	 */
3062 	if (!bic)
3063 		return;
3064 
3065 	bfqq_data->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3066 	bfqq_data->saved_inject_limit =	bfqq->inject_limit;
3067 	bfqq_data->saved_decrease_time_jif = bfqq->decrease_time_jif;
3068 
3069 	bfqq_data->saved_weight = bfqq->entity.orig_weight;
3070 	bfqq_data->saved_ttime = bfqq->ttime;
3071 	bfqq_data->saved_has_short_ttime =
3072 		bfq_bfqq_has_short_ttime(bfqq);
3073 	bfqq_data->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3074 	bfqq_data->saved_io_start_time = bfqq->io_start_time;
3075 	bfqq_data->saved_tot_idle_time = bfqq->tot_idle_time;
3076 	bfqq_data->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3077 	bfqq_data->was_in_burst_list =
3078 		!hlist_unhashed(&bfqq->burst_list_node);
3079 
3080 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3081 		     !bfq_bfqq_in_large_burst(bfqq) &&
3082 		     bfqq->bfqd->low_latency)) {
3083 		/*
3084 		 * bfqq being merged right after being created: bfqq
3085 		 * would have deserved interactive weight raising, but
3086 		 * did not make it to be set in a weight-raised state,
3087 		 * because of this early merge.	Store directly the
3088 		 * weight-raising state that would have been assigned
3089 		 * to bfqq, so that to avoid that bfqq unjustly fails
3090 		 * to enjoy weight raising if split soon.
3091 		 */
3092 		bfqq_data->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3093 		bfqq_data->saved_wr_start_at_switch_to_srt =
3094 			bfq_smallest_from_now();
3095 		bfqq_data->saved_wr_cur_max_time =
3096 			bfq_wr_duration(bfqq->bfqd);
3097 		bfqq_data->saved_last_wr_start_finish = jiffies;
3098 	} else {
3099 		bfqq_data->saved_wr_coeff = bfqq->wr_coeff;
3100 		bfqq_data->saved_wr_start_at_switch_to_srt =
3101 			bfqq->wr_start_at_switch_to_srt;
3102 		bfqq_data->saved_service_from_wr =
3103 			bfqq->service_from_wr;
3104 		bfqq_data->saved_last_wr_start_finish =
3105 			bfqq->last_wr_start_finish;
3106 		bfqq_data->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3107 	}
3108 }
3109 
3110 
3111 static void
3112 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3113 {
3114 	if (cur_bfqq->entity.parent &&
3115 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3116 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3117 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3118 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3119 }
3120 
3121 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3122 {
3123 	/*
3124 	 * To prevent bfqq's service guarantees from being violated,
3125 	 * bfqq may be left busy, i.e., queued for service, even if
3126 	 * empty (see comments in __bfq_bfqq_expire() for
3127 	 * details). But, if no process will send requests to bfqq any
3128 	 * longer, then there is no point in keeping bfqq queued for
3129 	 * service. In addition, keeping bfqq queued for service, but
3130 	 * with no process ref any longer, may have caused bfqq to be
3131 	 * freed when dequeued from service. But this is assumed to
3132 	 * never happen.
3133 	 */
3134 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3135 	    bfqq != bfqd->in_service_queue)
3136 		bfq_del_bfqq_busy(bfqq, false);
3137 
3138 	bfq_reassign_last_bfqq(bfqq, NULL);
3139 
3140 	bfq_put_queue(bfqq);
3141 }
3142 
3143 static struct bfq_queue *bfq_merge_bfqqs(struct bfq_data *bfqd,
3144 					 struct bfq_io_cq *bic,
3145 					 struct bfq_queue *bfqq)
3146 {
3147 	struct bfq_queue *new_bfqq = bfqq->new_bfqq;
3148 
3149 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3150 		(unsigned long)new_bfqq->pid);
3151 	/* Save weight raising and idle window of the merged queues */
3152 	bfq_bfqq_save_state(bfqq);
3153 	bfq_bfqq_save_state(new_bfqq);
3154 	if (bfq_bfqq_IO_bound(bfqq))
3155 		bfq_mark_bfqq_IO_bound(new_bfqq);
3156 	bfq_clear_bfqq_IO_bound(bfqq);
3157 
3158 	/*
3159 	 * The processes associated with bfqq are cooperators of the
3160 	 * processes associated with new_bfqq. So, if bfqq has a
3161 	 * waker, then assume that all these processes will be happy
3162 	 * to let bfqq's waker freely inject I/O when they have no
3163 	 * I/O.
3164 	 */
3165 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3166 	    bfqq->waker_bfqq != new_bfqq) {
3167 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3168 		new_bfqq->tentative_waker_bfqq = NULL;
3169 
3170 		/*
3171 		 * If the waker queue disappears, then
3172 		 * new_bfqq->waker_bfqq must be reset. So insert
3173 		 * new_bfqq into the woken_list of the waker. See
3174 		 * bfq_check_waker for details.
3175 		 */
3176 		hlist_add_head(&new_bfqq->woken_list_node,
3177 			       &new_bfqq->waker_bfqq->woken_list);
3178 
3179 	}
3180 
3181 	/*
3182 	 * If bfqq is weight-raised, then let new_bfqq inherit
3183 	 * weight-raising. To reduce false positives, neglect the case
3184 	 * where bfqq has just been created, but has not yet made it
3185 	 * to be weight-raised (which may happen because EQM may merge
3186 	 * bfqq even before bfq_add_request is executed for the first
3187 	 * time for bfqq). Handling this case would however be very
3188 	 * easy, thanks to the flag just_created.
3189 	 */
3190 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3191 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3192 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3193 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3194 		new_bfqq->wr_start_at_switch_to_srt =
3195 			bfqq->wr_start_at_switch_to_srt;
3196 		if (bfq_bfqq_busy(new_bfqq))
3197 			bfqd->wr_busy_queues++;
3198 		new_bfqq->entity.prio_changed = 1;
3199 	}
3200 
3201 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3202 		bfqq->wr_coeff = 1;
3203 		bfqq->entity.prio_changed = 1;
3204 		if (bfq_bfqq_busy(bfqq))
3205 			bfqd->wr_busy_queues--;
3206 	}
3207 
3208 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3209 		     bfqd->wr_busy_queues);
3210 
3211 	/*
3212 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3213 	 */
3214 	bic_set_bfqq(bic, new_bfqq, true, bfqq->actuator_idx);
3215 	bfq_mark_bfqq_coop(new_bfqq);
3216 	/*
3217 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3218 	 * set new_bfqq->bic to NULL. bfqq either:
3219 	 * - does not belong to any bic any more, and hence bfqq->bic must
3220 	 *   be set to NULL, or
3221 	 * - is a queue whose owning bics have already been redirected to a
3222 	 *   different queue, hence the queue is destined to not belong to
3223 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3224 	 *   assignment causes no harm).
3225 	 */
3226 	new_bfqq->bic = NULL;
3227 	/*
3228 	 * If the queue is shared, the pid is the pid of one of the associated
3229 	 * processes. Which pid depends on the exact sequence of merge events
3230 	 * the queue underwent. So printing such a pid is useless and confusing
3231 	 * because it reports a random pid between those of the associated
3232 	 * processes.
3233 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3234 	 * a pid in logging messages.
3235 	 */
3236 	new_bfqq->pid = -1;
3237 	bfqq->bic = NULL;
3238 
3239 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3240 
3241 	bfq_release_process_ref(bfqd, bfqq);
3242 
3243 	return new_bfqq;
3244 }
3245 
3246 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3247 				struct bio *bio)
3248 {
3249 	struct bfq_data *bfqd = q->elevator->elevator_data;
3250 	bool is_sync = op_is_sync(bio->bi_opf);
3251 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3252 
3253 	/*
3254 	 * Disallow merge of a sync bio into an async request.
3255 	 */
3256 	if (is_sync && !rq_is_sync(rq))
3257 		return false;
3258 
3259 	/*
3260 	 * Lookup the bfqq that this bio will be queued with. Allow
3261 	 * merge only if rq is queued there.
3262 	 */
3263 	if (!bfqq)
3264 		return false;
3265 
3266 	/*
3267 	 * We take advantage of this function to perform an early merge
3268 	 * of the queues of possible cooperating processes.
3269 	 */
3270 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3271 	if (new_bfqq) {
3272 		/*
3273 		 * bic still points to bfqq, then it has not yet been
3274 		 * redirected to some other bfq_queue, and a queue
3275 		 * merge between bfqq and new_bfqq can be safely
3276 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3277 		 * and bfqq can be put.
3278 		 */
3279 		while (bfqq != new_bfqq)
3280 			bfqq = bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq);
3281 
3282 		/*
3283 		 * Change also bqfd->bio_bfqq, as
3284 		 * bfqd->bio_bic now points to new_bfqq, and
3285 		 * this function may be invoked again (and then may
3286 		 * use again bqfd->bio_bfqq).
3287 		 */
3288 		bfqd->bio_bfqq = bfqq;
3289 	}
3290 
3291 	return bfqq == RQ_BFQQ(rq);
3292 }
3293 
3294 /*
3295  * Set the maximum time for the in-service queue to consume its
3296  * budget. This prevents seeky processes from lowering the throughput.
3297  * In practice, a time-slice service scheme is used with seeky
3298  * processes.
3299  */
3300 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3301 				   struct bfq_queue *bfqq)
3302 {
3303 	unsigned int timeout_coeff;
3304 
3305 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3306 		timeout_coeff = 1;
3307 	else
3308 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3309 
3310 	bfqd->last_budget_start = ktime_get();
3311 
3312 	bfqq->budget_timeout = jiffies +
3313 		bfqd->bfq_timeout * timeout_coeff;
3314 }
3315 
3316 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3317 				       struct bfq_queue *bfqq)
3318 {
3319 	if (bfqq) {
3320 		bfq_clear_bfqq_fifo_expire(bfqq);
3321 
3322 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3323 
3324 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3325 		    bfqq->wr_coeff > 1 &&
3326 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3327 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3328 			/*
3329 			 * For soft real-time queues, move the start
3330 			 * of the weight-raising period forward by the
3331 			 * time the queue has not received any
3332 			 * service. Otherwise, a relatively long
3333 			 * service delay is likely to cause the
3334 			 * weight-raising period of the queue to end,
3335 			 * because of the short duration of the
3336 			 * weight-raising period of a soft real-time
3337 			 * queue.  It is worth noting that this move
3338 			 * is not so dangerous for the other queues,
3339 			 * because soft real-time queues are not
3340 			 * greedy.
3341 			 *
3342 			 * To not add a further variable, we use the
3343 			 * overloaded field budget_timeout to
3344 			 * determine for how long the queue has not
3345 			 * received service, i.e., how much time has
3346 			 * elapsed since the queue expired. However,
3347 			 * this is a little imprecise, because
3348 			 * budget_timeout is set to jiffies if bfqq
3349 			 * not only expires, but also remains with no
3350 			 * request.
3351 			 */
3352 			if (time_after(bfqq->budget_timeout,
3353 				       bfqq->last_wr_start_finish))
3354 				bfqq->last_wr_start_finish +=
3355 					jiffies - bfqq->budget_timeout;
3356 			else
3357 				bfqq->last_wr_start_finish = jiffies;
3358 		}
3359 
3360 		bfq_set_budget_timeout(bfqd, bfqq);
3361 		bfq_log_bfqq(bfqd, bfqq,
3362 			     "set_in_service_queue, cur-budget = %d",
3363 			     bfqq->entity.budget);
3364 	}
3365 
3366 	bfqd->in_service_queue = bfqq;
3367 	bfqd->in_serv_last_pos = 0;
3368 }
3369 
3370 /*
3371  * Get and set a new queue for service.
3372  */
3373 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3374 {
3375 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3376 
3377 	__bfq_set_in_service_queue(bfqd, bfqq);
3378 	return bfqq;
3379 }
3380 
3381 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3382 {
3383 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3384 	u32 sl;
3385 
3386 	bfq_mark_bfqq_wait_request(bfqq);
3387 
3388 	/*
3389 	 * We don't want to idle for seeks, but we do want to allow
3390 	 * fair distribution of slice time for a process doing back-to-back
3391 	 * seeks. So allow a little bit of time for him to submit a new rq.
3392 	 */
3393 	sl = bfqd->bfq_slice_idle;
3394 	/*
3395 	 * Unless the queue is being weight-raised or the scenario is
3396 	 * asymmetric, grant only minimum idle time if the queue
3397 	 * is seeky. A long idling is preserved for a weight-raised
3398 	 * queue, or, more in general, in an asymmetric scenario,
3399 	 * because a long idling is needed for guaranteeing to a queue
3400 	 * its reserved share of the throughput (in particular, it is
3401 	 * needed if the queue has a higher weight than some other
3402 	 * queue).
3403 	 */
3404 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3405 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3406 		sl = min_t(u64, sl, BFQ_MIN_TT);
3407 	else if (bfqq->wr_coeff > 1)
3408 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3409 
3410 	bfqd->last_idling_start = ktime_get();
3411 	bfqd->last_idling_start_jiffies = jiffies;
3412 
3413 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3414 		      HRTIMER_MODE_REL);
3415 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3416 }
3417 
3418 /*
3419  * In autotuning mode, max_budget is dynamically recomputed as the
3420  * amount of sectors transferred in timeout at the estimated peak
3421  * rate. This enables BFQ to utilize a full timeslice with a full
3422  * budget, even if the in-service queue is served at peak rate. And
3423  * this maximises throughput with sequential workloads.
3424  */
3425 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3426 {
3427 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3428 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3429 }
3430 
3431 /*
3432  * Update parameters related to throughput and responsiveness, as a
3433  * function of the estimated peak rate. See comments on
3434  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3435  */
3436 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3437 {
3438 	if (bfqd->bfq_user_max_budget == 0) {
3439 		bfqd->bfq_max_budget =
3440 			bfq_calc_max_budget(bfqd);
3441 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3442 	}
3443 }
3444 
3445 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3446 				       struct request *rq)
3447 {
3448 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3449 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3450 		bfqd->peak_rate_samples = 1;
3451 		bfqd->sequential_samples = 0;
3452 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3453 			blk_rq_sectors(rq);
3454 	} else /* no new rq dispatched, just reset the number of samples */
3455 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3456 
3457 	bfq_log(bfqd,
3458 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3459 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3460 		bfqd->tot_sectors_dispatched);
3461 }
3462 
3463 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3464 {
3465 	u32 rate, weight, divisor;
3466 
3467 	/*
3468 	 * For the convergence property to hold (see comments on
3469 	 * bfq_update_peak_rate()) and for the assessment to be
3470 	 * reliable, a minimum number of samples must be present, and
3471 	 * a minimum amount of time must have elapsed. If not so, do
3472 	 * not compute new rate. Just reset parameters, to get ready
3473 	 * for a new evaluation attempt.
3474 	 */
3475 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3476 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3477 		goto reset_computation;
3478 
3479 	/*
3480 	 * If a new request completion has occurred after last
3481 	 * dispatch, then, to approximate the rate at which requests
3482 	 * have been served by the device, it is more precise to
3483 	 * extend the observation interval to the last completion.
3484 	 */
3485 	bfqd->delta_from_first =
3486 		max_t(u64, bfqd->delta_from_first,
3487 		      bfqd->last_completion - bfqd->first_dispatch);
3488 
3489 	/*
3490 	 * Rate computed in sects/usec, and not sects/nsec, for
3491 	 * precision issues.
3492 	 */
3493 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3494 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3495 
3496 	/*
3497 	 * Peak rate not updated if:
3498 	 * - the percentage of sequential dispatches is below 3/4 of the
3499 	 *   total, and rate is below the current estimated peak rate
3500 	 * - rate is unreasonably high (> 20M sectors/sec)
3501 	 */
3502 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3503 	     rate <= bfqd->peak_rate) ||
3504 		rate > 20<<BFQ_RATE_SHIFT)
3505 		goto reset_computation;
3506 
3507 	/*
3508 	 * We have to update the peak rate, at last! To this purpose,
3509 	 * we use a low-pass filter. We compute the smoothing constant
3510 	 * of the filter as a function of the 'weight' of the new
3511 	 * measured rate.
3512 	 *
3513 	 * As can be seen in next formulas, we define this weight as a
3514 	 * quantity proportional to how sequential the workload is,
3515 	 * and to how long the observation time interval is.
3516 	 *
3517 	 * The weight runs from 0 to 8. The maximum value of the
3518 	 * weight, 8, yields the minimum value for the smoothing
3519 	 * constant. At this minimum value for the smoothing constant,
3520 	 * the measured rate contributes for half of the next value of
3521 	 * the estimated peak rate.
3522 	 *
3523 	 * So, the first step is to compute the weight as a function
3524 	 * of how sequential the workload is. Note that the weight
3525 	 * cannot reach 9, because bfqd->sequential_samples cannot
3526 	 * become equal to bfqd->peak_rate_samples, which, in its
3527 	 * turn, holds true because bfqd->sequential_samples is not
3528 	 * incremented for the first sample.
3529 	 */
3530 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3531 
3532 	/*
3533 	 * Second step: further refine the weight as a function of the
3534 	 * duration of the observation interval.
3535 	 */
3536 	weight = min_t(u32, 8,
3537 		       div_u64(weight * bfqd->delta_from_first,
3538 			       BFQ_RATE_REF_INTERVAL));
3539 
3540 	/*
3541 	 * Divisor ranging from 10, for minimum weight, to 2, for
3542 	 * maximum weight.
3543 	 */
3544 	divisor = 10 - weight;
3545 
3546 	/*
3547 	 * Finally, update peak rate:
3548 	 *
3549 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3550 	 */
3551 	bfqd->peak_rate *= divisor-1;
3552 	bfqd->peak_rate /= divisor;
3553 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3554 
3555 	bfqd->peak_rate += rate;
3556 
3557 	/*
3558 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3559 	 * the minimum representable values reported in the comments
3560 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3561 	 * divisions by zero where bfqd->peak_rate is used as a
3562 	 * divisor.
3563 	 */
3564 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3565 
3566 	update_thr_responsiveness_params(bfqd);
3567 
3568 reset_computation:
3569 	bfq_reset_rate_computation(bfqd, rq);
3570 }
3571 
3572 /*
3573  * Update the read/write peak rate (the main quantity used for
3574  * auto-tuning, see update_thr_responsiveness_params()).
3575  *
3576  * It is not trivial to estimate the peak rate (correctly): because of
3577  * the presence of sw and hw queues between the scheduler and the
3578  * device components that finally serve I/O requests, it is hard to
3579  * say exactly when a given dispatched request is served inside the
3580  * device, and for how long. As a consequence, it is hard to know
3581  * precisely at what rate a given set of requests is actually served
3582  * by the device.
3583  *
3584  * On the opposite end, the dispatch time of any request is trivially
3585  * available, and, from this piece of information, the "dispatch rate"
3586  * of requests can be immediately computed. So, the idea in the next
3587  * function is to use what is known, namely request dispatch times
3588  * (plus, when useful, request completion times), to estimate what is
3589  * unknown, namely in-device request service rate.
3590  *
3591  * The main issue is that, because of the above facts, the rate at
3592  * which a certain set of requests is dispatched over a certain time
3593  * interval can vary greatly with respect to the rate at which the
3594  * same requests are then served. But, since the size of any
3595  * intermediate queue is limited, and the service scheme is lossless
3596  * (no request is silently dropped), the following obvious convergence
3597  * property holds: the number of requests dispatched MUST become
3598  * closer and closer to the number of requests completed as the
3599  * observation interval grows. This is the key property used in
3600  * the next function to estimate the peak service rate as a function
3601  * of the observed dispatch rate. The function assumes to be invoked
3602  * on every request dispatch.
3603  */
3604 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3605 {
3606 	u64 now_ns = ktime_get_ns();
3607 
3608 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3609 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3610 			bfqd->peak_rate_samples);
3611 		bfq_reset_rate_computation(bfqd, rq);
3612 		goto update_last_values; /* will add one sample */
3613 	}
3614 
3615 	/*
3616 	 * Device idle for very long: the observation interval lasting
3617 	 * up to this dispatch cannot be a valid observation interval
3618 	 * for computing a new peak rate (similarly to the late-
3619 	 * completion event in bfq_completed_request()). Go to
3620 	 * update_rate_and_reset to have the following three steps
3621 	 * taken:
3622 	 * - close the observation interval at the last (previous)
3623 	 *   request dispatch or completion
3624 	 * - compute rate, if possible, for that observation interval
3625 	 * - start a new observation interval with this dispatch
3626 	 */
3627 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3628 	    bfqd->tot_rq_in_driver == 0)
3629 		goto update_rate_and_reset;
3630 
3631 	/* Update sampling information */
3632 	bfqd->peak_rate_samples++;
3633 
3634 	if ((bfqd->tot_rq_in_driver > 0 ||
3635 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3636 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3637 		bfqd->sequential_samples++;
3638 
3639 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3640 
3641 	/* Reset max observed rq size every 32 dispatches */
3642 	if (likely(bfqd->peak_rate_samples % 32))
3643 		bfqd->last_rq_max_size =
3644 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3645 	else
3646 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3647 
3648 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3649 
3650 	/* Target observation interval not yet reached, go on sampling */
3651 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3652 		goto update_last_values;
3653 
3654 update_rate_and_reset:
3655 	bfq_update_rate_reset(bfqd, rq);
3656 update_last_values:
3657 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3658 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3659 		bfqd->in_serv_last_pos = bfqd->last_position;
3660 	bfqd->last_dispatch = now_ns;
3661 }
3662 
3663 /*
3664  * Remove request from internal lists.
3665  */
3666 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3667 {
3668 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3669 
3670 	/*
3671 	 * For consistency, the next instruction should have been
3672 	 * executed after removing the request from the queue and
3673 	 * dispatching it.  We execute instead this instruction before
3674 	 * bfq_remove_request() (and hence introduce a temporary
3675 	 * inconsistency), for efficiency.  In fact, should this
3676 	 * dispatch occur for a non in-service bfqq, this anticipated
3677 	 * increment prevents two counters related to bfqq->dispatched
3678 	 * from risking to be, first, uselessly decremented, and then
3679 	 * incremented again when the (new) value of bfqq->dispatched
3680 	 * happens to be taken into account.
3681 	 */
3682 	bfqq->dispatched++;
3683 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3684 
3685 	bfq_remove_request(q, rq);
3686 }
3687 
3688 /*
3689  * There is a case where idling does not have to be performed for
3690  * throughput concerns, but to preserve the throughput share of
3691  * the process associated with bfqq.
3692  *
3693  * To introduce this case, we can note that allowing the drive
3694  * to enqueue more than one request at a time, and hence
3695  * delegating de facto final scheduling decisions to the
3696  * drive's internal scheduler, entails loss of control on the
3697  * actual request service order. In particular, the critical
3698  * situation is when requests from different processes happen
3699  * to be present, at the same time, in the internal queue(s)
3700  * of the drive. In such a situation, the drive, by deciding
3701  * the service order of the internally-queued requests, does
3702  * determine also the actual throughput distribution among
3703  * these processes. But the drive typically has no notion or
3704  * concern about per-process throughput distribution, and
3705  * makes its decisions only on a per-request basis. Therefore,
3706  * the service distribution enforced by the drive's internal
3707  * scheduler is likely to coincide with the desired throughput
3708  * distribution only in a completely symmetric, or favorably
3709  * skewed scenario where:
3710  * (i-a) each of these processes must get the same throughput as
3711  *	 the others,
3712  * (i-b) in case (i-a) does not hold, it holds that the process
3713  *       associated with bfqq must receive a lower or equal
3714  *	 throughput than any of the other processes;
3715  * (ii)  the I/O of each process has the same properties, in
3716  *       terms of locality (sequential or random), direction
3717  *       (reads or writes), request sizes, greediness
3718  *       (from I/O-bound to sporadic), and so on;
3719 
3720  * In fact, in such a scenario, the drive tends to treat the requests
3721  * of each process in about the same way as the requests of the
3722  * others, and thus to provide each of these processes with about the
3723  * same throughput.  This is exactly the desired throughput
3724  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3725  * even more convenient distribution for (the process associated with)
3726  * bfqq.
3727  *
3728  * In contrast, in any asymmetric or unfavorable scenario, device
3729  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3730  * that bfqq receives its assigned fraction of the device throughput
3731  * (see [1] for details).
3732  *
3733  * The problem is that idling may significantly reduce throughput with
3734  * certain combinations of types of I/O and devices. An important
3735  * example is sync random I/O on flash storage with command
3736  * queueing. So, unless bfqq falls in cases where idling also boosts
3737  * throughput, it is important to check conditions (i-a), i(-b) and
3738  * (ii) accurately, so as to avoid idling when not strictly needed for
3739  * service guarantees.
3740  *
3741  * Unfortunately, it is extremely difficult to thoroughly check
3742  * condition (ii). And, in case there are active groups, it becomes
3743  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3744  * if there are active groups, then, for conditions (i-a) or (i-b) to
3745  * become false 'indirectly', it is enough that an active group
3746  * contains more active processes or sub-groups than some other active
3747  * group. More precisely, for conditions (i-a) or (i-b) to become
3748  * false because of such a group, it is not even necessary that the
3749  * group is (still) active: it is sufficient that, even if the group
3750  * has become inactive, some of its descendant processes still have
3751  * some request already dispatched but still waiting for
3752  * completion. In fact, requests have still to be guaranteed their
3753  * share of the throughput even after being dispatched. In this
3754  * respect, it is easy to show that, if a group frequently becomes
3755  * inactive while still having in-flight requests, and if, when this
3756  * happens, the group is not considered in the calculation of whether
3757  * the scenario is asymmetric, then the group may fail to be
3758  * guaranteed its fair share of the throughput (basically because
3759  * idling may not be performed for the descendant processes of the
3760  * group, but it had to be).  We address this issue with the following
3761  * bi-modal behavior, implemented in the function
3762  * bfq_asymmetric_scenario().
3763  *
3764  * If there are groups with requests waiting for completion
3765  * (as commented above, some of these groups may even be
3766  * already inactive), then the scenario is tagged as
3767  * asymmetric, conservatively, without checking any of the
3768  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3769  * This behavior matches also the fact that groups are created
3770  * exactly if controlling I/O is a primary concern (to
3771  * preserve bandwidth and latency guarantees).
3772  *
3773  * On the opposite end, if there are no groups with requests waiting
3774  * for completion, then only conditions (i-a) and (i-b) are actually
3775  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3776  * idling is not performed, regardless of whether condition (ii)
3777  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3778  * hold, then idling is allowed, and the device tends to be prevented
3779  * from queueing many requests, possibly of several processes. Since
3780  * there are no groups with requests waiting for completion, then, to
3781  * control conditions (i-a) and (i-b) it is enough to check just
3782  * whether all the queues with requests waiting for completion also
3783  * have the same weight.
3784  *
3785  * Not checking condition (ii) evidently exposes bfqq to the
3786  * risk of getting less throughput than its fair share.
3787  * However, for queues with the same weight, a further
3788  * mechanism, preemption, mitigates or even eliminates this
3789  * problem. And it does so without consequences on overall
3790  * throughput. This mechanism and its benefits are explained
3791  * in the next three paragraphs.
3792  *
3793  * Even if a queue, say Q, is expired when it remains idle, Q
3794  * can still preempt the new in-service queue if the next
3795  * request of Q arrives soon (see the comments on
3796  * bfq_bfqq_update_budg_for_activation). If all queues and
3797  * groups have the same weight, this form of preemption,
3798  * combined with the hole-recovery heuristic described in the
3799  * comments on function bfq_bfqq_update_budg_for_activation,
3800  * are enough to preserve a correct bandwidth distribution in
3801  * the mid term, even without idling. In fact, even if not
3802  * idling allows the internal queues of the device to contain
3803  * many requests, and thus to reorder requests, we can rather
3804  * safely assume that the internal scheduler still preserves a
3805  * minimum of mid-term fairness.
3806  *
3807  * More precisely, this preemption-based, idleless approach
3808  * provides fairness in terms of IOPS, and not sectors per
3809  * second. This can be seen with a simple example. Suppose
3810  * that there are two queues with the same weight, but that
3811  * the first queue receives requests of 8 sectors, while the
3812  * second queue receives requests of 1024 sectors. In
3813  * addition, suppose that each of the two queues contains at
3814  * most one request at a time, which implies that each queue
3815  * always remains idle after it is served. Finally, after
3816  * remaining idle, each queue receives very quickly a new
3817  * request. It follows that the two queues are served
3818  * alternatively, preempting each other if needed. This
3819  * implies that, although both queues have the same weight,
3820  * the queue with large requests receives a service that is
3821  * 1024/8 times as high as the service received by the other
3822  * queue.
3823  *
3824  * The motivation for using preemption instead of idling (for
3825  * queues with the same weight) is that, by not idling,
3826  * service guarantees are preserved (completely or at least in
3827  * part) without minimally sacrificing throughput. And, if
3828  * there is no active group, then the primary expectation for
3829  * this device is probably a high throughput.
3830  *
3831  * We are now left only with explaining the two sub-conditions in the
3832  * additional compound condition that is checked below for deciding
3833  * whether the scenario is asymmetric. To explain the first
3834  * sub-condition, we need to add that the function
3835  * bfq_asymmetric_scenario checks the weights of only
3836  * non-weight-raised queues, for efficiency reasons (see comments on
3837  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3838  * is checked explicitly here. More precisely, the compound condition
3839  * below takes into account also the fact that, even if bfqq is being
3840  * weight-raised, the scenario is still symmetric if all queues with
3841  * requests waiting for completion happen to be
3842  * weight-raised. Actually, we should be even more precise here, and
3843  * differentiate between interactive weight raising and soft real-time
3844  * weight raising.
3845  *
3846  * The second sub-condition checked in the compound condition is
3847  * whether there is a fair amount of already in-flight I/O not
3848  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3849  * following reason. The drive may decide to serve in-flight
3850  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3851  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3852  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3853  * basically uncontrolled amount of I/O from other queues may be
3854  * dispatched too, possibly causing the service of bfqq's I/O to be
3855  * delayed even longer in the drive. This problem gets more and more
3856  * serious as the speed and the queue depth of the drive grow,
3857  * because, as these two quantities grow, the probability to find no
3858  * queue busy but many requests in flight grows too. By contrast,
3859  * plugging I/O dispatching minimizes the delay induced by already
3860  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3861  * lose because of this delay.
3862  *
3863  * As a side note, it is worth considering that the above
3864  * device-idling countermeasures may however fail in the following
3865  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3866  * in a time period during which all symmetry sub-conditions hold, and
3867  * therefore the device is allowed to enqueue many requests, but at
3868  * some later point in time some sub-condition stops to hold, then it
3869  * may become impossible to make requests be served in the desired
3870  * order until all the requests already queued in the device have been
3871  * served. The last sub-condition commented above somewhat mitigates
3872  * this problem for weight-raised queues.
3873  *
3874  * However, as an additional mitigation for this problem, we preserve
3875  * plugging for a special symmetric case that may suddenly turn into
3876  * asymmetric: the case where only bfqq is busy. In this case, not
3877  * expiring bfqq does not cause any harm to any other queues in terms
3878  * of service guarantees. In contrast, it avoids the following unlucky
3879  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3880  * lower weight than bfqq becomes busy (or more queues), (3) the new
3881  * queue is served until a new request arrives for bfqq, (4) when bfqq
3882  * is finally served, there are so many requests of the new queue in
3883  * the drive that the pending requests for bfqq take a lot of time to
3884  * be served. In particular, event (2) may case even already
3885  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3886  * avoid this series of events, the scenario is preventively declared
3887  * as asymmetric also if bfqq is the only busy queues
3888  */
3889 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3890 						 struct bfq_queue *bfqq)
3891 {
3892 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3893 
3894 	/* No point in idling for bfqq if it won't get requests any longer */
3895 	if (unlikely(!bfqq_process_refs(bfqq)))
3896 		return false;
3897 
3898 	return (bfqq->wr_coeff > 1 &&
3899 		(bfqd->wr_busy_queues < tot_busy_queues ||
3900 		 bfqd->tot_rq_in_driver >= bfqq->dispatched + 4)) ||
3901 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3902 		tot_busy_queues == 1;
3903 }
3904 
3905 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3906 			      enum bfqq_expiration reason)
3907 {
3908 	/*
3909 	 * If this bfqq is shared between multiple processes, check
3910 	 * to make sure that those processes are still issuing I/Os
3911 	 * within the mean seek distance. If not, it may be time to
3912 	 * break the queues apart again.
3913 	 */
3914 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3915 		bfq_mark_bfqq_split_coop(bfqq);
3916 
3917 	/*
3918 	 * Consider queues with a higher finish virtual time than
3919 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3920 	 * true, then bfqq's bandwidth would be violated if an
3921 	 * uncontrolled amount of I/O from these queues were
3922 	 * dispatched while bfqq is waiting for its new I/O to
3923 	 * arrive. This is exactly what may happen if this is a forced
3924 	 * expiration caused by a preemption attempt, and if bfqq is
3925 	 * not re-scheduled. To prevent this from happening, re-queue
3926 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3927 	 * empty. By doing so, bfqq is granted to be served before the
3928 	 * above queues (provided that bfqq is of course eligible).
3929 	 */
3930 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3931 	    !(reason == BFQQE_PREEMPTED &&
3932 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3933 		if (bfqq->dispatched == 0)
3934 			/*
3935 			 * Overloading budget_timeout field to store
3936 			 * the time at which the queue remains with no
3937 			 * backlog and no outstanding request; used by
3938 			 * the weight-raising mechanism.
3939 			 */
3940 			bfqq->budget_timeout = jiffies;
3941 
3942 		bfq_del_bfqq_busy(bfqq, true);
3943 	} else {
3944 		bfq_requeue_bfqq(bfqd, bfqq, true);
3945 		/*
3946 		 * Resort priority tree of potential close cooperators.
3947 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3948 		 */
3949 		if (unlikely(!bfqd->nonrot_with_queueing &&
3950 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3951 			bfq_pos_tree_add_move(bfqd, bfqq);
3952 	}
3953 
3954 	/*
3955 	 * All in-service entities must have been properly deactivated
3956 	 * or requeued before executing the next function, which
3957 	 * resets all in-service entities as no more in service. This
3958 	 * may cause bfqq to be freed. If this happens, the next
3959 	 * function returns true.
3960 	 */
3961 	return __bfq_bfqd_reset_in_service(bfqd);
3962 }
3963 
3964 /**
3965  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3966  * @bfqd: device data.
3967  * @bfqq: queue to update.
3968  * @reason: reason for expiration.
3969  *
3970  * Handle the feedback on @bfqq budget at queue expiration.
3971  * See the body for detailed comments.
3972  */
3973 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3974 				     struct bfq_queue *bfqq,
3975 				     enum bfqq_expiration reason)
3976 {
3977 	struct request *next_rq;
3978 	int budget, min_budget;
3979 
3980 	min_budget = bfq_min_budget(bfqd);
3981 
3982 	if (bfqq->wr_coeff == 1)
3983 		budget = bfqq->max_budget;
3984 	else /*
3985 	      * Use a constant, low budget for weight-raised queues,
3986 	      * to help achieve a low latency. Keep it slightly higher
3987 	      * than the minimum possible budget, to cause a little
3988 	      * bit fewer expirations.
3989 	      */
3990 		budget = 2 * min_budget;
3991 
3992 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3993 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3994 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3995 		budget, bfq_min_budget(bfqd));
3996 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3997 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3998 
3999 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
4000 		switch (reason) {
4001 		/*
4002 		 * Caveat: in all the following cases we trade latency
4003 		 * for throughput.
4004 		 */
4005 		case BFQQE_TOO_IDLE:
4006 			/*
4007 			 * This is the only case where we may reduce
4008 			 * the budget: if there is no request of the
4009 			 * process still waiting for completion, then
4010 			 * we assume (tentatively) that the timer has
4011 			 * expired because the batch of requests of
4012 			 * the process could have been served with a
4013 			 * smaller budget.  Hence, betting that
4014 			 * process will behave in the same way when it
4015 			 * becomes backlogged again, we reduce its
4016 			 * next budget.  As long as we guess right,
4017 			 * this budget cut reduces the latency
4018 			 * experienced by the process.
4019 			 *
4020 			 * However, if there are still outstanding
4021 			 * requests, then the process may have not yet
4022 			 * issued its next request just because it is
4023 			 * still waiting for the completion of some of
4024 			 * the still outstanding ones.  So in this
4025 			 * subcase we do not reduce its budget, on the
4026 			 * contrary we increase it to possibly boost
4027 			 * the throughput, as discussed in the
4028 			 * comments to the BUDGET_TIMEOUT case.
4029 			 */
4030 			if (bfqq->dispatched > 0) /* still outstanding reqs */
4031 				budget = min(budget * 2, bfqd->bfq_max_budget);
4032 			else {
4033 				if (budget > 5 * min_budget)
4034 					budget -= 4 * min_budget;
4035 				else
4036 					budget = min_budget;
4037 			}
4038 			break;
4039 		case BFQQE_BUDGET_TIMEOUT:
4040 			/*
4041 			 * We double the budget here because it gives
4042 			 * the chance to boost the throughput if this
4043 			 * is not a seeky process (and has bumped into
4044 			 * this timeout because of, e.g., ZBR).
4045 			 */
4046 			budget = min(budget * 2, bfqd->bfq_max_budget);
4047 			break;
4048 		case BFQQE_BUDGET_EXHAUSTED:
4049 			/*
4050 			 * The process still has backlog, and did not
4051 			 * let either the budget timeout or the disk
4052 			 * idling timeout expire. Hence it is not
4053 			 * seeky, has a short thinktime and may be
4054 			 * happy with a higher budget too. So
4055 			 * definitely increase the budget of this good
4056 			 * candidate to boost the disk throughput.
4057 			 */
4058 			budget = min(budget * 4, bfqd->bfq_max_budget);
4059 			break;
4060 		case BFQQE_NO_MORE_REQUESTS:
4061 			/*
4062 			 * For queues that expire for this reason, it
4063 			 * is particularly important to keep the
4064 			 * budget close to the actual service they
4065 			 * need. Doing so reduces the timestamp
4066 			 * misalignment problem described in the
4067 			 * comments in the body of
4068 			 * __bfq_activate_entity. In fact, suppose
4069 			 * that a queue systematically expires for
4070 			 * BFQQE_NO_MORE_REQUESTS and presents a
4071 			 * new request in time to enjoy timestamp
4072 			 * back-shifting. The larger the budget of the
4073 			 * queue is with respect to the service the
4074 			 * queue actually requests in each service
4075 			 * slot, the more times the queue can be
4076 			 * reactivated with the same virtual finish
4077 			 * time. It follows that, even if this finish
4078 			 * time is pushed to the system virtual time
4079 			 * to reduce the consequent timestamp
4080 			 * misalignment, the queue unjustly enjoys for
4081 			 * many re-activations a lower finish time
4082 			 * than all newly activated queues.
4083 			 *
4084 			 * The service needed by bfqq is measured
4085 			 * quite precisely by bfqq->entity.service.
4086 			 * Since bfqq does not enjoy device idling,
4087 			 * bfqq->entity.service is equal to the number
4088 			 * of sectors that the process associated with
4089 			 * bfqq requested to read/write before waiting
4090 			 * for request completions, or blocking for
4091 			 * other reasons.
4092 			 */
4093 			budget = max_t(int, bfqq->entity.service, min_budget);
4094 			break;
4095 		default:
4096 			return;
4097 		}
4098 	} else if (!bfq_bfqq_sync(bfqq)) {
4099 		/*
4100 		 * Async queues get always the maximum possible
4101 		 * budget, as for them we do not care about latency
4102 		 * (in addition, their ability to dispatch is limited
4103 		 * by the charging factor).
4104 		 */
4105 		budget = bfqd->bfq_max_budget;
4106 	}
4107 
4108 	bfqq->max_budget = budget;
4109 
4110 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4111 	    !bfqd->bfq_user_max_budget)
4112 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4113 
4114 	/*
4115 	 * If there is still backlog, then assign a new budget, making
4116 	 * sure that it is large enough for the next request.  Since
4117 	 * the finish time of bfqq must be kept in sync with the
4118 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4119 	 * update.
4120 	 *
4121 	 * If there is no backlog, then no need to update the budget;
4122 	 * it will be updated on the arrival of a new request.
4123 	 */
4124 	next_rq = bfqq->next_rq;
4125 	if (next_rq)
4126 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4127 					    bfq_serv_to_charge(next_rq, bfqq));
4128 
4129 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4130 			next_rq ? blk_rq_sectors(next_rq) : 0,
4131 			bfqq->entity.budget);
4132 }
4133 
4134 /*
4135  * Return true if the process associated with bfqq is "slow". The slow
4136  * flag is used, in addition to the budget timeout, to reduce the
4137  * amount of service provided to seeky processes, and thus reduce
4138  * their chances to lower the throughput. More details in the comments
4139  * on the function bfq_bfqq_expire().
4140  *
4141  * An important observation is in order: as discussed in the comments
4142  * on the function bfq_update_peak_rate(), with devices with internal
4143  * queues, it is hard if ever possible to know when and for how long
4144  * an I/O request is processed by the device (apart from the trivial
4145  * I/O pattern where a new request is dispatched only after the
4146  * previous one has been completed). This makes it hard to evaluate
4147  * the real rate at which the I/O requests of each bfq_queue are
4148  * served.  In fact, for an I/O scheduler like BFQ, serving a
4149  * bfq_queue means just dispatching its requests during its service
4150  * slot (i.e., until the budget of the queue is exhausted, or the
4151  * queue remains idle, or, finally, a timeout fires). But, during the
4152  * service slot of a bfq_queue, around 100 ms at most, the device may
4153  * be even still processing requests of bfq_queues served in previous
4154  * service slots. On the opposite end, the requests of the in-service
4155  * bfq_queue may be completed after the service slot of the queue
4156  * finishes.
4157  *
4158  * Anyway, unless more sophisticated solutions are used
4159  * (where possible), the sum of the sizes of the requests dispatched
4160  * during the service slot of a bfq_queue is probably the only
4161  * approximation available for the service received by the bfq_queue
4162  * during its service slot. And this sum is the quantity used in this
4163  * function to evaluate the I/O speed of a process.
4164  */
4165 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4166 				 bool compensate, unsigned long *delta_ms)
4167 {
4168 	ktime_t delta_ktime;
4169 	u32 delta_usecs;
4170 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4171 
4172 	if (!bfq_bfqq_sync(bfqq))
4173 		return false;
4174 
4175 	if (compensate)
4176 		delta_ktime = bfqd->last_idling_start;
4177 	else
4178 		delta_ktime = ktime_get();
4179 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4180 	delta_usecs = ktime_to_us(delta_ktime);
4181 
4182 	/* don't use too short time intervals */
4183 	if (delta_usecs < 1000) {
4184 		if (blk_queue_nonrot(bfqd->queue))
4185 			 /*
4186 			  * give same worst-case guarantees as idling
4187 			  * for seeky
4188 			  */
4189 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4190 		else /* charge at least one seek */
4191 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4192 
4193 		return slow;
4194 	}
4195 
4196 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4197 
4198 	/*
4199 	 * Use only long (> 20ms) intervals to filter out excessive
4200 	 * spikes in service rate estimation.
4201 	 */
4202 	if (delta_usecs > 20000) {
4203 		/*
4204 		 * Caveat for rotational devices: processes doing I/O
4205 		 * in the slower disk zones tend to be slow(er) even
4206 		 * if not seeky. In this respect, the estimated peak
4207 		 * rate is likely to be an average over the disk
4208 		 * surface. Accordingly, to not be too harsh with
4209 		 * unlucky processes, a process is deemed slow only if
4210 		 * its rate has been lower than half of the estimated
4211 		 * peak rate.
4212 		 */
4213 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4214 	}
4215 
4216 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4217 
4218 	return slow;
4219 }
4220 
4221 /*
4222  * To be deemed as soft real-time, an application must meet two
4223  * requirements. First, the application must not require an average
4224  * bandwidth higher than the approximate bandwidth required to playback or
4225  * record a compressed high-definition video.
4226  * The next function is invoked on the completion of the last request of a
4227  * batch, to compute the next-start time instant, soft_rt_next_start, such
4228  * that, if the next request of the application does not arrive before
4229  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4230  *
4231  * The second requirement is that the request pattern of the application is
4232  * isochronous, i.e., that, after issuing a request or a batch of requests,
4233  * the application stops issuing new requests until all its pending requests
4234  * have been completed. After that, the application may issue a new batch,
4235  * and so on.
4236  * For this reason the next function is invoked to compute
4237  * soft_rt_next_start only for applications that meet this requirement,
4238  * whereas soft_rt_next_start is set to infinity for applications that do
4239  * not.
4240  *
4241  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4242  * happen to meet, occasionally or systematically, both the above
4243  * bandwidth and isochrony requirements. This may happen at least in
4244  * the following circumstances. First, if the CPU load is high. The
4245  * application may stop issuing requests while the CPUs are busy
4246  * serving other processes, then restart, then stop again for a while,
4247  * and so on. The other circumstances are related to the storage
4248  * device: the storage device is highly loaded or reaches a low-enough
4249  * throughput with the I/O of the application (e.g., because the I/O
4250  * is random and/or the device is slow). In all these cases, the
4251  * I/O of the application may be simply slowed down enough to meet
4252  * the bandwidth and isochrony requirements. To reduce the probability
4253  * that greedy applications are deemed as soft real-time in these
4254  * corner cases, a further rule is used in the computation of
4255  * soft_rt_next_start: the return value of this function is forced to
4256  * be higher than the maximum between the following two quantities.
4257  *
4258  * (a) Current time plus: (1) the maximum time for which the arrival
4259  *     of a request is waited for when a sync queue becomes idle,
4260  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4261  *     postpone for a moment the reason for adding a few extra
4262  *     jiffies; we get back to it after next item (b).  Lower-bounding
4263  *     the return value of this function with the current time plus
4264  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4265  *     because the latter issue their next request as soon as possible
4266  *     after the last one has been completed. In contrast, a soft
4267  *     real-time application spends some time processing data, after a
4268  *     batch of its requests has been completed.
4269  *
4270  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4271  *     above, greedy applications may happen to meet both the
4272  *     bandwidth and isochrony requirements under heavy CPU or
4273  *     storage-device load. In more detail, in these scenarios, these
4274  *     applications happen, only for limited time periods, to do I/O
4275  *     slowly enough to meet all the requirements described so far,
4276  *     including the filtering in above item (a). These slow-speed
4277  *     time intervals are usually interspersed between other time
4278  *     intervals during which these applications do I/O at a very high
4279  *     speed. Fortunately, exactly because of the high speed of the
4280  *     I/O in the high-speed intervals, the values returned by this
4281  *     function happen to be so high, near the end of any such
4282  *     high-speed interval, to be likely to fall *after* the end of
4283  *     the low-speed time interval that follows. These high values are
4284  *     stored in bfqq->soft_rt_next_start after each invocation of
4285  *     this function. As a consequence, if the last value of
4286  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4287  *     next value that this function may return, then, from the very
4288  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4289  *     likely to be constantly kept so high that any I/O request
4290  *     issued during the low-speed interval is considered as arriving
4291  *     to soon for the application to be deemed as soft
4292  *     real-time. Then, in the high-speed interval that follows, the
4293  *     application will not be deemed as soft real-time, just because
4294  *     it will do I/O at a high speed. And so on.
4295  *
4296  * Getting back to the filtering in item (a), in the following two
4297  * cases this filtering might be easily passed by a greedy
4298  * application, if the reference quantity was just
4299  * bfqd->bfq_slice_idle:
4300  * 1) HZ is so low that the duration of a jiffy is comparable to or
4301  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4302  *    devices with HZ=100. The time granularity may be so coarse
4303  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4304  *    is rather lower than the exact value.
4305  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4306  *    for a while, then suddenly 'jump' by several units to recover the lost
4307  *    increments. This seems to happen, e.g., inside virtual machines.
4308  * To address this issue, in the filtering in (a) we do not use as a
4309  * reference time interval just bfqd->bfq_slice_idle, but
4310  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4311  * minimum number of jiffies for which the filter seems to be quite
4312  * precise also in embedded systems and KVM/QEMU virtual machines.
4313  */
4314 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4315 						struct bfq_queue *bfqq)
4316 {
4317 	return max3(bfqq->soft_rt_next_start,
4318 		    bfqq->last_idle_bklogged +
4319 		    HZ * bfqq->service_from_backlogged /
4320 		    bfqd->bfq_wr_max_softrt_rate,
4321 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4322 }
4323 
4324 /**
4325  * bfq_bfqq_expire - expire a queue.
4326  * @bfqd: device owning the queue.
4327  * @bfqq: the queue to expire.
4328  * @compensate: if true, compensate for the time spent idling.
4329  * @reason: the reason causing the expiration.
4330  *
4331  * If the process associated with bfqq does slow I/O (e.g., because it
4332  * issues random requests), we charge bfqq with the time it has been
4333  * in service instead of the service it has received (see
4334  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4335  * a consequence, bfqq will typically get higher timestamps upon
4336  * reactivation, and hence it will be rescheduled as if it had
4337  * received more service than what it has actually received. In the
4338  * end, bfqq receives less service in proportion to how slowly its
4339  * associated process consumes its budgets (and hence how seriously it
4340  * tends to lower the throughput). In addition, this time-charging
4341  * strategy guarantees time fairness among slow processes. In
4342  * contrast, if the process associated with bfqq is not slow, we
4343  * charge bfqq exactly with the service it has received.
4344  *
4345  * Charging time to the first type of queues and the exact service to
4346  * the other has the effect of using the WF2Q+ policy to schedule the
4347  * former on a timeslice basis, without violating service domain
4348  * guarantees among the latter.
4349  */
4350 void bfq_bfqq_expire(struct bfq_data *bfqd,
4351 		     struct bfq_queue *bfqq,
4352 		     bool compensate,
4353 		     enum bfqq_expiration reason)
4354 {
4355 	bool slow;
4356 	unsigned long delta = 0;
4357 	struct bfq_entity *entity = &bfqq->entity;
4358 
4359 	/*
4360 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4361 	 */
4362 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, &delta);
4363 
4364 	/*
4365 	 * As above explained, charge slow (typically seeky) and
4366 	 * timed-out queues with the time and not the service
4367 	 * received, to favor sequential workloads.
4368 	 *
4369 	 * Processes doing I/O in the slower disk zones will tend to
4370 	 * be slow(er) even if not seeky. Therefore, since the
4371 	 * estimated peak rate is actually an average over the disk
4372 	 * surface, these processes may timeout just for bad luck. To
4373 	 * avoid punishing them, do not charge time to processes that
4374 	 * succeeded in consuming at least 2/3 of their budget. This
4375 	 * allows BFQ to preserve enough elasticity to still perform
4376 	 * bandwidth, and not time, distribution with little unlucky
4377 	 * or quasi-sequential processes.
4378 	 */
4379 	if (bfqq->wr_coeff == 1 &&
4380 	    (slow ||
4381 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4382 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4383 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4384 
4385 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4386 		bfqq->last_wr_start_finish = jiffies;
4387 
4388 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4389 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4390 		/*
4391 		 * If we get here, and there are no outstanding
4392 		 * requests, then the request pattern is isochronous
4393 		 * (see the comments on the function
4394 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4395 		 * compute soft_rt_next_start.
4396 		 *
4397 		 * If, instead, the queue still has outstanding
4398 		 * requests, then we have to wait for the completion
4399 		 * of all the outstanding requests to discover whether
4400 		 * the request pattern is actually isochronous.
4401 		 */
4402 		if (bfqq->dispatched == 0)
4403 			bfqq->soft_rt_next_start =
4404 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4405 		else if (bfqq->dispatched > 0) {
4406 			/*
4407 			 * Schedule an update of soft_rt_next_start to when
4408 			 * the task may be discovered to be isochronous.
4409 			 */
4410 			bfq_mark_bfqq_softrt_update(bfqq);
4411 		}
4412 	}
4413 
4414 	bfq_log_bfqq(bfqd, bfqq,
4415 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4416 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4417 
4418 	/*
4419 	 * bfqq expired, so no total service time needs to be computed
4420 	 * any longer: reset state machine for measuring total service
4421 	 * times.
4422 	 */
4423 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4424 	bfqd->waited_rq = NULL;
4425 
4426 	/*
4427 	 * Increase, decrease or leave budget unchanged according to
4428 	 * reason.
4429 	 */
4430 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4431 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4432 		/* bfqq is gone, no more actions on it */
4433 		return;
4434 
4435 	/* mark bfqq as waiting a request only if a bic still points to it */
4436 	if (!bfq_bfqq_busy(bfqq) &&
4437 	    reason != BFQQE_BUDGET_TIMEOUT &&
4438 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4439 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4440 		/*
4441 		 * Not setting service to 0, because, if the next rq
4442 		 * arrives in time, the queue will go on receiving
4443 		 * service with this same budget (as if it never expired)
4444 		 */
4445 	} else
4446 		entity->service = 0;
4447 
4448 	/*
4449 	 * Reset the received-service counter for every parent entity.
4450 	 * Differently from what happens with bfqq->entity.service,
4451 	 * the resetting of this counter never needs to be postponed
4452 	 * for parent entities. In fact, in case bfqq may have a
4453 	 * chance to go on being served using the last, partially
4454 	 * consumed budget, bfqq->entity.service needs to be kept,
4455 	 * because if bfqq then actually goes on being served using
4456 	 * the same budget, the last value of bfqq->entity.service is
4457 	 * needed to properly decrement bfqq->entity.budget by the
4458 	 * portion already consumed. In contrast, it is not necessary
4459 	 * to keep entity->service for parent entities too, because
4460 	 * the bubble up of the new value of bfqq->entity.budget will
4461 	 * make sure that the budgets of parent entities are correct,
4462 	 * even in case bfqq and thus parent entities go on receiving
4463 	 * service with the same budget.
4464 	 */
4465 	entity = entity->parent;
4466 	for_each_entity(entity)
4467 		entity->service = 0;
4468 }
4469 
4470 /*
4471  * Budget timeout is not implemented through a dedicated timer, but
4472  * just checked on request arrivals and completions, as well as on
4473  * idle timer expirations.
4474  */
4475 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4476 {
4477 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4478 }
4479 
4480 /*
4481  * If we expire a queue that is actively waiting (i.e., with the
4482  * device idled) for the arrival of a new request, then we may incur
4483  * the timestamp misalignment problem described in the body of the
4484  * function __bfq_activate_entity. Hence we return true only if this
4485  * condition does not hold, or if the queue is slow enough to deserve
4486  * only to be kicked off for preserving a high throughput.
4487  */
4488 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4489 {
4490 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4491 		"may_budget_timeout: wait_request %d left %d timeout %d",
4492 		bfq_bfqq_wait_request(bfqq),
4493 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4494 		bfq_bfqq_budget_timeout(bfqq));
4495 
4496 	return (!bfq_bfqq_wait_request(bfqq) ||
4497 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4498 		&&
4499 		bfq_bfqq_budget_timeout(bfqq);
4500 }
4501 
4502 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4503 					     struct bfq_queue *bfqq)
4504 {
4505 	bool rot_without_queueing =
4506 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4507 		bfqq_sequential_and_IO_bound,
4508 		idling_boosts_thr;
4509 
4510 	/* No point in idling for bfqq if it won't get requests any longer */
4511 	if (unlikely(!bfqq_process_refs(bfqq)))
4512 		return false;
4513 
4514 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4515 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4516 
4517 	/*
4518 	 * The next variable takes into account the cases where idling
4519 	 * boosts the throughput.
4520 	 *
4521 	 * The value of the variable is computed considering, first, that
4522 	 * idling is virtually always beneficial for the throughput if:
4523 	 * (a) the device is not NCQ-capable and rotational, or
4524 	 * (b) regardless of the presence of NCQ, the device is rotational and
4525 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4526 	 * (c) regardless of whether it is rotational, the device is
4527 	 *     not NCQ-capable and the request pattern for bfqq is
4528 	 *     I/O-bound and sequential.
4529 	 *
4530 	 * Secondly, and in contrast to the above item (b), idling an
4531 	 * NCQ-capable flash-based device would not boost the
4532 	 * throughput even with sequential I/O; rather it would lower
4533 	 * the throughput in proportion to how fast the device
4534 	 * is. Accordingly, the next variable is true if any of the
4535 	 * above conditions (a), (b) or (c) is true, and, in
4536 	 * particular, happens to be false if bfqd is an NCQ-capable
4537 	 * flash-based device.
4538 	 */
4539 	idling_boosts_thr = rot_without_queueing ||
4540 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4541 		 bfqq_sequential_and_IO_bound);
4542 
4543 	/*
4544 	 * The return value of this function is equal to that of
4545 	 * idling_boosts_thr, unless a special case holds. In this
4546 	 * special case, described below, idling may cause problems to
4547 	 * weight-raised queues.
4548 	 *
4549 	 * When the request pool is saturated (e.g., in the presence
4550 	 * of write hogs), if the processes associated with
4551 	 * non-weight-raised queues ask for requests at a lower rate,
4552 	 * then processes associated with weight-raised queues have a
4553 	 * higher probability to get a request from the pool
4554 	 * immediately (or at least soon) when they need one. Thus
4555 	 * they have a higher probability to actually get a fraction
4556 	 * of the device throughput proportional to their high
4557 	 * weight. This is especially true with NCQ-capable drives,
4558 	 * which enqueue several requests in advance, and further
4559 	 * reorder internally-queued requests.
4560 	 *
4561 	 * For this reason, we force to false the return value if
4562 	 * there are weight-raised busy queues. In this case, and if
4563 	 * bfqq is not weight-raised, this guarantees that the device
4564 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4565 	 * then idling will be guaranteed by another variable, see
4566 	 * below). Combined with the timestamping rules of BFQ (see
4567 	 * [1] for details), this behavior causes bfqq, and hence any
4568 	 * sync non-weight-raised queue, to get a lower number of
4569 	 * requests served, and thus to ask for a lower number of
4570 	 * requests from the request pool, before the busy
4571 	 * weight-raised queues get served again. This often mitigates
4572 	 * starvation problems in the presence of heavy write
4573 	 * workloads and NCQ, thereby guaranteeing a higher
4574 	 * application and system responsiveness in these hostile
4575 	 * scenarios.
4576 	 */
4577 	return idling_boosts_thr &&
4578 		bfqd->wr_busy_queues == 0;
4579 }
4580 
4581 /*
4582  * For a queue that becomes empty, device idling is allowed only if
4583  * this function returns true for that queue. As a consequence, since
4584  * device idling plays a critical role for both throughput boosting
4585  * and service guarantees, the return value of this function plays a
4586  * critical role as well.
4587  *
4588  * In a nutshell, this function returns true only if idling is
4589  * beneficial for throughput or, even if detrimental for throughput,
4590  * idling is however necessary to preserve service guarantees (low
4591  * latency, desired throughput distribution, ...). In particular, on
4592  * NCQ-capable devices, this function tries to return false, so as to
4593  * help keep the drives' internal queues full, whenever this helps the
4594  * device boost the throughput without causing any service-guarantee
4595  * issue.
4596  *
4597  * Most of the issues taken into account to get the return value of
4598  * this function are not trivial. We discuss these issues in the two
4599  * functions providing the main pieces of information needed by this
4600  * function.
4601  */
4602 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4603 {
4604 	struct bfq_data *bfqd = bfqq->bfqd;
4605 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4606 
4607 	/* No point in idling for bfqq if it won't get requests any longer */
4608 	if (unlikely(!bfqq_process_refs(bfqq)))
4609 		return false;
4610 
4611 	if (unlikely(bfqd->strict_guarantees))
4612 		return true;
4613 
4614 	/*
4615 	 * Idling is performed only if slice_idle > 0. In addition, we
4616 	 * do not idle if
4617 	 * (a) bfqq is async
4618 	 * (b) bfqq is in the idle io prio class: in this case we do
4619 	 * not idle because we want to minimize the bandwidth that
4620 	 * queues in this class can steal to higher-priority queues
4621 	 */
4622 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4623 	   bfq_class_idle(bfqq))
4624 		return false;
4625 
4626 	idling_boosts_thr_with_no_issue =
4627 		idling_boosts_thr_without_issues(bfqd, bfqq);
4628 
4629 	idling_needed_for_service_guar =
4630 		idling_needed_for_service_guarantees(bfqd, bfqq);
4631 
4632 	/*
4633 	 * We have now the two components we need to compute the
4634 	 * return value of the function, which is true only if idling
4635 	 * either boosts the throughput (without issues), or is
4636 	 * necessary to preserve service guarantees.
4637 	 */
4638 	return idling_boosts_thr_with_no_issue ||
4639 		idling_needed_for_service_guar;
4640 }
4641 
4642 /*
4643  * If the in-service queue is empty but the function bfq_better_to_idle
4644  * returns true, then:
4645  * 1) the queue must remain in service and cannot be expired, and
4646  * 2) the device must be idled to wait for the possible arrival of a new
4647  *    request for the queue.
4648  * See the comments on the function bfq_better_to_idle for the reasons
4649  * why performing device idling is the best choice to boost the throughput
4650  * and preserve service guarantees when bfq_better_to_idle itself
4651  * returns true.
4652  */
4653 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4654 {
4655 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4656 }
4657 
4658 /*
4659  * This function chooses the queue from which to pick the next extra
4660  * I/O request to inject, if it finds a compatible queue. See the
4661  * comments on bfq_update_inject_limit() for details on the injection
4662  * mechanism, and for the definitions of the quantities mentioned
4663  * below.
4664  */
4665 static struct bfq_queue *
4666 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4667 {
4668 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4669 	unsigned int limit = in_serv_bfqq->inject_limit;
4670 	int i;
4671 
4672 	/*
4673 	 * If
4674 	 * - bfqq is not weight-raised and therefore does not carry
4675 	 *   time-critical I/O,
4676 	 * or
4677 	 * - regardless of whether bfqq is weight-raised, bfqq has
4678 	 *   however a long think time, during which it can absorb the
4679 	 *   effect of an appropriate number of extra I/O requests
4680 	 *   from other queues (see bfq_update_inject_limit for
4681 	 *   details on the computation of this number);
4682 	 * then injection can be performed without restrictions.
4683 	 */
4684 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4685 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4686 
4687 	/*
4688 	 * If
4689 	 * - the baseline total service time could not be sampled yet,
4690 	 *   so the inject limit happens to be still 0, and
4691 	 * - a lot of time has elapsed since the plugging of I/O
4692 	 *   dispatching started, so drive speed is being wasted
4693 	 *   significantly;
4694 	 * then temporarily raise inject limit to one request.
4695 	 */
4696 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4697 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4698 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4699 				      bfqd->bfq_slice_idle)
4700 		)
4701 		limit = 1;
4702 
4703 	if (bfqd->tot_rq_in_driver >= limit)
4704 		return NULL;
4705 
4706 	/*
4707 	 * Linear search of the source queue for injection; but, with
4708 	 * a high probability, very few steps are needed to find a
4709 	 * candidate queue, i.e., a queue with enough budget left for
4710 	 * its next request. In fact:
4711 	 * - BFQ dynamically updates the budget of every queue so as
4712 	 *   to accommodate the expected backlog of the queue;
4713 	 * - if a queue gets all its requests dispatched as injected
4714 	 *   service, then the queue is removed from the active list
4715 	 *   (and re-added only if it gets new requests, but then it
4716 	 *   is assigned again enough budget for its new backlog).
4717 	 */
4718 	for (i = 0; i < bfqd->num_actuators; i++) {
4719 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
4720 			if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4721 				(in_serv_always_inject || bfqq->wr_coeff > 1) &&
4722 				bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4723 				bfq_bfqq_budget_left(bfqq)) {
4724 			/*
4725 			 * Allow for only one large in-flight request
4726 			 * on non-rotational devices, for the
4727 			 * following reason. On non-rotationl drives,
4728 			 * large requests take much longer than
4729 			 * smaller requests to be served. In addition,
4730 			 * the drive prefers to serve large requests
4731 			 * w.r.t. to small ones, if it can choose. So,
4732 			 * having more than one large requests queued
4733 			 * in the drive may easily make the next first
4734 			 * request of the in-service queue wait for so
4735 			 * long to break bfqq's service guarantees. On
4736 			 * the bright side, large requests let the
4737 			 * drive reach a very high throughput, even if
4738 			 * there is only one in-flight large request
4739 			 * at a time.
4740 			 */
4741 			if (blk_queue_nonrot(bfqd->queue) &&
4742 			    blk_rq_sectors(bfqq->next_rq) >=
4743 			    BFQQ_SECT_THR_NONROT &&
4744 			    bfqd->tot_rq_in_driver >= 1)
4745 				continue;
4746 			else {
4747 				bfqd->rqs_injected = true;
4748 				return bfqq;
4749 			}
4750 		}
4751 	}
4752 
4753 	return NULL;
4754 }
4755 
4756 static struct bfq_queue *
4757 bfq_find_active_bfqq_for_actuator(struct bfq_data *bfqd, int idx)
4758 {
4759 	struct bfq_queue *bfqq;
4760 
4761 	if (bfqd->in_service_queue &&
4762 	    bfqd->in_service_queue->actuator_idx == idx)
4763 		return bfqd->in_service_queue;
4764 
4765 	list_for_each_entry(bfqq, &bfqd->active_list[idx], bfqq_list) {
4766 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4767 			bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4768 				bfq_bfqq_budget_left(bfqq)) {
4769 			return bfqq;
4770 		}
4771 	}
4772 
4773 	return NULL;
4774 }
4775 
4776 /*
4777  * Perform a linear scan of each actuator, until an actuator is found
4778  * for which the following three conditions hold: the load of the
4779  * actuator is below the threshold (see comments on
4780  * actuator_load_threshold for details) and lower than that of the
4781  * next actuator (comments on this extra condition below), and there
4782  * is a queue that contains I/O for that actuator. On success, return
4783  * that queue.
4784  *
4785  * Performing a plain linear scan entails a prioritization among
4786  * actuators. The extra condition above breaks this prioritization and
4787  * tends to distribute injection uniformly across actuators.
4788  */
4789 static struct bfq_queue *
4790 bfq_find_bfqq_for_underused_actuator(struct bfq_data *bfqd)
4791 {
4792 	int i;
4793 
4794 	for (i = 0 ; i < bfqd->num_actuators; i++) {
4795 		if (bfqd->rq_in_driver[i] < bfqd->actuator_load_threshold &&
4796 		    (i == bfqd->num_actuators - 1 ||
4797 		     bfqd->rq_in_driver[i] < bfqd->rq_in_driver[i+1])) {
4798 			struct bfq_queue *bfqq =
4799 				bfq_find_active_bfqq_for_actuator(bfqd, i);
4800 
4801 			if (bfqq)
4802 				return bfqq;
4803 		}
4804 	}
4805 
4806 	return NULL;
4807 }
4808 
4809 
4810 /*
4811  * Select a queue for service.  If we have a current queue in service,
4812  * check whether to continue servicing it, or retrieve and set a new one.
4813  */
4814 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4815 {
4816 	struct bfq_queue *bfqq, *inject_bfqq;
4817 	struct request *next_rq;
4818 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4819 
4820 	bfqq = bfqd->in_service_queue;
4821 	if (!bfqq)
4822 		goto new_queue;
4823 
4824 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4825 
4826 	/*
4827 	 * Do not expire bfqq for budget timeout if bfqq may be about
4828 	 * to enjoy device idling. The reason why, in this case, we
4829 	 * prevent bfqq from expiring is the same as in the comments
4830 	 * on the case where bfq_bfqq_must_idle() returns true, in
4831 	 * bfq_completed_request().
4832 	 */
4833 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4834 	    !bfq_bfqq_must_idle(bfqq))
4835 		goto expire;
4836 
4837 check_queue:
4838 	/*
4839 	 *  If some actuator is underutilized, but the in-service
4840 	 *  queue does not contain I/O for that actuator, then try to
4841 	 *  inject I/O for that actuator.
4842 	 */
4843 	inject_bfqq = bfq_find_bfqq_for_underused_actuator(bfqd);
4844 	if (inject_bfqq && inject_bfqq != bfqq)
4845 		return inject_bfqq;
4846 
4847 	/*
4848 	 * This loop is rarely executed more than once. Even when it
4849 	 * happens, it is much more convenient to re-execute this loop
4850 	 * than to return NULL and trigger a new dispatch to get a
4851 	 * request served.
4852 	 */
4853 	next_rq = bfqq->next_rq;
4854 	/*
4855 	 * If bfqq has requests queued and it has enough budget left to
4856 	 * serve them, keep the queue, otherwise expire it.
4857 	 */
4858 	if (next_rq) {
4859 		if (bfq_serv_to_charge(next_rq, bfqq) >
4860 			bfq_bfqq_budget_left(bfqq)) {
4861 			/*
4862 			 * Expire the queue for budget exhaustion,
4863 			 * which makes sure that the next budget is
4864 			 * enough to serve the next request, even if
4865 			 * it comes from the fifo expired path.
4866 			 */
4867 			reason = BFQQE_BUDGET_EXHAUSTED;
4868 			goto expire;
4869 		} else {
4870 			/*
4871 			 * The idle timer may be pending because we may
4872 			 * not disable disk idling even when a new request
4873 			 * arrives.
4874 			 */
4875 			if (bfq_bfqq_wait_request(bfqq)) {
4876 				/*
4877 				 * If we get here: 1) at least a new request
4878 				 * has arrived but we have not disabled the
4879 				 * timer because the request was too small,
4880 				 * 2) then the block layer has unplugged
4881 				 * the device, causing the dispatch to be
4882 				 * invoked.
4883 				 *
4884 				 * Since the device is unplugged, now the
4885 				 * requests are probably large enough to
4886 				 * provide a reasonable throughput.
4887 				 * So we disable idling.
4888 				 */
4889 				bfq_clear_bfqq_wait_request(bfqq);
4890 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4891 			}
4892 			goto keep_queue;
4893 		}
4894 	}
4895 
4896 	/*
4897 	 * No requests pending. However, if the in-service queue is idling
4898 	 * for a new request, or has requests waiting for a completion and
4899 	 * may idle after their completion, then keep it anyway.
4900 	 *
4901 	 * Yet, inject service from other queues if it boosts
4902 	 * throughput and is possible.
4903 	 */
4904 	if (bfq_bfqq_wait_request(bfqq) ||
4905 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4906 		unsigned int act_idx = bfqq->actuator_idx;
4907 		struct bfq_queue *async_bfqq = NULL;
4908 		struct bfq_queue *blocked_bfqq =
4909 			!hlist_empty(&bfqq->woken_list) ?
4910 			container_of(bfqq->woken_list.first,
4911 				     struct bfq_queue,
4912 				     woken_list_node)
4913 			: NULL;
4914 
4915 		if (bfqq->bic && bfqq->bic->bfqq[0][act_idx] &&
4916 		    bfq_bfqq_busy(bfqq->bic->bfqq[0][act_idx]) &&
4917 		    bfqq->bic->bfqq[0][act_idx]->next_rq)
4918 			async_bfqq = bfqq->bic->bfqq[0][act_idx];
4919 		/*
4920 		 * The next four mutually-exclusive ifs decide
4921 		 * whether to try injection, and choose the queue to
4922 		 * pick an I/O request from.
4923 		 *
4924 		 * The first if checks whether the process associated
4925 		 * with bfqq has also async I/O pending. If so, it
4926 		 * injects such I/O unconditionally. Injecting async
4927 		 * I/O from the same process can cause no harm to the
4928 		 * process. On the contrary, it can only increase
4929 		 * bandwidth and reduce latency for the process.
4930 		 *
4931 		 * The second if checks whether there happens to be a
4932 		 * non-empty waker queue for bfqq, i.e., a queue whose
4933 		 * I/O needs to be completed for bfqq to receive new
4934 		 * I/O. This happens, e.g., if bfqq is associated with
4935 		 * a process that does some sync. A sync generates
4936 		 * extra blocking I/O, which must be completed before
4937 		 * the process associated with bfqq can go on with its
4938 		 * I/O. If the I/O of the waker queue is not served,
4939 		 * then bfqq remains empty, and no I/O is dispatched,
4940 		 * until the idle timeout fires for bfqq. This is
4941 		 * likely to result in lower bandwidth and higher
4942 		 * latencies for bfqq, and in a severe loss of total
4943 		 * throughput. The best action to take is therefore to
4944 		 * serve the waker queue as soon as possible. So do it
4945 		 * (without relying on the third alternative below for
4946 		 * eventually serving waker_bfqq's I/O; see the last
4947 		 * paragraph for further details). This systematic
4948 		 * injection of I/O from the waker queue does not
4949 		 * cause any delay to bfqq's I/O. On the contrary,
4950 		 * next bfqq's I/O is brought forward dramatically,
4951 		 * for it is not blocked for milliseconds.
4952 		 *
4953 		 * The third if checks whether there is a queue woken
4954 		 * by bfqq, and currently with pending I/O. Such a
4955 		 * woken queue does not steal bandwidth from bfqq,
4956 		 * because it remains soon without I/O if bfqq is not
4957 		 * served. So there is virtually no risk of loss of
4958 		 * bandwidth for bfqq if this woken queue has I/O
4959 		 * dispatched while bfqq is waiting for new I/O.
4960 		 *
4961 		 * The fourth if checks whether bfqq is a queue for
4962 		 * which it is better to avoid injection. It is so if
4963 		 * bfqq delivers more throughput when served without
4964 		 * any further I/O from other queues in the middle, or
4965 		 * if the service times of bfqq's I/O requests both
4966 		 * count more than overall throughput, and may be
4967 		 * easily increased by injection (this happens if bfqq
4968 		 * has a short think time). If none of these
4969 		 * conditions holds, then a candidate queue for
4970 		 * injection is looked for through
4971 		 * bfq_choose_bfqq_for_injection(). Note that the
4972 		 * latter may return NULL (for example if the inject
4973 		 * limit for bfqq is currently 0).
4974 		 *
4975 		 * NOTE: motivation for the second alternative
4976 		 *
4977 		 * Thanks to the way the inject limit is updated in
4978 		 * bfq_update_has_short_ttime(), it is rather likely
4979 		 * that, if I/O is being plugged for bfqq and the
4980 		 * waker queue has pending I/O requests that are
4981 		 * blocking bfqq's I/O, then the fourth alternative
4982 		 * above lets the waker queue get served before the
4983 		 * I/O-plugging timeout fires. So one may deem the
4984 		 * second alternative superfluous. It is not, because
4985 		 * the fourth alternative may be way less effective in
4986 		 * case of a synchronization. For two main
4987 		 * reasons. First, throughput may be low because the
4988 		 * inject limit may be too low to guarantee the same
4989 		 * amount of injected I/O, from the waker queue or
4990 		 * other queues, that the second alternative
4991 		 * guarantees (the second alternative unconditionally
4992 		 * injects a pending I/O request of the waker queue
4993 		 * for each bfq_dispatch_request()). Second, with the
4994 		 * fourth alternative, the duration of the plugging,
4995 		 * i.e., the time before bfqq finally receives new I/O,
4996 		 * may not be minimized, because the waker queue may
4997 		 * happen to be served only after other queues.
4998 		 */
4999 		if (async_bfqq &&
5000 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
5001 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
5002 		    bfq_bfqq_budget_left(async_bfqq))
5003 			bfqq = async_bfqq;
5004 		else if (bfqq->waker_bfqq &&
5005 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
5006 			   bfqq->waker_bfqq->next_rq &&
5007 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
5008 					      bfqq->waker_bfqq) <=
5009 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
5010 			)
5011 			bfqq = bfqq->waker_bfqq;
5012 		else if (blocked_bfqq &&
5013 			   bfq_bfqq_busy(blocked_bfqq) &&
5014 			   blocked_bfqq->next_rq &&
5015 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
5016 					      blocked_bfqq) <=
5017 			   bfq_bfqq_budget_left(blocked_bfqq)
5018 			)
5019 			bfqq = blocked_bfqq;
5020 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
5021 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
5022 			  !bfq_bfqq_has_short_ttime(bfqq)))
5023 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
5024 		else
5025 			bfqq = NULL;
5026 
5027 		goto keep_queue;
5028 	}
5029 
5030 	reason = BFQQE_NO_MORE_REQUESTS;
5031 expire:
5032 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
5033 new_queue:
5034 	bfqq = bfq_set_in_service_queue(bfqd);
5035 	if (bfqq) {
5036 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
5037 		goto check_queue;
5038 	}
5039 keep_queue:
5040 	if (bfqq)
5041 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
5042 	else
5043 		bfq_log(bfqd, "select_queue: no queue returned");
5044 
5045 	return bfqq;
5046 }
5047 
5048 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5049 {
5050 	struct bfq_entity *entity = &bfqq->entity;
5051 
5052 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
5053 		bfq_log_bfqq(bfqd, bfqq,
5054 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
5055 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
5056 			jiffies_to_msecs(bfqq->wr_cur_max_time),
5057 			bfqq->wr_coeff,
5058 			bfqq->entity.weight, bfqq->entity.orig_weight);
5059 
5060 		if (entity->prio_changed)
5061 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
5062 
5063 		/*
5064 		 * If the queue was activated in a burst, or too much
5065 		 * time has elapsed from the beginning of this
5066 		 * weight-raising period, then end weight raising.
5067 		 */
5068 		if (bfq_bfqq_in_large_burst(bfqq))
5069 			bfq_bfqq_end_wr(bfqq);
5070 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
5071 						bfqq->wr_cur_max_time)) {
5072 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
5073 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5074 					       bfq_wr_duration(bfqd))) {
5075 				/*
5076 				 * Either in interactive weight
5077 				 * raising, or in soft_rt weight
5078 				 * raising with the
5079 				 * interactive-weight-raising period
5080 				 * elapsed (so no switch back to
5081 				 * interactive weight raising).
5082 				 */
5083 				bfq_bfqq_end_wr(bfqq);
5084 			} else { /*
5085 				  * soft_rt finishing while still in
5086 				  * interactive period, switch back to
5087 				  * interactive weight raising
5088 				  */
5089 				switch_back_to_interactive_wr(bfqq, bfqd);
5090 				bfqq->entity.prio_changed = 1;
5091 			}
5092 		}
5093 		if (bfqq->wr_coeff > 1 &&
5094 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
5095 		    bfqq->service_from_wr > max_service_from_wr) {
5096 			/* see comments on max_service_from_wr */
5097 			bfq_bfqq_end_wr(bfqq);
5098 		}
5099 	}
5100 	/*
5101 	 * To improve latency (for this or other queues), immediately
5102 	 * update weight both if it must be raised and if it must be
5103 	 * lowered. Since, entity may be on some active tree here, and
5104 	 * might have a pending change of its ioprio class, invoke
5105 	 * next function with the last parameter unset (see the
5106 	 * comments on the function).
5107 	 */
5108 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
5109 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
5110 						entity, false);
5111 }
5112 
5113 /*
5114  * Dispatch next request from bfqq.
5115  */
5116 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
5117 						 struct bfq_queue *bfqq)
5118 {
5119 	struct request *rq = bfqq->next_rq;
5120 	unsigned long service_to_charge;
5121 
5122 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
5123 
5124 	bfq_bfqq_served(bfqq, service_to_charge);
5125 
5126 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5127 		bfqd->wait_dispatch = false;
5128 		bfqd->waited_rq = rq;
5129 	}
5130 
5131 	bfq_dispatch_remove(bfqd->queue, rq);
5132 
5133 	if (bfqq != bfqd->in_service_queue)
5134 		return rq;
5135 
5136 	/*
5137 	 * If weight raising has to terminate for bfqq, then next
5138 	 * function causes an immediate update of bfqq's weight,
5139 	 * without waiting for next activation. As a consequence, on
5140 	 * expiration, bfqq will be timestamped as if has never been
5141 	 * weight-raised during this service slot, even if it has
5142 	 * received part or even most of the service as a
5143 	 * weight-raised queue. This inflates bfqq's timestamps, which
5144 	 * is beneficial, as bfqq is then more willing to leave the
5145 	 * device immediately to possible other weight-raised queues.
5146 	 */
5147 	bfq_update_wr_data(bfqd, bfqq);
5148 
5149 	/*
5150 	 * Expire bfqq, pretending that its budget expired, if bfqq
5151 	 * belongs to CLASS_IDLE and other queues are waiting for
5152 	 * service.
5153 	 */
5154 	if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq))
5155 		bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5156 
5157 	return rq;
5158 }
5159 
5160 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5161 {
5162 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5163 
5164 	/*
5165 	 * Avoiding lock: a race on bfqd->queued should cause at
5166 	 * most a call to dispatch for nothing
5167 	 */
5168 	return !list_empty_careful(&bfqd->dispatch) ||
5169 		READ_ONCE(bfqd->queued);
5170 }
5171 
5172 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5173 {
5174 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5175 	struct request *rq = NULL;
5176 	struct bfq_queue *bfqq = NULL;
5177 
5178 	if (!list_empty(&bfqd->dispatch)) {
5179 		rq = list_first_entry(&bfqd->dispatch, struct request,
5180 				      queuelist);
5181 		list_del_init(&rq->queuelist);
5182 
5183 		bfqq = RQ_BFQQ(rq);
5184 
5185 		if (bfqq) {
5186 			/*
5187 			 * Increment counters here, because this
5188 			 * dispatch does not follow the standard
5189 			 * dispatch flow (where counters are
5190 			 * incremented)
5191 			 */
5192 			bfqq->dispatched++;
5193 
5194 			goto inc_in_driver_start_rq;
5195 		}
5196 
5197 		/*
5198 		 * We exploit the bfq_finish_requeue_request hook to
5199 		 * decrement tot_rq_in_driver, but
5200 		 * bfq_finish_requeue_request will not be invoked on
5201 		 * this request. So, to avoid unbalance, just start
5202 		 * this request, without incrementing tot_rq_in_driver. As
5203 		 * a negative consequence, tot_rq_in_driver is deceptively
5204 		 * lower than it should be while this request is in
5205 		 * service. This may cause bfq_schedule_dispatch to be
5206 		 * invoked uselessly.
5207 		 *
5208 		 * As for implementing an exact solution, the
5209 		 * bfq_finish_requeue_request hook, if defined, is
5210 		 * probably invoked also on this request. So, by
5211 		 * exploiting this hook, we could 1) increment
5212 		 * tot_rq_in_driver here, and 2) decrement it in
5213 		 * bfq_finish_requeue_request. Such a solution would
5214 		 * let the value of the counter be always accurate,
5215 		 * but it would entail using an extra interface
5216 		 * function. This cost seems higher than the benefit,
5217 		 * being the frequency of non-elevator-private
5218 		 * requests very low.
5219 		 */
5220 		goto start_rq;
5221 	}
5222 
5223 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5224 		bfq_tot_busy_queues(bfqd));
5225 
5226 	if (bfq_tot_busy_queues(bfqd) == 0)
5227 		goto exit;
5228 
5229 	/*
5230 	 * Force device to serve one request at a time if
5231 	 * strict_guarantees is true. Forcing this service scheme is
5232 	 * currently the ONLY way to guarantee that the request
5233 	 * service order enforced by the scheduler is respected by a
5234 	 * queueing device. Otherwise the device is free even to make
5235 	 * some unlucky request wait for as long as the device
5236 	 * wishes.
5237 	 *
5238 	 * Of course, serving one request at a time may cause loss of
5239 	 * throughput.
5240 	 */
5241 	if (bfqd->strict_guarantees && bfqd->tot_rq_in_driver > 0)
5242 		goto exit;
5243 
5244 	bfqq = bfq_select_queue(bfqd);
5245 	if (!bfqq)
5246 		goto exit;
5247 
5248 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5249 
5250 	if (rq) {
5251 inc_in_driver_start_rq:
5252 		bfqd->rq_in_driver[bfqq->actuator_idx]++;
5253 		bfqd->tot_rq_in_driver++;
5254 start_rq:
5255 		rq->rq_flags |= RQF_STARTED;
5256 	}
5257 exit:
5258 	return rq;
5259 }
5260 
5261 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5262 static void bfq_update_dispatch_stats(struct request_queue *q,
5263 				      struct request *rq,
5264 				      struct bfq_queue *in_serv_queue,
5265 				      bool idle_timer_disabled)
5266 {
5267 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5268 
5269 	if (!idle_timer_disabled && !bfqq)
5270 		return;
5271 
5272 	/*
5273 	 * rq and bfqq are guaranteed to exist until this function
5274 	 * ends, for the following reasons. First, rq can be
5275 	 * dispatched to the device, and then can be completed and
5276 	 * freed, only after this function ends. Second, rq cannot be
5277 	 * merged (and thus freed because of a merge) any longer,
5278 	 * because it has already started. Thus rq cannot be freed
5279 	 * before this function ends, and, since rq has a reference to
5280 	 * bfqq, the same guarantee holds for bfqq too.
5281 	 *
5282 	 * In addition, the following queue lock guarantees that
5283 	 * bfqq_group(bfqq) exists as well.
5284 	 */
5285 	spin_lock_irq(&q->queue_lock);
5286 	if (idle_timer_disabled)
5287 		/*
5288 		 * Since the idle timer has been disabled,
5289 		 * in_serv_queue contained some request when
5290 		 * __bfq_dispatch_request was invoked above, which
5291 		 * implies that rq was picked exactly from
5292 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5293 		 * therefore guaranteed to exist because of the above
5294 		 * arguments.
5295 		 */
5296 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5297 	if (bfqq) {
5298 		struct bfq_group *bfqg = bfqq_group(bfqq);
5299 
5300 		bfqg_stats_update_avg_queue_size(bfqg);
5301 		bfqg_stats_set_start_empty_time(bfqg);
5302 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5303 	}
5304 	spin_unlock_irq(&q->queue_lock);
5305 }
5306 #else
5307 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5308 					     struct request *rq,
5309 					     struct bfq_queue *in_serv_queue,
5310 					     bool idle_timer_disabled) {}
5311 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5312 
5313 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5314 {
5315 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5316 	struct request *rq;
5317 	struct bfq_queue *in_serv_queue;
5318 	bool waiting_rq, idle_timer_disabled = false;
5319 
5320 	spin_lock_irq(&bfqd->lock);
5321 
5322 	in_serv_queue = bfqd->in_service_queue;
5323 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5324 
5325 	rq = __bfq_dispatch_request(hctx);
5326 	if (in_serv_queue == bfqd->in_service_queue) {
5327 		idle_timer_disabled =
5328 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5329 	}
5330 
5331 	spin_unlock_irq(&bfqd->lock);
5332 	bfq_update_dispatch_stats(hctx->queue, rq,
5333 			idle_timer_disabled ? in_serv_queue : NULL,
5334 				idle_timer_disabled);
5335 
5336 	return rq;
5337 }
5338 
5339 /*
5340  * Task holds one reference to the queue, dropped when task exits.  Each rq
5341  * in-flight on this queue also holds a reference, dropped when rq is freed.
5342  *
5343  * Scheduler lock must be held here. Recall not to use bfqq after calling
5344  * this function on it.
5345  */
5346 void bfq_put_queue(struct bfq_queue *bfqq)
5347 {
5348 	struct bfq_queue *item;
5349 	struct hlist_node *n;
5350 	struct bfq_group *bfqg = bfqq_group(bfqq);
5351 
5352 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5353 
5354 	bfqq->ref--;
5355 	if (bfqq->ref)
5356 		return;
5357 
5358 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5359 		hlist_del_init(&bfqq->burst_list_node);
5360 		/*
5361 		 * Decrement also burst size after the removal, if the
5362 		 * process associated with bfqq is exiting, and thus
5363 		 * does not contribute to the burst any longer. This
5364 		 * decrement helps filter out false positives of large
5365 		 * bursts, when some short-lived process (often due to
5366 		 * the execution of commands by some service) happens
5367 		 * to start and exit while a complex application is
5368 		 * starting, and thus spawning several processes that
5369 		 * do I/O (and that *must not* be treated as a large
5370 		 * burst, see comments on bfq_handle_burst).
5371 		 *
5372 		 * In particular, the decrement is performed only if:
5373 		 * 1) bfqq is not a merged queue, because, if it is,
5374 		 * then this free of bfqq is not triggered by the exit
5375 		 * of the process bfqq is associated with, but exactly
5376 		 * by the fact that bfqq has just been merged.
5377 		 * 2) burst_size is greater than 0, to handle
5378 		 * unbalanced decrements. Unbalanced decrements may
5379 		 * happen in te following case: bfqq is inserted into
5380 		 * the current burst list--without incrementing
5381 		 * bust_size--because of a split, but the current
5382 		 * burst list is not the burst list bfqq belonged to
5383 		 * (see comments on the case of a split in
5384 		 * bfq_set_request).
5385 		 */
5386 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5387 			bfqq->bfqd->burst_size--;
5388 	}
5389 
5390 	/*
5391 	 * bfqq does not exist any longer, so it cannot be woken by
5392 	 * any other queue, and cannot wake any other queue. Then bfqq
5393 	 * must be removed from the woken list of its possible waker
5394 	 * queue, and all queues in the woken list of bfqq must stop
5395 	 * having a waker queue. Strictly speaking, these updates
5396 	 * should be performed when bfqq remains with no I/O source
5397 	 * attached to it, which happens before bfqq gets freed. In
5398 	 * particular, this happens when the last process associated
5399 	 * with bfqq exits or gets associated with a different
5400 	 * queue. However, both events lead to bfqq being freed soon,
5401 	 * and dangling references would come out only after bfqq gets
5402 	 * freed. So these updates are done here, as a simple and safe
5403 	 * way to handle all cases.
5404 	 */
5405 	/* remove bfqq from woken list */
5406 	if (!hlist_unhashed(&bfqq->woken_list_node))
5407 		hlist_del_init(&bfqq->woken_list_node);
5408 
5409 	/* reset waker for all queues in woken list */
5410 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5411 				  woken_list_node) {
5412 		item->waker_bfqq = NULL;
5413 		hlist_del_init(&item->woken_list_node);
5414 	}
5415 
5416 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5417 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5418 
5419 	WARN_ON_ONCE(!list_empty(&bfqq->fifo));
5420 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&bfqq->sort_list));
5421 	WARN_ON_ONCE(bfqq->dispatched);
5422 
5423 	kmem_cache_free(bfq_pool, bfqq);
5424 	bfqg_and_blkg_put(bfqg);
5425 }
5426 
5427 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5428 {
5429 	bfqq->stable_ref--;
5430 	bfq_put_queue(bfqq);
5431 }
5432 
5433 void bfq_put_cooperator(struct bfq_queue *bfqq)
5434 {
5435 	struct bfq_queue *__bfqq, *next;
5436 
5437 	/*
5438 	 * If this queue was scheduled to merge with another queue, be
5439 	 * sure to drop the reference taken on that queue (and others in
5440 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5441 	 */
5442 	__bfqq = bfqq->new_bfqq;
5443 	while (__bfqq) {
5444 		next = __bfqq->new_bfqq;
5445 		bfq_put_queue(__bfqq);
5446 		__bfqq = next;
5447 	}
5448 }
5449 
5450 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5451 {
5452 	if (bfqq == bfqd->in_service_queue) {
5453 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5454 		bfq_schedule_dispatch(bfqd);
5455 	}
5456 
5457 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5458 
5459 	bfq_put_cooperator(bfqq);
5460 
5461 	bfq_release_process_ref(bfqd, bfqq);
5462 }
5463 
5464 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync,
5465 			      unsigned int actuator_idx)
5466 {
5467 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, actuator_idx);
5468 	struct bfq_data *bfqd;
5469 
5470 	if (bfqq)
5471 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5472 
5473 	if (bfqq && bfqd) {
5474 		bic_set_bfqq(bic, NULL, is_sync, actuator_idx);
5475 		bfq_exit_bfqq(bfqd, bfqq);
5476 	}
5477 }
5478 
5479 static void bfq_exit_icq(struct io_cq *icq)
5480 {
5481 	struct bfq_io_cq *bic = icq_to_bic(icq);
5482 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5483 	unsigned long flags;
5484 	unsigned int act_idx;
5485 	/*
5486 	 * If bfqd and thus bfqd->num_actuators is not available any
5487 	 * longer, then cycle over all possible per-actuator bfqqs in
5488 	 * next loop. We rely on bic being zeroed on creation, and
5489 	 * therefore on its unused per-actuator fields being NULL.
5490 	 */
5491 	unsigned int num_actuators = BFQ_MAX_ACTUATORS;
5492 	struct bfq_iocq_bfqq_data *bfqq_data = bic->bfqq_data;
5493 
5494 	/*
5495 	 * bfqd is NULL if scheduler already exited, and in that case
5496 	 * this is the last time these queues are accessed.
5497 	 */
5498 	if (bfqd) {
5499 		spin_lock_irqsave(&bfqd->lock, flags);
5500 		num_actuators = bfqd->num_actuators;
5501 	}
5502 
5503 	for (act_idx = 0; act_idx < num_actuators; act_idx++) {
5504 		if (bfqq_data[act_idx].stable_merge_bfqq)
5505 			bfq_put_stable_ref(bfqq_data[act_idx].stable_merge_bfqq);
5506 
5507 		bfq_exit_icq_bfqq(bic, true, act_idx);
5508 		bfq_exit_icq_bfqq(bic, false, act_idx);
5509 	}
5510 
5511 	if (bfqd)
5512 		spin_unlock_irqrestore(&bfqd->lock, flags);
5513 }
5514 
5515 /*
5516  * Update the entity prio values; note that the new values will not
5517  * be used until the next (re)activation.
5518  */
5519 static void
5520 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5521 {
5522 	struct task_struct *tsk = current;
5523 	int ioprio_class;
5524 	struct bfq_data *bfqd = bfqq->bfqd;
5525 
5526 	if (!bfqd)
5527 		return;
5528 
5529 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5530 	switch (ioprio_class) {
5531 	default:
5532 		pr_err("bdi %s: bfq: bad prio class %d\n",
5533 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5534 			ioprio_class);
5535 		fallthrough;
5536 	case IOPRIO_CLASS_NONE:
5537 		/*
5538 		 * No prio set, inherit CPU scheduling settings.
5539 		 */
5540 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5541 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5542 		break;
5543 	case IOPRIO_CLASS_RT:
5544 		bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5545 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5546 		break;
5547 	case IOPRIO_CLASS_BE:
5548 		bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5549 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5550 		break;
5551 	case IOPRIO_CLASS_IDLE:
5552 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5553 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5554 		break;
5555 	}
5556 
5557 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5558 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5559 			bfqq->new_ioprio);
5560 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5561 	}
5562 
5563 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5564 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5565 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5566 	bfqq->entity.prio_changed = 1;
5567 }
5568 
5569 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5570 				       struct bio *bio, bool is_sync,
5571 				       struct bfq_io_cq *bic,
5572 				       bool respawn);
5573 
5574 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5575 {
5576 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5577 	struct bfq_queue *bfqq;
5578 	int ioprio = bic->icq.ioc->ioprio;
5579 
5580 	/*
5581 	 * This condition may trigger on a newly created bic, be sure to
5582 	 * drop the lock before returning.
5583 	 */
5584 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5585 		return;
5586 
5587 	bic->ioprio = ioprio;
5588 
5589 	bfqq = bic_to_bfqq(bic, false, bfq_actuator_index(bfqd, bio));
5590 	if (bfqq) {
5591 		struct bfq_queue *old_bfqq = bfqq;
5592 
5593 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5594 		bic_set_bfqq(bic, bfqq, false, bfq_actuator_index(bfqd, bio));
5595 		bfq_release_process_ref(bfqd, old_bfqq);
5596 	}
5597 
5598 	bfqq = bic_to_bfqq(bic, true, bfq_actuator_index(bfqd, bio));
5599 	if (bfqq)
5600 		bfq_set_next_ioprio_data(bfqq, bic);
5601 }
5602 
5603 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5604 			  struct bfq_io_cq *bic, pid_t pid, int is_sync,
5605 			  unsigned int act_idx)
5606 {
5607 	u64 now_ns = ktime_get_ns();
5608 
5609 	bfqq->actuator_idx = act_idx;
5610 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5611 	INIT_LIST_HEAD(&bfqq->fifo);
5612 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5613 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5614 	INIT_HLIST_HEAD(&bfqq->woken_list);
5615 
5616 	bfqq->ref = 0;
5617 	bfqq->bfqd = bfqd;
5618 
5619 	if (bic)
5620 		bfq_set_next_ioprio_data(bfqq, bic);
5621 
5622 	if (is_sync) {
5623 		/*
5624 		 * No need to mark as has_short_ttime if in
5625 		 * idle_class, because no device idling is performed
5626 		 * for queues in idle class
5627 		 */
5628 		if (!bfq_class_idle(bfqq))
5629 			/* tentatively mark as has_short_ttime */
5630 			bfq_mark_bfqq_has_short_ttime(bfqq);
5631 		bfq_mark_bfqq_sync(bfqq);
5632 		bfq_mark_bfqq_just_created(bfqq);
5633 	} else
5634 		bfq_clear_bfqq_sync(bfqq);
5635 
5636 	/* set end request to minus infinity from now */
5637 	bfqq->ttime.last_end_request = now_ns + 1;
5638 
5639 	bfqq->creation_time = jiffies;
5640 
5641 	bfqq->io_start_time = now_ns;
5642 
5643 	bfq_mark_bfqq_IO_bound(bfqq);
5644 
5645 	bfqq->pid = pid;
5646 
5647 	/* Tentative initial value to trade off between thr and lat */
5648 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5649 	bfqq->budget_timeout = bfq_smallest_from_now();
5650 
5651 	bfqq->wr_coeff = 1;
5652 	bfqq->last_wr_start_finish = jiffies;
5653 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5654 	bfqq->split_time = bfq_smallest_from_now();
5655 
5656 	/*
5657 	 * To not forget the possibly high bandwidth consumed by a
5658 	 * process/queue in the recent past,
5659 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5660 	 * to the current value of bfqq->soft_rt_next_start (see
5661 	 * comments on bfq_bfqq_softrt_next_start).  Set
5662 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5663 	 * no bandwidth so far.
5664 	 */
5665 	bfqq->soft_rt_next_start = jiffies;
5666 
5667 	/* first request is almost certainly seeky */
5668 	bfqq->seek_history = 1;
5669 
5670 	bfqq->decrease_time_jif = jiffies;
5671 }
5672 
5673 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5674 					       struct bfq_group *bfqg,
5675 					       int ioprio_class, int ioprio, int act_idx)
5676 {
5677 	switch (ioprio_class) {
5678 	case IOPRIO_CLASS_RT:
5679 		return &bfqg->async_bfqq[0][ioprio][act_idx];
5680 	case IOPRIO_CLASS_NONE:
5681 		ioprio = IOPRIO_BE_NORM;
5682 		fallthrough;
5683 	case IOPRIO_CLASS_BE:
5684 		return &bfqg->async_bfqq[1][ioprio][act_idx];
5685 	case IOPRIO_CLASS_IDLE:
5686 		return &bfqg->async_idle_bfqq[act_idx];
5687 	default:
5688 		return NULL;
5689 	}
5690 }
5691 
5692 static struct bfq_queue *
5693 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5694 			  struct bfq_io_cq *bic,
5695 			  struct bfq_queue *last_bfqq_created)
5696 {
5697 	unsigned int a_idx = last_bfqq_created->actuator_idx;
5698 	struct bfq_queue *new_bfqq =
5699 		bfq_setup_merge(bfqq, last_bfqq_created);
5700 
5701 	if (!new_bfqq)
5702 		return bfqq;
5703 
5704 	if (new_bfqq->bic)
5705 		new_bfqq->bic->bfqq_data[a_idx].stably_merged = true;
5706 	bic->bfqq_data[a_idx].stably_merged = true;
5707 
5708 	/*
5709 	 * Reusing merge functions. This implies that
5710 	 * bfqq->bic must be set too, for
5711 	 * bfq_merge_bfqqs to correctly save bfqq's
5712 	 * state before killing it.
5713 	 */
5714 	bfqq->bic = bic;
5715 	return bfq_merge_bfqqs(bfqd, bic, bfqq);
5716 }
5717 
5718 /*
5719  * Many throughput-sensitive workloads are made of several parallel
5720  * I/O flows, with all flows generated by the same application, or
5721  * more generically by the same task (e.g., system boot). The most
5722  * counterproductive action with these workloads is plugging I/O
5723  * dispatch when one of the bfq_queues associated with these flows
5724  * remains temporarily empty.
5725  *
5726  * To avoid this plugging, BFQ has been using a burst-handling
5727  * mechanism for years now. This mechanism has proven effective for
5728  * throughput, and not detrimental for service guarantees. The
5729  * following function pushes this mechanism a little bit further,
5730  * basing on the following two facts.
5731  *
5732  * First, all the I/O flows of a the same application or task
5733  * contribute to the execution/completion of that common application
5734  * or task. So the performance figures that matter are total
5735  * throughput of the flows and task-wide I/O latency.  In particular,
5736  * these flows do not need to be protected from each other, in terms
5737  * of individual bandwidth or latency.
5738  *
5739  * Second, the above fact holds regardless of the number of flows.
5740  *
5741  * Putting these two facts together, this commits merges stably the
5742  * bfq_queues associated with these I/O flows, i.e., with the
5743  * processes that generate these IO/ flows, regardless of how many the
5744  * involved processes are.
5745  *
5746  * To decide whether a set of bfq_queues is actually associated with
5747  * the I/O flows of a common application or task, and to merge these
5748  * queues stably, this function operates as follows: given a bfq_queue,
5749  * say Q2, currently being created, and the last bfq_queue, say Q1,
5750  * created before Q2, Q2 is merged stably with Q1 if
5751  * - very little time has elapsed since when Q1 was created
5752  * - Q2 has the same ioprio as Q1
5753  * - Q2 belongs to the same group as Q1
5754  *
5755  * Merging bfq_queues also reduces scheduling overhead. A fio test
5756  * with ten random readers on /dev/nullb shows a throughput boost of
5757  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5758  * the total per-request processing time, the above throughput boost
5759  * implies that BFQ's overhead is reduced by more than 50%.
5760  *
5761  * This new mechanism most certainly obsoletes the current
5762  * burst-handling heuristics. We keep those heuristics for the moment.
5763  */
5764 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5765 						      struct bfq_queue *bfqq,
5766 						      struct bfq_io_cq *bic)
5767 {
5768 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5769 		&bfqq->entity.parent->last_bfqq_created :
5770 		&bfqd->last_bfqq_created;
5771 
5772 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5773 
5774 	/*
5775 	 * If last_bfqq_created has not been set yet, then init it. If
5776 	 * it has been set already, but too long ago, then move it
5777 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5778 	 * different group than last_bfqq_created, or if bfqq has a
5779 	 * different ioprio, ioprio_class or actuator_idx. If none of
5780 	 * these conditions holds true, then try an early stable merge
5781 	 * or schedule a delayed stable merge. As for the condition on
5782 	 * actuator_idx, the reason is that, if queues associated with
5783 	 * different actuators are merged, then control is lost on
5784 	 * each actuator. Therefore some actuator may be
5785 	 * underutilized, and throughput may decrease.
5786 	 *
5787 	 * A delayed merge is scheduled (instead of performing an
5788 	 * early merge), in case bfqq might soon prove to be more
5789 	 * throughput-beneficial if not merged. Currently this is
5790 	 * possible only if bfqd is rotational with no queueing. For
5791 	 * such a drive, not merging bfqq is better for throughput if
5792 	 * bfqq happens to contain sequential I/O. So, we wait a
5793 	 * little bit for enough I/O to flow through bfqq. After that,
5794 	 * if such an I/O is sequential, then the merge is
5795 	 * canceled. Otherwise the merge is finally performed.
5796 	 */
5797 	if (!last_bfqq_created ||
5798 	    time_before(last_bfqq_created->creation_time +
5799 			msecs_to_jiffies(bfq_activation_stable_merging),
5800 			bfqq->creation_time) ||
5801 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5802 		bfqq->ioprio != last_bfqq_created->ioprio ||
5803 		bfqq->ioprio_class != last_bfqq_created->ioprio_class ||
5804 		bfqq->actuator_idx != last_bfqq_created->actuator_idx)
5805 		*source_bfqq = bfqq;
5806 	else if (time_after_eq(last_bfqq_created->creation_time +
5807 				 bfqd->bfq_burst_interval,
5808 				 bfqq->creation_time)) {
5809 		if (likely(bfqd->nonrot_with_queueing))
5810 			/*
5811 			 * With this type of drive, leaving
5812 			 * bfqq alone may provide no
5813 			 * throughput benefits compared with
5814 			 * merging bfqq. So merge bfqq now.
5815 			 */
5816 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5817 							 bic,
5818 							 last_bfqq_created);
5819 		else { /* schedule tentative stable merge */
5820 			/*
5821 			 * get reference on last_bfqq_created,
5822 			 * to prevent it from being freed,
5823 			 * until we decide whether to merge
5824 			 */
5825 			last_bfqq_created->ref++;
5826 			/*
5827 			 * need to keep track of stable refs, to
5828 			 * compute process refs correctly
5829 			 */
5830 			last_bfqq_created->stable_ref++;
5831 			/*
5832 			 * Record the bfqq to merge to.
5833 			 */
5834 			bic->bfqq_data[last_bfqq_created->actuator_idx].stable_merge_bfqq =
5835 				last_bfqq_created;
5836 		}
5837 	}
5838 
5839 	return bfqq;
5840 }
5841 
5842 
5843 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5844 				       struct bio *bio, bool is_sync,
5845 				       struct bfq_io_cq *bic,
5846 				       bool respawn)
5847 {
5848 	const int ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5849 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5850 	struct bfq_queue **async_bfqq = NULL;
5851 	struct bfq_queue *bfqq;
5852 	struct bfq_group *bfqg;
5853 
5854 	bfqg = bfq_bio_bfqg(bfqd, bio);
5855 	if (!is_sync) {
5856 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5857 						  ioprio,
5858 						  bfq_actuator_index(bfqd, bio));
5859 		bfqq = *async_bfqq;
5860 		if (bfqq)
5861 			goto out;
5862 	}
5863 
5864 	bfqq = kmem_cache_alloc_node(bfq_pool,
5865 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5866 				     bfqd->queue->node);
5867 
5868 	if (bfqq) {
5869 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5870 			      is_sync, bfq_actuator_index(bfqd, bio));
5871 		bfq_init_entity(&bfqq->entity, bfqg);
5872 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5873 	} else {
5874 		bfqq = &bfqd->oom_bfqq;
5875 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5876 		goto out;
5877 	}
5878 
5879 	/*
5880 	 * Pin the queue now that it's allocated, scheduler exit will
5881 	 * prune it.
5882 	 */
5883 	if (async_bfqq) {
5884 		bfqq->ref++; /*
5885 			      * Extra group reference, w.r.t. sync
5886 			      * queue. This extra reference is removed
5887 			      * only if bfqq->bfqg disappears, to
5888 			      * guarantee that this queue is not freed
5889 			      * until its group goes away.
5890 			      */
5891 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5892 			     bfqq, bfqq->ref);
5893 		*async_bfqq = bfqq;
5894 	}
5895 
5896 out:
5897 	bfqq->ref++; /* get a process reference to this queue */
5898 
5899 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5900 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5901 	return bfqq;
5902 }
5903 
5904 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5905 				    struct bfq_queue *bfqq)
5906 {
5907 	struct bfq_ttime *ttime = &bfqq->ttime;
5908 	u64 elapsed;
5909 
5910 	/*
5911 	 * We are really interested in how long it takes for the queue to
5912 	 * become busy when there is no outstanding IO for this queue. So
5913 	 * ignore cases when the bfq queue has already IO queued.
5914 	 */
5915 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5916 		return;
5917 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5918 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5919 
5920 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5921 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5922 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5923 				     ttime->ttime_samples);
5924 }
5925 
5926 static void
5927 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5928 		       struct request *rq)
5929 {
5930 	bfqq->seek_history <<= 1;
5931 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5932 
5933 	if (bfqq->wr_coeff > 1 &&
5934 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5935 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5936 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5937 					   bfq_wr_duration(bfqd))) {
5938 			/*
5939 			 * In soft_rt weight raising with the
5940 			 * interactive-weight-raising period
5941 			 * elapsed (so no switch back to
5942 			 * interactive weight raising).
5943 			 */
5944 			bfq_bfqq_end_wr(bfqq);
5945 		} else { /*
5946 			  * stopping soft_rt weight raising
5947 			  * while still in interactive period,
5948 			  * switch back to interactive weight
5949 			  * raising
5950 			  */
5951 			switch_back_to_interactive_wr(bfqq, bfqd);
5952 			bfqq->entity.prio_changed = 1;
5953 		}
5954 	}
5955 }
5956 
5957 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5958 				       struct bfq_queue *bfqq,
5959 				       struct bfq_io_cq *bic)
5960 {
5961 	bool has_short_ttime = true, state_changed;
5962 
5963 	/*
5964 	 * No need to update has_short_ttime if bfqq is async or in
5965 	 * idle io prio class, or if bfq_slice_idle is zero, because
5966 	 * no device idling is performed for bfqq in this case.
5967 	 */
5968 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5969 	    bfqd->bfq_slice_idle == 0)
5970 		return;
5971 
5972 	/* Idle window just restored, statistics are meaningless. */
5973 	if (time_is_after_eq_jiffies(bfqq->split_time +
5974 				     bfqd->bfq_wr_min_idle_time))
5975 		return;
5976 
5977 	/* Think time is infinite if no process is linked to
5978 	 * bfqq. Otherwise check average think time to decide whether
5979 	 * to mark as has_short_ttime. To this goal, compare average
5980 	 * think time with half the I/O-plugging timeout.
5981 	 */
5982 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5983 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5984 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5985 		has_short_ttime = false;
5986 
5987 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5988 
5989 	if (has_short_ttime)
5990 		bfq_mark_bfqq_has_short_ttime(bfqq);
5991 	else
5992 		bfq_clear_bfqq_has_short_ttime(bfqq);
5993 
5994 	/*
5995 	 * Until the base value for the total service time gets
5996 	 * finally computed for bfqq, the inject limit does depend on
5997 	 * the think-time state (short|long). In particular, the limit
5998 	 * is 0 or 1 if the think time is deemed, respectively, as
5999 	 * short or long (details in the comments in
6000 	 * bfq_update_inject_limit()). Accordingly, the next
6001 	 * instructions reset the inject limit if the think-time state
6002 	 * has changed and the above base value is still to be
6003 	 * computed.
6004 	 *
6005 	 * However, the reset is performed only if more than 100 ms
6006 	 * have elapsed since the last update of the inject limit, or
6007 	 * (inclusive) if the change is from short to long think
6008 	 * time. The reason for this waiting is as follows.
6009 	 *
6010 	 * bfqq may have a long think time because of a
6011 	 * synchronization with some other queue, i.e., because the
6012 	 * I/O of some other queue may need to be completed for bfqq
6013 	 * to receive new I/O. Details in the comments on the choice
6014 	 * of the queue for injection in bfq_select_queue().
6015 	 *
6016 	 * As stressed in those comments, if such a synchronization is
6017 	 * actually in place, then, without injection on bfqq, the
6018 	 * blocking I/O cannot happen to served while bfqq is in
6019 	 * service. As a consequence, if bfqq is granted
6020 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
6021 	 * is dispatched, until the idle timeout fires. This is likely
6022 	 * to result in lower bandwidth and higher latencies for bfqq,
6023 	 * and in a severe loss of total throughput.
6024 	 *
6025 	 * On the opposite end, a non-zero inject limit may allow the
6026 	 * I/O that blocks bfqq to be executed soon, and therefore
6027 	 * bfqq to receive new I/O soon.
6028 	 *
6029 	 * But, if the blocking gets actually eliminated, then the
6030 	 * next think-time sample for bfqq may be very low. This in
6031 	 * turn may cause bfqq's think time to be deemed
6032 	 * short. Without the 100 ms barrier, this new state change
6033 	 * would cause the body of the next if to be executed
6034 	 * immediately. But this would set to 0 the inject
6035 	 * limit. Without injection, the blocking I/O would cause the
6036 	 * think time of bfqq to become long again, and therefore the
6037 	 * inject limit to be raised again, and so on. The only effect
6038 	 * of such a steady oscillation between the two think-time
6039 	 * states would be to prevent effective injection on bfqq.
6040 	 *
6041 	 * In contrast, if the inject limit is not reset during such a
6042 	 * long time interval as 100 ms, then the number of short
6043 	 * think time samples can grow significantly before the reset
6044 	 * is performed. As a consequence, the think time state can
6045 	 * become stable before the reset. Therefore there will be no
6046 	 * state change when the 100 ms elapse, and no reset of the
6047 	 * inject limit. The inject limit remains steadily equal to 1
6048 	 * both during and after the 100 ms. So injection can be
6049 	 * performed at all times, and throughput gets boosted.
6050 	 *
6051 	 * An inject limit equal to 1 is however in conflict, in
6052 	 * general, with the fact that the think time of bfqq is
6053 	 * short, because injection may be likely to delay bfqq's I/O
6054 	 * (as explained in the comments in
6055 	 * bfq_update_inject_limit()). But this does not happen in
6056 	 * this special case, because bfqq's low think time is due to
6057 	 * an effective handling of a synchronization, through
6058 	 * injection. In this special case, bfqq's I/O does not get
6059 	 * delayed by injection; on the contrary, bfqq's I/O is
6060 	 * brought forward, because it is not blocked for
6061 	 * milliseconds.
6062 	 *
6063 	 * In addition, serving the blocking I/O much sooner, and much
6064 	 * more frequently than once per I/O-plugging timeout, makes
6065 	 * it much quicker to detect a waker queue (the concept of
6066 	 * waker queue is defined in the comments in
6067 	 * bfq_add_request()). This makes it possible to start sooner
6068 	 * to boost throughput more effectively, by injecting the I/O
6069 	 * of the waker queue unconditionally on every
6070 	 * bfq_dispatch_request().
6071 	 *
6072 	 * One last, important benefit of not resetting the inject
6073 	 * limit before 100 ms is that, during this time interval, the
6074 	 * base value for the total service time is likely to get
6075 	 * finally computed for bfqq, freeing the inject limit from
6076 	 * its relation with the think time.
6077 	 */
6078 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
6079 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
6080 				      msecs_to_jiffies(100)) ||
6081 	     !has_short_ttime))
6082 		bfq_reset_inject_limit(bfqd, bfqq);
6083 }
6084 
6085 /*
6086  * Called when a new fs request (rq) is added to bfqq.  Check if there's
6087  * something we should do about it.
6088  */
6089 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6090 			    struct request *rq)
6091 {
6092 	if (rq->cmd_flags & REQ_META)
6093 		bfqq->meta_pending++;
6094 
6095 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
6096 
6097 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
6098 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
6099 				 blk_rq_sectors(rq) < 32;
6100 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
6101 
6102 		/*
6103 		 * There is just this request queued: if
6104 		 * - the request is small, and
6105 		 * - we are idling to boost throughput, and
6106 		 * - the queue is not to be expired,
6107 		 * then just exit.
6108 		 *
6109 		 * In this way, if the device is being idled to wait
6110 		 * for a new request from the in-service queue, we
6111 		 * avoid unplugging the device and committing the
6112 		 * device to serve just a small request. In contrast
6113 		 * we wait for the block layer to decide when to
6114 		 * unplug the device: hopefully, new requests will be
6115 		 * merged to this one quickly, then the device will be
6116 		 * unplugged and larger requests will be dispatched.
6117 		 */
6118 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
6119 		    !budget_timeout)
6120 			return;
6121 
6122 		/*
6123 		 * A large enough request arrived, or idling is being
6124 		 * performed to preserve service guarantees, or
6125 		 * finally the queue is to be expired: in all these
6126 		 * cases disk idling is to be stopped, so clear
6127 		 * wait_request flag and reset timer.
6128 		 */
6129 		bfq_clear_bfqq_wait_request(bfqq);
6130 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
6131 
6132 		/*
6133 		 * The queue is not empty, because a new request just
6134 		 * arrived. Hence we can safely expire the queue, in
6135 		 * case of budget timeout, without risking that the
6136 		 * timestamps of the queue are not updated correctly.
6137 		 * See [1] for more details.
6138 		 */
6139 		if (budget_timeout)
6140 			bfq_bfqq_expire(bfqd, bfqq, false,
6141 					BFQQE_BUDGET_TIMEOUT);
6142 	}
6143 }
6144 
6145 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6146 {
6147 	struct bfq_entity *entity = &bfqq->entity;
6148 
6149 	for_each_entity(entity)
6150 		entity->allocated++;
6151 }
6152 
6153 static void bfqq_request_freed(struct bfq_queue *bfqq)
6154 {
6155 	struct bfq_entity *entity = &bfqq->entity;
6156 
6157 	for_each_entity(entity)
6158 		entity->allocated--;
6159 }
6160 
6161 /* returns true if it causes the idle timer to be disabled */
6162 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6163 {
6164 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6165 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6166 						 RQ_BIC(rq));
6167 	bool waiting, idle_timer_disabled = false;
6168 
6169 	if (new_bfqq) {
6170 		struct bfq_queue *old_bfqq = bfqq;
6171 		/*
6172 		 * Release the request's reference to the old bfqq
6173 		 * and make sure one is taken to the shared queue.
6174 		 */
6175 		bfqq_request_allocated(new_bfqq);
6176 		bfqq_request_freed(bfqq);
6177 		new_bfqq->ref++;
6178 		/*
6179 		 * If the bic associated with the process
6180 		 * issuing this request still points to bfqq
6181 		 * (and thus has not been already redirected
6182 		 * to new_bfqq or even some other bfq_queue),
6183 		 * then complete the merge and redirect it to
6184 		 * new_bfqq.
6185 		 */
6186 		if (bic_to_bfqq(RQ_BIC(rq), true,
6187 				bfq_actuator_index(bfqd, rq->bio)) == bfqq) {
6188 			while (bfqq != new_bfqq)
6189 				bfqq = bfq_merge_bfqqs(bfqd, RQ_BIC(rq), bfqq);
6190 		}
6191 
6192 		bfq_clear_bfqq_just_created(old_bfqq);
6193 		/*
6194 		 * rq is about to be enqueued into new_bfqq,
6195 		 * release rq reference on bfqq
6196 		 */
6197 		bfq_put_queue(old_bfqq);
6198 		rq->elv.priv[1] = new_bfqq;
6199 	}
6200 
6201 	bfq_update_io_thinktime(bfqd, bfqq);
6202 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6203 	bfq_update_io_seektime(bfqd, bfqq, rq);
6204 
6205 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6206 	bfq_add_request(rq);
6207 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6208 
6209 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6210 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6211 
6212 	bfq_rq_enqueued(bfqd, bfqq, rq);
6213 
6214 	return idle_timer_disabled;
6215 }
6216 
6217 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6218 static void bfq_update_insert_stats(struct request_queue *q,
6219 				    struct bfq_queue *bfqq,
6220 				    bool idle_timer_disabled,
6221 				    blk_opf_t cmd_flags)
6222 {
6223 	if (!bfqq)
6224 		return;
6225 
6226 	/*
6227 	 * bfqq still exists, because it can disappear only after
6228 	 * either it is merged with another queue, or the process it
6229 	 * is associated with exits. But both actions must be taken by
6230 	 * the same process currently executing this flow of
6231 	 * instructions.
6232 	 *
6233 	 * In addition, the following queue lock guarantees that
6234 	 * bfqq_group(bfqq) exists as well.
6235 	 */
6236 	spin_lock_irq(&q->queue_lock);
6237 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6238 	if (idle_timer_disabled)
6239 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6240 	spin_unlock_irq(&q->queue_lock);
6241 }
6242 #else
6243 static inline void bfq_update_insert_stats(struct request_queue *q,
6244 					   struct bfq_queue *bfqq,
6245 					   bool idle_timer_disabled,
6246 					   blk_opf_t cmd_flags) {}
6247 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6248 
6249 static struct bfq_queue *bfq_init_rq(struct request *rq);
6250 
6251 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6252 			       blk_insert_t flags)
6253 {
6254 	struct request_queue *q = hctx->queue;
6255 	struct bfq_data *bfqd = q->elevator->elevator_data;
6256 	struct bfq_queue *bfqq;
6257 	bool idle_timer_disabled = false;
6258 	blk_opf_t cmd_flags;
6259 	LIST_HEAD(free);
6260 
6261 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6262 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6263 		bfqg_stats_update_legacy_io(q, rq);
6264 #endif
6265 	spin_lock_irq(&bfqd->lock);
6266 	bfqq = bfq_init_rq(rq);
6267 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6268 		spin_unlock_irq(&bfqd->lock);
6269 		blk_mq_free_requests(&free);
6270 		return;
6271 	}
6272 
6273 	trace_block_rq_insert(rq);
6274 
6275 	if (flags & BLK_MQ_INSERT_AT_HEAD) {
6276 		list_add(&rq->queuelist, &bfqd->dispatch);
6277 	} else if (!bfqq) {
6278 		list_add_tail(&rq->queuelist, &bfqd->dispatch);
6279 	} else {
6280 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6281 		/*
6282 		 * Update bfqq, because, if a queue merge has occurred
6283 		 * in __bfq_insert_request, then rq has been
6284 		 * redirected into a new queue.
6285 		 */
6286 		bfqq = RQ_BFQQ(rq);
6287 
6288 		if (rq_mergeable(rq)) {
6289 			elv_rqhash_add(q, rq);
6290 			if (!q->last_merge)
6291 				q->last_merge = rq;
6292 		}
6293 	}
6294 
6295 	/*
6296 	 * Cache cmd_flags before releasing scheduler lock, because rq
6297 	 * may disappear afterwards (for example, because of a request
6298 	 * merge).
6299 	 */
6300 	cmd_flags = rq->cmd_flags;
6301 	spin_unlock_irq(&bfqd->lock);
6302 
6303 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6304 				cmd_flags);
6305 }
6306 
6307 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6308 				struct list_head *list,
6309 				blk_insert_t flags)
6310 {
6311 	while (!list_empty(list)) {
6312 		struct request *rq;
6313 
6314 		rq = list_first_entry(list, struct request, queuelist);
6315 		list_del_init(&rq->queuelist);
6316 		bfq_insert_request(hctx, rq, flags);
6317 	}
6318 }
6319 
6320 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6321 {
6322 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6323 
6324 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6325 				       bfqd->tot_rq_in_driver);
6326 
6327 	if (bfqd->hw_tag == 1)
6328 		return;
6329 
6330 	/*
6331 	 * This sample is valid if the number of outstanding requests
6332 	 * is large enough to allow a queueing behavior.  Note that the
6333 	 * sum is not exact, as it's not taking into account deactivated
6334 	 * requests.
6335 	 */
6336 	if (bfqd->tot_rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6337 		return;
6338 
6339 	/*
6340 	 * If active queue hasn't enough requests and can idle, bfq might not
6341 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6342 	 * case
6343 	 */
6344 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6345 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6346 	    BFQ_HW_QUEUE_THRESHOLD &&
6347 	    bfqd->tot_rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6348 		return;
6349 
6350 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6351 		return;
6352 
6353 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6354 	bfqd->max_rq_in_driver = 0;
6355 	bfqd->hw_tag_samples = 0;
6356 
6357 	bfqd->nonrot_with_queueing =
6358 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6359 }
6360 
6361 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6362 {
6363 	u64 now_ns;
6364 	u32 delta_us;
6365 
6366 	bfq_update_hw_tag(bfqd);
6367 
6368 	bfqd->rq_in_driver[bfqq->actuator_idx]--;
6369 	bfqd->tot_rq_in_driver--;
6370 	bfqq->dispatched--;
6371 
6372 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6373 		/*
6374 		 * Set budget_timeout (which we overload to store the
6375 		 * time at which the queue remains with no backlog and
6376 		 * no outstanding request; used by the weight-raising
6377 		 * mechanism).
6378 		 */
6379 		bfqq->budget_timeout = jiffies;
6380 
6381 		bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
6382 		bfq_weights_tree_remove(bfqq);
6383 	}
6384 
6385 	now_ns = ktime_get_ns();
6386 
6387 	bfqq->ttime.last_end_request = now_ns;
6388 
6389 	/*
6390 	 * Using us instead of ns, to get a reasonable precision in
6391 	 * computing rate in next check.
6392 	 */
6393 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6394 
6395 	/*
6396 	 * If the request took rather long to complete, and, according
6397 	 * to the maximum request size recorded, this completion latency
6398 	 * implies that the request was certainly served at a very low
6399 	 * rate (less than 1M sectors/sec), then the whole observation
6400 	 * interval that lasts up to this time instant cannot be a
6401 	 * valid time interval for computing a new peak rate.  Invoke
6402 	 * bfq_update_rate_reset to have the following three steps
6403 	 * taken:
6404 	 * - close the observation interval at the last (previous)
6405 	 *   request dispatch or completion
6406 	 * - compute rate, if possible, for that observation interval
6407 	 * - reset to zero samples, which will trigger a proper
6408 	 *   re-initialization of the observation interval on next
6409 	 *   dispatch
6410 	 */
6411 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6412 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6413 			1UL<<(BFQ_RATE_SHIFT - 10))
6414 		bfq_update_rate_reset(bfqd, NULL);
6415 	bfqd->last_completion = now_ns;
6416 	/*
6417 	 * Shared queues are likely to receive I/O at a high
6418 	 * rate. This may deceptively let them be considered as wakers
6419 	 * of other queues. But a false waker will unjustly steal
6420 	 * bandwidth to its supposedly woken queue. So considering
6421 	 * also shared queues in the waking mechanism may cause more
6422 	 * control troubles than throughput benefits. Then reset
6423 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6424 	 */
6425 	if (!bfq_bfqq_coop(bfqq))
6426 		bfqd->last_completed_rq_bfqq = bfqq;
6427 	else
6428 		bfqd->last_completed_rq_bfqq = NULL;
6429 
6430 	/*
6431 	 * If we are waiting to discover whether the request pattern
6432 	 * of the task associated with the queue is actually
6433 	 * isochronous, and both requisites for this condition to hold
6434 	 * are now satisfied, then compute soft_rt_next_start (see the
6435 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6436 	 * do not compute soft_rt_next_start if bfqq is in interactive
6437 	 * weight raising (see the comments in bfq_bfqq_expire() for
6438 	 * an explanation). We schedule this delayed update when bfqq
6439 	 * expires, if it still has in-flight requests.
6440 	 */
6441 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6442 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6443 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6444 		bfqq->soft_rt_next_start =
6445 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6446 
6447 	/*
6448 	 * If this is the in-service queue, check if it needs to be expired,
6449 	 * or if we want to idle in case it has no pending requests.
6450 	 */
6451 	if (bfqd->in_service_queue == bfqq) {
6452 		if (bfq_bfqq_must_idle(bfqq)) {
6453 			if (bfqq->dispatched == 0)
6454 				bfq_arm_slice_timer(bfqd);
6455 			/*
6456 			 * If we get here, we do not expire bfqq, even
6457 			 * if bfqq was in budget timeout or had no
6458 			 * more requests (as controlled in the next
6459 			 * conditional instructions). The reason for
6460 			 * not expiring bfqq is as follows.
6461 			 *
6462 			 * Here bfqq->dispatched > 0 holds, but
6463 			 * bfq_bfqq_must_idle() returned true. This
6464 			 * implies that, even if no request arrives
6465 			 * for bfqq before bfqq->dispatched reaches 0,
6466 			 * bfqq will, however, not be expired on the
6467 			 * completion event that causes bfqq->dispatch
6468 			 * to reach zero. In contrast, on this event,
6469 			 * bfqq will start enjoying device idling
6470 			 * (I/O-dispatch plugging).
6471 			 *
6472 			 * But, if we expired bfqq here, bfqq would
6473 			 * not have the chance to enjoy device idling
6474 			 * when bfqq->dispatched finally reaches
6475 			 * zero. This would expose bfqq to violation
6476 			 * of its reserved service guarantees.
6477 			 */
6478 			return;
6479 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6480 			bfq_bfqq_expire(bfqd, bfqq, false,
6481 					BFQQE_BUDGET_TIMEOUT);
6482 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6483 			 (bfqq->dispatched == 0 ||
6484 			  !bfq_better_to_idle(bfqq)))
6485 			bfq_bfqq_expire(bfqd, bfqq, false,
6486 					BFQQE_NO_MORE_REQUESTS);
6487 	}
6488 
6489 	if (!bfqd->tot_rq_in_driver)
6490 		bfq_schedule_dispatch(bfqd);
6491 }
6492 
6493 /*
6494  * The processes associated with bfqq may happen to generate their
6495  * cumulative I/O at a lower rate than the rate at which the device
6496  * could serve the same I/O. This is rather probable, e.g., if only
6497  * one process is associated with bfqq and the device is an SSD. It
6498  * results in bfqq becoming often empty while in service. In this
6499  * respect, if BFQ is allowed to switch to another queue when bfqq
6500  * remains empty, then the device goes on being fed with I/O requests,
6501  * and the throughput is not affected. In contrast, if BFQ is not
6502  * allowed to switch to another queue---because bfqq is sync and
6503  * I/O-dispatch needs to be plugged while bfqq is temporarily
6504  * empty---then, during the service of bfqq, there will be frequent
6505  * "service holes", i.e., time intervals during which bfqq gets empty
6506  * and the device can only consume the I/O already queued in its
6507  * hardware queues. During service holes, the device may even get to
6508  * remaining idle. In the end, during the service of bfqq, the device
6509  * is driven at a lower speed than the one it can reach with the kind
6510  * of I/O flowing through bfqq.
6511  *
6512  * To counter this loss of throughput, BFQ implements a "request
6513  * injection mechanism", which tries to fill the above service holes
6514  * with I/O requests taken from other queues. The hard part in this
6515  * mechanism is finding the right amount of I/O to inject, so as to
6516  * both boost throughput and not break bfqq's bandwidth and latency
6517  * guarantees. In this respect, the mechanism maintains a per-queue
6518  * inject limit, computed as below. While bfqq is empty, the injection
6519  * mechanism dispatches extra I/O requests only until the total number
6520  * of I/O requests in flight---i.e., already dispatched but not yet
6521  * completed---remains lower than this limit.
6522  *
6523  * A first definition comes in handy to introduce the algorithm by
6524  * which the inject limit is computed.  We define as first request for
6525  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6526  * service, and causes bfqq to switch from empty to non-empty. The
6527  * algorithm updates the limit as a function of the effect of
6528  * injection on the service times of only the first requests of
6529  * bfqq. The reason for this restriction is that these are the
6530  * requests whose service time is affected most, because they are the
6531  * first to arrive after injection possibly occurred.
6532  *
6533  * To evaluate the effect of injection, the algorithm measures the
6534  * "total service time" of first requests. We define as total service
6535  * time of an I/O request, the time that elapses since when the
6536  * request is enqueued into bfqq, to when it is completed. This
6537  * quantity allows the whole effect of injection to be measured. It is
6538  * easy to see why. Suppose that some requests of other queues are
6539  * actually injected while bfqq is empty, and that a new request R
6540  * then arrives for bfqq. If the device does start to serve all or
6541  * part of the injected requests during the service hole, then,
6542  * because of this extra service, it may delay the next invocation of
6543  * the dispatch hook of BFQ. Then, even after R gets eventually
6544  * dispatched, the device may delay the actual service of R if it is
6545  * still busy serving the extra requests, or if it decides to serve,
6546  * before R, some extra request still present in its queues. As a
6547  * conclusion, the cumulative extra delay caused by injection can be
6548  * easily evaluated by just comparing the total service time of first
6549  * requests with and without injection.
6550  *
6551  * The limit-update algorithm works as follows. On the arrival of a
6552  * first request of bfqq, the algorithm measures the total time of the
6553  * request only if one of the three cases below holds, and, for each
6554  * case, it updates the limit as described below:
6555  *
6556  * (1) If there is no in-flight request. This gives a baseline for the
6557  *     total service time of the requests of bfqq. If the baseline has
6558  *     not been computed yet, then, after computing it, the limit is
6559  *     set to 1, to start boosting throughput, and to prepare the
6560  *     ground for the next case. If the baseline has already been
6561  *     computed, then it is updated, in case it results to be lower
6562  *     than the previous value.
6563  *
6564  * (2) If the limit is higher than 0 and there are in-flight
6565  *     requests. By comparing the total service time in this case with
6566  *     the above baseline, it is possible to know at which extent the
6567  *     current value of the limit is inflating the total service
6568  *     time. If the inflation is below a certain threshold, then bfqq
6569  *     is assumed to be suffering from no perceivable loss of its
6570  *     service guarantees, and the limit is even tentatively
6571  *     increased. If the inflation is above the threshold, then the
6572  *     limit is decreased. Due to the lack of any hysteresis, this
6573  *     logic makes the limit oscillate even in steady workload
6574  *     conditions. Yet we opted for it, because it is fast in reaching
6575  *     the best value for the limit, as a function of the current I/O
6576  *     workload. To reduce oscillations, this step is disabled for a
6577  *     short time interval after the limit happens to be decreased.
6578  *
6579  * (3) Periodically, after resetting the limit, to make sure that the
6580  *     limit eventually drops in case the workload changes. This is
6581  *     needed because, after the limit has gone safely up for a
6582  *     certain workload, it is impossible to guess whether the
6583  *     baseline total service time may have changed, without measuring
6584  *     it again without injection. A more effective version of this
6585  *     step might be to just sample the baseline, by interrupting
6586  *     injection only once, and then to reset/lower the limit only if
6587  *     the total service time with the current limit does happen to be
6588  *     too large.
6589  *
6590  * More details on each step are provided in the comments on the
6591  * pieces of code that implement these steps: the branch handling the
6592  * transition from empty to non empty in bfq_add_request(), the branch
6593  * handling injection in bfq_select_queue(), and the function
6594  * bfq_choose_bfqq_for_injection(). These comments also explain some
6595  * exceptions, made by the injection mechanism in some special cases.
6596  */
6597 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6598 				    struct bfq_queue *bfqq)
6599 {
6600 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6601 	unsigned int old_limit = bfqq->inject_limit;
6602 
6603 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6604 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6605 
6606 		if (tot_time_ns >= threshold && old_limit > 0) {
6607 			bfqq->inject_limit--;
6608 			bfqq->decrease_time_jif = jiffies;
6609 		} else if (tot_time_ns < threshold &&
6610 			   old_limit <= bfqd->max_rq_in_driver)
6611 			bfqq->inject_limit++;
6612 	}
6613 
6614 	/*
6615 	 * Either we still have to compute the base value for the
6616 	 * total service time, and there seem to be the right
6617 	 * conditions to do it, or we can lower the last base value
6618 	 * computed.
6619 	 *
6620 	 * NOTE: (bfqd->tot_rq_in_driver == 1) means that there is no I/O
6621 	 * request in flight, because this function is in the code
6622 	 * path that handles the completion of a request of bfqq, and,
6623 	 * in particular, this function is executed before
6624 	 * bfqd->tot_rq_in_driver is decremented in such a code path.
6625 	 */
6626 	if ((bfqq->last_serv_time_ns == 0 && bfqd->tot_rq_in_driver == 1) ||
6627 	    tot_time_ns < bfqq->last_serv_time_ns) {
6628 		if (bfqq->last_serv_time_ns == 0) {
6629 			/*
6630 			 * Now we certainly have a base value: make sure we
6631 			 * start trying injection.
6632 			 */
6633 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6634 		}
6635 		bfqq->last_serv_time_ns = tot_time_ns;
6636 	} else if (!bfqd->rqs_injected && bfqd->tot_rq_in_driver == 1)
6637 		/*
6638 		 * No I/O injected and no request still in service in
6639 		 * the drive: these are the exact conditions for
6640 		 * computing the base value of the total service time
6641 		 * for bfqq. So let's update this value, because it is
6642 		 * rather variable. For example, it varies if the size
6643 		 * or the spatial locality of the I/O requests in bfqq
6644 		 * change.
6645 		 */
6646 		bfqq->last_serv_time_ns = tot_time_ns;
6647 
6648 
6649 	/* update complete, not waiting for any request completion any longer */
6650 	bfqd->waited_rq = NULL;
6651 	bfqd->rqs_injected = false;
6652 }
6653 
6654 /*
6655  * Handle either a requeue or a finish for rq. The things to do are
6656  * the same in both cases: all references to rq are to be dropped. In
6657  * particular, rq is considered completed from the point of view of
6658  * the scheduler.
6659  */
6660 static void bfq_finish_requeue_request(struct request *rq)
6661 {
6662 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6663 	struct bfq_data *bfqd;
6664 	unsigned long flags;
6665 
6666 	/*
6667 	 * rq either is not associated with any icq, or is an already
6668 	 * requeued request that has not (yet) been re-inserted into
6669 	 * a bfq_queue.
6670 	 */
6671 	if (!rq->elv.icq || !bfqq)
6672 		return;
6673 
6674 	bfqd = bfqq->bfqd;
6675 
6676 	if (rq->rq_flags & RQF_STARTED)
6677 		bfqg_stats_update_completion(bfqq_group(bfqq),
6678 					     rq->start_time_ns,
6679 					     rq->io_start_time_ns,
6680 					     rq->cmd_flags);
6681 
6682 	spin_lock_irqsave(&bfqd->lock, flags);
6683 	if (likely(rq->rq_flags & RQF_STARTED)) {
6684 		if (rq == bfqd->waited_rq)
6685 			bfq_update_inject_limit(bfqd, bfqq);
6686 
6687 		bfq_completed_request(bfqq, bfqd);
6688 	}
6689 	bfqq_request_freed(bfqq);
6690 	bfq_put_queue(bfqq);
6691 	RQ_BIC(rq)->requests--;
6692 	spin_unlock_irqrestore(&bfqd->lock, flags);
6693 
6694 	/*
6695 	 * Reset private fields. In case of a requeue, this allows
6696 	 * this function to correctly do nothing if it is spuriously
6697 	 * invoked again on this same request (see the check at the
6698 	 * beginning of the function). Probably, a better general
6699 	 * design would be to prevent blk-mq from invoking the requeue
6700 	 * or finish hooks of an elevator, for a request that is not
6701 	 * referred by that elevator.
6702 	 *
6703 	 * Resetting the following fields would break the
6704 	 * request-insertion logic if rq is re-inserted into a bfq
6705 	 * internal queue, without a re-preparation. Here we assume
6706 	 * that re-insertions of requeued requests, without
6707 	 * re-preparation, can happen only for pass_through or at_head
6708 	 * requests (which are not re-inserted into bfq internal
6709 	 * queues).
6710 	 */
6711 	rq->elv.priv[0] = NULL;
6712 	rq->elv.priv[1] = NULL;
6713 }
6714 
6715 static void bfq_finish_request(struct request *rq)
6716 {
6717 	bfq_finish_requeue_request(rq);
6718 
6719 	if (rq->elv.icq) {
6720 		put_io_context(rq->elv.icq->ioc);
6721 		rq->elv.icq = NULL;
6722 	}
6723 }
6724 
6725 /*
6726  * Removes the association between the current task and bfqq, assuming
6727  * that bic points to the bfq iocontext of the task.
6728  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6729  * was the last process referring to that bfqq.
6730  */
6731 static struct bfq_queue *
6732 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6733 {
6734 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6735 
6736 	if (bfqq_process_refs(bfqq) == 1 && !bfqq->new_bfqq) {
6737 		bfqq->pid = current->pid;
6738 		bfq_clear_bfqq_coop(bfqq);
6739 		bfq_clear_bfqq_split_coop(bfqq);
6740 		return bfqq;
6741 	}
6742 
6743 	bic_set_bfqq(bic, NULL, true, bfqq->actuator_idx);
6744 
6745 	bfq_put_cooperator(bfqq);
6746 
6747 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6748 	return NULL;
6749 }
6750 
6751 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6752 						   struct bfq_io_cq *bic,
6753 						   struct bio *bio,
6754 						   bool split, bool is_sync,
6755 						   bool *new_queue)
6756 {
6757 	unsigned int act_idx = bfq_actuator_index(bfqd, bio);
6758 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, act_idx);
6759 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[act_idx];
6760 
6761 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6762 		return bfqq;
6763 
6764 	if (new_queue)
6765 		*new_queue = true;
6766 
6767 	if (bfqq)
6768 		bfq_put_queue(bfqq);
6769 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6770 
6771 	bic_set_bfqq(bic, bfqq, is_sync, act_idx);
6772 	if (split && is_sync) {
6773 		if ((bfqq_data->was_in_burst_list && bfqd->large_burst) ||
6774 		    bfqq_data->saved_in_large_burst)
6775 			bfq_mark_bfqq_in_large_burst(bfqq);
6776 		else {
6777 			bfq_clear_bfqq_in_large_burst(bfqq);
6778 			if (bfqq_data->was_in_burst_list)
6779 				/*
6780 				 * If bfqq was in the current
6781 				 * burst list before being
6782 				 * merged, then we have to add
6783 				 * it back. And we do not need
6784 				 * to increase burst_size, as
6785 				 * we did not decrement
6786 				 * burst_size when we removed
6787 				 * bfqq from the burst list as
6788 				 * a consequence of a merge
6789 				 * (see comments in
6790 				 * bfq_put_queue). In this
6791 				 * respect, it would be rather
6792 				 * costly to know whether the
6793 				 * current burst list is still
6794 				 * the same burst list from
6795 				 * which bfqq was removed on
6796 				 * the merge. To avoid this
6797 				 * cost, if bfqq was in a
6798 				 * burst list, then we add
6799 				 * bfqq to the current burst
6800 				 * list without any further
6801 				 * check. This can cause
6802 				 * inappropriate insertions,
6803 				 * but rarely enough to not
6804 				 * harm the detection of large
6805 				 * bursts significantly.
6806 				 */
6807 				hlist_add_head(&bfqq->burst_list_node,
6808 					       &bfqd->burst_list);
6809 		}
6810 		bfqq->split_time = jiffies;
6811 	}
6812 
6813 	return bfqq;
6814 }
6815 
6816 /*
6817  * Only reset private fields. The actual request preparation will be
6818  * performed by bfq_init_rq, when rq is either inserted or merged. See
6819  * comments on bfq_init_rq for the reason behind this delayed
6820  * preparation.
6821  */
6822 static void bfq_prepare_request(struct request *rq)
6823 {
6824 	rq->elv.icq = ioc_find_get_icq(rq->q);
6825 
6826 	/*
6827 	 * Regardless of whether we have an icq attached, we have to
6828 	 * clear the scheduler pointers, as they might point to
6829 	 * previously allocated bic/bfqq structs.
6830 	 */
6831 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6832 }
6833 
6834 static struct bfq_queue *bfq_waker_bfqq(struct bfq_queue *bfqq)
6835 {
6836 	struct bfq_queue *new_bfqq = bfqq->new_bfqq;
6837 	struct bfq_queue *waker_bfqq = bfqq->waker_bfqq;
6838 
6839 	if (!waker_bfqq)
6840 		return NULL;
6841 
6842 	while (new_bfqq) {
6843 		if (new_bfqq == waker_bfqq) {
6844 			/*
6845 			 * If waker_bfqq is in the merge chain, and current
6846 			 * is the only procress.
6847 			 */
6848 			if (bfqq_process_refs(waker_bfqq) == 1)
6849 				return NULL;
6850 			break;
6851 		}
6852 
6853 		new_bfqq = new_bfqq->new_bfqq;
6854 	}
6855 
6856 	return waker_bfqq;
6857 }
6858 
6859 /*
6860  * If needed, init rq, allocate bfq data structures associated with
6861  * rq, and increment reference counters in the destination bfq_queue
6862  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6863  * not associated with any bfq_queue.
6864  *
6865  * This function is invoked by the functions that perform rq insertion
6866  * or merging. One may have expected the above preparation operations
6867  * to be performed in bfq_prepare_request, and not delayed to when rq
6868  * is inserted or merged. The rationale behind this delayed
6869  * preparation is that, after the prepare_request hook is invoked for
6870  * rq, rq may still be transformed into a request with no icq, i.e., a
6871  * request not associated with any queue. No bfq hook is invoked to
6872  * signal this transformation. As a consequence, should these
6873  * preparation operations be performed when the prepare_request hook
6874  * is invoked, and should rq be transformed one moment later, bfq
6875  * would end up in an inconsistent state, because it would have
6876  * incremented some queue counters for an rq destined to
6877  * transformation, without any chance to correctly lower these
6878  * counters back. In contrast, no transformation can still happen for
6879  * rq after rq has been inserted or merged. So, it is safe to execute
6880  * these preparation operations when rq is finally inserted or merged.
6881  */
6882 static struct bfq_queue *bfq_init_rq(struct request *rq)
6883 {
6884 	struct request_queue *q = rq->q;
6885 	struct bio *bio = rq->bio;
6886 	struct bfq_data *bfqd = q->elevator->elevator_data;
6887 	struct bfq_io_cq *bic;
6888 	const int is_sync = rq_is_sync(rq);
6889 	struct bfq_queue *bfqq;
6890 	bool new_queue = false;
6891 	bool bfqq_already_existing = false, split = false;
6892 	unsigned int a_idx = bfq_actuator_index(bfqd, bio);
6893 
6894 	if (unlikely(!rq->elv.icq))
6895 		return NULL;
6896 
6897 	/*
6898 	 * Assuming that RQ_BFQQ(rq) is set only if everything is set
6899 	 * for this rq. This holds true, because this function is
6900 	 * invoked only for insertion or merging, and, after such
6901 	 * events, a request cannot be manipulated any longer before
6902 	 * being removed from bfq.
6903 	 */
6904 	if (RQ_BFQQ(rq))
6905 		return RQ_BFQQ(rq);
6906 
6907 	bic = icq_to_bic(rq->elv.icq);
6908 
6909 	bfq_check_ioprio_change(bic, bio);
6910 
6911 	bfq_bic_update_cgroup(bic, bio);
6912 
6913 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6914 					 &new_queue);
6915 
6916 	if (likely(!new_queue)) {
6917 		/* If the queue was seeky for too long, break it apart. */
6918 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6919 			!bic->bfqq_data[a_idx].stably_merged) {
6920 			struct bfq_queue *waker_bfqq = bfq_waker_bfqq(bfqq);
6921 
6922 			/* Update bic before losing reference to bfqq */
6923 			if (bfq_bfqq_in_large_burst(bfqq))
6924 				bic->bfqq_data[a_idx].saved_in_large_burst =
6925 					true;
6926 
6927 			bfqq = bfq_split_bfqq(bic, bfqq);
6928 			split = true;
6929 
6930 			if (!bfqq) {
6931 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6932 								 true, is_sync,
6933 								 NULL);
6934 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6935 					bfqq_already_existing = true;
6936 			} else
6937 				bfqq_already_existing = true;
6938 
6939 			if (!bfqq_already_existing) {
6940 				bfqq->waker_bfqq = waker_bfqq;
6941 				bfqq->tentative_waker_bfqq = NULL;
6942 
6943 				/*
6944 				 * If the waker queue disappears, then
6945 				 * new_bfqq->waker_bfqq must be
6946 				 * reset. So insert new_bfqq into the
6947 				 * woken_list of the waker. See
6948 				 * bfq_check_waker for details.
6949 				 */
6950 				if (waker_bfqq)
6951 					hlist_add_head(&bfqq->woken_list_node,
6952 						       &bfqq->waker_bfqq->woken_list);
6953 			}
6954 		}
6955 	}
6956 
6957 	bfqq_request_allocated(bfqq);
6958 	bfqq->ref++;
6959 	bic->requests++;
6960 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6961 		     rq, bfqq, bfqq->ref);
6962 
6963 	rq->elv.priv[0] = bic;
6964 	rq->elv.priv[1] = bfqq;
6965 
6966 	/*
6967 	 * If a bfq_queue has only one process reference, it is owned
6968 	 * by only this bic: we can then set bfqq->bic = bic. in
6969 	 * addition, if the queue has also just been split, we have to
6970 	 * resume its state.
6971 	 */
6972 	if (likely(bfqq != &bfqd->oom_bfqq) && !bfqq->new_bfqq &&
6973 	    bfqq_process_refs(bfqq) == 1) {
6974 		bfqq->bic = bic;
6975 		if (split) {
6976 			/*
6977 			 * The queue has just been split from a shared
6978 			 * queue: restore the idle window and the
6979 			 * possible weight raising period.
6980 			 */
6981 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6982 					      bfqq_already_existing);
6983 		}
6984 	}
6985 
6986 	/*
6987 	 * Consider bfqq as possibly belonging to a burst of newly
6988 	 * created queues only if:
6989 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6990 	 * or
6991 	 * 2) There is no other active queue. In fact, if, in
6992 	 *    contrast, there are active queues not belonging to the
6993 	 *    possible burst bfqq may belong to, then there is no gain
6994 	 *    in considering bfqq as belonging to a burst, and
6995 	 *    therefore in not weight-raising bfqq. See comments on
6996 	 *    bfq_handle_burst().
6997 	 *
6998 	 * This filtering also helps eliminating false positives,
6999 	 * occurring when bfqq does not belong to an actual large
7000 	 * burst, but some background task (e.g., a service) happens
7001 	 * to trigger the creation of new queues very close to when
7002 	 * bfqq and its possible companion queues are created. See
7003 	 * comments on bfq_handle_burst() for further details also on
7004 	 * this issue.
7005 	 */
7006 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
7007 		     (bfqd->burst_size > 0 ||
7008 		      bfq_tot_busy_queues(bfqd) == 0)))
7009 		bfq_handle_burst(bfqd, bfqq);
7010 
7011 	return bfqq;
7012 }
7013 
7014 static void
7015 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7016 {
7017 	enum bfqq_expiration reason;
7018 	unsigned long flags;
7019 
7020 	spin_lock_irqsave(&bfqd->lock, flags);
7021 
7022 	/*
7023 	 * Considering that bfqq may be in race, we should firstly check
7024 	 * whether bfqq is in service before doing something on it. If
7025 	 * the bfqq in race is not in service, it has already been expired
7026 	 * through __bfq_bfqq_expire func and its wait_request flags has
7027 	 * been cleared in __bfq_bfqd_reset_in_service func.
7028 	 */
7029 	if (bfqq != bfqd->in_service_queue) {
7030 		spin_unlock_irqrestore(&bfqd->lock, flags);
7031 		return;
7032 	}
7033 
7034 	bfq_clear_bfqq_wait_request(bfqq);
7035 
7036 	if (bfq_bfqq_budget_timeout(bfqq))
7037 		/*
7038 		 * Also here the queue can be safely expired
7039 		 * for budget timeout without wasting
7040 		 * guarantees
7041 		 */
7042 		reason = BFQQE_BUDGET_TIMEOUT;
7043 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
7044 		/*
7045 		 * The queue may not be empty upon timer expiration,
7046 		 * because we may not disable the timer when the
7047 		 * first request of the in-service queue arrives
7048 		 * during disk idling.
7049 		 */
7050 		reason = BFQQE_TOO_IDLE;
7051 	else
7052 		goto schedule_dispatch;
7053 
7054 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
7055 
7056 schedule_dispatch:
7057 	bfq_schedule_dispatch(bfqd);
7058 	spin_unlock_irqrestore(&bfqd->lock, flags);
7059 }
7060 
7061 /*
7062  * Handler of the expiration of the timer running if the in-service queue
7063  * is idling inside its time slice.
7064  */
7065 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
7066 {
7067 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
7068 					     idle_slice_timer);
7069 	struct bfq_queue *bfqq = bfqd->in_service_queue;
7070 
7071 	/*
7072 	 * Theoretical race here: the in-service queue can be NULL or
7073 	 * different from the queue that was idling if a new request
7074 	 * arrives for the current queue and there is a full dispatch
7075 	 * cycle that changes the in-service queue.  This can hardly
7076 	 * happen, but in the worst case we just expire a queue too
7077 	 * early.
7078 	 */
7079 	if (bfqq)
7080 		bfq_idle_slice_timer_body(bfqd, bfqq);
7081 
7082 	return HRTIMER_NORESTART;
7083 }
7084 
7085 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
7086 				 struct bfq_queue **bfqq_ptr)
7087 {
7088 	struct bfq_queue *bfqq = *bfqq_ptr;
7089 
7090 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
7091 	if (bfqq) {
7092 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
7093 
7094 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
7095 			     bfqq, bfqq->ref);
7096 		bfq_put_queue(bfqq);
7097 		*bfqq_ptr = NULL;
7098 	}
7099 }
7100 
7101 /*
7102  * Release all the bfqg references to its async queues.  If we are
7103  * deallocating the group these queues may still contain requests, so
7104  * we reparent them to the root cgroup (i.e., the only one that will
7105  * exist for sure until all the requests on a device are gone).
7106  */
7107 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
7108 {
7109 	int i, j, k;
7110 
7111 	for (k = 0; k < bfqd->num_actuators; k++) {
7112 		for (i = 0; i < 2; i++)
7113 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
7114 				__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j][k]);
7115 
7116 		__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq[k]);
7117 	}
7118 }
7119 
7120 /*
7121  * See the comments on bfq_limit_depth for the purpose of
7122  * the depths set in the function. Return minimum shallow depth we'll use.
7123  */
7124 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
7125 {
7126 	unsigned int depth = 1U << bt->sb.shift;
7127 
7128 	bfqd->full_depth_shift = bt->sb.shift;
7129 	/*
7130 	 * In-word depths if no bfq_queue is being weight-raised:
7131 	 * leaving 25% of tags only for sync reads.
7132 	 *
7133 	 * In next formulas, right-shift the value
7134 	 * (1U<<bt->sb.shift), instead of computing directly
7135 	 * (1U<<(bt->sb.shift - something)), to be robust against
7136 	 * any possible value of bt->sb.shift, without having to
7137 	 * limit 'something'.
7138 	 */
7139 	/* no more than 50% of tags for async I/O */
7140 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
7141 	/*
7142 	 * no more than 75% of tags for sync writes (25% extra tags
7143 	 * w.r.t. async I/O, to prevent async I/O from starving sync
7144 	 * writes)
7145 	 */
7146 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
7147 
7148 	/*
7149 	 * In-word depths in case some bfq_queue is being weight-
7150 	 * raised: leaving ~63% of tags for sync reads. This is the
7151 	 * highest percentage for which, in our tests, application
7152 	 * start-up times didn't suffer from any regression due to tag
7153 	 * shortage.
7154 	 */
7155 	/* no more than ~18% of tags for async I/O */
7156 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
7157 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
7158 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
7159 }
7160 
7161 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
7162 {
7163 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7164 	struct blk_mq_tags *tags = hctx->sched_tags;
7165 
7166 	bfq_update_depths(bfqd, &tags->bitmap_tags);
7167 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
7168 }
7169 
7170 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7171 {
7172 	bfq_depth_updated(hctx);
7173 	return 0;
7174 }
7175 
7176 static void bfq_exit_queue(struct elevator_queue *e)
7177 {
7178 	struct bfq_data *bfqd = e->elevator_data;
7179 	struct bfq_queue *bfqq, *n;
7180 	unsigned int actuator;
7181 
7182 	hrtimer_cancel(&bfqd->idle_slice_timer);
7183 
7184 	spin_lock_irq(&bfqd->lock);
7185 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7186 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7187 	spin_unlock_irq(&bfqd->lock);
7188 
7189 	for (actuator = 0; actuator < bfqd->num_actuators; actuator++)
7190 		WARN_ON_ONCE(bfqd->rq_in_driver[actuator]);
7191 	WARN_ON_ONCE(bfqd->tot_rq_in_driver);
7192 
7193 	hrtimer_cancel(&bfqd->idle_slice_timer);
7194 
7195 	/* release oom-queue reference to root group */
7196 	bfqg_and_blkg_put(bfqd->root_group);
7197 
7198 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7199 	blkcg_deactivate_policy(bfqd->queue->disk, &blkcg_policy_bfq);
7200 #else
7201 	spin_lock_irq(&bfqd->lock);
7202 	bfq_put_async_queues(bfqd, bfqd->root_group);
7203 	kfree(bfqd->root_group);
7204 	spin_unlock_irq(&bfqd->lock);
7205 #endif
7206 
7207 	blk_stat_disable_accounting(bfqd->queue);
7208 	clear_bit(ELEVATOR_FLAG_DISABLE_WBT, &e->flags);
7209 	wbt_enable_default(bfqd->queue->disk);
7210 
7211 	kfree(bfqd);
7212 }
7213 
7214 static void bfq_init_root_group(struct bfq_group *root_group,
7215 				struct bfq_data *bfqd)
7216 {
7217 	int i;
7218 
7219 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7220 	root_group->entity.parent = NULL;
7221 	root_group->my_entity = NULL;
7222 	root_group->bfqd = bfqd;
7223 #endif
7224 	root_group->rq_pos_tree = RB_ROOT;
7225 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7226 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7227 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7228 }
7229 
7230 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7231 {
7232 	struct bfq_data *bfqd;
7233 	struct elevator_queue *eq;
7234 	unsigned int i;
7235 	struct blk_independent_access_ranges *ia_ranges = q->disk->ia_ranges;
7236 
7237 	eq = elevator_alloc(q, e);
7238 	if (!eq)
7239 		return -ENOMEM;
7240 
7241 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7242 	if (!bfqd) {
7243 		kobject_put(&eq->kobj);
7244 		return -ENOMEM;
7245 	}
7246 	eq->elevator_data = bfqd;
7247 
7248 	spin_lock_irq(&q->queue_lock);
7249 	q->elevator = eq;
7250 	spin_unlock_irq(&q->queue_lock);
7251 
7252 	/*
7253 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7254 	 * Grab a permanent reference to it, so that the normal code flow
7255 	 * will not attempt to free it.
7256 	 * Set zero as actuator index: we will pretend that
7257 	 * all I/O requests are for the same actuator.
7258 	 */
7259 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0, 0);
7260 	bfqd->oom_bfqq.ref++;
7261 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7262 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7263 	bfqd->oom_bfqq.entity.new_weight =
7264 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7265 
7266 	/* oom_bfqq does not participate to bursts */
7267 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7268 
7269 	/*
7270 	 * Trigger weight initialization, according to ioprio, at the
7271 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7272 	 * class won't be changed any more.
7273 	 */
7274 	bfqd->oom_bfqq.entity.prio_changed = 1;
7275 
7276 	bfqd->queue = q;
7277 
7278 	bfqd->num_actuators = 1;
7279 	/*
7280 	 * If the disk supports multiple actuators, copy independent
7281 	 * access ranges from the request queue structure.
7282 	 */
7283 	spin_lock_irq(&q->queue_lock);
7284 	if (ia_ranges) {
7285 		/*
7286 		 * Check if the disk ia_ranges size exceeds the current bfq
7287 		 * actuator limit.
7288 		 */
7289 		if (ia_ranges->nr_ia_ranges > BFQ_MAX_ACTUATORS) {
7290 			pr_crit("nr_ia_ranges higher than act limit: iars=%d, max=%d.\n",
7291 				ia_ranges->nr_ia_ranges, BFQ_MAX_ACTUATORS);
7292 			pr_crit("Falling back to single actuator mode.\n");
7293 		} else {
7294 			bfqd->num_actuators = ia_ranges->nr_ia_ranges;
7295 
7296 			for (i = 0; i < bfqd->num_actuators; i++) {
7297 				bfqd->sector[i] = ia_ranges->ia_range[i].sector;
7298 				bfqd->nr_sectors[i] =
7299 					ia_ranges->ia_range[i].nr_sectors;
7300 			}
7301 		}
7302 	}
7303 
7304 	/* Otherwise use single-actuator dev info */
7305 	if (bfqd->num_actuators == 1) {
7306 		bfqd->sector[0] = 0;
7307 		bfqd->nr_sectors[0] = get_capacity(q->disk);
7308 	}
7309 	spin_unlock_irq(&q->queue_lock);
7310 
7311 	INIT_LIST_HEAD(&bfqd->dispatch);
7312 
7313 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7314 		     HRTIMER_MODE_REL);
7315 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7316 
7317 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7318 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7319 	bfqd->num_groups_with_pending_reqs = 0;
7320 #endif
7321 
7322 	INIT_LIST_HEAD(&bfqd->active_list[0]);
7323 	INIT_LIST_HEAD(&bfqd->active_list[1]);
7324 	INIT_LIST_HEAD(&bfqd->idle_list);
7325 	INIT_HLIST_HEAD(&bfqd->burst_list);
7326 
7327 	bfqd->hw_tag = -1;
7328 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7329 
7330 	bfqd->bfq_max_budget = bfq_default_max_budget;
7331 
7332 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7333 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7334 	bfqd->bfq_back_max = bfq_back_max;
7335 	bfqd->bfq_back_penalty = bfq_back_penalty;
7336 	bfqd->bfq_slice_idle = bfq_slice_idle;
7337 	bfqd->bfq_timeout = bfq_timeout;
7338 
7339 	bfqd->bfq_large_burst_thresh = 8;
7340 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7341 
7342 	bfqd->low_latency = true;
7343 
7344 	/*
7345 	 * Trade-off between responsiveness and fairness.
7346 	 */
7347 	bfqd->bfq_wr_coeff = 30;
7348 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7349 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7350 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7351 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7352 					      * Approximate rate required
7353 					      * to playback or record a
7354 					      * high-definition compressed
7355 					      * video.
7356 					      */
7357 	bfqd->wr_busy_queues = 0;
7358 
7359 	/*
7360 	 * Begin by assuming, optimistically, that the device peak
7361 	 * rate is equal to 2/3 of the highest reference rate.
7362 	 */
7363 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7364 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7365 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7366 
7367 	/* see comments on the definition of next field inside bfq_data */
7368 	bfqd->actuator_load_threshold = 4;
7369 
7370 	spin_lock_init(&bfqd->lock);
7371 
7372 	/*
7373 	 * The invocation of the next bfq_create_group_hierarchy
7374 	 * function is the head of a chain of function calls
7375 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7376 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7377 	 * has_work hook function. For this reason,
7378 	 * bfq_create_group_hierarchy is invoked only after all
7379 	 * scheduler data has been initialized, apart from the fields
7380 	 * that can be initialized only after invoking
7381 	 * bfq_create_group_hierarchy. This, in particular, enables
7382 	 * has_work to correctly return false. Of course, to avoid
7383 	 * other inconsistencies, the blk-mq stack must then refrain
7384 	 * from invoking further scheduler hooks before this init
7385 	 * function is finished.
7386 	 */
7387 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7388 	if (!bfqd->root_group)
7389 		goto out_free;
7390 	bfq_init_root_group(bfqd->root_group, bfqd);
7391 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7392 
7393 	/* We dispatch from request queue wide instead of hw queue */
7394 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7395 
7396 	set_bit(ELEVATOR_FLAG_DISABLE_WBT, &eq->flags);
7397 	wbt_disable_default(q->disk);
7398 	blk_stat_enable_accounting(q);
7399 
7400 	return 0;
7401 
7402 out_free:
7403 	kfree(bfqd);
7404 	kobject_put(&eq->kobj);
7405 	return -ENOMEM;
7406 }
7407 
7408 static void bfq_slab_kill(void)
7409 {
7410 	kmem_cache_destroy(bfq_pool);
7411 }
7412 
7413 static int __init bfq_slab_setup(void)
7414 {
7415 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7416 	if (!bfq_pool)
7417 		return -ENOMEM;
7418 	return 0;
7419 }
7420 
7421 static ssize_t bfq_var_show(unsigned int var, char *page)
7422 {
7423 	return sprintf(page, "%u\n", var);
7424 }
7425 
7426 static int bfq_var_store(unsigned long *var, const char *page)
7427 {
7428 	unsigned long new_val;
7429 	int ret = kstrtoul(page, 10, &new_val);
7430 
7431 	if (ret)
7432 		return ret;
7433 	*var = new_val;
7434 	return 0;
7435 }
7436 
7437 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7438 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7439 {									\
7440 	struct bfq_data *bfqd = e->elevator_data;			\
7441 	u64 __data = __VAR;						\
7442 	if (__CONV == 1)						\
7443 		__data = jiffies_to_msecs(__data);			\
7444 	else if (__CONV == 2)						\
7445 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7446 	return bfq_var_show(__data, (page));				\
7447 }
7448 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7449 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7450 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7451 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7452 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7453 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7454 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7455 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7456 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7457 #undef SHOW_FUNCTION
7458 
7459 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7460 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7461 {									\
7462 	struct bfq_data *bfqd = e->elevator_data;			\
7463 	u64 __data = __VAR;						\
7464 	__data = div_u64(__data, NSEC_PER_USEC);			\
7465 	return bfq_var_show(__data, (page));				\
7466 }
7467 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7468 #undef USEC_SHOW_FUNCTION
7469 
7470 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7471 static ssize_t								\
7472 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7473 {									\
7474 	struct bfq_data *bfqd = e->elevator_data;			\
7475 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7476 	int ret;							\
7477 									\
7478 	ret = bfq_var_store(&__data, (page));				\
7479 	if (ret)							\
7480 		return ret;						\
7481 	if (__data < __min)						\
7482 		__data = __min;						\
7483 	else if (__data > __max)					\
7484 		__data = __max;						\
7485 	if (__CONV == 1)						\
7486 		*(__PTR) = msecs_to_jiffies(__data);			\
7487 	else if (__CONV == 2)						\
7488 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7489 	else								\
7490 		*(__PTR) = __data;					\
7491 	return count;							\
7492 }
7493 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7494 		INT_MAX, 2);
7495 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7496 		INT_MAX, 2);
7497 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7498 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7499 		INT_MAX, 0);
7500 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7501 #undef STORE_FUNCTION
7502 
7503 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7504 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7505 {									\
7506 	struct bfq_data *bfqd = e->elevator_data;			\
7507 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7508 	int ret;							\
7509 									\
7510 	ret = bfq_var_store(&__data, (page));				\
7511 	if (ret)							\
7512 		return ret;						\
7513 	if (__data < __min)						\
7514 		__data = __min;						\
7515 	else if (__data > __max)					\
7516 		__data = __max;						\
7517 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7518 	return count;							\
7519 }
7520 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7521 		    UINT_MAX);
7522 #undef USEC_STORE_FUNCTION
7523 
7524 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7525 				    const char *page, size_t count)
7526 {
7527 	struct bfq_data *bfqd = e->elevator_data;
7528 	unsigned long __data;
7529 	int ret;
7530 
7531 	ret = bfq_var_store(&__data, (page));
7532 	if (ret)
7533 		return ret;
7534 
7535 	if (__data == 0)
7536 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7537 	else {
7538 		if (__data > INT_MAX)
7539 			__data = INT_MAX;
7540 		bfqd->bfq_max_budget = __data;
7541 	}
7542 
7543 	bfqd->bfq_user_max_budget = __data;
7544 
7545 	return count;
7546 }
7547 
7548 /*
7549  * Leaving this name to preserve name compatibility with cfq
7550  * parameters, but this timeout is used for both sync and async.
7551  */
7552 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7553 				      const char *page, size_t count)
7554 {
7555 	struct bfq_data *bfqd = e->elevator_data;
7556 	unsigned long __data;
7557 	int ret;
7558 
7559 	ret = bfq_var_store(&__data, (page));
7560 	if (ret)
7561 		return ret;
7562 
7563 	if (__data < 1)
7564 		__data = 1;
7565 	else if (__data > INT_MAX)
7566 		__data = INT_MAX;
7567 
7568 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7569 	if (bfqd->bfq_user_max_budget == 0)
7570 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7571 
7572 	return count;
7573 }
7574 
7575 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7576 				     const char *page, size_t count)
7577 {
7578 	struct bfq_data *bfqd = e->elevator_data;
7579 	unsigned long __data;
7580 	int ret;
7581 
7582 	ret = bfq_var_store(&__data, (page));
7583 	if (ret)
7584 		return ret;
7585 
7586 	if (__data > 1)
7587 		__data = 1;
7588 	if (!bfqd->strict_guarantees && __data == 1
7589 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7590 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7591 
7592 	bfqd->strict_guarantees = __data;
7593 
7594 	return count;
7595 }
7596 
7597 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7598 				     const char *page, size_t count)
7599 {
7600 	struct bfq_data *bfqd = e->elevator_data;
7601 	unsigned long __data;
7602 	int ret;
7603 
7604 	ret = bfq_var_store(&__data, (page));
7605 	if (ret)
7606 		return ret;
7607 
7608 	if (__data > 1)
7609 		__data = 1;
7610 	if (__data == 0 && bfqd->low_latency != 0)
7611 		bfq_end_wr(bfqd);
7612 	bfqd->low_latency = __data;
7613 
7614 	return count;
7615 }
7616 
7617 #define BFQ_ATTR(name) \
7618 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7619 
7620 static struct elv_fs_entry bfq_attrs[] = {
7621 	BFQ_ATTR(fifo_expire_sync),
7622 	BFQ_ATTR(fifo_expire_async),
7623 	BFQ_ATTR(back_seek_max),
7624 	BFQ_ATTR(back_seek_penalty),
7625 	BFQ_ATTR(slice_idle),
7626 	BFQ_ATTR(slice_idle_us),
7627 	BFQ_ATTR(max_budget),
7628 	BFQ_ATTR(timeout_sync),
7629 	BFQ_ATTR(strict_guarantees),
7630 	BFQ_ATTR(low_latency),
7631 	__ATTR_NULL
7632 };
7633 
7634 static struct elevator_type iosched_bfq_mq = {
7635 	.ops = {
7636 		.limit_depth		= bfq_limit_depth,
7637 		.prepare_request	= bfq_prepare_request,
7638 		.requeue_request        = bfq_finish_requeue_request,
7639 		.finish_request		= bfq_finish_request,
7640 		.exit_icq		= bfq_exit_icq,
7641 		.insert_requests	= bfq_insert_requests,
7642 		.dispatch_request	= bfq_dispatch_request,
7643 		.next_request		= elv_rb_latter_request,
7644 		.former_request		= elv_rb_former_request,
7645 		.allow_merge		= bfq_allow_bio_merge,
7646 		.bio_merge		= bfq_bio_merge,
7647 		.request_merge		= bfq_request_merge,
7648 		.requests_merged	= bfq_requests_merged,
7649 		.request_merged		= bfq_request_merged,
7650 		.has_work		= bfq_has_work,
7651 		.depth_updated		= bfq_depth_updated,
7652 		.init_hctx		= bfq_init_hctx,
7653 		.init_sched		= bfq_init_queue,
7654 		.exit_sched		= bfq_exit_queue,
7655 	},
7656 
7657 	.icq_size =		sizeof(struct bfq_io_cq),
7658 	.icq_align =		__alignof__(struct bfq_io_cq),
7659 	.elevator_attrs =	bfq_attrs,
7660 	.elevator_name =	"bfq",
7661 	.elevator_owner =	THIS_MODULE,
7662 };
7663 MODULE_ALIAS("bfq-iosched");
7664 
7665 static int __init bfq_init(void)
7666 {
7667 	int ret;
7668 
7669 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7670 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7671 	if (ret)
7672 		return ret;
7673 #endif
7674 
7675 	ret = -ENOMEM;
7676 	if (bfq_slab_setup())
7677 		goto err_pol_unreg;
7678 
7679 	/*
7680 	 * Times to load large popular applications for the typical
7681 	 * systems installed on the reference devices (see the
7682 	 * comments before the definition of the next
7683 	 * array). Actually, we use slightly lower values, as the
7684 	 * estimated peak rate tends to be smaller than the actual
7685 	 * peak rate.  The reason for this last fact is that estimates
7686 	 * are computed over much shorter time intervals than the long
7687 	 * intervals typically used for benchmarking. Why? First, to
7688 	 * adapt more quickly to variations. Second, because an I/O
7689 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7690 	 * be run for a long time.
7691 	 */
7692 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7693 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7694 
7695 	ret = elv_register(&iosched_bfq_mq);
7696 	if (ret)
7697 		goto slab_kill;
7698 
7699 	return 0;
7700 
7701 slab_kill:
7702 	bfq_slab_kill();
7703 err_pol_unreg:
7704 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7705 	blkcg_policy_unregister(&blkcg_policy_bfq);
7706 #endif
7707 	return ret;
7708 }
7709 
7710 static void __exit bfq_exit(void)
7711 {
7712 	elv_unregister(&iosched_bfq_mq);
7713 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7714 	blkcg_policy_unregister(&blkcg_policy_bfq);
7715 #endif
7716 	bfq_slab_kill();
7717 }
7718 
7719 module_init(bfq_init);
7720 module_exit(bfq_exit);
7721 
7722 MODULE_AUTHOR("Paolo Valente");
7723 MODULE_LICENSE("GPL");
7724 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7725