1 /* 2 * Budget Fair Queueing (BFQ) I/O scheduler. 3 * 4 * Based on ideas and code from CFQ: 5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 6 * 7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 8 * Paolo Valente <paolo.valente@unimore.it> 9 * 10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 11 * Arianna Avanzini <avanzini@google.com> 12 * 13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License as 17 * published by the Free Software Foundation; either version 2 of the 18 * License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * BFQ is a proportional-share I/O scheduler, with some extra 26 * low-latency capabilities. BFQ also supports full hierarchical 27 * scheduling through cgroups. Next paragraphs provide an introduction 28 * on BFQ inner workings. Details on BFQ benefits, usage and 29 * limitations can be found in Documentation/block/bfq-iosched.txt. 30 * 31 * BFQ is a proportional-share storage-I/O scheduling algorithm based 32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns 33 * budgets, measured in number of sectors, to processes instead of 34 * time slices. The device is not granted to the in-service process 35 * for a given time slice, but until it has exhausted its assigned 36 * budget. This change from the time to the service domain enables BFQ 37 * to distribute the device throughput among processes as desired, 38 * without any distortion due to throughput fluctuations, or to device 39 * internal queueing. BFQ uses an ad hoc internal scheduler, called 40 * B-WF2Q+, to schedule processes according to their budgets. More 41 * precisely, BFQ schedules queues associated with processes. Each 42 * process/queue is assigned a user-configurable weight, and B-WF2Q+ 43 * guarantees that each queue receives a fraction of the throughput 44 * proportional to its weight. Thanks to the accurate policy of 45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 46 * processes issuing sequential requests (to boost the throughput), 47 * and yet guarantee a low latency to interactive and soft real-time 48 * applications. 49 * 50 * In particular, to provide these low-latency guarantees, BFQ 51 * explicitly privileges the I/O of two classes of time-sensitive 52 * applications: interactive and soft real-time. This feature enables 53 * BFQ to provide applications in these classes with a very low 54 * latency. Finally, BFQ also features additional heuristics for 55 * preserving both a low latency and a high throughput on NCQ-capable, 56 * rotational or flash-based devices, and to get the job done quickly 57 * for applications consisting in many I/O-bound processes. 58 * 59 * NOTE: if the main or only goal, with a given device, is to achieve 60 * the maximum-possible throughput at all times, then do switch off 61 * all low-latency heuristics for that device, by setting low_latency 62 * to 0. 63 * 64 * BFQ is described in [1], where also a reference to the initial, more 65 * theoretical paper on BFQ can be found. The interested reader can find 66 * in the latter paper full details on the main algorithm, as well as 67 * formulas of the guarantees and formal proofs of all the properties. 68 * With respect to the version of BFQ presented in these papers, this 69 * implementation adds a few more heuristics, such as the one that 70 * guarantees a low latency to soft real-time applications, and a 71 * hierarchical extension based on H-WF2Q+. 72 * 73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 75 * with O(log N) complexity derives from the one introduced with EEVDF 76 * in [3]. 77 * 78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 79 * Scheduler", Proceedings of the First Workshop on Mobile System 80 * Technologies (MST-2015), May 2015. 81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 82 * 83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 85 * Oct 1997. 86 * 87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 88 * 89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 90 * First: A Flexible and Accurate Mechanism for Proportional Share 91 * Resource Allocation", technical report. 92 * 93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 94 */ 95 #include <linux/module.h> 96 #include <linux/slab.h> 97 #include <linux/blkdev.h> 98 #include <linux/cgroup.h> 99 #include <linux/elevator.h> 100 #include <linux/ktime.h> 101 #include <linux/rbtree.h> 102 #include <linux/ioprio.h> 103 #include <linux/sbitmap.h> 104 #include <linux/delay.h> 105 106 #include "blk.h" 107 #include "blk-mq.h" 108 #include "blk-mq-tag.h" 109 #include "blk-mq-sched.h" 110 #include "bfq-iosched.h" 111 112 #define BFQ_BFQQ_FNS(name) \ 113 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 114 { \ 115 __set_bit(BFQQF_##name, &(bfqq)->flags); \ 116 } \ 117 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 118 { \ 119 __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 120 } \ 121 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 122 { \ 123 return test_bit(BFQQF_##name, &(bfqq)->flags); \ 124 } 125 126 BFQ_BFQQ_FNS(just_created); 127 BFQ_BFQQ_FNS(busy); 128 BFQ_BFQQ_FNS(wait_request); 129 BFQ_BFQQ_FNS(non_blocking_wait_rq); 130 BFQ_BFQQ_FNS(fifo_expire); 131 BFQ_BFQQ_FNS(idle_window); 132 BFQ_BFQQ_FNS(sync); 133 BFQ_BFQQ_FNS(IO_bound); 134 BFQ_BFQQ_FNS(in_large_burst); 135 BFQ_BFQQ_FNS(coop); 136 BFQ_BFQQ_FNS(split_coop); 137 BFQ_BFQQ_FNS(softrt_update); 138 #undef BFQ_BFQQ_FNS \ 139 140 /* Expiration time of sync (0) and async (1) requests, in ns. */ 141 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 142 143 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 144 static const int bfq_back_max = 16 * 1024; 145 146 /* Penalty of a backwards seek, in number of sectors. */ 147 static const int bfq_back_penalty = 2; 148 149 /* Idling period duration, in ns. */ 150 static u64 bfq_slice_idle = NSEC_PER_SEC / 125; 151 152 /* Minimum number of assigned budgets for which stats are safe to compute. */ 153 static const int bfq_stats_min_budgets = 194; 154 155 /* Default maximum budget values, in sectors and number of requests. */ 156 static const int bfq_default_max_budget = 16 * 1024; 157 158 /* 159 * Async to sync throughput distribution is controlled as follows: 160 * when an async request is served, the entity is charged the number 161 * of sectors of the request, multiplied by the factor below 162 */ 163 static const int bfq_async_charge_factor = 10; 164 165 /* Default timeout values, in jiffies, approximating CFQ defaults. */ 166 const int bfq_timeout = HZ / 8; 167 168 static struct kmem_cache *bfq_pool; 169 170 /* Below this threshold (in ns), we consider thinktime immediate. */ 171 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 172 173 /* hw_tag detection: parallel requests threshold and min samples needed. */ 174 #define BFQ_HW_QUEUE_THRESHOLD 4 175 #define BFQ_HW_QUEUE_SAMPLES 32 176 177 #define BFQQ_SEEK_THR (sector_t)(8 * 100) 178 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 179 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 180 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) 181 182 /* Min number of samples required to perform peak-rate update */ 183 #define BFQ_RATE_MIN_SAMPLES 32 184 /* Min observation time interval required to perform a peak-rate update (ns) */ 185 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 186 /* Target observation time interval for a peak-rate update (ns) */ 187 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 188 189 /* Shift used for peak rate fixed precision calculations. */ 190 #define BFQ_RATE_SHIFT 16 191 192 /* 193 * By default, BFQ computes the duration of the weight raising for 194 * interactive applications automatically, using the following formula: 195 * duration = (R / r) * T, where r is the peak rate of the device, and 196 * R and T are two reference parameters. 197 * In particular, R is the peak rate of the reference device (see below), 198 * and T is a reference time: given the systems that are likely to be 199 * installed on the reference device according to its speed class, T is 200 * about the maximum time needed, under BFQ and while reading two files in 201 * parallel, to load typical large applications on these systems. 202 * In practice, the slower/faster the device at hand is, the more/less it 203 * takes to load applications with respect to the reference device. 204 * Accordingly, the longer/shorter BFQ grants weight raising to interactive 205 * applications. 206 * 207 * BFQ uses four different reference pairs (R, T), depending on: 208 * . whether the device is rotational or non-rotational; 209 * . whether the device is slow, such as old or portable HDDs, as well as 210 * SD cards, or fast, such as newer HDDs and SSDs. 211 * 212 * The device's speed class is dynamically (re)detected in 213 * bfq_update_peak_rate() every time the estimated peak rate is updated. 214 * 215 * In the following definitions, R_slow[0]/R_fast[0] and 216 * T_slow[0]/T_fast[0] are the reference values for a slow/fast 217 * rotational device, whereas R_slow[1]/R_fast[1] and 218 * T_slow[1]/T_fast[1] are the reference values for a slow/fast 219 * non-rotational device. Finally, device_speed_thresh are the 220 * thresholds used to switch between speed classes. The reference 221 * rates are not the actual peak rates of the devices used as a 222 * reference, but slightly lower values. The reason for using these 223 * slightly lower values is that the peak-rate estimator tends to 224 * yield slightly lower values than the actual peak rate (it can yield 225 * the actual peak rate only if there is only one process doing I/O, 226 * and the process does sequential I/O). 227 * 228 * Both the reference peak rates and the thresholds are measured in 229 * sectors/usec, left-shifted by BFQ_RATE_SHIFT. 230 */ 231 static int R_slow[2] = {1000, 10700}; 232 static int R_fast[2] = {14000, 33000}; 233 /* 234 * To improve readability, a conversion function is used to initialize the 235 * following arrays, which entails that they can be initialized only in a 236 * function. 237 */ 238 static int T_slow[2]; 239 static int T_fast[2]; 240 static int device_speed_thresh[2]; 241 242 #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) 243 #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 244 245 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) 246 { 247 return bic->bfqq[is_sync]; 248 } 249 250 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) 251 { 252 bic->bfqq[is_sync] = bfqq; 253 } 254 255 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 256 { 257 return bic->icq.q->elevator->elevator_data; 258 } 259 260 /** 261 * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 262 * @icq: the iocontext queue. 263 */ 264 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 265 { 266 /* bic->icq is the first member, %NULL will convert to %NULL */ 267 return container_of(icq, struct bfq_io_cq, icq); 268 } 269 270 /** 271 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 272 * @bfqd: the lookup key. 273 * @ioc: the io_context of the process doing I/O. 274 * @q: the request queue. 275 */ 276 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, 277 struct io_context *ioc, 278 struct request_queue *q) 279 { 280 if (ioc) { 281 unsigned long flags; 282 struct bfq_io_cq *icq; 283 284 spin_lock_irqsave(q->queue_lock, flags); 285 icq = icq_to_bic(ioc_lookup_icq(ioc, q)); 286 spin_unlock_irqrestore(q->queue_lock, flags); 287 288 return icq; 289 } 290 291 return NULL; 292 } 293 294 /* 295 * Scheduler run of queue, if there are requests pending and no one in the 296 * driver that will restart queueing. 297 */ 298 void bfq_schedule_dispatch(struct bfq_data *bfqd) 299 { 300 if (bfqd->queued != 0) { 301 bfq_log(bfqd, "schedule dispatch"); 302 blk_mq_run_hw_queues(bfqd->queue, true); 303 } 304 } 305 306 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 307 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) 308 309 #define bfq_sample_valid(samples) ((samples) > 80) 310 311 /* 312 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 313 * We choose the request that is closesr to the head right now. Distance 314 * behind the head is penalized and only allowed to a certain extent. 315 */ 316 static struct request *bfq_choose_req(struct bfq_data *bfqd, 317 struct request *rq1, 318 struct request *rq2, 319 sector_t last) 320 { 321 sector_t s1, s2, d1 = 0, d2 = 0; 322 unsigned long back_max; 323 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 324 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 325 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 326 327 if (!rq1 || rq1 == rq2) 328 return rq2; 329 if (!rq2) 330 return rq1; 331 332 if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 333 return rq1; 334 else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 335 return rq2; 336 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 337 return rq1; 338 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 339 return rq2; 340 341 s1 = blk_rq_pos(rq1); 342 s2 = blk_rq_pos(rq2); 343 344 /* 345 * By definition, 1KiB is 2 sectors. 346 */ 347 back_max = bfqd->bfq_back_max * 2; 348 349 /* 350 * Strict one way elevator _except_ in the case where we allow 351 * short backward seeks which are biased as twice the cost of a 352 * similar forward seek. 353 */ 354 if (s1 >= last) 355 d1 = s1 - last; 356 else if (s1 + back_max >= last) 357 d1 = (last - s1) * bfqd->bfq_back_penalty; 358 else 359 wrap |= BFQ_RQ1_WRAP; 360 361 if (s2 >= last) 362 d2 = s2 - last; 363 else if (s2 + back_max >= last) 364 d2 = (last - s2) * bfqd->bfq_back_penalty; 365 else 366 wrap |= BFQ_RQ2_WRAP; 367 368 /* Found required data */ 369 370 /* 371 * By doing switch() on the bit mask "wrap" we avoid having to 372 * check two variables for all permutations: --> faster! 373 */ 374 switch (wrap) { 375 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 376 if (d1 < d2) 377 return rq1; 378 else if (d2 < d1) 379 return rq2; 380 381 if (s1 >= s2) 382 return rq1; 383 else 384 return rq2; 385 386 case BFQ_RQ2_WRAP: 387 return rq1; 388 case BFQ_RQ1_WRAP: 389 return rq2; 390 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 391 default: 392 /* 393 * Since both rqs are wrapped, 394 * start with the one that's further behind head 395 * (--> only *one* back seek required), 396 * since back seek takes more time than forward. 397 */ 398 if (s1 <= s2) 399 return rq1; 400 else 401 return rq2; 402 } 403 } 404 405 static struct bfq_queue * 406 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 407 sector_t sector, struct rb_node **ret_parent, 408 struct rb_node ***rb_link) 409 { 410 struct rb_node **p, *parent; 411 struct bfq_queue *bfqq = NULL; 412 413 parent = NULL; 414 p = &root->rb_node; 415 while (*p) { 416 struct rb_node **n; 417 418 parent = *p; 419 bfqq = rb_entry(parent, struct bfq_queue, pos_node); 420 421 /* 422 * Sort strictly based on sector. Smallest to the left, 423 * largest to the right. 424 */ 425 if (sector > blk_rq_pos(bfqq->next_rq)) 426 n = &(*p)->rb_right; 427 else if (sector < blk_rq_pos(bfqq->next_rq)) 428 n = &(*p)->rb_left; 429 else 430 break; 431 p = n; 432 bfqq = NULL; 433 } 434 435 *ret_parent = parent; 436 if (rb_link) 437 *rb_link = p; 438 439 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 440 (unsigned long long)sector, 441 bfqq ? bfqq->pid : 0); 442 443 return bfqq; 444 } 445 446 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 447 { 448 struct rb_node **p, *parent; 449 struct bfq_queue *__bfqq; 450 451 if (bfqq->pos_root) { 452 rb_erase(&bfqq->pos_node, bfqq->pos_root); 453 bfqq->pos_root = NULL; 454 } 455 456 if (bfq_class_idle(bfqq)) 457 return; 458 if (!bfqq->next_rq) 459 return; 460 461 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 462 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 463 blk_rq_pos(bfqq->next_rq), &parent, &p); 464 if (!__bfqq) { 465 rb_link_node(&bfqq->pos_node, parent, p); 466 rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 467 } else 468 bfqq->pos_root = NULL; 469 } 470 471 /* 472 * Tell whether there are active queues or groups with differentiated weights. 473 */ 474 static bool bfq_differentiated_weights(struct bfq_data *bfqd) 475 { 476 /* 477 * For weights to differ, at least one of the trees must contain 478 * at least two nodes. 479 */ 480 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) && 481 (bfqd->queue_weights_tree.rb_node->rb_left || 482 bfqd->queue_weights_tree.rb_node->rb_right) 483 #ifdef CONFIG_BFQ_GROUP_IOSCHED 484 ) || 485 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) && 486 (bfqd->group_weights_tree.rb_node->rb_left || 487 bfqd->group_weights_tree.rb_node->rb_right) 488 #endif 489 ); 490 } 491 492 /* 493 * The following function returns true if every queue must receive the 494 * same share of the throughput (this condition is used when deciding 495 * whether idling may be disabled, see the comments in the function 496 * bfq_bfqq_may_idle()). 497 * 498 * Such a scenario occurs when: 499 * 1) all active queues have the same weight, 500 * 2) all active groups at the same level in the groups tree have the same 501 * weight, 502 * 3) all active groups at the same level in the groups tree have the same 503 * number of children. 504 * 505 * Unfortunately, keeping the necessary state for evaluating exactly the 506 * above symmetry conditions would be quite complex and time-consuming. 507 * Therefore this function evaluates, instead, the following stronger 508 * sub-conditions, for which it is much easier to maintain the needed 509 * state: 510 * 1) all active queues have the same weight, 511 * 2) all active groups have the same weight, 512 * 3) all active groups have at most one active child each. 513 * In particular, the last two conditions are always true if hierarchical 514 * support and the cgroups interface are not enabled, thus no state needs 515 * to be maintained in this case. 516 */ 517 static bool bfq_symmetric_scenario(struct bfq_data *bfqd) 518 { 519 return !bfq_differentiated_weights(bfqd); 520 } 521 522 /* 523 * If the weight-counter tree passed as input contains no counter for 524 * the weight of the input entity, then add that counter; otherwise just 525 * increment the existing counter. 526 * 527 * Note that weight-counter trees contain few nodes in mostly symmetric 528 * scenarios. For example, if all queues have the same weight, then the 529 * weight-counter tree for the queues may contain at most one node. 530 * This holds even if low_latency is on, because weight-raised queues 531 * are not inserted in the tree. 532 * In most scenarios, the rate at which nodes are created/destroyed 533 * should be low too. 534 */ 535 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, 536 struct rb_root *root) 537 { 538 struct rb_node **new = &(root->rb_node), *parent = NULL; 539 540 /* 541 * Do not insert if the entity is already associated with a 542 * counter, which happens if: 543 * 1) the entity is associated with a queue, 544 * 2) a request arrival has caused the queue to become both 545 * non-weight-raised, and hence change its weight, and 546 * backlogged; in this respect, each of the two events 547 * causes an invocation of this function, 548 * 3) this is the invocation of this function caused by the 549 * second event. This second invocation is actually useless, 550 * and we handle this fact by exiting immediately. More 551 * efficient or clearer solutions might possibly be adopted. 552 */ 553 if (entity->weight_counter) 554 return; 555 556 while (*new) { 557 struct bfq_weight_counter *__counter = container_of(*new, 558 struct bfq_weight_counter, 559 weights_node); 560 parent = *new; 561 562 if (entity->weight == __counter->weight) { 563 entity->weight_counter = __counter; 564 goto inc_counter; 565 } 566 if (entity->weight < __counter->weight) 567 new = &((*new)->rb_left); 568 else 569 new = &((*new)->rb_right); 570 } 571 572 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 573 GFP_ATOMIC); 574 575 /* 576 * In the unlucky event of an allocation failure, we just 577 * exit. This will cause the weight of entity to not be 578 * considered in bfq_differentiated_weights, which, in its 579 * turn, causes the scenario to be deemed wrongly symmetric in 580 * case entity's weight would have been the only weight making 581 * the scenario asymmetric. On the bright side, no unbalance 582 * will however occur when entity becomes inactive again (the 583 * invocation of this function is triggered by an activation 584 * of entity). In fact, bfq_weights_tree_remove does nothing 585 * if !entity->weight_counter. 586 */ 587 if (unlikely(!entity->weight_counter)) 588 return; 589 590 entity->weight_counter->weight = entity->weight; 591 rb_link_node(&entity->weight_counter->weights_node, parent, new); 592 rb_insert_color(&entity->weight_counter->weights_node, root); 593 594 inc_counter: 595 entity->weight_counter->num_active++; 596 } 597 598 /* 599 * Decrement the weight counter associated with the entity, and, if the 600 * counter reaches 0, remove the counter from the tree. 601 * See the comments to the function bfq_weights_tree_add() for considerations 602 * about overhead. 603 */ 604 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, 605 struct rb_root *root) 606 { 607 if (!entity->weight_counter) 608 return; 609 610 entity->weight_counter->num_active--; 611 if (entity->weight_counter->num_active > 0) 612 goto reset_entity_pointer; 613 614 rb_erase(&entity->weight_counter->weights_node, root); 615 kfree(entity->weight_counter); 616 617 reset_entity_pointer: 618 entity->weight_counter = NULL; 619 } 620 621 /* 622 * Return expired entry, or NULL to just start from scratch in rbtree. 623 */ 624 static struct request *bfq_check_fifo(struct bfq_queue *bfqq, 625 struct request *last) 626 { 627 struct request *rq; 628 629 if (bfq_bfqq_fifo_expire(bfqq)) 630 return NULL; 631 632 bfq_mark_bfqq_fifo_expire(bfqq); 633 634 rq = rq_entry_fifo(bfqq->fifo.next); 635 636 if (rq == last || ktime_get_ns() < rq->fifo_time) 637 return NULL; 638 639 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 640 return rq; 641 } 642 643 static struct request *bfq_find_next_rq(struct bfq_data *bfqd, 644 struct bfq_queue *bfqq, 645 struct request *last) 646 { 647 struct rb_node *rbnext = rb_next(&last->rb_node); 648 struct rb_node *rbprev = rb_prev(&last->rb_node); 649 struct request *next, *prev = NULL; 650 651 /* Follow expired path, else get first next available. */ 652 next = bfq_check_fifo(bfqq, last); 653 if (next) 654 return next; 655 656 if (rbprev) 657 prev = rb_entry_rq(rbprev); 658 659 if (rbnext) 660 next = rb_entry_rq(rbnext); 661 else { 662 rbnext = rb_first(&bfqq->sort_list); 663 if (rbnext && rbnext != &last->rb_node) 664 next = rb_entry_rq(rbnext); 665 } 666 667 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 668 } 669 670 /* see the definition of bfq_async_charge_factor for details */ 671 static unsigned long bfq_serv_to_charge(struct request *rq, 672 struct bfq_queue *bfqq) 673 { 674 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) 675 return blk_rq_sectors(rq); 676 677 /* 678 * If there are no weight-raised queues, then amplify service 679 * by just the async charge factor; otherwise amplify service 680 * by twice the async charge factor, to further reduce latency 681 * for weight-raised queues. 682 */ 683 if (bfqq->bfqd->wr_busy_queues == 0) 684 return blk_rq_sectors(rq) * bfq_async_charge_factor; 685 686 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor; 687 } 688 689 /** 690 * bfq_updated_next_req - update the queue after a new next_rq selection. 691 * @bfqd: the device data the queue belongs to. 692 * @bfqq: the queue to update. 693 * 694 * If the first request of a queue changes we make sure that the queue 695 * has enough budget to serve at least its first request (if the 696 * request has grown). We do this because if the queue has not enough 697 * budget for its first request, it has to go through two dispatch 698 * rounds to actually get it dispatched. 699 */ 700 static void bfq_updated_next_req(struct bfq_data *bfqd, 701 struct bfq_queue *bfqq) 702 { 703 struct bfq_entity *entity = &bfqq->entity; 704 struct request *next_rq = bfqq->next_rq; 705 unsigned long new_budget; 706 707 if (!next_rq) 708 return; 709 710 if (bfqq == bfqd->in_service_queue) 711 /* 712 * In order not to break guarantees, budgets cannot be 713 * changed after an entity has been selected. 714 */ 715 return; 716 717 new_budget = max_t(unsigned long, bfqq->max_budget, 718 bfq_serv_to_charge(next_rq, bfqq)); 719 if (entity->budget != new_budget) { 720 entity->budget = new_budget; 721 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 722 new_budget); 723 bfq_requeue_bfqq(bfqd, bfqq); 724 } 725 } 726 727 static void 728 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd, 729 struct bfq_io_cq *bic, bool bfq_already_existing) 730 { 731 unsigned int old_wr_coeff = bfqq->wr_coeff; 732 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq); 733 734 if (bic->saved_idle_window) 735 bfq_mark_bfqq_idle_window(bfqq); 736 else 737 bfq_clear_bfqq_idle_window(bfqq); 738 739 if (bic->saved_IO_bound) 740 bfq_mark_bfqq_IO_bound(bfqq); 741 else 742 bfq_clear_bfqq_IO_bound(bfqq); 743 744 bfqq->ttime = bic->saved_ttime; 745 bfqq->wr_coeff = bic->saved_wr_coeff; 746 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt; 747 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish; 748 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time; 749 750 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 751 time_is_before_jiffies(bfqq->last_wr_start_finish + 752 bfqq->wr_cur_max_time))) { 753 bfq_log_bfqq(bfqq->bfqd, bfqq, 754 "resume state: switching off wr"); 755 756 bfqq->wr_coeff = 1; 757 } 758 759 /* make sure weight will be updated, however we got here */ 760 bfqq->entity.prio_changed = 1; 761 762 if (likely(!busy)) 763 return; 764 765 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) 766 bfqd->wr_busy_queues++; 767 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) 768 bfqd->wr_busy_queues--; 769 } 770 771 static int bfqq_process_refs(struct bfq_queue *bfqq) 772 { 773 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st; 774 } 775 776 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 777 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 778 { 779 struct bfq_queue *item; 780 struct hlist_node *n; 781 782 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 783 hlist_del_init(&item->burst_list_node); 784 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 785 bfqd->burst_size = 1; 786 bfqd->burst_parent_entity = bfqq->entity.parent; 787 } 788 789 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 790 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 791 { 792 /* Increment burst size to take into account also bfqq */ 793 bfqd->burst_size++; 794 795 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 796 struct bfq_queue *pos, *bfqq_item; 797 struct hlist_node *n; 798 799 /* 800 * Enough queues have been activated shortly after each 801 * other to consider this burst as large. 802 */ 803 bfqd->large_burst = true; 804 805 /* 806 * We can now mark all queues in the burst list as 807 * belonging to a large burst. 808 */ 809 hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 810 burst_list_node) 811 bfq_mark_bfqq_in_large_burst(bfqq_item); 812 bfq_mark_bfqq_in_large_burst(bfqq); 813 814 /* 815 * From now on, and until the current burst finishes, any 816 * new queue being activated shortly after the last queue 817 * was inserted in the burst can be immediately marked as 818 * belonging to a large burst. So the burst list is not 819 * needed any more. Remove it. 820 */ 821 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 822 burst_list_node) 823 hlist_del_init(&pos->burst_list_node); 824 } else /* 825 * Burst not yet large: add bfqq to the burst list. Do 826 * not increment the ref counter for bfqq, because bfqq 827 * is removed from the burst list before freeing bfqq 828 * in put_queue. 829 */ 830 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 831 } 832 833 /* 834 * If many queues belonging to the same group happen to be created 835 * shortly after each other, then the processes associated with these 836 * queues have typically a common goal. In particular, bursts of queue 837 * creations are usually caused by services or applications that spawn 838 * many parallel threads/processes. Examples are systemd during boot, 839 * or git grep. To help these processes get their job done as soon as 840 * possible, it is usually better to not grant either weight-raising 841 * or device idling to their queues. 842 * 843 * In this comment we describe, firstly, the reasons why this fact 844 * holds, and, secondly, the next function, which implements the main 845 * steps needed to properly mark these queues so that they can then be 846 * treated in a different way. 847 * 848 * The above services or applications benefit mostly from a high 849 * throughput: the quicker the requests of the activated queues are 850 * cumulatively served, the sooner the target job of these queues gets 851 * completed. As a consequence, weight-raising any of these queues, 852 * which also implies idling the device for it, is almost always 853 * counterproductive. In most cases it just lowers throughput. 854 * 855 * On the other hand, a burst of queue creations may be caused also by 856 * the start of an application that does not consist of a lot of 857 * parallel I/O-bound threads. In fact, with a complex application, 858 * several short processes may need to be executed to start-up the 859 * application. In this respect, to start an application as quickly as 860 * possible, the best thing to do is in any case to privilege the I/O 861 * related to the application with respect to all other 862 * I/O. Therefore, the best strategy to start as quickly as possible 863 * an application that causes a burst of queue creations is to 864 * weight-raise all the queues created during the burst. This is the 865 * exact opposite of the best strategy for the other type of bursts. 866 * 867 * In the end, to take the best action for each of the two cases, the 868 * two types of bursts need to be distinguished. Fortunately, this 869 * seems relatively easy, by looking at the sizes of the bursts. In 870 * particular, we found a threshold such that only bursts with a 871 * larger size than that threshold are apparently caused by 872 * services or commands such as systemd or git grep. For brevity, 873 * hereafter we call just 'large' these bursts. BFQ *does not* 874 * weight-raise queues whose creation occurs in a large burst. In 875 * addition, for each of these queues BFQ performs or does not perform 876 * idling depending on which choice boosts the throughput more. The 877 * exact choice depends on the device and request pattern at 878 * hand. 879 * 880 * Unfortunately, false positives may occur while an interactive task 881 * is starting (e.g., an application is being started). The 882 * consequence is that the queues associated with the task do not 883 * enjoy weight raising as expected. Fortunately these false positives 884 * are very rare. They typically occur if some service happens to 885 * start doing I/O exactly when the interactive task starts. 886 * 887 * Turning back to the next function, it implements all the steps 888 * needed to detect the occurrence of a large burst and to properly 889 * mark all the queues belonging to it (so that they can then be 890 * treated in a different way). This goal is achieved by maintaining a 891 * "burst list" that holds, temporarily, the queues that belong to the 892 * burst in progress. The list is then used to mark these queues as 893 * belonging to a large burst if the burst does become large. The main 894 * steps are the following. 895 * 896 * . when the very first queue is created, the queue is inserted into the 897 * list (as it could be the first queue in a possible burst) 898 * 899 * . if the current burst has not yet become large, and a queue Q that does 900 * not yet belong to the burst is activated shortly after the last time 901 * at which a new queue entered the burst list, then the function appends 902 * Q to the burst list 903 * 904 * . if, as a consequence of the previous step, the burst size reaches 905 * the large-burst threshold, then 906 * 907 * . all the queues in the burst list are marked as belonging to a 908 * large burst 909 * 910 * . the burst list is deleted; in fact, the burst list already served 911 * its purpose (keeping temporarily track of the queues in a burst, 912 * so as to be able to mark them as belonging to a large burst in the 913 * previous sub-step), and now is not needed any more 914 * 915 * . the device enters a large-burst mode 916 * 917 * . if a queue Q that does not belong to the burst is created while 918 * the device is in large-burst mode and shortly after the last time 919 * at which a queue either entered the burst list or was marked as 920 * belonging to the current large burst, then Q is immediately marked 921 * as belonging to a large burst. 922 * 923 * . if a queue Q that does not belong to the burst is created a while 924 * later, i.e., not shortly after, than the last time at which a queue 925 * either entered the burst list or was marked as belonging to the 926 * current large burst, then the current burst is deemed as finished and: 927 * 928 * . the large-burst mode is reset if set 929 * 930 * . the burst list is emptied 931 * 932 * . Q is inserted in the burst list, as Q may be the first queue 933 * in a possible new burst (then the burst list contains just Q 934 * after this step). 935 */ 936 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 937 { 938 /* 939 * If bfqq is already in the burst list or is part of a large 940 * burst, or finally has just been split, then there is 941 * nothing else to do. 942 */ 943 if (!hlist_unhashed(&bfqq->burst_list_node) || 944 bfq_bfqq_in_large_burst(bfqq) || 945 time_is_after_eq_jiffies(bfqq->split_time + 946 msecs_to_jiffies(10))) 947 return; 948 949 /* 950 * If bfqq's creation happens late enough, or bfqq belongs to 951 * a different group than the burst group, then the current 952 * burst is finished, and related data structures must be 953 * reset. 954 * 955 * In this respect, consider the special case where bfqq is 956 * the very first queue created after BFQ is selected for this 957 * device. In this case, last_ins_in_burst and 958 * burst_parent_entity are not yet significant when we get 959 * here. But it is easy to verify that, whether or not the 960 * following condition is true, bfqq will end up being 961 * inserted into the burst list. In particular the list will 962 * happen to contain only bfqq. And this is exactly what has 963 * to happen, as bfqq may be the first queue of the first 964 * burst. 965 */ 966 if (time_is_before_jiffies(bfqd->last_ins_in_burst + 967 bfqd->bfq_burst_interval) || 968 bfqq->entity.parent != bfqd->burst_parent_entity) { 969 bfqd->large_burst = false; 970 bfq_reset_burst_list(bfqd, bfqq); 971 goto end; 972 } 973 974 /* 975 * If we get here, then bfqq is being activated shortly after the 976 * last queue. So, if the current burst is also large, we can mark 977 * bfqq as belonging to this large burst immediately. 978 */ 979 if (bfqd->large_burst) { 980 bfq_mark_bfqq_in_large_burst(bfqq); 981 goto end; 982 } 983 984 /* 985 * If we get here, then a large-burst state has not yet been 986 * reached, but bfqq is being activated shortly after the last 987 * queue. Then we add bfqq to the burst. 988 */ 989 bfq_add_to_burst(bfqd, bfqq); 990 end: 991 /* 992 * At this point, bfqq either has been added to the current 993 * burst or has caused the current burst to terminate and a 994 * possible new burst to start. In particular, in the second 995 * case, bfqq has become the first queue in the possible new 996 * burst. In both cases last_ins_in_burst needs to be moved 997 * forward. 998 */ 999 bfqd->last_ins_in_burst = jiffies; 1000 } 1001 1002 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 1003 { 1004 struct bfq_entity *entity = &bfqq->entity; 1005 1006 return entity->budget - entity->service; 1007 } 1008 1009 /* 1010 * If enough samples have been computed, return the current max budget 1011 * stored in bfqd, which is dynamically updated according to the 1012 * estimated disk peak rate; otherwise return the default max budget 1013 */ 1014 static int bfq_max_budget(struct bfq_data *bfqd) 1015 { 1016 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1017 return bfq_default_max_budget; 1018 else 1019 return bfqd->bfq_max_budget; 1020 } 1021 1022 /* 1023 * Return min budget, which is a fraction of the current or default 1024 * max budget (trying with 1/32) 1025 */ 1026 static int bfq_min_budget(struct bfq_data *bfqd) 1027 { 1028 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1029 return bfq_default_max_budget / 32; 1030 else 1031 return bfqd->bfq_max_budget / 32; 1032 } 1033 1034 /* 1035 * The next function, invoked after the input queue bfqq switches from 1036 * idle to busy, updates the budget of bfqq. The function also tells 1037 * whether the in-service queue should be expired, by returning 1038 * true. The purpose of expiring the in-service queue is to give bfqq 1039 * the chance to possibly preempt the in-service queue, and the reason 1040 * for preempting the in-service queue is to achieve one of the two 1041 * goals below. 1042 * 1043 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 1044 * expired because it has remained idle. In particular, bfqq may have 1045 * expired for one of the following two reasons: 1046 * 1047 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 1048 * and did not make it to issue a new request before its last 1049 * request was served; 1050 * 1051 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 1052 * a new request before the expiration of the idling-time. 1053 * 1054 * Even if bfqq has expired for one of the above reasons, the process 1055 * associated with the queue may be however issuing requests greedily, 1056 * and thus be sensitive to the bandwidth it receives (bfqq may have 1057 * remained idle for other reasons: CPU high load, bfqq not enjoying 1058 * idling, I/O throttling somewhere in the path from the process to 1059 * the I/O scheduler, ...). But if, after every expiration for one of 1060 * the above two reasons, bfqq has to wait for the service of at least 1061 * one full budget of another queue before being served again, then 1062 * bfqq is likely to get a much lower bandwidth or resource time than 1063 * its reserved ones. To address this issue, two countermeasures need 1064 * to be taken. 1065 * 1066 * First, the budget and the timestamps of bfqq need to be updated in 1067 * a special way on bfqq reactivation: they need to be updated as if 1068 * bfqq did not remain idle and did not expire. In fact, if they are 1069 * computed as if bfqq expired and remained idle until reactivation, 1070 * then the process associated with bfqq is treated as if, instead of 1071 * being greedy, it stopped issuing requests when bfqq remained idle, 1072 * and restarts issuing requests only on this reactivation. In other 1073 * words, the scheduler does not help the process recover the "service 1074 * hole" between bfqq expiration and reactivation. As a consequence, 1075 * the process receives a lower bandwidth than its reserved one. In 1076 * contrast, to recover this hole, the budget must be updated as if 1077 * bfqq was not expired at all before this reactivation, i.e., it must 1078 * be set to the value of the remaining budget when bfqq was 1079 * expired. Along the same line, timestamps need to be assigned the 1080 * value they had the last time bfqq was selected for service, i.e., 1081 * before last expiration. Thus timestamps need to be back-shifted 1082 * with respect to their normal computation (see [1] for more details 1083 * on this tricky aspect). 1084 * 1085 * Secondly, to allow the process to recover the hole, the in-service 1086 * queue must be expired too, to give bfqq the chance to preempt it 1087 * immediately. In fact, if bfqq has to wait for a full budget of the 1088 * in-service queue to be completed, then it may become impossible to 1089 * let the process recover the hole, even if the back-shifted 1090 * timestamps of bfqq are lower than those of the in-service queue. If 1091 * this happens for most or all of the holes, then the process may not 1092 * receive its reserved bandwidth. In this respect, it is worth noting 1093 * that, being the service of outstanding requests unpreemptible, a 1094 * little fraction of the holes may however be unrecoverable, thereby 1095 * causing a little loss of bandwidth. 1096 * 1097 * The last important point is detecting whether bfqq does need this 1098 * bandwidth recovery. In this respect, the next function deems the 1099 * process associated with bfqq greedy, and thus allows it to recover 1100 * the hole, if: 1) the process is waiting for the arrival of a new 1101 * request (which implies that bfqq expired for one of the above two 1102 * reasons), and 2) such a request has arrived soon. The first 1103 * condition is controlled through the flag non_blocking_wait_rq, 1104 * while the second through the flag arrived_in_time. If both 1105 * conditions hold, then the function computes the budget in the 1106 * above-described special way, and signals that the in-service queue 1107 * should be expired. Timestamp back-shifting is done later in 1108 * __bfq_activate_entity. 1109 * 1110 * 2. Reduce latency. Even if timestamps are not backshifted to let 1111 * the process associated with bfqq recover a service hole, bfqq may 1112 * however happen to have, after being (re)activated, a lower finish 1113 * timestamp than the in-service queue. That is, the next budget of 1114 * bfqq may have to be completed before the one of the in-service 1115 * queue. If this is the case, then preempting the in-service queue 1116 * allows this goal to be achieved, apart from the unpreemptible, 1117 * outstanding requests mentioned above. 1118 * 1119 * Unfortunately, regardless of which of the above two goals one wants 1120 * to achieve, service trees need first to be updated to know whether 1121 * the in-service queue must be preempted. To have service trees 1122 * correctly updated, the in-service queue must be expired and 1123 * rescheduled, and bfqq must be scheduled too. This is one of the 1124 * most costly operations (in future versions, the scheduling 1125 * mechanism may be re-designed in such a way to make it possible to 1126 * know whether preemption is needed without needing to update service 1127 * trees). In addition, queue preemptions almost always cause random 1128 * I/O, and thus loss of throughput. Because of these facts, the next 1129 * function adopts the following simple scheme to avoid both costly 1130 * operations and too frequent preemptions: it requests the expiration 1131 * of the in-service queue (unconditionally) only for queues that need 1132 * to recover a hole, or that either are weight-raised or deserve to 1133 * be weight-raised. 1134 */ 1135 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 1136 struct bfq_queue *bfqq, 1137 bool arrived_in_time, 1138 bool wr_or_deserves_wr) 1139 { 1140 struct bfq_entity *entity = &bfqq->entity; 1141 1142 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { 1143 /* 1144 * We do not clear the flag non_blocking_wait_rq here, as 1145 * the latter is used in bfq_activate_bfqq to signal 1146 * that timestamps need to be back-shifted (and is 1147 * cleared right after). 1148 */ 1149 1150 /* 1151 * In next assignment we rely on that either 1152 * entity->service or entity->budget are not updated 1153 * on expiration if bfqq is empty (see 1154 * __bfq_bfqq_recalc_budget). Thus both quantities 1155 * remain unchanged after such an expiration, and the 1156 * following statement therefore assigns to 1157 * entity->budget the remaining budget on such an 1158 * expiration. For clarity, entity->service is not 1159 * updated on expiration in any case, and, in normal 1160 * operation, is reset only when bfqq is selected for 1161 * service (see bfq_get_next_queue). 1162 */ 1163 entity->budget = min_t(unsigned long, 1164 bfq_bfqq_budget_left(bfqq), 1165 bfqq->max_budget); 1166 1167 return true; 1168 } 1169 1170 entity->budget = max_t(unsigned long, bfqq->max_budget, 1171 bfq_serv_to_charge(bfqq->next_rq, bfqq)); 1172 bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 1173 return wr_or_deserves_wr; 1174 } 1175 1176 static unsigned int bfq_wr_duration(struct bfq_data *bfqd) 1177 { 1178 u64 dur; 1179 1180 if (bfqd->bfq_wr_max_time > 0) 1181 return bfqd->bfq_wr_max_time; 1182 1183 dur = bfqd->RT_prod; 1184 do_div(dur, bfqd->peak_rate); 1185 1186 /* 1187 * Limit duration between 3 and 13 seconds. Tests show that 1188 * higher values than 13 seconds often yield the opposite of 1189 * the desired result, i.e., worsen responsiveness by letting 1190 * non-interactive and non-soft-real-time applications 1191 * preserve weight raising for a too long time interval. 1192 * 1193 * On the other end, lower values than 3 seconds make it 1194 * difficult for most interactive tasks to complete their jobs 1195 * before weight-raising finishes. 1196 */ 1197 if (dur > msecs_to_jiffies(13000)) 1198 dur = msecs_to_jiffies(13000); 1199 else if (dur < msecs_to_jiffies(3000)) 1200 dur = msecs_to_jiffies(3000); 1201 1202 return dur; 1203 } 1204 1205 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 1206 struct bfq_queue *bfqq, 1207 unsigned int old_wr_coeff, 1208 bool wr_or_deserves_wr, 1209 bool interactive, 1210 bool in_burst, 1211 bool soft_rt) 1212 { 1213 if (old_wr_coeff == 1 && wr_or_deserves_wr) { 1214 /* start a weight-raising period */ 1215 if (interactive) { 1216 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1217 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1218 } else { 1219 bfqq->wr_start_at_switch_to_srt = jiffies; 1220 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1221 BFQ_SOFTRT_WEIGHT_FACTOR; 1222 bfqq->wr_cur_max_time = 1223 bfqd->bfq_wr_rt_max_time; 1224 } 1225 1226 /* 1227 * If needed, further reduce budget to make sure it is 1228 * close to bfqq's backlog, so as to reduce the 1229 * scheduling-error component due to a too large 1230 * budget. Do not care about throughput consequences, 1231 * but only about latency. Finally, do not assign a 1232 * too small budget either, to avoid increasing 1233 * latency by causing too frequent expirations. 1234 */ 1235 bfqq->entity.budget = min_t(unsigned long, 1236 bfqq->entity.budget, 1237 2 * bfq_min_budget(bfqd)); 1238 } else if (old_wr_coeff > 1) { 1239 if (interactive) { /* update wr coeff and duration */ 1240 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1241 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1242 } else if (in_burst) 1243 bfqq->wr_coeff = 1; 1244 else if (soft_rt) { 1245 /* 1246 * The application is now or still meeting the 1247 * requirements for being deemed soft rt. We 1248 * can then correctly and safely (re)charge 1249 * the weight-raising duration for the 1250 * application with the weight-raising 1251 * duration for soft rt applications. 1252 * 1253 * In particular, doing this recharge now, i.e., 1254 * before the weight-raising period for the 1255 * application finishes, reduces the probability 1256 * of the following negative scenario: 1257 * 1) the weight of a soft rt application is 1258 * raised at startup (as for any newly 1259 * created application), 1260 * 2) since the application is not interactive, 1261 * at a certain time weight-raising is 1262 * stopped for the application, 1263 * 3) at that time the application happens to 1264 * still have pending requests, and hence 1265 * is destined to not have a chance to be 1266 * deemed soft rt before these requests are 1267 * completed (see the comments to the 1268 * function bfq_bfqq_softrt_next_start() 1269 * for details on soft rt detection), 1270 * 4) these pending requests experience a high 1271 * latency because the application is not 1272 * weight-raised while they are pending. 1273 */ 1274 if (bfqq->wr_cur_max_time != 1275 bfqd->bfq_wr_rt_max_time) { 1276 bfqq->wr_start_at_switch_to_srt = 1277 bfqq->last_wr_start_finish; 1278 1279 bfqq->wr_cur_max_time = 1280 bfqd->bfq_wr_rt_max_time; 1281 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1282 BFQ_SOFTRT_WEIGHT_FACTOR; 1283 } 1284 bfqq->last_wr_start_finish = jiffies; 1285 } 1286 } 1287 } 1288 1289 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 1290 struct bfq_queue *bfqq) 1291 { 1292 return bfqq->dispatched == 0 && 1293 time_is_before_jiffies( 1294 bfqq->budget_timeout + 1295 bfqd->bfq_wr_min_idle_time); 1296 } 1297 1298 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 1299 struct bfq_queue *bfqq, 1300 int old_wr_coeff, 1301 struct request *rq, 1302 bool *interactive) 1303 { 1304 bool soft_rt, in_burst, wr_or_deserves_wr, 1305 bfqq_wants_to_preempt, 1306 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 1307 /* 1308 * See the comments on 1309 * bfq_bfqq_update_budg_for_activation for 1310 * details on the usage of the next variable. 1311 */ 1312 arrived_in_time = ktime_get_ns() <= 1313 bfqq->ttime.last_end_request + 1314 bfqd->bfq_slice_idle * 3; 1315 1316 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); 1317 1318 /* 1319 * bfqq deserves to be weight-raised if: 1320 * - it is sync, 1321 * - it does not belong to a large burst, 1322 * - it has been idle for enough time or is soft real-time, 1323 * - is linked to a bfq_io_cq (it is not shared in any sense). 1324 */ 1325 in_burst = bfq_bfqq_in_large_burst(bfqq); 1326 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 1327 !in_burst && 1328 time_is_before_jiffies(bfqq->soft_rt_next_start); 1329 *interactive = !in_burst && idle_for_long_time; 1330 wr_or_deserves_wr = bfqd->low_latency && 1331 (bfqq->wr_coeff > 1 || 1332 (bfq_bfqq_sync(bfqq) && 1333 bfqq->bic && (*interactive || soft_rt))); 1334 1335 /* 1336 * Using the last flag, update budget and check whether bfqq 1337 * may want to preempt the in-service queue. 1338 */ 1339 bfqq_wants_to_preempt = 1340 bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 1341 arrived_in_time, 1342 wr_or_deserves_wr); 1343 1344 /* 1345 * If bfqq happened to be activated in a burst, but has been 1346 * idle for much more than an interactive queue, then we 1347 * assume that, in the overall I/O initiated in the burst, the 1348 * I/O associated with bfqq is finished. So bfqq does not need 1349 * to be treated as a queue belonging to a burst 1350 * anymore. Accordingly, we reset bfqq's in_large_burst flag 1351 * if set, and remove bfqq from the burst list if it's 1352 * there. We do not decrement burst_size, because the fact 1353 * that bfqq does not need to belong to the burst list any 1354 * more does not invalidate the fact that bfqq was created in 1355 * a burst. 1356 */ 1357 if (likely(!bfq_bfqq_just_created(bfqq)) && 1358 idle_for_long_time && 1359 time_is_before_jiffies( 1360 bfqq->budget_timeout + 1361 msecs_to_jiffies(10000))) { 1362 hlist_del_init(&bfqq->burst_list_node); 1363 bfq_clear_bfqq_in_large_burst(bfqq); 1364 } 1365 1366 bfq_clear_bfqq_just_created(bfqq); 1367 1368 1369 if (!bfq_bfqq_IO_bound(bfqq)) { 1370 if (arrived_in_time) { 1371 bfqq->requests_within_timer++; 1372 if (bfqq->requests_within_timer >= 1373 bfqd->bfq_requests_within_timer) 1374 bfq_mark_bfqq_IO_bound(bfqq); 1375 } else 1376 bfqq->requests_within_timer = 0; 1377 } 1378 1379 if (bfqd->low_latency) { 1380 if (unlikely(time_is_after_jiffies(bfqq->split_time))) 1381 /* wraparound */ 1382 bfqq->split_time = 1383 jiffies - bfqd->bfq_wr_min_idle_time - 1; 1384 1385 if (time_is_before_jiffies(bfqq->split_time + 1386 bfqd->bfq_wr_min_idle_time)) { 1387 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 1388 old_wr_coeff, 1389 wr_or_deserves_wr, 1390 *interactive, 1391 in_burst, 1392 soft_rt); 1393 1394 if (old_wr_coeff != bfqq->wr_coeff) 1395 bfqq->entity.prio_changed = 1; 1396 } 1397 } 1398 1399 bfqq->last_idle_bklogged = jiffies; 1400 bfqq->service_from_backlogged = 0; 1401 bfq_clear_bfqq_softrt_update(bfqq); 1402 1403 bfq_add_bfqq_busy(bfqd, bfqq); 1404 1405 /* 1406 * Expire in-service queue only if preemption may be needed 1407 * for guarantees. In this respect, the function 1408 * next_queue_may_preempt just checks a simple, necessary 1409 * condition, and not a sufficient condition based on 1410 * timestamps. In fact, for the latter condition to be 1411 * evaluated, timestamps would need first to be updated, and 1412 * this operation is quite costly (see the comments on the 1413 * function bfq_bfqq_update_budg_for_activation). 1414 */ 1415 if (bfqd->in_service_queue && bfqq_wants_to_preempt && 1416 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && 1417 next_queue_may_preempt(bfqd)) 1418 bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 1419 false, BFQQE_PREEMPTED); 1420 } 1421 1422 static void bfq_add_request(struct request *rq) 1423 { 1424 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1425 struct bfq_data *bfqd = bfqq->bfqd; 1426 struct request *next_rq, *prev; 1427 unsigned int old_wr_coeff = bfqq->wr_coeff; 1428 bool interactive = false; 1429 1430 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 1431 bfqq->queued[rq_is_sync(rq)]++; 1432 bfqd->queued++; 1433 1434 elv_rb_add(&bfqq->sort_list, rq); 1435 1436 /* 1437 * Check if this request is a better next-serve candidate. 1438 */ 1439 prev = bfqq->next_rq; 1440 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 1441 bfqq->next_rq = next_rq; 1442 1443 /* 1444 * Adjust priority tree position, if next_rq changes. 1445 */ 1446 if (prev != bfqq->next_rq) 1447 bfq_pos_tree_add_move(bfqd, bfqq); 1448 1449 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 1450 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 1451 rq, &interactive); 1452 else { 1453 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 1454 time_is_before_jiffies( 1455 bfqq->last_wr_start_finish + 1456 bfqd->bfq_wr_min_inter_arr_async)) { 1457 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1458 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1459 1460 bfqd->wr_busy_queues++; 1461 bfqq->entity.prio_changed = 1; 1462 } 1463 if (prev != bfqq->next_rq) 1464 bfq_updated_next_req(bfqd, bfqq); 1465 } 1466 1467 /* 1468 * Assign jiffies to last_wr_start_finish in the following 1469 * cases: 1470 * 1471 * . if bfqq is not going to be weight-raised, because, for 1472 * non weight-raised queues, last_wr_start_finish stores the 1473 * arrival time of the last request; as of now, this piece 1474 * of information is used only for deciding whether to 1475 * weight-raise async queues 1476 * 1477 * . if bfqq is not weight-raised, because, if bfqq is now 1478 * switching to weight-raised, then last_wr_start_finish 1479 * stores the time when weight-raising starts 1480 * 1481 * . if bfqq is interactive, because, regardless of whether 1482 * bfqq is currently weight-raised, the weight-raising 1483 * period must start or restart (this case is considered 1484 * separately because it is not detected by the above 1485 * conditions, if bfqq is already weight-raised) 1486 * 1487 * last_wr_start_finish has to be updated also if bfqq is soft 1488 * real-time, because the weight-raising period is constantly 1489 * restarted on idle-to-busy transitions for these queues, but 1490 * this is already done in bfq_bfqq_handle_idle_busy_switch if 1491 * needed. 1492 */ 1493 if (bfqd->low_latency && 1494 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 1495 bfqq->last_wr_start_finish = jiffies; 1496 } 1497 1498 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 1499 struct bio *bio, 1500 struct request_queue *q) 1501 { 1502 struct bfq_queue *bfqq = bfqd->bio_bfqq; 1503 1504 1505 if (bfqq) 1506 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 1507 1508 return NULL; 1509 } 1510 1511 static sector_t get_sdist(sector_t last_pos, struct request *rq) 1512 { 1513 if (last_pos) 1514 return abs(blk_rq_pos(rq) - last_pos); 1515 1516 return 0; 1517 } 1518 1519 #if 0 /* Still not clear if we can do without next two functions */ 1520 static void bfq_activate_request(struct request_queue *q, struct request *rq) 1521 { 1522 struct bfq_data *bfqd = q->elevator->elevator_data; 1523 1524 bfqd->rq_in_driver++; 1525 } 1526 1527 static void bfq_deactivate_request(struct request_queue *q, struct request *rq) 1528 { 1529 struct bfq_data *bfqd = q->elevator->elevator_data; 1530 1531 bfqd->rq_in_driver--; 1532 } 1533 #endif 1534 1535 static void bfq_remove_request(struct request_queue *q, 1536 struct request *rq) 1537 { 1538 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1539 struct bfq_data *bfqd = bfqq->bfqd; 1540 const int sync = rq_is_sync(rq); 1541 1542 if (bfqq->next_rq == rq) { 1543 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 1544 bfq_updated_next_req(bfqd, bfqq); 1545 } 1546 1547 if (rq->queuelist.prev != &rq->queuelist) 1548 list_del_init(&rq->queuelist); 1549 bfqq->queued[sync]--; 1550 bfqd->queued--; 1551 elv_rb_del(&bfqq->sort_list, rq); 1552 1553 elv_rqhash_del(q, rq); 1554 if (q->last_merge == rq) 1555 q->last_merge = NULL; 1556 1557 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 1558 bfqq->next_rq = NULL; 1559 1560 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 1561 bfq_del_bfqq_busy(bfqd, bfqq, false); 1562 /* 1563 * bfqq emptied. In normal operation, when 1564 * bfqq is empty, bfqq->entity.service and 1565 * bfqq->entity.budget must contain, 1566 * respectively, the service received and the 1567 * budget used last time bfqq emptied. These 1568 * facts do not hold in this case, as at least 1569 * this last removal occurred while bfqq is 1570 * not in service. To avoid inconsistencies, 1571 * reset both bfqq->entity.service and 1572 * bfqq->entity.budget, if bfqq has still a 1573 * process that may issue I/O requests to it. 1574 */ 1575 bfqq->entity.budget = bfqq->entity.service = 0; 1576 } 1577 1578 /* 1579 * Remove queue from request-position tree as it is empty. 1580 */ 1581 if (bfqq->pos_root) { 1582 rb_erase(&bfqq->pos_node, bfqq->pos_root); 1583 bfqq->pos_root = NULL; 1584 } 1585 } 1586 1587 if (rq->cmd_flags & REQ_META) 1588 bfqq->meta_pending--; 1589 1590 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); 1591 } 1592 1593 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 1594 { 1595 struct request_queue *q = hctx->queue; 1596 struct bfq_data *bfqd = q->elevator->elevator_data; 1597 struct request *free = NULL; 1598 /* 1599 * bfq_bic_lookup grabs the queue_lock: invoke it now and 1600 * store its return value for later use, to avoid nesting 1601 * queue_lock inside the bfqd->lock. We assume that the bic 1602 * returned by bfq_bic_lookup does not go away before 1603 * bfqd->lock is taken. 1604 */ 1605 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); 1606 bool ret; 1607 1608 spin_lock_irq(&bfqd->lock); 1609 1610 if (bic) 1611 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); 1612 else 1613 bfqd->bio_bfqq = NULL; 1614 bfqd->bio_bic = bic; 1615 1616 ret = blk_mq_sched_try_merge(q, bio, &free); 1617 1618 if (free) 1619 blk_mq_free_request(free); 1620 spin_unlock_irq(&bfqd->lock); 1621 1622 return ret; 1623 } 1624 1625 static int bfq_request_merge(struct request_queue *q, struct request **req, 1626 struct bio *bio) 1627 { 1628 struct bfq_data *bfqd = q->elevator->elevator_data; 1629 struct request *__rq; 1630 1631 __rq = bfq_find_rq_fmerge(bfqd, bio, q); 1632 if (__rq && elv_bio_merge_ok(__rq, bio)) { 1633 *req = __rq; 1634 return ELEVATOR_FRONT_MERGE; 1635 } 1636 1637 return ELEVATOR_NO_MERGE; 1638 } 1639 1640 static void bfq_request_merged(struct request_queue *q, struct request *req, 1641 enum elv_merge type) 1642 { 1643 if (type == ELEVATOR_FRONT_MERGE && 1644 rb_prev(&req->rb_node) && 1645 blk_rq_pos(req) < 1646 blk_rq_pos(container_of(rb_prev(&req->rb_node), 1647 struct request, rb_node))) { 1648 struct bfq_queue *bfqq = RQ_BFQQ(req); 1649 struct bfq_data *bfqd = bfqq->bfqd; 1650 struct request *prev, *next_rq; 1651 1652 /* Reposition request in its sort_list */ 1653 elv_rb_del(&bfqq->sort_list, req); 1654 elv_rb_add(&bfqq->sort_list, req); 1655 1656 /* Choose next request to be served for bfqq */ 1657 prev = bfqq->next_rq; 1658 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 1659 bfqd->last_position); 1660 bfqq->next_rq = next_rq; 1661 /* 1662 * If next_rq changes, update both the queue's budget to 1663 * fit the new request and the queue's position in its 1664 * rq_pos_tree. 1665 */ 1666 if (prev != bfqq->next_rq) { 1667 bfq_updated_next_req(bfqd, bfqq); 1668 bfq_pos_tree_add_move(bfqd, bfqq); 1669 } 1670 } 1671 } 1672 1673 static void bfq_requests_merged(struct request_queue *q, struct request *rq, 1674 struct request *next) 1675 { 1676 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); 1677 1678 if (!RB_EMPTY_NODE(&rq->rb_node)) 1679 goto end; 1680 spin_lock_irq(&bfqq->bfqd->lock); 1681 1682 /* 1683 * If next and rq belong to the same bfq_queue and next is older 1684 * than rq, then reposition rq in the fifo (by substituting next 1685 * with rq). Otherwise, if next and rq belong to different 1686 * bfq_queues, never reposition rq: in fact, we would have to 1687 * reposition it with respect to next's position in its own fifo, 1688 * which would most certainly be too expensive with respect to 1689 * the benefits. 1690 */ 1691 if (bfqq == next_bfqq && 1692 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 1693 next->fifo_time < rq->fifo_time) { 1694 list_del_init(&rq->queuelist); 1695 list_replace_init(&next->queuelist, &rq->queuelist); 1696 rq->fifo_time = next->fifo_time; 1697 } 1698 1699 if (bfqq->next_rq == next) 1700 bfqq->next_rq = rq; 1701 1702 bfq_remove_request(q, next); 1703 1704 spin_unlock_irq(&bfqq->bfqd->lock); 1705 end: 1706 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 1707 } 1708 1709 /* Must be called with bfqq != NULL */ 1710 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 1711 { 1712 if (bfq_bfqq_busy(bfqq)) 1713 bfqq->bfqd->wr_busy_queues--; 1714 bfqq->wr_coeff = 1; 1715 bfqq->wr_cur_max_time = 0; 1716 bfqq->last_wr_start_finish = jiffies; 1717 /* 1718 * Trigger a weight change on the next invocation of 1719 * __bfq_entity_update_weight_prio. 1720 */ 1721 bfqq->entity.prio_changed = 1; 1722 } 1723 1724 void bfq_end_wr_async_queues(struct bfq_data *bfqd, 1725 struct bfq_group *bfqg) 1726 { 1727 int i, j; 1728 1729 for (i = 0; i < 2; i++) 1730 for (j = 0; j < IOPRIO_BE_NR; j++) 1731 if (bfqg->async_bfqq[i][j]) 1732 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); 1733 if (bfqg->async_idle_bfqq) 1734 bfq_bfqq_end_wr(bfqg->async_idle_bfqq); 1735 } 1736 1737 static void bfq_end_wr(struct bfq_data *bfqd) 1738 { 1739 struct bfq_queue *bfqq; 1740 1741 spin_lock_irq(&bfqd->lock); 1742 1743 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) 1744 bfq_bfqq_end_wr(bfqq); 1745 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 1746 bfq_bfqq_end_wr(bfqq); 1747 bfq_end_wr_async(bfqd); 1748 1749 spin_unlock_irq(&bfqd->lock); 1750 } 1751 1752 static sector_t bfq_io_struct_pos(void *io_struct, bool request) 1753 { 1754 if (request) 1755 return blk_rq_pos(io_struct); 1756 else 1757 return ((struct bio *)io_struct)->bi_iter.bi_sector; 1758 } 1759 1760 static int bfq_rq_close_to_sector(void *io_struct, bool request, 1761 sector_t sector) 1762 { 1763 return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 1764 BFQQ_CLOSE_THR; 1765 } 1766 1767 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 1768 struct bfq_queue *bfqq, 1769 sector_t sector) 1770 { 1771 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 1772 struct rb_node *parent, *node; 1773 struct bfq_queue *__bfqq; 1774 1775 if (RB_EMPTY_ROOT(root)) 1776 return NULL; 1777 1778 /* 1779 * First, if we find a request starting at the end of the last 1780 * request, choose it. 1781 */ 1782 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 1783 if (__bfqq) 1784 return __bfqq; 1785 1786 /* 1787 * If the exact sector wasn't found, the parent of the NULL leaf 1788 * will contain the closest sector (rq_pos_tree sorted by 1789 * next_request position). 1790 */ 1791 __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 1792 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1793 return __bfqq; 1794 1795 if (blk_rq_pos(__bfqq->next_rq) < sector) 1796 node = rb_next(&__bfqq->pos_node); 1797 else 1798 node = rb_prev(&__bfqq->pos_node); 1799 if (!node) 1800 return NULL; 1801 1802 __bfqq = rb_entry(node, struct bfq_queue, pos_node); 1803 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1804 return __bfqq; 1805 1806 return NULL; 1807 } 1808 1809 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 1810 struct bfq_queue *cur_bfqq, 1811 sector_t sector) 1812 { 1813 struct bfq_queue *bfqq; 1814 1815 /* 1816 * We shall notice if some of the queues are cooperating, 1817 * e.g., working closely on the same area of the device. In 1818 * that case, we can group them together and: 1) don't waste 1819 * time idling, and 2) serve the union of their requests in 1820 * the best possible order for throughput. 1821 */ 1822 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 1823 if (!bfqq || bfqq == cur_bfqq) 1824 return NULL; 1825 1826 return bfqq; 1827 } 1828 1829 static struct bfq_queue * 1830 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 1831 { 1832 int process_refs, new_process_refs; 1833 struct bfq_queue *__bfqq; 1834 1835 /* 1836 * If there are no process references on the new_bfqq, then it is 1837 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 1838 * may have dropped their last reference (not just their last process 1839 * reference). 1840 */ 1841 if (!bfqq_process_refs(new_bfqq)) 1842 return NULL; 1843 1844 /* Avoid a circular list and skip interim queue merges. */ 1845 while ((__bfqq = new_bfqq->new_bfqq)) { 1846 if (__bfqq == bfqq) 1847 return NULL; 1848 new_bfqq = __bfqq; 1849 } 1850 1851 process_refs = bfqq_process_refs(bfqq); 1852 new_process_refs = bfqq_process_refs(new_bfqq); 1853 /* 1854 * If the process for the bfqq has gone away, there is no 1855 * sense in merging the queues. 1856 */ 1857 if (process_refs == 0 || new_process_refs == 0) 1858 return NULL; 1859 1860 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 1861 new_bfqq->pid); 1862 1863 /* 1864 * Merging is just a redirection: the requests of the process 1865 * owning one of the two queues are redirected to the other queue. 1866 * The latter queue, in its turn, is set as shared if this is the 1867 * first time that the requests of some process are redirected to 1868 * it. 1869 * 1870 * We redirect bfqq to new_bfqq and not the opposite, because 1871 * we are in the context of the process owning bfqq, thus we 1872 * have the io_cq of this process. So we can immediately 1873 * configure this io_cq to redirect the requests of the 1874 * process to new_bfqq. In contrast, the io_cq of new_bfqq is 1875 * not available any more (new_bfqq->bic == NULL). 1876 * 1877 * Anyway, even in case new_bfqq coincides with the in-service 1878 * queue, redirecting requests the in-service queue is the 1879 * best option, as we feed the in-service queue with new 1880 * requests close to the last request served and, by doing so, 1881 * are likely to increase the throughput. 1882 */ 1883 bfqq->new_bfqq = new_bfqq; 1884 new_bfqq->ref += process_refs; 1885 return new_bfqq; 1886 } 1887 1888 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 1889 struct bfq_queue *new_bfqq) 1890 { 1891 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 1892 (bfqq->ioprio_class != new_bfqq->ioprio_class)) 1893 return false; 1894 1895 /* 1896 * If either of the queues has already been detected as seeky, 1897 * then merging it with the other queue is unlikely to lead to 1898 * sequential I/O. 1899 */ 1900 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 1901 return false; 1902 1903 /* 1904 * Interleaved I/O is known to be done by (some) applications 1905 * only for reads, so it does not make sense to merge async 1906 * queues. 1907 */ 1908 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 1909 return false; 1910 1911 return true; 1912 } 1913 1914 /* 1915 * If this function returns true, then bfqq cannot be merged. The idea 1916 * is that true cooperation happens very early after processes start 1917 * to do I/O. Usually, late cooperations are just accidental false 1918 * positives. In case bfqq is weight-raised, such false positives 1919 * would evidently degrade latency guarantees for bfqq. 1920 */ 1921 static bool wr_from_too_long(struct bfq_queue *bfqq) 1922 { 1923 return bfqq->wr_coeff > 1 && 1924 time_is_before_jiffies(bfqq->last_wr_start_finish + 1925 msecs_to_jiffies(100)); 1926 } 1927 1928 /* 1929 * Attempt to schedule a merge of bfqq with the currently in-service 1930 * queue or with a close queue among the scheduled queues. Return 1931 * NULL if no merge was scheduled, a pointer to the shared bfq_queue 1932 * structure otherwise. 1933 * 1934 * The OOM queue is not allowed to participate to cooperation: in fact, since 1935 * the requests temporarily redirected to the OOM queue could be redirected 1936 * again to dedicated queues at any time, the state needed to correctly 1937 * handle merging with the OOM queue would be quite complex and expensive 1938 * to maintain. Besides, in such a critical condition as an out of memory, 1939 * the benefits of queue merging may be little relevant, or even negligible. 1940 * 1941 * Weight-raised queues can be merged only if their weight-raising 1942 * period has just started. In fact cooperating processes are usually 1943 * started together. Thus, with this filter we avoid false positives 1944 * that would jeopardize low-latency guarantees. 1945 * 1946 * WARNING: queue merging may impair fairness among non-weight raised 1947 * queues, for at least two reasons: 1) the original weight of a 1948 * merged queue may change during the merged state, 2) even being the 1949 * weight the same, a merged queue may be bloated with many more 1950 * requests than the ones produced by its originally-associated 1951 * process. 1952 */ 1953 static struct bfq_queue * 1954 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1955 void *io_struct, bool request) 1956 { 1957 struct bfq_queue *in_service_bfqq, *new_bfqq; 1958 1959 if (bfqq->new_bfqq) 1960 return bfqq->new_bfqq; 1961 1962 if (!io_struct || 1963 wr_from_too_long(bfqq) || 1964 unlikely(bfqq == &bfqd->oom_bfqq)) 1965 return NULL; 1966 1967 /* If there is only one backlogged queue, don't search. */ 1968 if (bfqd->busy_queues == 1) 1969 return NULL; 1970 1971 in_service_bfqq = bfqd->in_service_queue; 1972 1973 if (!in_service_bfqq || in_service_bfqq == bfqq 1974 || wr_from_too_long(in_service_bfqq) || 1975 unlikely(in_service_bfqq == &bfqd->oom_bfqq)) 1976 goto check_scheduled; 1977 1978 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) && 1979 bfqq->entity.parent == in_service_bfqq->entity.parent && 1980 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 1981 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 1982 if (new_bfqq) 1983 return new_bfqq; 1984 } 1985 /* 1986 * Check whether there is a cooperator among currently scheduled 1987 * queues. The only thing we need is that the bio/request is not 1988 * NULL, as we need it to establish whether a cooperator exists. 1989 */ 1990 check_scheduled: 1991 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 1992 bfq_io_struct_pos(io_struct, request)); 1993 1994 if (new_bfqq && !wr_from_too_long(new_bfqq) && 1995 likely(new_bfqq != &bfqd->oom_bfqq) && 1996 bfq_may_be_close_cooperator(bfqq, new_bfqq)) 1997 return bfq_setup_merge(bfqq, new_bfqq); 1998 1999 return NULL; 2000 } 2001 2002 static void bfq_bfqq_save_state(struct bfq_queue *bfqq) 2003 { 2004 struct bfq_io_cq *bic = bfqq->bic; 2005 2006 /* 2007 * If !bfqq->bic, the queue is already shared or its requests 2008 * have already been redirected to a shared queue; both idle window 2009 * and weight raising state have already been saved. Do nothing. 2010 */ 2011 if (!bic) 2012 return; 2013 2014 bic->saved_ttime = bfqq->ttime; 2015 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq); 2016 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 2017 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 2018 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node); 2019 bic->saved_wr_coeff = bfqq->wr_coeff; 2020 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt; 2021 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish; 2022 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 2023 } 2024 2025 static void 2026 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 2027 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 2028 { 2029 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 2030 (unsigned long)new_bfqq->pid); 2031 /* Save weight raising and idle window of the merged queues */ 2032 bfq_bfqq_save_state(bfqq); 2033 bfq_bfqq_save_state(new_bfqq); 2034 if (bfq_bfqq_IO_bound(bfqq)) 2035 bfq_mark_bfqq_IO_bound(new_bfqq); 2036 bfq_clear_bfqq_IO_bound(bfqq); 2037 2038 /* 2039 * If bfqq is weight-raised, then let new_bfqq inherit 2040 * weight-raising. To reduce false positives, neglect the case 2041 * where bfqq has just been created, but has not yet made it 2042 * to be weight-raised (which may happen because EQM may merge 2043 * bfqq even before bfq_add_request is executed for the first 2044 * time for bfqq). Handling this case would however be very 2045 * easy, thanks to the flag just_created. 2046 */ 2047 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 2048 new_bfqq->wr_coeff = bfqq->wr_coeff; 2049 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 2050 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 2051 new_bfqq->wr_start_at_switch_to_srt = 2052 bfqq->wr_start_at_switch_to_srt; 2053 if (bfq_bfqq_busy(new_bfqq)) 2054 bfqd->wr_busy_queues++; 2055 new_bfqq->entity.prio_changed = 1; 2056 } 2057 2058 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 2059 bfqq->wr_coeff = 1; 2060 bfqq->entity.prio_changed = 1; 2061 if (bfq_bfqq_busy(bfqq)) 2062 bfqd->wr_busy_queues--; 2063 } 2064 2065 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 2066 bfqd->wr_busy_queues); 2067 2068 /* 2069 * Merge queues (that is, let bic redirect its requests to new_bfqq) 2070 */ 2071 bic_set_bfqq(bic, new_bfqq, 1); 2072 bfq_mark_bfqq_coop(new_bfqq); 2073 /* 2074 * new_bfqq now belongs to at least two bics (it is a shared queue): 2075 * set new_bfqq->bic to NULL. bfqq either: 2076 * - does not belong to any bic any more, and hence bfqq->bic must 2077 * be set to NULL, or 2078 * - is a queue whose owning bics have already been redirected to a 2079 * different queue, hence the queue is destined to not belong to 2080 * any bic soon and bfqq->bic is already NULL (therefore the next 2081 * assignment causes no harm). 2082 */ 2083 new_bfqq->bic = NULL; 2084 bfqq->bic = NULL; 2085 /* release process reference to bfqq */ 2086 bfq_put_queue(bfqq); 2087 } 2088 2089 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2090 struct bio *bio) 2091 { 2092 struct bfq_data *bfqd = q->elevator->elevator_data; 2093 bool is_sync = op_is_sync(bio->bi_opf); 2094 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 2095 2096 /* 2097 * Disallow merge of a sync bio into an async request. 2098 */ 2099 if (is_sync && !rq_is_sync(rq)) 2100 return false; 2101 2102 /* 2103 * Lookup the bfqq that this bio will be queued with. Allow 2104 * merge only if rq is queued there. 2105 */ 2106 if (!bfqq) 2107 return false; 2108 2109 /* 2110 * We take advantage of this function to perform an early merge 2111 * of the queues of possible cooperating processes. 2112 */ 2113 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false); 2114 if (new_bfqq) { 2115 /* 2116 * bic still points to bfqq, then it has not yet been 2117 * redirected to some other bfq_queue, and a queue 2118 * merge beween bfqq and new_bfqq can be safely 2119 * fulfillled, i.e., bic can be redirected to new_bfqq 2120 * and bfqq can be put. 2121 */ 2122 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 2123 new_bfqq); 2124 /* 2125 * If we get here, bio will be queued into new_queue, 2126 * so use new_bfqq to decide whether bio and rq can be 2127 * merged. 2128 */ 2129 bfqq = new_bfqq; 2130 2131 /* 2132 * Change also bqfd->bio_bfqq, as 2133 * bfqd->bio_bic now points to new_bfqq, and 2134 * this function may be invoked again (and then may 2135 * use again bqfd->bio_bfqq). 2136 */ 2137 bfqd->bio_bfqq = bfqq; 2138 } 2139 2140 return bfqq == RQ_BFQQ(rq); 2141 } 2142 2143 /* 2144 * Set the maximum time for the in-service queue to consume its 2145 * budget. This prevents seeky processes from lowering the throughput. 2146 * In practice, a time-slice service scheme is used with seeky 2147 * processes. 2148 */ 2149 static void bfq_set_budget_timeout(struct bfq_data *bfqd, 2150 struct bfq_queue *bfqq) 2151 { 2152 unsigned int timeout_coeff; 2153 2154 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 2155 timeout_coeff = 1; 2156 else 2157 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 2158 2159 bfqd->last_budget_start = ktime_get(); 2160 2161 bfqq->budget_timeout = jiffies + 2162 bfqd->bfq_timeout * timeout_coeff; 2163 } 2164 2165 static void __bfq_set_in_service_queue(struct bfq_data *bfqd, 2166 struct bfq_queue *bfqq) 2167 { 2168 if (bfqq) { 2169 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); 2170 bfq_clear_bfqq_fifo_expire(bfqq); 2171 2172 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 2173 2174 if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 2175 bfqq->wr_coeff > 1 && 2176 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 2177 time_is_before_jiffies(bfqq->budget_timeout)) { 2178 /* 2179 * For soft real-time queues, move the start 2180 * of the weight-raising period forward by the 2181 * time the queue has not received any 2182 * service. Otherwise, a relatively long 2183 * service delay is likely to cause the 2184 * weight-raising period of the queue to end, 2185 * because of the short duration of the 2186 * weight-raising period of a soft real-time 2187 * queue. It is worth noting that this move 2188 * is not so dangerous for the other queues, 2189 * because soft real-time queues are not 2190 * greedy. 2191 * 2192 * To not add a further variable, we use the 2193 * overloaded field budget_timeout to 2194 * determine for how long the queue has not 2195 * received service, i.e., how much time has 2196 * elapsed since the queue expired. However, 2197 * this is a little imprecise, because 2198 * budget_timeout is set to jiffies if bfqq 2199 * not only expires, but also remains with no 2200 * request. 2201 */ 2202 if (time_after(bfqq->budget_timeout, 2203 bfqq->last_wr_start_finish)) 2204 bfqq->last_wr_start_finish += 2205 jiffies - bfqq->budget_timeout; 2206 else 2207 bfqq->last_wr_start_finish = jiffies; 2208 } 2209 2210 bfq_set_budget_timeout(bfqd, bfqq); 2211 bfq_log_bfqq(bfqd, bfqq, 2212 "set_in_service_queue, cur-budget = %d", 2213 bfqq->entity.budget); 2214 } 2215 2216 bfqd->in_service_queue = bfqq; 2217 } 2218 2219 /* 2220 * Get and set a new queue for service. 2221 */ 2222 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 2223 { 2224 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 2225 2226 __bfq_set_in_service_queue(bfqd, bfqq); 2227 return bfqq; 2228 } 2229 2230 static void bfq_arm_slice_timer(struct bfq_data *bfqd) 2231 { 2232 struct bfq_queue *bfqq = bfqd->in_service_queue; 2233 u32 sl; 2234 2235 bfq_mark_bfqq_wait_request(bfqq); 2236 2237 /* 2238 * We don't want to idle for seeks, but we do want to allow 2239 * fair distribution of slice time for a process doing back-to-back 2240 * seeks. So allow a little bit of time for him to submit a new rq. 2241 */ 2242 sl = bfqd->bfq_slice_idle; 2243 /* 2244 * Unless the queue is being weight-raised or the scenario is 2245 * asymmetric, grant only minimum idle time if the queue 2246 * is seeky. A long idling is preserved for a weight-raised 2247 * queue, or, more in general, in an asymmetric scenario, 2248 * because a long idling is needed for guaranteeing to a queue 2249 * its reserved share of the throughput (in particular, it is 2250 * needed if the queue has a higher weight than some other 2251 * queue). 2252 */ 2253 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 2254 bfq_symmetric_scenario(bfqd)) 2255 sl = min_t(u64, sl, BFQ_MIN_TT); 2256 2257 bfqd->last_idling_start = ktime_get(); 2258 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 2259 HRTIMER_MODE_REL); 2260 bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 2261 } 2262 2263 /* 2264 * In autotuning mode, max_budget is dynamically recomputed as the 2265 * amount of sectors transferred in timeout at the estimated peak 2266 * rate. This enables BFQ to utilize a full timeslice with a full 2267 * budget, even if the in-service queue is served at peak rate. And 2268 * this maximises throughput with sequential workloads. 2269 */ 2270 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 2271 { 2272 return (u64)bfqd->peak_rate * USEC_PER_MSEC * 2273 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 2274 } 2275 2276 /* 2277 * Update parameters related to throughput and responsiveness, as a 2278 * function of the estimated peak rate. See comments on 2279 * bfq_calc_max_budget(), and on T_slow and T_fast arrays. 2280 */ 2281 static void update_thr_responsiveness_params(struct bfq_data *bfqd) 2282 { 2283 int dev_type = blk_queue_nonrot(bfqd->queue); 2284 2285 if (bfqd->bfq_user_max_budget == 0) 2286 bfqd->bfq_max_budget = 2287 bfq_calc_max_budget(bfqd); 2288 2289 if (bfqd->device_speed == BFQ_BFQD_FAST && 2290 bfqd->peak_rate < device_speed_thresh[dev_type]) { 2291 bfqd->device_speed = BFQ_BFQD_SLOW; 2292 bfqd->RT_prod = R_slow[dev_type] * 2293 T_slow[dev_type]; 2294 } else if (bfqd->device_speed == BFQ_BFQD_SLOW && 2295 bfqd->peak_rate > device_speed_thresh[dev_type]) { 2296 bfqd->device_speed = BFQ_BFQD_FAST; 2297 bfqd->RT_prod = R_fast[dev_type] * 2298 T_fast[dev_type]; 2299 } 2300 2301 bfq_log(bfqd, 2302 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", 2303 dev_type == 0 ? "ROT" : "NONROT", 2304 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", 2305 bfqd->device_speed == BFQ_BFQD_FAST ? 2306 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : 2307 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, 2308 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> 2309 BFQ_RATE_SHIFT); 2310 } 2311 2312 static void bfq_reset_rate_computation(struct bfq_data *bfqd, 2313 struct request *rq) 2314 { 2315 if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 2316 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 2317 bfqd->peak_rate_samples = 1; 2318 bfqd->sequential_samples = 0; 2319 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 2320 blk_rq_sectors(rq); 2321 } else /* no new rq dispatched, just reset the number of samples */ 2322 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 2323 2324 bfq_log(bfqd, 2325 "reset_rate_computation at end, sample %u/%u tot_sects %llu", 2326 bfqd->peak_rate_samples, bfqd->sequential_samples, 2327 bfqd->tot_sectors_dispatched); 2328 } 2329 2330 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 2331 { 2332 u32 rate, weight, divisor; 2333 2334 /* 2335 * For the convergence property to hold (see comments on 2336 * bfq_update_peak_rate()) and for the assessment to be 2337 * reliable, a minimum number of samples must be present, and 2338 * a minimum amount of time must have elapsed. If not so, do 2339 * not compute new rate. Just reset parameters, to get ready 2340 * for a new evaluation attempt. 2341 */ 2342 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 2343 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 2344 goto reset_computation; 2345 2346 /* 2347 * If a new request completion has occurred after last 2348 * dispatch, then, to approximate the rate at which requests 2349 * have been served by the device, it is more precise to 2350 * extend the observation interval to the last completion. 2351 */ 2352 bfqd->delta_from_first = 2353 max_t(u64, bfqd->delta_from_first, 2354 bfqd->last_completion - bfqd->first_dispatch); 2355 2356 /* 2357 * Rate computed in sects/usec, and not sects/nsec, for 2358 * precision issues. 2359 */ 2360 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 2361 div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 2362 2363 /* 2364 * Peak rate not updated if: 2365 * - the percentage of sequential dispatches is below 3/4 of the 2366 * total, and rate is below the current estimated peak rate 2367 * - rate is unreasonably high (> 20M sectors/sec) 2368 */ 2369 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 2370 rate <= bfqd->peak_rate) || 2371 rate > 20<<BFQ_RATE_SHIFT) 2372 goto reset_computation; 2373 2374 /* 2375 * We have to update the peak rate, at last! To this purpose, 2376 * we use a low-pass filter. We compute the smoothing constant 2377 * of the filter as a function of the 'weight' of the new 2378 * measured rate. 2379 * 2380 * As can be seen in next formulas, we define this weight as a 2381 * quantity proportional to how sequential the workload is, 2382 * and to how long the observation time interval is. 2383 * 2384 * The weight runs from 0 to 8. The maximum value of the 2385 * weight, 8, yields the minimum value for the smoothing 2386 * constant. At this minimum value for the smoothing constant, 2387 * the measured rate contributes for half of the next value of 2388 * the estimated peak rate. 2389 * 2390 * So, the first step is to compute the weight as a function 2391 * of how sequential the workload is. Note that the weight 2392 * cannot reach 9, because bfqd->sequential_samples cannot 2393 * become equal to bfqd->peak_rate_samples, which, in its 2394 * turn, holds true because bfqd->sequential_samples is not 2395 * incremented for the first sample. 2396 */ 2397 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 2398 2399 /* 2400 * Second step: further refine the weight as a function of the 2401 * duration of the observation interval. 2402 */ 2403 weight = min_t(u32, 8, 2404 div_u64(weight * bfqd->delta_from_first, 2405 BFQ_RATE_REF_INTERVAL)); 2406 2407 /* 2408 * Divisor ranging from 10, for minimum weight, to 2, for 2409 * maximum weight. 2410 */ 2411 divisor = 10 - weight; 2412 2413 /* 2414 * Finally, update peak rate: 2415 * 2416 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 2417 */ 2418 bfqd->peak_rate *= divisor-1; 2419 bfqd->peak_rate /= divisor; 2420 rate /= divisor; /* smoothing constant alpha = 1/divisor */ 2421 2422 bfqd->peak_rate += rate; 2423 update_thr_responsiveness_params(bfqd); 2424 2425 reset_computation: 2426 bfq_reset_rate_computation(bfqd, rq); 2427 } 2428 2429 /* 2430 * Update the read/write peak rate (the main quantity used for 2431 * auto-tuning, see update_thr_responsiveness_params()). 2432 * 2433 * It is not trivial to estimate the peak rate (correctly): because of 2434 * the presence of sw and hw queues between the scheduler and the 2435 * device components that finally serve I/O requests, it is hard to 2436 * say exactly when a given dispatched request is served inside the 2437 * device, and for how long. As a consequence, it is hard to know 2438 * precisely at what rate a given set of requests is actually served 2439 * by the device. 2440 * 2441 * On the opposite end, the dispatch time of any request is trivially 2442 * available, and, from this piece of information, the "dispatch rate" 2443 * of requests can be immediately computed. So, the idea in the next 2444 * function is to use what is known, namely request dispatch times 2445 * (plus, when useful, request completion times), to estimate what is 2446 * unknown, namely in-device request service rate. 2447 * 2448 * The main issue is that, because of the above facts, the rate at 2449 * which a certain set of requests is dispatched over a certain time 2450 * interval can vary greatly with respect to the rate at which the 2451 * same requests are then served. But, since the size of any 2452 * intermediate queue is limited, and the service scheme is lossless 2453 * (no request is silently dropped), the following obvious convergence 2454 * property holds: the number of requests dispatched MUST become 2455 * closer and closer to the number of requests completed as the 2456 * observation interval grows. This is the key property used in 2457 * the next function to estimate the peak service rate as a function 2458 * of the observed dispatch rate. The function assumes to be invoked 2459 * on every request dispatch. 2460 */ 2461 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 2462 { 2463 u64 now_ns = ktime_get_ns(); 2464 2465 if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 2466 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 2467 bfqd->peak_rate_samples); 2468 bfq_reset_rate_computation(bfqd, rq); 2469 goto update_last_values; /* will add one sample */ 2470 } 2471 2472 /* 2473 * Device idle for very long: the observation interval lasting 2474 * up to this dispatch cannot be a valid observation interval 2475 * for computing a new peak rate (similarly to the late- 2476 * completion event in bfq_completed_request()). Go to 2477 * update_rate_and_reset to have the following three steps 2478 * taken: 2479 * - close the observation interval at the last (previous) 2480 * request dispatch or completion 2481 * - compute rate, if possible, for that observation interval 2482 * - start a new observation interval with this dispatch 2483 */ 2484 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 2485 bfqd->rq_in_driver == 0) 2486 goto update_rate_and_reset; 2487 2488 /* Update sampling information */ 2489 bfqd->peak_rate_samples++; 2490 2491 if ((bfqd->rq_in_driver > 0 || 2492 now_ns - bfqd->last_completion < BFQ_MIN_TT) 2493 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) 2494 bfqd->sequential_samples++; 2495 2496 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 2497 2498 /* Reset max observed rq size every 32 dispatches */ 2499 if (likely(bfqd->peak_rate_samples % 32)) 2500 bfqd->last_rq_max_size = 2501 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 2502 else 2503 bfqd->last_rq_max_size = blk_rq_sectors(rq); 2504 2505 bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 2506 2507 /* Target observation interval not yet reached, go on sampling */ 2508 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 2509 goto update_last_values; 2510 2511 update_rate_and_reset: 2512 bfq_update_rate_reset(bfqd, rq); 2513 update_last_values: 2514 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2515 bfqd->last_dispatch = now_ns; 2516 } 2517 2518 /* 2519 * Remove request from internal lists. 2520 */ 2521 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 2522 { 2523 struct bfq_queue *bfqq = RQ_BFQQ(rq); 2524 2525 /* 2526 * For consistency, the next instruction should have been 2527 * executed after removing the request from the queue and 2528 * dispatching it. We execute instead this instruction before 2529 * bfq_remove_request() (and hence introduce a temporary 2530 * inconsistency), for efficiency. In fact, should this 2531 * dispatch occur for a non in-service bfqq, this anticipated 2532 * increment prevents two counters related to bfqq->dispatched 2533 * from risking to be, first, uselessly decremented, and then 2534 * incremented again when the (new) value of bfqq->dispatched 2535 * happens to be taken into account. 2536 */ 2537 bfqq->dispatched++; 2538 bfq_update_peak_rate(q->elevator->elevator_data, rq); 2539 2540 bfq_remove_request(q, rq); 2541 } 2542 2543 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) 2544 { 2545 /* 2546 * If this bfqq is shared between multiple processes, check 2547 * to make sure that those processes are still issuing I/Os 2548 * within the mean seek distance. If not, it may be time to 2549 * break the queues apart again. 2550 */ 2551 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 2552 bfq_mark_bfqq_split_coop(bfqq); 2553 2554 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 2555 if (bfqq->dispatched == 0) 2556 /* 2557 * Overloading budget_timeout field to store 2558 * the time at which the queue remains with no 2559 * backlog and no outstanding request; used by 2560 * the weight-raising mechanism. 2561 */ 2562 bfqq->budget_timeout = jiffies; 2563 2564 bfq_del_bfqq_busy(bfqd, bfqq, true); 2565 } else { 2566 bfq_requeue_bfqq(bfqd, bfqq); 2567 /* 2568 * Resort priority tree of potential close cooperators. 2569 */ 2570 bfq_pos_tree_add_move(bfqd, bfqq); 2571 } 2572 2573 /* 2574 * All in-service entities must have been properly deactivated 2575 * or requeued before executing the next function, which 2576 * resets all in-service entites as no more in service. 2577 */ 2578 __bfq_bfqd_reset_in_service(bfqd); 2579 } 2580 2581 /** 2582 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 2583 * @bfqd: device data. 2584 * @bfqq: queue to update. 2585 * @reason: reason for expiration. 2586 * 2587 * Handle the feedback on @bfqq budget at queue expiration. 2588 * See the body for detailed comments. 2589 */ 2590 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 2591 struct bfq_queue *bfqq, 2592 enum bfqq_expiration reason) 2593 { 2594 struct request *next_rq; 2595 int budget, min_budget; 2596 2597 min_budget = bfq_min_budget(bfqd); 2598 2599 if (bfqq->wr_coeff == 1) 2600 budget = bfqq->max_budget; 2601 else /* 2602 * Use a constant, low budget for weight-raised queues, 2603 * to help achieve a low latency. Keep it slightly higher 2604 * than the minimum possible budget, to cause a little 2605 * bit fewer expirations. 2606 */ 2607 budget = 2 * min_budget; 2608 2609 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 2610 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 2611 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 2612 budget, bfq_min_budget(bfqd)); 2613 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 2614 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 2615 2616 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 2617 switch (reason) { 2618 /* 2619 * Caveat: in all the following cases we trade latency 2620 * for throughput. 2621 */ 2622 case BFQQE_TOO_IDLE: 2623 /* 2624 * This is the only case where we may reduce 2625 * the budget: if there is no request of the 2626 * process still waiting for completion, then 2627 * we assume (tentatively) that the timer has 2628 * expired because the batch of requests of 2629 * the process could have been served with a 2630 * smaller budget. Hence, betting that 2631 * process will behave in the same way when it 2632 * becomes backlogged again, we reduce its 2633 * next budget. As long as we guess right, 2634 * this budget cut reduces the latency 2635 * experienced by the process. 2636 * 2637 * However, if there are still outstanding 2638 * requests, then the process may have not yet 2639 * issued its next request just because it is 2640 * still waiting for the completion of some of 2641 * the still outstanding ones. So in this 2642 * subcase we do not reduce its budget, on the 2643 * contrary we increase it to possibly boost 2644 * the throughput, as discussed in the 2645 * comments to the BUDGET_TIMEOUT case. 2646 */ 2647 if (bfqq->dispatched > 0) /* still outstanding reqs */ 2648 budget = min(budget * 2, bfqd->bfq_max_budget); 2649 else { 2650 if (budget > 5 * min_budget) 2651 budget -= 4 * min_budget; 2652 else 2653 budget = min_budget; 2654 } 2655 break; 2656 case BFQQE_BUDGET_TIMEOUT: 2657 /* 2658 * We double the budget here because it gives 2659 * the chance to boost the throughput if this 2660 * is not a seeky process (and has bumped into 2661 * this timeout because of, e.g., ZBR). 2662 */ 2663 budget = min(budget * 2, bfqd->bfq_max_budget); 2664 break; 2665 case BFQQE_BUDGET_EXHAUSTED: 2666 /* 2667 * The process still has backlog, and did not 2668 * let either the budget timeout or the disk 2669 * idling timeout expire. Hence it is not 2670 * seeky, has a short thinktime and may be 2671 * happy with a higher budget too. So 2672 * definitely increase the budget of this good 2673 * candidate to boost the disk throughput. 2674 */ 2675 budget = min(budget * 4, bfqd->bfq_max_budget); 2676 break; 2677 case BFQQE_NO_MORE_REQUESTS: 2678 /* 2679 * For queues that expire for this reason, it 2680 * is particularly important to keep the 2681 * budget close to the actual service they 2682 * need. Doing so reduces the timestamp 2683 * misalignment problem described in the 2684 * comments in the body of 2685 * __bfq_activate_entity. In fact, suppose 2686 * that a queue systematically expires for 2687 * BFQQE_NO_MORE_REQUESTS and presents a 2688 * new request in time to enjoy timestamp 2689 * back-shifting. The larger the budget of the 2690 * queue is with respect to the service the 2691 * queue actually requests in each service 2692 * slot, the more times the queue can be 2693 * reactivated with the same virtual finish 2694 * time. It follows that, even if this finish 2695 * time is pushed to the system virtual time 2696 * to reduce the consequent timestamp 2697 * misalignment, the queue unjustly enjoys for 2698 * many re-activations a lower finish time 2699 * than all newly activated queues. 2700 * 2701 * The service needed by bfqq is measured 2702 * quite precisely by bfqq->entity.service. 2703 * Since bfqq does not enjoy device idling, 2704 * bfqq->entity.service is equal to the number 2705 * of sectors that the process associated with 2706 * bfqq requested to read/write before waiting 2707 * for request completions, or blocking for 2708 * other reasons. 2709 */ 2710 budget = max_t(int, bfqq->entity.service, min_budget); 2711 break; 2712 default: 2713 return; 2714 } 2715 } else if (!bfq_bfqq_sync(bfqq)) { 2716 /* 2717 * Async queues get always the maximum possible 2718 * budget, as for them we do not care about latency 2719 * (in addition, their ability to dispatch is limited 2720 * by the charging factor). 2721 */ 2722 budget = bfqd->bfq_max_budget; 2723 } 2724 2725 bfqq->max_budget = budget; 2726 2727 if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 2728 !bfqd->bfq_user_max_budget) 2729 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 2730 2731 /* 2732 * If there is still backlog, then assign a new budget, making 2733 * sure that it is large enough for the next request. Since 2734 * the finish time of bfqq must be kept in sync with the 2735 * budget, be sure to call __bfq_bfqq_expire() *after* this 2736 * update. 2737 * 2738 * If there is no backlog, then no need to update the budget; 2739 * it will be updated on the arrival of a new request. 2740 */ 2741 next_rq = bfqq->next_rq; 2742 if (next_rq) 2743 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 2744 bfq_serv_to_charge(next_rq, bfqq)); 2745 2746 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 2747 next_rq ? blk_rq_sectors(next_rq) : 0, 2748 bfqq->entity.budget); 2749 } 2750 2751 /* 2752 * Return true if the process associated with bfqq is "slow". The slow 2753 * flag is used, in addition to the budget timeout, to reduce the 2754 * amount of service provided to seeky processes, and thus reduce 2755 * their chances to lower the throughput. More details in the comments 2756 * on the function bfq_bfqq_expire(). 2757 * 2758 * An important observation is in order: as discussed in the comments 2759 * on the function bfq_update_peak_rate(), with devices with internal 2760 * queues, it is hard if ever possible to know when and for how long 2761 * an I/O request is processed by the device (apart from the trivial 2762 * I/O pattern where a new request is dispatched only after the 2763 * previous one has been completed). This makes it hard to evaluate 2764 * the real rate at which the I/O requests of each bfq_queue are 2765 * served. In fact, for an I/O scheduler like BFQ, serving a 2766 * bfq_queue means just dispatching its requests during its service 2767 * slot (i.e., until the budget of the queue is exhausted, or the 2768 * queue remains idle, or, finally, a timeout fires). But, during the 2769 * service slot of a bfq_queue, around 100 ms at most, the device may 2770 * be even still processing requests of bfq_queues served in previous 2771 * service slots. On the opposite end, the requests of the in-service 2772 * bfq_queue may be completed after the service slot of the queue 2773 * finishes. 2774 * 2775 * Anyway, unless more sophisticated solutions are used 2776 * (where possible), the sum of the sizes of the requests dispatched 2777 * during the service slot of a bfq_queue is probably the only 2778 * approximation available for the service received by the bfq_queue 2779 * during its service slot. And this sum is the quantity used in this 2780 * function to evaluate the I/O speed of a process. 2781 */ 2782 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2783 bool compensate, enum bfqq_expiration reason, 2784 unsigned long *delta_ms) 2785 { 2786 ktime_t delta_ktime; 2787 u32 delta_usecs; 2788 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 2789 2790 if (!bfq_bfqq_sync(bfqq)) 2791 return false; 2792 2793 if (compensate) 2794 delta_ktime = bfqd->last_idling_start; 2795 else 2796 delta_ktime = ktime_get(); 2797 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 2798 delta_usecs = ktime_to_us(delta_ktime); 2799 2800 /* don't use too short time intervals */ 2801 if (delta_usecs < 1000) { 2802 if (blk_queue_nonrot(bfqd->queue)) 2803 /* 2804 * give same worst-case guarantees as idling 2805 * for seeky 2806 */ 2807 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 2808 else /* charge at least one seek */ 2809 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 2810 2811 return slow; 2812 } 2813 2814 *delta_ms = delta_usecs / USEC_PER_MSEC; 2815 2816 /* 2817 * Use only long (> 20ms) intervals to filter out excessive 2818 * spikes in service rate estimation. 2819 */ 2820 if (delta_usecs > 20000) { 2821 /* 2822 * Caveat for rotational devices: processes doing I/O 2823 * in the slower disk zones tend to be slow(er) even 2824 * if not seeky. In this respect, the estimated peak 2825 * rate is likely to be an average over the disk 2826 * surface. Accordingly, to not be too harsh with 2827 * unlucky processes, a process is deemed slow only if 2828 * its rate has been lower than half of the estimated 2829 * peak rate. 2830 */ 2831 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 2832 } 2833 2834 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 2835 2836 return slow; 2837 } 2838 2839 /* 2840 * To be deemed as soft real-time, an application must meet two 2841 * requirements. First, the application must not require an average 2842 * bandwidth higher than the approximate bandwidth required to playback or 2843 * record a compressed high-definition video. 2844 * The next function is invoked on the completion of the last request of a 2845 * batch, to compute the next-start time instant, soft_rt_next_start, such 2846 * that, if the next request of the application does not arrive before 2847 * soft_rt_next_start, then the above requirement on the bandwidth is met. 2848 * 2849 * The second requirement is that the request pattern of the application is 2850 * isochronous, i.e., that, after issuing a request or a batch of requests, 2851 * the application stops issuing new requests until all its pending requests 2852 * have been completed. After that, the application may issue a new batch, 2853 * and so on. 2854 * For this reason the next function is invoked to compute 2855 * soft_rt_next_start only for applications that meet this requirement, 2856 * whereas soft_rt_next_start is set to infinity for applications that do 2857 * not. 2858 * 2859 * Unfortunately, even a greedy application may happen to behave in an 2860 * isochronous way if the CPU load is high. In fact, the application may 2861 * stop issuing requests while the CPUs are busy serving other processes, 2862 * then restart, then stop again for a while, and so on. In addition, if 2863 * the disk achieves a low enough throughput with the request pattern 2864 * issued by the application (e.g., because the request pattern is random 2865 * and/or the device is slow), then the application may meet the above 2866 * bandwidth requirement too. To prevent such a greedy application to be 2867 * deemed as soft real-time, a further rule is used in the computation of 2868 * soft_rt_next_start: soft_rt_next_start must be higher than the current 2869 * time plus the maximum time for which the arrival of a request is waited 2870 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. 2871 * This filters out greedy applications, as the latter issue instead their 2872 * next request as soon as possible after the last one has been completed 2873 * (in contrast, when a batch of requests is completed, a soft real-time 2874 * application spends some time processing data). 2875 * 2876 * Unfortunately, the last filter may easily generate false positives if 2877 * only bfqd->bfq_slice_idle is used as a reference time interval and one 2878 * or both the following cases occur: 2879 * 1) HZ is so low that the duration of a jiffy is comparable to or higher 2880 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with 2881 * HZ=100. 2882 * 2) jiffies, instead of increasing at a constant rate, may stop increasing 2883 * for a while, then suddenly 'jump' by several units to recover the lost 2884 * increments. This seems to happen, e.g., inside virtual machines. 2885 * To address this issue, we do not use as a reference time interval just 2886 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In 2887 * particular we add the minimum number of jiffies for which the filter 2888 * seems to be quite precise also in embedded systems and KVM/QEMU virtual 2889 * machines. 2890 */ 2891 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 2892 struct bfq_queue *bfqq) 2893 { 2894 return max(bfqq->last_idle_bklogged + 2895 HZ * bfqq->service_from_backlogged / 2896 bfqd->bfq_wr_max_softrt_rate, 2897 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 2898 } 2899 2900 /* 2901 * Return the farthest future time instant according to jiffies 2902 * macros. 2903 */ 2904 static unsigned long bfq_greatest_from_now(void) 2905 { 2906 return jiffies + MAX_JIFFY_OFFSET; 2907 } 2908 2909 /* 2910 * Return the farthest past time instant according to jiffies 2911 * macros. 2912 */ 2913 static unsigned long bfq_smallest_from_now(void) 2914 { 2915 return jiffies - MAX_JIFFY_OFFSET; 2916 } 2917 2918 /** 2919 * bfq_bfqq_expire - expire a queue. 2920 * @bfqd: device owning the queue. 2921 * @bfqq: the queue to expire. 2922 * @compensate: if true, compensate for the time spent idling. 2923 * @reason: the reason causing the expiration. 2924 * 2925 * If the process associated with bfqq does slow I/O (e.g., because it 2926 * issues random requests), we charge bfqq with the time it has been 2927 * in service instead of the service it has received (see 2928 * bfq_bfqq_charge_time for details on how this goal is achieved). As 2929 * a consequence, bfqq will typically get higher timestamps upon 2930 * reactivation, and hence it will be rescheduled as if it had 2931 * received more service than what it has actually received. In the 2932 * end, bfqq receives less service in proportion to how slowly its 2933 * associated process consumes its budgets (and hence how seriously it 2934 * tends to lower the throughput). In addition, this time-charging 2935 * strategy guarantees time fairness among slow processes. In 2936 * contrast, if the process associated with bfqq is not slow, we 2937 * charge bfqq exactly with the service it has received. 2938 * 2939 * Charging time to the first type of queues and the exact service to 2940 * the other has the effect of using the WF2Q+ policy to schedule the 2941 * former on a timeslice basis, without violating service domain 2942 * guarantees among the latter. 2943 */ 2944 void bfq_bfqq_expire(struct bfq_data *bfqd, 2945 struct bfq_queue *bfqq, 2946 bool compensate, 2947 enum bfqq_expiration reason) 2948 { 2949 bool slow; 2950 unsigned long delta = 0; 2951 struct bfq_entity *entity = &bfqq->entity; 2952 int ref; 2953 2954 /* 2955 * Check whether the process is slow (see bfq_bfqq_is_slow). 2956 */ 2957 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); 2958 2959 /* 2960 * Increase service_from_backlogged before next statement, 2961 * because the possible next invocation of 2962 * bfq_bfqq_charge_time would likely inflate 2963 * entity->service. In contrast, service_from_backlogged must 2964 * contain real service, to enable the soft real-time 2965 * heuristic to correctly compute the bandwidth consumed by 2966 * bfqq. 2967 */ 2968 bfqq->service_from_backlogged += entity->service; 2969 2970 /* 2971 * As above explained, charge slow (typically seeky) and 2972 * timed-out queues with the time and not the service 2973 * received, to favor sequential workloads. 2974 * 2975 * Processes doing I/O in the slower disk zones will tend to 2976 * be slow(er) even if not seeky. Therefore, since the 2977 * estimated peak rate is actually an average over the disk 2978 * surface, these processes may timeout just for bad luck. To 2979 * avoid punishing them, do not charge time to processes that 2980 * succeeded in consuming at least 2/3 of their budget. This 2981 * allows BFQ to preserve enough elasticity to still perform 2982 * bandwidth, and not time, distribution with little unlucky 2983 * or quasi-sequential processes. 2984 */ 2985 if (bfqq->wr_coeff == 1 && 2986 (slow || 2987 (reason == BFQQE_BUDGET_TIMEOUT && 2988 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 2989 bfq_bfqq_charge_time(bfqd, bfqq, delta); 2990 2991 if (reason == BFQQE_TOO_IDLE && 2992 entity->service <= 2 * entity->budget / 10) 2993 bfq_clear_bfqq_IO_bound(bfqq); 2994 2995 if (bfqd->low_latency && bfqq->wr_coeff == 1) 2996 bfqq->last_wr_start_finish = jiffies; 2997 2998 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 2999 RB_EMPTY_ROOT(&bfqq->sort_list)) { 3000 /* 3001 * If we get here, and there are no outstanding 3002 * requests, then the request pattern is isochronous 3003 * (see the comments on the function 3004 * bfq_bfqq_softrt_next_start()). Thus we can compute 3005 * soft_rt_next_start. If, instead, the queue still 3006 * has outstanding requests, then we have to wait for 3007 * the completion of all the outstanding requests to 3008 * discover whether the request pattern is actually 3009 * isochronous. 3010 */ 3011 if (bfqq->dispatched == 0) 3012 bfqq->soft_rt_next_start = 3013 bfq_bfqq_softrt_next_start(bfqd, bfqq); 3014 else { 3015 /* 3016 * The application is still waiting for the 3017 * completion of one or more requests: 3018 * prevent it from possibly being incorrectly 3019 * deemed as soft real-time by setting its 3020 * soft_rt_next_start to infinity. In fact, 3021 * without this assignment, the application 3022 * would be incorrectly deemed as soft 3023 * real-time if: 3024 * 1) it issued a new request before the 3025 * completion of all its in-flight 3026 * requests, and 3027 * 2) at that time, its soft_rt_next_start 3028 * happened to be in the past. 3029 */ 3030 bfqq->soft_rt_next_start = 3031 bfq_greatest_from_now(); 3032 /* 3033 * Schedule an update of soft_rt_next_start to when 3034 * the task may be discovered to be isochronous. 3035 */ 3036 bfq_mark_bfqq_softrt_update(bfqq); 3037 } 3038 } 3039 3040 bfq_log_bfqq(bfqd, bfqq, 3041 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, 3042 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); 3043 3044 /* 3045 * Increase, decrease or leave budget unchanged according to 3046 * reason. 3047 */ 3048 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 3049 ref = bfqq->ref; 3050 __bfq_bfqq_expire(bfqd, bfqq); 3051 3052 /* mark bfqq as waiting a request only if a bic still points to it */ 3053 if (ref > 1 && !bfq_bfqq_busy(bfqq) && 3054 reason != BFQQE_BUDGET_TIMEOUT && 3055 reason != BFQQE_BUDGET_EXHAUSTED) 3056 bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 3057 } 3058 3059 /* 3060 * Budget timeout is not implemented through a dedicated timer, but 3061 * just checked on request arrivals and completions, as well as on 3062 * idle timer expirations. 3063 */ 3064 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 3065 { 3066 return time_is_before_eq_jiffies(bfqq->budget_timeout); 3067 } 3068 3069 /* 3070 * If we expire a queue that is actively waiting (i.e., with the 3071 * device idled) for the arrival of a new request, then we may incur 3072 * the timestamp misalignment problem described in the body of the 3073 * function __bfq_activate_entity. Hence we return true only if this 3074 * condition does not hold, or if the queue is slow enough to deserve 3075 * only to be kicked off for preserving a high throughput. 3076 */ 3077 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 3078 { 3079 bfq_log_bfqq(bfqq->bfqd, bfqq, 3080 "may_budget_timeout: wait_request %d left %d timeout %d", 3081 bfq_bfqq_wait_request(bfqq), 3082 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 3083 bfq_bfqq_budget_timeout(bfqq)); 3084 3085 return (!bfq_bfqq_wait_request(bfqq) || 3086 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 3087 && 3088 bfq_bfqq_budget_timeout(bfqq); 3089 } 3090 3091 /* 3092 * For a queue that becomes empty, device idling is allowed only if 3093 * this function returns true for the queue. As a consequence, since 3094 * device idling plays a critical role in both throughput boosting and 3095 * service guarantees, the return value of this function plays a 3096 * critical role in both these aspects as well. 3097 * 3098 * In a nutshell, this function returns true only if idling is 3099 * beneficial for throughput or, even if detrimental for throughput, 3100 * idling is however necessary to preserve service guarantees (low 3101 * latency, desired throughput distribution, ...). In particular, on 3102 * NCQ-capable devices, this function tries to return false, so as to 3103 * help keep the drives' internal queues full, whenever this helps the 3104 * device boost the throughput without causing any service-guarantee 3105 * issue. 3106 * 3107 * In more detail, the return value of this function is obtained by, 3108 * first, computing a number of boolean variables that take into 3109 * account throughput and service-guarantee issues, and, then, 3110 * combining these variables in a logical expression. Most of the 3111 * issues taken into account are not trivial. We discuss these issues 3112 * individually while introducing the variables. 3113 */ 3114 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) 3115 { 3116 struct bfq_data *bfqd = bfqq->bfqd; 3117 bool idling_boosts_thr, idling_boosts_thr_without_issues, 3118 idling_needed_for_service_guarantees, 3119 asymmetric_scenario; 3120 3121 if (bfqd->strict_guarantees) 3122 return true; 3123 3124 /* 3125 * The next variable takes into account the cases where idling 3126 * boosts the throughput. 3127 * 3128 * The value of the variable is computed considering, first, that 3129 * idling is virtually always beneficial for the throughput if: 3130 * (a) the device is not NCQ-capable, or 3131 * (b) regardless of the presence of NCQ, the device is rotational 3132 * and the request pattern for bfqq is I/O-bound and sequential. 3133 * 3134 * Secondly, and in contrast to the above item (b), idling an 3135 * NCQ-capable flash-based device would not boost the 3136 * throughput even with sequential I/O; rather it would lower 3137 * the throughput in proportion to how fast the device 3138 * is. Accordingly, the next variable is true if any of the 3139 * above conditions (a) and (b) is true, and, in particular, 3140 * happens to be false if bfqd is an NCQ-capable flash-based 3141 * device. 3142 */ 3143 idling_boosts_thr = !bfqd->hw_tag || 3144 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) && 3145 bfq_bfqq_idle_window(bfqq)); 3146 3147 /* 3148 * The value of the next variable, 3149 * idling_boosts_thr_without_issues, is equal to that of 3150 * idling_boosts_thr, unless a special case holds. In this 3151 * special case, described below, idling may cause problems to 3152 * weight-raised queues. 3153 * 3154 * When the request pool is saturated (e.g., in the presence 3155 * of write hogs), if the processes associated with 3156 * non-weight-raised queues ask for requests at a lower rate, 3157 * then processes associated with weight-raised queues have a 3158 * higher probability to get a request from the pool 3159 * immediately (or at least soon) when they need one. Thus 3160 * they have a higher probability to actually get a fraction 3161 * of the device throughput proportional to their high 3162 * weight. This is especially true with NCQ-capable drives, 3163 * which enqueue several requests in advance, and further 3164 * reorder internally-queued requests. 3165 * 3166 * For this reason, we force to false the value of 3167 * idling_boosts_thr_without_issues if there are weight-raised 3168 * busy queues. In this case, and if bfqq is not weight-raised, 3169 * this guarantees that the device is not idled for bfqq (if, 3170 * instead, bfqq is weight-raised, then idling will be 3171 * guaranteed by another variable, see below). Combined with 3172 * the timestamping rules of BFQ (see [1] for details), this 3173 * behavior causes bfqq, and hence any sync non-weight-raised 3174 * queue, to get a lower number of requests served, and thus 3175 * to ask for a lower number of requests from the request 3176 * pool, before the busy weight-raised queues get served 3177 * again. This often mitigates starvation problems in the 3178 * presence of heavy write workloads and NCQ, thereby 3179 * guaranteeing a higher application and system responsiveness 3180 * in these hostile scenarios. 3181 */ 3182 idling_boosts_thr_without_issues = idling_boosts_thr && 3183 bfqd->wr_busy_queues == 0; 3184 3185 /* 3186 * There is then a case where idling must be performed not 3187 * for throughput concerns, but to preserve service 3188 * guarantees. 3189 * 3190 * To introduce this case, we can note that allowing the drive 3191 * to enqueue more than one request at a time, and hence 3192 * delegating de facto final scheduling decisions to the 3193 * drive's internal scheduler, entails loss of control on the 3194 * actual request service order. In particular, the critical 3195 * situation is when requests from different processes happen 3196 * to be present, at the same time, in the internal queue(s) 3197 * of the drive. In such a situation, the drive, by deciding 3198 * the service order of the internally-queued requests, does 3199 * determine also the actual throughput distribution among 3200 * these processes. But the drive typically has no notion or 3201 * concern about per-process throughput distribution, and 3202 * makes its decisions only on a per-request basis. Therefore, 3203 * the service distribution enforced by the drive's internal 3204 * scheduler is likely to coincide with the desired 3205 * device-throughput distribution only in a completely 3206 * symmetric scenario where: 3207 * (i) each of these processes must get the same throughput as 3208 * the others; 3209 * (ii) all these processes have the same I/O pattern 3210 (either sequential or random). 3211 * In fact, in such a scenario, the drive will tend to treat 3212 * the requests of each of these processes in about the same 3213 * way as the requests of the others, and thus to provide 3214 * each of these processes with about the same throughput 3215 * (which is exactly the desired throughput distribution). In 3216 * contrast, in any asymmetric scenario, device idling is 3217 * certainly needed to guarantee that bfqq receives its 3218 * assigned fraction of the device throughput (see [1] for 3219 * details). 3220 * 3221 * We address this issue by controlling, actually, only the 3222 * symmetry sub-condition (i), i.e., provided that 3223 * sub-condition (i) holds, idling is not performed, 3224 * regardless of whether sub-condition (ii) holds. In other 3225 * words, only if sub-condition (i) holds, then idling is 3226 * allowed, and the device tends to be prevented from queueing 3227 * many requests, possibly of several processes. The reason 3228 * for not controlling also sub-condition (ii) is that we 3229 * exploit preemption to preserve guarantees in case of 3230 * symmetric scenarios, even if (ii) does not hold, as 3231 * explained in the next two paragraphs. 3232 * 3233 * Even if a queue, say Q, is expired when it remains idle, Q 3234 * can still preempt the new in-service queue if the next 3235 * request of Q arrives soon (see the comments on 3236 * bfq_bfqq_update_budg_for_activation). If all queues and 3237 * groups have the same weight, this form of preemption, 3238 * combined with the hole-recovery heuristic described in the 3239 * comments on function bfq_bfqq_update_budg_for_activation, 3240 * are enough to preserve a correct bandwidth distribution in 3241 * the mid term, even without idling. In fact, even if not 3242 * idling allows the internal queues of the device to contain 3243 * many requests, and thus to reorder requests, we can rather 3244 * safely assume that the internal scheduler still preserves a 3245 * minimum of mid-term fairness. The motivation for using 3246 * preemption instead of idling is that, by not idling, 3247 * service guarantees are preserved without minimally 3248 * sacrificing throughput. In other words, both a high 3249 * throughput and its desired distribution are obtained. 3250 * 3251 * More precisely, this preemption-based, idleless approach 3252 * provides fairness in terms of IOPS, and not sectors per 3253 * second. This can be seen with a simple example. Suppose 3254 * that there are two queues with the same weight, but that 3255 * the first queue receives requests of 8 sectors, while the 3256 * second queue receives requests of 1024 sectors. In 3257 * addition, suppose that each of the two queues contains at 3258 * most one request at a time, which implies that each queue 3259 * always remains idle after it is served. Finally, after 3260 * remaining idle, each queue receives very quickly a new 3261 * request. It follows that the two queues are served 3262 * alternatively, preempting each other if needed. This 3263 * implies that, although both queues have the same weight, 3264 * the queue with large requests receives a service that is 3265 * 1024/8 times as high as the service received by the other 3266 * queue. 3267 * 3268 * On the other hand, device idling is performed, and thus 3269 * pure sector-domain guarantees are provided, for the 3270 * following queues, which are likely to need stronger 3271 * throughput guarantees: weight-raised queues, and queues 3272 * with a higher weight than other queues. When such queues 3273 * are active, sub-condition (i) is false, which triggers 3274 * device idling. 3275 * 3276 * According to the above considerations, the next variable is 3277 * true (only) if sub-condition (i) holds. To compute the 3278 * value of this variable, we not only use the return value of 3279 * the function bfq_symmetric_scenario(), but also check 3280 * whether bfqq is being weight-raised, because 3281 * bfq_symmetric_scenario() does not take into account also 3282 * weight-raised queues (see comments on 3283 * bfq_weights_tree_add()). 3284 * 3285 * As a side note, it is worth considering that the above 3286 * device-idling countermeasures may however fail in the 3287 * following unlucky scenario: if idling is (correctly) 3288 * disabled in a time period during which all symmetry 3289 * sub-conditions hold, and hence the device is allowed to 3290 * enqueue many requests, but at some later point in time some 3291 * sub-condition stops to hold, then it may become impossible 3292 * to let requests be served in the desired order until all 3293 * the requests already queued in the device have been served. 3294 */ 3295 asymmetric_scenario = bfqq->wr_coeff > 1 || 3296 !bfq_symmetric_scenario(bfqd); 3297 3298 /* 3299 * Finally, there is a case where maximizing throughput is the 3300 * best choice even if it may cause unfairness toward 3301 * bfqq. Such a case is when bfqq became active in a burst of 3302 * queue activations. Queues that became active during a large 3303 * burst benefit only from throughput, as discussed in the 3304 * comments on bfq_handle_burst. Thus, if bfqq became active 3305 * in a burst and not idling the device maximizes throughput, 3306 * then the device must no be idled, because not idling the 3307 * device provides bfqq and all other queues in the burst with 3308 * maximum benefit. Combining this and the above case, we can 3309 * now establish when idling is actually needed to preserve 3310 * service guarantees. 3311 */ 3312 idling_needed_for_service_guarantees = 3313 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq); 3314 3315 /* 3316 * We have now all the components we need to compute the return 3317 * value of the function, which is true only if both the following 3318 * conditions hold: 3319 * 1) bfqq is sync, because idling make sense only for sync queues; 3320 * 2) idling either boosts the throughput (without issues), or 3321 * is necessary to preserve service guarantees. 3322 */ 3323 return bfq_bfqq_sync(bfqq) && 3324 (idling_boosts_thr_without_issues || 3325 idling_needed_for_service_guarantees); 3326 } 3327 3328 /* 3329 * If the in-service queue is empty but the function bfq_bfqq_may_idle 3330 * returns true, then: 3331 * 1) the queue must remain in service and cannot be expired, and 3332 * 2) the device must be idled to wait for the possible arrival of a new 3333 * request for the queue. 3334 * See the comments on the function bfq_bfqq_may_idle for the reasons 3335 * why performing device idling is the best choice to boost the throughput 3336 * and preserve service guarantees when bfq_bfqq_may_idle itself 3337 * returns true. 3338 */ 3339 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 3340 { 3341 struct bfq_data *bfqd = bfqq->bfqd; 3342 3343 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && 3344 bfq_bfqq_may_idle(bfqq); 3345 } 3346 3347 /* 3348 * Select a queue for service. If we have a current queue in service, 3349 * check whether to continue servicing it, or retrieve and set a new one. 3350 */ 3351 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 3352 { 3353 struct bfq_queue *bfqq; 3354 struct request *next_rq; 3355 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 3356 3357 bfqq = bfqd->in_service_queue; 3358 if (!bfqq) 3359 goto new_queue; 3360 3361 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 3362 3363 if (bfq_may_expire_for_budg_timeout(bfqq) && 3364 !bfq_bfqq_wait_request(bfqq) && 3365 !bfq_bfqq_must_idle(bfqq)) 3366 goto expire; 3367 3368 check_queue: 3369 /* 3370 * This loop is rarely executed more than once. Even when it 3371 * happens, it is much more convenient to re-execute this loop 3372 * than to return NULL and trigger a new dispatch to get a 3373 * request served. 3374 */ 3375 next_rq = bfqq->next_rq; 3376 /* 3377 * If bfqq has requests queued and it has enough budget left to 3378 * serve them, keep the queue, otherwise expire it. 3379 */ 3380 if (next_rq) { 3381 if (bfq_serv_to_charge(next_rq, bfqq) > 3382 bfq_bfqq_budget_left(bfqq)) { 3383 /* 3384 * Expire the queue for budget exhaustion, 3385 * which makes sure that the next budget is 3386 * enough to serve the next request, even if 3387 * it comes from the fifo expired path. 3388 */ 3389 reason = BFQQE_BUDGET_EXHAUSTED; 3390 goto expire; 3391 } else { 3392 /* 3393 * The idle timer may be pending because we may 3394 * not disable disk idling even when a new request 3395 * arrives. 3396 */ 3397 if (bfq_bfqq_wait_request(bfqq)) { 3398 /* 3399 * If we get here: 1) at least a new request 3400 * has arrived but we have not disabled the 3401 * timer because the request was too small, 3402 * 2) then the block layer has unplugged 3403 * the device, causing the dispatch to be 3404 * invoked. 3405 * 3406 * Since the device is unplugged, now the 3407 * requests are probably large enough to 3408 * provide a reasonable throughput. 3409 * So we disable idling. 3410 */ 3411 bfq_clear_bfqq_wait_request(bfqq); 3412 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 3413 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 3414 } 3415 goto keep_queue; 3416 } 3417 } 3418 3419 /* 3420 * No requests pending. However, if the in-service queue is idling 3421 * for a new request, or has requests waiting for a completion and 3422 * may idle after their completion, then keep it anyway. 3423 */ 3424 if (bfq_bfqq_wait_request(bfqq) || 3425 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { 3426 bfqq = NULL; 3427 goto keep_queue; 3428 } 3429 3430 reason = BFQQE_NO_MORE_REQUESTS; 3431 expire: 3432 bfq_bfqq_expire(bfqd, bfqq, false, reason); 3433 new_queue: 3434 bfqq = bfq_set_in_service_queue(bfqd); 3435 if (bfqq) { 3436 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 3437 goto check_queue; 3438 } 3439 keep_queue: 3440 if (bfqq) 3441 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 3442 else 3443 bfq_log(bfqd, "select_queue: no queue returned"); 3444 3445 return bfqq; 3446 } 3447 3448 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3449 { 3450 struct bfq_entity *entity = &bfqq->entity; 3451 3452 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 3453 bfq_log_bfqq(bfqd, bfqq, 3454 "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 3455 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 3456 jiffies_to_msecs(bfqq->wr_cur_max_time), 3457 bfqq->wr_coeff, 3458 bfqq->entity.weight, bfqq->entity.orig_weight); 3459 3460 if (entity->prio_changed) 3461 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 3462 3463 /* 3464 * If the queue was activated in a burst, or too much 3465 * time has elapsed from the beginning of this 3466 * weight-raising period, then end weight raising. 3467 */ 3468 if (bfq_bfqq_in_large_burst(bfqq)) 3469 bfq_bfqq_end_wr(bfqq); 3470 else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 3471 bfqq->wr_cur_max_time)) { 3472 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 3473 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 3474 bfq_wr_duration(bfqd))) 3475 bfq_bfqq_end_wr(bfqq); 3476 else { 3477 /* switch back to interactive wr */ 3478 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 3479 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 3480 bfqq->last_wr_start_finish = 3481 bfqq->wr_start_at_switch_to_srt; 3482 bfqq->entity.prio_changed = 1; 3483 } 3484 } 3485 } 3486 /* 3487 * To improve latency (for this or other queues), immediately 3488 * update weight both if it must be raised and if it must be 3489 * lowered. Since, entity may be on some active tree here, and 3490 * might have a pending change of its ioprio class, invoke 3491 * next function with the last parameter unset (see the 3492 * comments on the function). 3493 */ 3494 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 3495 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity), 3496 entity, false); 3497 } 3498 3499 /* 3500 * Dispatch next request from bfqq. 3501 */ 3502 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 3503 struct bfq_queue *bfqq) 3504 { 3505 struct request *rq = bfqq->next_rq; 3506 unsigned long service_to_charge; 3507 3508 service_to_charge = bfq_serv_to_charge(rq, bfqq); 3509 3510 bfq_bfqq_served(bfqq, service_to_charge); 3511 3512 bfq_dispatch_remove(bfqd->queue, rq); 3513 3514 /* 3515 * If weight raising has to terminate for bfqq, then next 3516 * function causes an immediate update of bfqq's weight, 3517 * without waiting for next activation. As a consequence, on 3518 * expiration, bfqq will be timestamped as if has never been 3519 * weight-raised during this service slot, even if it has 3520 * received part or even most of the service as a 3521 * weight-raised queue. This inflates bfqq's timestamps, which 3522 * is beneficial, as bfqq is then more willing to leave the 3523 * device immediately to possible other weight-raised queues. 3524 */ 3525 bfq_update_wr_data(bfqd, bfqq); 3526 3527 /* 3528 * Expire bfqq, pretending that its budget expired, if bfqq 3529 * belongs to CLASS_IDLE and other queues are waiting for 3530 * service. 3531 */ 3532 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) 3533 goto expire; 3534 3535 return rq; 3536 3537 expire: 3538 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 3539 return rq; 3540 } 3541 3542 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 3543 { 3544 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3545 3546 /* 3547 * Avoiding lock: a race on bfqd->busy_queues should cause at 3548 * most a call to dispatch for nothing 3549 */ 3550 return !list_empty_careful(&bfqd->dispatch) || 3551 bfqd->busy_queues > 0; 3552 } 3553 3554 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3555 { 3556 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3557 struct request *rq = NULL; 3558 struct bfq_queue *bfqq = NULL; 3559 3560 if (!list_empty(&bfqd->dispatch)) { 3561 rq = list_first_entry(&bfqd->dispatch, struct request, 3562 queuelist); 3563 list_del_init(&rq->queuelist); 3564 3565 bfqq = RQ_BFQQ(rq); 3566 3567 if (bfqq) { 3568 /* 3569 * Increment counters here, because this 3570 * dispatch does not follow the standard 3571 * dispatch flow (where counters are 3572 * incremented) 3573 */ 3574 bfqq->dispatched++; 3575 3576 goto inc_in_driver_start_rq; 3577 } 3578 3579 /* 3580 * We exploit the put_rq_private hook to decrement 3581 * rq_in_driver, but put_rq_private will not be 3582 * invoked on this request. So, to avoid unbalance, 3583 * just start this request, without incrementing 3584 * rq_in_driver. As a negative consequence, 3585 * rq_in_driver is deceptively lower than it should be 3586 * while this request is in service. This may cause 3587 * bfq_schedule_dispatch to be invoked uselessly. 3588 * 3589 * As for implementing an exact solution, the 3590 * put_request hook, if defined, is probably invoked 3591 * also on this request. So, by exploiting this hook, 3592 * we could 1) increment rq_in_driver here, and 2) 3593 * decrement it in put_request. Such a solution would 3594 * let the value of the counter be always accurate, 3595 * but it would entail using an extra interface 3596 * function. This cost seems higher than the benefit, 3597 * being the frequency of non-elevator-private 3598 * requests very low. 3599 */ 3600 goto start_rq; 3601 } 3602 3603 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); 3604 3605 if (bfqd->busy_queues == 0) 3606 goto exit; 3607 3608 /* 3609 * Force device to serve one request at a time if 3610 * strict_guarantees is true. Forcing this service scheme is 3611 * currently the ONLY way to guarantee that the request 3612 * service order enforced by the scheduler is respected by a 3613 * queueing device. Otherwise the device is free even to make 3614 * some unlucky request wait for as long as the device 3615 * wishes. 3616 * 3617 * Of course, serving one request at at time may cause loss of 3618 * throughput. 3619 */ 3620 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) 3621 goto exit; 3622 3623 bfqq = bfq_select_queue(bfqd); 3624 if (!bfqq) 3625 goto exit; 3626 3627 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 3628 3629 if (rq) { 3630 inc_in_driver_start_rq: 3631 bfqd->rq_in_driver++; 3632 start_rq: 3633 rq->rq_flags |= RQF_STARTED; 3634 } 3635 exit: 3636 return rq; 3637 } 3638 3639 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3640 { 3641 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3642 struct request *rq; 3643 3644 spin_lock_irq(&bfqd->lock); 3645 3646 rq = __bfq_dispatch_request(hctx); 3647 spin_unlock_irq(&bfqd->lock); 3648 3649 return rq; 3650 } 3651 3652 /* 3653 * Task holds one reference to the queue, dropped when task exits. Each rq 3654 * in-flight on this queue also holds a reference, dropped when rq is freed. 3655 * 3656 * Scheduler lock must be held here. Recall not to use bfqq after calling 3657 * this function on it. 3658 */ 3659 void bfq_put_queue(struct bfq_queue *bfqq) 3660 { 3661 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3662 struct bfq_group *bfqg = bfqq_group(bfqq); 3663 #endif 3664 3665 if (bfqq->bfqd) 3666 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", 3667 bfqq, bfqq->ref); 3668 3669 bfqq->ref--; 3670 if (bfqq->ref) 3671 return; 3672 3673 if (bfq_bfqq_sync(bfqq)) 3674 /* 3675 * The fact that this queue is being destroyed does not 3676 * invalidate the fact that this queue may have been 3677 * activated during the current burst. As a consequence, 3678 * although the queue does not exist anymore, and hence 3679 * needs to be removed from the burst list if there, 3680 * the burst size has not to be decremented. 3681 */ 3682 hlist_del_init(&bfqq->burst_list_node); 3683 3684 kmem_cache_free(bfq_pool, bfqq); 3685 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3686 bfqg_and_blkg_put(bfqg); 3687 #endif 3688 } 3689 3690 static void bfq_put_cooperator(struct bfq_queue *bfqq) 3691 { 3692 struct bfq_queue *__bfqq, *next; 3693 3694 /* 3695 * If this queue was scheduled to merge with another queue, be 3696 * sure to drop the reference taken on that queue (and others in 3697 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 3698 */ 3699 __bfqq = bfqq->new_bfqq; 3700 while (__bfqq) { 3701 if (__bfqq == bfqq) 3702 break; 3703 next = __bfqq->new_bfqq; 3704 bfq_put_queue(__bfqq); 3705 __bfqq = next; 3706 } 3707 } 3708 3709 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3710 { 3711 if (bfqq == bfqd->in_service_queue) { 3712 __bfq_bfqq_expire(bfqd, bfqq); 3713 bfq_schedule_dispatch(bfqd); 3714 } 3715 3716 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 3717 3718 bfq_put_cooperator(bfqq); 3719 3720 bfq_put_queue(bfqq); /* release process reference */ 3721 } 3722 3723 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) 3724 { 3725 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 3726 struct bfq_data *bfqd; 3727 3728 if (bfqq) 3729 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 3730 3731 if (bfqq && bfqd) { 3732 unsigned long flags; 3733 3734 spin_lock_irqsave(&bfqd->lock, flags); 3735 bfq_exit_bfqq(bfqd, bfqq); 3736 bic_set_bfqq(bic, NULL, is_sync); 3737 spin_unlock_irqrestore(&bfqd->lock, flags); 3738 } 3739 } 3740 3741 static void bfq_exit_icq(struct io_cq *icq) 3742 { 3743 struct bfq_io_cq *bic = icq_to_bic(icq); 3744 3745 bfq_exit_icq_bfqq(bic, true); 3746 bfq_exit_icq_bfqq(bic, false); 3747 } 3748 3749 /* 3750 * Update the entity prio values; note that the new values will not 3751 * be used until the next (re)activation. 3752 */ 3753 static void 3754 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 3755 { 3756 struct task_struct *tsk = current; 3757 int ioprio_class; 3758 struct bfq_data *bfqd = bfqq->bfqd; 3759 3760 if (!bfqd) 3761 return; 3762 3763 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3764 switch (ioprio_class) { 3765 default: 3766 dev_err(bfqq->bfqd->queue->backing_dev_info->dev, 3767 "bfq: bad prio class %d\n", ioprio_class); 3768 case IOPRIO_CLASS_NONE: 3769 /* 3770 * No prio set, inherit CPU scheduling settings. 3771 */ 3772 bfqq->new_ioprio = task_nice_ioprio(tsk); 3773 bfqq->new_ioprio_class = task_nice_ioclass(tsk); 3774 break; 3775 case IOPRIO_CLASS_RT: 3776 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3777 bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 3778 break; 3779 case IOPRIO_CLASS_BE: 3780 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3781 bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 3782 break; 3783 case IOPRIO_CLASS_IDLE: 3784 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 3785 bfqq->new_ioprio = 7; 3786 bfq_clear_bfqq_idle_window(bfqq); 3787 break; 3788 } 3789 3790 if (bfqq->new_ioprio >= IOPRIO_BE_NR) { 3791 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 3792 bfqq->new_ioprio); 3793 bfqq->new_ioprio = IOPRIO_BE_NR; 3794 } 3795 3796 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 3797 bfqq->entity.prio_changed = 1; 3798 } 3799 3800 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3801 struct bio *bio, bool is_sync, 3802 struct bfq_io_cq *bic); 3803 3804 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 3805 { 3806 struct bfq_data *bfqd = bic_to_bfqd(bic); 3807 struct bfq_queue *bfqq; 3808 int ioprio = bic->icq.ioc->ioprio; 3809 3810 /* 3811 * This condition may trigger on a newly created bic, be sure to 3812 * drop the lock before returning. 3813 */ 3814 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 3815 return; 3816 3817 bic->ioprio = ioprio; 3818 3819 bfqq = bic_to_bfqq(bic, false); 3820 if (bfqq) { 3821 /* release process reference on this queue */ 3822 bfq_put_queue(bfqq); 3823 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); 3824 bic_set_bfqq(bic, bfqq, false); 3825 } 3826 3827 bfqq = bic_to_bfqq(bic, true); 3828 if (bfqq) 3829 bfq_set_next_ioprio_data(bfqq, bic); 3830 } 3831 3832 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3833 struct bfq_io_cq *bic, pid_t pid, int is_sync) 3834 { 3835 RB_CLEAR_NODE(&bfqq->entity.rb_node); 3836 INIT_LIST_HEAD(&bfqq->fifo); 3837 INIT_HLIST_NODE(&bfqq->burst_list_node); 3838 3839 bfqq->ref = 0; 3840 bfqq->bfqd = bfqd; 3841 3842 if (bic) 3843 bfq_set_next_ioprio_data(bfqq, bic); 3844 3845 if (is_sync) { 3846 if (!bfq_class_idle(bfqq)) 3847 bfq_mark_bfqq_idle_window(bfqq); 3848 bfq_mark_bfqq_sync(bfqq); 3849 bfq_mark_bfqq_just_created(bfqq); 3850 } else 3851 bfq_clear_bfqq_sync(bfqq); 3852 3853 /* set end request to minus infinity from now */ 3854 bfqq->ttime.last_end_request = ktime_get_ns() + 1; 3855 3856 bfq_mark_bfqq_IO_bound(bfqq); 3857 3858 bfqq->pid = pid; 3859 3860 /* Tentative initial value to trade off between thr and lat */ 3861 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 3862 bfqq->budget_timeout = bfq_smallest_from_now(); 3863 3864 bfqq->wr_coeff = 1; 3865 bfqq->last_wr_start_finish = jiffies; 3866 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 3867 bfqq->split_time = bfq_smallest_from_now(); 3868 3869 /* 3870 * Set to the value for which bfqq will not be deemed as 3871 * soft rt when it becomes backlogged. 3872 */ 3873 bfqq->soft_rt_next_start = bfq_greatest_from_now(); 3874 3875 /* first request is almost certainly seeky */ 3876 bfqq->seek_history = 1; 3877 } 3878 3879 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 3880 struct bfq_group *bfqg, 3881 int ioprio_class, int ioprio) 3882 { 3883 switch (ioprio_class) { 3884 case IOPRIO_CLASS_RT: 3885 return &bfqg->async_bfqq[0][ioprio]; 3886 case IOPRIO_CLASS_NONE: 3887 ioprio = IOPRIO_NORM; 3888 /* fall through */ 3889 case IOPRIO_CLASS_BE: 3890 return &bfqg->async_bfqq[1][ioprio]; 3891 case IOPRIO_CLASS_IDLE: 3892 return &bfqg->async_idle_bfqq; 3893 default: 3894 return NULL; 3895 } 3896 } 3897 3898 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3899 struct bio *bio, bool is_sync, 3900 struct bfq_io_cq *bic) 3901 { 3902 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3903 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3904 struct bfq_queue **async_bfqq = NULL; 3905 struct bfq_queue *bfqq; 3906 struct bfq_group *bfqg; 3907 3908 rcu_read_lock(); 3909 3910 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); 3911 if (!bfqg) { 3912 bfqq = &bfqd->oom_bfqq; 3913 goto out; 3914 } 3915 3916 if (!is_sync) { 3917 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 3918 ioprio); 3919 bfqq = *async_bfqq; 3920 if (bfqq) 3921 goto out; 3922 } 3923 3924 bfqq = kmem_cache_alloc_node(bfq_pool, 3925 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3926 bfqd->queue->node); 3927 3928 if (bfqq) { 3929 bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 3930 is_sync); 3931 bfq_init_entity(&bfqq->entity, bfqg); 3932 bfq_log_bfqq(bfqd, bfqq, "allocated"); 3933 } else { 3934 bfqq = &bfqd->oom_bfqq; 3935 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 3936 goto out; 3937 } 3938 3939 /* 3940 * Pin the queue now that it's allocated, scheduler exit will 3941 * prune it. 3942 */ 3943 if (async_bfqq) { 3944 bfqq->ref++; /* 3945 * Extra group reference, w.r.t. sync 3946 * queue. This extra reference is removed 3947 * only if bfqq->bfqg disappears, to 3948 * guarantee that this queue is not freed 3949 * until its group goes away. 3950 */ 3951 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 3952 bfqq, bfqq->ref); 3953 *async_bfqq = bfqq; 3954 } 3955 3956 out: 3957 bfqq->ref++; /* get a process reference to this queue */ 3958 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); 3959 rcu_read_unlock(); 3960 return bfqq; 3961 } 3962 3963 static void bfq_update_io_thinktime(struct bfq_data *bfqd, 3964 struct bfq_queue *bfqq) 3965 { 3966 struct bfq_ttime *ttime = &bfqq->ttime; 3967 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 3968 3969 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 3970 3971 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; 3972 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3973 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3974 ttime->ttime_samples); 3975 } 3976 3977 static void 3978 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3979 struct request *rq) 3980 { 3981 bfqq->seek_history <<= 1; 3982 bfqq->seek_history |= 3983 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && 3984 (!blk_queue_nonrot(bfqd->queue) || 3985 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); 3986 } 3987 3988 /* 3989 * Disable idle window if the process thinks too long or seeks so much that 3990 * it doesn't matter. 3991 */ 3992 static void bfq_update_idle_window(struct bfq_data *bfqd, 3993 struct bfq_queue *bfqq, 3994 struct bfq_io_cq *bic) 3995 { 3996 int enable_idle; 3997 3998 /* Don't idle for async or idle io prio class. */ 3999 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) 4000 return; 4001 4002 /* Idle window just restored, statistics are meaningless. */ 4003 if (time_is_after_eq_jiffies(bfqq->split_time + 4004 bfqd->bfq_wr_min_idle_time)) 4005 return; 4006 4007 enable_idle = bfq_bfqq_idle_window(bfqq); 4008 4009 if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 4010 bfqd->bfq_slice_idle == 0 || 4011 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) && 4012 bfqq->wr_coeff == 1)) 4013 enable_idle = 0; 4014 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { 4015 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle && 4016 bfqq->wr_coeff == 1) 4017 enable_idle = 0; 4018 else 4019 enable_idle = 1; 4020 } 4021 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", 4022 enable_idle); 4023 4024 if (enable_idle) 4025 bfq_mark_bfqq_idle_window(bfqq); 4026 else 4027 bfq_clear_bfqq_idle_window(bfqq); 4028 } 4029 4030 /* 4031 * Called when a new fs request (rq) is added to bfqq. Check if there's 4032 * something we should do about it. 4033 */ 4034 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4035 struct request *rq) 4036 { 4037 struct bfq_io_cq *bic = RQ_BIC(rq); 4038 4039 if (rq->cmd_flags & REQ_META) 4040 bfqq->meta_pending++; 4041 4042 bfq_update_io_thinktime(bfqd, bfqq); 4043 bfq_update_io_seektime(bfqd, bfqq, rq); 4044 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || 4045 !BFQQ_SEEKY(bfqq)) 4046 bfq_update_idle_window(bfqd, bfqq, bic); 4047 4048 bfq_log_bfqq(bfqd, bfqq, 4049 "rq_enqueued: idle_window=%d (seeky %d)", 4050 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); 4051 4052 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4053 4054 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 4055 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 4056 blk_rq_sectors(rq) < 32; 4057 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 4058 4059 /* 4060 * There is just this request queued: if the request 4061 * is small and the queue is not to be expired, then 4062 * just exit. 4063 * 4064 * In this way, if the device is being idled to wait 4065 * for a new request from the in-service queue, we 4066 * avoid unplugging the device and committing the 4067 * device to serve just a small request. On the 4068 * contrary, we wait for the block layer to decide 4069 * when to unplug the device: hopefully, new requests 4070 * will be merged to this one quickly, then the device 4071 * will be unplugged and larger requests will be 4072 * dispatched. 4073 */ 4074 if (small_req && !budget_timeout) 4075 return; 4076 4077 /* 4078 * A large enough request arrived, or the queue is to 4079 * be expired: in both cases disk idling is to be 4080 * stopped, so clear wait_request flag and reset 4081 * timer. 4082 */ 4083 bfq_clear_bfqq_wait_request(bfqq); 4084 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 4085 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 4086 4087 /* 4088 * The queue is not empty, because a new request just 4089 * arrived. Hence we can safely expire the queue, in 4090 * case of budget timeout, without risking that the 4091 * timestamps of the queue are not updated correctly. 4092 * See [1] for more details. 4093 */ 4094 if (budget_timeout) 4095 bfq_bfqq_expire(bfqd, bfqq, false, 4096 BFQQE_BUDGET_TIMEOUT); 4097 } 4098 } 4099 4100 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 4101 { 4102 struct bfq_queue *bfqq = RQ_BFQQ(rq), 4103 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true); 4104 4105 if (new_bfqq) { 4106 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq) 4107 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1); 4108 /* 4109 * Release the request's reference to the old bfqq 4110 * and make sure one is taken to the shared queue. 4111 */ 4112 new_bfqq->allocated++; 4113 bfqq->allocated--; 4114 new_bfqq->ref++; 4115 bfq_clear_bfqq_just_created(bfqq); 4116 /* 4117 * If the bic associated with the process 4118 * issuing this request still points to bfqq 4119 * (and thus has not been already redirected 4120 * to new_bfqq or even some other bfq_queue), 4121 * then complete the merge and redirect it to 4122 * new_bfqq. 4123 */ 4124 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq) 4125 bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 4126 bfqq, new_bfqq); 4127 /* 4128 * rq is about to be enqueued into new_bfqq, 4129 * release rq reference on bfqq 4130 */ 4131 bfq_put_queue(bfqq); 4132 rq->elv.priv[1] = new_bfqq; 4133 bfqq = new_bfqq; 4134 } 4135 4136 bfq_add_request(rq); 4137 4138 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 4139 list_add_tail(&rq->queuelist, &bfqq->fifo); 4140 4141 bfq_rq_enqueued(bfqd, bfqq, rq); 4142 } 4143 4144 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 4145 bool at_head) 4146 { 4147 struct request_queue *q = hctx->queue; 4148 struct bfq_data *bfqd = q->elevator->elevator_data; 4149 4150 spin_lock_irq(&bfqd->lock); 4151 if (blk_mq_sched_try_insert_merge(q, rq)) { 4152 spin_unlock_irq(&bfqd->lock); 4153 return; 4154 } 4155 4156 spin_unlock_irq(&bfqd->lock); 4157 4158 blk_mq_sched_request_inserted(rq); 4159 4160 spin_lock_irq(&bfqd->lock); 4161 if (at_head || blk_rq_is_passthrough(rq)) { 4162 if (at_head) 4163 list_add(&rq->queuelist, &bfqd->dispatch); 4164 else 4165 list_add_tail(&rq->queuelist, &bfqd->dispatch); 4166 } else { 4167 __bfq_insert_request(bfqd, rq); 4168 4169 if (rq_mergeable(rq)) { 4170 elv_rqhash_add(q, rq); 4171 if (!q->last_merge) 4172 q->last_merge = rq; 4173 } 4174 } 4175 4176 spin_unlock_irq(&bfqd->lock); 4177 } 4178 4179 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 4180 struct list_head *list, bool at_head) 4181 { 4182 while (!list_empty(list)) { 4183 struct request *rq; 4184 4185 rq = list_first_entry(list, struct request, queuelist); 4186 list_del_init(&rq->queuelist); 4187 bfq_insert_request(hctx, rq, at_head); 4188 } 4189 } 4190 4191 static void bfq_update_hw_tag(struct bfq_data *bfqd) 4192 { 4193 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 4194 bfqd->rq_in_driver); 4195 4196 if (bfqd->hw_tag == 1) 4197 return; 4198 4199 /* 4200 * This sample is valid if the number of outstanding requests 4201 * is large enough to allow a queueing behavior. Note that the 4202 * sum is not exact, as it's not taking into account deactivated 4203 * requests. 4204 */ 4205 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) 4206 return; 4207 4208 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 4209 return; 4210 4211 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 4212 bfqd->max_rq_in_driver = 0; 4213 bfqd->hw_tag_samples = 0; 4214 } 4215 4216 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 4217 { 4218 u64 now_ns; 4219 u32 delta_us; 4220 4221 bfq_update_hw_tag(bfqd); 4222 4223 bfqd->rq_in_driver--; 4224 bfqq->dispatched--; 4225 4226 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 4227 /* 4228 * Set budget_timeout (which we overload to store the 4229 * time at which the queue remains with no backlog and 4230 * no outstanding request; used by the weight-raising 4231 * mechanism). 4232 */ 4233 bfqq->budget_timeout = jiffies; 4234 4235 bfq_weights_tree_remove(bfqd, &bfqq->entity, 4236 &bfqd->queue_weights_tree); 4237 } 4238 4239 now_ns = ktime_get_ns(); 4240 4241 bfqq->ttime.last_end_request = now_ns; 4242 4243 /* 4244 * Using us instead of ns, to get a reasonable precision in 4245 * computing rate in next check. 4246 */ 4247 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 4248 4249 /* 4250 * If the request took rather long to complete, and, according 4251 * to the maximum request size recorded, this completion latency 4252 * implies that the request was certainly served at a very low 4253 * rate (less than 1M sectors/sec), then the whole observation 4254 * interval that lasts up to this time instant cannot be a 4255 * valid time interval for computing a new peak rate. Invoke 4256 * bfq_update_rate_reset to have the following three steps 4257 * taken: 4258 * - close the observation interval at the last (previous) 4259 * request dispatch or completion 4260 * - compute rate, if possible, for that observation interval 4261 * - reset to zero samples, which will trigger a proper 4262 * re-initialization of the observation interval on next 4263 * dispatch 4264 */ 4265 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 4266 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 4267 1UL<<(BFQ_RATE_SHIFT - 10)) 4268 bfq_update_rate_reset(bfqd, NULL); 4269 bfqd->last_completion = now_ns; 4270 4271 /* 4272 * If we are waiting to discover whether the request pattern 4273 * of the task associated with the queue is actually 4274 * isochronous, and both requisites for this condition to hold 4275 * are now satisfied, then compute soft_rt_next_start (see the 4276 * comments on the function bfq_bfqq_softrt_next_start()). We 4277 * schedule this delayed check when bfqq expires, if it still 4278 * has in-flight requests. 4279 */ 4280 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 4281 RB_EMPTY_ROOT(&bfqq->sort_list)) 4282 bfqq->soft_rt_next_start = 4283 bfq_bfqq_softrt_next_start(bfqd, bfqq); 4284 4285 /* 4286 * If this is the in-service queue, check if it needs to be expired, 4287 * or if we want to idle in case it has no pending requests. 4288 */ 4289 if (bfqd->in_service_queue == bfqq) { 4290 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { 4291 bfq_arm_slice_timer(bfqd); 4292 return; 4293 } else if (bfq_may_expire_for_budg_timeout(bfqq)) 4294 bfq_bfqq_expire(bfqd, bfqq, false, 4295 BFQQE_BUDGET_TIMEOUT); 4296 else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 4297 (bfqq->dispatched == 0 || 4298 !bfq_bfqq_may_idle(bfqq))) 4299 bfq_bfqq_expire(bfqd, bfqq, false, 4300 BFQQE_NO_MORE_REQUESTS); 4301 } 4302 4303 if (!bfqd->rq_in_driver) 4304 bfq_schedule_dispatch(bfqd); 4305 } 4306 4307 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) 4308 { 4309 bfqq->allocated--; 4310 4311 bfq_put_queue(bfqq); 4312 } 4313 4314 static void bfq_finish_request(struct request *rq) 4315 { 4316 struct bfq_queue *bfqq; 4317 struct bfq_data *bfqd; 4318 4319 if (!rq->elv.icq) 4320 return; 4321 4322 bfqq = RQ_BFQQ(rq); 4323 bfqd = bfqq->bfqd; 4324 4325 if (rq->rq_flags & RQF_STARTED) 4326 bfqg_stats_update_completion(bfqq_group(bfqq), 4327 rq_start_time_ns(rq), 4328 rq_io_start_time_ns(rq), 4329 rq->cmd_flags); 4330 4331 if (likely(rq->rq_flags & RQF_STARTED)) { 4332 unsigned long flags; 4333 4334 spin_lock_irqsave(&bfqd->lock, flags); 4335 4336 bfq_completed_request(bfqq, bfqd); 4337 bfq_put_rq_priv_body(bfqq); 4338 4339 spin_unlock_irqrestore(&bfqd->lock, flags); 4340 } else { 4341 /* 4342 * Request rq may be still/already in the scheduler, 4343 * in which case we need to remove it. And we cannot 4344 * defer such a check and removal, to avoid 4345 * inconsistencies in the time interval from the end 4346 * of this function to the start of the deferred work. 4347 * This situation seems to occur only in process 4348 * context, as a consequence of a merge. In the 4349 * current version of the code, this implies that the 4350 * lock is held. 4351 */ 4352 4353 if (!RB_EMPTY_NODE(&rq->rb_node)) 4354 bfq_remove_request(rq->q, rq); 4355 bfq_put_rq_priv_body(bfqq); 4356 } 4357 4358 rq->elv.priv[0] = NULL; 4359 rq->elv.priv[1] = NULL; 4360 } 4361 4362 /* 4363 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 4364 * was the last process referring to that bfqq. 4365 */ 4366 static struct bfq_queue * 4367 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 4368 { 4369 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 4370 4371 if (bfqq_process_refs(bfqq) == 1) { 4372 bfqq->pid = current->pid; 4373 bfq_clear_bfqq_coop(bfqq); 4374 bfq_clear_bfqq_split_coop(bfqq); 4375 return bfqq; 4376 } 4377 4378 bic_set_bfqq(bic, NULL, 1); 4379 4380 bfq_put_cooperator(bfqq); 4381 4382 bfq_put_queue(bfqq); 4383 return NULL; 4384 } 4385 4386 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 4387 struct bfq_io_cq *bic, 4388 struct bio *bio, 4389 bool split, bool is_sync, 4390 bool *new_queue) 4391 { 4392 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 4393 4394 if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 4395 return bfqq; 4396 4397 if (new_queue) 4398 *new_queue = true; 4399 4400 if (bfqq) 4401 bfq_put_queue(bfqq); 4402 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); 4403 4404 bic_set_bfqq(bic, bfqq, is_sync); 4405 if (split && is_sync) { 4406 if ((bic->was_in_burst_list && bfqd->large_burst) || 4407 bic->saved_in_large_burst) 4408 bfq_mark_bfqq_in_large_burst(bfqq); 4409 else { 4410 bfq_clear_bfqq_in_large_burst(bfqq); 4411 if (bic->was_in_burst_list) 4412 hlist_add_head(&bfqq->burst_list_node, 4413 &bfqd->burst_list); 4414 } 4415 bfqq->split_time = jiffies; 4416 } 4417 4418 return bfqq; 4419 } 4420 4421 /* 4422 * Allocate bfq data structures associated with this request. 4423 */ 4424 static void bfq_prepare_request(struct request *rq, struct bio *bio) 4425 { 4426 struct request_queue *q = rq->q; 4427 struct bfq_data *bfqd = q->elevator->elevator_data; 4428 struct bfq_io_cq *bic; 4429 const int is_sync = rq_is_sync(rq); 4430 struct bfq_queue *bfqq; 4431 bool new_queue = false; 4432 bool bfqq_already_existing = false, split = false; 4433 4434 if (!rq->elv.icq) 4435 return; 4436 bic = icq_to_bic(rq->elv.icq); 4437 4438 spin_lock_irq(&bfqd->lock); 4439 4440 bfq_check_ioprio_change(bic, bio); 4441 4442 bfq_bic_update_cgroup(bic, bio); 4443 4444 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 4445 &new_queue); 4446 4447 if (likely(!new_queue)) { 4448 /* If the queue was seeky for too long, break it apart. */ 4449 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) { 4450 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq"); 4451 4452 /* Update bic before losing reference to bfqq */ 4453 if (bfq_bfqq_in_large_burst(bfqq)) 4454 bic->saved_in_large_burst = true; 4455 4456 bfqq = bfq_split_bfqq(bic, bfqq); 4457 split = true; 4458 4459 if (!bfqq) 4460 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 4461 true, is_sync, 4462 NULL); 4463 else 4464 bfqq_already_existing = true; 4465 } 4466 } 4467 4468 bfqq->allocated++; 4469 bfqq->ref++; 4470 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 4471 rq, bfqq, bfqq->ref); 4472 4473 rq->elv.priv[0] = bic; 4474 rq->elv.priv[1] = bfqq; 4475 4476 /* 4477 * If a bfq_queue has only one process reference, it is owned 4478 * by only this bic: we can then set bfqq->bic = bic. in 4479 * addition, if the queue has also just been split, we have to 4480 * resume its state. 4481 */ 4482 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 4483 bfqq->bic = bic; 4484 if (split) { 4485 /* 4486 * The queue has just been split from a shared 4487 * queue: restore the idle window and the 4488 * possible weight raising period. 4489 */ 4490 bfq_bfqq_resume_state(bfqq, bfqd, bic, 4491 bfqq_already_existing); 4492 } 4493 } 4494 4495 if (unlikely(bfq_bfqq_just_created(bfqq))) 4496 bfq_handle_burst(bfqd, bfqq); 4497 4498 spin_unlock_irq(&bfqd->lock); 4499 } 4500 4501 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) 4502 { 4503 struct bfq_data *bfqd = bfqq->bfqd; 4504 enum bfqq_expiration reason; 4505 unsigned long flags; 4506 4507 spin_lock_irqsave(&bfqd->lock, flags); 4508 bfq_clear_bfqq_wait_request(bfqq); 4509 4510 if (bfqq != bfqd->in_service_queue) { 4511 spin_unlock_irqrestore(&bfqd->lock, flags); 4512 return; 4513 } 4514 4515 if (bfq_bfqq_budget_timeout(bfqq)) 4516 /* 4517 * Also here the queue can be safely expired 4518 * for budget timeout without wasting 4519 * guarantees 4520 */ 4521 reason = BFQQE_BUDGET_TIMEOUT; 4522 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 4523 /* 4524 * The queue may not be empty upon timer expiration, 4525 * because we may not disable the timer when the 4526 * first request of the in-service queue arrives 4527 * during disk idling. 4528 */ 4529 reason = BFQQE_TOO_IDLE; 4530 else 4531 goto schedule_dispatch; 4532 4533 bfq_bfqq_expire(bfqd, bfqq, true, reason); 4534 4535 schedule_dispatch: 4536 spin_unlock_irqrestore(&bfqd->lock, flags); 4537 bfq_schedule_dispatch(bfqd); 4538 } 4539 4540 /* 4541 * Handler of the expiration of the timer running if the in-service queue 4542 * is idling inside its time slice. 4543 */ 4544 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 4545 { 4546 struct bfq_data *bfqd = container_of(timer, struct bfq_data, 4547 idle_slice_timer); 4548 struct bfq_queue *bfqq = bfqd->in_service_queue; 4549 4550 /* 4551 * Theoretical race here: the in-service queue can be NULL or 4552 * different from the queue that was idling if a new request 4553 * arrives for the current queue and there is a full dispatch 4554 * cycle that changes the in-service queue. This can hardly 4555 * happen, but in the worst case we just expire a queue too 4556 * early. 4557 */ 4558 if (bfqq) 4559 bfq_idle_slice_timer_body(bfqq); 4560 4561 return HRTIMER_NORESTART; 4562 } 4563 4564 static void __bfq_put_async_bfqq(struct bfq_data *bfqd, 4565 struct bfq_queue **bfqq_ptr) 4566 { 4567 struct bfq_queue *bfqq = *bfqq_ptr; 4568 4569 bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 4570 if (bfqq) { 4571 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 4572 4573 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 4574 bfqq, bfqq->ref); 4575 bfq_put_queue(bfqq); 4576 *bfqq_ptr = NULL; 4577 } 4578 } 4579 4580 /* 4581 * Release all the bfqg references to its async queues. If we are 4582 * deallocating the group these queues may still contain requests, so 4583 * we reparent them to the root cgroup (i.e., the only one that will 4584 * exist for sure until all the requests on a device are gone). 4585 */ 4586 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 4587 { 4588 int i, j; 4589 4590 for (i = 0; i < 2; i++) 4591 for (j = 0; j < IOPRIO_BE_NR; j++) 4592 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); 4593 4594 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); 4595 } 4596 4597 static void bfq_exit_queue(struct elevator_queue *e) 4598 { 4599 struct bfq_data *bfqd = e->elevator_data; 4600 struct bfq_queue *bfqq, *n; 4601 4602 hrtimer_cancel(&bfqd->idle_slice_timer); 4603 4604 spin_lock_irq(&bfqd->lock); 4605 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 4606 bfq_deactivate_bfqq(bfqd, bfqq, false, false); 4607 spin_unlock_irq(&bfqd->lock); 4608 4609 hrtimer_cancel(&bfqd->idle_slice_timer); 4610 4611 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4612 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); 4613 #else 4614 spin_lock_irq(&bfqd->lock); 4615 bfq_put_async_queues(bfqd, bfqd->root_group); 4616 kfree(bfqd->root_group); 4617 spin_unlock_irq(&bfqd->lock); 4618 #endif 4619 4620 kfree(bfqd); 4621 } 4622 4623 static void bfq_init_root_group(struct bfq_group *root_group, 4624 struct bfq_data *bfqd) 4625 { 4626 int i; 4627 4628 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4629 root_group->entity.parent = NULL; 4630 root_group->my_entity = NULL; 4631 root_group->bfqd = bfqd; 4632 #endif 4633 root_group->rq_pos_tree = RB_ROOT; 4634 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 4635 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 4636 root_group->sched_data.bfq_class_idle_last_service = jiffies; 4637 } 4638 4639 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 4640 { 4641 struct bfq_data *bfqd; 4642 struct elevator_queue *eq; 4643 4644 eq = elevator_alloc(q, e); 4645 if (!eq) 4646 return -ENOMEM; 4647 4648 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 4649 if (!bfqd) { 4650 kobject_put(&eq->kobj); 4651 return -ENOMEM; 4652 } 4653 eq->elevator_data = bfqd; 4654 4655 spin_lock_irq(q->queue_lock); 4656 q->elevator = eq; 4657 spin_unlock_irq(q->queue_lock); 4658 4659 /* 4660 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 4661 * Grab a permanent reference to it, so that the normal code flow 4662 * will not attempt to free it. 4663 */ 4664 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); 4665 bfqd->oom_bfqq.ref++; 4666 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 4667 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 4668 bfqd->oom_bfqq.entity.new_weight = 4669 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 4670 4671 /* oom_bfqq does not participate to bursts */ 4672 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 4673 4674 /* 4675 * Trigger weight initialization, according to ioprio, at the 4676 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 4677 * class won't be changed any more. 4678 */ 4679 bfqd->oom_bfqq.entity.prio_changed = 1; 4680 4681 bfqd->queue = q; 4682 4683 INIT_LIST_HEAD(&bfqd->dispatch); 4684 4685 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 4686 HRTIMER_MODE_REL); 4687 bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 4688 4689 bfqd->queue_weights_tree = RB_ROOT; 4690 bfqd->group_weights_tree = RB_ROOT; 4691 4692 INIT_LIST_HEAD(&bfqd->active_list); 4693 INIT_LIST_HEAD(&bfqd->idle_list); 4694 INIT_HLIST_HEAD(&bfqd->burst_list); 4695 4696 bfqd->hw_tag = -1; 4697 4698 bfqd->bfq_max_budget = bfq_default_max_budget; 4699 4700 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 4701 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 4702 bfqd->bfq_back_max = bfq_back_max; 4703 bfqd->bfq_back_penalty = bfq_back_penalty; 4704 bfqd->bfq_slice_idle = bfq_slice_idle; 4705 bfqd->bfq_timeout = bfq_timeout; 4706 4707 bfqd->bfq_requests_within_timer = 120; 4708 4709 bfqd->bfq_large_burst_thresh = 8; 4710 bfqd->bfq_burst_interval = msecs_to_jiffies(180); 4711 4712 bfqd->low_latency = true; 4713 4714 /* 4715 * Trade-off between responsiveness and fairness. 4716 */ 4717 bfqd->bfq_wr_coeff = 30; 4718 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 4719 bfqd->bfq_wr_max_time = 0; 4720 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 4721 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 4722 bfqd->bfq_wr_max_softrt_rate = 7000; /* 4723 * Approximate rate required 4724 * to playback or record a 4725 * high-definition compressed 4726 * video. 4727 */ 4728 bfqd->wr_busy_queues = 0; 4729 4730 /* 4731 * Begin by assuming, optimistically, that the device is a 4732 * high-speed one, and that its peak rate is equal to 2/3 of 4733 * the highest reference rate. 4734 */ 4735 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * 4736 T_fast[blk_queue_nonrot(bfqd->queue)]; 4737 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 4738 bfqd->device_speed = BFQ_BFQD_FAST; 4739 4740 spin_lock_init(&bfqd->lock); 4741 4742 /* 4743 * The invocation of the next bfq_create_group_hierarchy 4744 * function is the head of a chain of function calls 4745 * (bfq_create_group_hierarchy->blkcg_activate_policy-> 4746 * blk_mq_freeze_queue) that may lead to the invocation of the 4747 * has_work hook function. For this reason, 4748 * bfq_create_group_hierarchy is invoked only after all 4749 * scheduler data has been initialized, apart from the fields 4750 * that can be initialized only after invoking 4751 * bfq_create_group_hierarchy. This, in particular, enables 4752 * has_work to correctly return false. Of course, to avoid 4753 * other inconsistencies, the blk-mq stack must then refrain 4754 * from invoking further scheduler hooks before this init 4755 * function is finished. 4756 */ 4757 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 4758 if (!bfqd->root_group) 4759 goto out_free; 4760 bfq_init_root_group(bfqd->root_group, bfqd); 4761 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 4762 4763 4764 return 0; 4765 4766 out_free: 4767 kfree(bfqd); 4768 kobject_put(&eq->kobj); 4769 return -ENOMEM; 4770 } 4771 4772 static void bfq_slab_kill(void) 4773 { 4774 kmem_cache_destroy(bfq_pool); 4775 } 4776 4777 static int __init bfq_slab_setup(void) 4778 { 4779 bfq_pool = KMEM_CACHE(bfq_queue, 0); 4780 if (!bfq_pool) 4781 return -ENOMEM; 4782 return 0; 4783 } 4784 4785 static ssize_t bfq_var_show(unsigned int var, char *page) 4786 { 4787 return sprintf(page, "%u\n", var); 4788 } 4789 4790 static ssize_t bfq_var_store(unsigned long *var, const char *page, 4791 size_t count) 4792 { 4793 unsigned long new_val; 4794 int ret = kstrtoul(page, 10, &new_val); 4795 4796 if (ret == 0) 4797 *var = new_val; 4798 4799 return count; 4800 } 4801 4802 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4803 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4804 { \ 4805 struct bfq_data *bfqd = e->elevator_data; \ 4806 u64 __data = __VAR; \ 4807 if (__CONV == 1) \ 4808 __data = jiffies_to_msecs(__data); \ 4809 else if (__CONV == 2) \ 4810 __data = div_u64(__data, NSEC_PER_MSEC); \ 4811 return bfq_var_show(__data, (page)); \ 4812 } 4813 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 4814 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 4815 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 4816 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 4817 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 4818 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 4819 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 4820 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 4821 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 4822 #undef SHOW_FUNCTION 4823 4824 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4825 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4826 { \ 4827 struct bfq_data *bfqd = e->elevator_data; \ 4828 u64 __data = __VAR; \ 4829 __data = div_u64(__data, NSEC_PER_USEC); \ 4830 return bfq_var_show(__data, (page)); \ 4831 } 4832 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 4833 #undef USEC_SHOW_FUNCTION 4834 4835 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4836 static ssize_t \ 4837 __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4838 { \ 4839 struct bfq_data *bfqd = e->elevator_data; \ 4840 unsigned long uninitialized_var(__data); \ 4841 int ret = bfq_var_store(&__data, (page), count); \ 4842 if (__data < (MIN)) \ 4843 __data = (MIN); \ 4844 else if (__data > (MAX)) \ 4845 __data = (MAX); \ 4846 if (__CONV == 1) \ 4847 *(__PTR) = msecs_to_jiffies(__data); \ 4848 else if (__CONV == 2) \ 4849 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4850 else \ 4851 *(__PTR) = __data; \ 4852 return ret; \ 4853 } 4854 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 4855 INT_MAX, 2); 4856 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 4857 INT_MAX, 2); 4858 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 4859 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 4860 INT_MAX, 0); 4861 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 4862 #undef STORE_FUNCTION 4863 4864 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4865 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 4866 { \ 4867 struct bfq_data *bfqd = e->elevator_data; \ 4868 unsigned long uninitialized_var(__data); \ 4869 int ret = bfq_var_store(&__data, (page), count); \ 4870 if (__data < (MIN)) \ 4871 __data = (MIN); \ 4872 else if (__data > (MAX)) \ 4873 __data = (MAX); \ 4874 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4875 return ret; \ 4876 } 4877 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 4878 UINT_MAX); 4879 #undef USEC_STORE_FUNCTION 4880 4881 static ssize_t bfq_max_budget_store(struct elevator_queue *e, 4882 const char *page, size_t count) 4883 { 4884 struct bfq_data *bfqd = e->elevator_data; 4885 unsigned long uninitialized_var(__data); 4886 int ret = bfq_var_store(&__data, (page), count); 4887 4888 if (__data == 0) 4889 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4890 else { 4891 if (__data > INT_MAX) 4892 __data = INT_MAX; 4893 bfqd->bfq_max_budget = __data; 4894 } 4895 4896 bfqd->bfq_user_max_budget = __data; 4897 4898 return ret; 4899 } 4900 4901 /* 4902 * Leaving this name to preserve name compatibility with cfq 4903 * parameters, but this timeout is used for both sync and async. 4904 */ 4905 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 4906 const char *page, size_t count) 4907 { 4908 struct bfq_data *bfqd = e->elevator_data; 4909 unsigned long uninitialized_var(__data); 4910 int ret = bfq_var_store(&__data, (page), count); 4911 4912 if (__data < 1) 4913 __data = 1; 4914 else if (__data > INT_MAX) 4915 __data = INT_MAX; 4916 4917 bfqd->bfq_timeout = msecs_to_jiffies(__data); 4918 if (bfqd->bfq_user_max_budget == 0) 4919 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4920 4921 return ret; 4922 } 4923 4924 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 4925 const char *page, size_t count) 4926 { 4927 struct bfq_data *bfqd = e->elevator_data; 4928 unsigned long uninitialized_var(__data); 4929 int ret = bfq_var_store(&__data, (page), count); 4930 4931 if (__data > 1) 4932 __data = 1; 4933 if (!bfqd->strict_guarantees && __data == 1 4934 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 4935 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 4936 4937 bfqd->strict_guarantees = __data; 4938 4939 return ret; 4940 } 4941 4942 static ssize_t bfq_low_latency_store(struct elevator_queue *e, 4943 const char *page, size_t count) 4944 { 4945 struct bfq_data *bfqd = e->elevator_data; 4946 unsigned long uninitialized_var(__data); 4947 int ret = bfq_var_store(&__data, (page), count); 4948 4949 if (__data > 1) 4950 __data = 1; 4951 if (__data == 0 && bfqd->low_latency != 0) 4952 bfq_end_wr(bfqd); 4953 bfqd->low_latency = __data; 4954 4955 return ret; 4956 } 4957 4958 #define BFQ_ATTR(name) \ 4959 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 4960 4961 static struct elv_fs_entry bfq_attrs[] = { 4962 BFQ_ATTR(fifo_expire_sync), 4963 BFQ_ATTR(fifo_expire_async), 4964 BFQ_ATTR(back_seek_max), 4965 BFQ_ATTR(back_seek_penalty), 4966 BFQ_ATTR(slice_idle), 4967 BFQ_ATTR(slice_idle_us), 4968 BFQ_ATTR(max_budget), 4969 BFQ_ATTR(timeout_sync), 4970 BFQ_ATTR(strict_guarantees), 4971 BFQ_ATTR(low_latency), 4972 __ATTR_NULL 4973 }; 4974 4975 static struct elevator_type iosched_bfq_mq = { 4976 .ops.mq = { 4977 .prepare_request = bfq_prepare_request, 4978 .finish_request = bfq_finish_request, 4979 .exit_icq = bfq_exit_icq, 4980 .insert_requests = bfq_insert_requests, 4981 .dispatch_request = bfq_dispatch_request, 4982 .next_request = elv_rb_latter_request, 4983 .former_request = elv_rb_former_request, 4984 .allow_merge = bfq_allow_bio_merge, 4985 .bio_merge = bfq_bio_merge, 4986 .request_merge = bfq_request_merge, 4987 .requests_merged = bfq_requests_merged, 4988 .request_merged = bfq_request_merged, 4989 .has_work = bfq_has_work, 4990 .init_sched = bfq_init_queue, 4991 .exit_sched = bfq_exit_queue, 4992 }, 4993 4994 .uses_mq = true, 4995 .icq_size = sizeof(struct bfq_io_cq), 4996 .icq_align = __alignof__(struct bfq_io_cq), 4997 .elevator_attrs = bfq_attrs, 4998 .elevator_name = "bfq", 4999 .elevator_owner = THIS_MODULE, 5000 }; 5001 5002 static int __init bfq_init(void) 5003 { 5004 int ret; 5005 5006 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5007 ret = blkcg_policy_register(&blkcg_policy_bfq); 5008 if (ret) 5009 return ret; 5010 #endif 5011 5012 ret = -ENOMEM; 5013 if (bfq_slab_setup()) 5014 goto err_pol_unreg; 5015 5016 /* 5017 * Times to load large popular applications for the typical 5018 * systems installed on the reference devices (see the 5019 * comments before the definitions of the next two 5020 * arrays). Actually, we use slightly slower values, as the 5021 * estimated peak rate tends to be smaller than the actual 5022 * peak rate. The reason for this last fact is that estimates 5023 * are computed over much shorter time intervals than the long 5024 * intervals typically used for benchmarking. Why? First, to 5025 * adapt more quickly to variations. Second, because an I/O 5026 * scheduler cannot rely on a peak-rate-evaluation workload to 5027 * be run for a long time. 5028 */ 5029 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ 5030 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ 5031 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 5032 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 5033 5034 /* 5035 * Thresholds that determine the switch between speed classes 5036 * (see the comments before the definition of the array 5037 * device_speed_thresh). These thresholds are biased towards 5038 * transitions to the fast class. This is safer than the 5039 * opposite bias. In fact, a wrong transition to the slow 5040 * class results in short weight-raising periods, because the 5041 * speed of the device then tends to be higher that the 5042 * reference peak rate. On the opposite end, a wrong 5043 * transition to the fast class tends to increase 5044 * weight-raising periods, because of the opposite reason. 5045 */ 5046 device_speed_thresh[0] = (4 * R_slow[0]) / 3; 5047 device_speed_thresh[1] = (4 * R_slow[1]) / 3; 5048 5049 ret = elv_register(&iosched_bfq_mq); 5050 if (ret) 5051 goto err_pol_unreg; 5052 5053 return 0; 5054 5055 err_pol_unreg: 5056 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5057 blkcg_policy_unregister(&blkcg_policy_bfq); 5058 #endif 5059 return ret; 5060 } 5061 5062 static void __exit bfq_exit(void) 5063 { 5064 elv_unregister(&iosched_bfq_mq); 5065 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5066 blkcg_policy_unregister(&blkcg_policy_bfq); 5067 #endif 5068 bfq_slab_kill(); 5069 } 5070 5071 module_init(bfq_init); 5072 module_exit(bfq_exit); 5073 5074 MODULE_AUTHOR("Paolo Valente"); 5075 MODULE_LICENSE("GPL"); 5076 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 5077