xref: /openbmc/linux/block/bfq-iosched.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
142 
143 #define BFQ_BFQQ_FNS(name)						\
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
145 {									\
146 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
147 }									\
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
149 {									\
150 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
151 }									\
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
153 {									\
154 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
155 }
156 
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS						\
170 
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173 
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
176 
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
179 
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182 
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
185 
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
188 
189 /*
190  * When a sync request is dispatched, the queue that contains that
191  * request, and all the ancestor entities of that queue, are charged
192  * with the number of sectors of the request. In constrast, if the
193  * request is async, then the queue and its ancestor entities are
194  * charged with the number of sectors of the request, multiplied by
195  * the factor below. This throttles the bandwidth for async I/O,
196  * w.r.t. to sync I/O, and it is done to counter the tendency of async
197  * writes to steal I/O throughput to reads.
198  *
199  * The current value of this parameter is the result of a tuning with
200  * several hardware and software configurations. We tried to find the
201  * lowest value for which writes do not cause noticeable problems to
202  * reads. In fact, the lower this parameter, the stabler I/O control,
203  * in the following respect.  The lower this parameter is, the less
204  * the bandwidth enjoyed by a group decreases
205  * - when the group does writes, w.r.t. to when it does reads;
206  * - when other groups do reads, w.r.t. to when they do writes.
207  */
208 static const int bfq_async_charge_factor = 3;
209 
210 /* Default timeout values, in jiffies, approximating CFQ defaults. */
211 const int bfq_timeout = HZ / 8;
212 
213 /*
214  * Time limit for merging (see comments in bfq_setup_cooperator). Set
215  * to the slowest value that, in our tests, proved to be effective in
216  * removing false positives, while not causing true positives to miss
217  * queue merging.
218  *
219  * As can be deduced from the low time limit below, queue merging, if
220  * successful, happens at the very beggining of the I/O of the involved
221  * cooperating processes, as a consequence of the arrival of the very
222  * first requests from each cooperator.  After that, there is very
223  * little chance to find cooperators.
224  */
225 static const unsigned long bfq_merge_time_limit = HZ/10;
226 
227 static struct kmem_cache *bfq_pool;
228 
229 /* Below this threshold (in ns), we consider thinktime immediate. */
230 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
231 
232 /* hw_tag detection: parallel requests threshold and min samples needed. */
233 #define BFQ_HW_QUEUE_THRESHOLD	4
234 #define BFQ_HW_QUEUE_SAMPLES	32
235 
236 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
237 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
238 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
239 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
240 
241 /* Min number of samples required to perform peak-rate update */
242 #define BFQ_RATE_MIN_SAMPLES	32
243 /* Min observation time interval required to perform a peak-rate update (ns) */
244 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
245 /* Target observation time interval for a peak-rate update (ns) */
246 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
247 
248 /*
249  * Shift used for peak-rate fixed precision calculations.
250  * With
251  * - the current shift: 16 positions
252  * - the current type used to store rate: u32
253  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255  * the range of rates that can be stored is
256  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258  * [15, 65G] sectors/sec
259  * Which, assuming a sector size of 512B, corresponds to a range of
260  * [7.5K, 33T] B/sec
261  */
262 #define BFQ_RATE_SHIFT		16
263 
264 /*
265  * When configured for computing the duration of the weight-raising
266  * for interactive queues automatically (see the comments at the
267  * beginning of this file), BFQ does it using the following formula:
268  * duration = (ref_rate / r) * ref_wr_duration,
269  * where r is the peak rate of the device, and ref_rate and
270  * ref_wr_duration are two reference parameters.  In particular,
271  * ref_rate is the peak rate of the reference storage device (see
272  * below), and ref_wr_duration is about the maximum time needed, with
273  * BFQ and while reading two files in parallel, to load typical large
274  * applications on the reference device (see the comments on
275  * max_service_from_wr below, for more details on how ref_wr_duration
276  * is obtained).  In practice, the slower/faster the device at hand
277  * is, the more/less it takes to load applications with respect to the
278  * reference device.  Accordingly, the longer/shorter BFQ grants
279  * weight raising to interactive applications.
280  *
281  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282  * depending on whether the device is rotational or non-rotational.
283  *
284  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285  * are the reference values for a rotational device, whereas
286  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287  * non-rotational device. The reference rates are not the actual peak
288  * rates of the devices used as a reference, but slightly lower
289  * values. The reason for using slightly lower values is that the
290  * peak-rate estimator tends to yield slightly lower values than the
291  * actual peak rate (it can yield the actual peak rate only if there
292  * is only one process doing I/O, and the process does sequential
293  * I/O).
294  *
295  * The reference peak rates are measured in sectors/usec, left-shifted
296  * by BFQ_RATE_SHIFT.
297  */
298 static int ref_rate[2] = {14000, 33000};
299 /*
300  * To improve readability, a conversion function is used to initialize
301  * the following array, which entails that the array can be
302  * initialized only in a function.
303  */
304 static int ref_wr_duration[2];
305 
306 /*
307  * BFQ uses the above-detailed, time-based weight-raising mechanism to
308  * privilege interactive tasks. This mechanism is vulnerable to the
309  * following false positives: I/O-bound applications that will go on
310  * doing I/O for much longer than the duration of weight
311  * raising. These applications have basically no benefit from being
312  * weight-raised at the beginning of their I/O. On the opposite end,
313  * while being weight-raised, these applications
314  * a) unjustly steal throughput to applications that may actually need
315  * low latency;
316  * b) make BFQ uselessly perform device idling; device idling results
317  * in loss of device throughput with most flash-based storage, and may
318  * increase latencies when used purposelessly.
319  *
320  * BFQ tries to reduce these problems, by adopting the following
321  * countermeasure. To introduce this countermeasure, we need first to
322  * finish explaining how the duration of weight-raising for
323  * interactive tasks is computed.
324  *
325  * For a bfq_queue deemed as interactive, the duration of weight
326  * raising is dynamically adjusted, as a function of the estimated
327  * peak rate of the device, so as to be equal to the time needed to
328  * execute the 'largest' interactive task we benchmarked so far. By
329  * largest task, we mean the task for which each involved process has
330  * to do more I/O than for any of the other tasks we benchmarked. This
331  * reference interactive task is the start-up of LibreOffice Writer,
332  * and in this task each process/bfq_queue needs to have at most ~110K
333  * sectors transferred.
334  *
335  * This last piece of information enables BFQ to reduce the actual
336  * duration of weight-raising for at least one class of I/O-bound
337  * applications: those doing sequential or quasi-sequential I/O. An
338  * example is file copy. In fact, once started, the main I/O-bound
339  * processes of these applications usually consume the above 110K
340  * sectors in much less time than the processes of an application that
341  * is starting, because these I/O-bound processes will greedily devote
342  * almost all their CPU cycles only to their target,
343  * throughput-friendly I/O operations. This is even more true if BFQ
344  * happens to be underestimating the device peak rate, and thus
345  * overestimating the duration of weight raising. But, according to
346  * our measurements, once transferred 110K sectors, these processes
347  * have no right to be weight-raised any longer.
348  *
349  * Basing on the last consideration, BFQ ends weight-raising for a
350  * bfq_queue if the latter happens to have received an amount of
351  * service at least equal to the following constant. The constant is
352  * set to slightly more than 110K, to have a minimum safety margin.
353  *
354  * This early ending of weight-raising reduces the amount of time
355  * during which interactive false positives cause the two problems
356  * described at the beginning of these comments.
357  */
358 static const unsigned long max_service_from_wr = 120000;
359 
360 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
361 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
362 
363 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
364 {
365 	return bic->bfqq[is_sync];
366 }
367 
368 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
369 {
370 	bic->bfqq[is_sync] = bfqq;
371 }
372 
373 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
374 {
375 	return bic->icq.q->elevator->elevator_data;
376 }
377 
378 /**
379  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380  * @icq: the iocontext queue.
381  */
382 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
383 {
384 	/* bic->icq is the first member, %NULL will convert to %NULL */
385 	return container_of(icq, struct bfq_io_cq, icq);
386 }
387 
388 /**
389  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390  * @bfqd: the lookup key.
391  * @ioc: the io_context of the process doing I/O.
392  * @q: the request queue.
393  */
394 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 					struct io_context *ioc,
396 					struct request_queue *q)
397 {
398 	if (ioc) {
399 		unsigned long flags;
400 		struct bfq_io_cq *icq;
401 
402 		spin_lock_irqsave(q->queue_lock, flags);
403 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 		spin_unlock_irqrestore(q->queue_lock, flags);
405 
406 		return icq;
407 	}
408 
409 	return NULL;
410 }
411 
412 /*
413  * Scheduler run of queue, if there are requests pending and no one in the
414  * driver that will restart queueing.
415  */
416 void bfq_schedule_dispatch(struct bfq_data *bfqd)
417 {
418 	if (bfqd->queued != 0) {
419 		bfq_log(bfqd, "schedule dispatch");
420 		blk_mq_run_hw_queues(bfqd->queue, true);
421 	}
422 }
423 
424 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426 
427 #define bfq_sample_valid(samples)	((samples) > 80)
428 
429 /*
430  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431  * We choose the request that is closesr to the head right now.  Distance
432  * behind the head is penalized and only allowed to a certain extent.
433  */
434 static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 				      struct request *rq1,
436 				      struct request *rq2,
437 				      sector_t last)
438 {
439 	sector_t s1, s2, d1 = 0, d2 = 0;
440 	unsigned long back_max;
441 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
442 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
443 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444 
445 	if (!rq1 || rq1 == rq2)
446 		return rq2;
447 	if (!rq2)
448 		return rq1;
449 
450 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 		return rq1;
452 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 		return rq2;
454 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 		return rq1;
456 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 		return rq2;
458 
459 	s1 = blk_rq_pos(rq1);
460 	s2 = blk_rq_pos(rq2);
461 
462 	/*
463 	 * By definition, 1KiB is 2 sectors.
464 	 */
465 	back_max = bfqd->bfq_back_max * 2;
466 
467 	/*
468 	 * Strict one way elevator _except_ in the case where we allow
469 	 * short backward seeks which are biased as twice the cost of a
470 	 * similar forward seek.
471 	 */
472 	if (s1 >= last)
473 		d1 = s1 - last;
474 	else if (s1 + back_max >= last)
475 		d1 = (last - s1) * bfqd->bfq_back_penalty;
476 	else
477 		wrap |= BFQ_RQ1_WRAP;
478 
479 	if (s2 >= last)
480 		d2 = s2 - last;
481 	else if (s2 + back_max >= last)
482 		d2 = (last - s2) * bfqd->bfq_back_penalty;
483 	else
484 		wrap |= BFQ_RQ2_WRAP;
485 
486 	/* Found required data */
487 
488 	/*
489 	 * By doing switch() on the bit mask "wrap" we avoid having to
490 	 * check two variables for all permutations: --> faster!
491 	 */
492 	switch (wrap) {
493 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 		if (d1 < d2)
495 			return rq1;
496 		else if (d2 < d1)
497 			return rq2;
498 
499 		if (s1 >= s2)
500 			return rq1;
501 		else
502 			return rq2;
503 
504 	case BFQ_RQ2_WRAP:
505 		return rq1;
506 	case BFQ_RQ1_WRAP:
507 		return rq2;
508 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 	default:
510 		/*
511 		 * Since both rqs are wrapped,
512 		 * start with the one that's further behind head
513 		 * (--> only *one* back seek required),
514 		 * since back seek takes more time than forward.
515 		 */
516 		if (s1 <= s2)
517 			return rq1;
518 		else
519 			return rq2;
520 	}
521 }
522 
523 /*
524  * Async I/O can easily starve sync I/O (both sync reads and sync
525  * writes), by consuming all tags. Similarly, storms of sync writes,
526  * such as those that sync(2) may trigger, can starve sync reads.
527  * Limit depths of async I/O and sync writes so as to counter both
528  * problems.
529  */
530 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531 {
532 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
533 
534 	if (op_is_sync(op) && !op_is_write(op))
535 		return;
536 
537 	data->shallow_depth =
538 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539 
540 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
542 			data->shallow_depth);
543 }
544 
545 static struct bfq_queue *
546 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 		     sector_t sector, struct rb_node **ret_parent,
548 		     struct rb_node ***rb_link)
549 {
550 	struct rb_node **p, *parent;
551 	struct bfq_queue *bfqq = NULL;
552 
553 	parent = NULL;
554 	p = &root->rb_node;
555 	while (*p) {
556 		struct rb_node **n;
557 
558 		parent = *p;
559 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560 
561 		/*
562 		 * Sort strictly based on sector. Smallest to the left,
563 		 * largest to the right.
564 		 */
565 		if (sector > blk_rq_pos(bfqq->next_rq))
566 			n = &(*p)->rb_right;
567 		else if (sector < blk_rq_pos(bfqq->next_rq))
568 			n = &(*p)->rb_left;
569 		else
570 			break;
571 		p = n;
572 		bfqq = NULL;
573 	}
574 
575 	*ret_parent = parent;
576 	if (rb_link)
577 		*rb_link = p;
578 
579 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 		(unsigned long long)sector,
581 		bfqq ? bfqq->pid : 0);
582 
583 	return bfqq;
584 }
585 
586 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587 {
588 	return bfqq->service_from_backlogged > 0 &&
589 		time_is_before_jiffies(bfqq->first_IO_time +
590 				       bfq_merge_time_limit);
591 }
592 
593 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
594 {
595 	struct rb_node **p, *parent;
596 	struct bfq_queue *__bfqq;
597 
598 	if (bfqq->pos_root) {
599 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 		bfqq->pos_root = NULL;
601 	}
602 
603 	/*
604 	 * bfqq cannot be merged any longer (see comments in
605 	 * bfq_setup_cooperator): no point in adding bfqq into the
606 	 * position tree.
607 	 */
608 	if (bfq_too_late_for_merging(bfqq))
609 		return;
610 
611 	if (bfq_class_idle(bfqq))
612 		return;
613 	if (!bfqq->next_rq)
614 		return;
615 
616 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 			blk_rq_pos(bfqq->next_rq), &parent, &p);
619 	if (!__bfqq) {
620 		rb_link_node(&bfqq->pos_node, parent, p);
621 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 	} else
623 		bfqq->pos_root = NULL;
624 }
625 
626 /*
627  * Tell whether there are active queues with different weights or
628  * active groups.
629  */
630 static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
631 {
632 	/*
633 	 * For queue weights to differ, queue_weights_tree must contain
634 	 * at least two nodes.
635 	 */
636 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
637 		(bfqd->queue_weights_tree.rb_node->rb_left ||
638 		 bfqd->queue_weights_tree.rb_node->rb_right)
639 #ifdef CONFIG_BFQ_GROUP_IOSCHED
640 	       ) ||
641 		(bfqd->num_active_groups > 0
642 #endif
643 	       );
644 }
645 
646 /*
647  * The following function returns true if every queue must receive the
648  * same share of the throughput (this condition is used when deciding
649  * whether idling may be disabled, see the comments in the function
650  * bfq_better_to_idle()).
651  *
652  * Such a scenario occurs when:
653  * 1) all active queues have the same weight,
654  * 2) all active groups at the same level in the groups tree have the same
655  *    weight,
656  * 3) all active groups at the same level in the groups tree have the same
657  *    number of children.
658  *
659  * Unfortunately, keeping the necessary state for evaluating exactly
660  * the last two symmetry sub-conditions above would be quite complex
661  * and time consuming.  Therefore this function evaluates, instead,
662  * only the following stronger two sub-conditions, for which it is
663  * much easier to maintain the needed state:
664  * 1) all active queues have the same weight,
665  * 2) there are no active groups.
666  * In particular, the last condition is always true if hierarchical
667  * support or the cgroups interface are not enabled, thus no state
668  * needs to be maintained in this case.
669  */
670 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
671 {
672 	return !bfq_varied_queue_weights_or_active_groups(bfqd);
673 }
674 
675 /*
676  * If the weight-counter tree passed as input contains no counter for
677  * the weight of the input queue, then add that counter; otherwise just
678  * increment the existing counter.
679  *
680  * Note that weight-counter trees contain few nodes in mostly symmetric
681  * scenarios. For example, if all queues have the same weight, then the
682  * weight-counter tree for the queues may contain at most one node.
683  * This holds even if low_latency is on, because weight-raised queues
684  * are not inserted in the tree.
685  * In most scenarios, the rate at which nodes are created/destroyed
686  * should be low too.
687  */
688 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
689 			  struct rb_root *root)
690 {
691 	struct bfq_entity *entity = &bfqq->entity;
692 	struct rb_node **new = &(root->rb_node), *parent = NULL;
693 
694 	/*
695 	 * Do not insert if the queue is already associated with a
696 	 * counter, which happens if:
697 	 *   1) a request arrival has caused the queue to become both
698 	 *      non-weight-raised, and hence change its weight, and
699 	 *      backlogged; in this respect, each of the two events
700 	 *      causes an invocation of this function,
701 	 *   2) this is the invocation of this function caused by the
702 	 *      second event. This second invocation is actually useless,
703 	 *      and we handle this fact by exiting immediately. More
704 	 *      efficient or clearer solutions might possibly be adopted.
705 	 */
706 	if (bfqq->weight_counter)
707 		return;
708 
709 	while (*new) {
710 		struct bfq_weight_counter *__counter = container_of(*new,
711 						struct bfq_weight_counter,
712 						weights_node);
713 		parent = *new;
714 
715 		if (entity->weight == __counter->weight) {
716 			bfqq->weight_counter = __counter;
717 			goto inc_counter;
718 		}
719 		if (entity->weight < __counter->weight)
720 			new = &((*new)->rb_left);
721 		else
722 			new = &((*new)->rb_right);
723 	}
724 
725 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
726 				       GFP_ATOMIC);
727 
728 	/*
729 	 * In the unlucky event of an allocation failure, we just
730 	 * exit. This will cause the weight of queue to not be
731 	 * considered in bfq_varied_queue_weights_or_active_groups,
732 	 * which, in its turn, causes the scenario to be deemed
733 	 * wrongly symmetric in case bfqq's weight would have been
734 	 * the only weight making the scenario asymmetric.  On the
735 	 * bright side, no unbalance will however occur when bfqq
736 	 * becomes inactive again (the invocation of this function
737 	 * is triggered by an activation of queue).  In fact,
738 	 * bfq_weights_tree_remove does nothing if
739 	 * !bfqq->weight_counter.
740 	 */
741 	if (unlikely(!bfqq->weight_counter))
742 		return;
743 
744 	bfqq->weight_counter->weight = entity->weight;
745 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
746 	rb_insert_color(&bfqq->weight_counter->weights_node, root);
747 
748 inc_counter:
749 	bfqq->weight_counter->num_active++;
750 }
751 
752 /*
753  * Decrement the weight counter associated with the queue, and, if the
754  * counter reaches 0, remove the counter from the tree.
755  * See the comments to the function bfq_weights_tree_add() for considerations
756  * about overhead.
757  */
758 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
759 			       struct bfq_queue *bfqq,
760 			       struct rb_root *root)
761 {
762 	if (!bfqq->weight_counter)
763 		return;
764 
765 	bfqq->weight_counter->num_active--;
766 	if (bfqq->weight_counter->num_active > 0)
767 		goto reset_entity_pointer;
768 
769 	rb_erase(&bfqq->weight_counter->weights_node, root);
770 	kfree(bfqq->weight_counter);
771 
772 reset_entity_pointer:
773 	bfqq->weight_counter = NULL;
774 }
775 
776 /*
777  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
778  * of active groups for each queue's inactive parent entity.
779  */
780 void bfq_weights_tree_remove(struct bfq_data *bfqd,
781 			     struct bfq_queue *bfqq)
782 {
783 	struct bfq_entity *entity = bfqq->entity.parent;
784 
785 	__bfq_weights_tree_remove(bfqd, bfqq,
786 				  &bfqd->queue_weights_tree);
787 
788 	for_each_entity(entity) {
789 		struct bfq_sched_data *sd = entity->my_sched_data;
790 
791 		if (sd->next_in_service || sd->in_service_entity) {
792 			/*
793 			 * entity is still active, because either
794 			 * next_in_service or in_service_entity is not
795 			 * NULL (see the comments on the definition of
796 			 * next_in_service for details on why
797 			 * in_service_entity must be checked too).
798 			 *
799 			 * As a consequence, its parent entities are
800 			 * active as well, and thus this loop must
801 			 * stop here.
802 			 */
803 			break;
804 		}
805 		bfqd->num_active_groups--;
806 	}
807 }
808 
809 /*
810  * Return expired entry, or NULL to just start from scratch in rbtree.
811  */
812 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
813 				      struct request *last)
814 {
815 	struct request *rq;
816 
817 	if (bfq_bfqq_fifo_expire(bfqq))
818 		return NULL;
819 
820 	bfq_mark_bfqq_fifo_expire(bfqq);
821 
822 	rq = rq_entry_fifo(bfqq->fifo.next);
823 
824 	if (rq == last || ktime_get_ns() < rq->fifo_time)
825 		return NULL;
826 
827 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
828 	return rq;
829 }
830 
831 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
832 					struct bfq_queue *bfqq,
833 					struct request *last)
834 {
835 	struct rb_node *rbnext = rb_next(&last->rb_node);
836 	struct rb_node *rbprev = rb_prev(&last->rb_node);
837 	struct request *next, *prev = NULL;
838 
839 	/* Follow expired path, else get first next available. */
840 	next = bfq_check_fifo(bfqq, last);
841 	if (next)
842 		return next;
843 
844 	if (rbprev)
845 		prev = rb_entry_rq(rbprev);
846 
847 	if (rbnext)
848 		next = rb_entry_rq(rbnext);
849 	else {
850 		rbnext = rb_first(&bfqq->sort_list);
851 		if (rbnext && rbnext != &last->rb_node)
852 			next = rb_entry_rq(rbnext);
853 	}
854 
855 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
856 }
857 
858 /* see the definition of bfq_async_charge_factor for details */
859 static unsigned long bfq_serv_to_charge(struct request *rq,
860 					struct bfq_queue *bfqq)
861 {
862 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
863 		return blk_rq_sectors(rq);
864 
865 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
866 }
867 
868 /**
869  * bfq_updated_next_req - update the queue after a new next_rq selection.
870  * @bfqd: the device data the queue belongs to.
871  * @bfqq: the queue to update.
872  *
873  * If the first request of a queue changes we make sure that the queue
874  * has enough budget to serve at least its first request (if the
875  * request has grown).  We do this because if the queue has not enough
876  * budget for its first request, it has to go through two dispatch
877  * rounds to actually get it dispatched.
878  */
879 static void bfq_updated_next_req(struct bfq_data *bfqd,
880 				 struct bfq_queue *bfqq)
881 {
882 	struct bfq_entity *entity = &bfqq->entity;
883 	struct request *next_rq = bfqq->next_rq;
884 	unsigned long new_budget;
885 
886 	if (!next_rq)
887 		return;
888 
889 	if (bfqq == bfqd->in_service_queue)
890 		/*
891 		 * In order not to break guarantees, budgets cannot be
892 		 * changed after an entity has been selected.
893 		 */
894 		return;
895 
896 	new_budget = max_t(unsigned long, bfqq->max_budget,
897 			   bfq_serv_to_charge(next_rq, bfqq));
898 	if (entity->budget != new_budget) {
899 		entity->budget = new_budget;
900 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
901 					 new_budget);
902 		bfq_requeue_bfqq(bfqd, bfqq, false);
903 	}
904 }
905 
906 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
907 {
908 	u64 dur;
909 
910 	if (bfqd->bfq_wr_max_time > 0)
911 		return bfqd->bfq_wr_max_time;
912 
913 	dur = bfqd->rate_dur_prod;
914 	do_div(dur, bfqd->peak_rate);
915 
916 	/*
917 	 * Limit duration between 3 and 25 seconds. The upper limit
918 	 * has been conservatively set after the following worst case:
919 	 * on a QEMU/KVM virtual machine
920 	 * - running in a slow PC
921 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
922 	 * - serving a heavy I/O workload, such as the sequential reading
923 	 *   of several files
924 	 * mplayer took 23 seconds to start, if constantly weight-raised.
925 	 *
926 	 * As for higher values than that accomodating the above bad
927 	 * scenario, tests show that higher values would often yield
928 	 * the opposite of the desired result, i.e., would worsen
929 	 * responsiveness by allowing non-interactive applications to
930 	 * preserve weight raising for too long.
931 	 *
932 	 * On the other end, lower values than 3 seconds make it
933 	 * difficult for most interactive tasks to complete their jobs
934 	 * before weight-raising finishes.
935 	 */
936 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
937 }
938 
939 /* switch back from soft real-time to interactive weight raising */
940 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
941 					  struct bfq_data *bfqd)
942 {
943 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
944 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
945 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
946 }
947 
948 static void
949 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
950 		      struct bfq_io_cq *bic, bool bfq_already_existing)
951 {
952 	unsigned int old_wr_coeff = bfqq->wr_coeff;
953 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
954 
955 	if (bic->saved_has_short_ttime)
956 		bfq_mark_bfqq_has_short_ttime(bfqq);
957 	else
958 		bfq_clear_bfqq_has_short_ttime(bfqq);
959 
960 	if (bic->saved_IO_bound)
961 		bfq_mark_bfqq_IO_bound(bfqq);
962 	else
963 		bfq_clear_bfqq_IO_bound(bfqq);
964 
965 	bfqq->ttime = bic->saved_ttime;
966 	bfqq->wr_coeff = bic->saved_wr_coeff;
967 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
968 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
969 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
970 
971 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
972 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
973 				   bfqq->wr_cur_max_time))) {
974 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
975 		    !bfq_bfqq_in_large_burst(bfqq) &&
976 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
977 					     bfq_wr_duration(bfqd))) {
978 			switch_back_to_interactive_wr(bfqq, bfqd);
979 		} else {
980 			bfqq->wr_coeff = 1;
981 			bfq_log_bfqq(bfqq->bfqd, bfqq,
982 				     "resume state: switching off wr");
983 		}
984 	}
985 
986 	/* make sure weight will be updated, however we got here */
987 	bfqq->entity.prio_changed = 1;
988 
989 	if (likely(!busy))
990 		return;
991 
992 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
993 		bfqd->wr_busy_queues++;
994 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
995 		bfqd->wr_busy_queues--;
996 }
997 
998 static int bfqq_process_refs(struct bfq_queue *bfqq)
999 {
1000 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1001 }
1002 
1003 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1004 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1005 {
1006 	struct bfq_queue *item;
1007 	struct hlist_node *n;
1008 
1009 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1010 		hlist_del_init(&item->burst_list_node);
1011 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1012 	bfqd->burst_size = 1;
1013 	bfqd->burst_parent_entity = bfqq->entity.parent;
1014 }
1015 
1016 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1017 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1018 {
1019 	/* Increment burst size to take into account also bfqq */
1020 	bfqd->burst_size++;
1021 
1022 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1023 		struct bfq_queue *pos, *bfqq_item;
1024 		struct hlist_node *n;
1025 
1026 		/*
1027 		 * Enough queues have been activated shortly after each
1028 		 * other to consider this burst as large.
1029 		 */
1030 		bfqd->large_burst = true;
1031 
1032 		/*
1033 		 * We can now mark all queues in the burst list as
1034 		 * belonging to a large burst.
1035 		 */
1036 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1037 				     burst_list_node)
1038 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1039 		bfq_mark_bfqq_in_large_burst(bfqq);
1040 
1041 		/*
1042 		 * From now on, and until the current burst finishes, any
1043 		 * new queue being activated shortly after the last queue
1044 		 * was inserted in the burst can be immediately marked as
1045 		 * belonging to a large burst. So the burst list is not
1046 		 * needed any more. Remove it.
1047 		 */
1048 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1049 					  burst_list_node)
1050 			hlist_del_init(&pos->burst_list_node);
1051 	} else /*
1052 		* Burst not yet large: add bfqq to the burst list. Do
1053 		* not increment the ref counter for bfqq, because bfqq
1054 		* is removed from the burst list before freeing bfqq
1055 		* in put_queue.
1056 		*/
1057 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1058 }
1059 
1060 /*
1061  * If many queues belonging to the same group happen to be created
1062  * shortly after each other, then the processes associated with these
1063  * queues have typically a common goal. In particular, bursts of queue
1064  * creations are usually caused by services or applications that spawn
1065  * many parallel threads/processes. Examples are systemd during boot,
1066  * or git grep. To help these processes get their job done as soon as
1067  * possible, it is usually better to not grant either weight-raising
1068  * or device idling to their queues.
1069  *
1070  * In this comment we describe, firstly, the reasons why this fact
1071  * holds, and, secondly, the next function, which implements the main
1072  * steps needed to properly mark these queues so that they can then be
1073  * treated in a different way.
1074  *
1075  * The above services or applications benefit mostly from a high
1076  * throughput: the quicker the requests of the activated queues are
1077  * cumulatively served, the sooner the target job of these queues gets
1078  * completed. As a consequence, weight-raising any of these queues,
1079  * which also implies idling the device for it, is almost always
1080  * counterproductive. In most cases it just lowers throughput.
1081  *
1082  * On the other hand, a burst of queue creations may be caused also by
1083  * the start of an application that does not consist of a lot of
1084  * parallel I/O-bound threads. In fact, with a complex application,
1085  * several short processes may need to be executed to start-up the
1086  * application. In this respect, to start an application as quickly as
1087  * possible, the best thing to do is in any case to privilege the I/O
1088  * related to the application with respect to all other
1089  * I/O. Therefore, the best strategy to start as quickly as possible
1090  * an application that causes a burst of queue creations is to
1091  * weight-raise all the queues created during the burst. This is the
1092  * exact opposite of the best strategy for the other type of bursts.
1093  *
1094  * In the end, to take the best action for each of the two cases, the
1095  * two types of bursts need to be distinguished. Fortunately, this
1096  * seems relatively easy, by looking at the sizes of the bursts. In
1097  * particular, we found a threshold such that only bursts with a
1098  * larger size than that threshold are apparently caused by
1099  * services or commands such as systemd or git grep. For brevity,
1100  * hereafter we call just 'large' these bursts. BFQ *does not*
1101  * weight-raise queues whose creation occurs in a large burst. In
1102  * addition, for each of these queues BFQ performs or does not perform
1103  * idling depending on which choice boosts the throughput more. The
1104  * exact choice depends on the device and request pattern at
1105  * hand.
1106  *
1107  * Unfortunately, false positives may occur while an interactive task
1108  * is starting (e.g., an application is being started). The
1109  * consequence is that the queues associated with the task do not
1110  * enjoy weight raising as expected. Fortunately these false positives
1111  * are very rare. They typically occur if some service happens to
1112  * start doing I/O exactly when the interactive task starts.
1113  *
1114  * Turning back to the next function, it implements all the steps
1115  * needed to detect the occurrence of a large burst and to properly
1116  * mark all the queues belonging to it (so that they can then be
1117  * treated in a different way). This goal is achieved by maintaining a
1118  * "burst list" that holds, temporarily, the queues that belong to the
1119  * burst in progress. The list is then used to mark these queues as
1120  * belonging to a large burst if the burst does become large. The main
1121  * steps are the following.
1122  *
1123  * . when the very first queue is created, the queue is inserted into the
1124  *   list (as it could be the first queue in a possible burst)
1125  *
1126  * . if the current burst has not yet become large, and a queue Q that does
1127  *   not yet belong to the burst is activated shortly after the last time
1128  *   at which a new queue entered the burst list, then the function appends
1129  *   Q to the burst list
1130  *
1131  * . if, as a consequence of the previous step, the burst size reaches
1132  *   the large-burst threshold, then
1133  *
1134  *     . all the queues in the burst list are marked as belonging to a
1135  *       large burst
1136  *
1137  *     . the burst list is deleted; in fact, the burst list already served
1138  *       its purpose (keeping temporarily track of the queues in a burst,
1139  *       so as to be able to mark them as belonging to a large burst in the
1140  *       previous sub-step), and now is not needed any more
1141  *
1142  *     . the device enters a large-burst mode
1143  *
1144  * . if a queue Q that does not belong to the burst is created while
1145  *   the device is in large-burst mode and shortly after the last time
1146  *   at which a queue either entered the burst list or was marked as
1147  *   belonging to the current large burst, then Q is immediately marked
1148  *   as belonging to a large burst.
1149  *
1150  * . if a queue Q that does not belong to the burst is created a while
1151  *   later, i.e., not shortly after, than the last time at which a queue
1152  *   either entered the burst list or was marked as belonging to the
1153  *   current large burst, then the current burst is deemed as finished and:
1154  *
1155  *        . the large-burst mode is reset if set
1156  *
1157  *        . the burst list is emptied
1158  *
1159  *        . Q is inserted in the burst list, as Q may be the first queue
1160  *          in a possible new burst (then the burst list contains just Q
1161  *          after this step).
1162  */
1163 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1164 {
1165 	/*
1166 	 * If bfqq is already in the burst list or is part of a large
1167 	 * burst, or finally has just been split, then there is
1168 	 * nothing else to do.
1169 	 */
1170 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1171 	    bfq_bfqq_in_large_burst(bfqq) ||
1172 	    time_is_after_eq_jiffies(bfqq->split_time +
1173 				     msecs_to_jiffies(10)))
1174 		return;
1175 
1176 	/*
1177 	 * If bfqq's creation happens late enough, or bfqq belongs to
1178 	 * a different group than the burst group, then the current
1179 	 * burst is finished, and related data structures must be
1180 	 * reset.
1181 	 *
1182 	 * In this respect, consider the special case where bfqq is
1183 	 * the very first queue created after BFQ is selected for this
1184 	 * device. In this case, last_ins_in_burst and
1185 	 * burst_parent_entity are not yet significant when we get
1186 	 * here. But it is easy to verify that, whether or not the
1187 	 * following condition is true, bfqq will end up being
1188 	 * inserted into the burst list. In particular the list will
1189 	 * happen to contain only bfqq. And this is exactly what has
1190 	 * to happen, as bfqq may be the first queue of the first
1191 	 * burst.
1192 	 */
1193 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1194 	    bfqd->bfq_burst_interval) ||
1195 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1196 		bfqd->large_burst = false;
1197 		bfq_reset_burst_list(bfqd, bfqq);
1198 		goto end;
1199 	}
1200 
1201 	/*
1202 	 * If we get here, then bfqq is being activated shortly after the
1203 	 * last queue. So, if the current burst is also large, we can mark
1204 	 * bfqq as belonging to this large burst immediately.
1205 	 */
1206 	if (bfqd->large_burst) {
1207 		bfq_mark_bfqq_in_large_burst(bfqq);
1208 		goto end;
1209 	}
1210 
1211 	/*
1212 	 * If we get here, then a large-burst state has not yet been
1213 	 * reached, but bfqq is being activated shortly after the last
1214 	 * queue. Then we add bfqq to the burst.
1215 	 */
1216 	bfq_add_to_burst(bfqd, bfqq);
1217 end:
1218 	/*
1219 	 * At this point, bfqq either has been added to the current
1220 	 * burst or has caused the current burst to terminate and a
1221 	 * possible new burst to start. In particular, in the second
1222 	 * case, bfqq has become the first queue in the possible new
1223 	 * burst.  In both cases last_ins_in_burst needs to be moved
1224 	 * forward.
1225 	 */
1226 	bfqd->last_ins_in_burst = jiffies;
1227 }
1228 
1229 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1230 {
1231 	struct bfq_entity *entity = &bfqq->entity;
1232 
1233 	return entity->budget - entity->service;
1234 }
1235 
1236 /*
1237  * If enough samples have been computed, return the current max budget
1238  * stored in bfqd, which is dynamically updated according to the
1239  * estimated disk peak rate; otherwise return the default max budget
1240  */
1241 static int bfq_max_budget(struct bfq_data *bfqd)
1242 {
1243 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1244 		return bfq_default_max_budget;
1245 	else
1246 		return bfqd->bfq_max_budget;
1247 }
1248 
1249 /*
1250  * Return min budget, which is a fraction of the current or default
1251  * max budget (trying with 1/32)
1252  */
1253 static int bfq_min_budget(struct bfq_data *bfqd)
1254 {
1255 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1256 		return bfq_default_max_budget / 32;
1257 	else
1258 		return bfqd->bfq_max_budget / 32;
1259 }
1260 
1261 /*
1262  * The next function, invoked after the input queue bfqq switches from
1263  * idle to busy, updates the budget of bfqq. The function also tells
1264  * whether the in-service queue should be expired, by returning
1265  * true. The purpose of expiring the in-service queue is to give bfqq
1266  * the chance to possibly preempt the in-service queue, and the reason
1267  * for preempting the in-service queue is to achieve one of the two
1268  * goals below.
1269  *
1270  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1271  * expired because it has remained idle. In particular, bfqq may have
1272  * expired for one of the following two reasons:
1273  *
1274  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1275  *   and did not make it to issue a new request before its last
1276  *   request was served;
1277  *
1278  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1279  *   a new request before the expiration of the idling-time.
1280  *
1281  * Even if bfqq has expired for one of the above reasons, the process
1282  * associated with the queue may be however issuing requests greedily,
1283  * and thus be sensitive to the bandwidth it receives (bfqq may have
1284  * remained idle for other reasons: CPU high load, bfqq not enjoying
1285  * idling, I/O throttling somewhere in the path from the process to
1286  * the I/O scheduler, ...). But if, after every expiration for one of
1287  * the above two reasons, bfqq has to wait for the service of at least
1288  * one full budget of another queue before being served again, then
1289  * bfqq is likely to get a much lower bandwidth or resource time than
1290  * its reserved ones. To address this issue, two countermeasures need
1291  * to be taken.
1292  *
1293  * First, the budget and the timestamps of bfqq need to be updated in
1294  * a special way on bfqq reactivation: they need to be updated as if
1295  * bfqq did not remain idle and did not expire. In fact, if they are
1296  * computed as if bfqq expired and remained idle until reactivation,
1297  * then the process associated with bfqq is treated as if, instead of
1298  * being greedy, it stopped issuing requests when bfqq remained idle,
1299  * and restarts issuing requests only on this reactivation. In other
1300  * words, the scheduler does not help the process recover the "service
1301  * hole" between bfqq expiration and reactivation. As a consequence,
1302  * the process receives a lower bandwidth than its reserved one. In
1303  * contrast, to recover this hole, the budget must be updated as if
1304  * bfqq was not expired at all before this reactivation, i.e., it must
1305  * be set to the value of the remaining budget when bfqq was
1306  * expired. Along the same line, timestamps need to be assigned the
1307  * value they had the last time bfqq was selected for service, i.e.,
1308  * before last expiration. Thus timestamps need to be back-shifted
1309  * with respect to their normal computation (see [1] for more details
1310  * on this tricky aspect).
1311  *
1312  * Secondly, to allow the process to recover the hole, the in-service
1313  * queue must be expired too, to give bfqq the chance to preempt it
1314  * immediately. In fact, if bfqq has to wait for a full budget of the
1315  * in-service queue to be completed, then it may become impossible to
1316  * let the process recover the hole, even if the back-shifted
1317  * timestamps of bfqq are lower than those of the in-service queue. If
1318  * this happens for most or all of the holes, then the process may not
1319  * receive its reserved bandwidth. In this respect, it is worth noting
1320  * that, being the service of outstanding requests unpreemptible, a
1321  * little fraction of the holes may however be unrecoverable, thereby
1322  * causing a little loss of bandwidth.
1323  *
1324  * The last important point is detecting whether bfqq does need this
1325  * bandwidth recovery. In this respect, the next function deems the
1326  * process associated with bfqq greedy, and thus allows it to recover
1327  * the hole, if: 1) the process is waiting for the arrival of a new
1328  * request (which implies that bfqq expired for one of the above two
1329  * reasons), and 2) such a request has arrived soon. The first
1330  * condition is controlled through the flag non_blocking_wait_rq,
1331  * while the second through the flag arrived_in_time. If both
1332  * conditions hold, then the function computes the budget in the
1333  * above-described special way, and signals that the in-service queue
1334  * should be expired. Timestamp back-shifting is done later in
1335  * __bfq_activate_entity.
1336  *
1337  * 2. Reduce latency. Even if timestamps are not backshifted to let
1338  * the process associated with bfqq recover a service hole, bfqq may
1339  * however happen to have, after being (re)activated, a lower finish
1340  * timestamp than the in-service queue.	 That is, the next budget of
1341  * bfqq may have to be completed before the one of the in-service
1342  * queue. If this is the case, then preempting the in-service queue
1343  * allows this goal to be achieved, apart from the unpreemptible,
1344  * outstanding requests mentioned above.
1345  *
1346  * Unfortunately, regardless of which of the above two goals one wants
1347  * to achieve, service trees need first to be updated to know whether
1348  * the in-service queue must be preempted. To have service trees
1349  * correctly updated, the in-service queue must be expired and
1350  * rescheduled, and bfqq must be scheduled too. This is one of the
1351  * most costly operations (in future versions, the scheduling
1352  * mechanism may be re-designed in such a way to make it possible to
1353  * know whether preemption is needed without needing to update service
1354  * trees). In addition, queue preemptions almost always cause random
1355  * I/O, and thus loss of throughput. Because of these facts, the next
1356  * function adopts the following simple scheme to avoid both costly
1357  * operations and too frequent preemptions: it requests the expiration
1358  * of the in-service queue (unconditionally) only for queues that need
1359  * to recover a hole, or that either are weight-raised or deserve to
1360  * be weight-raised.
1361  */
1362 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1363 						struct bfq_queue *bfqq,
1364 						bool arrived_in_time,
1365 						bool wr_or_deserves_wr)
1366 {
1367 	struct bfq_entity *entity = &bfqq->entity;
1368 
1369 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1370 		/*
1371 		 * We do not clear the flag non_blocking_wait_rq here, as
1372 		 * the latter is used in bfq_activate_bfqq to signal
1373 		 * that timestamps need to be back-shifted (and is
1374 		 * cleared right after).
1375 		 */
1376 
1377 		/*
1378 		 * In next assignment we rely on that either
1379 		 * entity->service or entity->budget are not updated
1380 		 * on expiration if bfqq is empty (see
1381 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1382 		 * remain unchanged after such an expiration, and the
1383 		 * following statement therefore assigns to
1384 		 * entity->budget the remaining budget on such an
1385 		 * expiration.
1386 		 */
1387 		entity->budget = min_t(unsigned long,
1388 				       bfq_bfqq_budget_left(bfqq),
1389 				       bfqq->max_budget);
1390 
1391 		/*
1392 		 * At this point, we have used entity->service to get
1393 		 * the budget left (needed for updating
1394 		 * entity->budget). Thus we finally can, and have to,
1395 		 * reset entity->service. The latter must be reset
1396 		 * because bfqq would otherwise be charged again for
1397 		 * the service it has received during its previous
1398 		 * service slot(s).
1399 		 */
1400 		entity->service = 0;
1401 
1402 		return true;
1403 	}
1404 
1405 	/*
1406 	 * We can finally complete expiration, by setting service to 0.
1407 	 */
1408 	entity->service = 0;
1409 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1410 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1411 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1412 	return wr_or_deserves_wr;
1413 }
1414 
1415 /*
1416  * Return the farthest past time instant according to jiffies
1417  * macros.
1418  */
1419 static unsigned long bfq_smallest_from_now(void)
1420 {
1421 	return jiffies - MAX_JIFFY_OFFSET;
1422 }
1423 
1424 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1425 					     struct bfq_queue *bfqq,
1426 					     unsigned int old_wr_coeff,
1427 					     bool wr_or_deserves_wr,
1428 					     bool interactive,
1429 					     bool in_burst,
1430 					     bool soft_rt)
1431 {
1432 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1433 		/* start a weight-raising period */
1434 		if (interactive) {
1435 			bfqq->service_from_wr = 0;
1436 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1437 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1438 		} else {
1439 			/*
1440 			 * No interactive weight raising in progress
1441 			 * here: assign minus infinity to
1442 			 * wr_start_at_switch_to_srt, to make sure
1443 			 * that, at the end of the soft-real-time
1444 			 * weight raising periods that is starting
1445 			 * now, no interactive weight-raising period
1446 			 * may be wrongly considered as still in
1447 			 * progress (and thus actually started by
1448 			 * mistake).
1449 			 */
1450 			bfqq->wr_start_at_switch_to_srt =
1451 				bfq_smallest_from_now();
1452 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1453 				BFQ_SOFTRT_WEIGHT_FACTOR;
1454 			bfqq->wr_cur_max_time =
1455 				bfqd->bfq_wr_rt_max_time;
1456 		}
1457 
1458 		/*
1459 		 * If needed, further reduce budget to make sure it is
1460 		 * close to bfqq's backlog, so as to reduce the
1461 		 * scheduling-error component due to a too large
1462 		 * budget. Do not care about throughput consequences,
1463 		 * but only about latency. Finally, do not assign a
1464 		 * too small budget either, to avoid increasing
1465 		 * latency by causing too frequent expirations.
1466 		 */
1467 		bfqq->entity.budget = min_t(unsigned long,
1468 					    bfqq->entity.budget,
1469 					    2 * bfq_min_budget(bfqd));
1470 	} else if (old_wr_coeff > 1) {
1471 		if (interactive) { /* update wr coeff and duration */
1472 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1473 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1474 		} else if (in_burst)
1475 			bfqq->wr_coeff = 1;
1476 		else if (soft_rt) {
1477 			/*
1478 			 * The application is now or still meeting the
1479 			 * requirements for being deemed soft rt.  We
1480 			 * can then correctly and safely (re)charge
1481 			 * the weight-raising duration for the
1482 			 * application with the weight-raising
1483 			 * duration for soft rt applications.
1484 			 *
1485 			 * In particular, doing this recharge now, i.e.,
1486 			 * before the weight-raising period for the
1487 			 * application finishes, reduces the probability
1488 			 * of the following negative scenario:
1489 			 * 1) the weight of a soft rt application is
1490 			 *    raised at startup (as for any newly
1491 			 *    created application),
1492 			 * 2) since the application is not interactive,
1493 			 *    at a certain time weight-raising is
1494 			 *    stopped for the application,
1495 			 * 3) at that time the application happens to
1496 			 *    still have pending requests, and hence
1497 			 *    is destined to not have a chance to be
1498 			 *    deemed soft rt before these requests are
1499 			 *    completed (see the comments to the
1500 			 *    function bfq_bfqq_softrt_next_start()
1501 			 *    for details on soft rt detection),
1502 			 * 4) these pending requests experience a high
1503 			 *    latency because the application is not
1504 			 *    weight-raised while they are pending.
1505 			 */
1506 			if (bfqq->wr_cur_max_time !=
1507 				bfqd->bfq_wr_rt_max_time) {
1508 				bfqq->wr_start_at_switch_to_srt =
1509 					bfqq->last_wr_start_finish;
1510 
1511 				bfqq->wr_cur_max_time =
1512 					bfqd->bfq_wr_rt_max_time;
1513 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1514 					BFQ_SOFTRT_WEIGHT_FACTOR;
1515 			}
1516 			bfqq->last_wr_start_finish = jiffies;
1517 		}
1518 	}
1519 }
1520 
1521 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1522 					struct bfq_queue *bfqq)
1523 {
1524 	return bfqq->dispatched == 0 &&
1525 		time_is_before_jiffies(
1526 			bfqq->budget_timeout +
1527 			bfqd->bfq_wr_min_idle_time);
1528 }
1529 
1530 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1531 					     struct bfq_queue *bfqq,
1532 					     int old_wr_coeff,
1533 					     struct request *rq,
1534 					     bool *interactive)
1535 {
1536 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1537 		bfqq_wants_to_preempt,
1538 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1539 		/*
1540 		 * See the comments on
1541 		 * bfq_bfqq_update_budg_for_activation for
1542 		 * details on the usage of the next variable.
1543 		 */
1544 		arrived_in_time =  ktime_get_ns() <=
1545 			bfqq->ttime.last_end_request +
1546 			bfqd->bfq_slice_idle * 3;
1547 
1548 
1549 	/*
1550 	 * bfqq deserves to be weight-raised if:
1551 	 * - it is sync,
1552 	 * - it does not belong to a large burst,
1553 	 * - it has been idle for enough time or is soft real-time,
1554 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1555 	 */
1556 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1557 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1558 		!in_burst &&
1559 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1560 		bfqq->dispatched == 0;
1561 	*interactive = !in_burst && idle_for_long_time;
1562 	wr_or_deserves_wr = bfqd->low_latency &&
1563 		(bfqq->wr_coeff > 1 ||
1564 		 (bfq_bfqq_sync(bfqq) &&
1565 		  bfqq->bic && (*interactive || soft_rt)));
1566 
1567 	/*
1568 	 * Using the last flag, update budget and check whether bfqq
1569 	 * may want to preempt the in-service queue.
1570 	 */
1571 	bfqq_wants_to_preempt =
1572 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1573 						    arrived_in_time,
1574 						    wr_or_deserves_wr);
1575 
1576 	/*
1577 	 * If bfqq happened to be activated in a burst, but has been
1578 	 * idle for much more than an interactive queue, then we
1579 	 * assume that, in the overall I/O initiated in the burst, the
1580 	 * I/O associated with bfqq is finished. So bfqq does not need
1581 	 * to be treated as a queue belonging to a burst
1582 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1583 	 * if set, and remove bfqq from the burst list if it's
1584 	 * there. We do not decrement burst_size, because the fact
1585 	 * that bfqq does not need to belong to the burst list any
1586 	 * more does not invalidate the fact that bfqq was created in
1587 	 * a burst.
1588 	 */
1589 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1590 	    idle_for_long_time &&
1591 	    time_is_before_jiffies(
1592 		    bfqq->budget_timeout +
1593 		    msecs_to_jiffies(10000))) {
1594 		hlist_del_init(&bfqq->burst_list_node);
1595 		bfq_clear_bfqq_in_large_burst(bfqq);
1596 	}
1597 
1598 	bfq_clear_bfqq_just_created(bfqq);
1599 
1600 
1601 	if (!bfq_bfqq_IO_bound(bfqq)) {
1602 		if (arrived_in_time) {
1603 			bfqq->requests_within_timer++;
1604 			if (bfqq->requests_within_timer >=
1605 			    bfqd->bfq_requests_within_timer)
1606 				bfq_mark_bfqq_IO_bound(bfqq);
1607 		} else
1608 			bfqq->requests_within_timer = 0;
1609 	}
1610 
1611 	if (bfqd->low_latency) {
1612 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1613 			/* wraparound */
1614 			bfqq->split_time =
1615 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1616 
1617 		if (time_is_before_jiffies(bfqq->split_time +
1618 					   bfqd->bfq_wr_min_idle_time)) {
1619 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1620 							 old_wr_coeff,
1621 							 wr_or_deserves_wr,
1622 							 *interactive,
1623 							 in_burst,
1624 							 soft_rt);
1625 
1626 			if (old_wr_coeff != bfqq->wr_coeff)
1627 				bfqq->entity.prio_changed = 1;
1628 		}
1629 	}
1630 
1631 	bfqq->last_idle_bklogged = jiffies;
1632 	bfqq->service_from_backlogged = 0;
1633 	bfq_clear_bfqq_softrt_update(bfqq);
1634 
1635 	bfq_add_bfqq_busy(bfqd, bfqq);
1636 
1637 	/*
1638 	 * Expire in-service queue only if preemption may be needed
1639 	 * for guarantees. In this respect, the function
1640 	 * next_queue_may_preempt just checks a simple, necessary
1641 	 * condition, and not a sufficient condition based on
1642 	 * timestamps. In fact, for the latter condition to be
1643 	 * evaluated, timestamps would need first to be updated, and
1644 	 * this operation is quite costly (see the comments on the
1645 	 * function bfq_bfqq_update_budg_for_activation).
1646 	 */
1647 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1648 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1649 	    next_queue_may_preempt(bfqd))
1650 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1651 				false, BFQQE_PREEMPTED);
1652 }
1653 
1654 static void bfq_add_request(struct request *rq)
1655 {
1656 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1657 	struct bfq_data *bfqd = bfqq->bfqd;
1658 	struct request *next_rq, *prev;
1659 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1660 	bool interactive = false;
1661 
1662 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1663 	bfqq->queued[rq_is_sync(rq)]++;
1664 	bfqd->queued++;
1665 
1666 	elv_rb_add(&bfqq->sort_list, rq);
1667 
1668 	/*
1669 	 * Check if this request is a better next-serve candidate.
1670 	 */
1671 	prev = bfqq->next_rq;
1672 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1673 	bfqq->next_rq = next_rq;
1674 
1675 	/*
1676 	 * Adjust priority tree position, if next_rq changes.
1677 	 */
1678 	if (prev != bfqq->next_rq)
1679 		bfq_pos_tree_add_move(bfqd, bfqq);
1680 
1681 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1682 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1683 						 rq, &interactive);
1684 	else {
1685 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1686 		    time_is_before_jiffies(
1687 				bfqq->last_wr_start_finish +
1688 				bfqd->bfq_wr_min_inter_arr_async)) {
1689 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1690 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1691 
1692 			bfqd->wr_busy_queues++;
1693 			bfqq->entity.prio_changed = 1;
1694 		}
1695 		if (prev != bfqq->next_rq)
1696 			bfq_updated_next_req(bfqd, bfqq);
1697 	}
1698 
1699 	/*
1700 	 * Assign jiffies to last_wr_start_finish in the following
1701 	 * cases:
1702 	 *
1703 	 * . if bfqq is not going to be weight-raised, because, for
1704 	 *   non weight-raised queues, last_wr_start_finish stores the
1705 	 *   arrival time of the last request; as of now, this piece
1706 	 *   of information is used only for deciding whether to
1707 	 *   weight-raise async queues
1708 	 *
1709 	 * . if bfqq is not weight-raised, because, if bfqq is now
1710 	 *   switching to weight-raised, then last_wr_start_finish
1711 	 *   stores the time when weight-raising starts
1712 	 *
1713 	 * . if bfqq is interactive, because, regardless of whether
1714 	 *   bfqq is currently weight-raised, the weight-raising
1715 	 *   period must start or restart (this case is considered
1716 	 *   separately because it is not detected by the above
1717 	 *   conditions, if bfqq is already weight-raised)
1718 	 *
1719 	 * last_wr_start_finish has to be updated also if bfqq is soft
1720 	 * real-time, because the weight-raising period is constantly
1721 	 * restarted on idle-to-busy transitions for these queues, but
1722 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1723 	 * needed.
1724 	 */
1725 	if (bfqd->low_latency &&
1726 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1727 		bfqq->last_wr_start_finish = jiffies;
1728 }
1729 
1730 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1731 					  struct bio *bio,
1732 					  struct request_queue *q)
1733 {
1734 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1735 
1736 
1737 	if (bfqq)
1738 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1739 
1740 	return NULL;
1741 }
1742 
1743 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1744 {
1745 	if (last_pos)
1746 		return abs(blk_rq_pos(rq) - last_pos);
1747 
1748 	return 0;
1749 }
1750 
1751 #if 0 /* Still not clear if we can do without next two functions */
1752 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1753 {
1754 	struct bfq_data *bfqd = q->elevator->elevator_data;
1755 
1756 	bfqd->rq_in_driver++;
1757 }
1758 
1759 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1760 {
1761 	struct bfq_data *bfqd = q->elevator->elevator_data;
1762 
1763 	bfqd->rq_in_driver--;
1764 }
1765 #endif
1766 
1767 static void bfq_remove_request(struct request_queue *q,
1768 			       struct request *rq)
1769 {
1770 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1771 	struct bfq_data *bfqd = bfqq->bfqd;
1772 	const int sync = rq_is_sync(rq);
1773 
1774 	if (bfqq->next_rq == rq) {
1775 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1776 		bfq_updated_next_req(bfqd, bfqq);
1777 	}
1778 
1779 	if (rq->queuelist.prev != &rq->queuelist)
1780 		list_del_init(&rq->queuelist);
1781 	bfqq->queued[sync]--;
1782 	bfqd->queued--;
1783 	elv_rb_del(&bfqq->sort_list, rq);
1784 
1785 	elv_rqhash_del(q, rq);
1786 	if (q->last_merge == rq)
1787 		q->last_merge = NULL;
1788 
1789 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1790 		bfqq->next_rq = NULL;
1791 
1792 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1793 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1794 			/*
1795 			 * bfqq emptied. In normal operation, when
1796 			 * bfqq is empty, bfqq->entity.service and
1797 			 * bfqq->entity.budget must contain,
1798 			 * respectively, the service received and the
1799 			 * budget used last time bfqq emptied. These
1800 			 * facts do not hold in this case, as at least
1801 			 * this last removal occurred while bfqq is
1802 			 * not in service. To avoid inconsistencies,
1803 			 * reset both bfqq->entity.service and
1804 			 * bfqq->entity.budget, if bfqq has still a
1805 			 * process that may issue I/O requests to it.
1806 			 */
1807 			bfqq->entity.budget = bfqq->entity.service = 0;
1808 		}
1809 
1810 		/*
1811 		 * Remove queue from request-position tree as it is empty.
1812 		 */
1813 		if (bfqq->pos_root) {
1814 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1815 			bfqq->pos_root = NULL;
1816 		}
1817 	} else {
1818 		bfq_pos_tree_add_move(bfqd, bfqq);
1819 	}
1820 
1821 	if (rq->cmd_flags & REQ_META)
1822 		bfqq->meta_pending--;
1823 
1824 }
1825 
1826 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1827 {
1828 	struct request_queue *q = hctx->queue;
1829 	struct bfq_data *bfqd = q->elevator->elevator_data;
1830 	struct request *free = NULL;
1831 	/*
1832 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1833 	 * store its return value for later use, to avoid nesting
1834 	 * queue_lock inside the bfqd->lock. We assume that the bic
1835 	 * returned by bfq_bic_lookup does not go away before
1836 	 * bfqd->lock is taken.
1837 	 */
1838 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1839 	bool ret;
1840 
1841 	spin_lock_irq(&bfqd->lock);
1842 
1843 	if (bic)
1844 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1845 	else
1846 		bfqd->bio_bfqq = NULL;
1847 	bfqd->bio_bic = bic;
1848 
1849 	ret = blk_mq_sched_try_merge(q, bio, &free);
1850 
1851 	if (free)
1852 		blk_mq_free_request(free);
1853 	spin_unlock_irq(&bfqd->lock);
1854 
1855 	return ret;
1856 }
1857 
1858 static int bfq_request_merge(struct request_queue *q, struct request **req,
1859 			     struct bio *bio)
1860 {
1861 	struct bfq_data *bfqd = q->elevator->elevator_data;
1862 	struct request *__rq;
1863 
1864 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1865 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1866 		*req = __rq;
1867 		return ELEVATOR_FRONT_MERGE;
1868 	}
1869 
1870 	return ELEVATOR_NO_MERGE;
1871 }
1872 
1873 static struct bfq_queue *bfq_init_rq(struct request *rq);
1874 
1875 static void bfq_request_merged(struct request_queue *q, struct request *req,
1876 			       enum elv_merge type)
1877 {
1878 	if (type == ELEVATOR_FRONT_MERGE &&
1879 	    rb_prev(&req->rb_node) &&
1880 	    blk_rq_pos(req) <
1881 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1882 				    struct request, rb_node))) {
1883 		struct bfq_queue *bfqq = bfq_init_rq(req);
1884 		struct bfq_data *bfqd = bfqq->bfqd;
1885 		struct request *prev, *next_rq;
1886 
1887 		/* Reposition request in its sort_list */
1888 		elv_rb_del(&bfqq->sort_list, req);
1889 		elv_rb_add(&bfqq->sort_list, req);
1890 
1891 		/* Choose next request to be served for bfqq */
1892 		prev = bfqq->next_rq;
1893 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1894 					 bfqd->last_position);
1895 		bfqq->next_rq = next_rq;
1896 		/*
1897 		 * If next_rq changes, update both the queue's budget to
1898 		 * fit the new request and the queue's position in its
1899 		 * rq_pos_tree.
1900 		 */
1901 		if (prev != bfqq->next_rq) {
1902 			bfq_updated_next_req(bfqd, bfqq);
1903 			bfq_pos_tree_add_move(bfqd, bfqq);
1904 		}
1905 	}
1906 }
1907 
1908 /*
1909  * This function is called to notify the scheduler that the requests
1910  * rq and 'next' have been merged, with 'next' going away.  BFQ
1911  * exploits this hook to address the following issue: if 'next' has a
1912  * fifo_time lower that rq, then the fifo_time of rq must be set to
1913  * the value of 'next', to not forget the greater age of 'next'.
1914  *
1915  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1916  * on that rq is picked from the hash table q->elevator->hash, which,
1917  * in its turn, is filled only with I/O requests present in
1918  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1919  * the function that fills this hash table (elv_rqhash_add) is called
1920  * only by bfq_insert_request.
1921  */
1922 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1923 				struct request *next)
1924 {
1925 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1926 		*next_bfqq = bfq_init_rq(next);
1927 
1928 	/*
1929 	 * If next and rq belong to the same bfq_queue and next is older
1930 	 * than rq, then reposition rq in the fifo (by substituting next
1931 	 * with rq). Otherwise, if next and rq belong to different
1932 	 * bfq_queues, never reposition rq: in fact, we would have to
1933 	 * reposition it with respect to next's position in its own fifo,
1934 	 * which would most certainly be too expensive with respect to
1935 	 * the benefits.
1936 	 */
1937 	if (bfqq == next_bfqq &&
1938 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1939 	    next->fifo_time < rq->fifo_time) {
1940 		list_del_init(&rq->queuelist);
1941 		list_replace_init(&next->queuelist, &rq->queuelist);
1942 		rq->fifo_time = next->fifo_time;
1943 	}
1944 
1945 	if (bfqq->next_rq == next)
1946 		bfqq->next_rq = rq;
1947 
1948 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1949 }
1950 
1951 /* Must be called with bfqq != NULL */
1952 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1953 {
1954 	if (bfq_bfqq_busy(bfqq))
1955 		bfqq->bfqd->wr_busy_queues--;
1956 	bfqq->wr_coeff = 1;
1957 	bfqq->wr_cur_max_time = 0;
1958 	bfqq->last_wr_start_finish = jiffies;
1959 	/*
1960 	 * Trigger a weight change on the next invocation of
1961 	 * __bfq_entity_update_weight_prio.
1962 	 */
1963 	bfqq->entity.prio_changed = 1;
1964 }
1965 
1966 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1967 			     struct bfq_group *bfqg)
1968 {
1969 	int i, j;
1970 
1971 	for (i = 0; i < 2; i++)
1972 		for (j = 0; j < IOPRIO_BE_NR; j++)
1973 			if (bfqg->async_bfqq[i][j])
1974 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1975 	if (bfqg->async_idle_bfqq)
1976 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1977 }
1978 
1979 static void bfq_end_wr(struct bfq_data *bfqd)
1980 {
1981 	struct bfq_queue *bfqq;
1982 
1983 	spin_lock_irq(&bfqd->lock);
1984 
1985 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1986 		bfq_bfqq_end_wr(bfqq);
1987 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1988 		bfq_bfqq_end_wr(bfqq);
1989 	bfq_end_wr_async(bfqd);
1990 
1991 	spin_unlock_irq(&bfqd->lock);
1992 }
1993 
1994 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1995 {
1996 	if (request)
1997 		return blk_rq_pos(io_struct);
1998 	else
1999 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2000 }
2001 
2002 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2003 				  sector_t sector)
2004 {
2005 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2006 	       BFQQ_CLOSE_THR;
2007 }
2008 
2009 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2010 					 struct bfq_queue *bfqq,
2011 					 sector_t sector)
2012 {
2013 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2014 	struct rb_node *parent, *node;
2015 	struct bfq_queue *__bfqq;
2016 
2017 	if (RB_EMPTY_ROOT(root))
2018 		return NULL;
2019 
2020 	/*
2021 	 * First, if we find a request starting at the end of the last
2022 	 * request, choose it.
2023 	 */
2024 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2025 	if (__bfqq)
2026 		return __bfqq;
2027 
2028 	/*
2029 	 * If the exact sector wasn't found, the parent of the NULL leaf
2030 	 * will contain the closest sector (rq_pos_tree sorted by
2031 	 * next_request position).
2032 	 */
2033 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2034 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2035 		return __bfqq;
2036 
2037 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2038 		node = rb_next(&__bfqq->pos_node);
2039 	else
2040 		node = rb_prev(&__bfqq->pos_node);
2041 	if (!node)
2042 		return NULL;
2043 
2044 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2045 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2046 		return __bfqq;
2047 
2048 	return NULL;
2049 }
2050 
2051 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2052 						   struct bfq_queue *cur_bfqq,
2053 						   sector_t sector)
2054 {
2055 	struct bfq_queue *bfqq;
2056 
2057 	/*
2058 	 * We shall notice if some of the queues are cooperating,
2059 	 * e.g., working closely on the same area of the device. In
2060 	 * that case, we can group them together and: 1) don't waste
2061 	 * time idling, and 2) serve the union of their requests in
2062 	 * the best possible order for throughput.
2063 	 */
2064 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2065 	if (!bfqq || bfqq == cur_bfqq)
2066 		return NULL;
2067 
2068 	return bfqq;
2069 }
2070 
2071 static struct bfq_queue *
2072 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2073 {
2074 	int process_refs, new_process_refs;
2075 	struct bfq_queue *__bfqq;
2076 
2077 	/*
2078 	 * If there are no process references on the new_bfqq, then it is
2079 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2080 	 * may have dropped their last reference (not just their last process
2081 	 * reference).
2082 	 */
2083 	if (!bfqq_process_refs(new_bfqq))
2084 		return NULL;
2085 
2086 	/* Avoid a circular list and skip interim queue merges. */
2087 	while ((__bfqq = new_bfqq->new_bfqq)) {
2088 		if (__bfqq == bfqq)
2089 			return NULL;
2090 		new_bfqq = __bfqq;
2091 	}
2092 
2093 	process_refs = bfqq_process_refs(bfqq);
2094 	new_process_refs = bfqq_process_refs(new_bfqq);
2095 	/*
2096 	 * If the process for the bfqq has gone away, there is no
2097 	 * sense in merging the queues.
2098 	 */
2099 	if (process_refs == 0 || new_process_refs == 0)
2100 		return NULL;
2101 
2102 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2103 		new_bfqq->pid);
2104 
2105 	/*
2106 	 * Merging is just a redirection: the requests of the process
2107 	 * owning one of the two queues are redirected to the other queue.
2108 	 * The latter queue, in its turn, is set as shared if this is the
2109 	 * first time that the requests of some process are redirected to
2110 	 * it.
2111 	 *
2112 	 * We redirect bfqq to new_bfqq and not the opposite, because
2113 	 * we are in the context of the process owning bfqq, thus we
2114 	 * have the io_cq of this process. So we can immediately
2115 	 * configure this io_cq to redirect the requests of the
2116 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2117 	 * not available any more (new_bfqq->bic == NULL).
2118 	 *
2119 	 * Anyway, even in case new_bfqq coincides with the in-service
2120 	 * queue, redirecting requests the in-service queue is the
2121 	 * best option, as we feed the in-service queue with new
2122 	 * requests close to the last request served and, by doing so,
2123 	 * are likely to increase the throughput.
2124 	 */
2125 	bfqq->new_bfqq = new_bfqq;
2126 	new_bfqq->ref += process_refs;
2127 	return new_bfqq;
2128 }
2129 
2130 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2131 					struct bfq_queue *new_bfqq)
2132 {
2133 	if (bfq_too_late_for_merging(new_bfqq))
2134 		return false;
2135 
2136 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2137 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2138 		return false;
2139 
2140 	/*
2141 	 * If either of the queues has already been detected as seeky,
2142 	 * then merging it with the other queue is unlikely to lead to
2143 	 * sequential I/O.
2144 	 */
2145 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2146 		return false;
2147 
2148 	/*
2149 	 * Interleaved I/O is known to be done by (some) applications
2150 	 * only for reads, so it does not make sense to merge async
2151 	 * queues.
2152 	 */
2153 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2154 		return false;
2155 
2156 	return true;
2157 }
2158 
2159 /*
2160  * Attempt to schedule a merge of bfqq with the currently in-service
2161  * queue or with a close queue among the scheduled queues.  Return
2162  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2163  * structure otherwise.
2164  *
2165  * The OOM queue is not allowed to participate to cooperation: in fact, since
2166  * the requests temporarily redirected to the OOM queue could be redirected
2167  * again to dedicated queues at any time, the state needed to correctly
2168  * handle merging with the OOM queue would be quite complex and expensive
2169  * to maintain. Besides, in such a critical condition as an out of memory,
2170  * the benefits of queue merging may be little relevant, or even negligible.
2171  *
2172  * WARNING: queue merging may impair fairness among non-weight raised
2173  * queues, for at least two reasons: 1) the original weight of a
2174  * merged queue may change during the merged state, 2) even being the
2175  * weight the same, a merged queue may be bloated with many more
2176  * requests than the ones produced by its originally-associated
2177  * process.
2178  */
2179 static struct bfq_queue *
2180 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2181 		     void *io_struct, bool request)
2182 {
2183 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2184 
2185 	/*
2186 	 * Prevent bfqq from being merged if it has been created too
2187 	 * long ago. The idea is that true cooperating processes, and
2188 	 * thus their associated bfq_queues, are supposed to be
2189 	 * created shortly after each other. This is the case, e.g.,
2190 	 * for KVM/QEMU and dump I/O threads. Basing on this
2191 	 * assumption, the following filtering greatly reduces the
2192 	 * probability that two non-cooperating processes, which just
2193 	 * happen to do close I/O for some short time interval, have
2194 	 * their queues merged by mistake.
2195 	 */
2196 	if (bfq_too_late_for_merging(bfqq))
2197 		return NULL;
2198 
2199 	if (bfqq->new_bfqq)
2200 		return bfqq->new_bfqq;
2201 
2202 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2203 		return NULL;
2204 
2205 	/* If there is only one backlogged queue, don't search. */
2206 	if (bfqd->busy_queues == 1)
2207 		return NULL;
2208 
2209 	in_service_bfqq = bfqd->in_service_queue;
2210 
2211 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2212 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2213 	    bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2214 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2215 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2216 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2217 		if (new_bfqq)
2218 			return new_bfqq;
2219 	}
2220 	/*
2221 	 * Check whether there is a cooperator among currently scheduled
2222 	 * queues. The only thing we need is that the bio/request is not
2223 	 * NULL, as we need it to establish whether a cooperator exists.
2224 	 */
2225 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2226 			bfq_io_struct_pos(io_struct, request));
2227 
2228 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2229 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2230 		return bfq_setup_merge(bfqq, new_bfqq);
2231 
2232 	return NULL;
2233 }
2234 
2235 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2236 {
2237 	struct bfq_io_cq *bic = bfqq->bic;
2238 
2239 	/*
2240 	 * If !bfqq->bic, the queue is already shared or its requests
2241 	 * have already been redirected to a shared queue; both idle window
2242 	 * and weight raising state have already been saved. Do nothing.
2243 	 */
2244 	if (!bic)
2245 		return;
2246 
2247 	bic->saved_ttime = bfqq->ttime;
2248 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2249 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2250 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2251 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2252 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2253 		     !bfq_bfqq_in_large_burst(bfqq) &&
2254 		     bfqq->bfqd->low_latency)) {
2255 		/*
2256 		 * bfqq being merged right after being created: bfqq
2257 		 * would have deserved interactive weight raising, but
2258 		 * did not make it to be set in a weight-raised state,
2259 		 * because of this early merge.	Store directly the
2260 		 * weight-raising state that would have been assigned
2261 		 * to bfqq, so that to avoid that bfqq unjustly fails
2262 		 * to enjoy weight raising if split soon.
2263 		 */
2264 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2265 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2266 		bic->saved_last_wr_start_finish = jiffies;
2267 	} else {
2268 		bic->saved_wr_coeff = bfqq->wr_coeff;
2269 		bic->saved_wr_start_at_switch_to_srt =
2270 			bfqq->wr_start_at_switch_to_srt;
2271 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2272 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2273 	}
2274 }
2275 
2276 static void
2277 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2278 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2279 {
2280 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2281 		(unsigned long)new_bfqq->pid);
2282 	/* Save weight raising and idle window of the merged queues */
2283 	bfq_bfqq_save_state(bfqq);
2284 	bfq_bfqq_save_state(new_bfqq);
2285 	if (bfq_bfqq_IO_bound(bfqq))
2286 		bfq_mark_bfqq_IO_bound(new_bfqq);
2287 	bfq_clear_bfqq_IO_bound(bfqq);
2288 
2289 	/*
2290 	 * If bfqq is weight-raised, then let new_bfqq inherit
2291 	 * weight-raising. To reduce false positives, neglect the case
2292 	 * where bfqq has just been created, but has not yet made it
2293 	 * to be weight-raised (which may happen because EQM may merge
2294 	 * bfqq even before bfq_add_request is executed for the first
2295 	 * time for bfqq). Handling this case would however be very
2296 	 * easy, thanks to the flag just_created.
2297 	 */
2298 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2299 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2300 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2301 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2302 		new_bfqq->wr_start_at_switch_to_srt =
2303 			bfqq->wr_start_at_switch_to_srt;
2304 		if (bfq_bfqq_busy(new_bfqq))
2305 			bfqd->wr_busy_queues++;
2306 		new_bfqq->entity.prio_changed = 1;
2307 	}
2308 
2309 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2310 		bfqq->wr_coeff = 1;
2311 		bfqq->entity.prio_changed = 1;
2312 		if (bfq_bfqq_busy(bfqq))
2313 			bfqd->wr_busy_queues--;
2314 	}
2315 
2316 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2317 		     bfqd->wr_busy_queues);
2318 
2319 	/*
2320 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2321 	 */
2322 	bic_set_bfqq(bic, new_bfqq, 1);
2323 	bfq_mark_bfqq_coop(new_bfqq);
2324 	/*
2325 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2326 	 * set new_bfqq->bic to NULL. bfqq either:
2327 	 * - does not belong to any bic any more, and hence bfqq->bic must
2328 	 *   be set to NULL, or
2329 	 * - is a queue whose owning bics have already been redirected to a
2330 	 *   different queue, hence the queue is destined to not belong to
2331 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2332 	 *   assignment causes no harm).
2333 	 */
2334 	new_bfqq->bic = NULL;
2335 	bfqq->bic = NULL;
2336 	/* release process reference to bfqq */
2337 	bfq_put_queue(bfqq);
2338 }
2339 
2340 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2341 				struct bio *bio)
2342 {
2343 	struct bfq_data *bfqd = q->elevator->elevator_data;
2344 	bool is_sync = op_is_sync(bio->bi_opf);
2345 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2346 
2347 	/*
2348 	 * Disallow merge of a sync bio into an async request.
2349 	 */
2350 	if (is_sync && !rq_is_sync(rq))
2351 		return false;
2352 
2353 	/*
2354 	 * Lookup the bfqq that this bio will be queued with. Allow
2355 	 * merge only if rq is queued there.
2356 	 */
2357 	if (!bfqq)
2358 		return false;
2359 
2360 	/*
2361 	 * We take advantage of this function to perform an early merge
2362 	 * of the queues of possible cooperating processes.
2363 	 */
2364 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2365 	if (new_bfqq) {
2366 		/*
2367 		 * bic still points to bfqq, then it has not yet been
2368 		 * redirected to some other bfq_queue, and a queue
2369 		 * merge beween bfqq and new_bfqq can be safely
2370 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2371 		 * and bfqq can be put.
2372 		 */
2373 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2374 				new_bfqq);
2375 		/*
2376 		 * If we get here, bio will be queued into new_queue,
2377 		 * so use new_bfqq to decide whether bio and rq can be
2378 		 * merged.
2379 		 */
2380 		bfqq = new_bfqq;
2381 
2382 		/*
2383 		 * Change also bqfd->bio_bfqq, as
2384 		 * bfqd->bio_bic now points to new_bfqq, and
2385 		 * this function may be invoked again (and then may
2386 		 * use again bqfd->bio_bfqq).
2387 		 */
2388 		bfqd->bio_bfqq = bfqq;
2389 	}
2390 
2391 	return bfqq == RQ_BFQQ(rq);
2392 }
2393 
2394 /*
2395  * Set the maximum time for the in-service queue to consume its
2396  * budget. This prevents seeky processes from lowering the throughput.
2397  * In practice, a time-slice service scheme is used with seeky
2398  * processes.
2399  */
2400 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2401 				   struct bfq_queue *bfqq)
2402 {
2403 	unsigned int timeout_coeff;
2404 
2405 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2406 		timeout_coeff = 1;
2407 	else
2408 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2409 
2410 	bfqd->last_budget_start = ktime_get();
2411 
2412 	bfqq->budget_timeout = jiffies +
2413 		bfqd->bfq_timeout * timeout_coeff;
2414 }
2415 
2416 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2417 				       struct bfq_queue *bfqq)
2418 {
2419 	if (bfqq) {
2420 		bfq_clear_bfqq_fifo_expire(bfqq);
2421 
2422 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2423 
2424 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2425 		    bfqq->wr_coeff > 1 &&
2426 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2427 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2428 			/*
2429 			 * For soft real-time queues, move the start
2430 			 * of the weight-raising period forward by the
2431 			 * time the queue has not received any
2432 			 * service. Otherwise, a relatively long
2433 			 * service delay is likely to cause the
2434 			 * weight-raising period of the queue to end,
2435 			 * because of the short duration of the
2436 			 * weight-raising period of a soft real-time
2437 			 * queue.  It is worth noting that this move
2438 			 * is not so dangerous for the other queues,
2439 			 * because soft real-time queues are not
2440 			 * greedy.
2441 			 *
2442 			 * To not add a further variable, we use the
2443 			 * overloaded field budget_timeout to
2444 			 * determine for how long the queue has not
2445 			 * received service, i.e., how much time has
2446 			 * elapsed since the queue expired. However,
2447 			 * this is a little imprecise, because
2448 			 * budget_timeout is set to jiffies if bfqq
2449 			 * not only expires, but also remains with no
2450 			 * request.
2451 			 */
2452 			if (time_after(bfqq->budget_timeout,
2453 				       bfqq->last_wr_start_finish))
2454 				bfqq->last_wr_start_finish +=
2455 					jiffies - bfqq->budget_timeout;
2456 			else
2457 				bfqq->last_wr_start_finish = jiffies;
2458 		}
2459 
2460 		bfq_set_budget_timeout(bfqd, bfqq);
2461 		bfq_log_bfqq(bfqd, bfqq,
2462 			     "set_in_service_queue, cur-budget = %d",
2463 			     bfqq->entity.budget);
2464 	}
2465 
2466 	bfqd->in_service_queue = bfqq;
2467 }
2468 
2469 /*
2470  * Get and set a new queue for service.
2471  */
2472 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2473 {
2474 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2475 
2476 	__bfq_set_in_service_queue(bfqd, bfqq);
2477 	return bfqq;
2478 }
2479 
2480 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2481 {
2482 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2483 	u32 sl;
2484 
2485 	bfq_mark_bfqq_wait_request(bfqq);
2486 
2487 	/*
2488 	 * We don't want to idle for seeks, but we do want to allow
2489 	 * fair distribution of slice time for a process doing back-to-back
2490 	 * seeks. So allow a little bit of time for him to submit a new rq.
2491 	 */
2492 	sl = bfqd->bfq_slice_idle;
2493 	/*
2494 	 * Unless the queue is being weight-raised or the scenario is
2495 	 * asymmetric, grant only minimum idle time if the queue
2496 	 * is seeky. A long idling is preserved for a weight-raised
2497 	 * queue, or, more in general, in an asymmetric scenario,
2498 	 * because a long idling is needed for guaranteeing to a queue
2499 	 * its reserved share of the throughput (in particular, it is
2500 	 * needed if the queue has a higher weight than some other
2501 	 * queue).
2502 	 */
2503 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2504 	    bfq_symmetric_scenario(bfqd))
2505 		sl = min_t(u64, sl, BFQ_MIN_TT);
2506 
2507 	bfqd->last_idling_start = ktime_get();
2508 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2509 		      HRTIMER_MODE_REL);
2510 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2511 }
2512 
2513 /*
2514  * In autotuning mode, max_budget is dynamically recomputed as the
2515  * amount of sectors transferred in timeout at the estimated peak
2516  * rate. This enables BFQ to utilize a full timeslice with a full
2517  * budget, even if the in-service queue is served at peak rate. And
2518  * this maximises throughput with sequential workloads.
2519  */
2520 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2521 {
2522 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2523 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2524 }
2525 
2526 /*
2527  * Update parameters related to throughput and responsiveness, as a
2528  * function of the estimated peak rate. See comments on
2529  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2530  */
2531 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2532 {
2533 	if (bfqd->bfq_user_max_budget == 0) {
2534 		bfqd->bfq_max_budget =
2535 			bfq_calc_max_budget(bfqd);
2536 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2537 	}
2538 }
2539 
2540 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2541 				       struct request *rq)
2542 {
2543 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2544 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2545 		bfqd->peak_rate_samples = 1;
2546 		bfqd->sequential_samples = 0;
2547 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2548 			blk_rq_sectors(rq);
2549 	} else /* no new rq dispatched, just reset the number of samples */
2550 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2551 
2552 	bfq_log(bfqd,
2553 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2554 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2555 		bfqd->tot_sectors_dispatched);
2556 }
2557 
2558 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2559 {
2560 	u32 rate, weight, divisor;
2561 
2562 	/*
2563 	 * For the convergence property to hold (see comments on
2564 	 * bfq_update_peak_rate()) and for the assessment to be
2565 	 * reliable, a minimum number of samples must be present, and
2566 	 * a minimum amount of time must have elapsed. If not so, do
2567 	 * not compute new rate. Just reset parameters, to get ready
2568 	 * for a new evaluation attempt.
2569 	 */
2570 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2571 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2572 		goto reset_computation;
2573 
2574 	/*
2575 	 * If a new request completion has occurred after last
2576 	 * dispatch, then, to approximate the rate at which requests
2577 	 * have been served by the device, it is more precise to
2578 	 * extend the observation interval to the last completion.
2579 	 */
2580 	bfqd->delta_from_first =
2581 		max_t(u64, bfqd->delta_from_first,
2582 		      bfqd->last_completion - bfqd->first_dispatch);
2583 
2584 	/*
2585 	 * Rate computed in sects/usec, and not sects/nsec, for
2586 	 * precision issues.
2587 	 */
2588 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2589 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2590 
2591 	/*
2592 	 * Peak rate not updated if:
2593 	 * - the percentage of sequential dispatches is below 3/4 of the
2594 	 *   total, and rate is below the current estimated peak rate
2595 	 * - rate is unreasonably high (> 20M sectors/sec)
2596 	 */
2597 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2598 	     rate <= bfqd->peak_rate) ||
2599 		rate > 20<<BFQ_RATE_SHIFT)
2600 		goto reset_computation;
2601 
2602 	/*
2603 	 * We have to update the peak rate, at last! To this purpose,
2604 	 * we use a low-pass filter. We compute the smoothing constant
2605 	 * of the filter as a function of the 'weight' of the new
2606 	 * measured rate.
2607 	 *
2608 	 * As can be seen in next formulas, we define this weight as a
2609 	 * quantity proportional to how sequential the workload is,
2610 	 * and to how long the observation time interval is.
2611 	 *
2612 	 * The weight runs from 0 to 8. The maximum value of the
2613 	 * weight, 8, yields the minimum value for the smoothing
2614 	 * constant. At this minimum value for the smoothing constant,
2615 	 * the measured rate contributes for half of the next value of
2616 	 * the estimated peak rate.
2617 	 *
2618 	 * So, the first step is to compute the weight as a function
2619 	 * of how sequential the workload is. Note that the weight
2620 	 * cannot reach 9, because bfqd->sequential_samples cannot
2621 	 * become equal to bfqd->peak_rate_samples, which, in its
2622 	 * turn, holds true because bfqd->sequential_samples is not
2623 	 * incremented for the first sample.
2624 	 */
2625 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2626 
2627 	/*
2628 	 * Second step: further refine the weight as a function of the
2629 	 * duration of the observation interval.
2630 	 */
2631 	weight = min_t(u32, 8,
2632 		       div_u64(weight * bfqd->delta_from_first,
2633 			       BFQ_RATE_REF_INTERVAL));
2634 
2635 	/*
2636 	 * Divisor ranging from 10, for minimum weight, to 2, for
2637 	 * maximum weight.
2638 	 */
2639 	divisor = 10 - weight;
2640 
2641 	/*
2642 	 * Finally, update peak rate:
2643 	 *
2644 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2645 	 */
2646 	bfqd->peak_rate *= divisor-1;
2647 	bfqd->peak_rate /= divisor;
2648 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2649 
2650 	bfqd->peak_rate += rate;
2651 
2652 	/*
2653 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2654 	 * the minimum representable values reported in the comments
2655 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2656 	 * divisions by zero where bfqd->peak_rate is used as a
2657 	 * divisor.
2658 	 */
2659 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2660 
2661 	update_thr_responsiveness_params(bfqd);
2662 
2663 reset_computation:
2664 	bfq_reset_rate_computation(bfqd, rq);
2665 }
2666 
2667 /*
2668  * Update the read/write peak rate (the main quantity used for
2669  * auto-tuning, see update_thr_responsiveness_params()).
2670  *
2671  * It is not trivial to estimate the peak rate (correctly): because of
2672  * the presence of sw and hw queues between the scheduler and the
2673  * device components that finally serve I/O requests, it is hard to
2674  * say exactly when a given dispatched request is served inside the
2675  * device, and for how long. As a consequence, it is hard to know
2676  * precisely at what rate a given set of requests is actually served
2677  * by the device.
2678  *
2679  * On the opposite end, the dispatch time of any request is trivially
2680  * available, and, from this piece of information, the "dispatch rate"
2681  * of requests can be immediately computed. So, the idea in the next
2682  * function is to use what is known, namely request dispatch times
2683  * (plus, when useful, request completion times), to estimate what is
2684  * unknown, namely in-device request service rate.
2685  *
2686  * The main issue is that, because of the above facts, the rate at
2687  * which a certain set of requests is dispatched over a certain time
2688  * interval can vary greatly with respect to the rate at which the
2689  * same requests are then served. But, since the size of any
2690  * intermediate queue is limited, and the service scheme is lossless
2691  * (no request is silently dropped), the following obvious convergence
2692  * property holds: the number of requests dispatched MUST become
2693  * closer and closer to the number of requests completed as the
2694  * observation interval grows. This is the key property used in
2695  * the next function to estimate the peak service rate as a function
2696  * of the observed dispatch rate. The function assumes to be invoked
2697  * on every request dispatch.
2698  */
2699 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2700 {
2701 	u64 now_ns = ktime_get_ns();
2702 
2703 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2704 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2705 			bfqd->peak_rate_samples);
2706 		bfq_reset_rate_computation(bfqd, rq);
2707 		goto update_last_values; /* will add one sample */
2708 	}
2709 
2710 	/*
2711 	 * Device idle for very long: the observation interval lasting
2712 	 * up to this dispatch cannot be a valid observation interval
2713 	 * for computing a new peak rate (similarly to the late-
2714 	 * completion event in bfq_completed_request()). Go to
2715 	 * update_rate_and_reset to have the following three steps
2716 	 * taken:
2717 	 * - close the observation interval at the last (previous)
2718 	 *   request dispatch or completion
2719 	 * - compute rate, if possible, for that observation interval
2720 	 * - start a new observation interval with this dispatch
2721 	 */
2722 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2723 	    bfqd->rq_in_driver == 0)
2724 		goto update_rate_and_reset;
2725 
2726 	/* Update sampling information */
2727 	bfqd->peak_rate_samples++;
2728 
2729 	if ((bfqd->rq_in_driver > 0 ||
2730 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2731 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2732 		bfqd->sequential_samples++;
2733 
2734 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2735 
2736 	/* Reset max observed rq size every 32 dispatches */
2737 	if (likely(bfqd->peak_rate_samples % 32))
2738 		bfqd->last_rq_max_size =
2739 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2740 	else
2741 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2742 
2743 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2744 
2745 	/* Target observation interval not yet reached, go on sampling */
2746 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2747 		goto update_last_values;
2748 
2749 update_rate_and_reset:
2750 	bfq_update_rate_reset(bfqd, rq);
2751 update_last_values:
2752 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2753 	bfqd->last_dispatch = now_ns;
2754 }
2755 
2756 /*
2757  * Remove request from internal lists.
2758  */
2759 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2760 {
2761 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2762 
2763 	/*
2764 	 * For consistency, the next instruction should have been
2765 	 * executed after removing the request from the queue and
2766 	 * dispatching it.  We execute instead this instruction before
2767 	 * bfq_remove_request() (and hence introduce a temporary
2768 	 * inconsistency), for efficiency.  In fact, should this
2769 	 * dispatch occur for a non in-service bfqq, this anticipated
2770 	 * increment prevents two counters related to bfqq->dispatched
2771 	 * from risking to be, first, uselessly decremented, and then
2772 	 * incremented again when the (new) value of bfqq->dispatched
2773 	 * happens to be taken into account.
2774 	 */
2775 	bfqq->dispatched++;
2776 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2777 
2778 	bfq_remove_request(q, rq);
2779 }
2780 
2781 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2782 {
2783 	/*
2784 	 * If this bfqq is shared between multiple processes, check
2785 	 * to make sure that those processes are still issuing I/Os
2786 	 * within the mean seek distance. If not, it may be time to
2787 	 * break the queues apart again.
2788 	 */
2789 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2790 		bfq_mark_bfqq_split_coop(bfqq);
2791 
2792 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2793 		if (bfqq->dispatched == 0)
2794 			/*
2795 			 * Overloading budget_timeout field to store
2796 			 * the time at which the queue remains with no
2797 			 * backlog and no outstanding request; used by
2798 			 * the weight-raising mechanism.
2799 			 */
2800 			bfqq->budget_timeout = jiffies;
2801 
2802 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2803 	} else {
2804 		bfq_requeue_bfqq(bfqd, bfqq, true);
2805 		/*
2806 		 * Resort priority tree of potential close cooperators.
2807 		 */
2808 		bfq_pos_tree_add_move(bfqd, bfqq);
2809 	}
2810 
2811 	/*
2812 	 * All in-service entities must have been properly deactivated
2813 	 * or requeued before executing the next function, which
2814 	 * resets all in-service entites as no more in service.
2815 	 */
2816 	__bfq_bfqd_reset_in_service(bfqd);
2817 }
2818 
2819 /**
2820  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2821  * @bfqd: device data.
2822  * @bfqq: queue to update.
2823  * @reason: reason for expiration.
2824  *
2825  * Handle the feedback on @bfqq budget at queue expiration.
2826  * See the body for detailed comments.
2827  */
2828 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2829 				     struct bfq_queue *bfqq,
2830 				     enum bfqq_expiration reason)
2831 {
2832 	struct request *next_rq;
2833 	int budget, min_budget;
2834 
2835 	min_budget = bfq_min_budget(bfqd);
2836 
2837 	if (bfqq->wr_coeff == 1)
2838 		budget = bfqq->max_budget;
2839 	else /*
2840 	      * Use a constant, low budget for weight-raised queues,
2841 	      * to help achieve a low latency. Keep it slightly higher
2842 	      * than the minimum possible budget, to cause a little
2843 	      * bit fewer expirations.
2844 	      */
2845 		budget = 2 * min_budget;
2846 
2847 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2848 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2849 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2850 		budget, bfq_min_budget(bfqd));
2851 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2852 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2853 
2854 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2855 		switch (reason) {
2856 		/*
2857 		 * Caveat: in all the following cases we trade latency
2858 		 * for throughput.
2859 		 */
2860 		case BFQQE_TOO_IDLE:
2861 			/*
2862 			 * This is the only case where we may reduce
2863 			 * the budget: if there is no request of the
2864 			 * process still waiting for completion, then
2865 			 * we assume (tentatively) that the timer has
2866 			 * expired because the batch of requests of
2867 			 * the process could have been served with a
2868 			 * smaller budget.  Hence, betting that
2869 			 * process will behave in the same way when it
2870 			 * becomes backlogged again, we reduce its
2871 			 * next budget.  As long as we guess right,
2872 			 * this budget cut reduces the latency
2873 			 * experienced by the process.
2874 			 *
2875 			 * However, if there are still outstanding
2876 			 * requests, then the process may have not yet
2877 			 * issued its next request just because it is
2878 			 * still waiting for the completion of some of
2879 			 * the still outstanding ones.  So in this
2880 			 * subcase we do not reduce its budget, on the
2881 			 * contrary we increase it to possibly boost
2882 			 * the throughput, as discussed in the
2883 			 * comments to the BUDGET_TIMEOUT case.
2884 			 */
2885 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2886 				budget = min(budget * 2, bfqd->bfq_max_budget);
2887 			else {
2888 				if (budget > 5 * min_budget)
2889 					budget -= 4 * min_budget;
2890 				else
2891 					budget = min_budget;
2892 			}
2893 			break;
2894 		case BFQQE_BUDGET_TIMEOUT:
2895 			/*
2896 			 * We double the budget here because it gives
2897 			 * the chance to boost the throughput if this
2898 			 * is not a seeky process (and has bumped into
2899 			 * this timeout because of, e.g., ZBR).
2900 			 */
2901 			budget = min(budget * 2, bfqd->bfq_max_budget);
2902 			break;
2903 		case BFQQE_BUDGET_EXHAUSTED:
2904 			/*
2905 			 * The process still has backlog, and did not
2906 			 * let either the budget timeout or the disk
2907 			 * idling timeout expire. Hence it is not
2908 			 * seeky, has a short thinktime and may be
2909 			 * happy with a higher budget too. So
2910 			 * definitely increase the budget of this good
2911 			 * candidate to boost the disk throughput.
2912 			 */
2913 			budget = min(budget * 4, bfqd->bfq_max_budget);
2914 			break;
2915 		case BFQQE_NO_MORE_REQUESTS:
2916 			/*
2917 			 * For queues that expire for this reason, it
2918 			 * is particularly important to keep the
2919 			 * budget close to the actual service they
2920 			 * need. Doing so reduces the timestamp
2921 			 * misalignment problem described in the
2922 			 * comments in the body of
2923 			 * __bfq_activate_entity. In fact, suppose
2924 			 * that a queue systematically expires for
2925 			 * BFQQE_NO_MORE_REQUESTS and presents a
2926 			 * new request in time to enjoy timestamp
2927 			 * back-shifting. The larger the budget of the
2928 			 * queue is with respect to the service the
2929 			 * queue actually requests in each service
2930 			 * slot, the more times the queue can be
2931 			 * reactivated with the same virtual finish
2932 			 * time. It follows that, even if this finish
2933 			 * time is pushed to the system virtual time
2934 			 * to reduce the consequent timestamp
2935 			 * misalignment, the queue unjustly enjoys for
2936 			 * many re-activations a lower finish time
2937 			 * than all newly activated queues.
2938 			 *
2939 			 * The service needed by bfqq is measured
2940 			 * quite precisely by bfqq->entity.service.
2941 			 * Since bfqq does not enjoy device idling,
2942 			 * bfqq->entity.service is equal to the number
2943 			 * of sectors that the process associated with
2944 			 * bfqq requested to read/write before waiting
2945 			 * for request completions, or blocking for
2946 			 * other reasons.
2947 			 */
2948 			budget = max_t(int, bfqq->entity.service, min_budget);
2949 			break;
2950 		default:
2951 			return;
2952 		}
2953 	} else if (!bfq_bfqq_sync(bfqq)) {
2954 		/*
2955 		 * Async queues get always the maximum possible
2956 		 * budget, as for them we do not care about latency
2957 		 * (in addition, their ability to dispatch is limited
2958 		 * by the charging factor).
2959 		 */
2960 		budget = bfqd->bfq_max_budget;
2961 	}
2962 
2963 	bfqq->max_budget = budget;
2964 
2965 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2966 	    !bfqd->bfq_user_max_budget)
2967 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2968 
2969 	/*
2970 	 * If there is still backlog, then assign a new budget, making
2971 	 * sure that it is large enough for the next request.  Since
2972 	 * the finish time of bfqq must be kept in sync with the
2973 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2974 	 * update.
2975 	 *
2976 	 * If there is no backlog, then no need to update the budget;
2977 	 * it will be updated on the arrival of a new request.
2978 	 */
2979 	next_rq = bfqq->next_rq;
2980 	if (next_rq)
2981 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2982 					    bfq_serv_to_charge(next_rq, bfqq));
2983 
2984 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2985 			next_rq ? blk_rq_sectors(next_rq) : 0,
2986 			bfqq->entity.budget);
2987 }
2988 
2989 /*
2990  * Return true if the process associated with bfqq is "slow". The slow
2991  * flag is used, in addition to the budget timeout, to reduce the
2992  * amount of service provided to seeky processes, and thus reduce
2993  * their chances to lower the throughput. More details in the comments
2994  * on the function bfq_bfqq_expire().
2995  *
2996  * An important observation is in order: as discussed in the comments
2997  * on the function bfq_update_peak_rate(), with devices with internal
2998  * queues, it is hard if ever possible to know when and for how long
2999  * an I/O request is processed by the device (apart from the trivial
3000  * I/O pattern where a new request is dispatched only after the
3001  * previous one has been completed). This makes it hard to evaluate
3002  * the real rate at which the I/O requests of each bfq_queue are
3003  * served.  In fact, for an I/O scheduler like BFQ, serving a
3004  * bfq_queue means just dispatching its requests during its service
3005  * slot (i.e., until the budget of the queue is exhausted, or the
3006  * queue remains idle, or, finally, a timeout fires). But, during the
3007  * service slot of a bfq_queue, around 100 ms at most, the device may
3008  * be even still processing requests of bfq_queues served in previous
3009  * service slots. On the opposite end, the requests of the in-service
3010  * bfq_queue may be completed after the service slot of the queue
3011  * finishes.
3012  *
3013  * Anyway, unless more sophisticated solutions are used
3014  * (where possible), the sum of the sizes of the requests dispatched
3015  * during the service slot of a bfq_queue is probably the only
3016  * approximation available for the service received by the bfq_queue
3017  * during its service slot. And this sum is the quantity used in this
3018  * function to evaluate the I/O speed of a process.
3019  */
3020 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3021 				 bool compensate, enum bfqq_expiration reason,
3022 				 unsigned long *delta_ms)
3023 {
3024 	ktime_t delta_ktime;
3025 	u32 delta_usecs;
3026 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3027 
3028 	if (!bfq_bfqq_sync(bfqq))
3029 		return false;
3030 
3031 	if (compensate)
3032 		delta_ktime = bfqd->last_idling_start;
3033 	else
3034 		delta_ktime = ktime_get();
3035 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3036 	delta_usecs = ktime_to_us(delta_ktime);
3037 
3038 	/* don't use too short time intervals */
3039 	if (delta_usecs < 1000) {
3040 		if (blk_queue_nonrot(bfqd->queue))
3041 			 /*
3042 			  * give same worst-case guarantees as idling
3043 			  * for seeky
3044 			  */
3045 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3046 		else /* charge at least one seek */
3047 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3048 
3049 		return slow;
3050 	}
3051 
3052 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3053 
3054 	/*
3055 	 * Use only long (> 20ms) intervals to filter out excessive
3056 	 * spikes in service rate estimation.
3057 	 */
3058 	if (delta_usecs > 20000) {
3059 		/*
3060 		 * Caveat for rotational devices: processes doing I/O
3061 		 * in the slower disk zones tend to be slow(er) even
3062 		 * if not seeky. In this respect, the estimated peak
3063 		 * rate is likely to be an average over the disk
3064 		 * surface. Accordingly, to not be too harsh with
3065 		 * unlucky processes, a process is deemed slow only if
3066 		 * its rate has been lower than half of the estimated
3067 		 * peak rate.
3068 		 */
3069 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3070 	}
3071 
3072 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3073 
3074 	return slow;
3075 }
3076 
3077 /*
3078  * To be deemed as soft real-time, an application must meet two
3079  * requirements. First, the application must not require an average
3080  * bandwidth higher than the approximate bandwidth required to playback or
3081  * record a compressed high-definition video.
3082  * The next function is invoked on the completion of the last request of a
3083  * batch, to compute the next-start time instant, soft_rt_next_start, such
3084  * that, if the next request of the application does not arrive before
3085  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3086  *
3087  * The second requirement is that the request pattern of the application is
3088  * isochronous, i.e., that, after issuing a request or a batch of requests,
3089  * the application stops issuing new requests until all its pending requests
3090  * have been completed. After that, the application may issue a new batch,
3091  * and so on.
3092  * For this reason the next function is invoked to compute
3093  * soft_rt_next_start only for applications that meet this requirement,
3094  * whereas soft_rt_next_start is set to infinity for applications that do
3095  * not.
3096  *
3097  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3098  * happen to meet, occasionally or systematically, both the above
3099  * bandwidth and isochrony requirements. This may happen at least in
3100  * the following circumstances. First, if the CPU load is high. The
3101  * application may stop issuing requests while the CPUs are busy
3102  * serving other processes, then restart, then stop again for a while,
3103  * and so on. The other circumstances are related to the storage
3104  * device: the storage device is highly loaded or reaches a low-enough
3105  * throughput with the I/O of the application (e.g., because the I/O
3106  * is random and/or the device is slow). In all these cases, the
3107  * I/O of the application may be simply slowed down enough to meet
3108  * the bandwidth and isochrony requirements. To reduce the probability
3109  * that greedy applications are deemed as soft real-time in these
3110  * corner cases, a further rule is used in the computation of
3111  * soft_rt_next_start: the return value of this function is forced to
3112  * be higher than the maximum between the following two quantities.
3113  *
3114  * (a) Current time plus: (1) the maximum time for which the arrival
3115  *     of a request is waited for when a sync queue becomes idle,
3116  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3117  *     postpone for a moment the reason for adding a few extra
3118  *     jiffies; we get back to it after next item (b).  Lower-bounding
3119  *     the return value of this function with the current time plus
3120  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3121  *     because the latter issue their next request as soon as possible
3122  *     after the last one has been completed. In contrast, a soft
3123  *     real-time application spends some time processing data, after a
3124  *     batch of its requests has been completed.
3125  *
3126  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3127  *     above, greedy applications may happen to meet both the
3128  *     bandwidth and isochrony requirements under heavy CPU or
3129  *     storage-device load. In more detail, in these scenarios, these
3130  *     applications happen, only for limited time periods, to do I/O
3131  *     slowly enough to meet all the requirements described so far,
3132  *     including the filtering in above item (a). These slow-speed
3133  *     time intervals are usually interspersed between other time
3134  *     intervals during which these applications do I/O at a very high
3135  *     speed. Fortunately, exactly because of the high speed of the
3136  *     I/O in the high-speed intervals, the values returned by this
3137  *     function happen to be so high, near the end of any such
3138  *     high-speed interval, to be likely to fall *after* the end of
3139  *     the low-speed time interval that follows. These high values are
3140  *     stored in bfqq->soft_rt_next_start after each invocation of
3141  *     this function. As a consequence, if the last value of
3142  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3143  *     next value that this function may return, then, from the very
3144  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3145  *     likely to be constantly kept so high that any I/O request
3146  *     issued during the low-speed interval is considered as arriving
3147  *     to soon for the application to be deemed as soft
3148  *     real-time. Then, in the high-speed interval that follows, the
3149  *     application will not be deemed as soft real-time, just because
3150  *     it will do I/O at a high speed. And so on.
3151  *
3152  * Getting back to the filtering in item (a), in the following two
3153  * cases this filtering might be easily passed by a greedy
3154  * application, if the reference quantity was just
3155  * bfqd->bfq_slice_idle:
3156  * 1) HZ is so low that the duration of a jiffy is comparable to or
3157  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3158  *    devices with HZ=100. The time granularity may be so coarse
3159  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3160  *    is rather lower than the exact value.
3161  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3162  *    for a while, then suddenly 'jump' by several units to recover the lost
3163  *    increments. This seems to happen, e.g., inside virtual machines.
3164  * To address this issue, in the filtering in (a) we do not use as a
3165  * reference time interval just bfqd->bfq_slice_idle, but
3166  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3167  * minimum number of jiffies for which the filter seems to be quite
3168  * precise also in embedded systems and KVM/QEMU virtual machines.
3169  */
3170 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3171 						struct bfq_queue *bfqq)
3172 {
3173 	return max3(bfqq->soft_rt_next_start,
3174 		    bfqq->last_idle_bklogged +
3175 		    HZ * bfqq->service_from_backlogged /
3176 		    bfqd->bfq_wr_max_softrt_rate,
3177 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3178 }
3179 
3180 static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3181 {
3182 	return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3183 		blk_queue_nonrot(bfqq->bfqd->queue) &&
3184 		bfqq->bfqd->hw_tag;
3185 }
3186 
3187 /**
3188  * bfq_bfqq_expire - expire a queue.
3189  * @bfqd: device owning the queue.
3190  * @bfqq: the queue to expire.
3191  * @compensate: if true, compensate for the time spent idling.
3192  * @reason: the reason causing the expiration.
3193  *
3194  * If the process associated with bfqq does slow I/O (e.g., because it
3195  * issues random requests), we charge bfqq with the time it has been
3196  * in service instead of the service it has received (see
3197  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3198  * a consequence, bfqq will typically get higher timestamps upon
3199  * reactivation, and hence it will be rescheduled as if it had
3200  * received more service than what it has actually received. In the
3201  * end, bfqq receives less service in proportion to how slowly its
3202  * associated process consumes its budgets (and hence how seriously it
3203  * tends to lower the throughput). In addition, this time-charging
3204  * strategy guarantees time fairness among slow processes. In
3205  * contrast, if the process associated with bfqq is not slow, we
3206  * charge bfqq exactly with the service it has received.
3207  *
3208  * Charging time to the first type of queues and the exact service to
3209  * the other has the effect of using the WF2Q+ policy to schedule the
3210  * former on a timeslice basis, without violating service domain
3211  * guarantees among the latter.
3212  */
3213 void bfq_bfqq_expire(struct bfq_data *bfqd,
3214 		     struct bfq_queue *bfqq,
3215 		     bool compensate,
3216 		     enum bfqq_expiration reason)
3217 {
3218 	bool slow;
3219 	unsigned long delta = 0;
3220 	struct bfq_entity *entity = &bfqq->entity;
3221 	int ref;
3222 
3223 	/*
3224 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3225 	 */
3226 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3227 
3228 	/*
3229 	 * As above explained, charge slow (typically seeky) and
3230 	 * timed-out queues with the time and not the service
3231 	 * received, to favor sequential workloads.
3232 	 *
3233 	 * Processes doing I/O in the slower disk zones will tend to
3234 	 * be slow(er) even if not seeky. Therefore, since the
3235 	 * estimated peak rate is actually an average over the disk
3236 	 * surface, these processes may timeout just for bad luck. To
3237 	 * avoid punishing them, do not charge time to processes that
3238 	 * succeeded in consuming at least 2/3 of their budget. This
3239 	 * allows BFQ to preserve enough elasticity to still perform
3240 	 * bandwidth, and not time, distribution with little unlucky
3241 	 * or quasi-sequential processes.
3242 	 */
3243 	if (bfqq->wr_coeff == 1 &&
3244 	    (slow ||
3245 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3246 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3247 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3248 
3249 	if (reason == BFQQE_TOO_IDLE &&
3250 	    entity->service <= 2 * entity->budget / 10)
3251 		bfq_clear_bfqq_IO_bound(bfqq);
3252 
3253 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3254 		bfqq->last_wr_start_finish = jiffies;
3255 
3256 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3257 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3258 		/*
3259 		 * If we get here, and there are no outstanding
3260 		 * requests, then the request pattern is isochronous
3261 		 * (see the comments on the function
3262 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3263 		 * soft_rt_next_start. If, instead, the queue still
3264 		 * has outstanding requests, then we have to wait for
3265 		 * the completion of all the outstanding requests to
3266 		 * discover whether the request pattern is actually
3267 		 * isochronous.
3268 		 */
3269 		if (bfqq->dispatched == 0)
3270 			bfqq->soft_rt_next_start =
3271 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3272 		else {
3273 			/*
3274 			 * Schedule an update of soft_rt_next_start to when
3275 			 * the task may be discovered to be isochronous.
3276 			 */
3277 			bfq_mark_bfqq_softrt_update(bfqq);
3278 		}
3279 	}
3280 
3281 	bfq_log_bfqq(bfqd, bfqq,
3282 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3283 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3284 
3285 	/*
3286 	 * Increase, decrease or leave budget unchanged according to
3287 	 * reason.
3288 	 */
3289 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3290 	ref = bfqq->ref;
3291 	__bfq_bfqq_expire(bfqd, bfqq);
3292 
3293 	if (ref == 1) /* bfqq is gone, no more actions on it */
3294 		return;
3295 
3296 	bfqq->injected_service = 0;
3297 
3298 	/* mark bfqq as waiting a request only if a bic still points to it */
3299 	if (!bfq_bfqq_busy(bfqq) &&
3300 	    reason != BFQQE_BUDGET_TIMEOUT &&
3301 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3302 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3303 		/*
3304 		 * Not setting service to 0, because, if the next rq
3305 		 * arrives in time, the queue will go on receiving
3306 		 * service with this same budget (as if it never expired)
3307 		 */
3308 	} else
3309 		entity->service = 0;
3310 
3311 	/*
3312 	 * Reset the received-service counter for every parent entity.
3313 	 * Differently from what happens with bfqq->entity.service,
3314 	 * the resetting of this counter never needs to be postponed
3315 	 * for parent entities. In fact, in case bfqq may have a
3316 	 * chance to go on being served using the last, partially
3317 	 * consumed budget, bfqq->entity.service needs to be kept,
3318 	 * because if bfqq then actually goes on being served using
3319 	 * the same budget, the last value of bfqq->entity.service is
3320 	 * needed to properly decrement bfqq->entity.budget by the
3321 	 * portion already consumed. In contrast, it is not necessary
3322 	 * to keep entity->service for parent entities too, because
3323 	 * the bubble up of the new value of bfqq->entity.budget will
3324 	 * make sure that the budgets of parent entities are correct,
3325 	 * even in case bfqq and thus parent entities go on receiving
3326 	 * service with the same budget.
3327 	 */
3328 	entity = entity->parent;
3329 	for_each_entity(entity)
3330 		entity->service = 0;
3331 }
3332 
3333 /*
3334  * Budget timeout is not implemented through a dedicated timer, but
3335  * just checked on request arrivals and completions, as well as on
3336  * idle timer expirations.
3337  */
3338 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3339 {
3340 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3341 }
3342 
3343 /*
3344  * If we expire a queue that is actively waiting (i.e., with the
3345  * device idled) for the arrival of a new request, then we may incur
3346  * the timestamp misalignment problem described in the body of the
3347  * function __bfq_activate_entity. Hence we return true only if this
3348  * condition does not hold, or if the queue is slow enough to deserve
3349  * only to be kicked off for preserving a high throughput.
3350  */
3351 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3352 {
3353 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3354 		"may_budget_timeout: wait_request %d left %d timeout %d",
3355 		bfq_bfqq_wait_request(bfqq),
3356 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3357 		bfq_bfqq_budget_timeout(bfqq));
3358 
3359 	return (!bfq_bfqq_wait_request(bfqq) ||
3360 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3361 		&&
3362 		bfq_bfqq_budget_timeout(bfqq);
3363 }
3364 
3365 /*
3366  * For a queue that becomes empty, device idling is allowed only if
3367  * this function returns true for the queue. As a consequence, since
3368  * device idling plays a critical role in both throughput boosting and
3369  * service guarantees, the return value of this function plays a
3370  * critical role in both these aspects as well.
3371  *
3372  * In a nutshell, this function returns true only if idling is
3373  * beneficial for throughput or, even if detrimental for throughput,
3374  * idling is however necessary to preserve service guarantees (low
3375  * latency, desired throughput distribution, ...). In particular, on
3376  * NCQ-capable devices, this function tries to return false, so as to
3377  * help keep the drives' internal queues full, whenever this helps the
3378  * device boost the throughput without causing any service-guarantee
3379  * issue.
3380  *
3381  * In more detail, the return value of this function is obtained by,
3382  * first, computing a number of boolean variables that take into
3383  * account throughput and service-guarantee issues, and, then,
3384  * combining these variables in a logical expression. Most of the
3385  * issues taken into account are not trivial. We discuss these issues
3386  * individually while introducing the variables.
3387  */
3388 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3389 {
3390 	struct bfq_data *bfqd = bfqq->bfqd;
3391 	bool rot_without_queueing =
3392 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3393 		bfqq_sequential_and_IO_bound,
3394 		idling_boosts_thr, idling_boosts_thr_without_issues,
3395 		idling_needed_for_service_guarantees,
3396 		asymmetric_scenario;
3397 
3398 	if (bfqd->strict_guarantees)
3399 		return true;
3400 
3401 	/*
3402 	 * Idling is performed only if slice_idle > 0. In addition, we
3403 	 * do not idle if
3404 	 * (a) bfqq is async
3405 	 * (b) bfqq is in the idle io prio class: in this case we do
3406 	 * not idle because we want to minimize the bandwidth that
3407 	 * queues in this class can steal to higher-priority queues
3408 	 */
3409 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3410 	    bfq_class_idle(bfqq))
3411 		return false;
3412 
3413 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3414 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3415 
3416 	/*
3417 	 * The next variable takes into account the cases where idling
3418 	 * boosts the throughput.
3419 	 *
3420 	 * The value of the variable is computed considering, first, that
3421 	 * idling is virtually always beneficial for the throughput if:
3422 	 * (a) the device is not NCQ-capable and rotational, or
3423 	 * (b) regardless of the presence of NCQ, the device is rotational and
3424 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3425 	 * (c) regardless of whether it is rotational, the device is
3426 	 *     not NCQ-capable and the request pattern for bfqq is
3427 	 *     I/O-bound and sequential.
3428 	 *
3429 	 * Secondly, and in contrast to the above item (b), idling an
3430 	 * NCQ-capable flash-based device would not boost the
3431 	 * throughput even with sequential I/O; rather it would lower
3432 	 * the throughput in proportion to how fast the device
3433 	 * is. Accordingly, the next variable is true if any of the
3434 	 * above conditions (a), (b) or (c) is true, and, in
3435 	 * particular, happens to be false if bfqd is an NCQ-capable
3436 	 * flash-based device.
3437 	 */
3438 	idling_boosts_thr = rot_without_queueing ||
3439 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3440 		 bfqq_sequential_and_IO_bound);
3441 
3442 	/*
3443 	 * The value of the next variable,
3444 	 * idling_boosts_thr_without_issues, is equal to that of
3445 	 * idling_boosts_thr, unless a special case holds. In this
3446 	 * special case, described below, idling may cause problems to
3447 	 * weight-raised queues.
3448 	 *
3449 	 * When the request pool is saturated (e.g., in the presence
3450 	 * of write hogs), if the processes associated with
3451 	 * non-weight-raised queues ask for requests at a lower rate,
3452 	 * then processes associated with weight-raised queues have a
3453 	 * higher probability to get a request from the pool
3454 	 * immediately (or at least soon) when they need one. Thus
3455 	 * they have a higher probability to actually get a fraction
3456 	 * of the device throughput proportional to their high
3457 	 * weight. This is especially true with NCQ-capable drives,
3458 	 * which enqueue several requests in advance, and further
3459 	 * reorder internally-queued requests.
3460 	 *
3461 	 * For this reason, we force to false the value of
3462 	 * idling_boosts_thr_without_issues if there are weight-raised
3463 	 * busy queues. In this case, and if bfqq is not weight-raised,
3464 	 * this guarantees that the device is not idled for bfqq (if,
3465 	 * instead, bfqq is weight-raised, then idling will be
3466 	 * guaranteed by another variable, see below). Combined with
3467 	 * the timestamping rules of BFQ (see [1] for details), this
3468 	 * behavior causes bfqq, and hence any sync non-weight-raised
3469 	 * queue, to get a lower number of requests served, and thus
3470 	 * to ask for a lower number of requests from the request
3471 	 * pool, before the busy weight-raised queues get served
3472 	 * again. This often mitigates starvation problems in the
3473 	 * presence of heavy write workloads and NCQ, thereby
3474 	 * guaranteeing a higher application and system responsiveness
3475 	 * in these hostile scenarios.
3476 	 */
3477 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3478 		bfqd->wr_busy_queues == 0;
3479 
3480 	/*
3481 	 * There is then a case where idling must be performed not
3482 	 * for throughput concerns, but to preserve service
3483 	 * guarantees.
3484 	 *
3485 	 * To introduce this case, we can note that allowing the drive
3486 	 * to enqueue more than one request at a time, and hence
3487 	 * delegating de facto final scheduling decisions to the
3488 	 * drive's internal scheduler, entails loss of control on the
3489 	 * actual request service order. In particular, the critical
3490 	 * situation is when requests from different processes happen
3491 	 * to be present, at the same time, in the internal queue(s)
3492 	 * of the drive. In such a situation, the drive, by deciding
3493 	 * the service order of the internally-queued requests, does
3494 	 * determine also the actual throughput distribution among
3495 	 * these processes. But the drive typically has no notion or
3496 	 * concern about per-process throughput distribution, and
3497 	 * makes its decisions only on a per-request basis. Therefore,
3498 	 * the service distribution enforced by the drive's internal
3499 	 * scheduler is likely to coincide with the desired
3500 	 * device-throughput distribution only in a completely
3501 	 * symmetric scenario where:
3502 	 * (i)  each of these processes must get the same throughput as
3503 	 *      the others;
3504 	 * (ii) the I/O of each process has the same properties, in
3505 	 *      terms of locality (sequential or random), direction
3506 	 *      (reads or writes), request sizes, greediness
3507 	 *      (from I/O-bound to sporadic), and so on.
3508 	 * In fact, in such a scenario, the drive tends to treat
3509 	 * the requests of each of these processes in about the same
3510 	 * way as the requests of the others, and thus to provide
3511 	 * each of these processes with about the same throughput
3512 	 * (which is exactly the desired throughput distribution). In
3513 	 * contrast, in any asymmetric scenario, device idling is
3514 	 * certainly needed to guarantee that bfqq receives its
3515 	 * assigned fraction of the device throughput (see [1] for
3516 	 * details).
3517 	 * The problem is that idling may significantly reduce
3518 	 * throughput with certain combinations of types of I/O and
3519 	 * devices. An important example is sync random I/O, on flash
3520 	 * storage with command queueing. So, unless bfqq falls in the
3521 	 * above cases where idling also boosts throughput, it would
3522 	 * be important to check conditions (i) and (ii) accurately,
3523 	 * so as to avoid idling when not strictly needed for service
3524 	 * guarantees.
3525 	 *
3526 	 * Unfortunately, it is extremely difficult to thoroughly
3527 	 * check condition (ii). And, in case there are active groups,
3528 	 * it becomes very difficult to check condition (i) too. In
3529 	 * fact, if there are active groups, then, for condition (i)
3530 	 * to become false, it is enough that an active group contains
3531 	 * more active processes or sub-groups than some other active
3532 	 * group. We address this issue with the following bi-modal
3533 	 * behavior, implemented in the function
3534 	 * bfq_symmetric_scenario().
3535 	 *
3536 	 * If there are active groups, then the scenario is tagged as
3537 	 * asymmetric, conservatively, without checking any of the
3538 	 * conditions (i) and (ii). So the device is idled for bfqq.
3539 	 * This behavior matches also the fact that groups are created
3540 	 * exactly if controlling I/O (to preserve bandwidth and
3541 	 * latency guarantees) is a primary concern.
3542 	 *
3543 	 * On the opposite end, if there are no active groups, then
3544 	 * only condition (i) is actually controlled, i.e., provided
3545 	 * that condition (i) holds, idling is not performed,
3546 	 * regardless of whether condition (ii) holds. In other words,
3547 	 * only if condition (i) does not hold, then idling is
3548 	 * allowed, and the device tends to be prevented from queueing
3549 	 * many requests, possibly of several processes. Since there
3550 	 * are no active groups, then, to control condition (i) it is
3551 	 * enough to check whether all active queues have the same
3552 	 * weight.
3553 	 *
3554 	 * Not checking condition (ii) evidently exposes bfqq to the
3555 	 * risk of getting less throughput than its fair share.
3556 	 * However, for queues with the same weight, a further
3557 	 * mechanism, preemption, mitigates or even eliminates this
3558 	 * problem. And it does so without consequences on overall
3559 	 * throughput. This mechanism and its benefits are explained
3560 	 * in the next three paragraphs.
3561 	 *
3562 	 * Even if a queue, say Q, is expired when it remains idle, Q
3563 	 * can still preempt the new in-service queue if the next
3564 	 * request of Q arrives soon (see the comments on
3565 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3566 	 * groups have the same weight, this form of preemption,
3567 	 * combined with the hole-recovery heuristic described in the
3568 	 * comments on function bfq_bfqq_update_budg_for_activation,
3569 	 * are enough to preserve a correct bandwidth distribution in
3570 	 * the mid term, even without idling. In fact, even if not
3571 	 * idling allows the internal queues of the device to contain
3572 	 * many requests, and thus to reorder requests, we can rather
3573 	 * safely assume that the internal scheduler still preserves a
3574 	 * minimum of mid-term fairness.
3575 	 *
3576 	 * More precisely, this preemption-based, idleless approach
3577 	 * provides fairness in terms of IOPS, and not sectors per
3578 	 * second. This can be seen with a simple example. Suppose
3579 	 * that there are two queues with the same weight, but that
3580 	 * the first queue receives requests of 8 sectors, while the
3581 	 * second queue receives requests of 1024 sectors. In
3582 	 * addition, suppose that each of the two queues contains at
3583 	 * most one request at a time, which implies that each queue
3584 	 * always remains idle after it is served. Finally, after
3585 	 * remaining idle, each queue receives very quickly a new
3586 	 * request. It follows that the two queues are served
3587 	 * alternatively, preempting each other if needed. This
3588 	 * implies that, although both queues have the same weight,
3589 	 * the queue with large requests receives a service that is
3590 	 * 1024/8 times as high as the service received by the other
3591 	 * queue.
3592 	 *
3593 	 * The motivation for using preemption instead of idling (for
3594 	 * queues with the same weight) is that, by not idling,
3595 	 * service guarantees are preserved (completely or at least in
3596 	 * part) without minimally sacrificing throughput. And, if
3597 	 * there is no active group, then the primary expectation for
3598 	 * this device is probably a high throughput.
3599 	 *
3600 	 * We are now left only with explaining the additional
3601 	 * compound condition that is checked below for deciding
3602 	 * whether the scenario is asymmetric. To explain this
3603 	 * compound condition, we need to add that the function
3604 	 * bfq_symmetric_scenario checks the weights of only
3605 	 * non-weight-raised queues, for efficiency reasons (see
3606 	 * comments on bfq_weights_tree_add()). Then the fact that
3607 	 * bfqq is weight-raised is checked explicitly here. More
3608 	 * precisely, the compound condition below takes into account
3609 	 * also the fact that, even if bfqq is being weight-raised,
3610 	 * the scenario is still symmetric if all active queues happen
3611 	 * to be weight-raised. Actually, we should be even more
3612 	 * precise here, and differentiate between interactive weight
3613 	 * raising and soft real-time weight raising.
3614 	 *
3615 	 * As a side note, it is worth considering that the above
3616 	 * device-idling countermeasures may however fail in the
3617 	 * following unlucky scenario: if idling is (correctly)
3618 	 * disabled in a time period during which all symmetry
3619 	 * sub-conditions hold, and hence the device is allowed to
3620 	 * enqueue many requests, but at some later point in time some
3621 	 * sub-condition stops to hold, then it may become impossible
3622 	 * to let requests be served in the desired order until all
3623 	 * the requests already queued in the device have been served.
3624 	 */
3625 	asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3626 			       bfqd->wr_busy_queues < bfqd->busy_queues) ||
3627 		!bfq_symmetric_scenario(bfqd);
3628 
3629 	/*
3630 	 * Finally, there is a case where maximizing throughput is the
3631 	 * best choice even if it may cause unfairness toward
3632 	 * bfqq. Such a case is when bfqq became active in a burst of
3633 	 * queue activations. Queues that became active during a large
3634 	 * burst benefit only from throughput, as discussed in the
3635 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3636 	 * in a burst and not idling the device maximizes throughput,
3637 	 * then the device must no be idled, because not idling the
3638 	 * device provides bfqq and all other queues in the burst with
3639 	 * maximum benefit. Combining this and the above case, we can
3640 	 * now establish when idling is actually needed to preserve
3641 	 * service guarantees.
3642 	 */
3643 	idling_needed_for_service_guarantees =
3644 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3645 
3646 	/*
3647 	 * We have now all the components we need to compute the
3648 	 * return value of the function, which is true only if idling
3649 	 * either boosts the throughput (without issues), or is
3650 	 * necessary to preserve service guarantees.
3651 	 */
3652 	return idling_boosts_thr_without_issues ||
3653 		idling_needed_for_service_guarantees;
3654 }
3655 
3656 /*
3657  * If the in-service queue is empty but the function bfq_better_to_idle
3658  * returns true, then:
3659  * 1) the queue must remain in service and cannot be expired, and
3660  * 2) the device must be idled to wait for the possible arrival of a new
3661  *    request for the queue.
3662  * See the comments on the function bfq_better_to_idle for the reasons
3663  * why performing device idling is the best choice to boost the throughput
3664  * and preserve service guarantees when bfq_better_to_idle itself
3665  * returns true.
3666  */
3667 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3668 {
3669 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3670 }
3671 
3672 static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3673 {
3674 	struct bfq_queue *bfqq;
3675 
3676 	/*
3677 	 * A linear search; but, with a high probability, very few
3678 	 * steps are needed to find a candidate queue, i.e., a queue
3679 	 * with enough budget left for its next request. In fact:
3680 	 * - BFQ dynamically updates the budget of every queue so as
3681 	 *   to accommodate the expected backlog of the queue;
3682 	 * - if a queue gets all its requests dispatched as injected
3683 	 *   service, then the queue is removed from the active list
3684 	 *   (and re-added only if it gets new requests, but with
3685 	 *   enough budget for its new backlog).
3686 	 */
3687 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3688 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3689 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3690 		    bfq_bfqq_budget_left(bfqq))
3691 			return bfqq;
3692 
3693 	return NULL;
3694 }
3695 
3696 /*
3697  * Select a queue for service.  If we have a current queue in service,
3698  * check whether to continue servicing it, or retrieve and set a new one.
3699  */
3700 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3701 {
3702 	struct bfq_queue *bfqq;
3703 	struct request *next_rq;
3704 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3705 
3706 	bfqq = bfqd->in_service_queue;
3707 	if (!bfqq)
3708 		goto new_queue;
3709 
3710 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3711 
3712 	/*
3713 	 * Do not expire bfqq for budget timeout if bfqq may be about
3714 	 * to enjoy device idling. The reason why, in this case, we
3715 	 * prevent bfqq from expiring is the same as in the comments
3716 	 * on the case where bfq_bfqq_must_idle() returns true, in
3717 	 * bfq_completed_request().
3718 	 */
3719 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3720 	    !bfq_bfqq_must_idle(bfqq))
3721 		goto expire;
3722 
3723 check_queue:
3724 	/*
3725 	 * This loop is rarely executed more than once. Even when it
3726 	 * happens, it is much more convenient to re-execute this loop
3727 	 * than to return NULL and trigger a new dispatch to get a
3728 	 * request served.
3729 	 */
3730 	next_rq = bfqq->next_rq;
3731 	/*
3732 	 * If bfqq has requests queued and it has enough budget left to
3733 	 * serve them, keep the queue, otherwise expire it.
3734 	 */
3735 	if (next_rq) {
3736 		if (bfq_serv_to_charge(next_rq, bfqq) >
3737 			bfq_bfqq_budget_left(bfqq)) {
3738 			/*
3739 			 * Expire the queue for budget exhaustion,
3740 			 * which makes sure that the next budget is
3741 			 * enough to serve the next request, even if
3742 			 * it comes from the fifo expired path.
3743 			 */
3744 			reason = BFQQE_BUDGET_EXHAUSTED;
3745 			goto expire;
3746 		} else {
3747 			/*
3748 			 * The idle timer may be pending because we may
3749 			 * not disable disk idling even when a new request
3750 			 * arrives.
3751 			 */
3752 			if (bfq_bfqq_wait_request(bfqq)) {
3753 				/*
3754 				 * If we get here: 1) at least a new request
3755 				 * has arrived but we have not disabled the
3756 				 * timer because the request was too small,
3757 				 * 2) then the block layer has unplugged
3758 				 * the device, causing the dispatch to be
3759 				 * invoked.
3760 				 *
3761 				 * Since the device is unplugged, now the
3762 				 * requests are probably large enough to
3763 				 * provide a reasonable throughput.
3764 				 * So we disable idling.
3765 				 */
3766 				bfq_clear_bfqq_wait_request(bfqq);
3767 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3768 			}
3769 			goto keep_queue;
3770 		}
3771 	}
3772 
3773 	/*
3774 	 * No requests pending. However, if the in-service queue is idling
3775 	 * for a new request, or has requests waiting for a completion and
3776 	 * may idle after their completion, then keep it anyway.
3777 	 *
3778 	 * Yet, to boost throughput, inject service from other queues if
3779 	 * possible.
3780 	 */
3781 	if (bfq_bfqq_wait_request(bfqq) ||
3782 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3783 		if (bfq_bfqq_injectable(bfqq) &&
3784 		    bfqq->injected_service * bfqq->inject_coeff <
3785 		    bfqq->entity.service * 10)
3786 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
3787 		else
3788 			bfqq = NULL;
3789 
3790 		goto keep_queue;
3791 	}
3792 
3793 	reason = BFQQE_NO_MORE_REQUESTS;
3794 expire:
3795 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3796 new_queue:
3797 	bfqq = bfq_set_in_service_queue(bfqd);
3798 	if (bfqq) {
3799 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3800 		goto check_queue;
3801 	}
3802 keep_queue:
3803 	if (bfqq)
3804 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3805 	else
3806 		bfq_log(bfqd, "select_queue: no queue returned");
3807 
3808 	return bfqq;
3809 }
3810 
3811 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3812 {
3813 	struct bfq_entity *entity = &bfqq->entity;
3814 
3815 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3816 		bfq_log_bfqq(bfqd, bfqq,
3817 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3818 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3819 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3820 			bfqq->wr_coeff,
3821 			bfqq->entity.weight, bfqq->entity.orig_weight);
3822 
3823 		if (entity->prio_changed)
3824 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3825 
3826 		/*
3827 		 * If the queue was activated in a burst, or too much
3828 		 * time has elapsed from the beginning of this
3829 		 * weight-raising period, then end weight raising.
3830 		 */
3831 		if (bfq_bfqq_in_large_burst(bfqq))
3832 			bfq_bfqq_end_wr(bfqq);
3833 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3834 						bfqq->wr_cur_max_time)) {
3835 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3836 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3837 					       bfq_wr_duration(bfqd)))
3838 				bfq_bfqq_end_wr(bfqq);
3839 			else {
3840 				switch_back_to_interactive_wr(bfqq, bfqd);
3841 				bfqq->entity.prio_changed = 1;
3842 			}
3843 		}
3844 		if (bfqq->wr_coeff > 1 &&
3845 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3846 		    bfqq->service_from_wr > max_service_from_wr) {
3847 			/* see comments on max_service_from_wr */
3848 			bfq_bfqq_end_wr(bfqq);
3849 		}
3850 	}
3851 	/*
3852 	 * To improve latency (for this or other queues), immediately
3853 	 * update weight both if it must be raised and if it must be
3854 	 * lowered. Since, entity may be on some active tree here, and
3855 	 * might have a pending change of its ioprio class, invoke
3856 	 * next function with the last parameter unset (see the
3857 	 * comments on the function).
3858 	 */
3859 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3860 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3861 						entity, false);
3862 }
3863 
3864 /*
3865  * Dispatch next request from bfqq.
3866  */
3867 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3868 						 struct bfq_queue *bfqq)
3869 {
3870 	struct request *rq = bfqq->next_rq;
3871 	unsigned long service_to_charge;
3872 
3873 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3874 
3875 	bfq_bfqq_served(bfqq, service_to_charge);
3876 
3877 	bfq_dispatch_remove(bfqd->queue, rq);
3878 
3879 	if (bfqq != bfqd->in_service_queue) {
3880 		if (likely(bfqd->in_service_queue))
3881 			bfqd->in_service_queue->injected_service +=
3882 				bfq_serv_to_charge(rq, bfqq);
3883 
3884 		goto return_rq;
3885 	}
3886 
3887 	/*
3888 	 * If weight raising has to terminate for bfqq, then next
3889 	 * function causes an immediate update of bfqq's weight,
3890 	 * without waiting for next activation. As a consequence, on
3891 	 * expiration, bfqq will be timestamped as if has never been
3892 	 * weight-raised during this service slot, even if it has
3893 	 * received part or even most of the service as a
3894 	 * weight-raised queue. This inflates bfqq's timestamps, which
3895 	 * is beneficial, as bfqq is then more willing to leave the
3896 	 * device immediately to possible other weight-raised queues.
3897 	 */
3898 	bfq_update_wr_data(bfqd, bfqq);
3899 
3900 	/*
3901 	 * Expire bfqq, pretending that its budget expired, if bfqq
3902 	 * belongs to CLASS_IDLE and other queues are waiting for
3903 	 * service.
3904 	 */
3905 	if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3906 		goto return_rq;
3907 
3908 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3909 
3910 return_rq:
3911 	return rq;
3912 }
3913 
3914 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3915 {
3916 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3917 
3918 	/*
3919 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3920 	 * most a call to dispatch for nothing
3921 	 */
3922 	return !list_empty_careful(&bfqd->dispatch) ||
3923 		bfqd->busy_queues > 0;
3924 }
3925 
3926 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3927 {
3928 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3929 	struct request *rq = NULL;
3930 	struct bfq_queue *bfqq = NULL;
3931 
3932 	if (!list_empty(&bfqd->dispatch)) {
3933 		rq = list_first_entry(&bfqd->dispatch, struct request,
3934 				      queuelist);
3935 		list_del_init(&rq->queuelist);
3936 
3937 		bfqq = RQ_BFQQ(rq);
3938 
3939 		if (bfqq) {
3940 			/*
3941 			 * Increment counters here, because this
3942 			 * dispatch does not follow the standard
3943 			 * dispatch flow (where counters are
3944 			 * incremented)
3945 			 */
3946 			bfqq->dispatched++;
3947 
3948 			goto inc_in_driver_start_rq;
3949 		}
3950 
3951 		/*
3952 		 * We exploit the bfq_finish_requeue_request hook to
3953 		 * decrement rq_in_driver, but
3954 		 * bfq_finish_requeue_request will not be invoked on
3955 		 * this request. So, to avoid unbalance, just start
3956 		 * this request, without incrementing rq_in_driver. As
3957 		 * a negative consequence, rq_in_driver is deceptively
3958 		 * lower than it should be while this request is in
3959 		 * service. This may cause bfq_schedule_dispatch to be
3960 		 * invoked uselessly.
3961 		 *
3962 		 * As for implementing an exact solution, the
3963 		 * bfq_finish_requeue_request hook, if defined, is
3964 		 * probably invoked also on this request. So, by
3965 		 * exploiting this hook, we could 1) increment
3966 		 * rq_in_driver here, and 2) decrement it in
3967 		 * bfq_finish_requeue_request. Such a solution would
3968 		 * let the value of the counter be always accurate,
3969 		 * but it would entail using an extra interface
3970 		 * function. This cost seems higher than the benefit,
3971 		 * being the frequency of non-elevator-private
3972 		 * requests very low.
3973 		 */
3974 		goto start_rq;
3975 	}
3976 
3977 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3978 
3979 	if (bfqd->busy_queues == 0)
3980 		goto exit;
3981 
3982 	/*
3983 	 * Force device to serve one request at a time if
3984 	 * strict_guarantees is true. Forcing this service scheme is
3985 	 * currently the ONLY way to guarantee that the request
3986 	 * service order enforced by the scheduler is respected by a
3987 	 * queueing device. Otherwise the device is free even to make
3988 	 * some unlucky request wait for as long as the device
3989 	 * wishes.
3990 	 *
3991 	 * Of course, serving one request at at time may cause loss of
3992 	 * throughput.
3993 	 */
3994 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3995 		goto exit;
3996 
3997 	bfqq = bfq_select_queue(bfqd);
3998 	if (!bfqq)
3999 		goto exit;
4000 
4001 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4002 
4003 	if (rq) {
4004 inc_in_driver_start_rq:
4005 		bfqd->rq_in_driver++;
4006 start_rq:
4007 		rq->rq_flags |= RQF_STARTED;
4008 	}
4009 exit:
4010 	return rq;
4011 }
4012 
4013 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4014 static void bfq_update_dispatch_stats(struct request_queue *q,
4015 				      struct request *rq,
4016 				      struct bfq_queue *in_serv_queue,
4017 				      bool idle_timer_disabled)
4018 {
4019 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4020 
4021 	if (!idle_timer_disabled && !bfqq)
4022 		return;
4023 
4024 	/*
4025 	 * rq and bfqq are guaranteed to exist until this function
4026 	 * ends, for the following reasons. First, rq can be
4027 	 * dispatched to the device, and then can be completed and
4028 	 * freed, only after this function ends. Second, rq cannot be
4029 	 * merged (and thus freed because of a merge) any longer,
4030 	 * because it has already started. Thus rq cannot be freed
4031 	 * before this function ends, and, since rq has a reference to
4032 	 * bfqq, the same guarantee holds for bfqq too.
4033 	 *
4034 	 * In addition, the following queue lock guarantees that
4035 	 * bfqq_group(bfqq) exists as well.
4036 	 */
4037 	spin_lock_irq(q->queue_lock);
4038 	if (idle_timer_disabled)
4039 		/*
4040 		 * Since the idle timer has been disabled,
4041 		 * in_serv_queue contained some request when
4042 		 * __bfq_dispatch_request was invoked above, which
4043 		 * implies that rq was picked exactly from
4044 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4045 		 * therefore guaranteed to exist because of the above
4046 		 * arguments.
4047 		 */
4048 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4049 	if (bfqq) {
4050 		struct bfq_group *bfqg = bfqq_group(bfqq);
4051 
4052 		bfqg_stats_update_avg_queue_size(bfqg);
4053 		bfqg_stats_set_start_empty_time(bfqg);
4054 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4055 	}
4056 	spin_unlock_irq(q->queue_lock);
4057 }
4058 #else
4059 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4060 					     struct request *rq,
4061 					     struct bfq_queue *in_serv_queue,
4062 					     bool idle_timer_disabled) {}
4063 #endif
4064 
4065 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4066 {
4067 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4068 	struct request *rq;
4069 	struct bfq_queue *in_serv_queue;
4070 	bool waiting_rq, idle_timer_disabled;
4071 
4072 	spin_lock_irq(&bfqd->lock);
4073 
4074 	in_serv_queue = bfqd->in_service_queue;
4075 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4076 
4077 	rq = __bfq_dispatch_request(hctx);
4078 
4079 	idle_timer_disabled =
4080 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4081 
4082 	spin_unlock_irq(&bfqd->lock);
4083 
4084 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4085 				  idle_timer_disabled);
4086 
4087 	return rq;
4088 }
4089 
4090 /*
4091  * Task holds one reference to the queue, dropped when task exits.  Each rq
4092  * in-flight on this queue also holds a reference, dropped when rq is freed.
4093  *
4094  * Scheduler lock must be held here. Recall not to use bfqq after calling
4095  * this function on it.
4096  */
4097 void bfq_put_queue(struct bfq_queue *bfqq)
4098 {
4099 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4100 	struct bfq_group *bfqg = bfqq_group(bfqq);
4101 #endif
4102 
4103 	if (bfqq->bfqd)
4104 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4105 			     bfqq, bfqq->ref);
4106 
4107 	bfqq->ref--;
4108 	if (bfqq->ref)
4109 		return;
4110 
4111 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4112 		hlist_del_init(&bfqq->burst_list_node);
4113 		/*
4114 		 * Decrement also burst size after the removal, if the
4115 		 * process associated with bfqq is exiting, and thus
4116 		 * does not contribute to the burst any longer. This
4117 		 * decrement helps filter out false positives of large
4118 		 * bursts, when some short-lived process (often due to
4119 		 * the execution of commands by some service) happens
4120 		 * to start and exit while a complex application is
4121 		 * starting, and thus spawning several processes that
4122 		 * do I/O (and that *must not* be treated as a large
4123 		 * burst, see comments on bfq_handle_burst).
4124 		 *
4125 		 * In particular, the decrement is performed only if:
4126 		 * 1) bfqq is not a merged queue, because, if it is,
4127 		 * then this free of bfqq is not triggered by the exit
4128 		 * of the process bfqq is associated with, but exactly
4129 		 * by the fact that bfqq has just been merged.
4130 		 * 2) burst_size is greater than 0, to handle
4131 		 * unbalanced decrements. Unbalanced decrements may
4132 		 * happen in te following case: bfqq is inserted into
4133 		 * the current burst list--without incrementing
4134 		 * bust_size--because of a split, but the current
4135 		 * burst list is not the burst list bfqq belonged to
4136 		 * (see comments on the case of a split in
4137 		 * bfq_set_request).
4138 		 */
4139 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4140 			bfqq->bfqd->burst_size--;
4141 	}
4142 
4143 	kmem_cache_free(bfq_pool, bfqq);
4144 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4145 	bfqg_and_blkg_put(bfqg);
4146 #endif
4147 }
4148 
4149 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4150 {
4151 	struct bfq_queue *__bfqq, *next;
4152 
4153 	/*
4154 	 * If this queue was scheduled to merge with another queue, be
4155 	 * sure to drop the reference taken on that queue (and others in
4156 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4157 	 */
4158 	__bfqq = bfqq->new_bfqq;
4159 	while (__bfqq) {
4160 		if (__bfqq == bfqq)
4161 			break;
4162 		next = __bfqq->new_bfqq;
4163 		bfq_put_queue(__bfqq);
4164 		__bfqq = next;
4165 	}
4166 }
4167 
4168 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4169 {
4170 	if (bfqq == bfqd->in_service_queue) {
4171 		__bfq_bfqq_expire(bfqd, bfqq);
4172 		bfq_schedule_dispatch(bfqd);
4173 	}
4174 
4175 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4176 
4177 	bfq_put_cooperator(bfqq);
4178 
4179 	bfq_put_queue(bfqq); /* release process reference */
4180 }
4181 
4182 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4183 {
4184 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4185 	struct bfq_data *bfqd;
4186 
4187 	if (bfqq)
4188 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4189 
4190 	if (bfqq && bfqd) {
4191 		unsigned long flags;
4192 
4193 		spin_lock_irqsave(&bfqd->lock, flags);
4194 		bfq_exit_bfqq(bfqd, bfqq);
4195 		bic_set_bfqq(bic, NULL, is_sync);
4196 		spin_unlock_irqrestore(&bfqd->lock, flags);
4197 	}
4198 }
4199 
4200 static void bfq_exit_icq(struct io_cq *icq)
4201 {
4202 	struct bfq_io_cq *bic = icq_to_bic(icq);
4203 
4204 	bfq_exit_icq_bfqq(bic, true);
4205 	bfq_exit_icq_bfqq(bic, false);
4206 }
4207 
4208 /*
4209  * Update the entity prio values; note that the new values will not
4210  * be used until the next (re)activation.
4211  */
4212 static void
4213 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4214 {
4215 	struct task_struct *tsk = current;
4216 	int ioprio_class;
4217 	struct bfq_data *bfqd = bfqq->bfqd;
4218 
4219 	if (!bfqd)
4220 		return;
4221 
4222 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4223 	switch (ioprio_class) {
4224 	default:
4225 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4226 			"bfq: bad prio class %d\n", ioprio_class);
4227 		/* fall through */
4228 	case IOPRIO_CLASS_NONE:
4229 		/*
4230 		 * No prio set, inherit CPU scheduling settings.
4231 		 */
4232 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4233 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4234 		break;
4235 	case IOPRIO_CLASS_RT:
4236 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4237 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4238 		break;
4239 	case IOPRIO_CLASS_BE:
4240 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4241 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4242 		break;
4243 	case IOPRIO_CLASS_IDLE:
4244 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4245 		bfqq->new_ioprio = 7;
4246 		break;
4247 	}
4248 
4249 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4250 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4251 			bfqq->new_ioprio);
4252 		bfqq->new_ioprio = IOPRIO_BE_NR;
4253 	}
4254 
4255 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4256 	bfqq->entity.prio_changed = 1;
4257 }
4258 
4259 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4260 				       struct bio *bio, bool is_sync,
4261 				       struct bfq_io_cq *bic);
4262 
4263 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4264 {
4265 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4266 	struct bfq_queue *bfqq;
4267 	int ioprio = bic->icq.ioc->ioprio;
4268 
4269 	/*
4270 	 * This condition may trigger on a newly created bic, be sure to
4271 	 * drop the lock before returning.
4272 	 */
4273 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4274 		return;
4275 
4276 	bic->ioprio = ioprio;
4277 
4278 	bfqq = bic_to_bfqq(bic, false);
4279 	if (bfqq) {
4280 		/* release process reference on this queue */
4281 		bfq_put_queue(bfqq);
4282 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4283 		bic_set_bfqq(bic, bfqq, false);
4284 	}
4285 
4286 	bfqq = bic_to_bfqq(bic, true);
4287 	if (bfqq)
4288 		bfq_set_next_ioprio_data(bfqq, bic);
4289 }
4290 
4291 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4292 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4293 {
4294 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4295 	INIT_LIST_HEAD(&bfqq->fifo);
4296 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4297 
4298 	bfqq->ref = 0;
4299 	bfqq->bfqd = bfqd;
4300 
4301 	if (bic)
4302 		bfq_set_next_ioprio_data(bfqq, bic);
4303 
4304 	if (is_sync) {
4305 		/*
4306 		 * No need to mark as has_short_ttime if in
4307 		 * idle_class, because no device idling is performed
4308 		 * for queues in idle class
4309 		 */
4310 		if (!bfq_class_idle(bfqq))
4311 			/* tentatively mark as has_short_ttime */
4312 			bfq_mark_bfqq_has_short_ttime(bfqq);
4313 		bfq_mark_bfqq_sync(bfqq);
4314 		bfq_mark_bfqq_just_created(bfqq);
4315 		/*
4316 		 * Aggressively inject a lot of service: up to 90%.
4317 		 * This coefficient remains constant during bfqq life,
4318 		 * but this behavior might be changed, after enough
4319 		 * testing and tuning.
4320 		 */
4321 		bfqq->inject_coeff = 1;
4322 	} else
4323 		bfq_clear_bfqq_sync(bfqq);
4324 
4325 	/* set end request to minus infinity from now */
4326 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4327 
4328 	bfq_mark_bfqq_IO_bound(bfqq);
4329 
4330 	bfqq->pid = pid;
4331 
4332 	/* Tentative initial value to trade off between thr and lat */
4333 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4334 	bfqq->budget_timeout = bfq_smallest_from_now();
4335 
4336 	bfqq->wr_coeff = 1;
4337 	bfqq->last_wr_start_finish = jiffies;
4338 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4339 	bfqq->split_time = bfq_smallest_from_now();
4340 
4341 	/*
4342 	 * To not forget the possibly high bandwidth consumed by a
4343 	 * process/queue in the recent past,
4344 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4345 	 * to the current value of bfqq->soft_rt_next_start (see
4346 	 * comments on bfq_bfqq_softrt_next_start).  Set
4347 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4348 	 * no bandwidth so far.
4349 	 */
4350 	bfqq->soft_rt_next_start = jiffies;
4351 
4352 	/* first request is almost certainly seeky */
4353 	bfqq->seek_history = 1;
4354 }
4355 
4356 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4357 					       struct bfq_group *bfqg,
4358 					       int ioprio_class, int ioprio)
4359 {
4360 	switch (ioprio_class) {
4361 	case IOPRIO_CLASS_RT:
4362 		return &bfqg->async_bfqq[0][ioprio];
4363 	case IOPRIO_CLASS_NONE:
4364 		ioprio = IOPRIO_NORM;
4365 		/* fall through */
4366 	case IOPRIO_CLASS_BE:
4367 		return &bfqg->async_bfqq[1][ioprio];
4368 	case IOPRIO_CLASS_IDLE:
4369 		return &bfqg->async_idle_bfqq;
4370 	default:
4371 		return NULL;
4372 	}
4373 }
4374 
4375 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4376 				       struct bio *bio, bool is_sync,
4377 				       struct bfq_io_cq *bic)
4378 {
4379 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4380 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4381 	struct bfq_queue **async_bfqq = NULL;
4382 	struct bfq_queue *bfqq;
4383 	struct bfq_group *bfqg;
4384 
4385 	rcu_read_lock();
4386 
4387 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4388 	if (!bfqg) {
4389 		bfqq = &bfqd->oom_bfqq;
4390 		goto out;
4391 	}
4392 
4393 	if (!is_sync) {
4394 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4395 						  ioprio);
4396 		bfqq = *async_bfqq;
4397 		if (bfqq)
4398 			goto out;
4399 	}
4400 
4401 	bfqq = kmem_cache_alloc_node(bfq_pool,
4402 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4403 				     bfqd->queue->node);
4404 
4405 	if (bfqq) {
4406 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4407 			      is_sync);
4408 		bfq_init_entity(&bfqq->entity, bfqg);
4409 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4410 	} else {
4411 		bfqq = &bfqd->oom_bfqq;
4412 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4413 		goto out;
4414 	}
4415 
4416 	/*
4417 	 * Pin the queue now that it's allocated, scheduler exit will
4418 	 * prune it.
4419 	 */
4420 	if (async_bfqq) {
4421 		bfqq->ref++; /*
4422 			      * Extra group reference, w.r.t. sync
4423 			      * queue. This extra reference is removed
4424 			      * only if bfqq->bfqg disappears, to
4425 			      * guarantee that this queue is not freed
4426 			      * until its group goes away.
4427 			      */
4428 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4429 			     bfqq, bfqq->ref);
4430 		*async_bfqq = bfqq;
4431 	}
4432 
4433 out:
4434 	bfqq->ref++; /* get a process reference to this queue */
4435 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4436 	rcu_read_unlock();
4437 	return bfqq;
4438 }
4439 
4440 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4441 				    struct bfq_queue *bfqq)
4442 {
4443 	struct bfq_ttime *ttime = &bfqq->ttime;
4444 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4445 
4446 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4447 
4448 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4449 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4450 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4451 				     ttime->ttime_samples);
4452 }
4453 
4454 static void
4455 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4456 		       struct request *rq)
4457 {
4458 	bfqq->seek_history <<= 1;
4459 	bfqq->seek_history |=
4460 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4461 		(!blk_queue_nonrot(bfqd->queue) ||
4462 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4463 }
4464 
4465 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4466 				       struct bfq_queue *bfqq,
4467 				       struct bfq_io_cq *bic)
4468 {
4469 	bool has_short_ttime = true;
4470 
4471 	/*
4472 	 * No need to update has_short_ttime if bfqq is async or in
4473 	 * idle io prio class, or if bfq_slice_idle is zero, because
4474 	 * no device idling is performed for bfqq in this case.
4475 	 */
4476 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4477 	    bfqd->bfq_slice_idle == 0)
4478 		return;
4479 
4480 	/* Idle window just restored, statistics are meaningless. */
4481 	if (time_is_after_eq_jiffies(bfqq->split_time +
4482 				     bfqd->bfq_wr_min_idle_time))
4483 		return;
4484 
4485 	/* Think time is infinite if no process is linked to
4486 	 * bfqq. Otherwise check average think time to
4487 	 * decide whether to mark as has_short_ttime
4488 	 */
4489 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4490 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4491 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4492 		has_short_ttime = false;
4493 
4494 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4495 		     has_short_ttime);
4496 
4497 	if (has_short_ttime)
4498 		bfq_mark_bfqq_has_short_ttime(bfqq);
4499 	else
4500 		bfq_clear_bfqq_has_short_ttime(bfqq);
4501 }
4502 
4503 /*
4504  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4505  * something we should do about it.
4506  */
4507 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4508 			    struct request *rq)
4509 {
4510 	struct bfq_io_cq *bic = RQ_BIC(rq);
4511 
4512 	if (rq->cmd_flags & REQ_META)
4513 		bfqq->meta_pending++;
4514 
4515 	bfq_update_io_thinktime(bfqd, bfqq);
4516 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4517 	bfq_update_io_seektime(bfqd, bfqq, rq);
4518 
4519 	bfq_log_bfqq(bfqd, bfqq,
4520 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4521 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4522 
4523 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4524 
4525 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4526 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4527 				 blk_rq_sectors(rq) < 32;
4528 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4529 
4530 		/*
4531 		 * There is just this request queued: if the request
4532 		 * is small and the queue is not to be expired, then
4533 		 * just exit.
4534 		 *
4535 		 * In this way, if the device is being idled to wait
4536 		 * for a new request from the in-service queue, we
4537 		 * avoid unplugging the device and committing the
4538 		 * device to serve just a small request. On the
4539 		 * contrary, we wait for the block layer to decide
4540 		 * when to unplug the device: hopefully, new requests
4541 		 * will be merged to this one quickly, then the device
4542 		 * will be unplugged and larger requests will be
4543 		 * dispatched.
4544 		 */
4545 		if (small_req && !budget_timeout)
4546 			return;
4547 
4548 		/*
4549 		 * A large enough request arrived, or the queue is to
4550 		 * be expired: in both cases disk idling is to be
4551 		 * stopped, so clear wait_request flag and reset
4552 		 * timer.
4553 		 */
4554 		bfq_clear_bfqq_wait_request(bfqq);
4555 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4556 
4557 		/*
4558 		 * The queue is not empty, because a new request just
4559 		 * arrived. Hence we can safely expire the queue, in
4560 		 * case of budget timeout, without risking that the
4561 		 * timestamps of the queue are not updated correctly.
4562 		 * See [1] for more details.
4563 		 */
4564 		if (budget_timeout)
4565 			bfq_bfqq_expire(bfqd, bfqq, false,
4566 					BFQQE_BUDGET_TIMEOUT);
4567 	}
4568 }
4569 
4570 /* returns true if it causes the idle timer to be disabled */
4571 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4572 {
4573 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4574 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4575 	bool waiting, idle_timer_disabled = false;
4576 
4577 	if (new_bfqq) {
4578 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4579 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4580 		/*
4581 		 * Release the request's reference to the old bfqq
4582 		 * and make sure one is taken to the shared queue.
4583 		 */
4584 		new_bfqq->allocated++;
4585 		bfqq->allocated--;
4586 		new_bfqq->ref++;
4587 		/*
4588 		 * If the bic associated with the process
4589 		 * issuing this request still points to bfqq
4590 		 * (and thus has not been already redirected
4591 		 * to new_bfqq or even some other bfq_queue),
4592 		 * then complete the merge and redirect it to
4593 		 * new_bfqq.
4594 		 */
4595 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4596 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4597 					bfqq, new_bfqq);
4598 
4599 		bfq_clear_bfqq_just_created(bfqq);
4600 		/*
4601 		 * rq is about to be enqueued into new_bfqq,
4602 		 * release rq reference on bfqq
4603 		 */
4604 		bfq_put_queue(bfqq);
4605 		rq->elv.priv[1] = new_bfqq;
4606 		bfqq = new_bfqq;
4607 	}
4608 
4609 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4610 	bfq_add_request(rq);
4611 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4612 
4613 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4614 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4615 
4616 	bfq_rq_enqueued(bfqd, bfqq, rq);
4617 
4618 	return idle_timer_disabled;
4619 }
4620 
4621 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4622 static void bfq_update_insert_stats(struct request_queue *q,
4623 				    struct bfq_queue *bfqq,
4624 				    bool idle_timer_disabled,
4625 				    unsigned int cmd_flags)
4626 {
4627 	if (!bfqq)
4628 		return;
4629 
4630 	/*
4631 	 * bfqq still exists, because it can disappear only after
4632 	 * either it is merged with another queue, or the process it
4633 	 * is associated with exits. But both actions must be taken by
4634 	 * the same process currently executing this flow of
4635 	 * instructions.
4636 	 *
4637 	 * In addition, the following queue lock guarantees that
4638 	 * bfqq_group(bfqq) exists as well.
4639 	 */
4640 	spin_lock_irq(q->queue_lock);
4641 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4642 	if (idle_timer_disabled)
4643 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4644 	spin_unlock_irq(q->queue_lock);
4645 }
4646 #else
4647 static inline void bfq_update_insert_stats(struct request_queue *q,
4648 					   struct bfq_queue *bfqq,
4649 					   bool idle_timer_disabled,
4650 					   unsigned int cmd_flags) {}
4651 #endif
4652 
4653 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4654 			       bool at_head)
4655 {
4656 	struct request_queue *q = hctx->queue;
4657 	struct bfq_data *bfqd = q->elevator->elevator_data;
4658 	struct bfq_queue *bfqq;
4659 	bool idle_timer_disabled = false;
4660 	unsigned int cmd_flags;
4661 
4662 	spin_lock_irq(&bfqd->lock);
4663 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4664 		spin_unlock_irq(&bfqd->lock);
4665 		return;
4666 	}
4667 
4668 	spin_unlock_irq(&bfqd->lock);
4669 
4670 	blk_mq_sched_request_inserted(rq);
4671 
4672 	spin_lock_irq(&bfqd->lock);
4673 	bfqq = bfq_init_rq(rq);
4674 	if (at_head || blk_rq_is_passthrough(rq)) {
4675 		if (at_head)
4676 			list_add(&rq->queuelist, &bfqd->dispatch);
4677 		else
4678 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4679 	} else { /* bfqq is assumed to be non null here */
4680 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4681 		/*
4682 		 * Update bfqq, because, if a queue merge has occurred
4683 		 * in __bfq_insert_request, then rq has been
4684 		 * redirected into a new queue.
4685 		 */
4686 		bfqq = RQ_BFQQ(rq);
4687 
4688 		if (rq_mergeable(rq)) {
4689 			elv_rqhash_add(q, rq);
4690 			if (!q->last_merge)
4691 				q->last_merge = rq;
4692 		}
4693 	}
4694 
4695 	/*
4696 	 * Cache cmd_flags before releasing scheduler lock, because rq
4697 	 * may disappear afterwards (for example, because of a request
4698 	 * merge).
4699 	 */
4700 	cmd_flags = rq->cmd_flags;
4701 
4702 	spin_unlock_irq(&bfqd->lock);
4703 
4704 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4705 				cmd_flags);
4706 }
4707 
4708 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4709 				struct list_head *list, bool at_head)
4710 {
4711 	while (!list_empty(list)) {
4712 		struct request *rq;
4713 
4714 		rq = list_first_entry(list, struct request, queuelist);
4715 		list_del_init(&rq->queuelist);
4716 		bfq_insert_request(hctx, rq, at_head);
4717 	}
4718 }
4719 
4720 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4721 {
4722 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4723 				       bfqd->rq_in_driver);
4724 
4725 	if (bfqd->hw_tag == 1)
4726 		return;
4727 
4728 	/*
4729 	 * This sample is valid if the number of outstanding requests
4730 	 * is large enough to allow a queueing behavior.  Note that the
4731 	 * sum is not exact, as it's not taking into account deactivated
4732 	 * requests.
4733 	 */
4734 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4735 		return;
4736 
4737 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4738 		return;
4739 
4740 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4741 	bfqd->max_rq_in_driver = 0;
4742 	bfqd->hw_tag_samples = 0;
4743 }
4744 
4745 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4746 {
4747 	u64 now_ns;
4748 	u32 delta_us;
4749 
4750 	bfq_update_hw_tag(bfqd);
4751 
4752 	bfqd->rq_in_driver--;
4753 	bfqq->dispatched--;
4754 
4755 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4756 		/*
4757 		 * Set budget_timeout (which we overload to store the
4758 		 * time at which the queue remains with no backlog and
4759 		 * no outstanding request; used by the weight-raising
4760 		 * mechanism).
4761 		 */
4762 		bfqq->budget_timeout = jiffies;
4763 
4764 		bfq_weights_tree_remove(bfqd, bfqq);
4765 	}
4766 
4767 	now_ns = ktime_get_ns();
4768 
4769 	bfqq->ttime.last_end_request = now_ns;
4770 
4771 	/*
4772 	 * Using us instead of ns, to get a reasonable precision in
4773 	 * computing rate in next check.
4774 	 */
4775 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4776 
4777 	/*
4778 	 * If the request took rather long to complete, and, according
4779 	 * to the maximum request size recorded, this completion latency
4780 	 * implies that the request was certainly served at a very low
4781 	 * rate (less than 1M sectors/sec), then the whole observation
4782 	 * interval that lasts up to this time instant cannot be a
4783 	 * valid time interval for computing a new peak rate.  Invoke
4784 	 * bfq_update_rate_reset to have the following three steps
4785 	 * taken:
4786 	 * - close the observation interval at the last (previous)
4787 	 *   request dispatch or completion
4788 	 * - compute rate, if possible, for that observation interval
4789 	 * - reset to zero samples, which will trigger a proper
4790 	 *   re-initialization of the observation interval on next
4791 	 *   dispatch
4792 	 */
4793 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4794 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4795 			1UL<<(BFQ_RATE_SHIFT - 10))
4796 		bfq_update_rate_reset(bfqd, NULL);
4797 	bfqd->last_completion = now_ns;
4798 
4799 	/*
4800 	 * If we are waiting to discover whether the request pattern
4801 	 * of the task associated with the queue is actually
4802 	 * isochronous, and both requisites for this condition to hold
4803 	 * are now satisfied, then compute soft_rt_next_start (see the
4804 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4805 	 * schedule this delayed check when bfqq expires, if it still
4806 	 * has in-flight requests.
4807 	 */
4808 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4809 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4810 		bfqq->soft_rt_next_start =
4811 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4812 
4813 	/*
4814 	 * If this is the in-service queue, check if it needs to be expired,
4815 	 * or if we want to idle in case it has no pending requests.
4816 	 */
4817 	if (bfqd->in_service_queue == bfqq) {
4818 		if (bfq_bfqq_must_idle(bfqq)) {
4819 			if (bfqq->dispatched == 0)
4820 				bfq_arm_slice_timer(bfqd);
4821 			/*
4822 			 * If we get here, we do not expire bfqq, even
4823 			 * if bfqq was in budget timeout or had no
4824 			 * more requests (as controlled in the next
4825 			 * conditional instructions). The reason for
4826 			 * not expiring bfqq is as follows.
4827 			 *
4828 			 * Here bfqq->dispatched > 0 holds, but
4829 			 * bfq_bfqq_must_idle() returned true. This
4830 			 * implies that, even if no request arrives
4831 			 * for bfqq before bfqq->dispatched reaches 0,
4832 			 * bfqq will, however, not be expired on the
4833 			 * completion event that causes bfqq->dispatch
4834 			 * to reach zero. In contrast, on this event,
4835 			 * bfqq will start enjoying device idling
4836 			 * (I/O-dispatch plugging).
4837 			 *
4838 			 * But, if we expired bfqq here, bfqq would
4839 			 * not have the chance to enjoy device idling
4840 			 * when bfqq->dispatched finally reaches
4841 			 * zero. This would expose bfqq to violation
4842 			 * of its reserved service guarantees.
4843 			 */
4844 			return;
4845 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4846 			bfq_bfqq_expire(bfqd, bfqq, false,
4847 					BFQQE_BUDGET_TIMEOUT);
4848 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4849 			 (bfqq->dispatched == 0 ||
4850 			  !bfq_better_to_idle(bfqq)))
4851 			bfq_bfqq_expire(bfqd, bfqq, false,
4852 					BFQQE_NO_MORE_REQUESTS);
4853 	}
4854 
4855 	if (!bfqd->rq_in_driver)
4856 		bfq_schedule_dispatch(bfqd);
4857 }
4858 
4859 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4860 {
4861 	bfqq->allocated--;
4862 
4863 	bfq_put_queue(bfqq);
4864 }
4865 
4866 /*
4867  * Handle either a requeue or a finish for rq. The things to do are
4868  * the same in both cases: all references to rq are to be dropped. In
4869  * particular, rq is considered completed from the point of view of
4870  * the scheduler.
4871  */
4872 static void bfq_finish_requeue_request(struct request *rq)
4873 {
4874 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4875 	struct bfq_data *bfqd;
4876 
4877 	/*
4878 	 * Requeue and finish hooks are invoked in blk-mq without
4879 	 * checking whether the involved request is actually still
4880 	 * referenced in the scheduler. To handle this fact, the
4881 	 * following two checks make this function exit in case of
4882 	 * spurious invocations, for which there is nothing to do.
4883 	 *
4884 	 * First, check whether rq has nothing to do with an elevator.
4885 	 */
4886 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4887 		return;
4888 
4889 	/*
4890 	 * rq either is not associated with any icq, or is an already
4891 	 * requeued request that has not (yet) been re-inserted into
4892 	 * a bfq_queue.
4893 	 */
4894 	if (!rq->elv.icq || !bfqq)
4895 		return;
4896 
4897 	bfqd = bfqq->bfqd;
4898 
4899 	if (rq->rq_flags & RQF_STARTED)
4900 		bfqg_stats_update_completion(bfqq_group(bfqq),
4901 					     rq->start_time_ns,
4902 					     rq->io_start_time_ns,
4903 					     rq->cmd_flags);
4904 
4905 	if (likely(rq->rq_flags & RQF_STARTED)) {
4906 		unsigned long flags;
4907 
4908 		spin_lock_irqsave(&bfqd->lock, flags);
4909 
4910 		bfq_completed_request(bfqq, bfqd);
4911 		bfq_finish_requeue_request_body(bfqq);
4912 
4913 		spin_unlock_irqrestore(&bfqd->lock, flags);
4914 	} else {
4915 		/*
4916 		 * Request rq may be still/already in the scheduler,
4917 		 * in which case we need to remove it (this should
4918 		 * never happen in case of requeue). And we cannot
4919 		 * defer such a check and removal, to avoid
4920 		 * inconsistencies in the time interval from the end
4921 		 * of this function to the start of the deferred work.
4922 		 * This situation seems to occur only in process
4923 		 * context, as a consequence of a merge. In the
4924 		 * current version of the code, this implies that the
4925 		 * lock is held.
4926 		 */
4927 
4928 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4929 			bfq_remove_request(rq->q, rq);
4930 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
4931 						    rq->cmd_flags);
4932 		}
4933 		bfq_finish_requeue_request_body(bfqq);
4934 	}
4935 
4936 	/*
4937 	 * Reset private fields. In case of a requeue, this allows
4938 	 * this function to correctly do nothing if it is spuriously
4939 	 * invoked again on this same request (see the check at the
4940 	 * beginning of the function). Probably, a better general
4941 	 * design would be to prevent blk-mq from invoking the requeue
4942 	 * or finish hooks of an elevator, for a request that is not
4943 	 * referred by that elevator.
4944 	 *
4945 	 * Resetting the following fields would break the
4946 	 * request-insertion logic if rq is re-inserted into a bfq
4947 	 * internal queue, without a re-preparation. Here we assume
4948 	 * that re-insertions of requeued requests, without
4949 	 * re-preparation, can happen only for pass_through or at_head
4950 	 * requests (which are not re-inserted into bfq internal
4951 	 * queues).
4952 	 */
4953 	rq->elv.priv[0] = NULL;
4954 	rq->elv.priv[1] = NULL;
4955 }
4956 
4957 /*
4958  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4959  * was the last process referring to that bfqq.
4960  */
4961 static struct bfq_queue *
4962 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4963 {
4964 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4965 
4966 	if (bfqq_process_refs(bfqq) == 1) {
4967 		bfqq->pid = current->pid;
4968 		bfq_clear_bfqq_coop(bfqq);
4969 		bfq_clear_bfqq_split_coop(bfqq);
4970 		return bfqq;
4971 	}
4972 
4973 	bic_set_bfqq(bic, NULL, 1);
4974 
4975 	bfq_put_cooperator(bfqq);
4976 
4977 	bfq_put_queue(bfqq);
4978 	return NULL;
4979 }
4980 
4981 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4982 						   struct bfq_io_cq *bic,
4983 						   struct bio *bio,
4984 						   bool split, bool is_sync,
4985 						   bool *new_queue)
4986 {
4987 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4988 
4989 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4990 		return bfqq;
4991 
4992 	if (new_queue)
4993 		*new_queue = true;
4994 
4995 	if (bfqq)
4996 		bfq_put_queue(bfqq);
4997 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4998 
4999 	bic_set_bfqq(bic, bfqq, is_sync);
5000 	if (split && is_sync) {
5001 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5002 		    bic->saved_in_large_burst)
5003 			bfq_mark_bfqq_in_large_burst(bfqq);
5004 		else {
5005 			bfq_clear_bfqq_in_large_burst(bfqq);
5006 			if (bic->was_in_burst_list)
5007 				/*
5008 				 * If bfqq was in the current
5009 				 * burst list before being
5010 				 * merged, then we have to add
5011 				 * it back. And we do not need
5012 				 * to increase burst_size, as
5013 				 * we did not decrement
5014 				 * burst_size when we removed
5015 				 * bfqq from the burst list as
5016 				 * a consequence of a merge
5017 				 * (see comments in
5018 				 * bfq_put_queue). In this
5019 				 * respect, it would be rather
5020 				 * costly to know whether the
5021 				 * current burst list is still
5022 				 * the same burst list from
5023 				 * which bfqq was removed on
5024 				 * the merge. To avoid this
5025 				 * cost, if bfqq was in a
5026 				 * burst list, then we add
5027 				 * bfqq to the current burst
5028 				 * list without any further
5029 				 * check. This can cause
5030 				 * inappropriate insertions,
5031 				 * but rarely enough to not
5032 				 * harm the detection of large
5033 				 * bursts significantly.
5034 				 */
5035 				hlist_add_head(&bfqq->burst_list_node,
5036 					       &bfqd->burst_list);
5037 		}
5038 		bfqq->split_time = jiffies;
5039 	}
5040 
5041 	return bfqq;
5042 }
5043 
5044 /*
5045  * Only reset private fields. The actual request preparation will be
5046  * performed by bfq_init_rq, when rq is either inserted or merged. See
5047  * comments on bfq_init_rq for the reason behind this delayed
5048  * preparation.
5049  */
5050 static void bfq_prepare_request(struct request *rq, struct bio *bio)
5051 {
5052 	/*
5053 	 * Regardless of whether we have an icq attached, we have to
5054 	 * clear the scheduler pointers, as they might point to
5055 	 * previously allocated bic/bfqq structs.
5056 	 */
5057 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5058 }
5059 
5060 /*
5061  * If needed, init rq, allocate bfq data structures associated with
5062  * rq, and increment reference counters in the destination bfq_queue
5063  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5064  * not associated with any bfq_queue.
5065  *
5066  * This function is invoked by the functions that perform rq insertion
5067  * or merging. One may have expected the above preparation operations
5068  * to be performed in bfq_prepare_request, and not delayed to when rq
5069  * is inserted or merged. The rationale behind this delayed
5070  * preparation is that, after the prepare_request hook is invoked for
5071  * rq, rq may still be transformed into a request with no icq, i.e., a
5072  * request not associated with any queue. No bfq hook is invoked to
5073  * signal this tranformation. As a consequence, should these
5074  * preparation operations be performed when the prepare_request hook
5075  * is invoked, and should rq be transformed one moment later, bfq
5076  * would end up in an inconsistent state, because it would have
5077  * incremented some queue counters for an rq destined to
5078  * transformation, without any chance to correctly lower these
5079  * counters back. In contrast, no transformation can still happen for
5080  * rq after rq has been inserted or merged. So, it is safe to execute
5081  * these preparation operations when rq is finally inserted or merged.
5082  */
5083 static struct bfq_queue *bfq_init_rq(struct request *rq)
5084 {
5085 	struct request_queue *q = rq->q;
5086 	struct bio *bio = rq->bio;
5087 	struct bfq_data *bfqd = q->elevator->elevator_data;
5088 	struct bfq_io_cq *bic;
5089 	const int is_sync = rq_is_sync(rq);
5090 	struct bfq_queue *bfqq;
5091 	bool new_queue = false;
5092 	bool bfqq_already_existing = false, split = false;
5093 
5094 	if (unlikely(!rq->elv.icq))
5095 		return NULL;
5096 
5097 	/*
5098 	 * Assuming that elv.priv[1] is set only if everything is set
5099 	 * for this rq. This holds true, because this function is
5100 	 * invoked only for insertion or merging, and, after such
5101 	 * events, a request cannot be manipulated any longer before
5102 	 * being removed from bfq.
5103 	 */
5104 	if (rq->elv.priv[1])
5105 		return rq->elv.priv[1];
5106 
5107 	bic = icq_to_bic(rq->elv.icq);
5108 
5109 	bfq_check_ioprio_change(bic, bio);
5110 
5111 	bfq_bic_update_cgroup(bic, bio);
5112 
5113 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5114 					 &new_queue);
5115 
5116 	if (likely(!new_queue)) {
5117 		/* If the queue was seeky for too long, break it apart. */
5118 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5119 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5120 
5121 			/* Update bic before losing reference to bfqq */
5122 			if (bfq_bfqq_in_large_burst(bfqq))
5123 				bic->saved_in_large_burst = true;
5124 
5125 			bfqq = bfq_split_bfqq(bic, bfqq);
5126 			split = true;
5127 
5128 			if (!bfqq)
5129 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5130 								 true, is_sync,
5131 								 NULL);
5132 			else
5133 				bfqq_already_existing = true;
5134 		}
5135 	}
5136 
5137 	bfqq->allocated++;
5138 	bfqq->ref++;
5139 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5140 		     rq, bfqq, bfqq->ref);
5141 
5142 	rq->elv.priv[0] = bic;
5143 	rq->elv.priv[1] = bfqq;
5144 
5145 	/*
5146 	 * If a bfq_queue has only one process reference, it is owned
5147 	 * by only this bic: we can then set bfqq->bic = bic. in
5148 	 * addition, if the queue has also just been split, we have to
5149 	 * resume its state.
5150 	 */
5151 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5152 		bfqq->bic = bic;
5153 		if (split) {
5154 			/*
5155 			 * The queue has just been split from a shared
5156 			 * queue: restore the idle window and the
5157 			 * possible weight raising period.
5158 			 */
5159 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5160 					      bfqq_already_existing);
5161 		}
5162 	}
5163 
5164 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5165 		bfq_handle_burst(bfqd, bfqq);
5166 
5167 	return bfqq;
5168 }
5169 
5170 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5171 {
5172 	struct bfq_data *bfqd = bfqq->bfqd;
5173 	enum bfqq_expiration reason;
5174 	unsigned long flags;
5175 
5176 	spin_lock_irqsave(&bfqd->lock, flags);
5177 	bfq_clear_bfqq_wait_request(bfqq);
5178 
5179 	if (bfqq != bfqd->in_service_queue) {
5180 		spin_unlock_irqrestore(&bfqd->lock, flags);
5181 		return;
5182 	}
5183 
5184 	if (bfq_bfqq_budget_timeout(bfqq))
5185 		/*
5186 		 * Also here the queue can be safely expired
5187 		 * for budget timeout without wasting
5188 		 * guarantees
5189 		 */
5190 		reason = BFQQE_BUDGET_TIMEOUT;
5191 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5192 		/*
5193 		 * The queue may not be empty upon timer expiration,
5194 		 * because we may not disable the timer when the
5195 		 * first request of the in-service queue arrives
5196 		 * during disk idling.
5197 		 */
5198 		reason = BFQQE_TOO_IDLE;
5199 	else
5200 		goto schedule_dispatch;
5201 
5202 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5203 
5204 schedule_dispatch:
5205 	spin_unlock_irqrestore(&bfqd->lock, flags);
5206 	bfq_schedule_dispatch(bfqd);
5207 }
5208 
5209 /*
5210  * Handler of the expiration of the timer running if the in-service queue
5211  * is idling inside its time slice.
5212  */
5213 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5214 {
5215 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5216 					     idle_slice_timer);
5217 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5218 
5219 	/*
5220 	 * Theoretical race here: the in-service queue can be NULL or
5221 	 * different from the queue that was idling if a new request
5222 	 * arrives for the current queue and there is a full dispatch
5223 	 * cycle that changes the in-service queue.  This can hardly
5224 	 * happen, but in the worst case we just expire a queue too
5225 	 * early.
5226 	 */
5227 	if (bfqq)
5228 		bfq_idle_slice_timer_body(bfqq);
5229 
5230 	return HRTIMER_NORESTART;
5231 }
5232 
5233 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5234 				 struct bfq_queue **bfqq_ptr)
5235 {
5236 	struct bfq_queue *bfqq = *bfqq_ptr;
5237 
5238 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5239 	if (bfqq) {
5240 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5241 
5242 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5243 			     bfqq, bfqq->ref);
5244 		bfq_put_queue(bfqq);
5245 		*bfqq_ptr = NULL;
5246 	}
5247 }
5248 
5249 /*
5250  * Release all the bfqg references to its async queues.  If we are
5251  * deallocating the group these queues may still contain requests, so
5252  * we reparent them to the root cgroup (i.e., the only one that will
5253  * exist for sure until all the requests on a device are gone).
5254  */
5255 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5256 {
5257 	int i, j;
5258 
5259 	for (i = 0; i < 2; i++)
5260 		for (j = 0; j < IOPRIO_BE_NR; j++)
5261 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5262 
5263 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5264 }
5265 
5266 /*
5267  * See the comments on bfq_limit_depth for the purpose of
5268  * the depths set in the function. Return minimum shallow depth we'll use.
5269  */
5270 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5271 				      struct sbitmap_queue *bt)
5272 {
5273 	unsigned int i, j, min_shallow = UINT_MAX;
5274 
5275 	/*
5276 	 * In-word depths if no bfq_queue is being weight-raised:
5277 	 * leaving 25% of tags only for sync reads.
5278 	 *
5279 	 * In next formulas, right-shift the value
5280 	 * (1U<<bt->sb.shift), instead of computing directly
5281 	 * (1U<<(bt->sb.shift - something)), to be robust against
5282 	 * any possible value of bt->sb.shift, without having to
5283 	 * limit 'something'.
5284 	 */
5285 	/* no more than 50% of tags for async I/O */
5286 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5287 	/*
5288 	 * no more than 75% of tags for sync writes (25% extra tags
5289 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5290 	 * writes)
5291 	 */
5292 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5293 
5294 	/*
5295 	 * In-word depths in case some bfq_queue is being weight-
5296 	 * raised: leaving ~63% of tags for sync reads. This is the
5297 	 * highest percentage for which, in our tests, application
5298 	 * start-up times didn't suffer from any regression due to tag
5299 	 * shortage.
5300 	 */
5301 	/* no more than ~18% of tags for async I/O */
5302 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5303 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5304 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5305 
5306 	for (i = 0; i < 2; i++)
5307 		for (j = 0; j < 2; j++)
5308 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5309 
5310 	return min_shallow;
5311 }
5312 
5313 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5314 {
5315 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5316 	struct blk_mq_tags *tags = hctx->sched_tags;
5317 	unsigned int min_shallow;
5318 
5319 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5320 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5321 	return 0;
5322 }
5323 
5324 static void bfq_exit_queue(struct elevator_queue *e)
5325 {
5326 	struct bfq_data *bfqd = e->elevator_data;
5327 	struct bfq_queue *bfqq, *n;
5328 
5329 	hrtimer_cancel(&bfqd->idle_slice_timer);
5330 
5331 	spin_lock_irq(&bfqd->lock);
5332 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5333 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5334 	spin_unlock_irq(&bfqd->lock);
5335 
5336 	hrtimer_cancel(&bfqd->idle_slice_timer);
5337 
5338 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5339 	/* release oom-queue reference to root group */
5340 	bfqg_and_blkg_put(bfqd->root_group);
5341 
5342 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5343 #else
5344 	spin_lock_irq(&bfqd->lock);
5345 	bfq_put_async_queues(bfqd, bfqd->root_group);
5346 	kfree(bfqd->root_group);
5347 	spin_unlock_irq(&bfqd->lock);
5348 #endif
5349 
5350 	kfree(bfqd);
5351 }
5352 
5353 static void bfq_init_root_group(struct bfq_group *root_group,
5354 				struct bfq_data *bfqd)
5355 {
5356 	int i;
5357 
5358 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5359 	root_group->entity.parent = NULL;
5360 	root_group->my_entity = NULL;
5361 	root_group->bfqd = bfqd;
5362 #endif
5363 	root_group->rq_pos_tree = RB_ROOT;
5364 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5365 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5366 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5367 }
5368 
5369 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5370 {
5371 	struct bfq_data *bfqd;
5372 	struct elevator_queue *eq;
5373 
5374 	eq = elevator_alloc(q, e);
5375 	if (!eq)
5376 		return -ENOMEM;
5377 
5378 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5379 	if (!bfqd) {
5380 		kobject_put(&eq->kobj);
5381 		return -ENOMEM;
5382 	}
5383 	eq->elevator_data = bfqd;
5384 
5385 	spin_lock_irq(q->queue_lock);
5386 	q->elevator = eq;
5387 	spin_unlock_irq(q->queue_lock);
5388 
5389 	/*
5390 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5391 	 * Grab a permanent reference to it, so that the normal code flow
5392 	 * will not attempt to free it.
5393 	 */
5394 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5395 	bfqd->oom_bfqq.ref++;
5396 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5397 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5398 	bfqd->oom_bfqq.entity.new_weight =
5399 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5400 
5401 	/* oom_bfqq does not participate to bursts */
5402 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5403 
5404 	/*
5405 	 * Trigger weight initialization, according to ioprio, at the
5406 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5407 	 * class won't be changed any more.
5408 	 */
5409 	bfqd->oom_bfqq.entity.prio_changed = 1;
5410 
5411 	bfqd->queue = q;
5412 
5413 	INIT_LIST_HEAD(&bfqd->dispatch);
5414 
5415 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5416 		     HRTIMER_MODE_REL);
5417 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5418 
5419 	bfqd->queue_weights_tree = RB_ROOT;
5420 	bfqd->num_active_groups = 0;
5421 
5422 	INIT_LIST_HEAD(&bfqd->active_list);
5423 	INIT_LIST_HEAD(&bfqd->idle_list);
5424 	INIT_HLIST_HEAD(&bfqd->burst_list);
5425 
5426 	bfqd->hw_tag = -1;
5427 
5428 	bfqd->bfq_max_budget = bfq_default_max_budget;
5429 
5430 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5431 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5432 	bfqd->bfq_back_max = bfq_back_max;
5433 	bfqd->bfq_back_penalty = bfq_back_penalty;
5434 	bfqd->bfq_slice_idle = bfq_slice_idle;
5435 	bfqd->bfq_timeout = bfq_timeout;
5436 
5437 	bfqd->bfq_requests_within_timer = 120;
5438 
5439 	bfqd->bfq_large_burst_thresh = 8;
5440 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5441 
5442 	bfqd->low_latency = true;
5443 
5444 	/*
5445 	 * Trade-off between responsiveness and fairness.
5446 	 */
5447 	bfqd->bfq_wr_coeff = 30;
5448 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5449 	bfqd->bfq_wr_max_time = 0;
5450 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5451 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5452 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5453 					      * Approximate rate required
5454 					      * to playback or record a
5455 					      * high-definition compressed
5456 					      * video.
5457 					      */
5458 	bfqd->wr_busy_queues = 0;
5459 
5460 	/*
5461 	 * Begin by assuming, optimistically, that the device peak
5462 	 * rate is equal to 2/3 of the highest reference rate.
5463 	 */
5464 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5465 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5466 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5467 
5468 	spin_lock_init(&bfqd->lock);
5469 
5470 	/*
5471 	 * The invocation of the next bfq_create_group_hierarchy
5472 	 * function is the head of a chain of function calls
5473 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5474 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5475 	 * has_work hook function. For this reason,
5476 	 * bfq_create_group_hierarchy is invoked only after all
5477 	 * scheduler data has been initialized, apart from the fields
5478 	 * that can be initialized only after invoking
5479 	 * bfq_create_group_hierarchy. This, in particular, enables
5480 	 * has_work to correctly return false. Of course, to avoid
5481 	 * other inconsistencies, the blk-mq stack must then refrain
5482 	 * from invoking further scheduler hooks before this init
5483 	 * function is finished.
5484 	 */
5485 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5486 	if (!bfqd->root_group)
5487 		goto out_free;
5488 	bfq_init_root_group(bfqd->root_group, bfqd);
5489 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5490 
5491 	wbt_disable_default(q);
5492 	return 0;
5493 
5494 out_free:
5495 	kfree(bfqd);
5496 	kobject_put(&eq->kobj);
5497 	return -ENOMEM;
5498 }
5499 
5500 static void bfq_slab_kill(void)
5501 {
5502 	kmem_cache_destroy(bfq_pool);
5503 }
5504 
5505 static int __init bfq_slab_setup(void)
5506 {
5507 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5508 	if (!bfq_pool)
5509 		return -ENOMEM;
5510 	return 0;
5511 }
5512 
5513 static ssize_t bfq_var_show(unsigned int var, char *page)
5514 {
5515 	return sprintf(page, "%u\n", var);
5516 }
5517 
5518 static int bfq_var_store(unsigned long *var, const char *page)
5519 {
5520 	unsigned long new_val;
5521 	int ret = kstrtoul(page, 10, &new_val);
5522 
5523 	if (ret)
5524 		return ret;
5525 	*var = new_val;
5526 	return 0;
5527 }
5528 
5529 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5530 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5531 {									\
5532 	struct bfq_data *bfqd = e->elevator_data;			\
5533 	u64 __data = __VAR;						\
5534 	if (__CONV == 1)						\
5535 		__data = jiffies_to_msecs(__data);			\
5536 	else if (__CONV == 2)						\
5537 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5538 	return bfq_var_show(__data, (page));				\
5539 }
5540 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5541 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5542 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5543 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5544 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5545 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5546 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5547 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5548 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5549 #undef SHOW_FUNCTION
5550 
5551 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5552 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5553 {									\
5554 	struct bfq_data *bfqd = e->elevator_data;			\
5555 	u64 __data = __VAR;						\
5556 	__data = div_u64(__data, NSEC_PER_USEC);			\
5557 	return bfq_var_show(__data, (page));				\
5558 }
5559 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5560 #undef USEC_SHOW_FUNCTION
5561 
5562 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5563 static ssize_t								\
5564 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5565 {									\
5566 	struct bfq_data *bfqd = e->elevator_data;			\
5567 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5568 	int ret;							\
5569 									\
5570 	ret = bfq_var_store(&__data, (page));				\
5571 	if (ret)							\
5572 		return ret;						\
5573 	if (__data < __min)						\
5574 		__data = __min;						\
5575 	else if (__data > __max)					\
5576 		__data = __max;						\
5577 	if (__CONV == 1)						\
5578 		*(__PTR) = msecs_to_jiffies(__data);			\
5579 	else if (__CONV == 2)						\
5580 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5581 	else								\
5582 		*(__PTR) = __data;					\
5583 	return count;							\
5584 }
5585 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5586 		INT_MAX, 2);
5587 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5588 		INT_MAX, 2);
5589 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5590 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5591 		INT_MAX, 0);
5592 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5593 #undef STORE_FUNCTION
5594 
5595 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5596 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5597 {									\
5598 	struct bfq_data *bfqd = e->elevator_data;			\
5599 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5600 	int ret;							\
5601 									\
5602 	ret = bfq_var_store(&__data, (page));				\
5603 	if (ret)							\
5604 		return ret;						\
5605 	if (__data < __min)						\
5606 		__data = __min;						\
5607 	else if (__data > __max)					\
5608 		__data = __max;						\
5609 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5610 	return count;							\
5611 }
5612 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5613 		    UINT_MAX);
5614 #undef USEC_STORE_FUNCTION
5615 
5616 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5617 				    const char *page, size_t count)
5618 {
5619 	struct bfq_data *bfqd = e->elevator_data;
5620 	unsigned long __data;
5621 	int ret;
5622 
5623 	ret = bfq_var_store(&__data, (page));
5624 	if (ret)
5625 		return ret;
5626 
5627 	if (__data == 0)
5628 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5629 	else {
5630 		if (__data > INT_MAX)
5631 			__data = INT_MAX;
5632 		bfqd->bfq_max_budget = __data;
5633 	}
5634 
5635 	bfqd->bfq_user_max_budget = __data;
5636 
5637 	return count;
5638 }
5639 
5640 /*
5641  * Leaving this name to preserve name compatibility with cfq
5642  * parameters, but this timeout is used for both sync and async.
5643  */
5644 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5645 				      const char *page, size_t count)
5646 {
5647 	struct bfq_data *bfqd = e->elevator_data;
5648 	unsigned long __data;
5649 	int ret;
5650 
5651 	ret = bfq_var_store(&__data, (page));
5652 	if (ret)
5653 		return ret;
5654 
5655 	if (__data < 1)
5656 		__data = 1;
5657 	else if (__data > INT_MAX)
5658 		__data = INT_MAX;
5659 
5660 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5661 	if (bfqd->bfq_user_max_budget == 0)
5662 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5663 
5664 	return count;
5665 }
5666 
5667 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5668 				     const char *page, size_t count)
5669 {
5670 	struct bfq_data *bfqd = e->elevator_data;
5671 	unsigned long __data;
5672 	int ret;
5673 
5674 	ret = bfq_var_store(&__data, (page));
5675 	if (ret)
5676 		return ret;
5677 
5678 	if (__data > 1)
5679 		__data = 1;
5680 	if (!bfqd->strict_guarantees && __data == 1
5681 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5682 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5683 
5684 	bfqd->strict_guarantees = __data;
5685 
5686 	return count;
5687 }
5688 
5689 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5690 				     const char *page, size_t count)
5691 {
5692 	struct bfq_data *bfqd = e->elevator_data;
5693 	unsigned long __data;
5694 	int ret;
5695 
5696 	ret = bfq_var_store(&__data, (page));
5697 	if (ret)
5698 		return ret;
5699 
5700 	if (__data > 1)
5701 		__data = 1;
5702 	if (__data == 0 && bfqd->low_latency != 0)
5703 		bfq_end_wr(bfqd);
5704 	bfqd->low_latency = __data;
5705 
5706 	return count;
5707 }
5708 
5709 #define BFQ_ATTR(name) \
5710 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5711 
5712 static struct elv_fs_entry bfq_attrs[] = {
5713 	BFQ_ATTR(fifo_expire_sync),
5714 	BFQ_ATTR(fifo_expire_async),
5715 	BFQ_ATTR(back_seek_max),
5716 	BFQ_ATTR(back_seek_penalty),
5717 	BFQ_ATTR(slice_idle),
5718 	BFQ_ATTR(slice_idle_us),
5719 	BFQ_ATTR(max_budget),
5720 	BFQ_ATTR(timeout_sync),
5721 	BFQ_ATTR(strict_guarantees),
5722 	BFQ_ATTR(low_latency),
5723 	__ATTR_NULL
5724 };
5725 
5726 static struct elevator_type iosched_bfq_mq = {
5727 	.ops.mq = {
5728 		.limit_depth		= bfq_limit_depth,
5729 		.prepare_request	= bfq_prepare_request,
5730 		.requeue_request        = bfq_finish_requeue_request,
5731 		.finish_request		= bfq_finish_requeue_request,
5732 		.exit_icq		= bfq_exit_icq,
5733 		.insert_requests	= bfq_insert_requests,
5734 		.dispatch_request	= bfq_dispatch_request,
5735 		.next_request		= elv_rb_latter_request,
5736 		.former_request		= elv_rb_former_request,
5737 		.allow_merge		= bfq_allow_bio_merge,
5738 		.bio_merge		= bfq_bio_merge,
5739 		.request_merge		= bfq_request_merge,
5740 		.requests_merged	= bfq_requests_merged,
5741 		.request_merged		= bfq_request_merged,
5742 		.has_work		= bfq_has_work,
5743 		.init_hctx		= bfq_init_hctx,
5744 		.init_sched		= bfq_init_queue,
5745 		.exit_sched		= bfq_exit_queue,
5746 	},
5747 
5748 	.uses_mq =		true,
5749 	.icq_size =		sizeof(struct bfq_io_cq),
5750 	.icq_align =		__alignof__(struct bfq_io_cq),
5751 	.elevator_attrs =	bfq_attrs,
5752 	.elevator_name =	"bfq",
5753 	.elevator_owner =	THIS_MODULE,
5754 };
5755 MODULE_ALIAS("bfq-iosched");
5756 
5757 static int __init bfq_init(void)
5758 {
5759 	int ret;
5760 
5761 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5762 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5763 	if (ret)
5764 		return ret;
5765 #endif
5766 
5767 	ret = -ENOMEM;
5768 	if (bfq_slab_setup())
5769 		goto err_pol_unreg;
5770 
5771 	/*
5772 	 * Times to load large popular applications for the typical
5773 	 * systems installed on the reference devices (see the
5774 	 * comments before the definition of the next
5775 	 * array). Actually, we use slightly lower values, as the
5776 	 * estimated peak rate tends to be smaller than the actual
5777 	 * peak rate.  The reason for this last fact is that estimates
5778 	 * are computed over much shorter time intervals than the long
5779 	 * intervals typically used for benchmarking. Why? First, to
5780 	 * adapt more quickly to variations. Second, because an I/O
5781 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5782 	 * be run for a long time.
5783 	 */
5784 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5785 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5786 
5787 	ret = elv_register(&iosched_bfq_mq);
5788 	if (ret)
5789 		goto slab_kill;
5790 
5791 	return 0;
5792 
5793 slab_kill:
5794 	bfq_slab_kill();
5795 err_pol_unreg:
5796 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5797 	blkcg_policy_unregister(&blkcg_policy_bfq);
5798 #endif
5799 	return ret;
5800 }
5801 
5802 static void __exit bfq_exit(void)
5803 {
5804 	elv_unregister(&iosched_bfq_mq);
5805 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5806 	blkcg_policy_unregister(&blkcg_policy_bfq);
5807 #endif
5808 	bfq_slab_kill();
5809 }
5810 
5811 module_init(bfq_init);
5812 module_exit(bfq_exit);
5813 
5814 MODULE_AUTHOR("Paolo Valente");
5815 MODULE_LICENSE("GPL");
5816 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5817