xref: /openbmc/linux/block/bfq-iosched.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 
127 #include "blk.h"
128 #include "blk-mq.h"
129 #include "blk-mq-tag.h"
130 #include "blk-mq-sched.h"
131 #include "bfq-iosched.h"
132 #include "blk-wbt.h"
133 
134 #define BFQ_BFQQ_FNS(name)						\
135 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
136 {									\
137 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
138 }									\
139 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
140 {									\
141 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
142 }									\
143 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
144 {									\
145 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
146 }
147 
148 BFQ_BFQQ_FNS(just_created);
149 BFQ_BFQQ_FNS(busy);
150 BFQ_BFQQ_FNS(wait_request);
151 BFQ_BFQQ_FNS(non_blocking_wait_rq);
152 BFQ_BFQQ_FNS(fifo_expire);
153 BFQ_BFQQ_FNS(has_short_ttime);
154 BFQ_BFQQ_FNS(sync);
155 BFQ_BFQQ_FNS(IO_bound);
156 BFQ_BFQQ_FNS(in_large_burst);
157 BFQ_BFQQ_FNS(coop);
158 BFQ_BFQQ_FNS(split_coop);
159 BFQ_BFQQ_FNS(softrt_update);
160 BFQ_BFQQ_FNS(has_waker);
161 #undef BFQ_BFQQ_FNS						\
162 
163 /* Expiration time of sync (0) and async (1) requests, in ns. */
164 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
165 
166 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
167 static const int bfq_back_max = 16 * 1024;
168 
169 /* Penalty of a backwards seek, in number of sectors. */
170 static const int bfq_back_penalty = 2;
171 
172 /* Idling period duration, in ns. */
173 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
174 
175 /* Minimum number of assigned budgets for which stats are safe to compute. */
176 static const int bfq_stats_min_budgets = 194;
177 
178 /* Default maximum budget values, in sectors and number of requests. */
179 static const int bfq_default_max_budget = 16 * 1024;
180 
181 /*
182  * When a sync request is dispatched, the queue that contains that
183  * request, and all the ancestor entities of that queue, are charged
184  * with the number of sectors of the request. In contrast, if the
185  * request is async, then the queue and its ancestor entities are
186  * charged with the number of sectors of the request, multiplied by
187  * the factor below. This throttles the bandwidth for async I/O,
188  * w.r.t. to sync I/O, and it is done to counter the tendency of async
189  * writes to steal I/O throughput to reads.
190  *
191  * The current value of this parameter is the result of a tuning with
192  * several hardware and software configurations. We tried to find the
193  * lowest value for which writes do not cause noticeable problems to
194  * reads. In fact, the lower this parameter, the stabler I/O control,
195  * in the following respect.  The lower this parameter is, the less
196  * the bandwidth enjoyed by a group decreases
197  * - when the group does writes, w.r.t. to when it does reads;
198  * - when other groups do reads, w.r.t. to when they do writes.
199  */
200 static const int bfq_async_charge_factor = 3;
201 
202 /* Default timeout values, in jiffies, approximating CFQ defaults. */
203 const int bfq_timeout = HZ / 8;
204 
205 /*
206  * Time limit for merging (see comments in bfq_setup_cooperator). Set
207  * to the slowest value that, in our tests, proved to be effective in
208  * removing false positives, while not causing true positives to miss
209  * queue merging.
210  *
211  * As can be deduced from the low time limit below, queue merging, if
212  * successful, happens at the very beginning of the I/O of the involved
213  * cooperating processes, as a consequence of the arrival of the very
214  * first requests from each cooperator.  After that, there is very
215  * little chance to find cooperators.
216  */
217 static const unsigned long bfq_merge_time_limit = HZ/10;
218 
219 static struct kmem_cache *bfq_pool;
220 
221 /* Below this threshold (in ns), we consider thinktime immediate. */
222 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
223 
224 /* hw_tag detection: parallel requests threshold and min samples needed. */
225 #define BFQ_HW_QUEUE_THRESHOLD	3
226 #define BFQ_HW_QUEUE_SAMPLES	32
227 
228 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
229 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
230 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
231 	(get_sdist(last_pos, rq) >			\
232 	 BFQQ_SEEK_THR &&				\
233 	 (!blk_queue_nonrot(bfqd->queue) ||		\
234 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
235 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
236 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
237 /*
238  * Sync random I/O is likely to be confused with soft real-time I/O,
239  * because it is characterized by limited throughput and apparently
240  * isochronous arrival pattern. To avoid false positives, queues
241  * containing only random (seeky) I/O are prevented from being tagged
242  * as soft real-time.
243  */
244 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
245 
246 /* Min number of samples required to perform peak-rate update */
247 #define BFQ_RATE_MIN_SAMPLES	32
248 /* Min observation time interval required to perform a peak-rate update (ns) */
249 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
250 /* Target observation time interval for a peak-rate update (ns) */
251 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
252 
253 /*
254  * Shift used for peak-rate fixed precision calculations.
255  * With
256  * - the current shift: 16 positions
257  * - the current type used to store rate: u32
258  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
259  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
260  * the range of rates that can be stored is
261  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
262  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
263  * [15, 65G] sectors/sec
264  * Which, assuming a sector size of 512B, corresponds to a range of
265  * [7.5K, 33T] B/sec
266  */
267 #define BFQ_RATE_SHIFT		16
268 
269 /*
270  * When configured for computing the duration of the weight-raising
271  * for interactive queues automatically (see the comments at the
272  * beginning of this file), BFQ does it using the following formula:
273  * duration = (ref_rate / r) * ref_wr_duration,
274  * where r is the peak rate of the device, and ref_rate and
275  * ref_wr_duration are two reference parameters.  In particular,
276  * ref_rate is the peak rate of the reference storage device (see
277  * below), and ref_wr_duration is about the maximum time needed, with
278  * BFQ and while reading two files in parallel, to load typical large
279  * applications on the reference device (see the comments on
280  * max_service_from_wr below, for more details on how ref_wr_duration
281  * is obtained).  In practice, the slower/faster the device at hand
282  * is, the more/less it takes to load applications with respect to the
283  * reference device.  Accordingly, the longer/shorter BFQ grants
284  * weight raising to interactive applications.
285  *
286  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
287  * depending on whether the device is rotational or non-rotational.
288  *
289  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
290  * are the reference values for a rotational device, whereas
291  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
292  * non-rotational device. The reference rates are not the actual peak
293  * rates of the devices used as a reference, but slightly lower
294  * values. The reason for using slightly lower values is that the
295  * peak-rate estimator tends to yield slightly lower values than the
296  * actual peak rate (it can yield the actual peak rate only if there
297  * is only one process doing I/O, and the process does sequential
298  * I/O).
299  *
300  * The reference peak rates are measured in sectors/usec, left-shifted
301  * by BFQ_RATE_SHIFT.
302  */
303 static int ref_rate[2] = {14000, 33000};
304 /*
305  * To improve readability, a conversion function is used to initialize
306  * the following array, which entails that the array can be
307  * initialized only in a function.
308  */
309 static int ref_wr_duration[2];
310 
311 /*
312  * BFQ uses the above-detailed, time-based weight-raising mechanism to
313  * privilege interactive tasks. This mechanism is vulnerable to the
314  * following false positives: I/O-bound applications that will go on
315  * doing I/O for much longer than the duration of weight
316  * raising. These applications have basically no benefit from being
317  * weight-raised at the beginning of their I/O. On the opposite end,
318  * while being weight-raised, these applications
319  * a) unjustly steal throughput to applications that may actually need
320  * low latency;
321  * b) make BFQ uselessly perform device idling; device idling results
322  * in loss of device throughput with most flash-based storage, and may
323  * increase latencies when used purposelessly.
324  *
325  * BFQ tries to reduce these problems, by adopting the following
326  * countermeasure. To introduce this countermeasure, we need first to
327  * finish explaining how the duration of weight-raising for
328  * interactive tasks is computed.
329  *
330  * For a bfq_queue deemed as interactive, the duration of weight
331  * raising is dynamically adjusted, as a function of the estimated
332  * peak rate of the device, so as to be equal to the time needed to
333  * execute the 'largest' interactive task we benchmarked so far. By
334  * largest task, we mean the task for which each involved process has
335  * to do more I/O than for any of the other tasks we benchmarked. This
336  * reference interactive task is the start-up of LibreOffice Writer,
337  * and in this task each process/bfq_queue needs to have at most ~110K
338  * sectors transferred.
339  *
340  * This last piece of information enables BFQ to reduce the actual
341  * duration of weight-raising for at least one class of I/O-bound
342  * applications: those doing sequential or quasi-sequential I/O. An
343  * example is file copy. In fact, once started, the main I/O-bound
344  * processes of these applications usually consume the above 110K
345  * sectors in much less time than the processes of an application that
346  * is starting, because these I/O-bound processes will greedily devote
347  * almost all their CPU cycles only to their target,
348  * throughput-friendly I/O operations. This is even more true if BFQ
349  * happens to be underestimating the device peak rate, and thus
350  * overestimating the duration of weight raising. But, according to
351  * our measurements, once transferred 110K sectors, these processes
352  * have no right to be weight-raised any longer.
353  *
354  * Basing on the last consideration, BFQ ends weight-raising for a
355  * bfq_queue if the latter happens to have received an amount of
356  * service at least equal to the following constant. The constant is
357  * set to slightly more than 110K, to have a minimum safety margin.
358  *
359  * This early ending of weight-raising reduces the amount of time
360  * during which interactive false positives cause the two problems
361  * described at the beginning of these comments.
362  */
363 static const unsigned long max_service_from_wr = 120000;
364 
365 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
366 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
367 
368 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
369 {
370 	return bic->bfqq[is_sync];
371 }
372 
373 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
374 {
375 	bic->bfqq[is_sync] = bfqq;
376 }
377 
378 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
379 {
380 	return bic->icq.q->elevator->elevator_data;
381 }
382 
383 /**
384  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
385  * @icq: the iocontext queue.
386  */
387 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
388 {
389 	/* bic->icq is the first member, %NULL will convert to %NULL */
390 	return container_of(icq, struct bfq_io_cq, icq);
391 }
392 
393 /**
394  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
395  * @bfqd: the lookup key.
396  * @ioc: the io_context of the process doing I/O.
397  * @q: the request queue.
398  */
399 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
400 					struct io_context *ioc,
401 					struct request_queue *q)
402 {
403 	if (ioc) {
404 		unsigned long flags;
405 		struct bfq_io_cq *icq;
406 
407 		spin_lock_irqsave(&q->queue_lock, flags);
408 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
409 		spin_unlock_irqrestore(&q->queue_lock, flags);
410 
411 		return icq;
412 	}
413 
414 	return NULL;
415 }
416 
417 /*
418  * Scheduler run of queue, if there are requests pending and no one in the
419  * driver that will restart queueing.
420  */
421 void bfq_schedule_dispatch(struct bfq_data *bfqd)
422 {
423 	if (bfqd->queued != 0) {
424 		bfq_log(bfqd, "schedule dispatch");
425 		blk_mq_run_hw_queues(bfqd->queue, true);
426 	}
427 }
428 
429 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
430 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
431 
432 #define bfq_sample_valid(samples)	((samples) > 80)
433 
434 /*
435  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
436  * We choose the request that is closer to the head right now.  Distance
437  * behind the head is penalized and only allowed to a certain extent.
438  */
439 static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 				      struct request *rq1,
441 				      struct request *rq2,
442 				      sector_t last)
443 {
444 	sector_t s1, s2, d1 = 0, d2 = 0;
445 	unsigned long back_max;
446 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
447 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
448 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449 
450 	if (!rq1 || rq1 == rq2)
451 		return rq2;
452 	if (!rq2)
453 		return rq1;
454 
455 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 		return rq1;
457 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 		return rq2;
459 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 		return rq1;
461 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 		return rq2;
463 
464 	s1 = blk_rq_pos(rq1);
465 	s2 = blk_rq_pos(rq2);
466 
467 	/*
468 	 * By definition, 1KiB is 2 sectors.
469 	 */
470 	back_max = bfqd->bfq_back_max * 2;
471 
472 	/*
473 	 * Strict one way elevator _except_ in the case where we allow
474 	 * short backward seeks which are biased as twice the cost of a
475 	 * similar forward seek.
476 	 */
477 	if (s1 >= last)
478 		d1 = s1 - last;
479 	else if (s1 + back_max >= last)
480 		d1 = (last - s1) * bfqd->bfq_back_penalty;
481 	else
482 		wrap |= BFQ_RQ1_WRAP;
483 
484 	if (s2 >= last)
485 		d2 = s2 - last;
486 	else if (s2 + back_max >= last)
487 		d2 = (last - s2) * bfqd->bfq_back_penalty;
488 	else
489 		wrap |= BFQ_RQ2_WRAP;
490 
491 	/* Found required data */
492 
493 	/*
494 	 * By doing switch() on the bit mask "wrap" we avoid having to
495 	 * check two variables for all permutations: --> faster!
496 	 */
497 	switch (wrap) {
498 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 		if (d1 < d2)
500 			return rq1;
501 		else if (d2 < d1)
502 			return rq2;
503 
504 		if (s1 >= s2)
505 			return rq1;
506 		else
507 			return rq2;
508 
509 	case BFQ_RQ2_WRAP:
510 		return rq1;
511 	case BFQ_RQ1_WRAP:
512 		return rq2;
513 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 	default:
515 		/*
516 		 * Since both rqs are wrapped,
517 		 * start with the one that's further behind head
518 		 * (--> only *one* back seek required),
519 		 * since back seek takes more time than forward.
520 		 */
521 		if (s1 <= s2)
522 			return rq1;
523 		else
524 			return rq2;
525 	}
526 }
527 
528 /*
529  * Async I/O can easily starve sync I/O (both sync reads and sync
530  * writes), by consuming all tags. Similarly, storms of sync writes,
531  * such as those that sync(2) may trigger, can starve sync reads.
532  * Limit depths of async I/O and sync writes so as to counter both
533  * problems.
534  */
535 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536 {
537 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
538 
539 	if (op_is_sync(op) && !op_is_write(op))
540 		return;
541 
542 	data->shallow_depth =
543 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544 
545 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
547 			data->shallow_depth);
548 }
549 
550 static struct bfq_queue *
551 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 		     sector_t sector, struct rb_node **ret_parent,
553 		     struct rb_node ***rb_link)
554 {
555 	struct rb_node **p, *parent;
556 	struct bfq_queue *bfqq = NULL;
557 
558 	parent = NULL;
559 	p = &root->rb_node;
560 	while (*p) {
561 		struct rb_node **n;
562 
563 		parent = *p;
564 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565 
566 		/*
567 		 * Sort strictly based on sector. Smallest to the left,
568 		 * largest to the right.
569 		 */
570 		if (sector > blk_rq_pos(bfqq->next_rq))
571 			n = &(*p)->rb_right;
572 		else if (sector < blk_rq_pos(bfqq->next_rq))
573 			n = &(*p)->rb_left;
574 		else
575 			break;
576 		p = n;
577 		bfqq = NULL;
578 	}
579 
580 	*ret_parent = parent;
581 	if (rb_link)
582 		*rb_link = p;
583 
584 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 		(unsigned long long)sector,
586 		bfqq ? bfqq->pid : 0);
587 
588 	return bfqq;
589 }
590 
591 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592 {
593 	return bfqq->service_from_backlogged > 0 &&
594 		time_is_before_jiffies(bfqq->first_IO_time +
595 				       bfq_merge_time_limit);
596 }
597 
598 /*
599  * The following function is not marked as __cold because it is
600  * actually cold, but for the same performance goal described in the
601  * comments on the likely() at the beginning of
602  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
603  * execution time for the case where this function is not invoked, we
604  * had to add an unlikely() in each involved if().
605  */
606 void __cold
607 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
608 {
609 	struct rb_node **p, *parent;
610 	struct bfq_queue *__bfqq;
611 
612 	if (bfqq->pos_root) {
613 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
614 		bfqq->pos_root = NULL;
615 	}
616 
617 	/*
618 	 * bfqq cannot be merged any longer (see comments in
619 	 * bfq_setup_cooperator): no point in adding bfqq into the
620 	 * position tree.
621 	 */
622 	if (bfq_too_late_for_merging(bfqq))
623 		return;
624 
625 	if (bfq_class_idle(bfqq))
626 		return;
627 	if (!bfqq->next_rq)
628 		return;
629 
630 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
631 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
632 			blk_rq_pos(bfqq->next_rq), &parent, &p);
633 	if (!__bfqq) {
634 		rb_link_node(&bfqq->pos_node, parent, p);
635 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
636 	} else
637 		bfqq->pos_root = NULL;
638 }
639 
640 /*
641  * The following function returns false either if every active queue
642  * must receive the same share of the throughput (symmetric scenario),
643  * or, as a special case, if bfqq must receive a share of the
644  * throughput lower than or equal to the share that every other active
645  * queue must receive.  If bfqq does sync I/O, then these are the only
646  * two cases where bfqq happens to be guaranteed its share of the
647  * throughput even if I/O dispatching is not plugged when bfqq remains
648  * temporarily empty (for more details, see the comments in the
649  * function bfq_better_to_idle()). For this reason, the return value
650  * of this function is used to check whether I/O-dispatch plugging can
651  * be avoided.
652  *
653  * The above first case (symmetric scenario) occurs when:
654  * 1) all active queues have the same weight,
655  * 2) all active queues belong to the same I/O-priority class,
656  * 3) all active groups at the same level in the groups tree have the same
657  *    weight,
658  * 4) all active groups at the same level in the groups tree have the same
659  *    number of children.
660  *
661  * Unfortunately, keeping the necessary state for evaluating exactly
662  * the last two symmetry sub-conditions above would be quite complex
663  * and time consuming. Therefore this function evaluates, instead,
664  * only the following stronger three sub-conditions, for which it is
665  * much easier to maintain the needed state:
666  * 1) all active queues have the same weight,
667  * 2) all active queues belong to the same I/O-priority class,
668  * 3) there are no active groups.
669  * In particular, the last condition is always true if hierarchical
670  * support or the cgroups interface are not enabled, thus no state
671  * needs to be maintained in this case.
672  */
673 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
674 				   struct bfq_queue *bfqq)
675 {
676 	bool smallest_weight = bfqq &&
677 		bfqq->weight_counter &&
678 		bfqq->weight_counter ==
679 		container_of(
680 			rb_first_cached(&bfqd->queue_weights_tree),
681 			struct bfq_weight_counter,
682 			weights_node);
683 
684 	/*
685 	 * For queue weights to differ, queue_weights_tree must contain
686 	 * at least two nodes.
687 	 */
688 	bool varied_queue_weights = !smallest_weight &&
689 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
690 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
691 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
692 
693 	bool multiple_classes_busy =
694 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
695 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
696 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
697 
698 	return varied_queue_weights || multiple_classes_busy
699 #ifdef CONFIG_BFQ_GROUP_IOSCHED
700 	       || bfqd->num_groups_with_pending_reqs > 0
701 #endif
702 		;
703 }
704 
705 /*
706  * If the weight-counter tree passed as input contains no counter for
707  * the weight of the input queue, then add that counter; otherwise just
708  * increment the existing counter.
709  *
710  * Note that weight-counter trees contain few nodes in mostly symmetric
711  * scenarios. For example, if all queues have the same weight, then the
712  * weight-counter tree for the queues may contain at most one node.
713  * This holds even if low_latency is on, because weight-raised queues
714  * are not inserted in the tree.
715  * In most scenarios, the rate at which nodes are created/destroyed
716  * should be low too.
717  */
718 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
719 			  struct rb_root_cached *root)
720 {
721 	struct bfq_entity *entity = &bfqq->entity;
722 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
723 	bool leftmost = true;
724 
725 	/*
726 	 * Do not insert if the queue is already associated with a
727 	 * counter, which happens if:
728 	 *   1) a request arrival has caused the queue to become both
729 	 *      non-weight-raised, and hence change its weight, and
730 	 *      backlogged; in this respect, each of the two events
731 	 *      causes an invocation of this function,
732 	 *   2) this is the invocation of this function caused by the
733 	 *      second event. This second invocation is actually useless,
734 	 *      and we handle this fact by exiting immediately. More
735 	 *      efficient or clearer solutions might possibly be adopted.
736 	 */
737 	if (bfqq->weight_counter)
738 		return;
739 
740 	while (*new) {
741 		struct bfq_weight_counter *__counter = container_of(*new,
742 						struct bfq_weight_counter,
743 						weights_node);
744 		parent = *new;
745 
746 		if (entity->weight == __counter->weight) {
747 			bfqq->weight_counter = __counter;
748 			goto inc_counter;
749 		}
750 		if (entity->weight < __counter->weight)
751 			new = &((*new)->rb_left);
752 		else {
753 			new = &((*new)->rb_right);
754 			leftmost = false;
755 		}
756 	}
757 
758 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
759 				       GFP_ATOMIC);
760 
761 	/*
762 	 * In the unlucky event of an allocation failure, we just
763 	 * exit. This will cause the weight of queue to not be
764 	 * considered in bfq_asymmetric_scenario, which, in its turn,
765 	 * causes the scenario to be deemed wrongly symmetric in case
766 	 * bfqq's weight would have been the only weight making the
767 	 * scenario asymmetric.  On the bright side, no unbalance will
768 	 * however occur when bfqq becomes inactive again (the
769 	 * invocation of this function is triggered by an activation
770 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
771 	 * if !bfqq->weight_counter.
772 	 */
773 	if (unlikely(!bfqq->weight_counter))
774 		return;
775 
776 	bfqq->weight_counter->weight = entity->weight;
777 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
778 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
779 				leftmost);
780 
781 inc_counter:
782 	bfqq->weight_counter->num_active++;
783 	bfqq->ref++;
784 }
785 
786 /*
787  * Decrement the weight counter associated with the queue, and, if the
788  * counter reaches 0, remove the counter from the tree.
789  * See the comments to the function bfq_weights_tree_add() for considerations
790  * about overhead.
791  */
792 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
793 			       struct bfq_queue *bfqq,
794 			       struct rb_root_cached *root)
795 {
796 	if (!bfqq->weight_counter)
797 		return;
798 
799 	bfqq->weight_counter->num_active--;
800 	if (bfqq->weight_counter->num_active > 0)
801 		goto reset_entity_pointer;
802 
803 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
804 	kfree(bfqq->weight_counter);
805 
806 reset_entity_pointer:
807 	bfqq->weight_counter = NULL;
808 	bfq_put_queue(bfqq);
809 }
810 
811 /*
812  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
813  * of active groups for each queue's inactive parent entity.
814  */
815 void bfq_weights_tree_remove(struct bfq_data *bfqd,
816 			     struct bfq_queue *bfqq)
817 {
818 	struct bfq_entity *entity = bfqq->entity.parent;
819 
820 	for_each_entity(entity) {
821 		struct bfq_sched_data *sd = entity->my_sched_data;
822 
823 		if (sd->next_in_service || sd->in_service_entity) {
824 			/*
825 			 * entity is still active, because either
826 			 * next_in_service or in_service_entity is not
827 			 * NULL (see the comments on the definition of
828 			 * next_in_service for details on why
829 			 * in_service_entity must be checked too).
830 			 *
831 			 * As a consequence, its parent entities are
832 			 * active as well, and thus this loop must
833 			 * stop here.
834 			 */
835 			break;
836 		}
837 
838 		/*
839 		 * The decrement of num_groups_with_pending_reqs is
840 		 * not performed immediately upon the deactivation of
841 		 * entity, but it is delayed to when it also happens
842 		 * that the first leaf descendant bfqq of entity gets
843 		 * all its pending requests completed. The following
844 		 * instructions perform this delayed decrement, if
845 		 * needed. See the comments on
846 		 * num_groups_with_pending_reqs for details.
847 		 */
848 		if (entity->in_groups_with_pending_reqs) {
849 			entity->in_groups_with_pending_reqs = false;
850 			bfqd->num_groups_with_pending_reqs--;
851 		}
852 	}
853 
854 	/*
855 	 * Next function is invoked last, because it causes bfqq to be
856 	 * freed if the following holds: bfqq is not in service and
857 	 * has no dispatched request. DO NOT use bfqq after the next
858 	 * function invocation.
859 	 */
860 	__bfq_weights_tree_remove(bfqd, bfqq,
861 				  &bfqd->queue_weights_tree);
862 }
863 
864 /*
865  * Return expired entry, or NULL to just start from scratch in rbtree.
866  */
867 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
868 				      struct request *last)
869 {
870 	struct request *rq;
871 
872 	if (bfq_bfqq_fifo_expire(bfqq))
873 		return NULL;
874 
875 	bfq_mark_bfqq_fifo_expire(bfqq);
876 
877 	rq = rq_entry_fifo(bfqq->fifo.next);
878 
879 	if (rq == last || ktime_get_ns() < rq->fifo_time)
880 		return NULL;
881 
882 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
883 	return rq;
884 }
885 
886 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
887 					struct bfq_queue *bfqq,
888 					struct request *last)
889 {
890 	struct rb_node *rbnext = rb_next(&last->rb_node);
891 	struct rb_node *rbprev = rb_prev(&last->rb_node);
892 	struct request *next, *prev = NULL;
893 
894 	/* Follow expired path, else get first next available. */
895 	next = bfq_check_fifo(bfqq, last);
896 	if (next)
897 		return next;
898 
899 	if (rbprev)
900 		prev = rb_entry_rq(rbprev);
901 
902 	if (rbnext)
903 		next = rb_entry_rq(rbnext);
904 	else {
905 		rbnext = rb_first(&bfqq->sort_list);
906 		if (rbnext && rbnext != &last->rb_node)
907 			next = rb_entry_rq(rbnext);
908 	}
909 
910 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
911 }
912 
913 /* see the definition of bfq_async_charge_factor for details */
914 static unsigned long bfq_serv_to_charge(struct request *rq,
915 					struct bfq_queue *bfqq)
916 {
917 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
918 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
919 		return blk_rq_sectors(rq);
920 
921 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
922 }
923 
924 /**
925  * bfq_updated_next_req - update the queue after a new next_rq selection.
926  * @bfqd: the device data the queue belongs to.
927  * @bfqq: the queue to update.
928  *
929  * If the first request of a queue changes we make sure that the queue
930  * has enough budget to serve at least its first request (if the
931  * request has grown).  We do this because if the queue has not enough
932  * budget for its first request, it has to go through two dispatch
933  * rounds to actually get it dispatched.
934  */
935 static void bfq_updated_next_req(struct bfq_data *bfqd,
936 				 struct bfq_queue *bfqq)
937 {
938 	struct bfq_entity *entity = &bfqq->entity;
939 	struct request *next_rq = bfqq->next_rq;
940 	unsigned long new_budget;
941 
942 	if (!next_rq)
943 		return;
944 
945 	if (bfqq == bfqd->in_service_queue)
946 		/*
947 		 * In order not to break guarantees, budgets cannot be
948 		 * changed after an entity has been selected.
949 		 */
950 		return;
951 
952 	new_budget = max_t(unsigned long,
953 			   max_t(unsigned long, bfqq->max_budget,
954 				 bfq_serv_to_charge(next_rq, bfqq)),
955 			   entity->service);
956 	if (entity->budget != new_budget) {
957 		entity->budget = new_budget;
958 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
959 					 new_budget);
960 		bfq_requeue_bfqq(bfqd, bfqq, false);
961 	}
962 }
963 
964 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
965 {
966 	u64 dur;
967 
968 	if (bfqd->bfq_wr_max_time > 0)
969 		return bfqd->bfq_wr_max_time;
970 
971 	dur = bfqd->rate_dur_prod;
972 	do_div(dur, bfqd->peak_rate);
973 
974 	/*
975 	 * Limit duration between 3 and 25 seconds. The upper limit
976 	 * has been conservatively set after the following worst case:
977 	 * on a QEMU/KVM virtual machine
978 	 * - running in a slow PC
979 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
980 	 * - serving a heavy I/O workload, such as the sequential reading
981 	 *   of several files
982 	 * mplayer took 23 seconds to start, if constantly weight-raised.
983 	 *
984 	 * As for higher values than that accommodating the above bad
985 	 * scenario, tests show that higher values would often yield
986 	 * the opposite of the desired result, i.e., would worsen
987 	 * responsiveness by allowing non-interactive applications to
988 	 * preserve weight raising for too long.
989 	 *
990 	 * On the other end, lower values than 3 seconds make it
991 	 * difficult for most interactive tasks to complete their jobs
992 	 * before weight-raising finishes.
993 	 */
994 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
995 }
996 
997 /* switch back from soft real-time to interactive weight raising */
998 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
999 					  struct bfq_data *bfqd)
1000 {
1001 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1002 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1003 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1004 }
1005 
1006 static void
1007 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1008 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1009 {
1010 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1011 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1012 
1013 	if (bic->saved_has_short_ttime)
1014 		bfq_mark_bfqq_has_short_ttime(bfqq);
1015 	else
1016 		bfq_clear_bfqq_has_short_ttime(bfqq);
1017 
1018 	if (bic->saved_IO_bound)
1019 		bfq_mark_bfqq_IO_bound(bfqq);
1020 	else
1021 		bfq_clear_bfqq_IO_bound(bfqq);
1022 
1023 	bfqq->entity.new_weight = bic->saved_weight;
1024 	bfqq->ttime = bic->saved_ttime;
1025 	bfqq->wr_coeff = bic->saved_wr_coeff;
1026 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1027 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1028 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1029 
1030 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1031 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1032 				   bfqq->wr_cur_max_time))) {
1033 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1034 		    !bfq_bfqq_in_large_burst(bfqq) &&
1035 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1036 					     bfq_wr_duration(bfqd))) {
1037 			switch_back_to_interactive_wr(bfqq, bfqd);
1038 		} else {
1039 			bfqq->wr_coeff = 1;
1040 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1041 				     "resume state: switching off wr");
1042 		}
1043 	}
1044 
1045 	/* make sure weight will be updated, however we got here */
1046 	bfqq->entity.prio_changed = 1;
1047 
1048 	if (likely(!busy))
1049 		return;
1050 
1051 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1052 		bfqd->wr_busy_queues++;
1053 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1054 		bfqd->wr_busy_queues--;
1055 }
1056 
1057 static int bfqq_process_refs(struct bfq_queue *bfqq)
1058 {
1059 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1060 		(bfqq->weight_counter != NULL);
1061 }
1062 
1063 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1064 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1065 {
1066 	struct bfq_queue *item;
1067 	struct hlist_node *n;
1068 
1069 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1070 		hlist_del_init(&item->burst_list_node);
1071 
1072 	/*
1073 	 * Start the creation of a new burst list only if there is no
1074 	 * active queue. See comments on the conditional invocation of
1075 	 * bfq_handle_burst().
1076 	 */
1077 	if (bfq_tot_busy_queues(bfqd) == 0) {
1078 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1079 		bfqd->burst_size = 1;
1080 	} else
1081 		bfqd->burst_size = 0;
1082 
1083 	bfqd->burst_parent_entity = bfqq->entity.parent;
1084 }
1085 
1086 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1087 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1088 {
1089 	/* Increment burst size to take into account also bfqq */
1090 	bfqd->burst_size++;
1091 
1092 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1093 		struct bfq_queue *pos, *bfqq_item;
1094 		struct hlist_node *n;
1095 
1096 		/*
1097 		 * Enough queues have been activated shortly after each
1098 		 * other to consider this burst as large.
1099 		 */
1100 		bfqd->large_burst = true;
1101 
1102 		/*
1103 		 * We can now mark all queues in the burst list as
1104 		 * belonging to a large burst.
1105 		 */
1106 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1107 				     burst_list_node)
1108 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1109 		bfq_mark_bfqq_in_large_burst(bfqq);
1110 
1111 		/*
1112 		 * From now on, and until the current burst finishes, any
1113 		 * new queue being activated shortly after the last queue
1114 		 * was inserted in the burst can be immediately marked as
1115 		 * belonging to a large burst. So the burst list is not
1116 		 * needed any more. Remove it.
1117 		 */
1118 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1119 					  burst_list_node)
1120 			hlist_del_init(&pos->burst_list_node);
1121 	} else /*
1122 		* Burst not yet large: add bfqq to the burst list. Do
1123 		* not increment the ref counter for bfqq, because bfqq
1124 		* is removed from the burst list before freeing bfqq
1125 		* in put_queue.
1126 		*/
1127 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1128 }
1129 
1130 /*
1131  * If many queues belonging to the same group happen to be created
1132  * shortly after each other, then the processes associated with these
1133  * queues have typically a common goal. In particular, bursts of queue
1134  * creations are usually caused by services or applications that spawn
1135  * many parallel threads/processes. Examples are systemd during boot,
1136  * or git grep. To help these processes get their job done as soon as
1137  * possible, it is usually better to not grant either weight-raising
1138  * or device idling to their queues, unless these queues must be
1139  * protected from the I/O flowing through other active queues.
1140  *
1141  * In this comment we describe, firstly, the reasons why this fact
1142  * holds, and, secondly, the next function, which implements the main
1143  * steps needed to properly mark these queues so that they can then be
1144  * treated in a different way.
1145  *
1146  * The above services or applications benefit mostly from a high
1147  * throughput: the quicker the requests of the activated queues are
1148  * cumulatively served, the sooner the target job of these queues gets
1149  * completed. As a consequence, weight-raising any of these queues,
1150  * which also implies idling the device for it, is almost always
1151  * counterproductive, unless there are other active queues to isolate
1152  * these new queues from. If there no other active queues, then
1153  * weight-raising these new queues just lowers throughput in most
1154  * cases.
1155  *
1156  * On the other hand, a burst of queue creations may be caused also by
1157  * the start of an application that does not consist of a lot of
1158  * parallel I/O-bound threads. In fact, with a complex application,
1159  * several short processes may need to be executed to start-up the
1160  * application. In this respect, to start an application as quickly as
1161  * possible, the best thing to do is in any case to privilege the I/O
1162  * related to the application with respect to all other
1163  * I/O. Therefore, the best strategy to start as quickly as possible
1164  * an application that causes a burst of queue creations is to
1165  * weight-raise all the queues created during the burst. This is the
1166  * exact opposite of the best strategy for the other type of bursts.
1167  *
1168  * In the end, to take the best action for each of the two cases, the
1169  * two types of bursts need to be distinguished. Fortunately, this
1170  * seems relatively easy, by looking at the sizes of the bursts. In
1171  * particular, we found a threshold such that only bursts with a
1172  * larger size than that threshold are apparently caused by
1173  * services or commands such as systemd or git grep. For brevity,
1174  * hereafter we call just 'large' these bursts. BFQ *does not*
1175  * weight-raise queues whose creation occurs in a large burst. In
1176  * addition, for each of these queues BFQ performs or does not perform
1177  * idling depending on which choice boosts the throughput more. The
1178  * exact choice depends on the device and request pattern at
1179  * hand.
1180  *
1181  * Unfortunately, false positives may occur while an interactive task
1182  * is starting (e.g., an application is being started). The
1183  * consequence is that the queues associated with the task do not
1184  * enjoy weight raising as expected. Fortunately these false positives
1185  * are very rare. They typically occur if some service happens to
1186  * start doing I/O exactly when the interactive task starts.
1187  *
1188  * Turning back to the next function, it is invoked only if there are
1189  * no active queues (apart from active queues that would belong to the
1190  * same, possible burst bfqq would belong to), and it implements all
1191  * the steps needed to detect the occurrence of a large burst and to
1192  * properly mark all the queues belonging to it (so that they can then
1193  * be treated in a different way). This goal is achieved by
1194  * maintaining a "burst list" that holds, temporarily, the queues that
1195  * belong to the burst in progress. The list is then used to mark
1196  * these queues as belonging to a large burst if the burst does become
1197  * large. The main steps are the following.
1198  *
1199  * . when the very first queue is created, the queue is inserted into the
1200  *   list (as it could be the first queue in a possible burst)
1201  *
1202  * . if the current burst has not yet become large, and a queue Q that does
1203  *   not yet belong to the burst is activated shortly after the last time
1204  *   at which a new queue entered the burst list, then the function appends
1205  *   Q to the burst list
1206  *
1207  * . if, as a consequence of the previous step, the burst size reaches
1208  *   the large-burst threshold, then
1209  *
1210  *     . all the queues in the burst list are marked as belonging to a
1211  *       large burst
1212  *
1213  *     . the burst list is deleted; in fact, the burst list already served
1214  *       its purpose (keeping temporarily track of the queues in a burst,
1215  *       so as to be able to mark them as belonging to a large burst in the
1216  *       previous sub-step), and now is not needed any more
1217  *
1218  *     . the device enters a large-burst mode
1219  *
1220  * . if a queue Q that does not belong to the burst is created while
1221  *   the device is in large-burst mode and shortly after the last time
1222  *   at which a queue either entered the burst list or was marked as
1223  *   belonging to the current large burst, then Q is immediately marked
1224  *   as belonging to a large burst.
1225  *
1226  * . if a queue Q that does not belong to the burst is created a while
1227  *   later, i.e., not shortly after, than the last time at which a queue
1228  *   either entered the burst list or was marked as belonging to the
1229  *   current large burst, then the current burst is deemed as finished and:
1230  *
1231  *        . the large-burst mode is reset if set
1232  *
1233  *        . the burst list is emptied
1234  *
1235  *        . Q is inserted in the burst list, as Q may be the first queue
1236  *          in a possible new burst (then the burst list contains just Q
1237  *          after this step).
1238  */
1239 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1240 {
1241 	/*
1242 	 * If bfqq is already in the burst list or is part of a large
1243 	 * burst, or finally has just been split, then there is
1244 	 * nothing else to do.
1245 	 */
1246 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1247 	    bfq_bfqq_in_large_burst(bfqq) ||
1248 	    time_is_after_eq_jiffies(bfqq->split_time +
1249 				     msecs_to_jiffies(10)))
1250 		return;
1251 
1252 	/*
1253 	 * If bfqq's creation happens late enough, or bfqq belongs to
1254 	 * a different group than the burst group, then the current
1255 	 * burst is finished, and related data structures must be
1256 	 * reset.
1257 	 *
1258 	 * In this respect, consider the special case where bfqq is
1259 	 * the very first queue created after BFQ is selected for this
1260 	 * device. In this case, last_ins_in_burst and
1261 	 * burst_parent_entity are not yet significant when we get
1262 	 * here. But it is easy to verify that, whether or not the
1263 	 * following condition is true, bfqq will end up being
1264 	 * inserted into the burst list. In particular the list will
1265 	 * happen to contain only bfqq. And this is exactly what has
1266 	 * to happen, as bfqq may be the first queue of the first
1267 	 * burst.
1268 	 */
1269 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1270 	    bfqd->bfq_burst_interval) ||
1271 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1272 		bfqd->large_burst = false;
1273 		bfq_reset_burst_list(bfqd, bfqq);
1274 		goto end;
1275 	}
1276 
1277 	/*
1278 	 * If we get here, then bfqq is being activated shortly after the
1279 	 * last queue. So, if the current burst is also large, we can mark
1280 	 * bfqq as belonging to this large burst immediately.
1281 	 */
1282 	if (bfqd->large_burst) {
1283 		bfq_mark_bfqq_in_large_burst(bfqq);
1284 		goto end;
1285 	}
1286 
1287 	/*
1288 	 * If we get here, then a large-burst state has not yet been
1289 	 * reached, but bfqq is being activated shortly after the last
1290 	 * queue. Then we add bfqq to the burst.
1291 	 */
1292 	bfq_add_to_burst(bfqd, bfqq);
1293 end:
1294 	/*
1295 	 * At this point, bfqq either has been added to the current
1296 	 * burst or has caused the current burst to terminate and a
1297 	 * possible new burst to start. In particular, in the second
1298 	 * case, bfqq has become the first queue in the possible new
1299 	 * burst.  In both cases last_ins_in_burst needs to be moved
1300 	 * forward.
1301 	 */
1302 	bfqd->last_ins_in_burst = jiffies;
1303 }
1304 
1305 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1306 {
1307 	struct bfq_entity *entity = &bfqq->entity;
1308 
1309 	return entity->budget - entity->service;
1310 }
1311 
1312 /*
1313  * If enough samples have been computed, return the current max budget
1314  * stored in bfqd, which is dynamically updated according to the
1315  * estimated disk peak rate; otherwise return the default max budget
1316  */
1317 static int bfq_max_budget(struct bfq_data *bfqd)
1318 {
1319 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1320 		return bfq_default_max_budget;
1321 	else
1322 		return bfqd->bfq_max_budget;
1323 }
1324 
1325 /*
1326  * Return min budget, which is a fraction of the current or default
1327  * max budget (trying with 1/32)
1328  */
1329 static int bfq_min_budget(struct bfq_data *bfqd)
1330 {
1331 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1332 		return bfq_default_max_budget / 32;
1333 	else
1334 		return bfqd->bfq_max_budget / 32;
1335 }
1336 
1337 /*
1338  * The next function, invoked after the input queue bfqq switches from
1339  * idle to busy, updates the budget of bfqq. The function also tells
1340  * whether the in-service queue should be expired, by returning
1341  * true. The purpose of expiring the in-service queue is to give bfqq
1342  * the chance to possibly preempt the in-service queue, and the reason
1343  * for preempting the in-service queue is to achieve one of the two
1344  * goals below.
1345  *
1346  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1347  * expired because it has remained idle. In particular, bfqq may have
1348  * expired for one of the following two reasons:
1349  *
1350  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1351  *   and did not make it to issue a new request before its last
1352  *   request was served;
1353  *
1354  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1355  *   a new request before the expiration of the idling-time.
1356  *
1357  * Even if bfqq has expired for one of the above reasons, the process
1358  * associated with the queue may be however issuing requests greedily,
1359  * and thus be sensitive to the bandwidth it receives (bfqq may have
1360  * remained idle for other reasons: CPU high load, bfqq not enjoying
1361  * idling, I/O throttling somewhere in the path from the process to
1362  * the I/O scheduler, ...). But if, after every expiration for one of
1363  * the above two reasons, bfqq has to wait for the service of at least
1364  * one full budget of another queue before being served again, then
1365  * bfqq is likely to get a much lower bandwidth or resource time than
1366  * its reserved ones. To address this issue, two countermeasures need
1367  * to be taken.
1368  *
1369  * First, the budget and the timestamps of bfqq need to be updated in
1370  * a special way on bfqq reactivation: they need to be updated as if
1371  * bfqq did not remain idle and did not expire. In fact, if they are
1372  * computed as if bfqq expired and remained idle until reactivation,
1373  * then the process associated with bfqq is treated as if, instead of
1374  * being greedy, it stopped issuing requests when bfqq remained idle,
1375  * and restarts issuing requests only on this reactivation. In other
1376  * words, the scheduler does not help the process recover the "service
1377  * hole" between bfqq expiration and reactivation. As a consequence,
1378  * the process receives a lower bandwidth than its reserved one. In
1379  * contrast, to recover this hole, the budget must be updated as if
1380  * bfqq was not expired at all before this reactivation, i.e., it must
1381  * be set to the value of the remaining budget when bfqq was
1382  * expired. Along the same line, timestamps need to be assigned the
1383  * value they had the last time bfqq was selected for service, i.e.,
1384  * before last expiration. Thus timestamps need to be back-shifted
1385  * with respect to their normal computation (see [1] for more details
1386  * on this tricky aspect).
1387  *
1388  * Secondly, to allow the process to recover the hole, the in-service
1389  * queue must be expired too, to give bfqq the chance to preempt it
1390  * immediately. In fact, if bfqq has to wait for a full budget of the
1391  * in-service queue to be completed, then it may become impossible to
1392  * let the process recover the hole, even if the back-shifted
1393  * timestamps of bfqq are lower than those of the in-service queue. If
1394  * this happens for most or all of the holes, then the process may not
1395  * receive its reserved bandwidth. In this respect, it is worth noting
1396  * that, being the service of outstanding requests unpreemptible, a
1397  * little fraction of the holes may however be unrecoverable, thereby
1398  * causing a little loss of bandwidth.
1399  *
1400  * The last important point is detecting whether bfqq does need this
1401  * bandwidth recovery. In this respect, the next function deems the
1402  * process associated with bfqq greedy, and thus allows it to recover
1403  * the hole, if: 1) the process is waiting for the arrival of a new
1404  * request (which implies that bfqq expired for one of the above two
1405  * reasons), and 2) such a request has arrived soon. The first
1406  * condition is controlled through the flag non_blocking_wait_rq,
1407  * while the second through the flag arrived_in_time. If both
1408  * conditions hold, then the function computes the budget in the
1409  * above-described special way, and signals that the in-service queue
1410  * should be expired. Timestamp back-shifting is done later in
1411  * __bfq_activate_entity.
1412  *
1413  * 2. Reduce latency. Even if timestamps are not backshifted to let
1414  * the process associated with bfqq recover a service hole, bfqq may
1415  * however happen to have, after being (re)activated, a lower finish
1416  * timestamp than the in-service queue.	 That is, the next budget of
1417  * bfqq may have to be completed before the one of the in-service
1418  * queue. If this is the case, then preempting the in-service queue
1419  * allows this goal to be achieved, apart from the unpreemptible,
1420  * outstanding requests mentioned above.
1421  *
1422  * Unfortunately, regardless of which of the above two goals one wants
1423  * to achieve, service trees need first to be updated to know whether
1424  * the in-service queue must be preempted. To have service trees
1425  * correctly updated, the in-service queue must be expired and
1426  * rescheduled, and bfqq must be scheduled too. This is one of the
1427  * most costly operations (in future versions, the scheduling
1428  * mechanism may be re-designed in such a way to make it possible to
1429  * know whether preemption is needed without needing to update service
1430  * trees). In addition, queue preemptions almost always cause random
1431  * I/O, which may in turn cause loss of throughput. Finally, there may
1432  * even be no in-service queue when the next function is invoked (so,
1433  * no queue to compare timestamps with). Because of these facts, the
1434  * next function adopts the following simple scheme to avoid costly
1435  * operations, too frequent preemptions and too many dependencies on
1436  * the state of the scheduler: it requests the expiration of the
1437  * in-service queue (unconditionally) only for queues that need to
1438  * recover a hole. Then it delegates to other parts of the code the
1439  * responsibility of handling the above case 2.
1440  */
1441 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1442 						struct bfq_queue *bfqq,
1443 						bool arrived_in_time)
1444 {
1445 	struct bfq_entity *entity = &bfqq->entity;
1446 
1447 	/*
1448 	 * In the next compound condition, we check also whether there
1449 	 * is some budget left, because otherwise there is no point in
1450 	 * trying to go on serving bfqq with this same budget: bfqq
1451 	 * would be expired immediately after being selected for
1452 	 * service. This would only cause useless overhead.
1453 	 */
1454 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1455 	    bfq_bfqq_budget_left(bfqq) > 0) {
1456 		/*
1457 		 * We do not clear the flag non_blocking_wait_rq here, as
1458 		 * the latter is used in bfq_activate_bfqq to signal
1459 		 * that timestamps need to be back-shifted (and is
1460 		 * cleared right after).
1461 		 */
1462 
1463 		/*
1464 		 * In next assignment we rely on that either
1465 		 * entity->service or entity->budget are not updated
1466 		 * on expiration if bfqq is empty (see
1467 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1468 		 * remain unchanged after such an expiration, and the
1469 		 * following statement therefore assigns to
1470 		 * entity->budget the remaining budget on such an
1471 		 * expiration.
1472 		 */
1473 		entity->budget = min_t(unsigned long,
1474 				       bfq_bfqq_budget_left(bfqq),
1475 				       bfqq->max_budget);
1476 
1477 		/*
1478 		 * At this point, we have used entity->service to get
1479 		 * the budget left (needed for updating
1480 		 * entity->budget). Thus we finally can, and have to,
1481 		 * reset entity->service. The latter must be reset
1482 		 * because bfqq would otherwise be charged again for
1483 		 * the service it has received during its previous
1484 		 * service slot(s).
1485 		 */
1486 		entity->service = 0;
1487 
1488 		return true;
1489 	}
1490 
1491 	/*
1492 	 * We can finally complete expiration, by setting service to 0.
1493 	 */
1494 	entity->service = 0;
1495 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1496 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1497 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1498 	return false;
1499 }
1500 
1501 /*
1502  * Return the farthest past time instant according to jiffies
1503  * macros.
1504  */
1505 static unsigned long bfq_smallest_from_now(void)
1506 {
1507 	return jiffies - MAX_JIFFY_OFFSET;
1508 }
1509 
1510 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1511 					     struct bfq_queue *bfqq,
1512 					     unsigned int old_wr_coeff,
1513 					     bool wr_or_deserves_wr,
1514 					     bool interactive,
1515 					     bool in_burst,
1516 					     bool soft_rt)
1517 {
1518 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1519 		/* start a weight-raising period */
1520 		if (interactive) {
1521 			bfqq->service_from_wr = 0;
1522 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1523 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1524 		} else {
1525 			/*
1526 			 * No interactive weight raising in progress
1527 			 * here: assign minus infinity to
1528 			 * wr_start_at_switch_to_srt, to make sure
1529 			 * that, at the end of the soft-real-time
1530 			 * weight raising periods that is starting
1531 			 * now, no interactive weight-raising period
1532 			 * may be wrongly considered as still in
1533 			 * progress (and thus actually started by
1534 			 * mistake).
1535 			 */
1536 			bfqq->wr_start_at_switch_to_srt =
1537 				bfq_smallest_from_now();
1538 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1539 				BFQ_SOFTRT_WEIGHT_FACTOR;
1540 			bfqq->wr_cur_max_time =
1541 				bfqd->bfq_wr_rt_max_time;
1542 		}
1543 
1544 		/*
1545 		 * If needed, further reduce budget to make sure it is
1546 		 * close to bfqq's backlog, so as to reduce the
1547 		 * scheduling-error component due to a too large
1548 		 * budget. Do not care about throughput consequences,
1549 		 * but only about latency. Finally, do not assign a
1550 		 * too small budget either, to avoid increasing
1551 		 * latency by causing too frequent expirations.
1552 		 */
1553 		bfqq->entity.budget = min_t(unsigned long,
1554 					    bfqq->entity.budget,
1555 					    2 * bfq_min_budget(bfqd));
1556 	} else if (old_wr_coeff > 1) {
1557 		if (interactive) { /* update wr coeff and duration */
1558 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1559 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1560 		} else if (in_burst)
1561 			bfqq->wr_coeff = 1;
1562 		else if (soft_rt) {
1563 			/*
1564 			 * The application is now or still meeting the
1565 			 * requirements for being deemed soft rt.  We
1566 			 * can then correctly and safely (re)charge
1567 			 * the weight-raising duration for the
1568 			 * application with the weight-raising
1569 			 * duration for soft rt applications.
1570 			 *
1571 			 * In particular, doing this recharge now, i.e.,
1572 			 * before the weight-raising period for the
1573 			 * application finishes, reduces the probability
1574 			 * of the following negative scenario:
1575 			 * 1) the weight of a soft rt application is
1576 			 *    raised at startup (as for any newly
1577 			 *    created application),
1578 			 * 2) since the application is not interactive,
1579 			 *    at a certain time weight-raising is
1580 			 *    stopped for the application,
1581 			 * 3) at that time the application happens to
1582 			 *    still have pending requests, and hence
1583 			 *    is destined to not have a chance to be
1584 			 *    deemed soft rt before these requests are
1585 			 *    completed (see the comments to the
1586 			 *    function bfq_bfqq_softrt_next_start()
1587 			 *    for details on soft rt detection),
1588 			 * 4) these pending requests experience a high
1589 			 *    latency because the application is not
1590 			 *    weight-raised while they are pending.
1591 			 */
1592 			if (bfqq->wr_cur_max_time !=
1593 				bfqd->bfq_wr_rt_max_time) {
1594 				bfqq->wr_start_at_switch_to_srt =
1595 					bfqq->last_wr_start_finish;
1596 
1597 				bfqq->wr_cur_max_time =
1598 					bfqd->bfq_wr_rt_max_time;
1599 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1600 					BFQ_SOFTRT_WEIGHT_FACTOR;
1601 			}
1602 			bfqq->last_wr_start_finish = jiffies;
1603 		}
1604 	}
1605 }
1606 
1607 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1608 					struct bfq_queue *bfqq)
1609 {
1610 	return bfqq->dispatched == 0 &&
1611 		time_is_before_jiffies(
1612 			bfqq->budget_timeout +
1613 			bfqd->bfq_wr_min_idle_time);
1614 }
1615 
1616 
1617 /*
1618  * Return true if bfqq is in a higher priority class, or has a higher
1619  * weight than the in-service queue.
1620  */
1621 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1622 					    struct bfq_queue *in_serv_bfqq)
1623 {
1624 	int bfqq_weight, in_serv_weight;
1625 
1626 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1627 		return true;
1628 
1629 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1630 		bfqq_weight = bfqq->entity.weight;
1631 		in_serv_weight = in_serv_bfqq->entity.weight;
1632 	} else {
1633 		if (bfqq->entity.parent)
1634 			bfqq_weight = bfqq->entity.parent->weight;
1635 		else
1636 			bfqq_weight = bfqq->entity.weight;
1637 		if (in_serv_bfqq->entity.parent)
1638 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1639 		else
1640 			in_serv_weight = in_serv_bfqq->entity.weight;
1641 	}
1642 
1643 	return bfqq_weight > in_serv_weight;
1644 }
1645 
1646 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1647 					     struct bfq_queue *bfqq,
1648 					     int old_wr_coeff,
1649 					     struct request *rq,
1650 					     bool *interactive)
1651 {
1652 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1653 		bfqq_wants_to_preempt,
1654 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1655 		/*
1656 		 * See the comments on
1657 		 * bfq_bfqq_update_budg_for_activation for
1658 		 * details on the usage of the next variable.
1659 		 */
1660 		arrived_in_time =  ktime_get_ns() <=
1661 			bfqq->ttime.last_end_request +
1662 			bfqd->bfq_slice_idle * 3;
1663 
1664 
1665 	/*
1666 	 * bfqq deserves to be weight-raised if:
1667 	 * - it is sync,
1668 	 * - it does not belong to a large burst,
1669 	 * - it has been idle for enough time or is soft real-time,
1670 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1671 	 */
1672 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1673 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1674 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1675 		!in_burst &&
1676 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1677 		bfqq->dispatched == 0;
1678 	*interactive = !in_burst && idle_for_long_time;
1679 	wr_or_deserves_wr = bfqd->low_latency &&
1680 		(bfqq->wr_coeff > 1 ||
1681 		 (bfq_bfqq_sync(bfqq) &&
1682 		  bfqq->bic && (*interactive || soft_rt)));
1683 
1684 	/*
1685 	 * Using the last flag, update budget and check whether bfqq
1686 	 * may want to preempt the in-service queue.
1687 	 */
1688 	bfqq_wants_to_preempt =
1689 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1690 						    arrived_in_time);
1691 
1692 	/*
1693 	 * If bfqq happened to be activated in a burst, but has been
1694 	 * idle for much more than an interactive queue, then we
1695 	 * assume that, in the overall I/O initiated in the burst, the
1696 	 * I/O associated with bfqq is finished. So bfqq does not need
1697 	 * to be treated as a queue belonging to a burst
1698 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1699 	 * if set, and remove bfqq from the burst list if it's
1700 	 * there. We do not decrement burst_size, because the fact
1701 	 * that bfqq does not need to belong to the burst list any
1702 	 * more does not invalidate the fact that bfqq was created in
1703 	 * a burst.
1704 	 */
1705 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1706 	    idle_for_long_time &&
1707 	    time_is_before_jiffies(
1708 		    bfqq->budget_timeout +
1709 		    msecs_to_jiffies(10000))) {
1710 		hlist_del_init(&bfqq->burst_list_node);
1711 		bfq_clear_bfqq_in_large_burst(bfqq);
1712 	}
1713 
1714 	bfq_clear_bfqq_just_created(bfqq);
1715 
1716 
1717 	if (!bfq_bfqq_IO_bound(bfqq)) {
1718 		if (arrived_in_time) {
1719 			bfqq->requests_within_timer++;
1720 			if (bfqq->requests_within_timer >=
1721 			    bfqd->bfq_requests_within_timer)
1722 				bfq_mark_bfqq_IO_bound(bfqq);
1723 		} else
1724 			bfqq->requests_within_timer = 0;
1725 	}
1726 
1727 	if (bfqd->low_latency) {
1728 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1729 			/* wraparound */
1730 			bfqq->split_time =
1731 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1732 
1733 		if (time_is_before_jiffies(bfqq->split_time +
1734 					   bfqd->bfq_wr_min_idle_time)) {
1735 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1736 							 old_wr_coeff,
1737 							 wr_or_deserves_wr,
1738 							 *interactive,
1739 							 in_burst,
1740 							 soft_rt);
1741 
1742 			if (old_wr_coeff != bfqq->wr_coeff)
1743 				bfqq->entity.prio_changed = 1;
1744 		}
1745 	}
1746 
1747 	bfqq->last_idle_bklogged = jiffies;
1748 	bfqq->service_from_backlogged = 0;
1749 	bfq_clear_bfqq_softrt_update(bfqq);
1750 
1751 	bfq_add_bfqq_busy(bfqd, bfqq);
1752 
1753 	/*
1754 	 * Expire in-service queue only if preemption may be needed
1755 	 * for guarantees. In particular, we care only about two
1756 	 * cases. The first is that bfqq has to recover a service
1757 	 * hole, as explained in the comments on
1758 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1759 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1760 	 * carry time-critical I/O, then bfqq's bandwidth is less
1761 	 * important than that of queues that carry time-critical I/O.
1762 	 * So, as a further constraint, we consider this case only if
1763 	 * bfqq is at least as weight-raised, i.e., at least as time
1764 	 * critical, as the in-service queue.
1765 	 *
1766 	 * The second case is that bfqq is in a higher priority class,
1767 	 * or has a higher weight than the in-service queue. If this
1768 	 * condition does not hold, we don't care because, even if
1769 	 * bfqq does not start to be served immediately, the resulting
1770 	 * delay for bfqq's I/O is however lower or much lower than
1771 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1772 	 *
1773 	 * In both cases, preemption is needed only if, according to
1774 	 * the timestamps of both bfqq and of the in-service queue,
1775 	 * bfqq actually is the next queue to serve. So, to reduce
1776 	 * useless preemptions, the return value of
1777 	 * next_queue_may_preempt() is considered in the next compound
1778 	 * condition too. Yet next_queue_may_preempt() just checks a
1779 	 * simple, necessary condition for bfqq to be the next queue
1780 	 * to serve. In fact, to evaluate a sufficient condition, the
1781 	 * timestamps of the in-service queue would need to be
1782 	 * updated, and this operation is quite costly (see the
1783 	 * comments on bfq_bfqq_update_budg_for_activation()).
1784 	 */
1785 	if (bfqd->in_service_queue &&
1786 	    ((bfqq_wants_to_preempt &&
1787 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1788 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1789 	    next_queue_may_preempt(bfqd))
1790 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1791 				false, BFQQE_PREEMPTED);
1792 }
1793 
1794 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1795 				   struct bfq_queue *bfqq)
1796 {
1797 	/* invalidate baseline total service time */
1798 	bfqq->last_serv_time_ns = 0;
1799 
1800 	/*
1801 	 * Reset pointer in case we are waiting for
1802 	 * some request completion.
1803 	 */
1804 	bfqd->waited_rq = NULL;
1805 
1806 	/*
1807 	 * If bfqq has a short think time, then start by setting the
1808 	 * inject limit to 0 prudentially, because the service time of
1809 	 * an injected I/O request may be higher than the think time
1810 	 * of bfqq, and therefore, if one request was injected when
1811 	 * bfqq remains empty, this injected request might delay the
1812 	 * service of the next I/O request for bfqq significantly. In
1813 	 * case bfqq can actually tolerate some injection, then the
1814 	 * adaptive update will however raise the limit soon. This
1815 	 * lucky circumstance holds exactly because bfqq has a short
1816 	 * think time, and thus, after remaining empty, is likely to
1817 	 * get new I/O enqueued---and then completed---before being
1818 	 * expired. This is the very pattern that gives the
1819 	 * limit-update algorithm the chance to measure the effect of
1820 	 * injection on request service times, and then to update the
1821 	 * limit accordingly.
1822 	 *
1823 	 * However, in the following special case, the inject limit is
1824 	 * left to 1 even if the think time is short: bfqq's I/O is
1825 	 * synchronized with that of some other queue, i.e., bfqq may
1826 	 * receive new I/O only after the I/O of the other queue is
1827 	 * completed. Keeping the inject limit to 1 allows the
1828 	 * blocking I/O to be served while bfqq is in service. And
1829 	 * this is very convenient both for bfqq and for overall
1830 	 * throughput, as explained in detail in the comments in
1831 	 * bfq_update_has_short_ttime().
1832 	 *
1833 	 * On the opposite end, if bfqq has a long think time, then
1834 	 * start directly by 1, because:
1835 	 * a) on the bright side, keeping at most one request in
1836 	 * service in the drive is unlikely to cause any harm to the
1837 	 * latency of bfqq's requests, as the service time of a single
1838 	 * request is likely to be lower than the think time of bfqq;
1839 	 * b) on the downside, after becoming empty, bfqq is likely to
1840 	 * expire before getting its next request. With this request
1841 	 * arrival pattern, it is very hard to sample total service
1842 	 * times and update the inject limit accordingly (see comments
1843 	 * on bfq_update_inject_limit()). So the limit is likely to be
1844 	 * never, or at least seldom, updated.  As a consequence, by
1845 	 * setting the limit to 1, we avoid that no injection ever
1846 	 * occurs with bfqq. On the downside, this proactive step
1847 	 * further reduces chances to actually compute the baseline
1848 	 * total service time. Thus it reduces chances to execute the
1849 	 * limit-update algorithm and possibly raise the limit to more
1850 	 * than 1.
1851 	 */
1852 	if (bfq_bfqq_has_short_ttime(bfqq))
1853 		bfqq->inject_limit = 0;
1854 	else
1855 		bfqq->inject_limit = 1;
1856 
1857 	bfqq->decrease_time_jif = jiffies;
1858 }
1859 
1860 static void bfq_add_request(struct request *rq)
1861 {
1862 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1863 	struct bfq_data *bfqd = bfqq->bfqd;
1864 	struct request *next_rq, *prev;
1865 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1866 	bool interactive = false;
1867 
1868 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1869 	bfqq->queued[rq_is_sync(rq)]++;
1870 	bfqd->queued++;
1871 
1872 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1873 		/*
1874 		 * Detect whether bfqq's I/O seems synchronized with
1875 		 * that of some other queue, i.e., whether bfqq, after
1876 		 * remaining empty, happens to receive new I/O only
1877 		 * right after some I/O request of the other queue has
1878 		 * been completed. We call waker queue the other
1879 		 * queue, and we assume, for simplicity, that bfqq may
1880 		 * have at most one waker queue.
1881 		 *
1882 		 * A remarkable throughput boost can be reached by
1883 		 * unconditionally injecting the I/O of the waker
1884 		 * queue, every time a new bfq_dispatch_request
1885 		 * happens to be invoked while I/O is being plugged
1886 		 * for bfqq.  In addition to boosting throughput, this
1887 		 * unblocks bfqq's I/O, thereby improving bandwidth
1888 		 * and latency for bfqq. Note that these same results
1889 		 * may be achieved with the general injection
1890 		 * mechanism, but less effectively. For details on
1891 		 * this aspect, see the comments on the choice of the
1892 		 * queue for injection in bfq_select_queue().
1893 		 *
1894 		 * Turning back to the detection of a waker queue, a
1895 		 * queue Q is deemed as a waker queue for bfqq if, for
1896 		 * two consecutive times, bfqq happens to become non
1897 		 * empty right after a request of Q has been
1898 		 * completed. In particular, on the first time, Q is
1899 		 * tentatively set as a candidate waker queue, while
1900 		 * on the second time, the flag
1901 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1902 		 * is a waker queue for bfqq. These detection steps
1903 		 * are performed only if bfqq has a long think time,
1904 		 * so as to make it more likely that bfqq's I/O is
1905 		 * actually being blocked by a synchronization. This
1906 		 * last filter, plus the above two-times requirement,
1907 		 * make false positives less likely.
1908 		 *
1909 		 * NOTE
1910 		 *
1911 		 * The sooner a waker queue is detected, the sooner
1912 		 * throughput can be boosted by injecting I/O from the
1913 		 * waker queue. Fortunately, detection is likely to be
1914 		 * actually fast, for the following reasons. While
1915 		 * blocked by synchronization, bfqq has a long think
1916 		 * time. This implies that bfqq's inject limit is at
1917 		 * least equal to 1 (see the comments in
1918 		 * bfq_update_inject_limit()). So, thanks to
1919 		 * injection, the waker queue is likely to be served
1920 		 * during the very first I/O-plugging time interval
1921 		 * for bfqq. This triggers the first step of the
1922 		 * detection mechanism. Thanks again to injection, the
1923 		 * candidate waker queue is then likely to be
1924 		 * confirmed no later than during the next
1925 		 * I/O-plugging interval for bfqq.
1926 		 */
1927 		if (bfqd->last_completed_rq_bfqq &&
1928 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1929 		    ktime_get_ns() - bfqd->last_completion <
1930 		    200 * NSEC_PER_USEC) {
1931 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1932 			    bfqd->last_completed_rq_bfqq !=
1933 			    bfqq->waker_bfqq) {
1934 				/*
1935 				 * First synchronization detected with
1936 				 * a candidate waker queue, or with a
1937 				 * different candidate waker queue
1938 				 * from the current one.
1939 				 */
1940 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1941 
1942 				/*
1943 				 * If the waker queue disappears, then
1944 				 * bfqq->waker_bfqq must be reset. To
1945 				 * this goal, we maintain in each
1946 				 * waker queue a list, woken_list, of
1947 				 * all the queues that reference the
1948 				 * waker queue through their
1949 				 * waker_bfqq pointer. When the waker
1950 				 * queue exits, the waker_bfqq pointer
1951 				 * of all the queues in the woken_list
1952 				 * is reset.
1953 				 *
1954 				 * In addition, if bfqq is already in
1955 				 * the woken_list of a waker queue,
1956 				 * then, before being inserted into
1957 				 * the woken_list of a new waker
1958 				 * queue, bfqq must be removed from
1959 				 * the woken_list of the old waker
1960 				 * queue.
1961 				 */
1962 				if (!hlist_unhashed(&bfqq->woken_list_node))
1963 					hlist_del_init(&bfqq->woken_list_node);
1964 				hlist_add_head(&bfqq->woken_list_node,
1965 				    &bfqd->last_completed_rq_bfqq->woken_list);
1966 
1967 				bfq_clear_bfqq_has_waker(bfqq);
1968 			} else if (bfqd->last_completed_rq_bfqq ==
1969 				   bfqq->waker_bfqq &&
1970 				   !bfq_bfqq_has_waker(bfqq)) {
1971 				/*
1972 				 * synchronization with waker_bfqq
1973 				 * seen for the second time
1974 				 */
1975 				bfq_mark_bfqq_has_waker(bfqq);
1976 			}
1977 		}
1978 
1979 		/*
1980 		 * Periodically reset inject limit, to make sure that
1981 		 * the latter eventually drops in case workload
1982 		 * changes, see step (3) in the comments on
1983 		 * bfq_update_inject_limit().
1984 		 */
1985 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1986 					     msecs_to_jiffies(1000)))
1987 			bfq_reset_inject_limit(bfqd, bfqq);
1988 
1989 		/*
1990 		 * The following conditions must hold to setup a new
1991 		 * sampling of total service time, and then a new
1992 		 * update of the inject limit:
1993 		 * - bfqq is in service, because the total service
1994 		 *   time is evaluated only for the I/O requests of
1995 		 *   the queues in service;
1996 		 * - this is the right occasion to compute or to
1997 		 *   lower the baseline total service time, because
1998 		 *   there are actually no requests in the drive,
1999 		 *   or
2000 		 *   the baseline total service time is available, and
2001 		 *   this is the right occasion to compute the other
2002 		 *   quantity needed to update the inject limit, i.e.,
2003 		 *   the total service time caused by the amount of
2004 		 *   injection allowed by the current value of the
2005 		 *   limit. It is the right occasion because injection
2006 		 *   has actually been performed during the service
2007 		 *   hole, and there are still in-flight requests,
2008 		 *   which are very likely to be exactly the injected
2009 		 *   requests, or part of them;
2010 		 * - the minimum interval for sampling the total
2011 		 *   service time and updating the inject limit has
2012 		 *   elapsed.
2013 		 */
2014 		if (bfqq == bfqd->in_service_queue &&
2015 		    (bfqd->rq_in_driver == 0 ||
2016 		     (bfqq->last_serv_time_ns > 0 &&
2017 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2018 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2019 					      msecs_to_jiffies(100))) {
2020 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2021 			/*
2022 			 * Start the state machine for measuring the
2023 			 * total service time of rq: setting
2024 			 * wait_dispatch will cause bfqd->waited_rq to
2025 			 * be set when rq will be dispatched.
2026 			 */
2027 			bfqd->wait_dispatch = true;
2028 			bfqd->rqs_injected = false;
2029 		}
2030 	}
2031 
2032 	elv_rb_add(&bfqq->sort_list, rq);
2033 
2034 	/*
2035 	 * Check if this request is a better next-serve candidate.
2036 	 */
2037 	prev = bfqq->next_rq;
2038 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2039 	bfqq->next_rq = next_rq;
2040 
2041 	/*
2042 	 * Adjust priority tree position, if next_rq changes.
2043 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2044 	 */
2045 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2046 		bfq_pos_tree_add_move(bfqd, bfqq);
2047 
2048 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2049 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2050 						 rq, &interactive);
2051 	else {
2052 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2053 		    time_is_before_jiffies(
2054 				bfqq->last_wr_start_finish +
2055 				bfqd->bfq_wr_min_inter_arr_async)) {
2056 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2057 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2058 
2059 			bfqd->wr_busy_queues++;
2060 			bfqq->entity.prio_changed = 1;
2061 		}
2062 		if (prev != bfqq->next_rq)
2063 			bfq_updated_next_req(bfqd, bfqq);
2064 	}
2065 
2066 	/*
2067 	 * Assign jiffies to last_wr_start_finish in the following
2068 	 * cases:
2069 	 *
2070 	 * . if bfqq is not going to be weight-raised, because, for
2071 	 *   non weight-raised queues, last_wr_start_finish stores the
2072 	 *   arrival time of the last request; as of now, this piece
2073 	 *   of information is used only for deciding whether to
2074 	 *   weight-raise async queues
2075 	 *
2076 	 * . if bfqq is not weight-raised, because, if bfqq is now
2077 	 *   switching to weight-raised, then last_wr_start_finish
2078 	 *   stores the time when weight-raising starts
2079 	 *
2080 	 * . if bfqq is interactive, because, regardless of whether
2081 	 *   bfqq is currently weight-raised, the weight-raising
2082 	 *   period must start or restart (this case is considered
2083 	 *   separately because it is not detected by the above
2084 	 *   conditions, if bfqq is already weight-raised)
2085 	 *
2086 	 * last_wr_start_finish has to be updated also if bfqq is soft
2087 	 * real-time, because the weight-raising period is constantly
2088 	 * restarted on idle-to-busy transitions for these queues, but
2089 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2090 	 * needed.
2091 	 */
2092 	if (bfqd->low_latency &&
2093 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2094 		bfqq->last_wr_start_finish = jiffies;
2095 }
2096 
2097 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2098 					  struct bio *bio,
2099 					  struct request_queue *q)
2100 {
2101 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2102 
2103 
2104 	if (bfqq)
2105 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2106 
2107 	return NULL;
2108 }
2109 
2110 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2111 {
2112 	if (last_pos)
2113 		return abs(blk_rq_pos(rq) - last_pos);
2114 
2115 	return 0;
2116 }
2117 
2118 #if 0 /* Still not clear if we can do without next two functions */
2119 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2120 {
2121 	struct bfq_data *bfqd = q->elevator->elevator_data;
2122 
2123 	bfqd->rq_in_driver++;
2124 }
2125 
2126 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2127 {
2128 	struct bfq_data *bfqd = q->elevator->elevator_data;
2129 
2130 	bfqd->rq_in_driver--;
2131 }
2132 #endif
2133 
2134 static void bfq_remove_request(struct request_queue *q,
2135 			       struct request *rq)
2136 {
2137 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2138 	struct bfq_data *bfqd = bfqq->bfqd;
2139 	const int sync = rq_is_sync(rq);
2140 
2141 	if (bfqq->next_rq == rq) {
2142 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2143 		bfq_updated_next_req(bfqd, bfqq);
2144 	}
2145 
2146 	if (rq->queuelist.prev != &rq->queuelist)
2147 		list_del_init(&rq->queuelist);
2148 	bfqq->queued[sync]--;
2149 	bfqd->queued--;
2150 	elv_rb_del(&bfqq->sort_list, rq);
2151 
2152 	elv_rqhash_del(q, rq);
2153 	if (q->last_merge == rq)
2154 		q->last_merge = NULL;
2155 
2156 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2157 		bfqq->next_rq = NULL;
2158 
2159 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2160 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2161 			/*
2162 			 * bfqq emptied. In normal operation, when
2163 			 * bfqq is empty, bfqq->entity.service and
2164 			 * bfqq->entity.budget must contain,
2165 			 * respectively, the service received and the
2166 			 * budget used last time bfqq emptied. These
2167 			 * facts do not hold in this case, as at least
2168 			 * this last removal occurred while bfqq is
2169 			 * not in service. To avoid inconsistencies,
2170 			 * reset both bfqq->entity.service and
2171 			 * bfqq->entity.budget, if bfqq has still a
2172 			 * process that may issue I/O requests to it.
2173 			 */
2174 			bfqq->entity.budget = bfqq->entity.service = 0;
2175 		}
2176 
2177 		/*
2178 		 * Remove queue from request-position tree as it is empty.
2179 		 */
2180 		if (bfqq->pos_root) {
2181 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2182 			bfqq->pos_root = NULL;
2183 		}
2184 	} else {
2185 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2186 		if (unlikely(!bfqd->nonrot_with_queueing))
2187 			bfq_pos_tree_add_move(bfqd, bfqq);
2188 	}
2189 
2190 	if (rq->cmd_flags & REQ_META)
2191 		bfqq->meta_pending--;
2192 
2193 }
2194 
2195 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2196 		unsigned int nr_segs)
2197 {
2198 	struct request_queue *q = hctx->queue;
2199 	struct bfq_data *bfqd = q->elevator->elevator_data;
2200 	struct request *free = NULL;
2201 	/*
2202 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2203 	 * store its return value for later use, to avoid nesting
2204 	 * queue_lock inside the bfqd->lock. We assume that the bic
2205 	 * returned by bfq_bic_lookup does not go away before
2206 	 * bfqd->lock is taken.
2207 	 */
2208 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2209 	bool ret;
2210 
2211 	spin_lock_irq(&bfqd->lock);
2212 
2213 	if (bic)
2214 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2215 	else
2216 		bfqd->bio_bfqq = NULL;
2217 	bfqd->bio_bic = bic;
2218 
2219 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2220 
2221 	if (free)
2222 		blk_mq_free_request(free);
2223 	spin_unlock_irq(&bfqd->lock);
2224 
2225 	return ret;
2226 }
2227 
2228 static int bfq_request_merge(struct request_queue *q, struct request **req,
2229 			     struct bio *bio)
2230 {
2231 	struct bfq_data *bfqd = q->elevator->elevator_data;
2232 	struct request *__rq;
2233 
2234 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2235 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2236 		*req = __rq;
2237 		return ELEVATOR_FRONT_MERGE;
2238 	}
2239 
2240 	return ELEVATOR_NO_MERGE;
2241 }
2242 
2243 static struct bfq_queue *bfq_init_rq(struct request *rq);
2244 
2245 static void bfq_request_merged(struct request_queue *q, struct request *req,
2246 			       enum elv_merge type)
2247 {
2248 	if (type == ELEVATOR_FRONT_MERGE &&
2249 	    rb_prev(&req->rb_node) &&
2250 	    blk_rq_pos(req) <
2251 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2252 				    struct request, rb_node))) {
2253 		struct bfq_queue *bfqq = bfq_init_rq(req);
2254 		struct bfq_data *bfqd;
2255 		struct request *prev, *next_rq;
2256 
2257 		if (!bfqq)
2258 			return;
2259 
2260 		bfqd = bfqq->bfqd;
2261 
2262 		/* Reposition request in its sort_list */
2263 		elv_rb_del(&bfqq->sort_list, req);
2264 		elv_rb_add(&bfqq->sort_list, req);
2265 
2266 		/* Choose next request to be served for bfqq */
2267 		prev = bfqq->next_rq;
2268 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2269 					 bfqd->last_position);
2270 		bfqq->next_rq = next_rq;
2271 		/*
2272 		 * If next_rq changes, update both the queue's budget to
2273 		 * fit the new request and the queue's position in its
2274 		 * rq_pos_tree.
2275 		 */
2276 		if (prev != bfqq->next_rq) {
2277 			bfq_updated_next_req(bfqd, bfqq);
2278 			/*
2279 			 * See comments on bfq_pos_tree_add_move() for
2280 			 * the unlikely().
2281 			 */
2282 			if (unlikely(!bfqd->nonrot_with_queueing))
2283 				bfq_pos_tree_add_move(bfqd, bfqq);
2284 		}
2285 	}
2286 }
2287 
2288 /*
2289  * This function is called to notify the scheduler that the requests
2290  * rq and 'next' have been merged, with 'next' going away.  BFQ
2291  * exploits this hook to address the following issue: if 'next' has a
2292  * fifo_time lower that rq, then the fifo_time of rq must be set to
2293  * the value of 'next', to not forget the greater age of 'next'.
2294  *
2295  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2296  * on that rq is picked from the hash table q->elevator->hash, which,
2297  * in its turn, is filled only with I/O requests present in
2298  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2299  * the function that fills this hash table (elv_rqhash_add) is called
2300  * only by bfq_insert_request.
2301  */
2302 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2303 				struct request *next)
2304 {
2305 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2306 		*next_bfqq = bfq_init_rq(next);
2307 
2308 	if (!bfqq)
2309 		return;
2310 
2311 	/*
2312 	 * If next and rq belong to the same bfq_queue and next is older
2313 	 * than rq, then reposition rq in the fifo (by substituting next
2314 	 * with rq). Otherwise, if next and rq belong to different
2315 	 * bfq_queues, never reposition rq: in fact, we would have to
2316 	 * reposition it with respect to next's position in its own fifo,
2317 	 * which would most certainly be too expensive with respect to
2318 	 * the benefits.
2319 	 */
2320 	if (bfqq == next_bfqq &&
2321 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2322 	    next->fifo_time < rq->fifo_time) {
2323 		list_del_init(&rq->queuelist);
2324 		list_replace_init(&next->queuelist, &rq->queuelist);
2325 		rq->fifo_time = next->fifo_time;
2326 	}
2327 
2328 	if (bfqq->next_rq == next)
2329 		bfqq->next_rq = rq;
2330 
2331 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2332 }
2333 
2334 /* Must be called with bfqq != NULL */
2335 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2336 {
2337 	if (bfq_bfqq_busy(bfqq))
2338 		bfqq->bfqd->wr_busy_queues--;
2339 	bfqq->wr_coeff = 1;
2340 	bfqq->wr_cur_max_time = 0;
2341 	bfqq->last_wr_start_finish = jiffies;
2342 	/*
2343 	 * Trigger a weight change on the next invocation of
2344 	 * __bfq_entity_update_weight_prio.
2345 	 */
2346 	bfqq->entity.prio_changed = 1;
2347 }
2348 
2349 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2350 			     struct bfq_group *bfqg)
2351 {
2352 	int i, j;
2353 
2354 	for (i = 0; i < 2; i++)
2355 		for (j = 0; j < IOPRIO_BE_NR; j++)
2356 			if (bfqg->async_bfqq[i][j])
2357 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2358 	if (bfqg->async_idle_bfqq)
2359 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2360 }
2361 
2362 static void bfq_end_wr(struct bfq_data *bfqd)
2363 {
2364 	struct bfq_queue *bfqq;
2365 
2366 	spin_lock_irq(&bfqd->lock);
2367 
2368 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2369 		bfq_bfqq_end_wr(bfqq);
2370 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2371 		bfq_bfqq_end_wr(bfqq);
2372 	bfq_end_wr_async(bfqd);
2373 
2374 	spin_unlock_irq(&bfqd->lock);
2375 }
2376 
2377 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2378 {
2379 	if (request)
2380 		return blk_rq_pos(io_struct);
2381 	else
2382 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2383 }
2384 
2385 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2386 				  sector_t sector)
2387 {
2388 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2389 	       BFQQ_CLOSE_THR;
2390 }
2391 
2392 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2393 					 struct bfq_queue *bfqq,
2394 					 sector_t sector)
2395 {
2396 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2397 	struct rb_node *parent, *node;
2398 	struct bfq_queue *__bfqq;
2399 
2400 	if (RB_EMPTY_ROOT(root))
2401 		return NULL;
2402 
2403 	/*
2404 	 * First, if we find a request starting at the end of the last
2405 	 * request, choose it.
2406 	 */
2407 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2408 	if (__bfqq)
2409 		return __bfqq;
2410 
2411 	/*
2412 	 * If the exact sector wasn't found, the parent of the NULL leaf
2413 	 * will contain the closest sector (rq_pos_tree sorted by
2414 	 * next_request position).
2415 	 */
2416 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2417 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2418 		return __bfqq;
2419 
2420 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2421 		node = rb_next(&__bfqq->pos_node);
2422 	else
2423 		node = rb_prev(&__bfqq->pos_node);
2424 	if (!node)
2425 		return NULL;
2426 
2427 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2428 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2429 		return __bfqq;
2430 
2431 	return NULL;
2432 }
2433 
2434 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2435 						   struct bfq_queue *cur_bfqq,
2436 						   sector_t sector)
2437 {
2438 	struct bfq_queue *bfqq;
2439 
2440 	/*
2441 	 * We shall notice if some of the queues are cooperating,
2442 	 * e.g., working closely on the same area of the device. In
2443 	 * that case, we can group them together and: 1) don't waste
2444 	 * time idling, and 2) serve the union of their requests in
2445 	 * the best possible order for throughput.
2446 	 */
2447 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2448 	if (!bfqq || bfqq == cur_bfqq)
2449 		return NULL;
2450 
2451 	return bfqq;
2452 }
2453 
2454 static struct bfq_queue *
2455 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2456 {
2457 	int process_refs, new_process_refs;
2458 	struct bfq_queue *__bfqq;
2459 
2460 	/*
2461 	 * If there are no process references on the new_bfqq, then it is
2462 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2463 	 * may have dropped their last reference (not just their last process
2464 	 * reference).
2465 	 */
2466 	if (!bfqq_process_refs(new_bfqq))
2467 		return NULL;
2468 
2469 	/* Avoid a circular list and skip interim queue merges. */
2470 	while ((__bfqq = new_bfqq->new_bfqq)) {
2471 		if (__bfqq == bfqq)
2472 			return NULL;
2473 		new_bfqq = __bfqq;
2474 	}
2475 
2476 	process_refs = bfqq_process_refs(bfqq);
2477 	new_process_refs = bfqq_process_refs(new_bfqq);
2478 	/*
2479 	 * If the process for the bfqq has gone away, there is no
2480 	 * sense in merging the queues.
2481 	 */
2482 	if (process_refs == 0 || new_process_refs == 0)
2483 		return NULL;
2484 
2485 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2486 		new_bfqq->pid);
2487 
2488 	/*
2489 	 * Merging is just a redirection: the requests of the process
2490 	 * owning one of the two queues are redirected to the other queue.
2491 	 * The latter queue, in its turn, is set as shared if this is the
2492 	 * first time that the requests of some process are redirected to
2493 	 * it.
2494 	 *
2495 	 * We redirect bfqq to new_bfqq and not the opposite, because
2496 	 * we are in the context of the process owning bfqq, thus we
2497 	 * have the io_cq of this process. So we can immediately
2498 	 * configure this io_cq to redirect the requests of the
2499 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2500 	 * not available any more (new_bfqq->bic == NULL).
2501 	 *
2502 	 * Anyway, even in case new_bfqq coincides with the in-service
2503 	 * queue, redirecting requests the in-service queue is the
2504 	 * best option, as we feed the in-service queue with new
2505 	 * requests close to the last request served and, by doing so,
2506 	 * are likely to increase the throughput.
2507 	 */
2508 	bfqq->new_bfqq = new_bfqq;
2509 	new_bfqq->ref += process_refs;
2510 	return new_bfqq;
2511 }
2512 
2513 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2514 					struct bfq_queue *new_bfqq)
2515 {
2516 	if (bfq_too_late_for_merging(new_bfqq))
2517 		return false;
2518 
2519 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2520 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2521 		return false;
2522 
2523 	/*
2524 	 * If either of the queues has already been detected as seeky,
2525 	 * then merging it with the other queue is unlikely to lead to
2526 	 * sequential I/O.
2527 	 */
2528 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2529 		return false;
2530 
2531 	/*
2532 	 * Interleaved I/O is known to be done by (some) applications
2533 	 * only for reads, so it does not make sense to merge async
2534 	 * queues.
2535 	 */
2536 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2537 		return false;
2538 
2539 	return true;
2540 }
2541 
2542 /*
2543  * Attempt to schedule a merge of bfqq with the currently in-service
2544  * queue or with a close queue among the scheduled queues.  Return
2545  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2546  * structure otherwise.
2547  *
2548  * The OOM queue is not allowed to participate to cooperation: in fact, since
2549  * the requests temporarily redirected to the OOM queue could be redirected
2550  * again to dedicated queues at any time, the state needed to correctly
2551  * handle merging with the OOM queue would be quite complex and expensive
2552  * to maintain. Besides, in such a critical condition as an out of memory,
2553  * the benefits of queue merging may be little relevant, or even negligible.
2554  *
2555  * WARNING: queue merging may impair fairness among non-weight raised
2556  * queues, for at least two reasons: 1) the original weight of a
2557  * merged queue may change during the merged state, 2) even being the
2558  * weight the same, a merged queue may be bloated with many more
2559  * requests than the ones produced by its originally-associated
2560  * process.
2561  */
2562 static struct bfq_queue *
2563 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2564 		     void *io_struct, bool request)
2565 {
2566 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2567 
2568 	/*
2569 	 * Do not perform queue merging if the device is non
2570 	 * rotational and performs internal queueing. In fact, such a
2571 	 * device reaches a high speed through internal parallelism
2572 	 * and pipelining. This means that, to reach a high
2573 	 * throughput, it must have many requests enqueued at the same
2574 	 * time. But, in this configuration, the internal scheduling
2575 	 * algorithm of the device does exactly the job of queue
2576 	 * merging: it reorders requests so as to obtain as much as
2577 	 * possible a sequential I/O pattern. As a consequence, with
2578 	 * the workload generated by processes doing interleaved I/O,
2579 	 * the throughput reached by the device is likely to be the
2580 	 * same, with and without queue merging.
2581 	 *
2582 	 * Disabling merging also provides a remarkable benefit in
2583 	 * terms of throughput. Merging tends to make many workloads
2584 	 * artificially more uneven, because of shared queues
2585 	 * remaining non empty for incomparably more time than
2586 	 * non-merged queues. This may accentuate workload
2587 	 * asymmetries. For example, if one of the queues in a set of
2588 	 * merged queues has a higher weight than a normal queue, then
2589 	 * the shared queue may inherit such a high weight and, by
2590 	 * staying almost always active, may force BFQ to perform I/O
2591 	 * plugging most of the time. This evidently makes it harder
2592 	 * for BFQ to let the device reach a high throughput.
2593 	 *
2594 	 * Finally, the likely() macro below is not used because one
2595 	 * of the two branches is more likely than the other, but to
2596 	 * have the code path after the following if() executed as
2597 	 * fast as possible for the case of a non rotational device
2598 	 * with queueing. We want it because this is the fastest kind
2599 	 * of device. On the opposite end, the likely() may lengthen
2600 	 * the execution time of BFQ for the case of slower devices
2601 	 * (rotational or at least without queueing). But in this case
2602 	 * the execution time of BFQ matters very little, if not at
2603 	 * all.
2604 	 */
2605 	if (likely(bfqd->nonrot_with_queueing))
2606 		return NULL;
2607 
2608 	/*
2609 	 * Prevent bfqq from being merged if it has been created too
2610 	 * long ago. The idea is that true cooperating processes, and
2611 	 * thus their associated bfq_queues, are supposed to be
2612 	 * created shortly after each other. This is the case, e.g.,
2613 	 * for KVM/QEMU and dump I/O threads. Basing on this
2614 	 * assumption, the following filtering greatly reduces the
2615 	 * probability that two non-cooperating processes, which just
2616 	 * happen to do close I/O for some short time interval, have
2617 	 * their queues merged by mistake.
2618 	 */
2619 	if (bfq_too_late_for_merging(bfqq))
2620 		return NULL;
2621 
2622 	if (bfqq->new_bfqq)
2623 		return bfqq->new_bfqq;
2624 
2625 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2626 		return NULL;
2627 
2628 	/* If there is only one backlogged queue, don't search. */
2629 	if (bfq_tot_busy_queues(bfqd) == 1)
2630 		return NULL;
2631 
2632 	in_service_bfqq = bfqd->in_service_queue;
2633 
2634 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2635 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2636 	    bfq_rq_close_to_sector(io_struct, request,
2637 				   bfqd->in_serv_last_pos) &&
2638 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2639 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2640 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2641 		if (new_bfqq)
2642 			return new_bfqq;
2643 	}
2644 	/*
2645 	 * Check whether there is a cooperator among currently scheduled
2646 	 * queues. The only thing we need is that the bio/request is not
2647 	 * NULL, as we need it to establish whether a cooperator exists.
2648 	 */
2649 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2650 			bfq_io_struct_pos(io_struct, request));
2651 
2652 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2653 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2654 		return bfq_setup_merge(bfqq, new_bfqq);
2655 
2656 	return NULL;
2657 }
2658 
2659 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2660 {
2661 	struct bfq_io_cq *bic = bfqq->bic;
2662 
2663 	/*
2664 	 * If !bfqq->bic, the queue is already shared or its requests
2665 	 * have already been redirected to a shared queue; both idle window
2666 	 * and weight raising state have already been saved. Do nothing.
2667 	 */
2668 	if (!bic)
2669 		return;
2670 
2671 	bic->saved_weight = bfqq->entity.orig_weight;
2672 	bic->saved_ttime = bfqq->ttime;
2673 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2674 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2675 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2676 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2677 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2678 		     !bfq_bfqq_in_large_burst(bfqq) &&
2679 		     bfqq->bfqd->low_latency)) {
2680 		/*
2681 		 * bfqq being merged right after being created: bfqq
2682 		 * would have deserved interactive weight raising, but
2683 		 * did not make it to be set in a weight-raised state,
2684 		 * because of this early merge.	Store directly the
2685 		 * weight-raising state that would have been assigned
2686 		 * to bfqq, so that to avoid that bfqq unjustly fails
2687 		 * to enjoy weight raising if split soon.
2688 		 */
2689 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2690 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2691 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2692 		bic->saved_last_wr_start_finish = jiffies;
2693 	} else {
2694 		bic->saved_wr_coeff = bfqq->wr_coeff;
2695 		bic->saved_wr_start_at_switch_to_srt =
2696 			bfqq->wr_start_at_switch_to_srt;
2697 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2698 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2699 	}
2700 }
2701 
2702 static void
2703 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2704 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2705 {
2706 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2707 		(unsigned long)new_bfqq->pid);
2708 	/* Save weight raising and idle window of the merged queues */
2709 	bfq_bfqq_save_state(bfqq);
2710 	bfq_bfqq_save_state(new_bfqq);
2711 	if (bfq_bfqq_IO_bound(bfqq))
2712 		bfq_mark_bfqq_IO_bound(new_bfqq);
2713 	bfq_clear_bfqq_IO_bound(bfqq);
2714 
2715 	/*
2716 	 * If bfqq is weight-raised, then let new_bfqq inherit
2717 	 * weight-raising. To reduce false positives, neglect the case
2718 	 * where bfqq has just been created, but has not yet made it
2719 	 * to be weight-raised (which may happen because EQM may merge
2720 	 * bfqq even before bfq_add_request is executed for the first
2721 	 * time for bfqq). Handling this case would however be very
2722 	 * easy, thanks to the flag just_created.
2723 	 */
2724 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2725 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2726 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2727 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2728 		new_bfqq->wr_start_at_switch_to_srt =
2729 			bfqq->wr_start_at_switch_to_srt;
2730 		if (bfq_bfqq_busy(new_bfqq))
2731 			bfqd->wr_busy_queues++;
2732 		new_bfqq->entity.prio_changed = 1;
2733 	}
2734 
2735 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2736 		bfqq->wr_coeff = 1;
2737 		bfqq->entity.prio_changed = 1;
2738 		if (bfq_bfqq_busy(bfqq))
2739 			bfqd->wr_busy_queues--;
2740 	}
2741 
2742 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2743 		     bfqd->wr_busy_queues);
2744 
2745 	/*
2746 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2747 	 */
2748 	bic_set_bfqq(bic, new_bfqq, 1);
2749 	bfq_mark_bfqq_coop(new_bfqq);
2750 	/*
2751 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2752 	 * set new_bfqq->bic to NULL. bfqq either:
2753 	 * - does not belong to any bic any more, and hence bfqq->bic must
2754 	 *   be set to NULL, or
2755 	 * - is a queue whose owning bics have already been redirected to a
2756 	 *   different queue, hence the queue is destined to not belong to
2757 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2758 	 *   assignment causes no harm).
2759 	 */
2760 	new_bfqq->bic = NULL;
2761 	/*
2762 	 * If the queue is shared, the pid is the pid of one of the associated
2763 	 * processes. Which pid depends on the exact sequence of merge events
2764 	 * the queue underwent. So printing such a pid is useless and confusing
2765 	 * because it reports a random pid between those of the associated
2766 	 * processes.
2767 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2768 	 * a pid in logging messages.
2769 	 */
2770 	new_bfqq->pid = -1;
2771 	bfqq->bic = NULL;
2772 	/* release process reference to bfqq */
2773 	bfq_put_queue(bfqq);
2774 }
2775 
2776 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2777 				struct bio *bio)
2778 {
2779 	struct bfq_data *bfqd = q->elevator->elevator_data;
2780 	bool is_sync = op_is_sync(bio->bi_opf);
2781 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2782 
2783 	/*
2784 	 * Disallow merge of a sync bio into an async request.
2785 	 */
2786 	if (is_sync && !rq_is_sync(rq))
2787 		return false;
2788 
2789 	/*
2790 	 * Lookup the bfqq that this bio will be queued with. Allow
2791 	 * merge only if rq is queued there.
2792 	 */
2793 	if (!bfqq)
2794 		return false;
2795 
2796 	/*
2797 	 * We take advantage of this function to perform an early merge
2798 	 * of the queues of possible cooperating processes.
2799 	 */
2800 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2801 	if (new_bfqq) {
2802 		/*
2803 		 * bic still points to bfqq, then it has not yet been
2804 		 * redirected to some other bfq_queue, and a queue
2805 		 * merge between bfqq and new_bfqq can be safely
2806 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2807 		 * and bfqq can be put.
2808 		 */
2809 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2810 				new_bfqq);
2811 		/*
2812 		 * If we get here, bio will be queued into new_queue,
2813 		 * so use new_bfqq to decide whether bio and rq can be
2814 		 * merged.
2815 		 */
2816 		bfqq = new_bfqq;
2817 
2818 		/*
2819 		 * Change also bqfd->bio_bfqq, as
2820 		 * bfqd->bio_bic now points to new_bfqq, and
2821 		 * this function may be invoked again (and then may
2822 		 * use again bqfd->bio_bfqq).
2823 		 */
2824 		bfqd->bio_bfqq = bfqq;
2825 	}
2826 
2827 	return bfqq == RQ_BFQQ(rq);
2828 }
2829 
2830 /*
2831  * Set the maximum time for the in-service queue to consume its
2832  * budget. This prevents seeky processes from lowering the throughput.
2833  * In practice, a time-slice service scheme is used with seeky
2834  * processes.
2835  */
2836 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2837 				   struct bfq_queue *bfqq)
2838 {
2839 	unsigned int timeout_coeff;
2840 
2841 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2842 		timeout_coeff = 1;
2843 	else
2844 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2845 
2846 	bfqd->last_budget_start = ktime_get();
2847 
2848 	bfqq->budget_timeout = jiffies +
2849 		bfqd->bfq_timeout * timeout_coeff;
2850 }
2851 
2852 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2853 				       struct bfq_queue *bfqq)
2854 {
2855 	if (bfqq) {
2856 		bfq_clear_bfqq_fifo_expire(bfqq);
2857 
2858 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2859 
2860 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2861 		    bfqq->wr_coeff > 1 &&
2862 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2863 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2864 			/*
2865 			 * For soft real-time queues, move the start
2866 			 * of the weight-raising period forward by the
2867 			 * time the queue has not received any
2868 			 * service. Otherwise, a relatively long
2869 			 * service delay is likely to cause the
2870 			 * weight-raising period of the queue to end,
2871 			 * because of the short duration of the
2872 			 * weight-raising period of a soft real-time
2873 			 * queue.  It is worth noting that this move
2874 			 * is not so dangerous for the other queues,
2875 			 * because soft real-time queues are not
2876 			 * greedy.
2877 			 *
2878 			 * To not add a further variable, we use the
2879 			 * overloaded field budget_timeout to
2880 			 * determine for how long the queue has not
2881 			 * received service, i.e., how much time has
2882 			 * elapsed since the queue expired. However,
2883 			 * this is a little imprecise, because
2884 			 * budget_timeout is set to jiffies if bfqq
2885 			 * not only expires, but also remains with no
2886 			 * request.
2887 			 */
2888 			if (time_after(bfqq->budget_timeout,
2889 				       bfqq->last_wr_start_finish))
2890 				bfqq->last_wr_start_finish +=
2891 					jiffies - bfqq->budget_timeout;
2892 			else
2893 				bfqq->last_wr_start_finish = jiffies;
2894 		}
2895 
2896 		bfq_set_budget_timeout(bfqd, bfqq);
2897 		bfq_log_bfqq(bfqd, bfqq,
2898 			     "set_in_service_queue, cur-budget = %d",
2899 			     bfqq->entity.budget);
2900 	}
2901 
2902 	bfqd->in_service_queue = bfqq;
2903 }
2904 
2905 /*
2906  * Get and set a new queue for service.
2907  */
2908 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2909 {
2910 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2911 
2912 	__bfq_set_in_service_queue(bfqd, bfqq);
2913 	return bfqq;
2914 }
2915 
2916 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2917 {
2918 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2919 	u32 sl;
2920 
2921 	bfq_mark_bfqq_wait_request(bfqq);
2922 
2923 	/*
2924 	 * We don't want to idle for seeks, but we do want to allow
2925 	 * fair distribution of slice time for a process doing back-to-back
2926 	 * seeks. So allow a little bit of time for him to submit a new rq.
2927 	 */
2928 	sl = bfqd->bfq_slice_idle;
2929 	/*
2930 	 * Unless the queue is being weight-raised or the scenario is
2931 	 * asymmetric, grant only minimum idle time if the queue
2932 	 * is seeky. A long idling is preserved for a weight-raised
2933 	 * queue, or, more in general, in an asymmetric scenario,
2934 	 * because a long idling is needed for guaranteeing to a queue
2935 	 * its reserved share of the throughput (in particular, it is
2936 	 * needed if the queue has a higher weight than some other
2937 	 * queue).
2938 	 */
2939 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2940 	    !bfq_asymmetric_scenario(bfqd, bfqq))
2941 		sl = min_t(u64, sl, BFQ_MIN_TT);
2942 	else if (bfqq->wr_coeff > 1)
2943 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2944 
2945 	bfqd->last_idling_start = ktime_get();
2946 	bfqd->last_idling_start_jiffies = jiffies;
2947 
2948 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2949 		      HRTIMER_MODE_REL);
2950 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2951 }
2952 
2953 /*
2954  * In autotuning mode, max_budget is dynamically recomputed as the
2955  * amount of sectors transferred in timeout at the estimated peak
2956  * rate. This enables BFQ to utilize a full timeslice with a full
2957  * budget, even if the in-service queue is served at peak rate. And
2958  * this maximises throughput with sequential workloads.
2959  */
2960 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2961 {
2962 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2963 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2964 }
2965 
2966 /*
2967  * Update parameters related to throughput and responsiveness, as a
2968  * function of the estimated peak rate. See comments on
2969  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2970  */
2971 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2972 {
2973 	if (bfqd->bfq_user_max_budget == 0) {
2974 		bfqd->bfq_max_budget =
2975 			bfq_calc_max_budget(bfqd);
2976 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2977 	}
2978 }
2979 
2980 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2981 				       struct request *rq)
2982 {
2983 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2984 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2985 		bfqd->peak_rate_samples = 1;
2986 		bfqd->sequential_samples = 0;
2987 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2988 			blk_rq_sectors(rq);
2989 	} else /* no new rq dispatched, just reset the number of samples */
2990 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2991 
2992 	bfq_log(bfqd,
2993 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2994 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2995 		bfqd->tot_sectors_dispatched);
2996 }
2997 
2998 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2999 {
3000 	u32 rate, weight, divisor;
3001 
3002 	/*
3003 	 * For the convergence property to hold (see comments on
3004 	 * bfq_update_peak_rate()) and for the assessment to be
3005 	 * reliable, a minimum number of samples must be present, and
3006 	 * a minimum amount of time must have elapsed. If not so, do
3007 	 * not compute new rate. Just reset parameters, to get ready
3008 	 * for a new evaluation attempt.
3009 	 */
3010 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3011 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3012 		goto reset_computation;
3013 
3014 	/*
3015 	 * If a new request completion has occurred after last
3016 	 * dispatch, then, to approximate the rate at which requests
3017 	 * have been served by the device, it is more precise to
3018 	 * extend the observation interval to the last completion.
3019 	 */
3020 	bfqd->delta_from_first =
3021 		max_t(u64, bfqd->delta_from_first,
3022 		      bfqd->last_completion - bfqd->first_dispatch);
3023 
3024 	/*
3025 	 * Rate computed in sects/usec, and not sects/nsec, for
3026 	 * precision issues.
3027 	 */
3028 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3029 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3030 
3031 	/*
3032 	 * Peak rate not updated if:
3033 	 * - the percentage of sequential dispatches is below 3/4 of the
3034 	 *   total, and rate is below the current estimated peak rate
3035 	 * - rate is unreasonably high (> 20M sectors/sec)
3036 	 */
3037 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3038 	     rate <= bfqd->peak_rate) ||
3039 		rate > 20<<BFQ_RATE_SHIFT)
3040 		goto reset_computation;
3041 
3042 	/*
3043 	 * We have to update the peak rate, at last! To this purpose,
3044 	 * we use a low-pass filter. We compute the smoothing constant
3045 	 * of the filter as a function of the 'weight' of the new
3046 	 * measured rate.
3047 	 *
3048 	 * As can be seen in next formulas, we define this weight as a
3049 	 * quantity proportional to how sequential the workload is,
3050 	 * and to how long the observation time interval is.
3051 	 *
3052 	 * The weight runs from 0 to 8. The maximum value of the
3053 	 * weight, 8, yields the minimum value for the smoothing
3054 	 * constant. At this minimum value for the smoothing constant,
3055 	 * the measured rate contributes for half of the next value of
3056 	 * the estimated peak rate.
3057 	 *
3058 	 * So, the first step is to compute the weight as a function
3059 	 * of how sequential the workload is. Note that the weight
3060 	 * cannot reach 9, because bfqd->sequential_samples cannot
3061 	 * become equal to bfqd->peak_rate_samples, which, in its
3062 	 * turn, holds true because bfqd->sequential_samples is not
3063 	 * incremented for the first sample.
3064 	 */
3065 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3066 
3067 	/*
3068 	 * Second step: further refine the weight as a function of the
3069 	 * duration of the observation interval.
3070 	 */
3071 	weight = min_t(u32, 8,
3072 		       div_u64(weight * bfqd->delta_from_first,
3073 			       BFQ_RATE_REF_INTERVAL));
3074 
3075 	/*
3076 	 * Divisor ranging from 10, for minimum weight, to 2, for
3077 	 * maximum weight.
3078 	 */
3079 	divisor = 10 - weight;
3080 
3081 	/*
3082 	 * Finally, update peak rate:
3083 	 *
3084 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3085 	 */
3086 	bfqd->peak_rate *= divisor-1;
3087 	bfqd->peak_rate /= divisor;
3088 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3089 
3090 	bfqd->peak_rate += rate;
3091 
3092 	/*
3093 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3094 	 * the minimum representable values reported in the comments
3095 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3096 	 * divisions by zero where bfqd->peak_rate is used as a
3097 	 * divisor.
3098 	 */
3099 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3100 
3101 	update_thr_responsiveness_params(bfqd);
3102 
3103 reset_computation:
3104 	bfq_reset_rate_computation(bfqd, rq);
3105 }
3106 
3107 /*
3108  * Update the read/write peak rate (the main quantity used for
3109  * auto-tuning, see update_thr_responsiveness_params()).
3110  *
3111  * It is not trivial to estimate the peak rate (correctly): because of
3112  * the presence of sw and hw queues between the scheduler and the
3113  * device components that finally serve I/O requests, it is hard to
3114  * say exactly when a given dispatched request is served inside the
3115  * device, and for how long. As a consequence, it is hard to know
3116  * precisely at what rate a given set of requests is actually served
3117  * by the device.
3118  *
3119  * On the opposite end, the dispatch time of any request is trivially
3120  * available, and, from this piece of information, the "dispatch rate"
3121  * of requests can be immediately computed. So, the idea in the next
3122  * function is to use what is known, namely request dispatch times
3123  * (plus, when useful, request completion times), to estimate what is
3124  * unknown, namely in-device request service rate.
3125  *
3126  * The main issue is that, because of the above facts, the rate at
3127  * which a certain set of requests is dispatched over a certain time
3128  * interval can vary greatly with respect to the rate at which the
3129  * same requests are then served. But, since the size of any
3130  * intermediate queue is limited, and the service scheme is lossless
3131  * (no request is silently dropped), the following obvious convergence
3132  * property holds: the number of requests dispatched MUST become
3133  * closer and closer to the number of requests completed as the
3134  * observation interval grows. This is the key property used in
3135  * the next function to estimate the peak service rate as a function
3136  * of the observed dispatch rate. The function assumes to be invoked
3137  * on every request dispatch.
3138  */
3139 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3140 {
3141 	u64 now_ns = ktime_get_ns();
3142 
3143 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3144 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3145 			bfqd->peak_rate_samples);
3146 		bfq_reset_rate_computation(bfqd, rq);
3147 		goto update_last_values; /* will add one sample */
3148 	}
3149 
3150 	/*
3151 	 * Device idle for very long: the observation interval lasting
3152 	 * up to this dispatch cannot be a valid observation interval
3153 	 * for computing a new peak rate (similarly to the late-
3154 	 * completion event in bfq_completed_request()). Go to
3155 	 * update_rate_and_reset to have the following three steps
3156 	 * taken:
3157 	 * - close the observation interval at the last (previous)
3158 	 *   request dispatch or completion
3159 	 * - compute rate, if possible, for that observation interval
3160 	 * - start a new observation interval with this dispatch
3161 	 */
3162 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3163 	    bfqd->rq_in_driver == 0)
3164 		goto update_rate_and_reset;
3165 
3166 	/* Update sampling information */
3167 	bfqd->peak_rate_samples++;
3168 
3169 	if ((bfqd->rq_in_driver > 0 ||
3170 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3171 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3172 		bfqd->sequential_samples++;
3173 
3174 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3175 
3176 	/* Reset max observed rq size every 32 dispatches */
3177 	if (likely(bfqd->peak_rate_samples % 32))
3178 		bfqd->last_rq_max_size =
3179 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3180 	else
3181 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3182 
3183 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3184 
3185 	/* Target observation interval not yet reached, go on sampling */
3186 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3187 		goto update_last_values;
3188 
3189 update_rate_and_reset:
3190 	bfq_update_rate_reset(bfqd, rq);
3191 update_last_values:
3192 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3193 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3194 		bfqd->in_serv_last_pos = bfqd->last_position;
3195 	bfqd->last_dispatch = now_ns;
3196 }
3197 
3198 /*
3199  * Remove request from internal lists.
3200  */
3201 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3202 {
3203 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3204 
3205 	/*
3206 	 * For consistency, the next instruction should have been
3207 	 * executed after removing the request from the queue and
3208 	 * dispatching it.  We execute instead this instruction before
3209 	 * bfq_remove_request() (and hence introduce a temporary
3210 	 * inconsistency), for efficiency.  In fact, should this
3211 	 * dispatch occur for a non in-service bfqq, this anticipated
3212 	 * increment prevents two counters related to bfqq->dispatched
3213 	 * from risking to be, first, uselessly decremented, and then
3214 	 * incremented again when the (new) value of bfqq->dispatched
3215 	 * happens to be taken into account.
3216 	 */
3217 	bfqq->dispatched++;
3218 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3219 
3220 	bfq_remove_request(q, rq);
3221 }
3222 
3223 /*
3224  * There is a case where idling does not have to be performed for
3225  * throughput concerns, but to preserve the throughput share of
3226  * the process associated with bfqq.
3227  *
3228  * To introduce this case, we can note that allowing the drive
3229  * to enqueue more than one request at a time, and hence
3230  * delegating de facto final scheduling decisions to the
3231  * drive's internal scheduler, entails loss of control on the
3232  * actual request service order. In particular, the critical
3233  * situation is when requests from different processes happen
3234  * to be present, at the same time, in the internal queue(s)
3235  * of the drive. In such a situation, the drive, by deciding
3236  * the service order of the internally-queued requests, does
3237  * determine also the actual throughput distribution among
3238  * these processes. But the drive typically has no notion or
3239  * concern about per-process throughput distribution, and
3240  * makes its decisions only on a per-request basis. Therefore,
3241  * the service distribution enforced by the drive's internal
3242  * scheduler is likely to coincide with the desired throughput
3243  * distribution only in a completely symmetric, or favorably
3244  * skewed scenario where:
3245  * (i-a) each of these processes must get the same throughput as
3246  *	 the others,
3247  * (i-b) in case (i-a) does not hold, it holds that the process
3248  *       associated with bfqq must receive a lower or equal
3249  *	 throughput than any of the other processes;
3250  * (ii)  the I/O of each process has the same properties, in
3251  *       terms of locality (sequential or random), direction
3252  *       (reads or writes), request sizes, greediness
3253  *       (from I/O-bound to sporadic), and so on;
3254 
3255  * In fact, in such a scenario, the drive tends to treat the requests
3256  * of each process in about the same way as the requests of the
3257  * others, and thus to provide each of these processes with about the
3258  * same throughput.  This is exactly the desired throughput
3259  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3260  * even more convenient distribution for (the process associated with)
3261  * bfqq.
3262  *
3263  * In contrast, in any asymmetric or unfavorable scenario, device
3264  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3265  * that bfqq receives its assigned fraction of the device throughput
3266  * (see [1] for details).
3267  *
3268  * The problem is that idling may significantly reduce throughput with
3269  * certain combinations of types of I/O and devices. An important
3270  * example is sync random I/O on flash storage with command
3271  * queueing. So, unless bfqq falls in cases where idling also boosts
3272  * throughput, it is important to check conditions (i-a), i(-b) and
3273  * (ii) accurately, so as to avoid idling when not strictly needed for
3274  * service guarantees.
3275  *
3276  * Unfortunately, it is extremely difficult to thoroughly check
3277  * condition (ii). And, in case there are active groups, it becomes
3278  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3279  * if there are active groups, then, for conditions (i-a) or (i-b) to
3280  * become false 'indirectly', it is enough that an active group
3281  * contains more active processes or sub-groups than some other active
3282  * group. More precisely, for conditions (i-a) or (i-b) to become
3283  * false because of such a group, it is not even necessary that the
3284  * group is (still) active: it is sufficient that, even if the group
3285  * has become inactive, some of its descendant processes still have
3286  * some request already dispatched but still waiting for
3287  * completion. In fact, requests have still to be guaranteed their
3288  * share of the throughput even after being dispatched. In this
3289  * respect, it is easy to show that, if a group frequently becomes
3290  * inactive while still having in-flight requests, and if, when this
3291  * happens, the group is not considered in the calculation of whether
3292  * the scenario is asymmetric, then the group may fail to be
3293  * guaranteed its fair share of the throughput (basically because
3294  * idling may not be performed for the descendant processes of the
3295  * group, but it had to be).  We address this issue with the following
3296  * bi-modal behavior, implemented in the function
3297  * bfq_asymmetric_scenario().
3298  *
3299  * If there are groups with requests waiting for completion
3300  * (as commented above, some of these groups may even be
3301  * already inactive), then the scenario is tagged as
3302  * asymmetric, conservatively, without checking any of the
3303  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3304  * This behavior matches also the fact that groups are created
3305  * exactly if controlling I/O is a primary concern (to
3306  * preserve bandwidth and latency guarantees).
3307  *
3308  * On the opposite end, if there are no groups with requests waiting
3309  * for completion, then only conditions (i-a) and (i-b) are actually
3310  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3311  * idling is not performed, regardless of whether condition (ii)
3312  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3313  * hold, then idling is allowed, and the device tends to be prevented
3314  * from queueing many requests, possibly of several processes. Since
3315  * there are no groups with requests waiting for completion, then, to
3316  * control conditions (i-a) and (i-b) it is enough to check just
3317  * whether all the queues with requests waiting for completion also
3318  * have the same weight.
3319  *
3320  * Not checking condition (ii) evidently exposes bfqq to the
3321  * risk of getting less throughput than its fair share.
3322  * However, for queues with the same weight, a further
3323  * mechanism, preemption, mitigates or even eliminates this
3324  * problem. And it does so without consequences on overall
3325  * throughput. This mechanism and its benefits are explained
3326  * in the next three paragraphs.
3327  *
3328  * Even if a queue, say Q, is expired when it remains idle, Q
3329  * can still preempt the new in-service queue if the next
3330  * request of Q arrives soon (see the comments on
3331  * bfq_bfqq_update_budg_for_activation). If all queues and
3332  * groups have the same weight, this form of preemption,
3333  * combined with the hole-recovery heuristic described in the
3334  * comments on function bfq_bfqq_update_budg_for_activation,
3335  * are enough to preserve a correct bandwidth distribution in
3336  * the mid term, even without idling. In fact, even if not
3337  * idling allows the internal queues of the device to contain
3338  * many requests, and thus to reorder requests, we can rather
3339  * safely assume that the internal scheduler still preserves a
3340  * minimum of mid-term fairness.
3341  *
3342  * More precisely, this preemption-based, idleless approach
3343  * provides fairness in terms of IOPS, and not sectors per
3344  * second. This can be seen with a simple example. Suppose
3345  * that there are two queues with the same weight, but that
3346  * the first queue receives requests of 8 sectors, while the
3347  * second queue receives requests of 1024 sectors. In
3348  * addition, suppose that each of the two queues contains at
3349  * most one request at a time, which implies that each queue
3350  * always remains idle after it is served. Finally, after
3351  * remaining idle, each queue receives very quickly a new
3352  * request. It follows that the two queues are served
3353  * alternatively, preempting each other if needed. This
3354  * implies that, although both queues have the same weight,
3355  * the queue with large requests receives a service that is
3356  * 1024/8 times as high as the service received by the other
3357  * queue.
3358  *
3359  * The motivation for using preemption instead of idling (for
3360  * queues with the same weight) is that, by not idling,
3361  * service guarantees are preserved (completely or at least in
3362  * part) without minimally sacrificing throughput. And, if
3363  * there is no active group, then the primary expectation for
3364  * this device is probably a high throughput.
3365  *
3366  * We are now left only with explaining the two sub-conditions in the
3367  * additional compound condition that is checked below for deciding
3368  * whether the scenario is asymmetric. To explain the first
3369  * sub-condition, we need to add that the function
3370  * bfq_asymmetric_scenario checks the weights of only
3371  * non-weight-raised queues, for efficiency reasons (see comments on
3372  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3373  * is checked explicitly here. More precisely, the compound condition
3374  * below takes into account also the fact that, even if bfqq is being
3375  * weight-raised, the scenario is still symmetric if all queues with
3376  * requests waiting for completion happen to be
3377  * weight-raised. Actually, we should be even more precise here, and
3378  * differentiate between interactive weight raising and soft real-time
3379  * weight raising.
3380  *
3381  * The second sub-condition checked in the compound condition is
3382  * whether there is a fair amount of already in-flight I/O not
3383  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3384  * following reason. The drive may decide to serve in-flight
3385  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3386  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3387  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3388  * basically uncontrolled amount of I/O from other queues may be
3389  * dispatched too, possibly causing the service of bfqq's I/O to be
3390  * delayed even longer in the drive. This problem gets more and more
3391  * serious as the speed and the queue depth of the drive grow,
3392  * because, as these two quantities grow, the probability to find no
3393  * queue busy but many requests in flight grows too. By contrast,
3394  * plugging I/O dispatching minimizes the delay induced by already
3395  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3396  * lose because of this delay.
3397  *
3398  * As a side note, it is worth considering that the above
3399  * device-idling countermeasures may however fail in the following
3400  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3401  * in a time period during which all symmetry sub-conditions hold, and
3402  * therefore the device is allowed to enqueue many requests, but at
3403  * some later point in time some sub-condition stops to hold, then it
3404  * may become impossible to make requests be served in the desired
3405  * order until all the requests already queued in the device have been
3406  * served. The last sub-condition commented above somewhat mitigates
3407  * this problem for weight-raised queues.
3408  */
3409 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3410 						 struct bfq_queue *bfqq)
3411 {
3412 	return (bfqq->wr_coeff > 1 &&
3413 		(bfqd->wr_busy_queues <
3414 		 bfq_tot_busy_queues(bfqd) ||
3415 		 bfqd->rq_in_driver >=
3416 		 bfqq->dispatched + 4)) ||
3417 		bfq_asymmetric_scenario(bfqd, bfqq);
3418 }
3419 
3420 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3421 			      enum bfqq_expiration reason)
3422 {
3423 	/*
3424 	 * If this bfqq is shared between multiple processes, check
3425 	 * to make sure that those processes are still issuing I/Os
3426 	 * within the mean seek distance. If not, it may be time to
3427 	 * break the queues apart again.
3428 	 */
3429 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3430 		bfq_mark_bfqq_split_coop(bfqq);
3431 
3432 	/*
3433 	 * Consider queues with a higher finish virtual time than
3434 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3435 	 * true, then bfqq's bandwidth would be violated if an
3436 	 * uncontrolled amount of I/O from these queues were
3437 	 * dispatched while bfqq is waiting for its new I/O to
3438 	 * arrive. This is exactly what may happen if this is a forced
3439 	 * expiration caused by a preemption attempt, and if bfqq is
3440 	 * not re-scheduled. To prevent this from happening, re-queue
3441 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3442 	 * empty. By doing so, bfqq is granted to be served before the
3443 	 * above queues (provided that bfqq is of course eligible).
3444 	 */
3445 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3446 	    !(reason == BFQQE_PREEMPTED &&
3447 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3448 		if (bfqq->dispatched == 0)
3449 			/*
3450 			 * Overloading budget_timeout field to store
3451 			 * the time at which the queue remains with no
3452 			 * backlog and no outstanding request; used by
3453 			 * the weight-raising mechanism.
3454 			 */
3455 			bfqq->budget_timeout = jiffies;
3456 
3457 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3458 	} else {
3459 		bfq_requeue_bfqq(bfqd, bfqq, true);
3460 		/*
3461 		 * Resort priority tree of potential close cooperators.
3462 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3463 		 */
3464 		if (unlikely(!bfqd->nonrot_with_queueing &&
3465 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3466 			bfq_pos_tree_add_move(bfqd, bfqq);
3467 	}
3468 
3469 	/*
3470 	 * All in-service entities must have been properly deactivated
3471 	 * or requeued before executing the next function, which
3472 	 * resets all in-service entities as no more in service. This
3473 	 * may cause bfqq to be freed. If this happens, the next
3474 	 * function returns true.
3475 	 */
3476 	return __bfq_bfqd_reset_in_service(bfqd);
3477 }
3478 
3479 /**
3480  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3481  * @bfqd: device data.
3482  * @bfqq: queue to update.
3483  * @reason: reason for expiration.
3484  *
3485  * Handle the feedback on @bfqq budget at queue expiration.
3486  * See the body for detailed comments.
3487  */
3488 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3489 				     struct bfq_queue *bfqq,
3490 				     enum bfqq_expiration reason)
3491 {
3492 	struct request *next_rq;
3493 	int budget, min_budget;
3494 
3495 	min_budget = bfq_min_budget(bfqd);
3496 
3497 	if (bfqq->wr_coeff == 1)
3498 		budget = bfqq->max_budget;
3499 	else /*
3500 	      * Use a constant, low budget for weight-raised queues,
3501 	      * to help achieve a low latency. Keep it slightly higher
3502 	      * than the minimum possible budget, to cause a little
3503 	      * bit fewer expirations.
3504 	      */
3505 		budget = 2 * min_budget;
3506 
3507 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3508 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3509 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3510 		budget, bfq_min_budget(bfqd));
3511 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3512 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3513 
3514 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3515 		switch (reason) {
3516 		/*
3517 		 * Caveat: in all the following cases we trade latency
3518 		 * for throughput.
3519 		 */
3520 		case BFQQE_TOO_IDLE:
3521 			/*
3522 			 * This is the only case where we may reduce
3523 			 * the budget: if there is no request of the
3524 			 * process still waiting for completion, then
3525 			 * we assume (tentatively) that the timer has
3526 			 * expired because the batch of requests of
3527 			 * the process could have been served with a
3528 			 * smaller budget.  Hence, betting that
3529 			 * process will behave in the same way when it
3530 			 * becomes backlogged again, we reduce its
3531 			 * next budget.  As long as we guess right,
3532 			 * this budget cut reduces the latency
3533 			 * experienced by the process.
3534 			 *
3535 			 * However, if there are still outstanding
3536 			 * requests, then the process may have not yet
3537 			 * issued its next request just because it is
3538 			 * still waiting for the completion of some of
3539 			 * the still outstanding ones.  So in this
3540 			 * subcase we do not reduce its budget, on the
3541 			 * contrary we increase it to possibly boost
3542 			 * the throughput, as discussed in the
3543 			 * comments to the BUDGET_TIMEOUT case.
3544 			 */
3545 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3546 				budget = min(budget * 2, bfqd->bfq_max_budget);
3547 			else {
3548 				if (budget > 5 * min_budget)
3549 					budget -= 4 * min_budget;
3550 				else
3551 					budget = min_budget;
3552 			}
3553 			break;
3554 		case BFQQE_BUDGET_TIMEOUT:
3555 			/*
3556 			 * We double the budget here because it gives
3557 			 * the chance to boost the throughput if this
3558 			 * is not a seeky process (and has bumped into
3559 			 * this timeout because of, e.g., ZBR).
3560 			 */
3561 			budget = min(budget * 2, bfqd->bfq_max_budget);
3562 			break;
3563 		case BFQQE_BUDGET_EXHAUSTED:
3564 			/*
3565 			 * The process still has backlog, and did not
3566 			 * let either the budget timeout or the disk
3567 			 * idling timeout expire. Hence it is not
3568 			 * seeky, has a short thinktime and may be
3569 			 * happy with a higher budget too. So
3570 			 * definitely increase the budget of this good
3571 			 * candidate to boost the disk throughput.
3572 			 */
3573 			budget = min(budget * 4, bfqd->bfq_max_budget);
3574 			break;
3575 		case BFQQE_NO_MORE_REQUESTS:
3576 			/*
3577 			 * For queues that expire for this reason, it
3578 			 * is particularly important to keep the
3579 			 * budget close to the actual service they
3580 			 * need. Doing so reduces the timestamp
3581 			 * misalignment problem described in the
3582 			 * comments in the body of
3583 			 * __bfq_activate_entity. In fact, suppose
3584 			 * that a queue systematically expires for
3585 			 * BFQQE_NO_MORE_REQUESTS and presents a
3586 			 * new request in time to enjoy timestamp
3587 			 * back-shifting. The larger the budget of the
3588 			 * queue is with respect to the service the
3589 			 * queue actually requests in each service
3590 			 * slot, the more times the queue can be
3591 			 * reactivated with the same virtual finish
3592 			 * time. It follows that, even if this finish
3593 			 * time is pushed to the system virtual time
3594 			 * to reduce the consequent timestamp
3595 			 * misalignment, the queue unjustly enjoys for
3596 			 * many re-activations a lower finish time
3597 			 * than all newly activated queues.
3598 			 *
3599 			 * The service needed by bfqq is measured
3600 			 * quite precisely by bfqq->entity.service.
3601 			 * Since bfqq does not enjoy device idling,
3602 			 * bfqq->entity.service is equal to the number
3603 			 * of sectors that the process associated with
3604 			 * bfqq requested to read/write before waiting
3605 			 * for request completions, or blocking for
3606 			 * other reasons.
3607 			 */
3608 			budget = max_t(int, bfqq->entity.service, min_budget);
3609 			break;
3610 		default:
3611 			return;
3612 		}
3613 	} else if (!bfq_bfqq_sync(bfqq)) {
3614 		/*
3615 		 * Async queues get always the maximum possible
3616 		 * budget, as for them we do not care about latency
3617 		 * (in addition, their ability to dispatch is limited
3618 		 * by the charging factor).
3619 		 */
3620 		budget = bfqd->bfq_max_budget;
3621 	}
3622 
3623 	bfqq->max_budget = budget;
3624 
3625 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3626 	    !bfqd->bfq_user_max_budget)
3627 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3628 
3629 	/*
3630 	 * If there is still backlog, then assign a new budget, making
3631 	 * sure that it is large enough for the next request.  Since
3632 	 * the finish time of bfqq must be kept in sync with the
3633 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3634 	 * update.
3635 	 *
3636 	 * If there is no backlog, then no need to update the budget;
3637 	 * it will be updated on the arrival of a new request.
3638 	 */
3639 	next_rq = bfqq->next_rq;
3640 	if (next_rq)
3641 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3642 					    bfq_serv_to_charge(next_rq, bfqq));
3643 
3644 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3645 			next_rq ? blk_rq_sectors(next_rq) : 0,
3646 			bfqq->entity.budget);
3647 }
3648 
3649 /*
3650  * Return true if the process associated with bfqq is "slow". The slow
3651  * flag is used, in addition to the budget timeout, to reduce the
3652  * amount of service provided to seeky processes, and thus reduce
3653  * their chances to lower the throughput. More details in the comments
3654  * on the function bfq_bfqq_expire().
3655  *
3656  * An important observation is in order: as discussed in the comments
3657  * on the function bfq_update_peak_rate(), with devices with internal
3658  * queues, it is hard if ever possible to know when and for how long
3659  * an I/O request is processed by the device (apart from the trivial
3660  * I/O pattern where a new request is dispatched only after the
3661  * previous one has been completed). This makes it hard to evaluate
3662  * the real rate at which the I/O requests of each bfq_queue are
3663  * served.  In fact, for an I/O scheduler like BFQ, serving a
3664  * bfq_queue means just dispatching its requests during its service
3665  * slot (i.e., until the budget of the queue is exhausted, or the
3666  * queue remains idle, or, finally, a timeout fires). But, during the
3667  * service slot of a bfq_queue, around 100 ms at most, the device may
3668  * be even still processing requests of bfq_queues served in previous
3669  * service slots. On the opposite end, the requests of the in-service
3670  * bfq_queue may be completed after the service slot of the queue
3671  * finishes.
3672  *
3673  * Anyway, unless more sophisticated solutions are used
3674  * (where possible), the sum of the sizes of the requests dispatched
3675  * during the service slot of a bfq_queue is probably the only
3676  * approximation available for the service received by the bfq_queue
3677  * during its service slot. And this sum is the quantity used in this
3678  * function to evaluate the I/O speed of a process.
3679  */
3680 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3681 				 bool compensate, enum bfqq_expiration reason,
3682 				 unsigned long *delta_ms)
3683 {
3684 	ktime_t delta_ktime;
3685 	u32 delta_usecs;
3686 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3687 
3688 	if (!bfq_bfqq_sync(bfqq))
3689 		return false;
3690 
3691 	if (compensate)
3692 		delta_ktime = bfqd->last_idling_start;
3693 	else
3694 		delta_ktime = ktime_get();
3695 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3696 	delta_usecs = ktime_to_us(delta_ktime);
3697 
3698 	/* don't use too short time intervals */
3699 	if (delta_usecs < 1000) {
3700 		if (blk_queue_nonrot(bfqd->queue))
3701 			 /*
3702 			  * give same worst-case guarantees as idling
3703 			  * for seeky
3704 			  */
3705 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3706 		else /* charge at least one seek */
3707 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3708 
3709 		return slow;
3710 	}
3711 
3712 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3713 
3714 	/*
3715 	 * Use only long (> 20ms) intervals to filter out excessive
3716 	 * spikes in service rate estimation.
3717 	 */
3718 	if (delta_usecs > 20000) {
3719 		/*
3720 		 * Caveat for rotational devices: processes doing I/O
3721 		 * in the slower disk zones tend to be slow(er) even
3722 		 * if not seeky. In this respect, the estimated peak
3723 		 * rate is likely to be an average over the disk
3724 		 * surface. Accordingly, to not be too harsh with
3725 		 * unlucky processes, a process is deemed slow only if
3726 		 * its rate has been lower than half of the estimated
3727 		 * peak rate.
3728 		 */
3729 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3730 	}
3731 
3732 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3733 
3734 	return slow;
3735 }
3736 
3737 /*
3738  * To be deemed as soft real-time, an application must meet two
3739  * requirements. First, the application must not require an average
3740  * bandwidth higher than the approximate bandwidth required to playback or
3741  * record a compressed high-definition video.
3742  * The next function is invoked on the completion of the last request of a
3743  * batch, to compute the next-start time instant, soft_rt_next_start, such
3744  * that, if the next request of the application does not arrive before
3745  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3746  *
3747  * The second requirement is that the request pattern of the application is
3748  * isochronous, i.e., that, after issuing a request or a batch of requests,
3749  * the application stops issuing new requests until all its pending requests
3750  * have been completed. After that, the application may issue a new batch,
3751  * and so on.
3752  * For this reason the next function is invoked to compute
3753  * soft_rt_next_start only for applications that meet this requirement,
3754  * whereas soft_rt_next_start is set to infinity for applications that do
3755  * not.
3756  *
3757  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3758  * happen to meet, occasionally or systematically, both the above
3759  * bandwidth and isochrony requirements. This may happen at least in
3760  * the following circumstances. First, if the CPU load is high. The
3761  * application may stop issuing requests while the CPUs are busy
3762  * serving other processes, then restart, then stop again for a while,
3763  * and so on. The other circumstances are related to the storage
3764  * device: the storage device is highly loaded or reaches a low-enough
3765  * throughput with the I/O of the application (e.g., because the I/O
3766  * is random and/or the device is slow). In all these cases, the
3767  * I/O of the application may be simply slowed down enough to meet
3768  * the bandwidth and isochrony requirements. To reduce the probability
3769  * that greedy applications are deemed as soft real-time in these
3770  * corner cases, a further rule is used in the computation of
3771  * soft_rt_next_start: the return value of this function is forced to
3772  * be higher than the maximum between the following two quantities.
3773  *
3774  * (a) Current time plus: (1) the maximum time for which the arrival
3775  *     of a request is waited for when a sync queue becomes idle,
3776  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3777  *     postpone for a moment the reason for adding a few extra
3778  *     jiffies; we get back to it after next item (b).  Lower-bounding
3779  *     the return value of this function with the current time plus
3780  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3781  *     because the latter issue their next request as soon as possible
3782  *     after the last one has been completed. In contrast, a soft
3783  *     real-time application spends some time processing data, after a
3784  *     batch of its requests has been completed.
3785  *
3786  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3787  *     above, greedy applications may happen to meet both the
3788  *     bandwidth and isochrony requirements under heavy CPU or
3789  *     storage-device load. In more detail, in these scenarios, these
3790  *     applications happen, only for limited time periods, to do I/O
3791  *     slowly enough to meet all the requirements described so far,
3792  *     including the filtering in above item (a). These slow-speed
3793  *     time intervals are usually interspersed between other time
3794  *     intervals during which these applications do I/O at a very high
3795  *     speed. Fortunately, exactly because of the high speed of the
3796  *     I/O in the high-speed intervals, the values returned by this
3797  *     function happen to be so high, near the end of any such
3798  *     high-speed interval, to be likely to fall *after* the end of
3799  *     the low-speed time interval that follows. These high values are
3800  *     stored in bfqq->soft_rt_next_start after each invocation of
3801  *     this function. As a consequence, if the last value of
3802  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3803  *     next value that this function may return, then, from the very
3804  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3805  *     likely to be constantly kept so high that any I/O request
3806  *     issued during the low-speed interval is considered as arriving
3807  *     to soon for the application to be deemed as soft
3808  *     real-time. Then, in the high-speed interval that follows, the
3809  *     application will not be deemed as soft real-time, just because
3810  *     it will do I/O at a high speed. And so on.
3811  *
3812  * Getting back to the filtering in item (a), in the following two
3813  * cases this filtering might be easily passed by a greedy
3814  * application, if the reference quantity was just
3815  * bfqd->bfq_slice_idle:
3816  * 1) HZ is so low that the duration of a jiffy is comparable to or
3817  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3818  *    devices with HZ=100. The time granularity may be so coarse
3819  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3820  *    is rather lower than the exact value.
3821  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3822  *    for a while, then suddenly 'jump' by several units to recover the lost
3823  *    increments. This seems to happen, e.g., inside virtual machines.
3824  * To address this issue, in the filtering in (a) we do not use as a
3825  * reference time interval just bfqd->bfq_slice_idle, but
3826  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3827  * minimum number of jiffies for which the filter seems to be quite
3828  * precise also in embedded systems and KVM/QEMU virtual machines.
3829  */
3830 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3831 						struct bfq_queue *bfqq)
3832 {
3833 	return max3(bfqq->soft_rt_next_start,
3834 		    bfqq->last_idle_bklogged +
3835 		    HZ * bfqq->service_from_backlogged /
3836 		    bfqd->bfq_wr_max_softrt_rate,
3837 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3838 }
3839 
3840 /**
3841  * bfq_bfqq_expire - expire a queue.
3842  * @bfqd: device owning the queue.
3843  * @bfqq: the queue to expire.
3844  * @compensate: if true, compensate for the time spent idling.
3845  * @reason: the reason causing the expiration.
3846  *
3847  * If the process associated with bfqq does slow I/O (e.g., because it
3848  * issues random requests), we charge bfqq with the time it has been
3849  * in service instead of the service it has received (see
3850  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3851  * a consequence, bfqq will typically get higher timestamps upon
3852  * reactivation, and hence it will be rescheduled as if it had
3853  * received more service than what it has actually received. In the
3854  * end, bfqq receives less service in proportion to how slowly its
3855  * associated process consumes its budgets (and hence how seriously it
3856  * tends to lower the throughput). In addition, this time-charging
3857  * strategy guarantees time fairness among slow processes. In
3858  * contrast, if the process associated with bfqq is not slow, we
3859  * charge bfqq exactly with the service it has received.
3860  *
3861  * Charging time to the first type of queues and the exact service to
3862  * the other has the effect of using the WF2Q+ policy to schedule the
3863  * former on a timeslice basis, without violating service domain
3864  * guarantees among the latter.
3865  */
3866 void bfq_bfqq_expire(struct bfq_data *bfqd,
3867 		     struct bfq_queue *bfqq,
3868 		     bool compensate,
3869 		     enum bfqq_expiration reason)
3870 {
3871 	bool slow;
3872 	unsigned long delta = 0;
3873 	struct bfq_entity *entity = &bfqq->entity;
3874 
3875 	/*
3876 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3877 	 */
3878 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3879 
3880 	/*
3881 	 * As above explained, charge slow (typically seeky) and
3882 	 * timed-out queues with the time and not the service
3883 	 * received, to favor sequential workloads.
3884 	 *
3885 	 * Processes doing I/O in the slower disk zones will tend to
3886 	 * be slow(er) even if not seeky. Therefore, since the
3887 	 * estimated peak rate is actually an average over the disk
3888 	 * surface, these processes may timeout just for bad luck. To
3889 	 * avoid punishing them, do not charge time to processes that
3890 	 * succeeded in consuming at least 2/3 of their budget. This
3891 	 * allows BFQ to preserve enough elasticity to still perform
3892 	 * bandwidth, and not time, distribution with little unlucky
3893 	 * or quasi-sequential processes.
3894 	 */
3895 	if (bfqq->wr_coeff == 1 &&
3896 	    (slow ||
3897 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3898 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3899 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3900 
3901 	if (reason == BFQQE_TOO_IDLE &&
3902 	    entity->service <= 2 * entity->budget / 10)
3903 		bfq_clear_bfqq_IO_bound(bfqq);
3904 
3905 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3906 		bfqq->last_wr_start_finish = jiffies;
3907 
3908 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3909 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3910 		/*
3911 		 * If we get here, and there are no outstanding
3912 		 * requests, then the request pattern is isochronous
3913 		 * (see the comments on the function
3914 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3915 		 * soft_rt_next_start. And we do it, unless bfqq is in
3916 		 * interactive weight raising. We do not do it in the
3917 		 * latter subcase, for the following reason. bfqq may
3918 		 * be conveying the I/O needed to load a soft
3919 		 * real-time application. Such an application will
3920 		 * actually exhibit a soft real-time I/O pattern after
3921 		 * it finally starts doing its job. But, if
3922 		 * soft_rt_next_start is computed here for an
3923 		 * interactive bfqq, and bfqq had received a lot of
3924 		 * service before remaining with no outstanding
3925 		 * request (likely to happen on a fast device), then
3926 		 * soft_rt_next_start would be assigned such a high
3927 		 * value that, for a very long time, bfqq would be
3928 		 * prevented from being possibly considered as soft
3929 		 * real time.
3930 		 *
3931 		 * If, instead, the queue still has outstanding
3932 		 * requests, then we have to wait for the completion
3933 		 * of all the outstanding requests to discover whether
3934 		 * the request pattern is actually isochronous.
3935 		 */
3936 		if (bfqq->dispatched == 0 &&
3937 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
3938 			bfqq->soft_rt_next_start =
3939 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3940 		else if (bfqq->dispatched > 0) {
3941 			/*
3942 			 * Schedule an update of soft_rt_next_start to when
3943 			 * the task may be discovered to be isochronous.
3944 			 */
3945 			bfq_mark_bfqq_softrt_update(bfqq);
3946 		}
3947 	}
3948 
3949 	bfq_log_bfqq(bfqd, bfqq,
3950 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3951 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3952 
3953 	/*
3954 	 * bfqq expired, so no total service time needs to be computed
3955 	 * any longer: reset state machine for measuring total service
3956 	 * times.
3957 	 */
3958 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
3959 	bfqd->waited_rq = NULL;
3960 
3961 	/*
3962 	 * Increase, decrease or leave budget unchanged according to
3963 	 * reason.
3964 	 */
3965 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3966 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
3967 		/* bfqq is gone, no more actions on it */
3968 		return;
3969 
3970 	/* mark bfqq as waiting a request only if a bic still points to it */
3971 	if (!bfq_bfqq_busy(bfqq) &&
3972 	    reason != BFQQE_BUDGET_TIMEOUT &&
3973 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3974 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3975 		/*
3976 		 * Not setting service to 0, because, if the next rq
3977 		 * arrives in time, the queue will go on receiving
3978 		 * service with this same budget (as if it never expired)
3979 		 */
3980 	} else
3981 		entity->service = 0;
3982 
3983 	/*
3984 	 * Reset the received-service counter for every parent entity.
3985 	 * Differently from what happens with bfqq->entity.service,
3986 	 * the resetting of this counter never needs to be postponed
3987 	 * for parent entities. In fact, in case bfqq may have a
3988 	 * chance to go on being served using the last, partially
3989 	 * consumed budget, bfqq->entity.service needs to be kept,
3990 	 * because if bfqq then actually goes on being served using
3991 	 * the same budget, the last value of bfqq->entity.service is
3992 	 * needed to properly decrement bfqq->entity.budget by the
3993 	 * portion already consumed. In contrast, it is not necessary
3994 	 * to keep entity->service for parent entities too, because
3995 	 * the bubble up of the new value of bfqq->entity.budget will
3996 	 * make sure that the budgets of parent entities are correct,
3997 	 * even in case bfqq and thus parent entities go on receiving
3998 	 * service with the same budget.
3999 	 */
4000 	entity = entity->parent;
4001 	for_each_entity(entity)
4002 		entity->service = 0;
4003 }
4004 
4005 /*
4006  * Budget timeout is not implemented through a dedicated timer, but
4007  * just checked on request arrivals and completions, as well as on
4008  * idle timer expirations.
4009  */
4010 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4011 {
4012 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4013 }
4014 
4015 /*
4016  * If we expire a queue that is actively waiting (i.e., with the
4017  * device idled) for the arrival of a new request, then we may incur
4018  * the timestamp misalignment problem described in the body of the
4019  * function __bfq_activate_entity. Hence we return true only if this
4020  * condition does not hold, or if the queue is slow enough to deserve
4021  * only to be kicked off for preserving a high throughput.
4022  */
4023 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4024 {
4025 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4026 		"may_budget_timeout: wait_request %d left %d timeout %d",
4027 		bfq_bfqq_wait_request(bfqq),
4028 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4029 		bfq_bfqq_budget_timeout(bfqq));
4030 
4031 	return (!bfq_bfqq_wait_request(bfqq) ||
4032 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4033 		&&
4034 		bfq_bfqq_budget_timeout(bfqq);
4035 }
4036 
4037 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4038 					     struct bfq_queue *bfqq)
4039 {
4040 	bool rot_without_queueing =
4041 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4042 		bfqq_sequential_and_IO_bound,
4043 		idling_boosts_thr;
4044 
4045 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4046 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4047 
4048 	/*
4049 	 * The next variable takes into account the cases where idling
4050 	 * boosts the throughput.
4051 	 *
4052 	 * The value of the variable is computed considering, first, that
4053 	 * idling is virtually always beneficial for the throughput if:
4054 	 * (a) the device is not NCQ-capable and rotational, or
4055 	 * (b) regardless of the presence of NCQ, the device is rotational and
4056 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4057 	 * (c) regardless of whether it is rotational, the device is
4058 	 *     not NCQ-capable and the request pattern for bfqq is
4059 	 *     I/O-bound and sequential.
4060 	 *
4061 	 * Secondly, and in contrast to the above item (b), idling an
4062 	 * NCQ-capable flash-based device would not boost the
4063 	 * throughput even with sequential I/O; rather it would lower
4064 	 * the throughput in proportion to how fast the device
4065 	 * is. Accordingly, the next variable is true if any of the
4066 	 * above conditions (a), (b) or (c) is true, and, in
4067 	 * particular, happens to be false if bfqd is an NCQ-capable
4068 	 * flash-based device.
4069 	 */
4070 	idling_boosts_thr = rot_without_queueing ||
4071 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4072 		 bfqq_sequential_and_IO_bound);
4073 
4074 	/*
4075 	 * The return value of this function is equal to that of
4076 	 * idling_boosts_thr, unless a special case holds. In this
4077 	 * special case, described below, idling may cause problems to
4078 	 * weight-raised queues.
4079 	 *
4080 	 * When the request pool is saturated (e.g., in the presence
4081 	 * of write hogs), if the processes associated with
4082 	 * non-weight-raised queues ask for requests at a lower rate,
4083 	 * then processes associated with weight-raised queues have a
4084 	 * higher probability to get a request from the pool
4085 	 * immediately (or at least soon) when they need one. Thus
4086 	 * they have a higher probability to actually get a fraction
4087 	 * of the device throughput proportional to their high
4088 	 * weight. This is especially true with NCQ-capable drives,
4089 	 * which enqueue several requests in advance, and further
4090 	 * reorder internally-queued requests.
4091 	 *
4092 	 * For this reason, we force to false the return value if
4093 	 * there are weight-raised busy queues. In this case, and if
4094 	 * bfqq is not weight-raised, this guarantees that the device
4095 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4096 	 * then idling will be guaranteed by another variable, see
4097 	 * below). Combined with the timestamping rules of BFQ (see
4098 	 * [1] for details), this behavior causes bfqq, and hence any
4099 	 * sync non-weight-raised queue, to get a lower number of
4100 	 * requests served, and thus to ask for a lower number of
4101 	 * requests from the request pool, before the busy
4102 	 * weight-raised queues get served again. This often mitigates
4103 	 * starvation problems in the presence of heavy write
4104 	 * workloads and NCQ, thereby guaranteeing a higher
4105 	 * application and system responsiveness in these hostile
4106 	 * scenarios.
4107 	 */
4108 	return idling_boosts_thr &&
4109 		bfqd->wr_busy_queues == 0;
4110 }
4111 
4112 /*
4113  * For a queue that becomes empty, device idling is allowed only if
4114  * this function returns true for that queue. As a consequence, since
4115  * device idling plays a critical role for both throughput boosting
4116  * and service guarantees, the return value of this function plays a
4117  * critical role as well.
4118  *
4119  * In a nutshell, this function returns true only if idling is
4120  * beneficial for throughput or, even if detrimental for throughput,
4121  * idling is however necessary to preserve service guarantees (low
4122  * latency, desired throughput distribution, ...). In particular, on
4123  * NCQ-capable devices, this function tries to return false, so as to
4124  * help keep the drives' internal queues full, whenever this helps the
4125  * device boost the throughput without causing any service-guarantee
4126  * issue.
4127  *
4128  * Most of the issues taken into account to get the return value of
4129  * this function are not trivial. We discuss these issues in the two
4130  * functions providing the main pieces of information needed by this
4131  * function.
4132  */
4133 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4134 {
4135 	struct bfq_data *bfqd = bfqq->bfqd;
4136 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4137 
4138 	if (unlikely(bfqd->strict_guarantees))
4139 		return true;
4140 
4141 	/*
4142 	 * Idling is performed only if slice_idle > 0. In addition, we
4143 	 * do not idle if
4144 	 * (a) bfqq is async
4145 	 * (b) bfqq is in the idle io prio class: in this case we do
4146 	 * not idle because we want to minimize the bandwidth that
4147 	 * queues in this class can steal to higher-priority queues
4148 	 */
4149 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4150 	   bfq_class_idle(bfqq))
4151 		return false;
4152 
4153 	idling_boosts_thr_with_no_issue =
4154 		idling_boosts_thr_without_issues(bfqd, bfqq);
4155 
4156 	idling_needed_for_service_guar =
4157 		idling_needed_for_service_guarantees(bfqd, bfqq);
4158 
4159 	/*
4160 	 * We have now the two components we need to compute the
4161 	 * return value of the function, which is true only if idling
4162 	 * either boosts the throughput (without issues), or is
4163 	 * necessary to preserve service guarantees.
4164 	 */
4165 	return idling_boosts_thr_with_no_issue ||
4166 		idling_needed_for_service_guar;
4167 }
4168 
4169 /*
4170  * If the in-service queue is empty but the function bfq_better_to_idle
4171  * returns true, then:
4172  * 1) the queue must remain in service and cannot be expired, and
4173  * 2) the device must be idled to wait for the possible arrival of a new
4174  *    request for the queue.
4175  * See the comments on the function bfq_better_to_idle for the reasons
4176  * why performing device idling is the best choice to boost the throughput
4177  * and preserve service guarantees when bfq_better_to_idle itself
4178  * returns true.
4179  */
4180 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4181 {
4182 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4183 }
4184 
4185 /*
4186  * This function chooses the queue from which to pick the next extra
4187  * I/O request to inject, if it finds a compatible queue. See the
4188  * comments on bfq_update_inject_limit() for details on the injection
4189  * mechanism, and for the definitions of the quantities mentioned
4190  * below.
4191  */
4192 static struct bfq_queue *
4193 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4194 {
4195 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4196 	unsigned int limit = in_serv_bfqq->inject_limit;
4197 	/*
4198 	 * If
4199 	 * - bfqq is not weight-raised and therefore does not carry
4200 	 *   time-critical I/O,
4201 	 * or
4202 	 * - regardless of whether bfqq is weight-raised, bfqq has
4203 	 *   however a long think time, during which it can absorb the
4204 	 *   effect of an appropriate number of extra I/O requests
4205 	 *   from other queues (see bfq_update_inject_limit for
4206 	 *   details on the computation of this number);
4207 	 * then injection can be performed without restrictions.
4208 	 */
4209 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4210 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4211 
4212 	/*
4213 	 * If
4214 	 * - the baseline total service time could not be sampled yet,
4215 	 *   so the inject limit happens to be still 0, and
4216 	 * - a lot of time has elapsed since the plugging of I/O
4217 	 *   dispatching started, so drive speed is being wasted
4218 	 *   significantly;
4219 	 * then temporarily raise inject limit to one request.
4220 	 */
4221 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4222 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4223 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4224 				      bfqd->bfq_slice_idle)
4225 		)
4226 		limit = 1;
4227 
4228 	if (bfqd->rq_in_driver >= limit)
4229 		return NULL;
4230 
4231 	/*
4232 	 * Linear search of the source queue for injection; but, with
4233 	 * a high probability, very few steps are needed to find a
4234 	 * candidate queue, i.e., a queue with enough budget left for
4235 	 * its next request. In fact:
4236 	 * - BFQ dynamically updates the budget of every queue so as
4237 	 *   to accommodate the expected backlog of the queue;
4238 	 * - if a queue gets all its requests dispatched as injected
4239 	 *   service, then the queue is removed from the active list
4240 	 *   (and re-added only if it gets new requests, but then it
4241 	 *   is assigned again enough budget for its new backlog).
4242 	 */
4243 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4244 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4245 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4246 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4247 		    bfq_bfqq_budget_left(bfqq)) {
4248 			/*
4249 			 * Allow for only one large in-flight request
4250 			 * on non-rotational devices, for the
4251 			 * following reason. On non-rotationl drives,
4252 			 * large requests take much longer than
4253 			 * smaller requests to be served. In addition,
4254 			 * the drive prefers to serve large requests
4255 			 * w.r.t. to small ones, if it can choose. So,
4256 			 * having more than one large requests queued
4257 			 * in the drive may easily make the next first
4258 			 * request of the in-service queue wait for so
4259 			 * long to break bfqq's service guarantees. On
4260 			 * the bright side, large requests let the
4261 			 * drive reach a very high throughput, even if
4262 			 * there is only one in-flight large request
4263 			 * at a time.
4264 			 */
4265 			if (blk_queue_nonrot(bfqd->queue) &&
4266 			    blk_rq_sectors(bfqq->next_rq) >=
4267 			    BFQQ_SECT_THR_NONROT)
4268 				limit = min_t(unsigned int, 1, limit);
4269 			else
4270 				limit = in_serv_bfqq->inject_limit;
4271 
4272 			if (bfqd->rq_in_driver < limit) {
4273 				bfqd->rqs_injected = true;
4274 				return bfqq;
4275 			}
4276 		}
4277 
4278 	return NULL;
4279 }
4280 
4281 /*
4282  * Select a queue for service.  If we have a current queue in service,
4283  * check whether to continue servicing it, or retrieve and set a new one.
4284  */
4285 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4286 {
4287 	struct bfq_queue *bfqq;
4288 	struct request *next_rq;
4289 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4290 
4291 	bfqq = bfqd->in_service_queue;
4292 	if (!bfqq)
4293 		goto new_queue;
4294 
4295 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4296 
4297 	/*
4298 	 * Do not expire bfqq for budget timeout if bfqq may be about
4299 	 * to enjoy device idling. The reason why, in this case, we
4300 	 * prevent bfqq from expiring is the same as in the comments
4301 	 * on the case where bfq_bfqq_must_idle() returns true, in
4302 	 * bfq_completed_request().
4303 	 */
4304 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4305 	    !bfq_bfqq_must_idle(bfqq))
4306 		goto expire;
4307 
4308 check_queue:
4309 	/*
4310 	 * This loop is rarely executed more than once. Even when it
4311 	 * happens, it is much more convenient to re-execute this loop
4312 	 * than to return NULL and trigger a new dispatch to get a
4313 	 * request served.
4314 	 */
4315 	next_rq = bfqq->next_rq;
4316 	/*
4317 	 * If bfqq has requests queued and it has enough budget left to
4318 	 * serve them, keep the queue, otherwise expire it.
4319 	 */
4320 	if (next_rq) {
4321 		if (bfq_serv_to_charge(next_rq, bfqq) >
4322 			bfq_bfqq_budget_left(bfqq)) {
4323 			/*
4324 			 * Expire the queue for budget exhaustion,
4325 			 * which makes sure that the next budget is
4326 			 * enough to serve the next request, even if
4327 			 * it comes from the fifo expired path.
4328 			 */
4329 			reason = BFQQE_BUDGET_EXHAUSTED;
4330 			goto expire;
4331 		} else {
4332 			/*
4333 			 * The idle timer may be pending because we may
4334 			 * not disable disk idling even when a new request
4335 			 * arrives.
4336 			 */
4337 			if (bfq_bfqq_wait_request(bfqq)) {
4338 				/*
4339 				 * If we get here: 1) at least a new request
4340 				 * has arrived but we have not disabled the
4341 				 * timer because the request was too small,
4342 				 * 2) then the block layer has unplugged
4343 				 * the device, causing the dispatch to be
4344 				 * invoked.
4345 				 *
4346 				 * Since the device is unplugged, now the
4347 				 * requests are probably large enough to
4348 				 * provide a reasonable throughput.
4349 				 * So we disable idling.
4350 				 */
4351 				bfq_clear_bfqq_wait_request(bfqq);
4352 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4353 			}
4354 			goto keep_queue;
4355 		}
4356 	}
4357 
4358 	/*
4359 	 * No requests pending. However, if the in-service queue is idling
4360 	 * for a new request, or has requests waiting for a completion and
4361 	 * may idle after their completion, then keep it anyway.
4362 	 *
4363 	 * Yet, inject service from other queues if it boosts
4364 	 * throughput and is possible.
4365 	 */
4366 	if (bfq_bfqq_wait_request(bfqq) ||
4367 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4368 		struct bfq_queue *async_bfqq =
4369 			bfqq->bic && bfqq->bic->bfqq[0] &&
4370 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4371 			bfqq->bic->bfqq[0]->next_rq ?
4372 			bfqq->bic->bfqq[0] : NULL;
4373 
4374 		/*
4375 		 * The next three mutually-exclusive ifs decide
4376 		 * whether to try injection, and choose the queue to
4377 		 * pick an I/O request from.
4378 		 *
4379 		 * The first if checks whether the process associated
4380 		 * with bfqq has also async I/O pending. If so, it
4381 		 * injects such I/O unconditionally. Injecting async
4382 		 * I/O from the same process can cause no harm to the
4383 		 * process. On the contrary, it can only increase
4384 		 * bandwidth and reduce latency for the process.
4385 		 *
4386 		 * The second if checks whether there happens to be a
4387 		 * non-empty waker queue for bfqq, i.e., a queue whose
4388 		 * I/O needs to be completed for bfqq to receive new
4389 		 * I/O. This happens, e.g., if bfqq is associated with
4390 		 * a process that does some sync. A sync generates
4391 		 * extra blocking I/O, which must be completed before
4392 		 * the process associated with bfqq can go on with its
4393 		 * I/O. If the I/O of the waker queue is not served,
4394 		 * then bfqq remains empty, and no I/O is dispatched,
4395 		 * until the idle timeout fires for bfqq. This is
4396 		 * likely to result in lower bandwidth and higher
4397 		 * latencies for bfqq, and in a severe loss of total
4398 		 * throughput. The best action to take is therefore to
4399 		 * serve the waker queue as soon as possible. So do it
4400 		 * (without relying on the third alternative below for
4401 		 * eventually serving waker_bfqq's I/O; see the last
4402 		 * paragraph for further details). This systematic
4403 		 * injection of I/O from the waker queue does not
4404 		 * cause any delay to bfqq's I/O. On the contrary,
4405 		 * next bfqq's I/O is brought forward dramatically,
4406 		 * for it is not blocked for milliseconds.
4407 		 *
4408 		 * The third if checks whether bfqq is a queue for
4409 		 * which it is better to avoid injection. It is so if
4410 		 * bfqq delivers more throughput when served without
4411 		 * any further I/O from other queues in the middle, or
4412 		 * if the service times of bfqq's I/O requests both
4413 		 * count more than overall throughput, and may be
4414 		 * easily increased by injection (this happens if bfqq
4415 		 * has a short think time). If none of these
4416 		 * conditions holds, then a candidate queue for
4417 		 * injection is looked for through
4418 		 * bfq_choose_bfqq_for_injection(). Note that the
4419 		 * latter may return NULL (for example if the inject
4420 		 * limit for bfqq is currently 0).
4421 		 *
4422 		 * NOTE: motivation for the second alternative
4423 		 *
4424 		 * Thanks to the way the inject limit is updated in
4425 		 * bfq_update_has_short_ttime(), it is rather likely
4426 		 * that, if I/O is being plugged for bfqq and the
4427 		 * waker queue has pending I/O requests that are
4428 		 * blocking bfqq's I/O, then the third alternative
4429 		 * above lets the waker queue get served before the
4430 		 * I/O-plugging timeout fires. So one may deem the
4431 		 * second alternative superfluous. It is not, because
4432 		 * the third alternative may be way less effective in
4433 		 * case of a synchronization. For two main
4434 		 * reasons. First, throughput may be low because the
4435 		 * inject limit may be too low to guarantee the same
4436 		 * amount of injected I/O, from the waker queue or
4437 		 * other queues, that the second alternative
4438 		 * guarantees (the second alternative unconditionally
4439 		 * injects a pending I/O request of the waker queue
4440 		 * for each bfq_dispatch_request()). Second, with the
4441 		 * third alternative, the duration of the plugging,
4442 		 * i.e., the time before bfqq finally receives new I/O,
4443 		 * may not be minimized, because the waker queue may
4444 		 * happen to be served only after other queues.
4445 		 */
4446 		if (async_bfqq &&
4447 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4448 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4449 		    bfq_bfqq_budget_left(async_bfqq))
4450 			bfqq = bfqq->bic->bfqq[0];
4451 		else if (bfq_bfqq_has_waker(bfqq) &&
4452 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4453 			   bfqq->next_rq &&
4454 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4455 					      bfqq->waker_bfqq) <=
4456 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4457 			)
4458 			bfqq = bfqq->waker_bfqq;
4459 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4460 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4461 			  !bfq_bfqq_has_short_ttime(bfqq)))
4462 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4463 		else
4464 			bfqq = NULL;
4465 
4466 		goto keep_queue;
4467 	}
4468 
4469 	reason = BFQQE_NO_MORE_REQUESTS;
4470 expire:
4471 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4472 new_queue:
4473 	bfqq = bfq_set_in_service_queue(bfqd);
4474 	if (bfqq) {
4475 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4476 		goto check_queue;
4477 	}
4478 keep_queue:
4479 	if (bfqq)
4480 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4481 	else
4482 		bfq_log(bfqd, "select_queue: no queue returned");
4483 
4484 	return bfqq;
4485 }
4486 
4487 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4488 {
4489 	struct bfq_entity *entity = &bfqq->entity;
4490 
4491 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4492 		bfq_log_bfqq(bfqd, bfqq,
4493 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4494 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4495 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4496 			bfqq->wr_coeff,
4497 			bfqq->entity.weight, bfqq->entity.orig_weight);
4498 
4499 		if (entity->prio_changed)
4500 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4501 
4502 		/*
4503 		 * If the queue was activated in a burst, or too much
4504 		 * time has elapsed from the beginning of this
4505 		 * weight-raising period, then end weight raising.
4506 		 */
4507 		if (bfq_bfqq_in_large_burst(bfqq))
4508 			bfq_bfqq_end_wr(bfqq);
4509 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4510 						bfqq->wr_cur_max_time)) {
4511 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4512 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4513 					       bfq_wr_duration(bfqd)))
4514 				bfq_bfqq_end_wr(bfqq);
4515 			else {
4516 				switch_back_to_interactive_wr(bfqq, bfqd);
4517 				bfqq->entity.prio_changed = 1;
4518 			}
4519 		}
4520 		if (bfqq->wr_coeff > 1 &&
4521 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4522 		    bfqq->service_from_wr > max_service_from_wr) {
4523 			/* see comments on max_service_from_wr */
4524 			bfq_bfqq_end_wr(bfqq);
4525 		}
4526 	}
4527 	/*
4528 	 * To improve latency (for this or other queues), immediately
4529 	 * update weight both if it must be raised and if it must be
4530 	 * lowered. Since, entity may be on some active tree here, and
4531 	 * might have a pending change of its ioprio class, invoke
4532 	 * next function with the last parameter unset (see the
4533 	 * comments on the function).
4534 	 */
4535 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4536 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4537 						entity, false);
4538 }
4539 
4540 /*
4541  * Dispatch next request from bfqq.
4542  */
4543 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4544 						 struct bfq_queue *bfqq)
4545 {
4546 	struct request *rq = bfqq->next_rq;
4547 	unsigned long service_to_charge;
4548 
4549 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4550 
4551 	bfq_bfqq_served(bfqq, service_to_charge);
4552 
4553 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4554 		bfqd->wait_dispatch = false;
4555 		bfqd->waited_rq = rq;
4556 	}
4557 
4558 	bfq_dispatch_remove(bfqd->queue, rq);
4559 
4560 	if (bfqq != bfqd->in_service_queue)
4561 		goto return_rq;
4562 
4563 	/*
4564 	 * If weight raising has to terminate for bfqq, then next
4565 	 * function causes an immediate update of bfqq's weight,
4566 	 * without waiting for next activation. As a consequence, on
4567 	 * expiration, bfqq will be timestamped as if has never been
4568 	 * weight-raised during this service slot, even if it has
4569 	 * received part or even most of the service as a
4570 	 * weight-raised queue. This inflates bfqq's timestamps, which
4571 	 * is beneficial, as bfqq is then more willing to leave the
4572 	 * device immediately to possible other weight-raised queues.
4573 	 */
4574 	bfq_update_wr_data(bfqd, bfqq);
4575 
4576 	/*
4577 	 * Expire bfqq, pretending that its budget expired, if bfqq
4578 	 * belongs to CLASS_IDLE and other queues are waiting for
4579 	 * service.
4580 	 */
4581 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4582 		goto return_rq;
4583 
4584 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4585 
4586 return_rq:
4587 	return rq;
4588 }
4589 
4590 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4591 {
4592 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4593 
4594 	/*
4595 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4596 	 * most a call to dispatch for nothing
4597 	 */
4598 	return !list_empty_careful(&bfqd->dispatch) ||
4599 		bfq_tot_busy_queues(bfqd) > 0;
4600 }
4601 
4602 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4603 {
4604 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4605 	struct request *rq = NULL;
4606 	struct bfq_queue *bfqq = NULL;
4607 
4608 	if (!list_empty(&bfqd->dispatch)) {
4609 		rq = list_first_entry(&bfqd->dispatch, struct request,
4610 				      queuelist);
4611 		list_del_init(&rq->queuelist);
4612 
4613 		bfqq = RQ_BFQQ(rq);
4614 
4615 		if (bfqq) {
4616 			/*
4617 			 * Increment counters here, because this
4618 			 * dispatch does not follow the standard
4619 			 * dispatch flow (where counters are
4620 			 * incremented)
4621 			 */
4622 			bfqq->dispatched++;
4623 
4624 			goto inc_in_driver_start_rq;
4625 		}
4626 
4627 		/*
4628 		 * We exploit the bfq_finish_requeue_request hook to
4629 		 * decrement rq_in_driver, but
4630 		 * bfq_finish_requeue_request will not be invoked on
4631 		 * this request. So, to avoid unbalance, just start
4632 		 * this request, without incrementing rq_in_driver. As
4633 		 * a negative consequence, rq_in_driver is deceptively
4634 		 * lower than it should be while this request is in
4635 		 * service. This may cause bfq_schedule_dispatch to be
4636 		 * invoked uselessly.
4637 		 *
4638 		 * As for implementing an exact solution, the
4639 		 * bfq_finish_requeue_request hook, if defined, is
4640 		 * probably invoked also on this request. So, by
4641 		 * exploiting this hook, we could 1) increment
4642 		 * rq_in_driver here, and 2) decrement it in
4643 		 * bfq_finish_requeue_request. Such a solution would
4644 		 * let the value of the counter be always accurate,
4645 		 * but it would entail using an extra interface
4646 		 * function. This cost seems higher than the benefit,
4647 		 * being the frequency of non-elevator-private
4648 		 * requests very low.
4649 		 */
4650 		goto start_rq;
4651 	}
4652 
4653 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4654 		bfq_tot_busy_queues(bfqd));
4655 
4656 	if (bfq_tot_busy_queues(bfqd) == 0)
4657 		goto exit;
4658 
4659 	/*
4660 	 * Force device to serve one request at a time if
4661 	 * strict_guarantees is true. Forcing this service scheme is
4662 	 * currently the ONLY way to guarantee that the request
4663 	 * service order enforced by the scheduler is respected by a
4664 	 * queueing device. Otherwise the device is free even to make
4665 	 * some unlucky request wait for as long as the device
4666 	 * wishes.
4667 	 *
4668 	 * Of course, serving one request at at time may cause loss of
4669 	 * throughput.
4670 	 */
4671 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4672 		goto exit;
4673 
4674 	bfqq = bfq_select_queue(bfqd);
4675 	if (!bfqq)
4676 		goto exit;
4677 
4678 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4679 
4680 	if (rq) {
4681 inc_in_driver_start_rq:
4682 		bfqd->rq_in_driver++;
4683 start_rq:
4684 		rq->rq_flags |= RQF_STARTED;
4685 	}
4686 exit:
4687 	return rq;
4688 }
4689 
4690 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4691 static void bfq_update_dispatch_stats(struct request_queue *q,
4692 				      struct request *rq,
4693 				      struct bfq_queue *in_serv_queue,
4694 				      bool idle_timer_disabled)
4695 {
4696 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4697 
4698 	if (!idle_timer_disabled && !bfqq)
4699 		return;
4700 
4701 	/*
4702 	 * rq and bfqq are guaranteed to exist until this function
4703 	 * ends, for the following reasons. First, rq can be
4704 	 * dispatched to the device, and then can be completed and
4705 	 * freed, only after this function ends. Second, rq cannot be
4706 	 * merged (and thus freed because of a merge) any longer,
4707 	 * because it has already started. Thus rq cannot be freed
4708 	 * before this function ends, and, since rq has a reference to
4709 	 * bfqq, the same guarantee holds for bfqq too.
4710 	 *
4711 	 * In addition, the following queue lock guarantees that
4712 	 * bfqq_group(bfqq) exists as well.
4713 	 */
4714 	spin_lock_irq(&q->queue_lock);
4715 	if (idle_timer_disabled)
4716 		/*
4717 		 * Since the idle timer has been disabled,
4718 		 * in_serv_queue contained some request when
4719 		 * __bfq_dispatch_request was invoked above, which
4720 		 * implies that rq was picked exactly from
4721 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4722 		 * therefore guaranteed to exist because of the above
4723 		 * arguments.
4724 		 */
4725 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4726 	if (bfqq) {
4727 		struct bfq_group *bfqg = bfqq_group(bfqq);
4728 
4729 		bfqg_stats_update_avg_queue_size(bfqg);
4730 		bfqg_stats_set_start_empty_time(bfqg);
4731 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4732 	}
4733 	spin_unlock_irq(&q->queue_lock);
4734 }
4735 #else
4736 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4737 					     struct request *rq,
4738 					     struct bfq_queue *in_serv_queue,
4739 					     bool idle_timer_disabled) {}
4740 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4741 
4742 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4743 {
4744 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4745 	struct request *rq;
4746 	struct bfq_queue *in_serv_queue;
4747 	bool waiting_rq, idle_timer_disabled;
4748 
4749 	spin_lock_irq(&bfqd->lock);
4750 
4751 	in_serv_queue = bfqd->in_service_queue;
4752 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4753 
4754 	rq = __bfq_dispatch_request(hctx);
4755 
4756 	idle_timer_disabled =
4757 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4758 
4759 	spin_unlock_irq(&bfqd->lock);
4760 
4761 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4762 				  idle_timer_disabled);
4763 
4764 	return rq;
4765 }
4766 
4767 /*
4768  * Task holds one reference to the queue, dropped when task exits.  Each rq
4769  * in-flight on this queue also holds a reference, dropped when rq is freed.
4770  *
4771  * Scheduler lock must be held here. Recall not to use bfqq after calling
4772  * this function on it.
4773  */
4774 void bfq_put_queue(struct bfq_queue *bfqq)
4775 {
4776 	struct bfq_queue *item;
4777 	struct hlist_node *n;
4778 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4779 	struct bfq_group *bfqg = bfqq_group(bfqq);
4780 #endif
4781 
4782 	if (bfqq->bfqd)
4783 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4784 			     bfqq, bfqq->ref);
4785 
4786 	bfqq->ref--;
4787 	if (bfqq->ref)
4788 		return;
4789 
4790 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4791 		hlist_del_init(&bfqq->burst_list_node);
4792 		/*
4793 		 * Decrement also burst size after the removal, if the
4794 		 * process associated with bfqq is exiting, and thus
4795 		 * does not contribute to the burst any longer. This
4796 		 * decrement helps filter out false positives of large
4797 		 * bursts, when some short-lived process (often due to
4798 		 * the execution of commands by some service) happens
4799 		 * to start and exit while a complex application is
4800 		 * starting, and thus spawning several processes that
4801 		 * do I/O (and that *must not* be treated as a large
4802 		 * burst, see comments on bfq_handle_burst).
4803 		 *
4804 		 * In particular, the decrement is performed only if:
4805 		 * 1) bfqq is not a merged queue, because, if it is,
4806 		 * then this free of bfqq is not triggered by the exit
4807 		 * of the process bfqq is associated with, but exactly
4808 		 * by the fact that bfqq has just been merged.
4809 		 * 2) burst_size is greater than 0, to handle
4810 		 * unbalanced decrements. Unbalanced decrements may
4811 		 * happen in te following case: bfqq is inserted into
4812 		 * the current burst list--without incrementing
4813 		 * bust_size--because of a split, but the current
4814 		 * burst list is not the burst list bfqq belonged to
4815 		 * (see comments on the case of a split in
4816 		 * bfq_set_request).
4817 		 */
4818 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4819 			bfqq->bfqd->burst_size--;
4820 	}
4821 
4822 	/*
4823 	 * bfqq does not exist any longer, so it cannot be woken by
4824 	 * any other queue, and cannot wake any other queue. Then bfqq
4825 	 * must be removed from the woken list of its possible waker
4826 	 * queue, and all queues in the woken list of bfqq must stop
4827 	 * having a waker queue. Strictly speaking, these updates
4828 	 * should be performed when bfqq remains with no I/O source
4829 	 * attached to it, which happens before bfqq gets freed. In
4830 	 * particular, this happens when the last process associated
4831 	 * with bfqq exits or gets associated with a different
4832 	 * queue. However, both events lead to bfqq being freed soon,
4833 	 * and dangling references would come out only after bfqq gets
4834 	 * freed. So these updates are done here, as a simple and safe
4835 	 * way to handle all cases.
4836 	 */
4837 	/* remove bfqq from woken list */
4838 	if (!hlist_unhashed(&bfqq->woken_list_node))
4839 		hlist_del_init(&bfqq->woken_list_node);
4840 
4841 	/* reset waker for all queues in woken list */
4842 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4843 				  woken_list_node) {
4844 		item->waker_bfqq = NULL;
4845 		bfq_clear_bfqq_has_waker(item);
4846 		hlist_del_init(&item->woken_list_node);
4847 	}
4848 
4849 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4850 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4851 
4852 	kmem_cache_free(bfq_pool, bfqq);
4853 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4854 	bfqg_and_blkg_put(bfqg);
4855 #endif
4856 }
4857 
4858 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4859 {
4860 	struct bfq_queue *__bfqq, *next;
4861 
4862 	/*
4863 	 * If this queue was scheduled to merge with another queue, be
4864 	 * sure to drop the reference taken on that queue (and others in
4865 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4866 	 */
4867 	__bfqq = bfqq->new_bfqq;
4868 	while (__bfqq) {
4869 		if (__bfqq == bfqq)
4870 			break;
4871 		next = __bfqq->new_bfqq;
4872 		bfq_put_queue(__bfqq);
4873 		__bfqq = next;
4874 	}
4875 }
4876 
4877 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4878 {
4879 	if (bfqq == bfqd->in_service_queue) {
4880 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4881 		bfq_schedule_dispatch(bfqd);
4882 	}
4883 
4884 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4885 
4886 	bfq_put_cooperator(bfqq);
4887 
4888 	bfq_put_queue(bfqq); /* release process reference */
4889 }
4890 
4891 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4892 {
4893 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4894 	struct bfq_data *bfqd;
4895 
4896 	if (bfqq)
4897 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4898 
4899 	if (bfqq && bfqd) {
4900 		unsigned long flags;
4901 
4902 		spin_lock_irqsave(&bfqd->lock, flags);
4903 		bfqq->bic = NULL;
4904 		bfq_exit_bfqq(bfqd, bfqq);
4905 		bic_set_bfqq(bic, NULL, is_sync);
4906 		spin_unlock_irqrestore(&bfqd->lock, flags);
4907 	}
4908 }
4909 
4910 static void bfq_exit_icq(struct io_cq *icq)
4911 {
4912 	struct bfq_io_cq *bic = icq_to_bic(icq);
4913 
4914 	bfq_exit_icq_bfqq(bic, true);
4915 	bfq_exit_icq_bfqq(bic, false);
4916 }
4917 
4918 /*
4919  * Update the entity prio values; note that the new values will not
4920  * be used until the next (re)activation.
4921  */
4922 static void
4923 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4924 {
4925 	struct task_struct *tsk = current;
4926 	int ioprio_class;
4927 	struct bfq_data *bfqd = bfqq->bfqd;
4928 
4929 	if (!bfqd)
4930 		return;
4931 
4932 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4933 	switch (ioprio_class) {
4934 	default:
4935 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4936 			"bfq: bad prio class %d\n", ioprio_class);
4937 		/* fall through */
4938 	case IOPRIO_CLASS_NONE:
4939 		/*
4940 		 * No prio set, inherit CPU scheduling settings.
4941 		 */
4942 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4943 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4944 		break;
4945 	case IOPRIO_CLASS_RT:
4946 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4947 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4948 		break;
4949 	case IOPRIO_CLASS_BE:
4950 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4951 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4952 		break;
4953 	case IOPRIO_CLASS_IDLE:
4954 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4955 		bfqq->new_ioprio = 7;
4956 		break;
4957 	}
4958 
4959 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4960 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4961 			bfqq->new_ioprio);
4962 		bfqq->new_ioprio = IOPRIO_BE_NR;
4963 	}
4964 
4965 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4966 	bfqq->entity.prio_changed = 1;
4967 }
4968 
4969 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4970 				       struct bio *bio, bool is_sync,
4971 				       struct bfq_io_cq *bic);
4972 
4973 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4974 {
4975 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4976 	struct bfq_queue *bfqq;
4977 	int ioprio = bic->icq.ioc->ioprio;
4978 
4979 	/*
4980 	 * This condition may trigger on a newly created bic, be sure to
4981 	 * drop the lock before returning.
4982 	 */
4983 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4984 		return;
4985 
4986 	bic->ioprio = ioprio;
4987 
4988 	bfqq = bic_to_bfqq(bic, false);
4989 	if (bfqq) {
4990 		/* release process reference on this queue */
4991 		bfq_put_queue(bfqq);
4992 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4993 		bic_set_bfqq(bic, bfqq, false);
4994 	}
4995 
4996 	bfqq = bic_to_bfqq(bic, true);
4997 	if (bfqq)
4998 		bfq_set_next_ioprio_data(bfqq, bic);
4999 }
5000 
5001 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5002 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5003 {
5004 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5005 	INIT_LIST_HEAD(&bfqq->fifo);
5006 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5007 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5008 	INIT_HLIST_HEAD(&bfqq->woken_list);
5009 
5010 	bfqq->ref = 0;
5011 	bfqq->bfqd = bfqd;
5012 
5013 	if (bic)
5014 		bfq_set_next_ioprio_data(bfqq, bic);
5015 
5016 	if (is_sync) {
5017 		/*
5018 		 * No need to mark as has_short_ttime if in
5019 		 * idle_class, because no device idling is performed
5020 		 * for queues in idle class
5021 		 */
5022 		if (!bfq_class_idle(bfqq))
5023 			/* tentatively mark as has_short_ttime */
5024 			bfq_mark_bfqq_has_short_ttime(bfqq);
5025 		bfq_mark_bfqq_sync(bfqq);
5026 		bfq_mark_bfqq_just_created(bfqq);
5027 	} else
5028 		bfq_clear_bfqq_sync(bfqq);
5029 
5030 	/* set end request to minus infinity from now */
5031 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5032 
5033 	bfq_mark_bfqq_IO_bound(bfqq);
5034 
5035 	bfqq->pid = pid;
5036 
5037 	/* Tentative initial value to trade off between thr and lat */
5038 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5039 	bfqq->budget_timeout = bfq_smallest_from_now();
5040 
5041 	bfqq->wr_coeff = 1;
5042 	bfqq->last_wr_start_finish = jiffies;
5043 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5044 	bfqq->split_time = bfq_smallest_from_now();
5045 
5046 	/*
5047 	 * To not forget the possibly high bandwidth consumed by a
5048 	 * process/queue in the recent past,
5049 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5050 	 * to the current value of bfqq->soft_rt_next_start (see
5051 	 * comments on bfq_bfqq_softrt_next_start).  Set
5052 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5053 	 * no bandwidth so far.
5054 	 */
5055 	bfqq->soft_rt_next_start = jiffies;
5056 
5057 	/* first request is almost certainly seeky */
5058 	bfqq->seek_history = 1;
5059 }
5060 
5061 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5062 					       struct bfq_group *bfqg,
5063 					       int ioprio_class, int ioprio)
5064 {
5065 	switch (ioprio_class) {
5066 	case IOPRIO_CLASS_RT:
5067 		return &bfqg->async_bfqq[0][ioprio];
5068 	case IOPRIO_CLASS_NONE:
5069 		ioprio = IOPRIO_NORM;
5070 		/* fall through */
5071 	case IOPRIO_CLASS_BE:
5072 		return &bfqg->async_bfqq[1][ioprio];
5073 	case IOPRIO_CLASS_IDLE:
5074 		return &bfqg->async_idle_bfqq;
5075 	default:
5076 		return NULL;
5077 	}
5078 }
5079 
5080 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5081 				       struct bio *bio, bool is_sync,
5082 				       struct bfq_io_cq *bic)
5083 {
5084 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5085 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5086 	struct bfq_queue **async_bfqq = NULL;
5087 	struct bfq_queue *bfqq;
5088 	struct bfq_group *bfqg;
5089 
5090 	rcu_read_lock();
5091 
5092 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5093 	if (!bfqg) {
5094 		bfqq = &bfqd->oom_bfqq;
5095 		goto out;
5096 	}
5097 
5098 	if (!is_sync) {
5099 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5100 						  ioprio);
5101 		bfqq = *async_bfqq;
5102 		if (bfqq)
5103 			goto out;
5104 	}
5105 
5106 	bfqq = kmem_cache_alloc_node(bfq_pool,
5107 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5108 				     bfqd->queue->node);
5109 
5110 	if (bfqq) {
5111 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5112 			      is_sync);
5113 		bfq_init_entity(&bfqq->entity, bfqg);
5114 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5115 	} else {
5116 		bfqq = &bfqd->oom_bfqq;
5117 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5118 		goto out;
5119 	}
5120 
5121 	/*
5122 	 * Pin the queue now that it's allocated, scheduler exit will
5123 	 * prune it.
5124 	 */
5125 	if (async_bfqq) {
5126 		bfqq->ref++; /*
5127 			      * Extra group reference, w.r.t. sync
5128 			      * queue. This extra reference is removed
5129 			      * only if bfqq->bfqg disappears, to
5130 			      * guarantee that this queue is not freed
5131 			      * until its group goes away.
5132 			      */
5133 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5134 			     bfqq, bfqq->ref);
5135 		*async_bfqq = bfqq;
5136 	}
5137 
5138 out:
5139 	bfqq->ref++; /* get a process reference to this queue */
5140 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5141 	rcu_read_unlock();
5142 	return bfqq;
5143 }
5144 
5145 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5146 				    struct bfq_queue *bfqq)
5147 {
5148 	struct bfq_ttime *ttime = &bfqq->ttime;
5149 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5150 
5151 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5152 
5153 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5154 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5155 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5156 				     ttime->ttime_samples);
5157 }
5158 
5159 static void
5160 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5161 		       struct request *rq)
5162 {
5163 	bfqq->seek_history <<= 1;
5164 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5165 
5166 	if (bfqq->wr_coeff > 1 &&
5167 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5168 	    BFQQ_TOTALLY_SEEKY(bfqq))
5169 		bfq_bfqq_end_wr(bfqq);
5170 }
5171 
5172 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5173 				       struct bfq_queue *bfqq,
5174 				       struct bfq_io_cq *bic)
5175 {
5176 	bool has_short_ttime = true, state_changed;
5177 
5178 	/*
5179 	 * No need to update has_short_ttime if bfqq is async or in
5180 	 * idle io prio class, or if bfq_slice_idle is zero, because
5181 	 * no device idling is performed for bfqq in this case.
5182 	 */
5183 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5184 	    bfqd->bfq_slice_idle == 0)
5185 		return;
5186 
5187 	/* Idle window just restored, statistics are meaningless. */
5188 	if (time_is_after_eq_jiffies(bfqq->split_time +
5189 				     bfqd->bfq_wr_min_idle_time))
5190 		return;
5191 
5192 	/* Think time is infinite if no process is linked to
5193 	 * bfqq. Otherwise check average think time to
5194 	 * decide whether to mark as has_short_ttime
5195 	 */
5196 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5197 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5198 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5199 		has_short_ttime = false;
5200 
5201 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5202 
5203 	if (has_short_ttime)
5204 		bfq_mark_bfqq_has_short_ttime(bfqq);
5205 	else
5206 		bfq_clear_bfqq_has_short_ttime(bfqq);
5207 
5208 	/*
5209 	 * Until the base value for the total service time gets
5210 	 * finally computed for bfqq, the inject limit does depend on
5211 	 * the think-time state (short|long). In particular, the limit
5212 	 * is 0 or 1 if the think time is deemed, respectively, as
5213 	 * short or long (details in the comments in
5214 	 * bfq_update_inject_limit()). Accordingly, the next
5215 	 * instructions reset the inject limit if the think-time state
5216 	 * has changed and the above base value is still to be
5217 	 * computed.
5218 	 *
5219 	 * However, the reset is performed only if more than 100 ms
5220 	 * have elapsed since the last update of the inject limit, or
5221 	 * (inclusive) if the change is from short to long think
5222 	 * time. The reason for this waiting is as follows.
5223 	 *
5224 	 * bfqq may have a long think time because of a
5225 	 * synchronization with some other queue, i.e., because the
5226 	 * I/O of some other queue may need to be completed for bfqq
5227 	 * to receive new I/O. Details in the comments on the choice
5228 	 * of the queue for injection in bfq_select_queue().
5229 	 *
5230 	 * As stressed in those comments, if such a synchronization is
5231 	 * actually in place, then, without injection on bfqq, the
5232 	 * blocking I/O cannot happen to served while bfqq is in
5233 	 * service. As a consequence, if bfqq is granted
5234 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5235 	 * is dispatched, until the idle timeout fires. This is likely
5236 	 * to result in lower bandwidth and higher latencies for bfqq,
5237 	 * and in a severe loss of total throughput.
5238 	 *
5239 	 * On the opposite end, a non-zero inject limit may allow the
5240 	 * I/O that blocks bfqq to be executed soon, and therefore
5241 	 * bfqq to receive new I/O soon.
5242 	 *
5243 	 * But, if the blocking gets actually eliminated, then the
5244 	 * next think-time sample for bfqq may be very low. This in
5245 	 * turn may cause bfqq's think time to be deemed
5246 	 * short. Without the 100 ms barrier, this new state change
5247 	 * would cause the body of the next if to be executed
5248 	 * immediately. But this would set to 0 the inject
5249 	 * limit. Without injection, the blocking I/O would cause the
5250 	 * think time of bfqq to become long again, and therefore the
5251 	 * inject limit to be raised again, and so on. The only effect
5252 	 * of such a steady oscillation between the two think-time
5253 	 * states would be to prevent effective injection on bfqq.
5254 	 *
5255 	 * In contrast, if the inject limit is not reset during such a
5256 	 * long time interval as 100 ms, then the number of short
5257 	 * think time samples can grow significantly before the reset
5258 	 * is performed. As a consequence, the think time state can
5259 	 * become stable before the reset. Therefore there will be no
5260 	 * state change when the 100 ms elapse, and no reset of the
5261 	 * inject limit. The inject limit remains steadily equal to 1
5262 	 * both during and after the 100 ms. So injection can be
5263 	 * performed at all times, and throughput gets boosted.
5264 	 *
5265 	 * An inject limit equal to 1 is however in conflict, in
5266 	 * general, with the fact that the think time of bfqq is
5267 	 * short, because injection may be likely to delay bfqq's I/O
5268 	 * (as explained in the comments in
5269 	 * bfq_update_inject_limit()). But this does not happen in
5270 	 * this special case, because bfqq's low think time is due to
5271 	 * an effective handling of a synchronization, through
5272 	 * injection. In this special case, bfqq's I/O does not get
5273 	 * delayed by injection; on the contrary, bfqq's I/O is
5274 	 * brought forward, because it is not blocked for
5275 	 * milliseconds.
5276 	 *
5277 	 * In addition, serving the blocking I/O much sooner, and much
5278 	 * more frequently than once per I/O-plugging timeout, makes
5279 	 * it much quicker to detect a waker queue (the concept of
5280 	 * waker queue is defined in the comments in
5281 	 * bfq_add_request()). This makes it possible to start sooner
5282 	 * to boost throughput more effectively, by injecting the I/O
5283 	 * of the waker queue unconditionally on every
5284 	 * bfq_dispatch_request().
5285 	 *
5286 	 * One last, important benefit of not resetting the inject
5287 	 * limit before 100 ms is that, during this time interval, the
5288 	 * base value for the total service time is likely to get
5289 	 * finally computed for bfqq, freeing the inject limit from
5290 	 * its relation with the think time.
5291 	 */
5292 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5293 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5294 				      msecs_to_jiffies(100)) ||
5295 	     !has_short_ttime))
5296 		bfq_reset_inject_limit(bfqd, bfqq);
5297 }
5298 
5299 /*
5300  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5301  * something we should do about it.
5302  */
5303 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5304 			    struct request *rq)
5305 {
5306 	if (rq->cmd_flags & REQ_META)
5307 		bfqq->meta_pending++;
5308 
5309 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5310 
5311 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5312 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5313 				 blk_rq_sectors(rq) < 32;
5314 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5315 
5316 		/*
5317 		 * There is just this request queued: if
5318 		 * - the request is small, and
5319 		 * - we are idling to boost throughput, and
5320 		 * - the queue is not to be expired,
5321 		 * then just exit.
5322 		 *
5323 		 * In this way, if the device is being idled to wait
5324 		 * for a new request from the in-service queue, we
5325 		 * avoid unplugging the device and committing the
5326 		 * device to serve just a small request. In contrast
5327 		 * we wait for the block layer to decide when to
5328 		 * unplug the device: hopefully, new requests will be
5329 		 * merged to this one quickly, then the device will be
5330 		 * unplugged and larger requests will be dispatched.
5331 		 */
5332 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5333 		    !budget_timeout)
5334 			return;
5335 
5336 		/*
5337 		 * A large enough request arrived, or idling is being
5338 		 * performed to preserve service guarantees, or
5339 		 * finally the queue is to be expired: in all these
5340 		 * cases disk idling is to be stopped, so clear
5341 		 * wait_request flag and reset timer.
5342 		 */
5343 		bfq_clear_bfqq_wait_request(bfqq);
5344 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5345 
5346 		/*
5347 		 * The queue is not empty, because a new request just
5348 		 * arrived. Hence we can safely expire the queue, in
5349 		 * case of budget timeout, without risking that the
5350 		 * timestamps of the queue are not updated correctly.
5351 		 * See [1] for more details.
5352 		 */
5353 		if (budget_timeout)
5354 			bfq_bfqq_expire(bfqd, bfqq, false,
5355 					BFQQE_BUDGET_TIMEOUT);
5356 	}
5357 }
5358 
5359 /* returns true if it causes the idle timer to be disabled */
5360 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5361 {
5362 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5363 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5364 	bool waiting, idle_timer_disabled = false;
5365 
5366 	if (new_bfqq) {
5367 		/*
5368 		 * Release the request's reference to the old bfqq
5369 		 * and make sure one is taken to the shared queue.
5370 		 */
5371 		new_bfqq->allocated++;
5372 		bfqq->allocated--;
5373 		new_bfqq->ref++;
5374 		/*
5375 		 * If the bic associated with the process
5376 		 * issuing this request still points to bfqq
5377 		 * (and thus has not been already redirected
5378 		 * to new_bfqq or even some other bfq_queue),
5379 		 * then complete the merge and redirect it to
5380 		 * new_bfqq.
5381 		 */
5382 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5383 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5384 					bfqq, new_bfqq);
5385 
5386 		bfq_clear_bfqq_just_created(bfqq);
5387 		/*
5388 		 * rq is about to be enqueued into new_bfqq,
5389 		 * release rq reference on bfqq
5390 		 */
5391 		bfq_put_queue(bfqq);
5392 		rq->elv.priv[1] = new_bfqq;
5393 		bfqq = new_bfqq;
5394 	}
5395 
5396 	bfq_update_io_thinktime(bfqd, bfqq);
5397 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5398 	bfq_update_io_seektime(bfqd, bfqq, rq);
5399 
5400 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5401 	bfq_add_request(rq);
5402 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5403 
5404 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5405 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5406 
5407 	bfq_rq_enqueued(bfqd, bfqq, rq);
5408 
5409 	return idle_timer_disabled;
5410 }
5411 
5412 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5413 static void bfq_update_insert_stats(struct request_queue *q,
5414 				    struct bfq_queue *bfqq,
5415 				    bool idle_timer_disabled,
5416 				    unsigned int cmd_flags)
5417 {
5418 	if (!bfqq)
5419 		return;
5420 
5421 	/*
5422 	 * bfqq still exists, because it can disappear only after
5423 	 * either it is merged with another queue, or the process it
5424 	 * is associated with exits. But both actions must be taken by
5425 	 * the same process currently executing this flow of
5426 	 * instructions.
5427 	 *
5428 	 * In addition, the following queue lock guarantees that
5429 	 * bfqq_group(bfqq) exists as well.
5430 	 */
5431 	spin_lock_irq(&q->queue_lock);
5432 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5433 	if (idle_timer_disabled)
5434 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5435 	spin_unlock_irq(&q->queue_lock);
5436 }
5437 #else
5438 static inline void bfq_update_insert_stats(struct request_queue *q,
5439 					   struct bfq_queue *bfqq,
5440 					   bool idle_timer_disabled,
5441 					   unsigned int cmd_flags) {}
5442 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5443 
5444 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5445 			       bool at_head)
5446 {
5447 	struct request_queue *q = hctx->queue;
5448 	struct bfq_data *bfqd = q->elevator->elevator_data;
5449 	struct bfq_queue *bfqq;
5450 	bool idle_timer_disabled = false;
5451 	unsigned int cmd_flags;
5452 
5453 	spin_lock_irq(&bfqd->lock);
5454 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5455 		spin_unlock_irq(&bfqd->lock);
5456 		return;
5457 	}
5458 
5459 	spin_unlock_irq(&bfqd->lock);
5460 
5461 	blk_mq_sched_request_inserted(rq);
5462 
5463 	spin_lock_irq(&bfqd->lock);
5464 	bfqq = bfq_init_rq(rq);
5465 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5466 		if (at_head)
5467 			list_add(&rq->queuelist, &bfqd->dispatch);
5468 		else
5469 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5470 	} else {
5471 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5472 		/*
5473 		 * Update bfqq, because, if a queue merge has occurred
5474 		 * in __bfq_insert_request, then rq has been
5475 		 * redirected into a new queue.
5476 		 */
5477 		bfqq = RQ_BFQQ(rq);
5478 
5479 		if (rq_mergeable(rq)) {
5480 			elv_rqhash_add(q, rq);
5481 			if (!q->last_merge)
5482 				q->last_merge = rq;
5483 		}
5484 	}
5485 
5486 	/*
5487 	 * Cache cmd_flags before releasing scheduler lock, because rq
5488 	 * may disappear afterwards (for example, because of a request
5489 	 * merge).
5490 	 */
5491 	cmd_flags = rq->cmd_flags;
5492 
5493 	spin_unlock_irq(&bfqd->lock);
5494 
5495 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5496 				cmd_flags);
5497 }
5498 
5499 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5500 				struct list_head *list, bool at_head)
5501 {
5502 	while (!list_empty(list)) {
5503 		struct request *rq;
5504 
5505 		rq = list_first_entry(list, struct request, queuelist);
5506 		list_del_init(&rq->queuelist);
5507 		bfq_insert_request(hctx, rq, at_head);
5508 	}
5509 }
5510 
5511 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5512 {
5513 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5514 
5515 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5516 				       bfqd->rq_in_driver);
5517 
5518 	if (bfqd->hw_tag == 1)
5519 		return;
5520 
5521 	/*
5522 	 * This sample is valid if the number of outstanding requests
5523 	 * is large enough to allow a queueing behavior.  Note that the
5524 	 * sum is not exact, as it's not taking into account deactivated
5525 	 * requests.
5526 	 */
5527 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5528 		return;
5529 
5530 	/*
5531 	 * If active queue hasn't enough requests and can idle, bfq might not
5532 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5533 	 * case
5534 	 */
5535 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5536 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5537 	    BFQ_HW_QUEUE_THRESHOLD &&
5538 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5539 		return;
5540 
5541 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5542 		return;
5543 
5544 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5545 	bfqd->max_rq_in_driver = 0;
5546 	bfqd->hw_tag_samples = 0;
5547 
5548 	bfqd->nonrot_with_queueing =
5549 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5550 }
5551 
5552 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5553 {
5554 	u64 now_ns;
5555 	u32 delta_us;
5556 
5557 	bfq_update_hw_tag(bfqd);
5558 
5559 	bfqd->rq_in_driver--;
5560 	bfqq->dispatched--;
5561 
5562 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5563 		/*
5564 		 * Set budget_timeout (which we overload to store the
5565 		 * time at which the queue remains with no backlog and
5566 		 * no outstanding request; used by the weight-raising
5567 		 * mechanism).
5568 		 */
5569 		bfqq->budget_timeout = jiffies;
5570 
5571 		bfq_weights_tree_remove(bfqd, bfqq);
5572 	}
5573 
5574 	now_ns = ktime_get_ns();
5575 
5576 	bfqq->ttime.last_end_request = now_ns;
5577 
5578 	/*
5579 	 * Using us instead of ns, to get a reasonable precision in
5580 	 * computing rate in next check.
5581 	 */
5582 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5583 
5584 	/*
5585 	 * If the request took rather long to complete, and, according
5586 	 * to the maximum request size recorded, this completion latency
5587 	 * implies that the request was certainly served at a very low
5588 	 * rate (less than 1M sectors/sec), then the whole observation
5589 	 * interval that lasts up to this time instant cannot be a
5590 	 * valid time interval for computing a new peak rate.  Invoke
5591 	 * bfq_update_rate_reset to have the following three steps
5592 	 * taken:
5593 	 * - close the observation interval at the last (previous)
5594 	 *   request dispatch or completion
5595 	 * - compute rate, if possible, for that observation interval
5596 	 * - reset to zero samples, which will trigger a proper
5597 	 *   re-initialization of the observation interval on next
5598 	 *   dispatch
5599 	 */
5600 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5601 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5602 			1UL<<(BFQ_RATE_SHIFT - 10))
5603 		bfq_update_rate_reset(bfqd, NULL);
5604 	bfqd->last_completion = now_ns;
5605 	bfqd->last_completed_rq_bfqq = bfqq;
5606 
5607 	/*
5608 	 * If we are waiting to discover whether the request pattern
5609 	 * of the task associated with the queue is actually
5610 	 * isochronous, and both requisites for this condition to hold
5611 	 * are now satisfied, then compute soft_rt_next_start (see the
5612 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5613 	 * do not compute soft_rt_next_start if bfqq is in interactive
5614 	 * weight raising (see the comments in bfq_bfqq_expire() for
5615 	 * an explanation). We schedule this delayed update when bfqq
5616 	 * expires, if it still has in-flight requests.
5617 	 */
5618 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5619 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5620 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5621 		bfqq->soft_rt_next_start =
5622 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5623 
5624 	/*
5625 	 * If this is the in-service queue, check if it needs to be expired,
5626 	 * or if we want to idle in case it has no pending requests.
5627 	 */
5628 	if (bfqd->in_service_queue == bfqq) {
5629 		if (bfq_bfqq_must_idle(bfqq)) {
5630 			if (bfqq->dispatched == 0)
5631 				bfq_arm_slice_timer(bfqd);
5632 			/*
5633 			 * If we get here, we do not expire bfqq, even
5634 			 * if bfqq was in budget timeout or had no
5635 			 * more requests (as controlled in the next
5636 			 * conditional instructions). The reason for
5637 			 * not expiring bfqq is as follows.
5638 			 *
5639 			 * Here bfqq->dispatched > 0 holds, but
5640 			 * bfq_bfqq_must_idle() returned true. This
5641 			 * implies that, even if no request arrives
5642 			 * for bfqq before bfqq->dispatched reaches 0,
5643 			 * bfqq will, however, not be expired on the
5644 			 * completion event that causes bfqq->dispatch
5645 			 * to reach zero. In contrast, on this event,
5646 			 * bfqq will start enjoying device idling
5647 			 * (I/O-dispatch plugging).
5648 			 *
5649 			 * But, if we expired bfqq here, bfqq would
5650 			 * not have the chance to enjoy device idling
5651 			 * when bfqq->dispatched finally reaches
5652 			 * zero. This would expose bfqq to violation
5653 			 * of its reserved service guarantees.
5654 			 */
5655 			return;
5656 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5657 			bfq_bfqq_expire(bfqd, bfqq, false,
5658 					BFQQE_BUDGET_TIMEOUT);
5659 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5660 			 (bfqq->dispatched == 0 ||
5661 			  !bfq_better_to_idle(bfqq)))
5662 			bfq_bfqq_expire(bfqd, bfqq, false,
5663 					BFQQE_NO_MORE_REQUESTS);
5664 	}
5665 
5666 	if (!bfqd->rq_in_driver)
5667 		bfq_schedule_dispatch(bfqd);
5668 }
5669 
5670 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5671 {
5672 	bfqq->allocated--;
5673 
5674 	bfq_put_queue(bfqq);
5675 }
5676 
5677 /*
5678  * The processes associated with bfqq may happen to generate their
5679  * cumulative I/O at a lower rate than the rate at which the device
5680  * could serve the same I/O. This is rather probable, e.g., if only
5681  * one process is associated with bfqq and the device is an SSD. It
5682  * results in bfqq becoming often empty while in service. In this
5683  * respect, if BFQ is allowed to switch to another queue when bfqq
5684  * remains empty, then the device goes on being fed with I/O requests,
5685  * and the throughput is not affected. In contrast, if BFQ is not
5686  * allowed to switch to another queue---because bfqq is sync and
5687  * I/O-dispatch needs to be plugged while bfqq is temporarily
5688  * empty---then, during the service of bfqq, there will be frequent
5689  * "service holes", i.e., time intervals during which bfqq gets empty
5690  * and the device can only consume the I/O already queued in its
5691  * hardware queues. During service holes, the device may even get to
5692  * remaining idle. In the end, during the service of bfqq, the device
5693  * is driven at a lower speed than the one it can reach with the kind
5694  * of I/O flowing through bfqq.
5695  *
5696  * To counter this loss of throughput, BFQ implements a "request
5697  * injection mechanism", which tries to fill the above service holes
5698  * with I/O requests taken from other queues. The hard part in this
5699  * mechanism is finding the right amount of I/O to inject, so as to
5700  * both boost throughput and not break bfqq's bandwidth and latency
5701  * guarantees. In this respect, the mechanism maintains a per-queue
5702  * inject limit, computed as below. While bfqq is empty, the injection
5703  * mechanism dispatches extra I/O requests only until the total number
5704  * of I/O requests in flight---i.e., already dispatched but not yet
5705  * completed---remains lower than this limit.
5706  *
5707  * A first definition comes in handy to introduce the algorithm by
5708  * which the inject limit is computed.  We define as first request for
5709  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5710  * service, and causes bfqq to switch from empty to non-empty. The
5711  * algorithm updates the limit as a function of the effect of
5712  * injection on the service times of only the first requests of
5713  * bfqq. The reason for this restriction is that these are the
5714  * requests whose service time is affected most, because they are the
5715  * first to arrive after injection possibly occurred.
5716  *
5717  * To evaluate the effect of injection, the algorithm measures the
5718  * "total service time" of first requests. We define as total service
5719  * time of an I/O request, the time that elapses since when the
5720  * request is enqueued into bfqq, to when it is completed. This
5721  * quantity allows the whole effect of injection to be measured. It is
5722  * easy to see why. Suppose that some requests of other queues are
5723  * actually injected while bfqq is empty, and that a new request R
5724  * then arrives for bfqq. If the device does start to serve all or
5725  * part of the injected requests during the service hole, then,
5726  * because of this extra service, it may delay the next invocation of
5727  * the dispatch hook of BFQ. Then, even after R gets eventually
5728  * dispatched, the device may delay the actual service of R if it is
5729  * still busy serving the extra requests, or if it decides to serve,
5730  * before R, some extra request still present in its queues. As a
5731  * conclusion, the cumulative extra delay caused by injection can be
5732  * easily evaluated by just comparing the total service time of first
5733  * requests with and without injection.
5734  *
5735  * The limit-update algorithm works as follows. On the arrival of a
5736  * first request of bfqq, the algorithm measures the total time of the
5737  * request only if one of the three cases below holds, and, for each
5738  * case, it updates the limit as described below:
5739  *
5740  * (1) If there is no in-flight request. This gives a baseline for the
5741  *     total service time of the requests of bfqq. If the baseline has
5742  *     not been computed yet, then, after computing it, the limit is
5743  *     set to 1, to start boosting throughput, and to prepare the
5744  *     ground for the next case. If the baseline has already been
5745  *     computed, then it is updated, in case it results to be lower
5746  *     than the previous value.
5747  *
5748  * (2) If the limit is higher than 0 and there are in-flight
5749  *     requests. By comparing the total service time in this case with
5750  *     the above baseline, it is possible to know at which extent the
5751  *     current value of the limit is inflating the total service
5752  *     time. If the inflation is below a certain threshold, then bfqq
5753  *     is assumed to be suffering from no perceivable loss of its
5754  *     service guarantees, and the limit is even tentatively
5755  *     increased. If the inflation is above the threshold, then the
5756  *     limit is decreased. Due to the lack of any hysteresis, this
5757  *     logic makes the limit oscillate even in steady workload
5758  *     conditions. Yet we opted for it, because it is fast in reaching
5759  *     the best value for the limit, as a function of the current I/O
5760  *     workload. To reduce oscillations, this step is disabled for a
5761  *     short time interval after the limit happens to be decreased.
5762  *
5763  * (3) Periodically, after resetting the limit, to make sure that the
5764  *     limit eventually drops in case the workload changes. This is
5765  *     needed because, after the limit has gone safely up for a
5766  *     certain workload, it is impossible to guess whether the
5767  *     baseline total service time may have changed, without measuring
5768  *     it again without injection. A more effective version of this
5769  *     step might be to just sample the baseline, by interrupting
5770  *     injection only once, and then to reset/lower the limit only if
5771  *     the total service time with the current limit does happen to be
5772  *     too large.
5773  *
5774  * More details on each step are provided in the comments on the
5775  * pieces of code that implement these steps: the branch handling the
5776  * transition from empty to non empty in bfq_add_request(), the branch
5777  * handling injection in bfq_select_queue(), and the function
5778  * bfq_choose_bfqq_for_injection(). These comments also explain some
5779  * exceptions, made by the injection mechanism in some special cases.
5780  */
5781 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5782 				    struct bfq_queue *bfqq)
5783 {
5784 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5785 	unsigned int old_limit = bfqq->inject_limit;
5786 
5787 	if (bfqq->last_serv_time_ns > 0) {
5788 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5789 
5790 		if (tot_time_ns >= threshold && old_limit > 0) {
5791 			bfqq->inject_limit--;
5792 			bfqq->decrease_time_jif = jiffies;
5793 		} else if (tot_time_ns < threshold &&
5794 			   old_limit < bfqd->max_rq_in_driver<<1)
5795 			bfqq->inject_limit++;
5796 	}
5797 
5798 	/*
5799 	 * Either we still have to compute the base value for the
5800 	 * total service time, and there seem to be the right
5801 	 * conditions to do it, or we can lower the last base value
5802 	 * computed.
5803 	 *
5804 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5805 	 * request in flight, because this function is in the code
5806 	 * path that handles the completion of a request of bfqq, and,
5807 	 * in particular, this function is executed before
5808 	 * bfqd->rq_in_driver is decremented in such a code path.
5809 	 */
5810 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5811 	    tot_time_ns < bfqq->last_serv_time_ns) {
5812 		bfqq->last_serv_time_ns = tot_time_ns;
5813 		/*
5814 		 * Now we certainly have a base value: make sure we
5815 		 * start trying injection.
5816 		 */
5817 		bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5818 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5819 		/*
5820 		 * No I/O injected and no request still in service in
5821 		 * the drive: these are the exact conditions for
5822 		 * computing the base value of the total service time
5823 		 * for bfqq. So let's update this value, because it is
5824 		 * rather variable. For example, it varies if the size
5825 		 * or the spatial locality of the I/O requests in bfqq
5826 		 * change.
5827 		 */
5828 		bfqq->last_serv_time_ns = tot_time_ns;
5829 
5830 
5831 	/* update complete, not waiting for any request completion any longer */
5832 	bfqd->waited_rq = NULL;
5833 }
5834 
5835 /*
5836  * Handle either a requeue or a finish for rq. The things to do are
5837  * the same in both cases: all references to rq are to be dropped. In
5838  * particular, rq is considered completed from the point of view of
5839  * the scheduler.
5840  */
5841 static void bfq_finish_requeue_request(struct request *rq)
5842 {
5843 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5844 	struct bfq_data *bfqd;
5845 
5846 	/*
5847 	 * Requeue and finish hooks are invoked in blk-mq without
5848 	 * checking whether the involved request is actually still
5849 	 * referenced in the scheduler. To handle this fact, the
5850 	 * following two checks make this function exit in case of
5851 	 * spurious invocations, for which there is nothing to do.
5852 	 *
5853 	 * First, check whether rq has nothing to do with an elevator.
5854 	 */
5855 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
5856 		return;
5857 
5858 	/*
5859 	 * rq either is not associated with any icq, or is an already
5860 	 * requeued request that has not (yet) been re-inserted into
5861 	 * a bfq_queue.
5862 	 */
5863 	if (!rq->elv.icq || !bfqq)
5864 		return;
5865 
5866 	bfqd = bfqq->bfqd;
5867 
5868 	if (rq->rq_flags & RQF_STARTED)
5869 		bfqg_stats_update_completion(bfqq_group(bfqq),
5870 					     rq->start_time_ns,
5871 					     rq->io_start_time_ns,
5872 					     rq->cmd_flags);
5873 
5874 	if (likely(rq->rq_flags & RQF_STARTED)) {
5875 		unsigned long flags;
5876 
5877 		spin_lock_irqsave(&bfqd->lock, flags);
5878 
5879 		if (rq == bfqd->waited_rq)
5880 			bfq_update_inject_limit(bfqd, bfqq);
5881 
5882 		bfq_completed_request(bfqq, bfqd);
5883 		bfq_finish_requeue_request_body(bfqq);
5884 
5885 		spin_unlock_irqrestore(&bfqd->lock, flags);
5886 	} else {
5887 		/*
5888 		 * Request rq may be still/already in the scheduler,
5889 		 * in which case we need to remove it (this should
5890 		 * never happen in case of requeue). And we cannot
5891 		 * defer such a check and removal, to avoid
5892 		 * inconsistencies in the time interval from the end
5893 		 * of this function to the start of the deferred work.
5894 		 * This situation seems to occur only in process
5895 		 * context, as a consequence of a merge. In the
5896 		 * current version of the code, this implies that the
5897 		 * lock is held.
5898 		 */
5899 
5900 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5901 			bfq_remove_request(rq->q, rq);
5902 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5903 						    rq->cmd_flags);
5904 		}
5905 		bfq_finish_requeue_request_body(bfqq);
5906 	}
5907 
5908 	/*
5909 	 * Reset private fields. In case of a requeue, this allows
5910 	 * this function to correctly do nothing if it is spuriously
5911 	 * invoked again on this same request (see the check at the
5912 	 * beginning of the function). Probably, a better general
5913 	 * design would be to prevent blk-mq from invoking the requeue
5914 	 * or finish hooks of an elevator, for a request that is not
5915 	 * referred by that elevator.
5916 	 *
5917 	 * Resetting the following fields would break the
5918 	 * request-insertion logic if rq is re-inserted into a bfq
5919 	 * internal queue, without a re-preparation. Here we assume
5920 	 * that re-insertions of requeued requests, without
5921 	 * re-preparation, can happen only for pass_through or at_head
5922 	 * requests (which are not re-inserted into bfq internal
5923 	 * queues).
5924 	 */
5925 	rq->elv.priv[0] = NULL;
5926 	rq->elv.priv[1] = NULL;
5927 }
5928 
5929 /*
5930  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5931  * was the last process referring to that bfqq.
5932  */
5933 static struct bfq_queue *
5934 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5935 {
5936 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5937 
5938 	if (bfqq_process_refs(bfqq) == 1) {
5939 		bfqq->pid = current->pid;
5940 		bfq_clear_bfqq_coop(bfqq);
5941 		bfq_clear_bfqq_split_coop(bfqq);
5942 		return bfqq;
5943 	}
5944 
5945 	bic_set_bfqq(bic, NULL, 1);
5946 
5947 	bfq_put_cooperator(bfqq);
5948 
5949 	bfq_put_queue(bfqq);
5950 	return NULL;
5951 }
5952 
5953 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5954 						   struct bfq_io_cq *bic,
5955 						   struct bio *bio,
5956 						   bool split, bool is_sync,
5957 						   bool *new_queue)
5958 {
5959 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5960 
5961 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5962 		return bfqq;
5963 
5964 	if (new_queue)
5965 		*new_queue = true;
5966 
5967 	if (bfqq)
5968 		bfq_put_queue(bfqq);
5969 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5970 
5971 	bic_set_bfqq(bic, bfqq, is_sync);
5972 	if (split && is_sync) {
5973 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5974 		    bic->saved_in_large_burst)
5975 			bfq_mark_bfqq_in_large_burst(bfqq);
5976 		else {
5977 			bfq_clear_bfqq_in_large_burst(bfqq);
5978 			if (bic->was_in_burst_list)
5979 				/*
5980 				 * If bfqq was in the current
5981 				 * burst list before being
5982 				 * merged, then we have to add
5983 				 * it back. And we do not need
5984 				 * to increase burst_size, as
5985 				 * we did not decrement
5986 				 * burst_size when we removed
5987 				 * bfqq from the burst list as
5988 				 * a consequence of a merge
5989 				 * (see comments in
5990 				 * bfq_put_queue). In this
5991 				 * respect, it would be rather
5992 				 * costly to know whether the
5993 				 * current burst list is still
5994 				 * the same burst list from
5995 				 * which bfqq was removed on
5996 				 * the merge. To avoid this
5997 				 * cost, if bfqq was in a
5998 				 * burst list, then we add
5999 				 * bfqq to the current burst
6000 				 * list without any further
6001 				 * check. This can cause
6002 				 * inappropriate insertions,
6003 				 * but rarely enough to not
6004 				 * harm the detection of large
6005 				 * bursts significantly.
6006 				 */
6007 				hlist_add_head(&bfqq->burst_list_node,
6008 					       &bfqd->burst_list);
6009 		}
6010 		bfqq->split_time = jiffies;
6011 	}
6012 
6013 	return bfqq;
6014 }
6015 
6016 /*
6017  * Only reset private fields. The actual request preparation will be
6018  * performed by bfq_init_rq, when rq is either inserted or merged. See
6019  * comments on bfq_init_rq for the reason behind this delayed
6020  * preparation.
6021  */
6022 static void bfq_prepare_request(struct request *rq, struct bio *bio)
6023 {
6024 	/*
6025 	 * Regardless of whether we have an icq attached, we have to
6026 	 * clear the scheduler pointers, as they might point to
6027 	 * previously allocated bic/bfqq structs.
6028 	 */
6029 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6030 }
6031 
6032 /*
6033  * If needed, init rq, allocate bfq data structures associated with
6034  * rq, and increment reference counters in the destination bfq_queue
6035  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6036  * not associated with any bfq_queue.
6037  *
6038  * This function is invoked by the functions that perform rq insertion
6039  * or merging. One may have expected the above preparation operations
6040  * to be performed in bfq_prepare_request, and not delayed to when rq
6041  * is inserted or merged. The rationale behind this delayed
6042  * preparation is that, after the prepare_request hook is invoked for
6043  * rq, rq may still be transformed into a request with no icq, i.e., a
6044  * request not associated with any queue. No bfq hook is invoked to
6045  * signal this transformation. As a consequence, should these
6046  * preparation operations be performed when the prepare_request hook
6047  * is invoked, and should rq be transformed one moment later, bfq
6048  * would end up in an inconsistent state, because it would have
6049  * incremented some queue counters for an rq destined to
6050  * transformation, without any chance to correctly lower these
6051  * counters back. In contrast, no transformation can still happen for
6052  * rq after rq has been inserted or merged. So, it is safe to execute
6053  * these preparation operations when rq is finally inserted or merged.
6054  */
6055 static struct bfq_queue *bfq_init_rq(struct request *rq)
6056 {
6057 	struct request_queue *q = rq->q;
6058 	struct bio *bio = rq->bio;
6059 	struct bfq_data *bfqd = q->elevator->elevator_data;
6060 	struct bfq_io_cq *bic;
6061 	const int is_sync = rq_is_sync(rq);
6062 	struct bfq_queue *bfqq;
6063 	bool new_queue = false;
6064 	bool bfqq_already_existing = false, split = false;
6065 
6066 	if (unlikely(!rq->elv.icq))
6067 		return NULL;
6068 
6069 	/*
6070 	 * Assuming that elv.priv[1] is set only if everything is set
6071 	 * for this rq. This holds true, because this function is
6072 	 * invoked only for insertion or merging, and, after such
6073 	 * events, a request cannot be manipulated any longer before
6074 	 * being removed from bfq.
6075 	 */
6076 	if (rq->elv.priv[1])
6077 		return rq->elv.priv[1];
6078 
6079 	bic = icq_to_bic(rq->elv.icq);
6080 
6081 	bfq_check_ioprio_change(bic, bio);
6082 
6083 	bfq_bic_update_cgroup(bic, bio);
6084 
6085 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6086 					 &new_queue);
6087 
6088 	if (likely(!new_queue)) {
6089 		/* If the queue was seeky for too long, break it apart. */
6090 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6091 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6092 
6093 			/* Update bic before losing reference to bfqq */
6094 			if (bfq_bfqq_in_large_burst(bfqq))
6095 				bic->saved_in_large_burst = true;
6096 
6097 			bfqq = bfq_split_bfqq(bic, bfqq);
6098 			split = true;
6099 
6100 			if (!bfqq)
6101 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6102 								 true, is_sync,
6103 								 NULL);
6104 			else
6105 				bfqq_already_existing = true;
6106 		}
6107 	}
6108 
6109 	bfqq->allocated++;
6110 	bfqq->ref++;
6111 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6112 		     rq, bfqq, bfqq->ref);
6113 
6114 	rq->elv.priv[0] = bic;
6115 	rq->elv.priv[1] = bfqq;
6116 
6117 	/*
6118 	 * If a bfq_queue has only one process reference, it is owned
6119 	 * by only this bic: we can then set bfqq->bic = bic. in
6120 	 * addition, if the queue has also just been split, we have to
6121 	 * resume its state.
6122 	 */
6123 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6124 		bfqq->bic = bic;
6125 		if (split) {
6126 			/*
6127 			 * The queue has just been split from a shared
6128 			 * queue: restore the idle window and the
6129 			 * possible weight raising period.
6130 			 */
6131 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6132 					      bfqq_already_existing);
6133 		}
6134 	}
6135 
6136 	/*
6137 	 * Consider bfqq as possibly belonging to a burst of newly
6138 	 * created queues only if:
6139 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6140 	 * or
6141 	 * 2) There is no other active queue. In fact, if, in
6142 	 *    contrast, there are active queues not belonging to the
6143 	 *    possible burst bfqq may belong to, then there is no gain
6144 	 *    in considering bfqq as belonging to a burst, and
6145 	 *    therefore in not weight-raising bfqq. See comments on
6146 	 *    bfq_handle_burst().
6147 	 *
6148 	 * This filtering also helps eliminating false positives,
6149 	 * occurring when bfqq does not belong to an actual large
6150 	 * burst, but some background task (e.g., a service) happens
6151 	 * to trigger the creation of new queues very close to when
6152 	 * bfqq and its possible companion queues are created. See
6153 	 * comments on bfq_handle_burst() for further details also on
6154 	 * this issue.
6155 	 */
6156 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6157 		     (bfqd->burst_size > 0 ||
6158 		      bfq_tot_busy_queues(bfqd) == 0)))
6159 		bfq_handle_burst(bfqd, bfqq);
6160 
6161 	return bfqq;
6162 }
6163 
6164 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
6165 {
6166 	struct bfq_data *bfqd = bfqq->bfqd;
6167 	enum bfqq_expiration reason;
6168 	unsigned long flags;
6169 
6170 	spin_lock_irqsave(&bfqd->lock, flags);
6171 	bfq_clear_bfqq_wait_request(bfqq);
6172 
6173 	if (bfqq != bfqd->in_service_queue) {
6174 		spin_unlock_irqrestore(&bfqd->lock, flags);
6175 		return;
6176 	}
6177 
6178 	if (bfq_bfqq_budget_timeout(bfqq))
6179 		/*
6180 		 * Also here the queue can be safely expired
6181 		 * for budget timeout without wasting
6182 		 * guarantees
6183 		 */
6184 		reason = BFQQE_BUDGET_TIMEOUT;
6185 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6186 		/*
6187 		 * The queue may not be empty upon timer expiration,
6188 		 * because we may not disable the timer when the
6189 		 * first request of the in-service queue arrives
6190 		 * during disk idling.
6191 		 */
6192 		reason = BFQQE_TOO_IDLE;
6193 	else
6194 		goto schedule_dispatch;
6195 
6196 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6197 
6198 schedule_dispatch:
6199 	spin_unlock_irqrestore(&bfqd->lock, flags);
6200 	bfq_schedule_dispatch(bfqd);
6201 }
6202 
6203 /*
6204  * Handler of the expiration of the timer running if the in-service queue
6205  * is idling inside its time slice.
6206  */
6207 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6208 {
6209 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6210 					     idle_slice_timer);
6211 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6212 
6213 	/*
6214 	 * Theoretical race here: the in-service queue can be NULL or
6215 	 * different from the queue that was idling if a new request
6216 	 * arrives for the current queue and there is a full dispatch
6217 	 * cycle that changes the in-service queue.  This can hardly
6218 	 * happen, but in the worst case we just expire a queue too
6219 	 * early.
6220 	 */
6221 	if (bfqq)
6222 		bfq_idle_slice_timer_body(bfqq);
6223 
6224 	return HRTIMER_NORESTART;
6225 }
6226 
6227 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6228 				 struct bfq_queue **bfqq_ptr)
6229 {
6230 	struct bfq_queue *bfqq = *bfqq_ptr;
6231 
6232 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6233 	if (bfqq) {
6234 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6235 
6236 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6237 			     bfqq, bfqq->ref);
6238 		bfq_put_queue(bfqq);
6239 		*bfqq_ptr = NULL;
6240 	}
6241 }
6242 
6243 /*
6244  * Release all the bfqg references to its async queues.  If we are
6245  * deallocating the group these queues may still contain requests, so
6246  * we reparent them to the root cgroup (i.e., the only one that will
6247  * exist for sure until all the requests on a device are gone).
6248  */
6249 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6250 {
6251 	int i, j;
6252 
6253 	for (i = 0; i < 2; i++)
6254 		for (j = 0; j < IOPRIO_BE_NR; j++)
6255 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6256 
6257 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6258 }
6259 
6260 /*
6261  * See the comments on bfq_limit_depth for the purpose of
6262  * the depths set in the function. Return minimum shallow depth we'll use.
6263  */
6264 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6265 				      struct sbitmap_queue *bt)
6266 {
6267 	unsigned int i, j, min_shallow = UINT_MAX;
6268 
6269 	/*
6270 	 * In-word depths if no bfq_queue is being weight-raised:
6271 	 * leaving 25% of tags only for sync reads.
6272 	 *
6273 	 * In next formulas, right-shift the value
6274 	 * (1U<<bt->sb.shift), instead of computing directly
6275 	 * (1U<<(bt->sb.shift - something)), to be robust against
6276 	 * any possible value of bt->sb.shift, without having to
6277 	 * limit 'something'.
6278 	 */
6279 	/* no more than 50% of tags for async I/O */
6280 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6281 	/*
6282 	 * no more than 75% of tags for sync writes (25% extra tags
6283 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6284 	 * writes)
6285 	 */
6286 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6287 
6288 	/*
6289 	 * In-word depths in case some bfq_queue is being weight-
6290 	 * raised: leaving ~63% of tags for sync reads. This is the
6291 	 * highest percentage for which, in our tests, application
6292 	 * start-up times didn't suffer from any regression due to tag
6293 	 * shortage.
6294 	 */
6295 	/* no more than ~18% of tags for async I/O */
6296 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6297 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6298 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6299 
6300 	for (i = 0; i < 2; i++)
6301 		for (j = 0; j < 2; j++)
6302 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6303 
6304 	return min_shallow;
6305 }
6306 
6307 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6308 {
6309 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6310 	struct blk_mq_tags *tags = hctx->sched_tags;
6311 	unsigned int min_shallow;
6312 
6313 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
6314 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
6315 }
6316 
6317 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6318 {
6319 	bfq_depth_updated(hctx);
6320 	return 0;
6321 }
6322 
6323 static void bfq_exit_queue(struct elevator_queue *e)
6324 {
6325 	struct bfq_data *bfqd = e->elevator_data;
6326 	struct bfq_queue *bfqq, *n;
6327 
6328 	hrtimer_cancel(&bfqd->idle_slice_timer);
6329 
6330 	spin_lock_irq(&bfqd->lock);
6331 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6332 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6333 	spin_unlock_irq(&bfqd->lock);
6334 
6335 	hrtimer_cancel(&bfqd->idle_slice_timer);
6336 
6337 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6338 	/* release oom-queue reference to root group */
6339 	bfqg_and_blkg_put(bfqd->root_group);
6340 
6341 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6342 #else
6343 	spin_lock_irq(&bfqd->lock);
6344 	bfq_put_async_queues(bfqd, bfqd->root_group);
6345 	kfree(bfqd->root_group);
6346 	spin_unlock_irq(&bfqd->lock);
6347 #endif
6348 
6349 	kfree(bfqd);
6350 }
6351 
6352 static void bfq_init_root_group(struct bfq_group *root_group,
6353 				struct bfq_data *bfqd)
6354 {
6355 	int i;
6356 
6357 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6358 	root_group->entity.parent = NULL;
6359 	root_group->my_entity = NULL;
6360 	root_group->bfqd = bfqd;
6361 #endif
6362 	root_group->rq_pos_tree = RB_ROOT;
6363 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6364 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6365 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6366 }
6367 
6368 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6369 {
6370 	struct bfq_data *bfqd;
6371 	struct elevator_queue *eq;
6372 
6373 	eq = elevator_alloc(q, e);
6374 	if (!eq)
6375 		return -ENOMEM;
6376 
6377 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6378 	if (!bfqd) {
6379 		kobject_put(&eq->kobj);
6380 		return -ENOMEM;
6381 	}
6382 	eq->elevator_data = bfqd;
6383 
6384 	spin_lock_irq(&q->queue_lock);
6385 	q->elevator = eq;
6386 	spin_unlock_irq(&q->queue_lock);
6387 
6388 	/*
6389 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6390 	 * Grab a permanent reference to it, so that the normal code flow
6391 	 * will not attempt to free it.
6392 	 */
6393 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6394 	bfqd->oom_bfqq.ref++;
6395 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6396 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6397 	bfqd->oom_bfqq.entity.new_weight =
6398 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6399 
6400 	/* oom_bfqq does not participate to bursts */
6401 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6402 
6403 	/*
6404 	 * Trigger weight initialization, according to ioprio, at the
6405 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6406 	 * class won't be changed any more.
6407 	 */
6408 	bfqd->oom_bfqq.entity.prio_changed = 1;
6409 
6410 	bfqd->queue = q;
6411 
6412 	INIT_LIST_HEAD(&bfqd->dispatch);
6413 
6414 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6415 		     HRTIMER_MODE_REL);
6416 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6417 
6418 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6419 	bfqd->num_groups_with_pending_reqs = 0;
6420 
6421 	INIT_LIST_HEAD(&bfqd->active_list);
6422 	INIT_LIST_HEAD(&bfqd->idle_list);
6423 	INIT_HLIST_HEAD(&bfqd->burst_list);
6424 
6425 	bfqd->hw_tag = -1;
6426 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6427 
6428 	bfqd->bfq_max_budget = bfq_default_max_budget;
6429 
6430 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6431 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6432 	bfqd->bfq_back_max = bfq_back_max;
6433 	bfqd->bfq_back_penalty = bfq_back_penalty;
6434 	bfqd->bfq_slice_idle = bfq_slice_idle;
6435 	bfqd->bfq_timeout = bfq_timeout;
6436 
6437 	bfqd->bfq_requests_within_timer = 120;
6438 
6439 	bfqd->bfq_large_burst_thresh = 8;
6440 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6441 
6442 	bfqd->low_latency = true;
6443 
6444 	/*
6445 	 * Trade-off between responsiveness and fairness.
6446 	 */
6447 	bfqd->bfq_wr_coeff = 30;
6448 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6449 	bfqd->bfq_wr_max_time = 0;
6450 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6451 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6452 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6453 					      * Approximate rate required
6454 					      * to playback or record a
6455 					      * high-definition compressed
6456 					      * video.
6457 					      */
6458 	bfqd->wr_busy_queues = 0;
6459 
6460 	/*
6461 	 * Begin by assuming, optimistically, that the device peak
6462 	 * rate is equal to 2/3 of the highest reference rate.
6463 	 */
6464 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6465 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6466 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6467 
6468 	spin_lock_init(&bfqd->lock);
6469 
6470 	/*
6471 	 * The invocation of the next bfq_create_group_hierarchy
6472 	 * function is the head of a chain of function calls
6473 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6474 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6475 	 * has_work hook function. For this reason,
6476 	 * bfq_create_group_hierarchy is invoked only after all
6477 	 * scheduler data has been initialized, apart from the fields
6478 	 * that can be initialized only after invoking
6479 	 * bfq_create_group_hierarchy. This, in particular, enables
6480 	 * has_work to correctly return false. Of course, to avoid
6481 	 * other inconsistencies, the blk-mq stack must then refrain
6482 	 * from invoking further scheduler hooks before this init
6483 	 * function is finished.
6484 	 */
6485 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6486 	if (!bfqd->root_group)
6487 		goto out_free;
6488 	bfq_init_root_group(bfqd->root_group, bfqd);
6489 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6490 
6491 	wbt_disable_default(q);
6492 	return 0;
6493 
6494 out_free:
6495 	kfree(bfqd);
6496 	kobject_put(&eq->kobj);
6497 	return -ENOMEM;
6498 }
6499 
6500 static void bfq_slab_kill(void)
6501 {
6502 	kmem_cache_destroy(bfq_pool);
6503 }
6504 
6505 static int __init bfq_slab_setup(void)
6506 {
6507 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6508 	if (!bfq_pool)
6509 		return -ENOMEM;
6510 	return 0;
6511 }
6512 
6513 static ssize_t bfq_var_show(unsigned int var, char *page)
6514 {
6515 	return sprintf(page, "%u\n", var);
6516 }
6517 
6518 static int bfq_var_store(unsigned long *var, const char *page)
6519 {
6520 	unsigned long new_val;
6521 	int ret = kstrtoul(page, 10, &new_val);
6522 
6523 	if (ret)
6524 		return ret;
6525 	*var = new_val;
6526 	return 0;
6527 }
6528 
6529 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6530 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6531 {									\
6532 	struct bfq_data *bfqd = e->elevator_data;			\
6533 	u64 __data = __VAR;						\
6534 	if (__CONV == 1)						\
6535 		__data = jiffies_to_msecs(__data);			\
6536 	else if (__CONV == 2)						\
6537 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6538 	return bfq_var_show(__data, (page));				\
6539 }
6540 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6541 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6542 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6543 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6544 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6545 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6546 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6547 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6548 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6549 #undef SHOW_FUNCTION
6550 
6551 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6552 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6553 {									\
6554 	struct bfq_data *bfqd = e->elevator_data;			\
6555 	u64 __data = __VAR;						\
6556 	__data = div_u64(__data, NSEC_PER_USEC);			\
6557 	return bfq_var_show(__data, (page));				\
6558 }
6559 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6560 #undef USEC_SHOW_FUNCTION
6561 
6562 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6563 static ssize_t								\
6564 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6565 {									\
6566 	struct bfq_data *bfqd = e->elevator_data;			\
6567 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6568 	int ret;							\
6569 									\
6570 	ret = bfq_var_store(&__data, (page));				\
6571 	if (ret)							\
6572 		return ret;						\
6573 	if (__data < __min)						\
6574 		__data = __min;						\
6575 	else if (__data > __max)					\
6576 		__data = __max;						\
6577 	if (__CONV == 1)						\
6578 		*(__PTR) = msecs_to_jiffies(__data);			\
6579 	else if (__CONV == 2)						\
6580 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6581 	else								\
6582 		*(__PTR) = __data;					\
6583 	return count;							\
6584 }
6585 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6586 		INT_MAX, 2);
6587 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6588 		INT_MAX, 2);
6589 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6590 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6591 		INT_MAX, 0);
6592 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6593 #undef STORE_FUNCTION
6594 
6595 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6596 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6597 {									\
6598 	struct bfq_data *bfqd = e->elevator_data;			\
6599 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6600 	int ret;							\
6601 									\
6602 	ret = bfq_var_store(&__data, (page));				\
6603 	if (ret)							\
6604 		return ret;						\
6605 	if (__data < __min)						\
6606 		__data = __min;						\
6607 	else if (__data > __max)					\
6608 		__data = __max;						\
6609 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6610 	return count;							\
6611 }
6612 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6613 		    UINT_MAX);
6614 #undef USEC_STORE_FUNCTION
6615 
6616 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6617 				    const char *page, size_t count)
6618 {
6619 	struct bfq_data *bfqd = e->elevator_data;
6620 	unsigned long __data;
6621 	int ret;
6622 
6623 	ret = bfq_var_store(&__data, (page));
6624 	if (ret)
6625 		return ret;
6626 
6627 	if (__data == 0)
6628 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6629 	else {
6630 		if (__data > INT_MAX)
6631 			__data = INT_MAX;
6632 		bfqd->bfq_max_budget = __data;
6633 	}
6634 
6635 	bfqd->bfq_user_max_budget = __data;
6636 
6637 	return count;
6638 }
6639 
6640 /*
6641  * Leaving this name to preserve name compatibility with cfq
6642  * parameters, but this timeout is used for both sync and async.
6643  */
6644 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6645 				      const char *page, size_t count)
6646 {
6647 	struct bfq_data *bfqd = e->elevator_data;
6648 	unsigned long __data;
6649 	int ret;
6650 
6651 	ret = bfq_var_store(&__data, (page));
6652 	if (ret)
6653 		return ret;
6654 
6655 	if (__data < 1)
6656 		__data = 1;
6657 	else if (__data > INT_MAX)
6658 		__data = INT_MAX;
6659 
6660 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6661 	if (bfqd->bfq_user_max_budget == 0)
6662 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6663 
6664 	return count;
6665 }
6666 
6667 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6668 				     const char *page, size_t count)
6669 {
6670 	struct bfq_data *bfqd = e->elevator_data;
6671 	unsigned long __data;
6672 	int ret;
6673 
6674 	ret = bfq_var_store(&__data, (page));
6675 	if (ret)
6676 		return ret;
6677 
6678 	if (__data > 1)
6679 		__data = 1;
6680 	if (!bfqd->strict_guarantees && __data == 1
6681 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6682 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6683 
6684 	bfqd->strict_guarantees = __data;
6685 
6686 	return count;
6687 }
6688 
6689 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6690 				     const char *page, size_t count)
6691 {
6692 	struct bfq_data *bfqd = e->elevator_data;
6693 	unsigned long __data;
6694 	int ret;
6695 
6696 	ret = bfq_var_store(&__data, (page));
6697 	if (ret)
6698 		return ret;
6699 
6700 	if (__data > 1)
6701 		__data = 1;
6702 	if (__data == 0 && bfqd->low_latency != 0)
6703 		bfq_end_wr(bfqd);
6704 	bfqd->low_latency = __data;
6705 
6706 	return count;
6707 }
6708 
6709 #define BFQ_ATTR(name) \
6710 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6711 
6712 static struct elv_fs_entry bfq_attrs[] = {
6713 	BFQ_ATTR(fifo_expire_sync),
6714 	BFQ_ATTR(fifo_expire_async),
6715 	BFQ_ATTR(back_seek_max),
6716 	BFQ_ATTR(back_seek_penalty),
6717 	BFQ_ATTR(slice_idle),
6718 	BFQ_ATTR(slice_idle_us),
6719 	BFQ_ATTR(max_budget),
6720 	BFQ_ATTR(timeout_sync),
6721 	BFQ_ATTR(strict_guarantees),
6722 	BFQ_ATTR(low_latency),
6723 	__ATTR_NULL
6724 };
6725 
6726 static struct elevator_type iosched_bfq_mq = {
6727 	.ops = {
6728 		.limit_depth		= bfq_limit_depth,
6729 		.prepare_request	= bfq_prepare_request,
6730 		.requeue_request        = bfq_finish_requeue_request,
6731 		.finish_request		= bfq_finish_requeue_request,
6732 		.exit_icq		= bfq_exit_icq,
6733 		.insert_requests	= bfq_insert_requests,
6734 		.dispatch_request	= bfq_dispatch_request,
6735 		.next_request		= elv_rb_latter_request,
6736 		.former_request		= elv_rb_former_request,
6737 		.allow_merge		= bfq_allow_bio_merge,
6738 		.bio_merge		= bfq_bio_merge,
6739 		.request_merge		= bfq_request_merge,
6740 		.requests_merged	= bfq_requests_merged,
6741 		.request_merged		= bfq_request_merged,
6742 		.has_work		= bfq_has_work,
6743 		.depth_updated		= bfq_depth_updated,
6744 		.init_hctx		= bfq_init_hctx,
6745 		.init_sched		= bfq_init_queue,
6746 		.exit_sched		= bfq_exit_queue,
6747 	},
6748 
6749 	.icq_size =		sizeof(struct bfq_io_cq),
6750 	.icq_align =		__alignof__(struct bfq_io_cq),
6751 	.elevator_attrs =	bfq_attrs,
6752 	.elevator_name =	"bfq",
6753 	.elevator_owner =	THIS_MODULE,
6754 };
6755 MODULE_ALIAS("bfq-iosched");
6756 
6757 static int __init bfq_init(void)
6758 {
6759 	int ret;
6760 
6761 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6762 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6763 	if (ret)
6764 		return ret;
6765 #endif
6766 
6767 	ret = -ENOMEM;
6768 	if (bfq_slab_setup())
6769 		goto err_pol_unreg;
6770 
6771 	/*
6772 	 * Times to load large popular applications for the typical
6773 	 * systems installed on the reference devices (see the
6774 	 * comments before the definition of the next
6775 	 * array). Actually, we use slightly lower values, as the
6776 	 * estimated peak rate tends to be smaller than the actual
6777 	 * peak rate.  The reason for this last fact is that estimates
6778 	 * are computed over much shorter time intervals than the long
6779 	 * intervals typically used for benchmarking. Why? First, to
6780 	 * adapt more quickly to variations. Second, because an I/O
6781 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6782 	 * be run for a long time.
6783 	 */
6784 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6785 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6786 
6787 	ret = elv_register(&iosched_bfq_mq);
6788 	if (ret)
6789 		goto slab_kill;
6790 
6791 	return 0;
6792 
6793 slab_kill:
6794 	bfq_slab_kill();
6795 err_pol_unreg:
6796 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6797 	blkcg_policy_unregister(&blkcg_policy_bfq);
6798 #endif
6799 	return ret;
6800 }
6801 
6802 static void __exit bfq_exit(void)
6803 {
6804 	elv_unregister(&iosched_bfq_mq);
6805 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6806 	blkcg_policy_unregister(&blkcg_policy_bfq);
6807 #endif
6808 	bfq_slab_kill();
6809 }
6810 
6811 module_init(bfq_init);
6812 module_exit(bfq_exit);
6813 
6814 MODULE_AUTHOR("Paolo Valente");
6815 MODULE_LICENSE("GPL");
6816 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6817