xref: /openbmc/linux/block/bfq-iosched.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.txt.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 
127 #include "blk.h"
128 #include "blk-mq.h"
129 #include "blk-mq-tag.h"
130 #include "blk-mq-sched.h"
131 #include "bfq-iosched.h"
132 #include "blk-wbt.h"
133 
134 #define BFQ_BFQQ_FNS(name)						\
135 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
136 {									\
137 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
138 }									\
139 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
140 {									\
141 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
142 }									\
143 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
144 {									\
145 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
146 }
147 
148 BFQ_BFQQ_FNS(just_created);
149 BFQ_BFQQ_FNS(busy);
150 BFQ_BFQQ_FNS(wait_request);
151 BFQ_BFQQ_FNS(non_blocking_wait_rq);
152 BFQ_BFQQ_FNS(fifo_expire);
153 BFQ_BFQQ_FNS(has_short_ttime);
154 BFQ_BFQQ_FNS(sync);
155 BFQ_BFQQ_FNS(IO_bound);
156 BFQ_BFQQ_FNS(in_large_burst);
157 BFQ_BFQQ_FNS(coop);
158 BFQ_BFQQ_FNS(split_coop);
159 BFQ_BFQQ_FNS(softrt_update);
160 #undef BFQ_BFQQ_FNS						\
161 
162 /* Expiration time of sync (0) and async (1) requests, in ns. */
163 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
164 
165 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
166 static const int bfq_back_max = 16 * 1024;
167 
168 /* Penalty of a backwards seek, in number of sectors. */
169 static const int bfq_back_penalty = 2;
170 
171 /* Idling period duration, in ns. */
172 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
173 
174 /* Minimum number of assigned budgets for which stats are safe to compute. */
175 static const int bfq_stats_min_budgets = 194;
176 
177 /* Default maximum budget values, in sectors and number of requests. */
178 static const int bfq_default_max_budget = 16 * 1024;
179 
180 /*
181  * When a sync request is dispatched, the queue that contains that
182  * request, and all the ancestor entities of that queue, are charged
183  * with the number of sectors of the request. In contrast, if the
184  * request is async, then the queue and its ancestor entities are
185  * charged with the number of sectors of the request, multiplied by
186  * the factor below. This throttles the bandwidth for async I/O,
187  * w.r.t. to sync I/O, and it is done to counter the tendency of async
188  * writes to steal I/O throughput to reads.
189  *
190  * The current value of this parameter is the result of a tuning with
191  * several hardware and software configurations. We tried to find the
192  * lowest value for which writes do not cause noticeable problems to
193  * reads. In fact, the lower this parameter, the stabler I/O control,
194  * in the following respect.  The lower this parameter is, the less
195  * the bandwidth enjoyed by a group decreases
196  * - when the group does writes, w.r.t. to when it does reads;
197  * - when other groups do reads, w.r.t. to when they do writes.
198  */
199 static const int bfq_async_charge_factor = 3;
200 
201 /* Default timeout values, in jiffies, approximating CFQ defaults. */
202 const int bfq_timeout = HZ / 8;
203 
204 /*
205  * Time limit for merging (see comments in bfq_setup_cooperator). Set
206  * to the slowest value that, in our tests, proved to be effective in
207  * removing false positives, while not causing true positives to miss
208  * queue merging.
209  *
210  * As can be deduced from the low time limit below, queue merging, if
211  * successful, happens at the very beginning of the I/O of the involved
212  * cooperating processes, as a consequence of the arrival of the very
213  * first requests from each cooperator.  After that, there is very
214  * little chance to find cooperators.
215  */
216 static const unsigned long bfq_merge_time_limit = HZ/10;
217 
218 static struct kmem_cache *bfq_pool;
219 
220 /* Below this threshold (in ns), we consider thinktime immediate. */
221 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
222 
223 /* hw_tag detection: parallel requests threshold and min samples needed. */
224 #define BFQ_HW_QUEUE_THRESHOLD	3
225 #define BFQ_HW_QUEUE_SAMPLES	32
226 
227 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
228 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
229 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
230 	(get_sdist(last_pos, rq) >			\
231 	 BFQQ_SEEK_THR &&				\
232 	 (!blk_queue_nonrot(bfqd->queue) ||		\
233 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
234 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
235 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
236 /*
237  * Sync random I/O is likely to be confused with soft real-time I/O,
238  * because it is characterized by limited throughput and apparently
239  * isochronous arrival pattern. To avoid false positives, queues
240  * containing only random (seeky) I/O are prevented from being tagged
241  * as soft real-time.
242  */
243 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history & -1)
244 
245 /* Min number of samples required to perform peak-rate update */
246 #define BFQ_RATE_MIN_SAMPLES	32
247 /* Min observation time interval required to perform a peak-rate update (ns) */
248 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
249 /* Target observation time interval for a peak-rate update (ns) */
250 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
251 
252 /*
253  * Shift used for peak-rate fixed precision calculations.
254  * With
255  * - the current shift: 16 positions
256  * - the current type used to store rate: u32
257  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
258  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
259  * the range of rates that can be stored is
260  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
261  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
262  * [15, 65G] sectors/sec
263  * Which, assuming a sector size of 512B, corresponds to a range of
264  * [7.5K, 33T] B/sec
265  */
266 #define BFQ_RATE_SHIFT		16
267 
268 /*
269  * When configured for computing the duration of the weight-raising
270  * for interactive queues automatically (see the comments at the
271  * beginning of this file), BFQ does it using the following formula:
272  * duration = (ref_rate / r) * ref_wr_duration,
273  * where r is the peak rate of the device, and ref_rate and
274  * ref_wr_duration are two reference parameters.  In particular,
275  * ref_rate is the peak rate of the reference storage device (see
276  * below), and ref_wr_duration is about the maximum time needed, with
277  * BFQ and while reading two files in parallel, to load typical large
278  * applications on the reference device (see the comments on
279  * max_service_from_wr below, for more details on how ref_wr_duration
280  * is obtained).  In practice, the slower/faster the device at hand
281  * is, the more/less it takes to load applications with respect to the
282  * reference device.  Accordingly, the longer/shorter BFQ grants
283  * weight raising to interactive applications.
284  *
285  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
286  * depending on whether the device is rotational or non-rotational.
287  *
288  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
289  * are the reference values for a rotational device, whereas
290  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
291  * non-rotational device. The reference rates are not the actual peak
292  * rates of the devices used as a reference, but slightly lower
293  * values. The reason for using slightly lower values is that the
294  * peak-rate estimator tends to yield slightly lower values than the
295  * actual peak rate (it can yield the actual peak rate only if there
296  * is only one process doing I/O, and the process does sequential
297  * I/O).
298  *
299  * The reference peak rates are measured in sectors/usec, left-shifted
300  * by BFQ_RATE_SHIFT.
301  */
302 static int ref_rate[2] = {14000, 33000};
303 /*
304  * To improve readability, a conversion function is used to initialize
305  * the following array, which entails that the array can be
306  * initialized only in a function.
307  */
308 static int ref_wr_duration[2];
309 
310 /*
311  * BFQ uses the above-detailed, time-based weight-raising mechanism to
312  * privilege interactive tasks. This mechanism is vulnerable to the
313  * following false positives: I/O-bound applications that will go on
314  * doing I/O for much longer than the duration of weight
315  * raising. These applications have basically no benefit from being
316  * weight-raised at the beginning of their I/O. On the opposite end,
317  * while being weight-raised, these applications
318  * a) unjustly steal throughput to applications that may actually need
319  * low latency;
320  * b) make BFQ uselessly perform device idling; device idling results
321  * in loss of device throughput with most flash-based storage, and may
322  * increase latencies when used purposelessly.
323  *
324  * BFQ tries to reduce these problems, by adopting the following
325  * countermeasure. To introduce this countermeasure, we need first to
326  * finish explaining how the duration of weight-raising for
327  * interactive tasks is computed.
328  *
329  * For a bfq_queue deemed as interactive, the duration of weight
330  * raising is dynamically adjusted, as a function of the estimated
331  * peak rate of the device, so as to be equal to the time needed to
332  * execute the 'largest' interactive task we benchmarked so far. By
333  * largest task, we mean the task for which each involved process has
334  * to do more I/O than for any of the other tasks we benchmarked. This
335  * reference interactive task is the start-up of LibreOffice Writer,
336  * and in this task each process/bfq_queue needs to have at most ~110K
337  * sectors transferred.
338  *
339  * This last piece of information enables BFQ to reduce the actual
340  * duration of weight-raising for at least one class of I/O-bound
341  * applications: those doing sequential or quasi-sequential I/O. An
342  * example is file copy. In fact, once started, the main I/O-bound
343  * processes of these applications usually consume the above 110K
344  * sectors in much less time than the processes of an application that
345  * is starting, because these I/O-bound processes will greedily devote
346  * almost all their CPU cycles only to their target,
347  * throughput-friendly I/O operations. This is even more true if BFQ
348  * happens to be underestimating the device peak rate, and thus
349  * overestimating the duration of weight raising. But, according to
350  * our measurements, once transferred 110K sectors, these processes
351  * have no right to be weight-raised any longer.
352  *
353  * Basing on the last consideration, BFQ ends weight-raising for a
354  * bfq_queue if the latter happens to have received an amount of
355  * service at least equal to the following constant. The constant is
356  * set to slightly more than 110K, to have a minimum safety margin.
357  *
358  * This early ending of weight-raising reduces the amount of time
359  * during which interactive false positives cause the two problems
360  * described at the beginning of these comments.
361  */
362 static const unsigned long max_service_from_wr = 120000;
363 
364 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
365 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
366 
367 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
368 {
369 	return bic->bfqq[is_sync];
370 }
371 
372 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
373 {
374 	bic->bfqq[is_sync] = bfqq;
375 }
376 
377 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
378 {
379 	return bic->icq.q->elevator->elevator_data;
380 }
381 
382 /**
383  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
384  * @icq: the iocontext queue.
385  */
386 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
387 {
388 	/* bic->icq is the first member, %NULL will convert to %NULL */
389 	return container_of(icq, struct bfq_io_cq, icq);
390 }
391 
392 /**
393  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
394  * @bfqd: the lookup key.
395  * @ioc: the io_context of the process doing I/O.
396  * @q: the request queue.
397  */
398 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
399 					struct io_context *ioc,
400 					struct request_queue *q)
401 {
402 	if (ioc) {
403 		unsigned long flags;
404 		struct bfq_io_cq *icq;
405 
406 		spin_lock_irqsave(&q->queue_lock, flags);
407 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
408 		spin_unlock_irqrestore(&q->queue_lock, flags);
409 
410 		return icq;
411 	}
412 
413 	return NULL;
414 }
415 
416 /*
417  * Scheduler run of queue, if there are requests pending and no one in the
418  * driver that will restart queueing.
419  */
420 void bfq_schedule_dispatch(struct bfq_data *bfqd)
421 {
422 	if (bfqd->queued != 0) {
423 		bfq_log(bfqd, "schedule dispatch");
424 		blk_mq_run_hw_queues(bfqd->queue, true);
425 	}
426 }
427 
428 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
429 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
430 
431 #define bfq_sample_valid(samples)	((samples) > 80)
432 
433 /*
434  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
435  * We choose the request that is closer to the head right now.  Distance
436  * behind the head is penalized and only allowed to a certain extent.
437  */
438 static struct request *bfq_choose_req(struct bfq_data *bfqd,
439 				      struct request *rq1,
440 				      struct request *rq2,
441 				      sector_t last)
442 {
443 	sector_t s1, s2, d1 = 0, d2 = 0;
444 	unsigned long back_max;
445 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
446 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
447 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
448 
449 	if (!rq1 || rq1 == rq2)
450 		return rq2;
451 	if (!rq2)
452 		return rq1;
453 
454 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
455 		return rq1;
456 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
457 		return rq2;
458 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
459 		return rq1;
460 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
461 		return rq2;
462 
463 	s1 = blk_rq_pos(rq1);
464 	s2 = blk_rq_pos(rq2);
465 
466 	/*
467 	 * By definition, 1KiB is 2 sectors.
468 	 */
469 	back_max = bfqd->bfq_back_max * 2;
470 
471 	/*
472 	 * Strict one way elevator _except_ in the case where we allow
473 	 * short backward seeks which are biased as twice the cost of a
474 	 * similar forward seek.
475 	 */
476 	if (s1 >= last)
477 		d1 = s1 - last;
478 	else if (s1 + back_max >= last)
479 		d1 = (last - s1) * bfqd->bfq_back_penalty;
480 	else
481 		wrap |= BFQ_RQ1_WRAP;
482 
483 	if (s2 >= last)
484 		d2 = s2 - last;
485 	else if (s2 + back_max >= last)
486 		d2 = (last - s2) * bfqd->bfq_back_penalty;
487 	else
488 		wrap |= BFQ_RQ2_WRAP;
489 
490 	/* Found required data */
491 
492 	/*
493 	 * By doing switch() on the bit mask "wrap" we avoid having to
494 	 * check two variables for all permutations: --> faster!
495 	 */
496 	switch (wrap) {
497 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
498 		if (d1 < d2)
499 			return rq1;
500 		else if (d2 < d1)
501 			return rq2;
502 
503 		if (s1 >= s2)
504 			return rq1;
505 		else
506 			return rq2;
507 
508 	case BFQ_RQ2_WRAP:
509 		return rq1;
510 	case BFQ_RQ1_WRAP:
511 		return rq2;
512 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
513 	default:
514 		/*
515 		 * Since both rqs are wrapped,
516 		 * start with the one that's further behind head
517 		 * (--> only *one* back seek required),
518 		 * since back seek takes more time than forward.
519 		 */
520 		if (s1 <= s2)
521 			return rq1;
522 		else
523 			return rq2;
524 	}
525 }
526 
527 /*
528  * Async I/O can easily starve sync I/O (both sync reads and sync
529  * writes), by consuming all tags. Similarly, storms of sync writes,
530  * such as those that sync(2) may trigger, can starve sync reads.
531  * Limit depths of async I/O and sync writes so as to counter both
532  * problems.
533  */
534 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
535 {
536 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
537 
538 	if (op_is_sync(op) && !op_is_write(op))
539 		return;
540 
541 	data->shallow_depth =
542 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
543 
544 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
545 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
546 			data->shallow_depth);
547 }
548 
549 static struct bfq_queue *
550 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
551 		     sector_t sector, struct rb_node **ret_parent,
552 		     struct rb_node ***rb_link)
553 {
554 	struct rb_node **p, *parent;
555 	struct bfq_queue *bfqq = NULL;
556 
557 	parent = NULL;
558 	p = &root->rb_node;
559 	while (*p) {
560 		struct rb_node **n;
561 
562 		parent = *p;
563 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
564 
565 		/*
566 		 * Sort strictly based on sector. Smallest to the left,
567 		 * largest to the right.
568 		 */
569 		if (sector > blk_rq_pos(bfqq->next_rq))
570 			n = &(*p)->rb_right;
571 		else if (sector < blk_rq_pos(bfqq->next_rq))
572 			n = &(*p)->rb_left;
573 		else
574 			break;
575 		p = n;
576 		bfqq = NULL;
577 	}
578 
579 	*ret_parent = parent;
580 	if (rb_link)
581 		*rb_link = p;
582 
583 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
584 		(unsigned long long)sector,
585 		bfqq ? bfqq->pid : 0);
586 
587 	return bfqq;
588 }
589 
590 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
591 {
592 	return bfqq->service_from_backlogged > 0 &&
593 		time_is_before_jiffies(bfqq->first_IO_time +
594 				       bfq_merge_time_limit);
595 }
596 
597 /*
598  * The following function is not marked as __cold because it is
599  * actually cold, but for the same performance goal described in the
600  * comments on the likely() at the beginning of
601  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
602  * execution time for the case where this function is not invoked, we
603  * had to add an unlikely() in each involved if().
604  */
605 void __cold
606 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
607 {
608 	struct rb_node **p, *parent;
609 	struct bfq_queue *__bfqq;
610 
611 	if (bfqq->pos_root) {
612 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
613 		bfqq->pos_root = NULL;
614 	}
615 
616 	/*
617 	 * bfqq cannot be merged any longer (see comments in
618 	 * bfq_setup_cooperator): no point in adding bfqq into the
619 	 * position tree.
620 	 */
621 	if (bfq_too_late_for_merging(bfqq))
622 		return;
623 
624 	if (bfq_class_idle(bfqq))
625 		return;
626 	if (!bfqq->next_rq)
627 		return;
628 
629 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
630 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
631 			blk_rq_pos(bfqq->next_rq), &parent, &p);
632 	if (!__bfqq) {
633 		rb_link_node(&bfqq->pos_node, parent, p);
634 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
635 	} else
636 		bfqq->pos_root = NULL;
637 }
638 
639 /*
640  * The following function returns false either if every active queue
641  * must receive the same share of the throughput (symmetric scenario),
642  * or, as a special case, if bfqq must receive a share of the
643  * throughput lower than or equal to the share that every other active
644  * queue must receive.  If bfqq does sync I/O, then these are the only
645  * two cases where bfqq happens to be guaranteed its share of the
646  * throughput even if I/O dispatching is not plugged when bfqq remains
647  * temporarily empty (for more details, see the comments in the
648  * function bfq_better_to_idle()). For this reason, the return value
649  * of this function is used to check whether I/O-dispatch plugging can
650  * be avoided.
651  *
652  * The above first case (symmetric scenario) occurs when:
653  * 1) all active queues have the same weight,
654  * 2) all active queues belong to the same I/O-priority class,
655  * 3) all active groups at the same level in the groups tree have the same
656  *    weight,
657  * 4) all active groups at the same level in the groups tree have the same
658  *    number of children.
659  *
660  * Unfortunately, keeping the necessary state for evaluating exactly
661  * the last two symmetry sub-conditions above would be quite complex
662  * and time consuming. Therefore this function evaluates, instead,
663  * only the following stronger three sub-conditions, for which it is
664  * much easier to maintain the needed state:
665  * 1) all active queues have the same weight,
666  * 2) all active queues belong to the same I/O-priority class,
667  * 3) there are no active groups.
668  * In particular, the last condition is always true if hierarchical
669  * support or the cgroups interface are not enabled, thus no state
670  * needs to be maintained in this case.
671  */
672 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
673 				   struct bfq_queue *bfqq)
674 {
675 	bool smallest_weight = bfqq &&
676 		bfqq->weight_counter &&
677 		bfqq->weight_counter ==
678 		container_of(
679 			rb_first_cached(&bfqd->queue_weights_tree),
680 			struct bfq_weight_counter,
681 			weights_node);
682 
683 	/*
684 	 * For queue weights to differ, queue_weights_tree must contain
685 	 * at least two nodes.
686 	 */
687 	bool varied_queue_weights = !smallest_weight &&
688 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
689 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
690 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
691 
692 	bool multiple_classes_busy =
693 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
694 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
695 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
696 
697 	return varied_queue_weights || multiple_classes_busy
698 #ifdef CONFIG_BFQ_GROUP_IOSCHED
699 	       || bfqd->num_groups_with_pending_reqs > 0
700 #endif
701 		;
702 }
703 
704 /*
705  * If the weight-counter tree passed as input contains no counter for
706  * the weight of the input queue, then add that counter; otherwise just
707  * increment the existing counter.
708  *
709  * Note that weight-counter trees contain few nodes in mostly symmetric
710  * scenarios. For example, if all queues have the same weight, then the
711  * weight-counter tree for the queues may contain at most one node.
712  * This holds even if low_latency is on, because weight-raised queues
713  * are not inserted in the tree.
714  * In most scenarios, the rate at which nodes are created/destroyed
715  * should be low too.
716  */
717 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
718 			  struct rb_root_cached *root)
719 {
720 	struct bfq_entity *entity = &bfqq->entity;
721 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
722 	bool leftmost = true;
723 
724 	/*
725 	 * Do not insert if the queue is already associated with a
726 	 * counter, which happens if:
727 	 *   1) a request arrival has caused the queue to become both
728 	 *      non-weight-raised, and hence change its weight, and
729 	 *      backlogged; in this respect, each of the two events
730 	 *      causes an invocation of this function,
731 	 *   2) this is the invocation of this function caused by the
732 	 *      second event. This second invocation is actually useless,
733 	 *      and we handle this fact by exiting immediately. More
734 	 *      efficient or clearer solutions might possibly be adopted.
735 	 */
736 	if (bfqq->weight_counter)
737 		return;
738 
739 	while (*new) {
740 		struct bfq_weight_counter *__counter = container_of(*new,
741 						struct bfq_weight_counter,
742 						weights_node);
743 		parent = *new;
744 
745 		if (entity->weight == __counter->weight) {
746 			bfqq->weight_counter = __counter;
747 			goto inc_counter;
748 		}
749 		if (entity->weight < __counter->weight)
750 			new = &((*new)->rb_left);
751 		else {
752 			new = &((*new)->rb_right);
753 			leftmost = false;
754 		}
755 	}
756 
757 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
758 				       GFP_ATOMIC);
759 
760 	/*
761 	 * In the unlucky event of an allocation failure, we just
762 	 * exit. This will cause the weight of queue to not be
763 	 * considered in bfq_asymmetric_scenario, which, in its turn,
764 	 * causes the scenario to be deemed wrongly symmetric in case
765 	 * bfqq's weight would have been the only weight making the
766 	 * scenario asymmetric.  On the bright side, no unbalance will
767 	 * however occur when bfqq becomes inactive again (the
768 	 * invocation of this function is triggered by an activation
769 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
770 	 * if !bfqq->weight_counter.
771 	 */
772 	if (unlikely(!bfqq->weight_counter))
773 		return;
774 
775 	bfqq->weight_counter->weight = entity->weight;
776 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
777 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
778 				leftmost);
779 
780 inc_counter:
781 	bfqq->weight_counter->num_active++;
782 	bfqq->ref++;
783 }
784 
785 /*
786  * Decrement the weight counter associated with the queue, and, if the
787  * counter reaches 0, remove the counter from the tree.
788  * See the comments to the function bfq_weights_tree_add() for considerations
789  * about overhead.
790  */
791 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
792 			       struct bfq_queue *bfqq,
793 			       struct rb_root_cached *root)
794 {
795 	if (!bfqq->weight_counter)
796 		return;
797 
798 	bfqq->weight_counter->num_active--;
799 	if (bfqq->weight_counter->num_active > 0)
800 		goto reset_entity_pointer;
801 
802 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
803 	kfree(bfqq->weight_counter);
804 
805 reset_entity_pointer:
806 	bfqq->weight_counter = NULL;
807 	bfq_put_queue(bfqq);
808 }
809 
810 /*
811  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
812  * of active groups for each queue's inactive parent entity.
813  */
814 void bfq_weights_tree_remove(struct bfq_data *bfqd,
815 			     struct bfq_queue *bfqq)
816 {
817 	struct bfq_entity *entity = bfqq->entity.parent;
818 
819 	for_each_entity(entity) {
820 		struct bfq_sched_data *sd = entity->my_sched_data;
821 
822 		if (sd->next_in_service || sd->in_service_entity) {
823 			/*
824 			 * entity is still active, because either
825 			 * next_in_service or in_service_entity is not
826 			 * NULL (see the comments on the definition of
827 			 * next_in_service for details on why
828 			 * in_service_entity must be checked too).
829 			 *
830 			 * As a consequence, its parent entities are
831 			 * active as well, and thus this loop must
832 			 * stop here.
833 			 */
834 			break;
835 		}
836 
837 		/*
838 		 * The decrement of num_groups_with_pending_reqs is
839 		 * not performed immediately upon the deactivation of
840 		 * entity, but it is delayed to when it also happens
841 		 * that the first leaf descendant bfqq of entity gets
842 		 * all its pending requests completed. The following
843 		 * instructions perform this delayed decrement, if
844 		 * needed. See the comments on
845 		 * num_groups_with_pending_reqs for details.
846 		 */
847 		if (entity->in_groups_with_pending_reqs) {
848 			entity->in_groups_with_pending_reqs = false;
849 			bfqd->num_groups_with_pending_reqs--;
850 		}
851 	}
852 
853 	/*
854 	 * Next function is invoked last, because it causes bfqq to be
855 	 * freed if the following holds: bfqq is not in service and
856 	 * has no dispatched request. DO NOT use bfqq after the next
857 	 * function invocation.
858 	 */
859 	__bfq_weights_tree_remove(bfqd, bfqq,
860 				  &bfqd->queue_weights_tree);
861 }
862 
863 /*
864  * Return expired entry, or NULL to just start from scratch in rbtree.
865  */
866 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
867 				      struct request *last)
868 {
869 	struct request *rq;
870 
871 	if (bfq_bfqq_fifo_expire(bfqq))
872 		return NULL;
873 
874 	bfq_mark_bfqq_fifo_expire(bfqq);
875 
876 	rq = rq_entry_fifo(bfqq->fifo.next);
877 
878 	if (rq == last || ktime_get_ns() < rq->fifo_time)
879 		return NULL;
880 
881 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
882 	return rq;
883 }
884 
885 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
886 					struct bfq_queue *bfqq,
887 					struct request *last)
888 {
889 	struct rb_node *rbnext = rb_next(&last->rb_node);
890 	struct rb_node *rbprev = rb_prev(&last->rb_node);
891 	struct request *next, *prev = NULL;
892 
893 	/* Follow expired path, else get first next available. */
894 	next = bfq_check_fifo(bfqq, last);
895 	if (next)
896 		return next;
897 
898 	if (rbprev)
899 		prev = rb_entry_rq(rbprev);
900 
901 	if (rbnext)
902 		next = rb_entry_rq(rbnext);
903 	else {
904 		rbnext = rb_first(&bfqq->sort_list);
905 		if (rbnext && rbnext != &last->rb_node)
906 			next = rb_entry_rq(rbnext);
907 	}
908 
909 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
910 }
911 
912 /* see the definition of bfq_async_charge_factor for details */
913 static unsigned long bfq_serv_to_charge(struct request *rq,
914 					struct bfq_queue *bfqq)
915 {
916 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
917 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
918 		return blk_rq_sectors(rq);
919 
920 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
921 }
922 
923 /**
924  * bfq_updated_next_req - update the queue after a new next_rq selection.
925  * @bfqd: the device data the queue belongs to.
926  * @bfqq: the queue to update.
927  *
928  * If the first request of a queue changes we make sure that the queue
929  * has enough budget to serve at least its first request (if the
930  * request has grown).  We do this because if the queue has not enough
931  * budget for its first request, it has to go through two dispatch
932  * rounds to actually get it dispatched.
933  */
934 static void bfq_updated_next_req(struct bfq_data *bfqd,
935 				 struct bfq_queue *bfqq)
936 {
937 	struct bfq_entity *entity = &bfqq->entity;
938 	struct request *next_rq = bfqq->next_rq;
939 	unsigned long new_budget;
940 
941 	if (!next_rq)
942 		return;
943 
944 	if (bfqq == bfqd->in_service_queue)
945 		/*
946 		 * In order not to break guarantees, budgets cannot be
947 		 * changed after an entity has been selected.
948 		 */
949 		return;
950 
951 	new_budget = max_t(unsigned long,
952 			   max_t(unsigned long, bfqq->max_budget,
953 				 bfq_serv_to_charge(next_rq, bfqq)),
954 			   entity->service);
955 	if (entity->budget != new_budget) {
956 		entity->budget = new_budget;
957 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
958 					 new_budget);
959 		bfq_requeue_bfqq(bfqd, bfqq, false);
960 	}
961 }
962 
963 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
964 {
965 	u64 dur;
966 
967 	if (bfqd->bfq_wr_max_time > 0)
968 		return bfqd->bfq_wr_max_time;
969 
970 	dur = bfqd->rate_dur_prod;
971 	do_div(dur, bfqd->peak_rate);
972 
973 	/*
974 	 * Limit duration between 3 and 25 seconds. The upper limit
975 	 * has been conservatively set after the following worst case:
976 	 * on a QEMU/KVM virtual machine
977 	 * - running in a slow PC
978 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
979 	 * - serving a heavy I/O workload, such as the sequential reading
980 	 *   of several files
981 	 * mplayer took 23 seconds to start, if constantly weight-raised.
982 	 *
983 	 * As for higher values than that accommodating the above bad
984 	 * scenario, tests show that higher values would often yield
985 	 * the opposite of the desired result, i.e., would worsen
986 	 * responsiveness by allowing non-interactive applications to
987 	 * preserve weight raising for too long.
988 	 *
989 	 * On the other end, lower values than 3 seconds make it
990 	 * difficult for most interactive tasks to complete their jobs
991 	 * before weight-raising finishes.
992 	 */
993 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
994 }
995 
996 /* switch back from soft real-time to interactive weight raising */
997 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
998 					  struct bfq_data *bfqd)
999 {
1000 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1001 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1002 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1003 }
1004 
1005 static void
1006 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1007 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1008 {
1009 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1010 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1011 
1012 	if (bic->saved_has_short_ttime)
1013 		bfq_mark_bfqq_has_short_ttime(bfqq);
1014 	else
1015 		bfq_clear_bfqq_has_short_ttime(bfqq);
1016 
1017 	if (bic->saved_IO_bound)
1018 		bfq_mark_bfqq_IO_bound(bfqq);
1019 	else
1020 		bfq_clear_bfqq_IO_bound(bfqq);
1021 
1022 	bfqq->entity.new_weight = bic->saved_weight;
1023 	bfqq->ttime = bic->saved_ttime;
1024 	bfqq->wr_coeff = bic->saved_wr_coeff;
1025 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1026 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1027 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1028 
1029 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1030 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1031 				   bfqq->wr_cur_max_time))) {
1032 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1033 		    !bfq_bfqq_in_large_burst(bfqq) &&
1034 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1035 					     bfq_wr_duration(bfqd))) {
1036 			switch_back_to_interactive_wr(bfqq, bfqd);
1037 		} else {
1038 			bfqq->wr_coeff = 1;
1039 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1040 				     "resume state: switching off wr");
1041 		}
1042 	}
1043 
1044 	/* make sure weight will be updated, however we got here */
1045 	bfqq->entity.prio_changed = 1;
1046 
1047 	if (likely(!busy))
1048 		return;
1049 
1050 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1051 		bfqd->wr_busy_queues++;
1052 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1053 		bfqd->wr_busy_queues--;
1054 }
1055 
1056 static int bfqq_process_refs(struct bfq_queue *bfqq)
1057 {
1058 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1059 		(bfqq->weight_counter != NULL);
1060 }
1061 
1062 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1063 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1064 {
1065 	struct bfq_queue *item;
1066 	struct hlist_node *n;
1067 
1068 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1069 		hlist_del_init(&item->burst_list_node);
1070 
1071 	/*
1072 	 * Start the creation of a new burst list only if there is no
1073 	 * active queue. See comments on the conditional invocation of
1074 	 * bfq_handle_burst().
1075 	 */
1076 	if (bfq_tot_busy_queues(bfqd) == 0) {
1077 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1078 		bfqd->burst_size = 1;
1079 	} else
1080 		bfqd->burst_size = 0;
1081 
1082 	bfqd->burst_parent_entity = bfqq->entity.parent;
1083 }
1084 
1085 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1086 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1087 {
1088 	/* Increment burst size to take into account also bfqq */
1089 	bfqd->burst_size++;
1090 
1091 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1092 		struct bfq_queue *pos, *bfqq_item;
1093 		struct hlist_node *n;
1094 
1095 		/*
1096 		 * Enough queues have been activated shortly after each
1097 		 * other to consider this burst as large.
1098 		 */
1099 		bfqd->large_burst = true;
1100 
1101 		/*
1102 		 * We can now mark all queues in the burst list as
1103 		 * belonging to a large burst.
1104 		 */
1105 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1106 				     burst_list_node)
1107 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1108 		bfq_mark_bfqq_in_large_burst(bfqq);
1109 
1110 		/*
1111 		 * From now on, and until the current burst finishes, any
1112 		 * new queue being activated shortly after the last queue
1113 		 * was inserted in the burst can be immediately marked as
1114 		 * belonging to a large burst. So the burst list is not
1115 		 * needed any more. Remove it.
1116 		 */
1117 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1118 					  burst_list_node)
1119 			hlist_del_init(&pos->burst_list_node);
1120 	} else /*
1121 		* Burst not yet large: add bfqq to the burst list. Do
1122 		* not increment the ref counter for bfqq, because bfqq
1123 		* is removed from the burst list before freeing bfqq
1124 		* in put_queue.
1125 		*/
1126 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1127 }
1128 
1129 /*
1130  * If many queues belonging to the same group happen to be created
1131  * shortly after each other, then the processes associated with these
1132  * queues have typically a common goal. In particular, bursts of queue
1133  * creations are usually caused by services or applications that spawn
1134  * many parallel threads/processes. Examples are systemd during boot,
1135  * or git grep. To help these processes get their job done as soon as
1136  * possible, it is usually better to not grant either weight-raising
1137  * or device idling to their queues, unless these queues must be
1138  * protected from the I/O flowing through other active queues.
1139  *
1140  * In this comment we describe, firstly, the reasons why this fact
1141  * holds, and, secondly, the next function, which implements the main
1142  * steps needed to properly mark these queues so that they can then be
1143  * treated in a different way.
1144  *
1145  * The above services or applications benefit mostly from a high
1146  * throughput: the quicker the requests of the activated queues are
1147  * cumulatively served, the sooner the target job of these queues gets
1148  * completed. As a consequence, weight-raising any of these queues,
1149  * which also implies idling the device for it, is almost always
1150  * counterproductive, unless there are other active queues to isolate
1151  * these new queues from. If there no other active queues, then
1152  * weight-raising these new queues just lowers throughput in most
1153  * cases.
1154  *
1155  * On the other hand, a burst of queue creations may be caused also by
1156  * the start of an application that does not consist of a lot of
1157  * parallel I/O-bound threads. In fact, with a complex application,
1158  * several short processes may need to be executed to start-up the
1159  * application. In this respect, to start an application as quickly as
1160  * possible, the best thing to do is in any case to privilege the I/O
1161  * related to the application with respect to all other
1162  * I/O. Therefore, the best strategy to start as quickly as possible
1163  * an application that causes a burst of queue creations is to
1164  * weight-raise all the queues created during the burst. This is the
1165  * exact opposite of the best strategy for the other type of bursts.
1166  *
1167  * In the end, to take the best action for each of the two cases, the
1168  * two types of bursts need to be distinguished. Fortunately, this
1169  * seems relatively easy, by looking at the sizes of the bursts. In
1170  * particular, we found a threshold such that only bursts with a
1171  * larger size than that threshold are apparently caused by
1172  * services or commands such as systemd or git grep. For brevity,
1173  * hereafter we call just 'large' these bursts. BFQ *does not*
1174  * weight-raise queues whose creation occurs in a large burst. In
1175  * addition, for each of these queues BFQ performs or does not perform
1176  * idling depending on which choice boosts the throughput more. The
1177  * exact choice depends on the device and request pattern at
1178  * hand.
1179  *
1180  * Unfortunately, false positives may occur while an interactive task
1181  * is starting (e.g., an application is being started). The
1182  * consequence is that the queues associated with the task do not
1183  * enjoy weight raising as expected. Fortunately these false positives
1184  * are very rare. They typically occur if some service happens to
1185  * start doing I/O exactly when the interactive task starts.
1186  *
1187  * Turning back to the next function, it is invoked only if there are
1188  * no active queues (apart from active queues that would belong to the
1189  * same, possible burst bfqq would belong to), and it implements all
1190  * the steps needed to detect the occurrence of a large burst and to
1191  * properly mark all the queues belonging to it (so that they can then
1192  * be treated in a different way). This goal is achieved by
1193  * maintaining a "burst list" that holds, temporarily, the queues that
1194  * belong to the burst in progress. The list is then used to mark
1195  * these queues as belonging to a large burst if the burst does become
1196  * large. The main steps are the following.
1197  *
1198  * . when the very first queue is created, the queue is inserted into the
1199  *   list (as it could be the first queue in a possible burst)
1200  *
1201  * . if the current burst has not yet become large, and a queue Q that does
1202  *   not yet belong to the burst is activated shortly after the last time
1203  *   at which a new queue entered the burst list, then the function appends
1204  *   Q to the burst list
1205  *
1206  * . if, as a consequence of the previous step, the burst size reaches
1207  *   the large-burst threshold, then
1208  *
1209  *     . all the queues in the burst list are marked as belonging to a
1210  *       large burst
1211  *
1212  *     . the burst list is deleted; in fact, the burst list already served
1213  *       its purpose (keeping temporarily track of the queues in a burst,
1214  *       so as to be able to mark them as belonging to a large burst in the
1215  *       previous sub-step), and now is not needed any more
1216  *
1217  *     . the device enters a large-burst mode
1218  *
1219  * . if a queue Q that does not belong to the burst is created while
1220  *   the device is in large-burst mode and shortly after the last time
1221  *   at which a queue either entered the burst list or was marked as
1222  *   belonging to the current large burst, then Q is immediately marked
1223  *   as belonging to a large burst.
1224  *
1225  * . if a queue Q that does not belong to the burst is created a while
1226  *   later, i.e., not shortly after, than the last time at which a queue
1227  *   either entered the burst list or was marked as belonging to the
1228  *   current large burst, then the current burst is deemed as finished and:
1229  *
1230  *        . the large-burst mode is reset if set
1231  *
1232  *        . the burst list is emptied
1233  *
1234  *        . Q is inserted in the burst list, as Q may be the first queue
1235  *          in a possible new burst (then the burst list contains just Q
1236  *          after this step).
1237  */
1238 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1239 {
1240 	/*
1241 	 * If bfqq is already in the burst list or is part of a large
1242 	 * burst, or finally has just been split, then there is
1243 	 * nothing else to do.
1244 	 */
1245 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1246 	    bfq_bfqq_in_large_burst(bfqq) ||
1247 	    time_is_after_eq_jiffies(bfqq->split_time +
1248 				     msecs_to_jiffies(10)))
1249 		return;
1250 
1251 	/*
1252 	 * If bfqq's creation happens late enough, or bfqq belongs to
1253 	 * a different group than the burst group, then the current
1254 	 * burst is finished, and related data structures must be
1255 	 * reset.
1256 	 *
1257 	 * In this respect, consider the special case where bfqq is
1258 	 * the very first queue created after BFQ is selected for this
1259 	 * device. In this case, last_ins_in_burst and
1260 	 * burst_parent_entity are not yet significant when we get
1261 	 * here. But it is easy to verify that, whether or not the
1262 	 * following condition is true, bfqq will end up being
1263 	 * inserted into the burst list. In particular the list will
1264 	 * happen to contain only bfqq. And this is exactly what has
1265 	 * to happen, as bfqq may be the first queue of the first
1266 	 * burst.
1267 	 */
1268 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1269 	    bfqd->bfq_burst_interval) ||
1270 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1271 		bfqd->large_burst = false;
1272 		bfq_reset_burst_list(bfqd, bfqq);
1273 		goto end;
1274 	}
1275 
1276 	/*
1277 	 * If we get here, then bfqq is being activated shortly after the
1278 	 * last queue. So, if the current burst is also large, we can mark
1279 	 * bfqq as belonging to this large burst immediately.
1280 	 */
1281 	if (bfqd->large_burst) {
1282 		bfq_mark_bfqq_in_large_burst(bfqq);
1283 		goto end;
1284 	}
1285 
1286 	/*
1287 	 * If we get here, then a large-burst state has not yet been
1288 	 * reached, but bfqq is being activated shortly after the last
1289 	 * queue. Then we add bfqq to the burst.
1290 	 */
1291 	bfq_add_to_burst(bfqd, bfqq);
1292 end:
1293 	/*
1294 	 * At this point, bfqq either has been added to the current
1295 	 * burst or has caused the current burst to terminate and a
1296 	 * possible new burst to start. In particular, in the second
1297 	 * case, bfqq has become the first queue in the possible new
1298 	 * burst.  In both cases last_ins_in_burst needs to be moved
1299 	 * forward.
1300 	 */
1301 	bfqd->last_ins_in_burst = jiffies;
1302 }
1303 
1304 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1305 {
1306 	struct bfq_entity *entity = &bfqq->entity;
1307 
1308 	return entity->budget - entity->service;
1309 }
1310 
1311 /*
1312  * If enough samples have been computed, return the current max budget
1313  * stored in bfqd, which is dynamically updated according to the
1314  * estimated disk peak rate; otherwise return the default max budget
1315  */
1316 static int bfq_max_budget(struct bfq_data *bfqd)
1317 {
1318 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1319 		return bfq_default_max_budget;
1320 	else
1321 		return bfqd->bfq_max_budget;
1322 }
1323 
1324 /*
1325  * Return min budget, which is a fraction of the current or default
1326  * max budget (trying with 1/32)
1327  */
1328 static int bfq_min_budget(struct bfq_data *bfqd)
1329 {
1330 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1331 		return bfq_default_max_budget / 32;
1332 	else
1333 		return bfqd->bfq_max_budget / 32;
1334 }
1335 
1336 /*
1337  * The next function, invoked after the input queue bfqq switches from
1338  * idle to busy, updates the budget of bfqq. The function also tells
1339  * whether the in-service queue should be expired, by returning
1340  * true. The purpose of expiring the in-service queue is to give bfqq
1341  * the chance to possibly preempt the in-service queue, and the reason
1342  * for preempting the in-service queue is to achieve one of the two
1343  * goals below.
1344  *
1345  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1346  * expired because it has remained idle. In particular, bfqq may have
1347  * expired for one of the following two reasons:
1348  *
1349  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1350  *   and did not make it to issue a new request before its last
1351  *   request was served;
1352  *
1353  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1354  *   a new request before the expiration of the idling-time.
1355  *
1356  * Even if bfqq has expired for one of the above reasons, the process
1357  * associated with the queue may be however issuing requests greedily,
1358  * and thus be sensitive to the bandwidth it receives (bfqq may have
1359  * remained idle for other reasons: CPU high load, bfqq not enjoying
1360  * idling, I/O throttling somewhere in the path from the process to
1361  * the I/O scheduler, ...). But if, after every expiration for one of
1362  * the above two reasons, bfqq has to wait for the service of at least
1363  * one full budget of another queue before being served again, then
1364  * bfqq is likely to get a much lower bandwidth or resource time than
1365  * its reserved ones. To address this issue, two countermeasures need
1366  * to be taken.
1367  *
1368  * First, the budget and the timestamps of bfqq need to be updated in
1369  * a special way on bfqq reactivation: they need to be updated as if
1370  * bfqq did not remain idle and did not expire. In fact, if they are
1371  * computed as if bfqq expired and remained idle until reactivation,
1372  * then the process associated with bfqq is treated as if, instead of
1373  * being greedy, it stopped issuing requests when bfqq remained idle,
1374  * and restarts issuing requests only on this reactivation. In other
1375  * words, the scheduler does not help the process recover the "service
1376  * hole" between bfqq expiration and reactivation. As a consequence,
1377  * the process receives a lower bandwidth than its reserved one. In
1378  * contrast, to recover this hole, the budget must be updated as if
1379  * bfqq was not expired at all before this reactivation, i.e., it must
1380  * be set to the value of the remaining budget when bfqq was
1381  * expired. Along the same line, timestamps need to be assigned the
1382  * value they had the last time bfqq was selected for service, i.e.,
1383  * before last expiration. Thus timestamps need to be back-shifted
1384  * with respect to their normal computation (see [1] for more details
1385  * on this tricky aspect).
1386  *
1387  * Secondly, to allow the process to recover the hole, the in-service
1388  * queue must be expired too, to give bfqq the chance to preempt it
1389  * immediately. In fact, if bfqq has to wait for a full budget of the
1390  * in-service queue to be completed, then it may become impossible to
1391  * let the process recover the hole, even if the back-shifted
1392  * timestamps of bfqq are lower than those of the in-service queue. If
1393  * this happens for most or all of the holes, then the process may not
1394  * receive its reserved bandwidth. In this respect, it is worth noting
1395  * that, being the service of outstanding requests unpreemptible, a
1396  * little fraction of the holes may however be unrecoverable, thereby
1397  * causing a little loss of bandwidth.
1398  *
1399  * The last important point is detecting whether bfqq does need this
1400  * bandwidth recovery. In this respect, the next function deems the
1401  * process associated with bfqq greedy, and thus allows it to recover
1402  * the hole, if: 1) the process is waiting for the arrival of a new
1403  * request (which implies that bfqq expired for one of the above two
1404  * reasons), and 2) such a request has arrived soon. The first
1405  * condition is controlled through the flag non_blocking_wait_rq,
1406  * while the second through the flag arrived_in_time. If both
1407  * conditions hold, then the function computes the budget in the
1408  * above-described special way, and signals that the in-service queue
1409  * should be expired. Timestamp back-shifting is done later in
1410  * __bfq_activate_entity.
1411  *
1412  * 2. Reduce latency. Even if timestamps are not backshifted to let
1413  * the process associated with bfqq recover a service hole, bfqq may
1414  * however happen to have, after being (re)activated, a lower finish
1415  * timestamp than the in-service queue.	 That is, the next budget of
1416  * bfqq may have to be completed before the one of the in-service
1417  * queue. If this is the case, then preempting the in-service queue
1418  * allows this goal to be achieved, apart from the unpreemptible,
1419  * outstanding requests mentioned above.
1420  *
1421  * Unfortunately, regardless of which of the above two goals one wants
1422  * to achieve, service trees need first to be updated to know whether
1423  * the in-service queue must be preempted. To have service trees
1424  * correctly updated, the in-service queue must be expired and
1425  * rescheduled, and bfqq must be scheduled too. This is one of the
1426  * most costly operations (in future versions, the scheduling
1427  * mechanism may be re-designed in such a way to make it possible to
1428  * know whether preemption is needed without needing to update service
1429  * trees). In addition, queue preemptions almost always cause random
1430  * I/O, and thus loss of throughput. Because of these facts, the next
1431  * function adopts the following simple scheme to avoid both costly
1432  * operations and too frequent preemptions: it requests the expiration
1433  * of the in-service queue (unconditionally) only for queues that need
1434  * to recover a hole, or that either are weight-raised or deserve to
1435  * be weight-raised.
1436  */
1437 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1438 						struct bfq_queue *bfqq,
1439 						bool arrived_in_time,
1440 						bool wr_or_deserves_wr)
1441 {
1442 	struct bfq_entity *entity = &bfqq->entity;
1443 
1444 	/*
1445 	 * In the next compound condition, we check also whether there
1446 	 * is some budget left, because otherwise there is no point in
1447 	 * trying to go on serving bfqq with this same budget: bfqq
1448 	 * would be expired immediately after being selected for
1449 	 * service. This would only cause useless overhead.
1450 	 */
1451 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1452 	    bfq_bfqq_budget_left(bfqq) > 0) {
1453 		/*
1454 		 * We do not clear the flag non_blocking_wait_rq here, as
1455 		 * the latter is used in bfq_activate_bfqq to signal
1456 		 * that timestamps need to be back-shifted (and is
1457 		 * cleared right after).
1458 		 */
1459 
1460 		/*
1461 		 * In next assignment we rely on that either
1462 		 * entity->service or entity->budget are not updated
1463 		 * on expiration if bfqq is empty (see
1464 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1465 		 * remain unchanged after such an expiration, and the
1466 		 * following statement therefore assigns to
1467 		 * entity->budget the remaining budget on such an
1468 		 * expiration.
1469 		 */
1470 		entity->budget = min_t(unsigned long,
1471 				       bfq_bfqq_budget_left(bfqq),
1472 				       bfqq->max_budget);
1473 
1474 		/*
1475 		 * At this point, we have used entity->service to get
1476 		 * the budget left (needed for updating
1477 		 * entity->budget). Thus we finally can, and have to,
1478 		 * reset entity->service. The latter must be reset
1479 		 * because bfqq would otherwise be charged again for
1480 		 * the service it has received during its previous
1481 		 * service slot(s).
1482 		 */
1483 		entity->service = 0;
1484 
1485 		return true;
1486 	}
1487 
1488 	/*
1489 	 * We can finally complete expiration, by setting service to 0.
1490 	 */
1491 	entity->service = 0;
1492 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1493 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1494 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1495 	return wr_or_deserves_wr;
1496 }
1497 
1498 /*
1499  * Return the farthest past time instant according to jiffies
1500  * macros.
1501  */
1502 static unsigned long bfq_smallest_from_now(void)
1503 {
1504 	return jiffies - MAX_JIFFY_OFFSET;
1505 }
1506 
1507 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1508 					     struct bfq_queue *bfqq,
1509 					     unsigned int old_wr_coeff,
1510 					     bool wr_or_deserves_wr,
1511 					     bool interactive,
1512 					     bool in_burst,
1513 					     bool soft_rt)
1514 {
1515 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1516 		/* start a weight-raising period */
1517 		if (interactive) {
1518 			bfqq->service_from_wr = 0;
1519 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1520 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1521 		} else {
1522 			/*
1523 			 * No interactive weight raising in progress
1524 			 * here: assign minus infinity to
1525 			 * wr_start_at_switch_to_srt, to make sure
1526 			 * that, at the end of the soft-real-time
1527 			 * weight raising periods that is starting
1528 			 * now, no interactive weight-raising period
1529 			 * may be wrongly considered as still in
1530 			 * progress (and thus actually started by
1531 			 * mistake).
1532 			 */
1533 			bfqq->wr_start_at_switch_to_srt =
1534 				bfq_smallest_from_now();
1535 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1536 				BFQ_SOFTRT_WEIGHT_FACTOR;
1537 			bfqq->wr_cur_max_time =
1538 				bfqd->bfq_wr_rt_max_time;
1539 		}
1540 
1541 		/*
1542 		 * If needed, further reduce budget to make sure it is
1543 		 * close to bfqq's backlog, so as to reduce the
1544 		 * scheduling-error component due to a too large
1545 		 * budget. Do not care about throughput consequences,
1546 		 * but only about latency. Finally, do not assign a
1547 		 * too small budget either, to avoid increasing
1548 		 * latency by causing too frequent expirations.
1549 		 */
1550 		bfqq->entity.budget = min_t(unsigned long,
1551 					    bfqq->entity.budget,
1552 					    2 * bfq_min_budget(bfqd));
1553 	} else if (old_wr_coeff > 1) {
1554 		if (interactive) { /* update wr coeff and duration */
1555 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1556 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1557 		} else if (in_burst)
1558 			bfqq->wr_coeff = 1;
1559 		else if (soft_rt) {
1560 			/*
1561 			 * The application is now or still meeting the
1562 			 * requirements for being deemed soft rt.  We
1563 			 * can then correctly and safely (re)charge
1564 			 * the weight-raising duration for the
1565 			 * application with the weight-raising
1566 			 * duration for soft rt applications.
1567 			 *
1568 			 * In particular, doing this recharge now, i.e.,
1569 			 * before the weight-raising period for the
1570 			 * application finishes, reduces the probability
1571 			 * of the following negative scenario:
1572 			 * 1) the weight of a soft rt application is
1573 			 *    raised at startup (as for any newly
1574 			 *    created application),
1575 			 * 2) since the application is not interactive,
1576 			 *    at a certain time weight-raising is
1577 			 *    stopped for the application,
1578 			 * 3) at that time the application happens to
1579 			 *    still have pending requests, and hence
1580 			 *    is destined to not have a chance to be
1581 			 *    deemed soft rt before these requests are
1582 			 *    completed (see the comments to the
1583 			 *    function bfq_bfqq_softrt_next_start()
1584 			 *    for details on soft rt detection),
1585 			 * 4) these pending requests experience a high
1586 			 *    latency because the application is not
1587 			 *    weight-raised while they are pending.
1588 			 */
1589 			if (bfqq->wr_cur_max_time !=
1590 				bfqd->bfq_wr_rt_max_time) {
1591 				bfqq->wr_start_at_switch_to_srt =
1592 					bfqq->last_wr_start_finish;
1593 
1594 				bfqq->wr_cur_max_time =
1595 					bfqd->bfq_wr_rt_max_time;
1596 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1597 					BFQ_SOFTRT_WEIGHT_FACTOR;
1598 			}
1599 			bfqq->last_wr_start_finish = jiffies;
1600 		}
1601 	}
1602 }
1603 
1604 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1605 					struct bfq_queue *bfqq)
1606 {
1607 	return bfqq->dispatched == 0 &&
1608 		time_is_before_jiffies(
1609 			bfqq->budget_timeout +
1610 			bfqd->bfq_wr_min_idle_time);
1611 }
1612 
1613 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1614 					     struct bfq_queue *bfqq,
1615 					     int old_wr_coeff,
1616 					     struct request *rq,
1617 					     bool *interactive)
1618 {
1619 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1620 		bfqq_wants_to_preempt,
1621 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1622 		/*
1623 		 * See the comments on
1624 		 * bfq_bfqq_update_budg_for_activation for
1625 		 * details on the usage of the next variable.
1626 		 */
1627 		arrived_in_time =  ktime_get_ns() <=
1628 			bfqq->ttime.last_end_request +
1629 			bfqd->bfq_slice_idle * 3;
1630 
1631 
1632 	/*
1633 	 * bfqq deserves to be weight-raised if:
1634 	 * - it is sync,
1635 	 * - it does not belong to a large burst,
1636 	 * - it has been idle for enough time or is soft real-time,
1637 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1638 	 */
1639 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1640 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1641 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1642 		!in_burst &&
1643 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1644 		bfqq->dispatched == 0;
1645 	*interactive = !in_burst && idle_for_long_time;
1646 	wr_or_deserves_wr = bfqd->low_latency &&
1647 		(bfqq->wr_coeff > 1 ||
1648 		 (bfq_bfqq_sync(bfqq) &&
1649 		  bfqq->bic && (*interactive || soft_rt)));
1650 
1651 	/*
1652 	 * Using the last flag, update budget and check whether bfqq
1653 	 * may want to preempt the in-service queue.
1654 	 */
1655 	bfqq_wants_to_preempt =
1656 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1657 						    arrived_in_time,
1658 						    wr_or_deserves_wr);
1659 
1660 	/*
1661 	 * If bfqq happened to be activated in a burst, but has been
1662 	 * idle for much more than an interactive queue, then we
1663 	 * assume that, in the overall I/O initiated in the burst, the
1664 	 * I/O associated with bfqq is finished. So bfqq does not need
1665 	 * to be treated as a queue belonging to a burst
1666 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1667 	 * if set, and remove bfqq from the burst list if it's
1668 	 * there. We do not decrement burst_size, because the fact
1669 	 * that bfqq does not need to belong to the burst list any
1670 	 * more does not invalidate the fact that bfqq was created in
1671 	 * a burst.
1672 	 */
1673 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1674 	    idle_for_long_time &&
1675 	    time_is_before_jiffies(
1676 		    bfqq->budget_timeout +
1677 		    msecs_to_jiffies(10000))) {
1678 		hlist_del_init(&bfqq->burst_list_node);
1679 		bfq_clear_bfqq_in_large_burst(bfqq);
1680 	}
1681 
1682 	bfq_clear_bfqq_just_created(bfqq);
1683 
1684 
1685 	if (!bfq_bfqq_IO_bound(bfqq)) {
1686 		if (arrived_in_time) {
1687 			bfqq->requests_within_timer++;
1688 			if (bfqq->requests_within_timer >=
1689 			    bfqd->bfq_requests_within_timer)
1690 				bfq_mark_bfqq_IO_bound(bfqq);
1691 		} else
1692 			bfqq->requests_within_timer = 0;
1693 	}
1694 
1695 	if (bfqd->low_latency) {
1696 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1697 			/* wraparound */
1698 			bfqq->split_time =
1699 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1700 
1701 		if (time_is_before_jiffies(bfqq->split_time +
1702 					   bfqd->bfq_wr_min_idle_time)) {
1703 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1704 							 old_wr_coeff,
1705 							 wr_or_deserves_wr,
1706 							 *interactive,
1707 							 in_burst,
1708 							 soft_rt);
1709 
1710 			if (old_wr_coeff != bfqq->wr_coeff)
1711 				bfqq->entity.prio_changed = 1;
1712 		}
1713 	}
1714 
1715 	bfqq->last_idle_bklogged = jiffies;
1716 	bfqq->service_from_backlogged = 0;
1717 	bfq_clear_bfqq_softrt_update(bfqq);
1718 
1719 	bfq_add_bfqq_busy(bfqd, bfqq);
1720 
1721 	/*
1722 	 * Expire in-service queue only if preemption may be needed
1723 	 * for guarantees. In this respect, the function
1724 	 * next_queue_may_preempt just checks a simple, necessary
1725 	 * condition, and not a sufficient condition based on
1726 	 * timestamps. In fact, for the latter condition to be
1727 	 * evaluated, timestamps would need first to be updated, and
1728 	 * this operation is quite costly (see the comments on the
1729 	 * function bfq_bfqq_update_budg_for_activation).
1730 	 */
1731 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1732 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1733 	    next_queue_may_preempt(bfqd))
1734 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1735 				false, BFQQE_PREEMPTED);
1736 }
1737 
1738 static void bfq_add_request(struct request *rq)
1739 {
1740 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1741 	struct bfq_data *bfqd = bfqq->bfqd;
1742 	struct request *next_rq, *prev;
1743 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1744 	bool interactive = false;
1745 
1746 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1747 	bfqq->queued[rq_is_sync(rq)]++;
1748 	bfqd->queued++;
1749 
1750 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1751 		/*
1752 		 * Periodically reset inject limit, to make sure that
1753 		 * the latter eventually drops in case workload
1754 		 * changes, see step (3) in the comments on
1755 		 * bfq_update_inject_limit().
1756 		 */
1757 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1758 					     msecs_to_jiffies(1000))) {
1759 			/* invalidate baseline total service time */
1760 			bfqq->last_serv_time_ns = 0;
1761 
1762 			/*
1763 			 * Reset pointer in case we are waiting for
1764 			 * some request completion.
1765 			 */
1766 			bfqd->waited_rq = NULL;
1767 
1768 			/*
1769 			 * If bfqq has a short think time, then start
1770 			 * by setting the inject limit to 0
1771 			 * prudentially, because the service time of
1772 			 * an injected I/O request may be higher than
1773 			 * the think time of bfqq, and therefore, if
1774 			 * one request was injected when bfqq remains
1775 			 * empty, this injected request might delay
1776 			 * the service of the next I/O request for
1777 			 * bfqq significantly. In case bfqq can
1778 			 * actually tolerate some injection, then the
1779 			 * adaptive update will however raise the
1780 			 * limit soon. This lucky circumstance holds
1781 			 * exactly because bfqq has a short think
1782 			 * time, and thus, after remaining empty, is
1783 			 * likely to get new I/O enqueued---and then
1784 			 * completed---before being expired. This is
1785 			 * the very pattern that gives the
1786 			 * limit-update algorithm the chance to
1787 			 * measure the effect of injection on request
1788 			 * service times, and then to update the limit
1789 			 * accordingly.
1790 			 *
1791 			 * On the opposite end, if bfqq has a long
1792 			 * think time, then start directly by 1,
1793 			 * because:
1794 			 * a) on the bright side, keeping at most one
1795 			 * request in service in the drive is unlikely
1796 			 * to cause any harm to the latency of bfqq's
1797 			 * requests, as the service time of a single
1798 			 * request is likely to be lower than the
1799 			 * think time of bfqq;
1800 			 * b) on the downside, after becoming empty,
1801 			 * bfqq is likely to expire before getting its
1802 			 * next request. With this request arrival
1803 			 * pattern, it is very hard to sample total
1804 			 * service times and update the inject limit
1805 			 * accordingly (see comments on
1806 			 * bfq_update_inject_limit()). So the limit is
1807 			 * likely to be never, or at least seldom,
1808 			 * updated.  As a consequence, by setting the
1809 			 * limit to 1, we avoid that no injection ever
1810 			 * occurs with bfqq. On the downside, this
1811 			 * proactive step further reduces chances to
1812 			 * actually compute the baseline total service
1813 			 * time. Thus it reduces chances to execute the
1814 			 * limit-update algorithm and possibly raise the
1815 			 * limit to more than 1.
1816 			 */
1817 			if (bfq_bfqq_has_short_ttime(bfqq))
1818 				bfqq->inject_limit = 0;
1819 			else
1820 				bfqq->inject_limit = 1;
1821 			bfqq->decrease_time_jif = jiffies;
1822 		}
1823 
1824 		/*
1825 		 * The following conditions must hold to setup a new
1826 		 * sampling of total service time, and then a new
1827 		 * update of the inject limit:
1828 		 * - bfqq is in service, because the total service
1829 		 *   time is evaluated only for the I/O requests of
1830 		 *   the queues in service;
1831 		 * - this is the right occasion to compute or to
1832 		 *   lower the baseline total service time, because
1833 		 *   there are actually no requests in the drive,
1834 		 *   or
1835 		 *   the baseline total service time is available, and
1836 		 *   this is the right occasion to compute the other
1837 		 *   quantity needed to update the inject limit, i.e.,
1838 		 *   the total service time caused by the amount of
1839 		 *   injection allowed by the current value of the
1840 		 *   limit. It is the right occasion because injection
1841 		 *   has actually been performed during the service
1842 		 *   hole, and there are still in-flight requests,
1843 		 *   which are very likely to be exactly the injected
1844 		 *   requests, or part of them;
1845 		 * - the minimum interval for sampling the total
1846 		 *   service time and updating the inject limit has
1847 		 *   elapsed.
1848 		 */
1849 		if (bfqq == bfqd->in_service_queue &&
1850 		    (bfqd->rq_in_driver == 0 ||
1851 		     (bfqq->last_serv_time_ns > 0 &&
1852 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
1853 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1854 					      msecs_to_jiffies(100))) {
1855 			bfqd->last_empty_occupied_ns = ktime_get_ns();
1856 			/*
1857 			 * Start the state machine for measuring the
1858 			 * total service time of rq: setting
1859 			 * wait_dispatch will cause bfqd->waited_rq to
1860 			 * be set when rq will be dispatched.
1861 			 */
1862 			bfqd->wait_dispatch = true;
1863 			bfqd->rqs_injected = false;
1864 		}
1865 	}
1866 
1867 	elv_rb_add(&bfqq->sort_list, rq);
1868 
1869 	/*
1870 	 * Check if this request is a better next-serve candidate.
1871 	 */
1872 	prev = bfqq->next_rq;
1873 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1874 	bfqq->next_rq = next_rq;
1875 
1876 	/*
1877 	 * Adjust priority tree position, if next_rq changes.
1878 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
1879 	 */
1880 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
1881 		bfq_pos_tree_add_move(bfqd, bfqq);
1882 
1883 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1884 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1885 						 rq, &interactive);
1886 	else {
1887 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1888 		    time_is_before_jiffies(
1889 				bfqq->last_wr_start_finish +
1890 				bfqd->bfq_wr_min_inter_arr_async)) {
1891 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1892 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1893 
1894 			bfqd->wr_busy_queues++;
1895 			bfqq->entity.prio_changed = 1;
1896 		}
1897 		if (prev != bfqq->next_rq)
1898 			bfq_updated_next_req(bfqd, bfqq);
1899 	}
1900 
1901 	/*
1902 	 * Assign jiffies to last_wr_start_finish in the following
1903 	 * cases:
1904 	 *
1905 	 * . if bfqq is not going to be weight-raised, because, for
1906 	 *   non weight-raised queues, last_wr_start_finish stores the
1907 	 *   arrival time of the last request; as of now, this piece
1908 	 *   of information is used only for deciding whether to
1909 	 *   weight-raise async queues
1910 	 *
1911 	 * . if bfqq is not weight-raised, because, if bfqq is now
1912 	 *   switching to weight-raised, then last_wr_start_finish
1913 	 *   stores the time when weight-raising starts
1914 	 *
1915 	 * . if bfqq is interactive, because, regardless of whether
1916 	 *   bfqq is currently weight-raised, the weight-raising
1917 	 *   period must start or restart (this case is considered
1918 	 *   separately because it is not detected by the above
1919 	 *   conditions, if bfqq is already weight-raised)
1920 	 *
1921 	 * last_wr_start_finish has to be updated also if bfqq is soft
1922 	 * real-time, because the weight-raising period is constantly
1923 	 * restarted on idle-to-busy transitions for these queues, but
1924 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1925 	 * needed.
1926 	 */
1927 	if (bfqd->low_latency &&
1928 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1929 		bfqq->last_wr_start_finish = jiffies;
1930 }
1931 
1932 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1933 					  struct bio *bio,
1934 					  struct request_queue *q)
1935 {
1936 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1937 
1938 
1939 	if (bfqq)
1940 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1941 
1942 	return NULL;
1943 }
1944 
1945 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1946 {
1947 	if (last_pos)
1948 		return abs(blk_rq_pos(rq) - last_pos);
1949 
1950 	return 0;
1951 }
1952 
1953 #if 0 /* Still not clear if we can do without next two functions */
1954 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1955 {
1956 	struct bfq_data *bfqd = q->elevator->elevator_data;
1957 
1958 	bfqd->rq_in_driver++;
1959 }
1960 
1961 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1962 {
1963 	struct bfq_data *bfqd = q->elevator->elevator_data;
1964 
1965 	bfqd->rq_in_driver--;
1966 }
1967 #endif
1968 
1969 static void bfq_remove_request(struct request_queue *q,
1970 			       struct request *rq)
1971 {
1972 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1973 	struct bfq_data *bfqd = bfqq->bfqd;
1974 	const int sync = rq_is_sync(rq);
1975 
1976 	if (bfqq->next_rq == rq) {
1977 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1978 		bfq_updated_next_req(bfqd, bfqq);
1979 	}
1980 
1981 	if (rq->queuelist.prev != &rq->queuelist)
1982 		list_del_init(&rq->queuelist);
1983 	bfqq->queued[sync]--;
1984 	bfqd->queued--;
1985 	elv_rb_del(&bfqq->sort_list, rq);
1986 
1987 	elv_rqhash_del(q, rq);
1988 	if (q->last_merge == rq)
1989 		q->last_merge = NULL;
1990 
1991 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1992 		bfqq->next_rq = NULL;
1993 
1994 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1995 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1996 			/*
1997 			 * bfqq emptied. In normal operation, when
1998 			 * bfqq is empty, bfqq->entity.service and
1999 			 * bfqq->entity.budget must contain,
2000 			 * respectively, the service received and the
2001 			 * budget used last time bfqq emptied. These
2002 			 * facts do not hold in this case, as at least
2003 			 * this last removal occurred while bfqq is
2004 			 * not in service. To avoid inconsistencies,
2005 			 * reset both bfqq->entity.service and
2006 			 * bfqq->entity.budget, if bfqq has still a
2007 			 * process that may issue I/O requests to it.
2008 			 */
2009 			bfqq->entity.budget = bfqq->entity.service = 0;
2010 		}
2011 
2012 		/*
2013 		 * Remove queue from request-position tree as it is empty.
2014 		 */
2015 		if (bfqq->pos_root) {
2016 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2017 			bfqq->pos_root = NULL;
2018 		}
2019 	} else {
2020 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2021 		if (unlikely(!bfqd->nonrot_with_queueing))
2022 			bfq_pos_tree_add_move(bfqd, bfqq);
2023 	}
2024 
2025 	if (rq->cmd_flags & REQ_META)
2026 		bfqq->meta_pending--;
2027 
2028 }
2029 
2030 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
2031 {
2032 	struct request_queue *q = hctx->queue;
2033 	struct bfq_data *bfqd = q->elevator->elevator_data;
2034 	struct request *free = NULL;
2035 	/*
2036 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2037 	 * store its return value for later use, to avoid nesting
2038 	 * queue_lock inside the bfqd->lock. We assume that the bic
2039 	 * returned by bfq_bic_lookup does not go away before
2040 	 * bfqd->lock is taken.
2041 	 */
2042 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2043 	bool ret;
2044 
2045 	spin_lock_irq(&bfqd->lock);
2046 
2047 	if (bic)
2048 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2049 	else
2050 		bfqd->bio_bfqq = NULL;
2051 	bfqd->bio_bic = bic;
2052 
2053 	ret = blk_mq_sched_try_merge(q, bio, &free);
2054 
2055 	if (free)
2056 		blk_mq_free_request(free);
2057 	spin_unlock_irq(&bfqd->lock);
2058 
2059 	return ret;
2060 }
2061 
2062 static int bfq_request_merge(struct request_queue *q, struct request **req,
2063 			     struct bio *bio)
2064 {
2065 	struct bfq_data *bfqd = q->elevator->elevator_data;
2066 	struct request *__rq;
2067 
2068 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2069 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2070 		*req = __rq;
2071 		return ELEVATOR_FRONT_MERGE;
2072 	}
2073 
2074 	return ELEVATOR_NO_MERGE;
2075 }
2076 
2077 static struct bfq_queue *bfq_init_rq(struct request *rq);
2078 
2079 static void bfq_request_merged(struct request_queue *q, struct request *req,
2080 			       enum elv_merge type)
2081 {
2082 	if (type == ELEVATOR_FRONT_MERGE &&
2083 	    rb_prev(&req->rb_node) &&
2084 	    blk_rq_pos(req) <
2085 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2086 				    struct request, rb_node))) {
2087 		struct bfq_queue *bfqq = bfq_init_rq(req);
2088 		struct bfq_data *bfqd = bfqq->bfqd;
2089 		struct request *prev, *next_rq;
2090 
2091 		/* Reposition request in its sort_list */
2092 		elv_rb_del(&bfqq->sort_list, req);
2093 		elv_rb_add(&bfqq->sort_list, req);
2094 
2095 		/* Choose next request to be served for bfqq */
2096 		prev = bfqq->next_rq;
2097 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2098 					 bfqd->last_position);
2099 		bfqq->next_rq = next_rq;
2100 		/*
2101 		 * If next_rq changes, update both the queue's budget to
2102 		 * fit the new request and the queue's position in its
2103 		 * rq_pos_tree.
2104 		 */
2105 		if (prev != bfqq->next_rq) {
2106 			bfq_updated_next_req(bfqd, bfqq);
2107 			/*
2108 			 * See comments on bfq_pos_tree_add_move() for
2109 			 * the unlikely().
2110 			 */
2111 			if (unlikely(!bfqd->nonrot_with_queueing))
2112 				bfq_pos_tree_add_move(bfqd, bfqq);
2113 		}
2114 	}
2115 }
2116 
2117 /*
2118  * This function is called to notify the scheduler that the requests
2119  * rq and 'next' have been merged, with 'next' going away.  BFQ
2120  * exploits this hook to address the following issue: if 'next' has a
2121  * fifo_time lower that rq, then the fifo_time of rq must be set to
2122  * the value of 'next', to not forget the greater age of 'next'.
2123  *
2124  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2125  * on that rq is picked from the hash table q->elevator->hash, which,
2126  * in its turn, is filled only with I/O requests present in
2127  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2128  * the function that fills this hash table (elv_rqhash_add) is called
2129  * only by bfq_insert_request.
2130  */
2131 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2132 				struct request *next)
2133 {
2134 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2135 		*next_bfqq = bfq_init_rq(next);
2136 
2137 	/*
2138 	 * If next and rq belong to the same bfq_queue and next is older
2139 	 * than rq, then reposition rq in the fifo (by substituting next
2140 	 * with rq). Otherwise, if next and rq belong to different
2141 	 * bfq_queues, never reposition rq: in fact, we would have to
2142 	 * reposition it with respect to next's position in its own fifo,
2143 	 * which would most certainly be too expensive with respect to
2144 	 * the benefits.
2145 	 */
2146 	if (bfqq == next_bfqq &&
2147 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2148 	    next->fifo_time < rq->fifo_time) {
2149 		list_del_init(&rq->queuelist);
2150 		list_replace_init(&next->queuelist, &rq->queuelist);
2151 		rq->fifo_time = next->fifo_time;
2152 	}
2153 
2154 	if (bfqq->next_rq == next)
2155 		bfqq->next_rq = rq;
2156 
2157 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2158 }
2159 
2160 /* Must be called with bfqq != NULL */
2161 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2162 {
2163 	if (bfq_bfqq_busy(bfqq))
2164 		bfqq->bfqd->wr_busy_queues--;
2165 	bfqq->wr_coeff = 1;
2166 	bfqq->wr_cur_max_time = 0;
2167 	bfqq->last_wr_start_finish = jiffies;
2168 	/*
2169 	 * Trigger a weight change on the next invocation of
2170 	 * __bfq_entity_update_weight_prio.
2171 	 */
2172 	bfqq->entity.prio_changed = 1;
2173 }
2174 
2175 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2176 			     struct bfq_group *bfqg)
2177 {
2178 	int i, j;
2179 
2180 	for (i = 0; i < 2; i++)
2181 		for (j = 0; j < IOPRIO_BE_NR; j++)
2182 			if (bfqg->async_bfqq[i][j])
2183 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2184 	if (bfqg->async_idle_bfqq)
2185 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2186 }
2187 
2188 static void bfq_end_wr(struct bfq_data *bfqd)
2189 {
2190 	struct bfq_queue *bfqq;
2191 
2192 	spin_lock_irq(&bfqd->lock);
2193 
2194 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2195 		bfq_bfqq_end_wr(bfqq);
2196 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2197 		bfq_bfqq_end_wr(bfqq);
2198 	bfq_end_wr_async(bfqd);
2199 
2200 	spin_unlock_irq(&bfqd->lock);
2201 }
2202 
2203 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2204 {
2205 	if (request)
2206 		return blk_rq_pos(io_struct);
2207 	else
2208 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2209 }
2210 
2211 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2212 				  sector_t sector)
2213 {
2214 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2215 	       BFQQ_CLOSE_THR;
2216 }
2217 
2218 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2219 					 struct bfq_queue *bfqq,
2220 					 sector_t sector)
2221 {
2222 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2223 	struct rb_node *parent, *node;
2224 	struct bfq_queue *__bfqq;
2225 
2226 	if (RB_EMPTY_ROOT(root))
2227 		return NULL;
2228 
2229 	/*
2230 	 * First, if we find a request starting at the end of the last
2231 	 * request, choose it.
2232 	 */
2233 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2234 	if (__bfqq)
2235 		return __bfqq;
2236 
2237 	/*
2238 	 * If the exact sector wasn't found, the parent of the NULL leaf
2239 	 * will contain the closest sector (rq_pos_tree sorted by
2240 	 * next_request position).
2241 	 */
2242 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2243 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2244 		return __bfqq;
2245 
2246 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2247 		node = rb_next(&__bfqq->pos_node);
2248 	else
2249 		node = rb_prev(&__bfqq->pos_node);
2250 	if (!node)
2251 		return NULL;
2252 
2253 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2254 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2255 		return __bfqq;
2256 
2257 	return NULL;
2258 }
2259 
2260 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2261 						   struct bfq_queue *cur_bfqq,
2262 						   sector_t sector)
2263 {
2264 	struct bfq_queue *bfqq;
2265 
2266 	/*
2267 	 * We shall notice if some of the queues are cooperating,
2268 	 * e.g., working closely on the same area of the device. In
2269 	 * that case, we can group them together and: 1) don't waste
2270 	 * time idling, and 2) serve the union of their requests in
2271 	 * the best possible order for throughput.
2272 	 */
2273 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2274 	if (!bfqq || bfqq == cur_bfqq)
2275 		return NULL;
2276 
2277 	return bfqq;
2278 }
2279 
2280 static struct bfq_queue *
2281 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2282 {
2283 	int process_refs, new_process_refs;
2284 	struct bfq_queue *__bfqq;
2285 
2286 	/*
2287 	 * If there are no process references on the new_bfqq, then it is
2288 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2289 	 * may have dropped their last reference (not just their last process
2290 	 * reference).
2291 	 */
2292 	if (!bfqq_process_refs(new_bfqq))
2293 		return NULL;
2294 
2295 	/* Avoid a circular list and skip interim queue merges. */
2296 	while ((__bfqq = new_bfqq->new_bfqq)) {
2297 		if (__bfqq == bfqq)
2298 			return NULL;
2299 		new_bfqq = __bfqq;
2300 	}
2301 
2302 	process_refs = bfqq_process_refs(bfqq);
2303 	new_process_refs = bfqq_process_refs(new_bfqq);
2304 	/*
2305 	 * If the process for the bfqq has gone away, there is no
2306 	 * sense in merging the queues.
2307 	 */
2308 	if (process_refs == 0 || new_process_refs == 0)
2309 		return NULL;
2310 
2311 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2312 		new_bfqq->pid);
2313 
2314 	/*
2315 	 * Merging is just a redirection: the requests of the process
2316 	 * owning one of the two queues are redirected to the other queue.
2317 	 * The latter queue, in its turn, is set as shared if this is the
2318 	 * first time that the requests of some process are redirected to
2319 	 * it.
2320 	 *
2321 	 * We redirect bfqq to new_bfqq and not the opposite, because
2322 	 * we are in the context of the process owning bfqq, thus we
2323 	 * have the io_cq of this process. So we can immediately
2324 	 * configure this io_cq to redirect the requests of the
2325 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2326 	 * not available any more (new_bfqq->bic == NULL).
2327 	 *
2328 	 * Anyway, even in case new_bfqq coincides with the in-service
2329 	 * queue, redirecting requests the in-service queue is the
2330 	 * best option, as we feed the in-service queue with new
2331 	 * requests close to the last request served and, by doing so,
2332 	 * are likely to increase the throughput.
2333 	 */
2334 	bfqq->new_bfqq = new_bfqq;
2335 	new_bfqq->ref += process_refs;
2336 	return new_bfqq;
2337 }
2338 
2339 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2340 					struct bfq_queue *new_bfqq)
2341 {
2342 	if (bfq_too_late_for_merging(new_bfqq))
2343 		return false;
2344 
2345 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2346 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2347 		return false;
2348 
2349 	/*
2350 	 * If either of the queues has already been detected as seeky,
2351 	 * then merging it with the other queue is unlikely to lead to
2352 	 * sequential I/O.
2353 	 */
2354 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2355 		return false;
2356 
2357 	/*
2358 	 * Interleaved I/O is known to be done by (some) applications
2359 	 * only for reads, so it does not make sense to merge async
2360 	 * queues.
2361 	 */
2362 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2363 		return false;
2364 
2365 	return true;
2366 }
2367 
2368 /*
2369  * Attempt to schedule a merge of bfqq with the currently in-service
2370  * queue or with a close queue among the scheduled queues.  Return
2371  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2372  * structure otherwise.
2373  *
2374  * The OOM queue is not allowed to participate to cooperation: in fact, since
2375  * the requests temporarily redirected to the OOM queue could be redirected
2376  * again to dedicated queues at any time, the state needed to correctly
2377  * handle merging with the OOM queue would be quite complex and expensive
2378  * to maintain. Besides, in such a critical condition as an out of memory,
2379  * the benefits of queue merging may be little relevant, or even negligible.
2380  *
2381  * WARNING: queue merging may impair fairness among non-weight raised
2382  * queues, for at least two reasons: 1) the original weight of a
2383  * merged queue may change during the merged state, 2) even being the
2384  * weight the same, a merged queue may be bloated with many more
2385  * requests than the ones produced by its originally-associated
2386  * process.
2387  */
2388 static struct bfq_queue *
2389 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2390 		     void *io_struct, bool request)
2391 {
2392 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2393 
2394 	/*
2395 	 * Do not perform queue merging if the device is non
2396 	 * rotational and performs internal queueing. In fact, such a
2397 	 * device reaches a high speed through internal parallelism
2398 	 * and pipelining. This means that, to reach a high
2399 	 * throughput, it must have many requests enqueued at the same
2400 	 * time. But, in this configuration, the internal scheduling
2401 	 * algorithm of the device does exactly the job of queue
2402 	 * merging: it reorders requests so as to obtain as much as
2403 	 * possible a sequential I/O pattern. As a consequence, with
2404 	 * the workload generated by processes doing interleaved I/O,
2405 	 * the throughput reached by the device is likely to be the
2406 	 * same, with and without queue merging.
2407 	 *
2408 	 * Disabling merging also provides a remarkable benefit in
2409 	 * terms of throughput. Merging tends to make many workloads
2410 	 * artificially more uneven, because of shared queues
2411 	 * remaining non empty for incomparably more time than
2412 	 * non-merged queues. This may accentuate workload
2413 	 * asymmetries. For example, if one of the queues in a set of
2414 	 * merged queues has a higher weight than a normal queue, then
2415 	 * the shared queue may inherit such a high weight and, by
2416 	 * staying almost always active, may force BFQ to perform I/O
2417 	 * plugging most of the time. This evidently makes it harder
2418 	 * for BFQ to let the device reach a high throughput.
2419 	 *
2420 	 * Finally, the likely() macro below is not used because one
2421 	 * of the two branches is more likely than the other, but to
2422 	 * have the code path after the following if() executed as
2423 	 * fast as possible for the case of a non rotational device
2424 	 * with queueing. We want it because this is the fastest kind
2425 	 * of device. On the opposite end, the likely() may lengthen
2426 	 * the execution time of BFQ for the case of slower devices
2427 	 * (rotational or at least without queueing). But in this case
2428 	 * the execution time of BFQ matters very little, if not at
2429 	 * all.
2430 	 */
2431 	if (likely(bfqd->nonrot_with_queueing))
2432 		return NULL;
2433 
2434 	/*
2435 	 * Prevent bfqq from being merged if it has been created too
2436 	 * long ago. The idea is that true cooperating processes, and
2437 	 * thus their associated bfq_queues, are supposed to be
2438 	 * created shortly after each other. This is the case, e.g.,
2439 	 * for KVM/QEMU and dump I/O threads. Basing on this
2440 	 * assumption, the following filtering greatly reduces the
2441 	 * probability that two non-cooperating processes, which just
2442 	 * happen to do close I/O for some short time interval, have
2443 	 * their queues merged by mistake.
2444 	 */
2445 	if (bfq_too_late_for_merging(bfqq))
2446 		return NULL;
2447 
2448 	if (bfqq->new_bfqq)
2449 		return bfqq->new_bfqq;
2450 
2451 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2452 		return NULL;
2453 
2454 	/* If there is only one backlogged queue, don't search. */
2455 	if (bfq_tot_busy_queues(bfqd) == 1)
2456 		return NULL;
2457 
2458 	in_service_bfqq = bfqd->in_service_queue;
2459 
2460 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2461 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2462 	    bfq_rq_close_to_sector(io_struct, request,
2463 				   bfqd->in_serv_last_pos) &&
2464 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2465 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2466 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2467 		if (new_bfqq)
2468 			return new_bfqq;
2469 	}
2470 	/*
2471 	 * Check whether there is a cooperator among currently scheduled
2472 	 * queues. The only thing we need is that the bio/request is not
2473 	 * NULL, as we need it to establish whether a cooperator exists.
2474 	 */
2475 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2476 			bfq_io_struct_pos(io_struct, request));
2477 
2478 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2479 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2480 		return bfq_setup_merge(bfqq, new_bfqq);
2481 
2482 	return NULL;
2483 }
2484 
2485 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2486 {
2487 	struct bfq_io_cq *bic = bfqq->bic;
2488 
2489 	/*
2490 	 * If !bfqq->bic, the queue is already shared or its requests
2491 	 * have already been redirected to a shared queue; both idle window
2492 	 * and weight raising state have already been saved. Do nothing.
2493 	 */
2494 	if (!bic)
2495 		return;
2496 
2497 	bic->saved_weight = bfqq->entity.orig_weight;
2498 	bic->saved_ttime = bfqq->ttime;
2499 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2500 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2501 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2502 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2503 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2504 		     !bfq_bfqq_in_large_burst(bfqq) &&
2505 		     bfqq->bfqd->low_latency)) {
2506 		/*
2507 		 * bfqq being merged right after being created: bfqq
2508 		 * would have deserved interactive weight raising, but
2509 		 * did not make it to be set in a weight-raised state,
2510 		 * because of this early merge.	Store directly the
2511 		 * weight-raising state that would have been assigned
2512 		 * to bfqq, so that to avoid that bfqq unjustly fails
2513 		 * to enjoy weight raising if split soon.
2514 		 */
2515 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2516 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2517 		bic->saved_last_wr_start_finish = jiffies;
2518 	} else {
2519 		bic->saved_wr_coeff = bfqq->wr_coeff;
2520 		bic->saved_wr_start_at_switch_to_srt =
2521 			bfqq->wr_start_at_switch_to_srt;
2522 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2523 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2524 	}
2525 }
2526 
2527 static void
2528 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2529 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2530 {
2531 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2532 		(unsigned long)new_bfqq->pid);
2533 	/* Save weight raising and idle window of the merged queues */
2534 	bfq_bfqq_save_state(bfqq);
2535 	bfq_bfqq_save_state(new_bfqq);
2536 	if (bfq_bfqq_IO_bound(bfqq))
2537 		bfq_mark_bfqq_IO_bound(new_bfqq);
2538 	bfq_clear_bfqq_IO_bound(bfqq);
2539 
2540 	/*
2541 	 * If bfqq is weight-raised, then let new_bfqq inherit
2542 	 * weight-raising. To reduce false positives, neglect the case
2543 	 * where bfqq has just been created, but has not yet made it
2544 	 * to be weight-raised (which may happen because EQM may merge
2545 	 * bfqq even before bfq_add_request is executed for the first
2546 	 * time for bfqq). Handling this case would however be very
2547 	 * easy, thanks to the flag just_created.
2548 	 */
2549 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2550 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2551 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2552 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2553 		new_bfqq->wr_start_at_switch_to_srt =
2554 			bfqq->wr_start_at_switch_to_srt;
2555 		if (bfq_bfqq_busy(new_bfqq))
2556 			bfqd->wr_busy_queues++;
2557 		new_bfqq->entity.prio_changed = 1;
2558 	}
2559 
2560 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2561 		bfqq->wr_coeff = 1;
2562 		bfqq->entity.prio_changed = 1;
2563 		if (bfq_bfqq_busy(bfqq))
2564 			bfqd->wr_busy_queues--;
2565 	}
2566 
2567 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2568 		     bfqd->wr_busy_queues);
2569 
2570 	/*
2571 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2572 	 */
2573 	bic_set_bfqq(bic, new_bfqq, 1);
2574 	bfq_mark_bfqq_coop(new_bfqq);
2575 	/*
2576 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2577 	 * set new_bfqq->bic to NULL. bfqq either:
2578 	 * - does not belong to any bic any more, and hence bfqq->bic must
2579 	 *   be set to NULL, or
2580 	 * - is a queue whose owning bics have already been redirected to a
2581 	 *   different queue, hence the queue is destined to not belong to
2582 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2583 	 *   assignment causes no harm).
2584 	 */
2585 	new_bfqq->bic = NULL;
2586 	/*
2587 	 * If the queue is shared, the pid is the pid of one of the associated
2588 	 * processes. Which pid depends on the exact sequence of merge events
2589 	 * the queue underwent. So printing such a pid is useless and confusing
2590 	 * because it reports a random pid between those of the associated
2591 	 * processes.
2592 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2593 	 * a pid in logging messages.
2594 	 */
2595 	new_bfqq->pid = -1;
2596 	bfqq->bic = NULL;
2597 	/* release process reference to bfqq */
2598 	bfq_put_queue(bfqq);
2599 }
2600 
2601 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2602 				struct bio *bio)
2603 {
2604 	struct bfq_data *bfqd = q->elevator->elevator_data;
2605 	bool is_sync = op_is_sync(bio->bi_opf);
2606 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2607 
2608 	/*
2609 	 * Disallow merge of a sync bio into an async request.
2610 	 */
2611 	if (is_sync && !rq_is_sync(rq))
2612 		return false;
2613 
2614 	/*
2615 	 * Lookup the bfqq that this bio will be queued with. Allow
2616 	 * merge only if rq is queued there.
2617 	 */
2618 	if (!bfqq)
2619 		return false;
2620 
2621 	/*
2622 	 * We take advantage of this function to perform an early merge
2623 	 * of the queues of possible cooperating processes.
2624 	 */
2625 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2626 	if (new_bfqq) {
2627 		/*
2628 		 * bic still points to bfqq, then it has not yet been
2629 		 * redirected to some other bfq_queue, and a queue
2630 		 * merge between bfqq and new_bfqq can be safely
2631 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2632 		 * and bfqq can be put.
2633 		 */
2634 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2635 				new_bfqq);
2636 		/*
2637 		 * If we get here, bio will be queued into new_queue,
2638 		 * so use new_bfqq to decide whether bio and rq can be
2639 		 * merged.
2640 		 */
2641 		bfqq = new_bfqq;
2642 
2643 		/*
2644 		 * Change also bqfd->bio_bfqq, as
2645 		 * bfqd->bio_bic now points to new_bfqq, and
2646 		 * this function may be invoked again (and then may
2647 		 * use again bqfd->bio_bfqq).
2648 		 */
2649 		bfqd->bio_bfqq = bfqq;
2650 	}
2651 
2652 	return bfqq == RQ_BFQQ(rq);
2653 }
2654 
2655 /*
2656  * Set the maximum time for the in-service queue to consume its
2657  * budget. This prevents seeky processes from lowering the throughput.
2658  * In practice, a time-slice service scheme is used with seeky
2659  * processes.
2660  */
2661 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2662 				   struct bfq_queue *bfqq)
2663 {
2664 	unsigned int timeout_coeff;
2665 
2666 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2667 		timeout_coeff = 1;
2668 	else
2669 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2670 
2671 	bfqd->last_budget_start = ktime_get();
2672 
2673 	bfqq->budget_timeout = jiffies +
2674 		bfqd->bfq_timeout * timeout_coeff;
2675 }
2676 
2677 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2678 				       struct bfq_queue *bfqq)
2679 {
2680 	if (bfqq) {
2681 		bfq_clear_bfqq_fifo_expire(bfqq);
2682 
2683 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2684 
2685 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2686 		    bfqq->wr_coeff > 1 &&
2687 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2688 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2689 			/*
2690 			 * For soft real-time queues, move the start
2691 			 * of the weight-raising period forward by the
2692 			 * time the queue has not received any
2693 			 * service. Otherwise, a relatively long
2694 			 * service delay is likely to cause the
2695 			 * weight-raising period of the queue to end,
2696 			 * because of the short duration of the
2697 			 * weight-raising period of a soft real-time
2698 			 * queue.  It is worth noting that this move
2699 			 * is not so dangerous for the other queues,
2700 			 * because soft real-time queues are not
2701 			 * greedy.
2702 			 *
2703 			 * To not add a further variable, we use the
2704 			 * overloaded field budget_timeout to
2705 			 * determine for how long the queue has not
2706 			 * received service, i.e., how much time has
2707 			 * elapsed since the queue expired. However,
2708 			 * this is a little imprecise, because
2709 			 * budget_timeout is set to jiffies if bfqq
2710 			 * not only expires, but also remains with no
2711 			 * request.
2712 			 */
2713 			if (time_after(bfqq->budget_timeout,
2714 				       bfqq->last_wr_start_finish))
2715 				bfqq->last_wr_start_finish +=
2716 					jiffies - bfqq->budget_timeout;
2717 			else
2718 				bfqq->last_wr_start_finish = jiffies;
2719 		}
2720 
2721 		bfq_set_budget_timeout(bfqd, bfqq);
2722 		bfq_log_bfqq(bfqd, bfqq,
2723 			     "set_in_service_queue, cur-budget = %d",
2724 			     bfqq->entity.budget);
2725 	}
2726 
2727 	bfqd->in_service_queue = bfqq;
2728 }
2729 
2730 /*
2731  * Get and set a new queue for service.
2732  */
2733 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2734 {
2735 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2736 
2737 	__bfq_set_in_service_queue(bfqd, bfqq);
2738 	return bfqq;
2739 }
2740 
2741 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2742 {
2743 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2744 	u32 sl;
2745 
2746 	bfq_mark_bfqq_wait_request(bfqq);
2747 
2748 	/*
2749 	 * We don't want to idle for seeks, but we do want to allow
2750 	 * fair distribution of slice time for a process doing back-to-back
2751 	 * seeks. So allow a little bit of time for him to submit a new rq.
2752 	 */
2753 	sl = bfqd->bfq_slice_idle;
2754 	/*
2755 	 * Unless the queue is being weight-raised or the scenario is
2756 	 * asymmetric, grant only minimum idle time if the queue
2757 	 * is seeky. A long idling is preserved for a weight-raised
2758 	 * queue, or, more in general, in an asymmetric scenario,
2759 	 * because a long idling is needed for guaranteeing to a queue
2760 	 * its reserved share of the throughput (in particular, it is
2761 	 * needed if the queue has a higher weight than some other
2762 	 * queue).
2763 	 */
2764 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2765 	    !bfq_asymmetric_scenario(bfqd, bfqq))
2766 		sl = min_t(u64, sl, BFQ_MIN_TT);
2767 	else if (bfqq->wr_coeff > 1)
2768 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2769 
2770 	bfqd->last_idling_start = ktime_get();
2771 	bfqd->last_idling_start_jiffies = jiffies;
2772 
2773 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2774 		      HRTIMER_MODE_REL);
2775 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2776 }
2777 
2778 /*
2779  * In autotuning mode, max_budget is dynamically recomputed as the
2780  * amount of sectors transferred in timeout at the estimated peak
2781  * rate. This enables BFQ to utilize a full timeslice with a full
2782  * budget, even if the in-service queue is served at peak rate. And
2783  * this maximises throughput with sequential workloads.
2784  */
2785 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2786 {
2787 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2788 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2789 }
2790 
2791 /*
2792  * Update parameters related to throughput and responsiveness, as a
2793  * function of the estimated peak rate. See comments on
2794  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2795  */
2796 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2797 {
2798 	if (bfqd->bfq_user_max_budget == 0) {
2799 		bfqd->bfq_max_budget =
2800 			bfq_calc_max_budget(bfqd);
2801 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2802 	}
2803 }
2804 
2805 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2806 				       struct request *rq)
2807 {
2808 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2809 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2810 		bfqd->peak_rate_samples = 1;
2811 		bfqd->sequential_samples = 0;
2812 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2813 			blk_rq_sectors(rq);
2814 	} else /* no new rq dispatched, just reset the number of samples */
2815 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2816 
2817 	bfq_log(bfqd,
2818 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2819 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2820 		bfqd->tot_sectors_dispatched);
2821 }
2822 
2823 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2824 {
2825 	u32 rate, weight, divisor;
2826 
2827 	/*
2828 	 * For the convergence property to hold (see comments on
2829 	 * bfq_update_peak_rate()) and for the assessment to be
2830 	 * reliable, a minimum number of samples must be present, and
2831 	 * a minimum amount of time must have elapsed. If not so, do
2832 	 * not compute new rate. Just reset parameters, to get ready
2833 	 * for a new evaluation attempt.
2834 	 */
2835 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2836 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2837 		goto reset_computation;
2838 
2839 	/*
2840 	 * If a new request completion has occurred after last
2841 	 * dispatch, then, to approximate the rate at which requests
2842 	 * have been served by the device, it is more precise to
2843 	 * extend the observation interval to the last completion.
2844 	 */
2845 	bfqd->delta_from_first =
2846 		max_t(u64, bfqd->delta_from_first,
2847 		      bfqd->last_completion - bfqd->first_dispatch);
2848 
2849 	/*
2850 	 * Rate computed in sects/usec, and not sects/nsec, for
2851 	 * precision issues.
2852 	 */
2853 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2854 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2855 
2856 	/*
2857 	 * Peak rate not updated if:
2858 	 * - the percentage of sequential dispatches is below 3/4 of the
2859 	 *   total, and rate is below the current estimated peak rate
2860 	 * - rate is unreasonably high (> 20M sectors/sec)
2861 	 */
2862 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2863 	     rate <= bfqd->peak_rate) ||
2864 		rate > 20<<BFQ_RATE_SHIFT)
2865 		goto reset_computation;
2866 
2867 	/*
2868 	 * We have to update the peak rate, at last! To this purpose,
2869 	 * we use a low-pass filter. We compute the smoothing constant
2870 	 * of the filter as a function of the 'weight' of the new
2871 	 * measured rate.
2872 	 *
2873 	 * As can be seen in next formulas, we define this weight as a
2874 	 * quantity proportional to how sequential the workload is,
2875 	 * and to how long the observation time interval is.
2876 	 *
2877 	 * The weight runs from 0 to 8. The maximum value of the
2878 	 * weight, 8, yields the minimum value for the smoothing
2879 	 * constant. At this minimum value for the smoothing constant,
2880 	 * the measured rate contributes for half of the next value of
2881 	 * the estimated peak rate.
2882 	 *
2883 	 * So, the first step is to compute the weight as a function
2884 	 * of how sequential the workload is. Note that the weight
2885 	 * cannot reach 9, because bfqd->sequential_samples cannot
2886 	 * become equal to bfqd->peak_rate_samples, which, in its
2887 	 * turn, holds true because bfqd->sequential_samples is not
2888 	 * incremented for the first sample.
2889 	 */
2890 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2891 
2892 	/*
2893 	 * Second step: further refine the weight as a function of the
2894 	 * duration of the observation interval.
2895 	 */
2896 	weight = min_t(u32, 8,
2897 		       div_u64(weight * bfqd->delta_from_first,
2898 			       BFQ_RATE_REF_INTERVAL));
2899 
2900 	/*
2901 	 * Divisor ranging from 10, for minimum weight, to 2, for
2902 	 * maximum weight.
2903 	 */
2904 	divisor = 10 - weight;
2905 
2906 	/*
2907 	 * Finally, update peak rate:
2908 	 *
2909 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2910 	 */
2911 	bfqd->peak_rate *= divisor-1;
2912 	bfqd->peak_rate /= divisor;
2913 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2914 
2915 	bfqd->peak_rate += rate;
2916 
2917 	/*
2918 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2919 	 * the minimum representable values reported in the comments
2920 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2921 	 * divisions by zero where bfqd->peak_rate is used as a
2922 	 * divisor.
2923 	 */
2924 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2925 
2926 	update_thr_responsiveness_params(bfqd);
2927 
2928 reset_computation:
2929 	bfq_reset_rate_computation(bfqd, rq);
2930 }
2931 
2932 /*
2933  * Update the read/write peak rate (the main quantity used for
2934  * auto-tuning, see update_thr_responsiveness_params()).
2935  *
2936  * It is not trivial to estimate the peak rate (correctly): because of
2937  * the presence of sw and hw queues between the scheduler and the
2938  * device components that finally serve I/O requests, it is hard to
2939  * say exactly when a given dispatched request is served inside the
2940  * device, and for how long. As a consequence, it is hard to know
2941  * precisely at what rate a given set of requests is actually served
2942  * by the device.
2943  *
2944  * On the opposite end, the dispatch time of any request is trivially
2945  * available, and, from this piece of information, the "dispatch rate"
2946  * of requests can be immediately computed. So, the idea in the next
2947  * function is to use what is known, namely request dispatch times
2948  * (plus, when useful, request completion times), to estimate what is
2949  * unknown, namely in-device request service rate.
2950  *
2951  * The main issue is that, because of the above facts, the rate at
2952  * which a certain set of requests is dispatched over a certain time
2953  * interval can vary greatly with respect to the rate at which the
2954  * same requests are then served. But, since the size of any
2955  * intermediate queue is limited, and the service scheme is lossless
2956  * (no request is silently dropped), the following obvious convergence
2957  * property holds: the number of requests dispatched MUST become
2958  * closer and closer to the number of requests completed as the
2959  * observation interval grows. This is the key property used in
2960  * the next function to estimate the peak service rate as a function
2961  * of the observed dispatch rate. The function assumes to be invoked
2962  * on every request dispatch.
2963  */
2964 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2965 {
2966 	u64 now_ns = ktime_get_ns();
2967 
2968 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2969 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2970 			bfqd->peak_rate_samples);
2971 		bfq_reset_rate_computation(bfqd, rq);
2972 		goto update_last_values; /* will add one sample */
2973 	}
2974 
2975 	/*
2976 	 * Device idle for very long: the observation interval lasting
2977 	 * up to this dispatch cannot be a valid observation interval
2978 	 * for computing a new peak rate (similarly to the late-
2979 	 * completion event in bfq_completed_request()). Go to
2980 	 * update_rate_and_reset to have the following three steps
2981 	 * taken:
2982 	 * - close the observation interval at the last (previous)
2983 	 *   request dispatch or completion
2984 	 * - compute rate, if possible, for that observation interval
2985 	 * - start a new observation interval with this dispatch
2986 	 */
2987 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2988 	    bfqd->rq_in_driver == 0)
2989 		goto update_rate_and_reset;
2990 
2991 	/* Update sampling information */
2992 	bfqd->peak_rate_samples++;
2993 
2994 	if ((bfqd->rq_in_driver > 0 ||
2995 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2996 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
2997 		bfqd->sequential_samples++;
2998 
2999 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3000 
3001 	/* Reset max observed rq size every 32 dispatches */
3002 	if (likely(bfqd->peak_rate_samples % 32))
3003 		bfqd->last_rq_max_size =
3004 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3005 	else
3006 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3007 
3008 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3009 
3010 	/* Target observation interval not yet reached, go on sampling */
3011 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3012 		goto update_last_values;
3013 
3014 update_rate_and_reset:
3015 	bfq_update_rate_reset(bfqd, rq);
3016 update_last_values:
3017 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3018 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3019 		bfqd->in_serv_last_pos = bfqd->last_position;
3020 	bfqd->last_dispatch = now_ns;
3021 }
3022 
3023 /*
3024  * Remove request from internal lists.
3025  */
3026 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3027 {
3028 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3029 
3030 	/*
3031 	 * For consistency, the next instruction should have been
3032 	 * executed after removing the request from the queue and
3033 	 * dispatching it.  We execute instead this instruction before
3034 	 * bfq_remove_request() (and hence introduce a temporary
3035 	 * inconsistency), for efficiency.  In fact, should this
3036 	 * dispatch occur for a non in-service bfqq, this anticipated
3037 	 * increment prevents two counters related to bfqq->dispatched
3038 	 * from risking to be, first, uselessly decremented, and then
3039 	 * incremented again when the (new) value of bfqq->dispatched
3040 	 * happens to be taken into account.
3041 	 */
3042 	bfqq->dispatched++;
3043 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3044 
3045 	bfq_remove_request(q, rq);
3046 }
3047 
3048 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3049 {
3050 	/*
3051 	 * If this bfqq is shared between multiple processes, check
3052 	 * to make sure that those processes are still issuing I/Os
3053 	 * within the mean seek distance. If not, it may be time to
3054 	 * break the queues apart again.
3055 	 */
3056 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3057 		bfq_mark_bfqq_split_coop(bfqq);
3058 
3059 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
3060 		if (bfqq->dispatched == 0)
3061 			/*
3062 			 * Overloading budget_timeout field to store
3063 			 * the time at which the queue remains with no
3064 			 * backlog and no outstanding request; used by
3065 			 * the weight-raising mechanism.
3066 			 */
3067 			bfqq->budget_timeout = jiffies;
3068 
3069 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3070 	} else {
3071 		bfq_requeue_bfqq(bfqd, bfqq, true);
3072 		/*
3073 		 * Resort priority tree of potential close cooperators.
3074 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3075 		 */
3076 		if (unlikely(!bfqd->nonrot_with_queueing))
3077 			bfq_pos_tree_add_move(bfqd, bfqq);
3078 	}
3079 
3080 	/*
3081 	 * All in-service entities must have been properly deactivated
3082 	 * or requeued before executing the next function, which
3083 	 * resets all in-service entities as no more in service. This
3084 	 * may cause bfqq to be freed. If this happens, the next
3085 	 * function returns true.
3086 	 */
3087 	return __bfq_bfqd_reset_in_service(bfqd);
3088 }
3089 
3090 /**
3091  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3092  * @bfqd: device data.
3093  * @bfqq: queue to update.
3094  * @reason: reason for expiration.
3095  *
3096  * Handle the feedback on @bfqq budget at queue expiration.
3097  * See the body for detailed comments.
3098  */
3099 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3100 				     struct bfq_queue *bfqq,
3101 				     enum bfqq_expiration reason)
3102 {
3103 	struct request *next_rq;
3104 	int budget, min_budget;
3105 
3106 	min_budget = bfq_min_budget(bfqd);
3107 
3108 	if (bfqq->wr_coeff == 1)
3109 		budget = bfqq->max_budget;
3110 	else /*
3111 	      * Use a constant, low budget for weight-raised queues,
3112 	      * to help achieve a low latency. Keep it slightly higher
3113 	      * than the minimum possible budget, to cause a little
3114 	      * bit fewer expirations.
3115 	      */
3116 		budget = 2 * min_budget;
3117 
3118 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3119 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3120 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3121 		budget, bfq_min_budget(bfqd));
3122 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3123 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3124 
3125 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3126 		switch (reason) {
3127 		/*
3128 		 * Caveat: in all the following cases we trade latency
3129 		 * for throughput.
3130 		 */
3131 		case BFQQE_TOO_IDLE:
3132 			/*
3133 			 * This is the only case where we may reduce
3134 			 * the budget: if there is no request of the
3135 			 * process still waiting for completion, then
3136 			 * we assume (tentatively) that the timer has
3137 			 * expired because the batch of requests of
3138 			 * the process could have been served with a
3139 			 * smaller budget.  Hence, betting that
3140 			 * process will behave in the same way when it
3141 			 * becomes backlogged again, we reduce its
3142 			 * next budget.  As long as we guess right,
3143 			 * this budget cut reduces the latency
3144 			 * experienced by the process.
3145 			 *
3146 			 * However, if there are still outstanding
3147 			 * requests, then the process may have not yet
3148 			 * issued its next request just because it is
3149 			 * still waiting for the completion of some of
3150 			 * the still outstanding ones.  So in this
3151 			 * subcase we do not reduce its budget, on the
3152 			 * contrary we increase it to possibly boost
3153 			 * the throughput, as discussed in the
3154 			 * comments to the BUDGET_TIMEOUT case.
3155 			 */
3156 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3157 				budget = min(budget * 2, bfqd->bfq_max_budget);
3158 			else {
3159 				if (budget > 5 * min_budget)
3160 					budget -= 4 * min_budget;
3161 				else
3162 					budget = min_budget;
3163 			}
3164 			break;
3165 		case BFQQE_BUDGET_TIMEOUT:
3166 			/*
3167 			 * We double the budget here because it gives
3168 			 * the chance to boost the throughput if this
3169 			 * is not a seeky process (and has bumped into
3170 			 * this timeout because of, e.g., ZBR).
3171 			 */
3172 			budget = min(budget * 2, bfqd->bfq_max_budget);
3173 			break;
3174 		case BFQQE_BUDGET_EXHAUSTED:
3175 			/*
3176 			 * The process still has backlog, and did not
3177 			 * let either the budget timeout or the disk
3178 			 * idling timeout expire. Hence it is not
3179 			 * seeky, has a short thinktime and may be
3180 			 * happy with a higher budget too. So
3181 			 * definitely increase the budget of this good
3182 			 * candidate to boost the disk throughput.
3183 			 */
3184 			budget = min(budget * 4, bfqd->bfq_max_budget);
3185 			break;
3186 		case BFQQE_NO_MORE_REQUESTS:
3187 			/*
3188 			 * For queues that expire for this reason, it
3189 			 * is particularly important to keep the
3190 			 * budget close to the actual service they
3191 			 * need. Doing so reduces the timestamp
3192 			 * misalignment problem described in the
3193 			 * comments in the body of
3194 			 * __bfq_activate_entity. In fact, suppose
3195 			 * that a queue systematically expires for
3196 			 * BFQQE_NO_MORE_REQUESTS and presents a
3197 			 * new request in time to enjoy timestamp
3198 			 * back-shifting. The larger the budget of the
3199 			 * queue is with respect to the service the
3200 			 * queue actually requests in each service
3201 			 * slot, the more times the queue can be
3202 			 * reactivated with the same virtual finish
3203 			 * time. It follows that, even if this finish
3204 			 * time is pushed to the system virtual time
3205 			 * to reduce the consequent timestamp
3206 			 * misalignment, the queue unjustly enjoys for
3207 			 * many re-activations a lower finish time
3208 			 * than all newly activated queues.
3209 			 *
3210 			 * The service needed by bfqq is measured
3211 			 * quite precisely by bfqq->entity.service.
3212 			 * Since bfqq does not enjoy device idling,
3213 			 * bfqq->entity.service is equal to the number
3214 			 * of sectors that the process associated with
3215 			 * bfqq requested to read/write before waiting
3216 			 * for request completions, or blocking for
3217 			 * other reasons.
3218 			 */
3219 			budget = max_t(int, bfqq->entity.service, min_budget);
3220 			break;
3221 		default:
3222 			return;
3223 		}
3224 	} else if (!bfq_bfqq_sync(bfqq)) {
3225 		/*
3226 		 * Async queues get always the maximum possible
3227 		 * budget, as for them we do not care about latency
3228 		 * (in addition, their ability to dispatch is limited
3229 		 * by the charging factor).
3230 		 */
3231 		budget = bfqd->bfq_max_budget;
3232 	}
3233 
3234 	bfqq->max_budget = budget;
3235 
3236 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3237 	    !bfqd->bfq_user_max_budget)
3238 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3239 
3240 	/*
3241 	 * If there is still backlog, then assign a new budget, making
3242 	 * sure that it is large enough for the next request.  Since
3243 	 * the finish time of bfqq must be kept in sync with the
3244 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3245 	 * update.
3246 	 *
3247 	 * If there is no backlog, then no need to update the budget;
3248 	 * it will be updated on the arrival of a new request.
3249 	 */
3250 	next_rq = bfqq->next_rq;
3251 	if (next_rq)
3252 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3253 					    bfq_serv_to_charge(next_rq, bfqq));
3254 
3255 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3256 			next_rq ? blk_rq_sectors(next_rq) : 0,
3257 			bfqq->entity.budget);
3258 }
3259 
3260 /*
3261  * Return true if the process associated with bfqq is "slow". The slow
3262  * flag is used, in addition to the budget timeout, to reduce the
3263  * amount of service provided to seeky processes, and thus reduce
3264  * their chances to lower the throughput. More details in the comments
3265  * on the function bfq_bfqq_expire().
3266  *
3267  * An important observation is in order: as discussed in the comments
3268  * on the function bfq_update_peak_rate(), with devices with internal
3269  * queues, it is hard if ever possible to know when and for how long
3270  * an I/O request is processed by the device (apart from the trivial
3271  * I/O pattern where a new request is dispatched only after the
3272  * previous one has been completed). This makes it hard to evaluate
3273  * the real rate at which the I/O requests of each bfq_queue are
3274  * served.  In fact, for an I/O scheduler like BFQ, serving a
3275  * bfq_queue means just dispatching its requests during its service
3276  * slot (i.e., until the budget of the queue is exhausted, or the
3277  * queue remains idle, or, finally, a timeout fires). But, during the
3278  * service slot of a bfq_queue, around 100 ms at most, the device may
3279  * be even still processing requests of bfq_queues served in previous
3280  * service slots. On the opposite end, the requests of the in-service
3281  * bfq_queue may be completed after the service slot of the queue
3282  * finishes.
3283  *
3284  * Anyway, unless more sophisticated solutions are used
3285  * (where possible), the sum of the sizes of the requests dispatched
3286  * during the service slot of a bfq_queue is probably the only
3287  * approximation available for the service received by the bfq_queue
3288  * during its service slot. And this sum is the quantity used in this
3289  * function to evaluate the I/O speed of a process.
3290  */
3291 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3292 				 bool compensate, enum bfqq_expiration reason,
3293 				 unsigned long *delta_ms)
3294 {
3295 	ktime_t delta_ktime;
3296 	u32 delta_usecs;
3297 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3298 
3299 	if (!bfq_bfqq_sync(bfqq))
3300 		return false;
3301 
3302 	if (compensate)
3303 		delta_ktime = bfqd->last_idling_start;
3304 	else
3305 		delta_ktime = ktime_get();
3306 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3307 	delta_usecs = ktime_to_us(delta_ktime);
3308 
3309 	/* don't use too short time intervals */
3310 	if (delta_usecs < 1000) {
3311 		if (blk_queue_nonrot(bfqd->queue))
3312 			 /*
3313 			  * give same worst-case guarantees as idling
3314 			  * for seeky
3315 			  */
3316 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3317 		else /* charge at least one seek */
3318 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3319 
3320 		return slow;
3321 	}
3322 
3323 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3324 
3325 	/*
3326 	 * Use only long (> 20ms) intervals to filter out excessive
3327 	 * spikes in service rate estimation.
3328 	 */
3329 	if (delta_usecs > 20000) {
3330 		/*
3331 		 * Caveat for rotational devices: processes doing I/O
3332 		 * in the slower disk zones tend to be slow(er) even
3333 		 * if not seeky. In this respect, the estimated peak
3334 		 * rate is likely to be an average over the disk
3335 		 * surface. Accordingly, to not be too harsh with
3336 		 * unlucky processes, a process is deemed slow only if
3337 		 * its rate has been lower than half of the estimated
3338 		 * peak rate.
3339 		 */
3340 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3341 	}
3342 
3343 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3344 
3345 	return slow;
3346 }
3347 
3348 /*
3349  * To be deemed as soft real-time, an application must meet two
3350  * requirements. First, the application must not require an average
3351  * bandwidth higher than the approximate bandwidth required to playback or
3352  * record a compressed high-definition video.
3353  * The next function is invoked on the completion of the last request of a
3354  * batch, to compute the next-start time instant, soft_rt_next_start, such
3355  * that, if the next request of the application does not arrive before
3356  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3357  *
3358  * The second requirement is that the request pattern of the application is
3359  * isochronous, i.e., that, after issuing a request or a batch of requests,
3360  * the application stops issuing new requests until all its pending requests
3361  * have been completed. After that, the application may issue a new batch,
3362  * and so on.
3363  * For this reason the next function is invoked to compute
3364  * soft_rt_next_start only for applications that meet this requirement,
3365  * whereas soft_rt_next_start is set to infinity for applications that do
3366  * not.
3367  *
3368  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3369  * happen to meet, occasionally or systematically, both the above
3370  * bandwidth and isochrony requirements. This may happen at least in
3371  * the following circumstances. First, if the CPU load is high. The
3372  * application may stop issuing requests while the CPUs are busy
3373  * serving other processes, then restart, then stop again for a while,
3374  * and so on. The other circumstances are related to the storage
3375  * device: the storage device is highly loaded or reaches a low-enough
3376  * throughput with the I/O of the application (e.g., because the I/O
3377  * is random and/or the device is slow). In all these cases, the
3378  * I/O of the application may be simply slowed down enough to meet
3379  * the bandwidth and isochrony requirements. To reduce the probability
3380  * that greedy applications are deemed as soft real-time in these
3381  * corner cases, a further rule is used in the computation of
3382  * soft_rt_next_start: the return value of this function is forced to
3383  * be higher than the maximum between the following two quantities.
3384  *
3385  * (a) Current time plus: (1) the maximum time for which the arrival
3386  *     of a request is waited for when a sync queue becomes idle,
3387  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3388  *     postpone for a moment the reason for adding a few extra
3389  *     jiffies; we get back to it after next item (b).  Lower-bounding
3390  *     the return value of this function with the current time plus
3391  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3392  *     because the latter issue their next request as soon as possible
3393  *     after the last one has been completed. In contrast, a soft
3394  *     real-time application spends some time processing data, after a
3395  *     batch of its requests has been completed.
3396  *
3397  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3398  *     above, greedy applications may happen to meet both the
3399  *     bandwidth and isochrony requirements under heavy CPU or
3400  *     storage-device load. In more detail, in these scenarios, these
3401  *     applications happen, only for limited time periods, to do I/O
3402  *     slowly enough to meet all the requirements described so far,
3403  *     including the filtering in above item (a). These slow-speed
3404  *     time intervals are usually interspersed between other time
3405  *     intervals during which these applications do I/O at a very high
3406  *     speed. Fortunately, exactly because of the high speed of the
3407  *     I/O in the high-speed intervals, the values returned by this
3408  *     function happen to be so high, near the end of any such
3409  *     high-speed interval, to be likely to fall *after* the end of
3410  *     the low-speed time interval that follows. These high values are
3411  *     stored in bfqq->soft_rt_next_start after each invocation of
3412  *     this function. As a consequence, if the last value of
3413  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3414  *     next value that this function may return, then, from the very
3415  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3416  *     likely to be constantly kept so high that any I/O request
3417  *     issued during the low-speed interval is considered as arriving
3418  *     to soon for the application to be deemed as soft
3419  *     real-time. Then, in the high-speed interval that follows, the
3420  *     application will not be deemed as soft real-time, just because
3421  *     it will do I/O at a high speed. And so on.
3422  *
3423  * Getting back to the filtering in item (a), in the following two
3424  * cases this filtering might be easily passed by a greedy
3425  * application, if the reference quantity was just
3426  * bfqd->bfq_slice_idle:
3427  * 1) HZ is so low that the duration of a jiffy is comparable to or
3428  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3429  *    devices with HZ=100. The time granularity may be so coarse
3430  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3431  *    is rather lower than the exact value.
3432  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3433  *    for a while, then suddenly 'jump' by several units to recover the lost
3434  *    increments. This seems to happen, e.g., inside virtual machines.
3435  * To address this issue, in the filtering in (a) we do not use as a
3436  * reference time interval just bfqd->bfq_slice_idle, but
3437  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3438  * minimum number of jiffies for which the filter seems to be quite
3439  * precise also in embedded systems and KVM/QEMU virtual machines.
3440  */
3441 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3442 						struct bfq_queue *bfqq)
3443 {
3444 	return max3(bfqq->soft_rt_next_start,
3445 		    bfqq->last_idle_bklogged +
3446 		    HZ * bfqq->service_from_backlogged /
3447 		    bfqd->bfq_wr_max_softrt_rate,
3448 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3449 }
3450 
3451 /**
3452  * bfq_bfqq_expire - expire a queue.
3453  * @bfqd: device owning the queue.
3454  * @bfqq: the queue to expire.
3455  * @compensate: if true, compensate for the time spent idling.
3456  * @reason: the reason causing the expiration.
3457  *
3458  * If the process associated with bfqq does slow I/O (e.g., because it
3459  * issues random requests), we charge bfqq with the time it has been
3460  * in service instead of the service it has received (see
3461  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3462  * a consequence, bfqq will typically get higher timestamps upon
3463  * reactivation, and hence it will be rescheduled as if it had
3464  * received more service than what it has actually received. In the
3465  * end, bfqq receives less service in proportion to how slowly its
3466  * associated process consumes its budgets (and hence how seriously it
3467  * tends to lower the throughput). In addition, this time-charging
3468  * strategy guarantees time fairness among slow processes. In
3469  * contrast, if the process associated with bfqq is not slow, we
3470  * charge bfqq exactly with the service it has received.
3471  *
3472  * Charging time to the first type of queues and the exact service to
3473  * the other has the effect of using the WF2Q+ policy to schedule the
3474  * former on a timeslice basis, without violating service domain
3475  * guarantees among the latter.
3476  */
3477 void bfq_bfqq_expire(struct bfq_data *bfqd,
3478 		     struct bfq_queue *bfqq,
3479 		     bool compensate,
3480 		     enum bfqq_expiration reason)
3481 {
3482 	bool slow;
3483 	unsigned long delta = 0;
3484 	struct bfq_entity *entity = &bfqq->entity;
3485 
3486 	/*
3487 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3488 	 */
3489 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3490 
3491 	/*
3492 	 * As above explained, charge slow (typically seeky) and
3493 	 * timed-out queues with the time and not the service
3494 	 * received, to favor sequential workloads.
3495 	 *
3496 	 * Processes doing I/O in the slower disk zones will tend to
3497 	 * be slow(er) even if not seeky. Therefore, since the
3498 	 * estimated peak rate is actually an average over the disk
3499 	 * surface, these processes may timeout just for bad luck. To
3500 	 * avoid punishing them, do not charge time to processes that
3501 	 * succeeded in consuming at least 2/3 of their budget. This
3502 	 * allows BFQ to preserve enough elasticity to still perform
3503 	 * bandwidth, and not time, distribution with little unlucky
3504 	 * or quasi-sequential processes.
3505 	 */
3506 	if (bfqq->wr_coeff == 1 &&
3507 	    (slow ||
3508 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3509 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3510 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3511 
3512 	if (reason == BFQQE_TOO_IDLE &&
3513 	    entity->service <= 2 * entity->budget / 10)
3514 		bfq_clear_bfqq_IO_bound(bfqq);
3515 
3516 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3517 		bfqq->last_wr_start_finish = jiffies;
3518 
3519 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3520 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3521 		/*
3522 		 * If we get here, and there are no outstanding
3523 		 * requests, then the request pattern is isochronous
3524 		 * (see the comments on the function
3525 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3526 		 * soft_rt_next_start. And we do it, unless bfqq is in
3527 		 * interactive weight raising. We do not do it in the
3528 		 * latter subcase, for the following reason. bfqq may
3529 		 * be conveying the I/O needed to load a soft
3530 		 * real-time application. Such an application will
3531 		 * actually exhibit a soft real-time I/O pattern after
3532 		 * it finally starts doing its job. But, if
3533 		 * soft_rt_next_start is computed here for an
3534 		 * interactive bfqq, and bfqq had received a lot of
3535 		 * service before remaining with no outstanding
3536 		 * request (likely to happen on a fast device), then
3537 		 * soft_rt_next_start would be assigned such a high
3538 		 * value that, for a very long time, bfqq would be
3539 		 * prevented from being possibly considered as soft
3540 		 * real time.
3541 		 *
3542 		 * If, instead, the queue still has outstanding
3543 		 * requests, then we have to wait for the completion
3544 		 * of all the outstanding requests to discover whether
3545 		 * the request pattern is actually isochronous.
3546 		 */
3547 		if (bfqq->dispatched == 0 &&
3548 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
3549 			bfqq->soft_rt_next_start =
3550 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3551 		else if (bfqq->dispatched > 0) {
3552 			/*
3553 			 * Schedule an update of soft_rt_next_start to when
3554 			 * the task may be discovered to be isochronous.
3555 			 */
3556 			bfq_mark_bfqq_softrt_update(bfqq);
3557 		}
3558 	}
3559 
3560 	bfq_log_bfqq(bfqd, bfqq,
3561 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3562 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3563 
3564 	/*
3565 	 * bfqq expired, so no total service time needs to be computed
3566 	 * any longer: reset state machine for measuring total service
3567 	 * times.
3568 	 */
3569 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
3570 	bfqd->waited_rq = NULL;
3571 
3572 	/*
3573 	 * Increase, decrease or leave budget unchanged according to
3574 	 * reason.
3575 	 */
3576 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3577 	if (__bfq_bfqq_expire(bfqd, bfqq))
3578 		/* bfqq is gone, no more actions on it */
3579 		return;
3580 
3581 	/* mark bfqq as waiting a request only if a bic still points to it */
3582 	if (!bfq_bfqq_busy(bfqq) &&
3583 	    reason != BFQQE_BUDGET_TIMEOUT &&
3584 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3585 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3586 		/*
3587 		 * Not setting service to 0, because, if the next rq
3588 		 * arrives in time, the queue will go on receiving
3589 		 * service with this same budget (as if it never expired)
3590 		 */
3591 	} else
3592 		entity->service = 0;
3593 
3594 	/*
3595 	 * Reset the received-service counter for every parent entity.
3596 	 * Differently from what happens with bfqq->entity.service,
3597 	 * the resetting of this counter never needs to be postponed
3598 	 * for parent entities. In fact, in case bfqq may have a
3599 	 * chance to go on being served using the last, partially
3600 	 * consumed budget, bfqq->entity.service needs to be kept,
3601 	 * because if bfqq then actually goes on being served using
3602 	 * the same budget, the last value of bfqq->entity.service is
3603 	 * needed to properly decrement bfqq->entity.budget by the
3604 	 * portion already consumed. In contrast, it is not necessary
3605 	 * to keep entity->service for parent entities too, because
3606 	 * the bubble up of the new value of bfqq->entity.budget will
3607 	 * make sure that the budgets of parent entities are correct,
3608 	 * even in case bfqq and thus parent entities go on receiving
3609 	 * service with the same budget.
3610 	 */
3611 	entity = entity->parent;
3612 	for_each_entity(entity)
3613 		entity->service = 0;
3614 }
3615 
3616 /*
3617  * Budget timeout is not implemented through a dedicated timer, but
3618  * just checked on request arrivals and completions, as well as on
3619  * idle timer expirations.
3620  */
3621 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3622 {
3623 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3624 }
3625 
3626 /*
3627  * If we expire a queue that is actively waiting (i.e., with the
3628  * device idled) for the arrival of a new request, then we may incur
3629  * the timestamp misalignment problem described in the body of the
3630  * function __bfq_activate_entity. Hence we return true only if this
3631  * condition does not hold, or if the queue is slow enough to deserve
3632  * only to be kicked off for preserving a high throughput.
3633  */
3634 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3635 {
3636 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3637 		"may_budget_timeout: wait_request %d left %d timeout %d",
3638 		bfq_bfqq_wait_request(bfqq),
3639 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3640 		bfq_bfqq_budget_timeout(bfqq));
3641 
3642 	return (!bfq_bfqq_wait_request(bfqq) ||
3643 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3644 		&&
3645 		bfq_bfqq_budget_timeout(bfqq);
3646 }
3647 
3648 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
3649 					     struct bfq_queue *bfqq)
3650 {
3651 	bool rot_without_queueing =
3652 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3653 		bfqq_sequential_and_IO_bound,
3654 		idling_boosts_thr;
3655 
3656 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3657 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3658 
3659 	/*
3660 	 * The next variable takes into account the cases where idling
3661 	 * boosts the throughput.
3662 	 *
3663 	 * The value of the variable is computed considering, first, that
3664 	 * idling is virtually always beneficial for the throughput if:
3665 	 * (a) the device is not NCQ-capable and rotational, or
3666 	 * (b) regardless of the presence of NCQ, the device is rotational and
3667 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3668 	 * (c) regardless of whether it is rotational, the device is
3669 	 *     not NCQ-capable and the request pattern for bfqq is
3670 	 *     I/O-bound and sequential.
3671 	 *
3672 	 * Secondly, and in contrast to the above item (b), idling an
3673 	 * NCQ-capable flash-based device would not boost the
3674 	 * throughput even with sequential I/O; rather it would lower
3675 	 * the throughput in proportion to how fast the device
3676 	 * is. Accordingly, the next variable is true if any of the
3677 	 * above conditions (a), (b) or (c) is true, and, in
3678 	 * particular, happens to be false if bfqd is an NCQ-capable
3679 	 * flash-based device.
3680 	 */
3681 	idling_boosts_thr = rot_without_queueing ||
3682 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3683 		 bfqq_sequential_and_IO_bound);
3684 
3685 	/*
3686 	 * The return value of this function is equal to that of
3687 	 * idling_boosts_thr, unless a special case holds. In this
3688 	 * special case, described below, idling may cause problems to
3689 	 * weight-raised queues.
3690 	 *
3691 	 * When the request pool is saturated (e.g., in the presence
3692 	 * of write hogs), if the processes associated with
3693 	 * non-weight-raised queues ask for requests at a lower rate,
3694 	 * then processes associated with weight-raised queues have a
3695 	 * higher probability to get a request from the pool
3696 	 * immediately (or at least soon) when they need one. Thus
3697 	 * they have a higher probability to actually get a fraction
3698 	 * of the device throughput proportional to their high
3699 	 * weight. This is especially true with NCQ-capable drives,
3700 	 * which enqueue several requests in advance, and further
3701 	 * reorder internally-queued requests.
3702 	 *
3703 	 * For this reason, we force to false the return value if
3704 	 * there are weight-raised busy queues. In this case, and if
3705 	 * bfqq is not weight-raised, this guarantees that the device
3706 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
3707 	 * then idling will be guaranteed by another variable, see
3708 	 * below). Combined with the timestamping rules of BFQ (see
3709 	 * [1] for details), this behavior causes bfqq, and hence any
3710 	 * sync non-weight-raised queue, to get a lower number of
3711 	 * requests served, and thus to ask for a lower number of
3712 	 * requests from the request pool, before the busy
3713 	 * weight-raised queues get served again. This often mitigates
3714 	 * starvation problems in the presence of heavy write
3715 	 * workloads and NCQ, thereby guaranteeing a higher
3716 	 * application and system responsiveness in these hostile
3717 	 * scenarios.
3718 	 */
3719 	return idling_boosts_thr &&
3720 		bfqd->wr_busy_queues == 0;
3721 }
3722 
3723 /*
3724  * There is a case where idling does not have to be performed for
3725  * throughput concerns, but to preserve the throughput share of
3726  * the process associated with bfqq.
3727  *
3728  * To introduce this case, we can note that allowing the drive
3729  * to enqueue more than one request at a time, and hence
3730  * delegating de facto final scheduling decisions to the
3731  * drive's internal scheduler, entails loss of control on the
3732  * actual request service order. In particular, the critical
3733  * situation is when requests from different processes happen
3734  * to be present, at the same time, in the internal queue(s)
3735  * of the drive. In such a situation, the drive, by deciding
3736  * the service order of the internally-queued requests, does
3737  * determine also the actual throughput distribution among
3738  * these processes. But the drive typically has no notion or
3739  * concern about per-process throughput distribution, and
3740  * makes its decisions only on a per-request basis. Therefore,
3741  * the service distribution enforced by the drive's internal
3742  * scheduler is likely to coincide with the desired throughput
3743  * distribution only in a completely symmetric, or favorably
3744  * skewed scenario where:
3745  * (i-a) each of these processes must get the same throughput as
3746  *	 the others,
3747  * (i-b) in case (i-a) does not hold, it holds that the process
3748  *       associated with bfqq must receive a lower or equal
3749  *	 throughput than any of the other processes;
3750  * (ii)  the I/O of each process has the same properties, in
3751  *       terms of locality (sequential or random), direction
3752  *       (reads or writes), request sizes, greediness
3753  *       (from I/O-bound to sporadic), and so on;
3754 
3755  * In fact, in such a scenario, the drive tends to treat the requests
3756  * of each process in about the same way as the requests of the
3757  * others, and thus to provide each of these processes with about the
3758  * same throughput.  This is exactly the desired throughput
3759  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3760  * even more convenient distribution for (the process associated with)
3761  * bfqq.
3762  *
3763  * In contrast, in any asymmetric or unfavorable scenario, device
3764  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3765  * that bfqq receives its assigned fraction of the device throughput
3766  * (see [1] for details).
3767  *
3768  * The problem is that idling may significantly reduce throughput with
3769  * certain combinations of types of I/O and devices. An important
3770  * example is sync random I/O on flash storage with command
3771  * queueing. So, unless bfqq falls in cases where idling also boosts
3772  * throughput, it is important to check conditions (i-a), i(-b) and
3773  * (ii) accurately, so as to avoid idling when not strictly needed for
3774  * service guarantees.
3775  *
3776  * Unfortunately, it is extremely difficult to thoroughly check
3777  * condition (ii). And, in case there are active groups, it becomes
3778  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3779  * if there are active groups, then, for conditions (i-a) or (i-b) to
3780  * become false 'indirectly', it is enough that an active group
3781  * contains more active processes or sub-groups than some other active
3782  * group. More precisely, for conditions (i-a) or (i-b) to become
3783  * false because of such a group, it is not even necessary that the
3784  * group is (still) active: it is sufficient that, even if the group
3785  * has become inactive, some of its descendant processes still have
3786  * some request already dispatched but still waiting for
3787  * completion. In fact, requests have still to be guaranteed their
3788  * share of the throughput even after being dispatched. In this
3789  * respect, it is easy to show that, if a group frequently becomes
3790  * inactive while still having in-flight requests, and if, when this
3791  * happens, the group is not considered in the calculation of whether
3792  * the scenario is asymmetric, then the group may fail to be
3793  * guaranteed its fair share of the throughput (basically because
3794  * idling may not be performed for the descendant processes of the
3795  * group, but it had to be).  We address this issue with the following
3796  * bi-modal behavior, implemented in the function
3797  * bfq_asymmetric_scenario().
3798  *
3799  * If there are groups with requests waiting for completion
3800  * (as commented above, some of these groups may even be
3801  * already inactive), then the scenario is tagged as
3802  * asymmetric, conservatively, without checking any of the
3803  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3804  * This behavior matches also the fact that groups are created
3805  * exactly if controlling I/O is a primary concern (to
3806  * preserve bandwidth and latency guarantees).
3807  *
3808  * On the opposite end, if there are no groups with requests waiting
3809  * for completion, then only conditions (i-a) and (i-b) are actually
3810  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3811  * idling is not performed, regardless of whether condition (ii)
3812  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3813  * hold, then idling is allowed, and the device tends to be prevented
3814  * from queueing many requests, possibly of several processes. Since
3815  * there are no groups with requests waiting for completion, then, to
3816  * control conditions (i-a) and (i-b) it is enough to check just
3817  * whether all the queues with requests waiting for completion also
3818  * have the same weight.
3819  *
3820  * Not checking condition (ii) evidently exposes bfqq to the
3821  * risk of getting less throughput than its fair share.
3822  * However, for queues with the same weight, a further
3823  * mechanism, preemption, mitigates or even eliminates this
3824  * problem. And it does so without consequences on overall
3825  * throughput. This mechanism and its benefits are explained
3826  * in the next three paragraphs.
3827  *
3828  * Even if a queue, say Q, is expired when it remains idle, Q
3829  * can still preempt the new in-service queue if the next
3830  * request of Q arrives soon (see the comments on
3831  * bfq_bfqq_update_budg_for_activation). If all queues and
3832  * groups have the same weight, this form of preemption,
3833  * combined with the hole-recovery heuristic described in the
3834  * comments on function bfq_bfqq_update_budg_for_activation,
3835  * are enough to preserve a correct bandwidth distribution in
3836  * the mid term, even without idling. In fact, even if not
3837  * idling allows the internal queues of the device to contain
3838  * many requests, and thus to reorder requests, we can rather
3839  * safely assume that the internal scheduler still preserves a
3840  * minimum of mid-term fairness.
3841  *
3842  * More precisely, this preemption-based, idleless approach
3843  * provides fairness in terms of IOPS, and not sectors per
3844  * second. This can be seen with a simple example. Suppose
3845  * that there are two queues with the same weight, but that
3846  * the first queue receives requests of 8 sectors, while the
3847  * second queue receives requests of 1024 sectors. In
3848  * addition, suppose that each of the two queues contains at
3849  * most one request at a time, which implies that each queue
3850  * always remains idle after it is served. Finally, after
3851  * remaining idle, each queue receives very quickly a new
3852  * request. It follows that the two queues are served
3853  * alternatively, preempting each other if needed. This
3854  * implies that, although both queues have the same weight,
3855  * the queue with large requests receives a service that is
3856  * 1024/8 times as high as the service received by the other
3857  * queue.
3858  *
3859  * The motivation for using preemption instead of idling (for
3860  * queues with the same weight) is that, by not idling,
3861  * service guarantees are preserved (completely or at least in
3862  * part) without minimally sacrificing throughput. And, if
3863  * there is no active group, then the primary expectation for
3864  * this device is probably a high throughput.
3865  *
3866  * We are now left only with explaining the additional
3867  * compound condition that is checked below for deciding
3868  * whether the scenario is asymmetric. To explain this
3869  * compound condition, we need to add that the function
3870  * bfq_asymmetric_scenario checks the weights of only
3871  * non-weight-raised queues, for efficiency reasons (see
3872  * comments on bfq_weights_tree_add()). Then the fact that
3873  * bfqq is weight-raised is checked explicitly here. More
3874  * precisely, the compound condition below takes into account
3875  * also the fact that, even if bfqq is being weight-raised,
3876  * the scenario is still symmetric if all queues with requests
3877  * waiting for completion happen to be
3878  * weight-raised. Actually, we should be even more precise
3879  * here, and differentiate between interactive weight raising
3880  * and soft real-time weight raising.
3881  *
3882  * As a side note, it is worth considering that the above
3883  * device-idling countermeasures may however fail in the
3884  * following unlucky scenario: if idling is (correctly)
3885  * disabled in a time period during which all symmetry
3886  * sub-conditions hold, and hence the device is allowed to
3887  * enqueue many requests, but at some later point in time some
3888  * sub-condition stops to hold, then it may become impossible
3889  * to let requests be served in the desired order until all
3890  * the requests already queued in the device have been served.
3891  */
3892 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3893 						 struct bfq_queue *bfqq)
3894 {
3895 	return (bfqq->wr_coeff > 1 &&
3896 		bfqd->wr_busy_queues <
3897 		bfq_tot_busy_queues(bfqd)) ||
3898 		bfq_asymmetric_scenario(bfqd, bfqq);
3899 }
3900 
3901 /*
3902  * For a queue that becomes empty, device idling is allowed only if
3903  * this function returns true for that queue. As a consequence, since
3904  * device idling plays a critical role for both throughput boosting
3905  * and service guarantees, the return value of this function plays a
3906  * critical role as well.
3907  *
3908  * In a nutshell, this function returns true only if idling is
3909  * beneficial for throughput or, even if detrimental for throughput,
3910  * idling is however necessary to preserve service guarantees (low
3911  * latency, desired throughput distribution, ...). In particular, on
3912  * NCQ-capable devices, this function tries to return false, so as to
3913  * help keep the drives' internal queues full, whenever this helps the
3914  * device boost the throughput without causing any service-guarantee
3915  * issue.
3916  *
3917  * Most of the issues taken into account to get the return value of
3918  * this function are not trivial. We discuss these issues in the two
3919  * functions providing the main pieces of information needed by this
3920  * function.
3921  */
3922 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3923 {
3924 	struct bfq_data *bfqd = bfqq->bfqd;
3925 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
3926 
3927 	if (unlikely(bfqd->strict_guarantees))
3928 		return true;
3929 
3930 	/*
3931 	 * Idling is performed only if slice_idle > 0. In addition, we
3932 	 * do not idle if
3933 	 * (a) bfqq is async
3934 	 * (b) bfqq is in the idle io prio class: in this case we do
3935 	 * not idle because we want to minimize the bandwidth that
3936 	 * queues in this class can steal to higher-priority queues
3937 	 */
3938 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3939 	   bfq_class_idle(bfqq))
3940 		return false;
3941 
3942 	idling_boosts_thr_with_no_issue =
3943 		idling_boosts_thr_without_issues(bfqd, bfqq);
3944 
3945 	idling_needed_for_service_guar =
3946 		idling_needed_for_service_guarantees(bfqd, bfqq);
3947 
3948 	/*
3949 	 * We have now the two components we need to compute the
3950 	 * return value of the function, which is true only if idling
3951 	 * either boosts the throughput (without issues), or is
3952 	 * necessary to preserve service guarantees.
3953 	 */
3954 	return idling_boosts_thr_with_no_issue ||
3955 		idling_needed_for_service_guar;
3956 }
3957 
3958 /*
3959  * If the in-service queue is empty but the function bfq_better_to_idle
3960  * returns true, then:
3961  * 1) the queue must remain in service and cannot be expired, and
3962  * 2) the device must be idled to wait for the possible arrival of a new
3963  *    request for the queue.
3964  * See the comments on the function bfq_better_to_idle for the reasons
3965  * why performing device idling is the best choice to boost the throughput
3966  * and preserve service guarantees when bfq_better_to_idle itself
3967  * returns true.
3968  */
3969 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3970 {
3971 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3972 }
3973 
3974 /*
3975  * This function chooses the queue from which to pick the next extra
3976  * I/O request to inject, if it finds a compatible queue. See the
3977  * comments on bfq_update_inject_limit() for details on the injection
3978  * mechanism, and for the definitions of the quantities mentioned
3979  * below.
3980  */
3981 static struct bfq_queue *
3982 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3983 {
3984 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
3985 	unsigned int limit = in_serv_bfqq->inject_limit;
3986 	/*
3987 	 * If
3988 	 * - bfqq is not weight-raised and therefore does not carry
3989 	 *   time-critical I/O,
3990 	 * or
3991 	 * - regardless of whether bfqq is weight-raised, bfqq has
3992 	 *   however a long think time, during which it can absorb the
3993 	 *   effect of an appropriate number of extra I/O requests
3994 	 *   from other queues (see bfq_update_inject_limit for
3995 	 *   details on the computation of this number);
3996 	 * then injection can be performed without restrictions.
3997 	 */
3998 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
3999 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4000 
4001 	/*
4002 	 * If
4003 	 * - the baseline total service time could not be sampled yet,
4004 	 *   so the inject limit happens to be still 0, and
4005 	 * - a lot of time has elapsed since the plugging of I/O
4006 	 *   dispatching started, so drive speed is being wasted
4007 	 *   significantly;
4008 	 * then temporarily raise inject limit to one request.
4009 	 */
4010 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4011 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4012 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4013 				      bfqd->bfq_slice_idle)
4014 		)
4015 		limit = 1;
4016 
4017 	if (bfqd->rq_in_driver >= limit)
4018 		return NULL;
4019 
4020 	/*
4021 	 * Linear search of the source queue for injection; but, with
4022 	 * a high probability, very few steps are needed to find a
4023 	 * candidate queue, i.e., a queue with enough budget left for
4024 	 * its next request. In fact:
4025 	 * - BFQ dynamically updates the budget of every queue so as
4026 	 *   to accommodate the expected backlog of the queue;
4027 	 * - if a queue gets all its requests dispatched as injected
4028 	 *   service, then the queue is removed from the active list
4029 	 *   (and re-added only if it gets new requests, but then it
4030 	 *   is assigned again enough budget for its new backlog).
4031 	 */
4032 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4033 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4034 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4035 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4036 		    bfq_bfqq_budget_left(bfqq)) {
4037 			/*
4038 			 * Allow for only one large in-flight request
4039 			 * on non-rotational devices, for the
4040 			 * following reason. On non-rotationl drives,
4041 			 * large requests take much longer than
4042 			 * smaller requests to be served. In addition,
4043 			 * the drive prefers to serve large requests
4044 			 * w.r.t. to small ones, if it can choose. So,
4045 			 * having more than one large requests queued
4046 			 * in the drive may easily make the next first
4047 			 * request of the in-service queue wait for so
4048 			 * long to break bfqq's service guarantees. On
4049 			 * the bright side, large requests let the
4050 			 * drive reach a very high throughput, even if
4051 			 * there is only one in-flight large request
4052 			 * at a time.
4053 			 */
4054 			if (blk_queue_nonrot(bfqd->queue) &&
4055 			    blk_rq_sectors(bfqq->next_rq) >=
4056 			    BFQQ_SECT_THR_NONROT)
4057 				limit = min_t(unsigned int, 1, limit);
4058 			else
4059 				limit = in_serv_bfqq->inject_limit;
4060 
4061 			if (bfqd->rq_in_driver < limit) {
4062 				bfqd->rqs_injected = true;
4063 				return bfqq;
4064 			}
4065 		}
4066 
4067 	return NULL;
4068 }
4069 
4070 /*
4071  * Select a queue for service.  If we have a current queue in service,
4072  * check whether to continue servicing it, or retrieve and set a new one.
4073  */
4074 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4075 {
4076 	struct bfq_queue *bfqq;
4077 	struct request *next_rq;
4078 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4079 
4080 	bfqq = bfqd->in_service_queue;
4081 	if (!bfqq)
4082 		goto new_queue;
4083 
4084 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4085 
4086 	/*
4087 	 * Do not expire bfqq for budget timeout if bfqq may be about
4088 	 * to enjoy device idling. The reason why, in this case, we
4089 	 * prevent bfqq from expiring is the same as in the comments
4090 	 * on the case where bfq_bfqq_must_idle() returns true, in
4091 	 * bfq_completed_request().
4092 	 */
4093 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4094 	    !bfq_bfqq_must_idle(bfqq))
4095 		goto expire;
4096 
4097 check_queue:
4098 	/*
4099 	 * This loop is rarely executed more than once. Even when it
4100 	 * happens, it is much more convenient to re-execute this loop
4101 	 * than to return NULL and trigger a new dispatch to get a
4102 	 * request served.
4103 	 */
4104 	next_rq = bfqq->next_rq;
4105 	/*
4106 	 * If bfqq has requests queued and it has enough budget left to
4107 	 * serve them, keep the queue, otherwise expire it.
4108 	 */
4109 	if (next_rq) {
4110 		if (bfq_serv_to_charge(next_rq, bfqq) >
4111 			bfq_bfqq_budget_left(bfqq)) {
4112 			/*
4113 			 * Expire the queue for budget exhaustion,
4114 			 * which makes sure that the next budget is
4115 			 * enough to serve the next request, even if
4116 			 * it comes from the fifo expired path.
4117 			 */
4118 			reason = BFQQE_BUDGET_EXHAUSTED;
4119 			goto expire;
4120 		} else {
4121 			/*
4122 			 * The idle timer may be pending because we may
4123 			 * not disable disk idling even when a new request
4124 			 * arrives.
4125 			 */
4126 			if (bfq_bfqq_wait_request(bfqq)) {
4127 				/*
4128 				 * If we get here: 1) at least a new request
4129 				 * has arrived but we have not disabled the
4130 				 * timer because the request was too small,
4131 				 * 2) then the block layer has unplugged
4132 				 * the device, causing the dispatch to be
4133 				 * invoked.
4134 				 *
4135 				 * Since the device is unplugged, now the
4136 				 * requests are probably large enough to
4137 				 * provide a reasonable throughput.
4138 				 * So we disable idling.
4139 				 */
4140 				bfq_clear_bfqq_wait_request(bfqq);
4141 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4142 			}
4143 			goto keep_queue;
4144 		}
4145 	}
4146 
4147 	/*
4148 	 * No requests pending. However, if the in-service queue is idling
4149 	 * for a new request, or has requests waiting for a completion and
4150 	 * may idle after their completion, then keep it anyway.
4151 	 *
4152 	 * Yet, inject service from other queues if it boosts
4153 	 * throughput and is possible.
4154 	 */
4155 	if (bfq_bfqq_wait_request(bfqq) ||
4156 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4157 		struct bfq_queue *async_bfqq =
4158 			bfqq->bic && bfqq->bic->bfqq[0] &&
4159 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) ?
4160 			bfqq->bic->bfqq[0] : NULL;
4161 
4162 		/*
4163 		 * If the process associated with bfqq has also async
4164 		 * I/O pending, then inject it
4165 		 * unconditionally. Injecting I/O from the same
4166 		 * process can cause no harm to the process. On the
4167 		 * contrary, it can only increase bandwidth and reduce
4168 		 * latency for the process.
4169 		 */
4170 		if (async_bfqq &&
4171 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4172 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4173 		    bfq_bfqq_budget_left(async_bfqq))
4174 			bfqq = bfqq->bic->bfqq[0];
4175 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4176 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4177 			  !bfq_bfqq_has_short_ttime(bfqq)))
4178 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4179 		else
4180 			bfqq = NULL;
4181 
4182 		goto keep_queue;
4183 	}
4184 
4185 	reason = BFQQE_NO_MORE_REQUESTS;
4186 expire:
4187 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4188 new_queue:
4189 	bfqq = bfq_set_in_service_queue(bfqd);
4190 	if (bfqq) {
4191 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4192 		goto check_queue;
4193 	}
4194 keep_queue:
4195 	if (bfqq)
4196 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4197 	else
4198 		bfq_log(bfqd, "select_queue: no queue returned");
4199 
4200 	return bfqq;
4201 }
4202 
4203 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4204 {
4205 	struct bfq_entity *entity = &bfqq->entity;
4206 
4207 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4208 		bfq_log_bfqq(bfqd, bfqq,
4209 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4210 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4211 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4212 			bfqq->wr_coeff,
4213 			bfqq->entity.weight, bfqq->entity.orig_weight);
4214 
4215 		if (entity->prio_changed)
4216 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4217 
4218 		/*
4219 		 * If the queue was activated in a burst, or too much
4220 		 * time has elapsed from the beginning of this
4221 		 * weight-raising period, then end weight raising.
4222 		 */
4223 		if (bfq_bfqq_in_large_burst(bfqq))
4224 			bfq_bfqq_end_wr(bfqq);
4225 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4226 						bfqq->wr_cur_max_time)) {
4227 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4228 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4229 					       bfq_wr_duration(bfqd)))
4230 				bfq_bfqq_end_wr(bfqq);
4231 			else {
4232 				switch_back_to_interactive_wr(bfqq, bfqd);
4233 				bfqq->entity.prio_changed = 1;
4234 			}
4235 		}
4236 		if (bfqq->wr_coeff > 1 &&
4237 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4238 		    bfqq->service_from_wr > max_service_from_wr) {
4239 			/* see comments on max_service_from_wr */
4240 			bfq_bfqq_end_wr(bfqq);
4241 		}
4242 	}
4243 	/*
4244 	 * To improve latency (for this or other queues), immediately
4245 	 * update weight both if it must be raised and if it must be
4246 	 * lowered. Since, entity may be on some active tree here, and
4247 	 * might have a pending change of its ioprio class, invoke
4248 	 * next function with the last parameter unset (see the
4249 	 * comments on the function).
4250 	 */
4251 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4252 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4253 						entity, false);
4254 }
4255 
4256 /*
4257  * Dispatch next request from bfqq.
4258  */
4259 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4260 						 struct bfq_queue *bfqq)
4261 {
4262 	struct request *rq = bfqq->next_rq;
4263 	unsigned long service_to_charge;
4264 
4265 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4266 
4267 	bfq_bfqq_served(bfqq, service_to_charge);
4268 
4269 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4270 		bfqd->wait_dispatch = false;
4271 		bfqd->waited_rq = rq;
4272 	}
4273 
4274 	bfq_dispatch_remove(bfqd->queue, rq);
4275 
4276 	if (bfqq != bfqd->in_service_queue)
4277 		goto return_rq;
4278 
4279 	/*
4280 	 * If weight raising has to terminate for bfqq, then next
4281 	 * function causes an immediate update of bfqq's weight,
4282 	 * without waiting for next activation. As a consequence, on
4283 	 * expiration, bfqq will be timestamped as if has never been
4284 	 * weight-raised during this service slot, even if it has
4285 	 * received part or even most of the service as a
4286 	 * weight-raised queue. This inflates bfqq's timestamps, which
4287 	 * is beneficial, as bfqq is then more willing to leave the
4288 	 * device immediately to possible other weight-raised queues.
4289 	 */
4290 	bfq_update_wr_data(bfqd, bfqq);
4291 
4292 	/*
4293 	 * Expire bfqq, pretending that its budget expired, if bfqq
4294 	 * belongs to CLASS_IDLE and other queues are waiting for
4295 	 * service.
4296 	 */
4297 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4298 		goto return_rq;
4299 
4300 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4301 
4302 return_rq:
4303 	return rq;
4304 }
4305 
4306 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4307 {
4308 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4309 
4310 	/*
4311 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4312 	 * most a call to dispatch for nothing
4313 	 */
4314 	return !list_empty_careful(&bfqd->dispatch) ||
4315 		bfq_tot_busy_queues(bfqd) > 0;
4316 }
4317 
4318 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4319 {
4320 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4321 	struct request *rq = NULL;
4322 	struct bfq_queue *bfqq = NULL;
4323 
4324 	if (!list_empty(&bfqd->dispatch)) {
4325 		rq = list_first_entry(&bfqd->dispatch, struct request,
4326 				      queuelist);
4327 		list_del_init(&rq->queuelist);
4328 
4329 		bfqq = RQ_BFQQ(rq);
4330 
4331 		if (bfqq) {
4332 			/*
4333 			 * Increment counters here, because this
4334 			 * dispatch does not follow the standard
4335 			 * dispatch flow (where counters are
4336 			 * incremented)
4337 			 */
4338 			bfqq->dispatched++;
4339 
4340 			goto inc_in_driver_start_rq;
4341 		}
4342 
4343 		/*
4344 		 * We exploit the bfq_finish_requeue_request hook to
4345 		 * decrement rq_in_driver, but
4346 		 * bfq_finish_requeue_request will not be invoked on
4347 		 * this request. So, to avoid unbalance, just start
4348 		 * this request, without incrementing rq_in_driver. As
4349 		 * a negative consequence, rq_in_driver is deceptively
4350 		 * lower than it should be while this request is in
4351 		 * service. This may cause bfq_schedule_dispatch to be
4352 		 * invoked uselessly.
4353 		 *
4354 		 * As for implementing an exact solution, the
4355 		 * bfq_finish_requeue_request hook, if defined, is
4356 		 * probably invoked also on this request. So, by
4357 		 * exploiting this hook, we could 1) increment
4358 		 * rq_in_driver here, and 2) decrement it in
4359 		 * bfq_finish_requeue_request. Such a solution would
4360 		 * let the value of the counter be always accurate,
4361 		 * but it would entail using an extra interface
4362 		 * function. This cost seems higher than the benefit,
4363 		 * being the frequency of non-elevator-private
4364 		 * requests very low.
4365 		 */
4366 		goto start_rq;
4367 	}
4368 
4369 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4370 		bfq_tot_busy_queues(bfqd));
4371 
4372 	if (bfq_tot_busy_queues(bfqd) == 0)
4373 		goto exit;
4374 
4375 	/*
4376 	 * Force device to serve one request at a time if
4377 	 * strict_guarantees is true. Forcing this service scheme is
4378 	 * currently the ONLY way to guarantee that the request
4379 	 * service order enforced by the scheduler is respected by a
4380 	 * queueing device. Otherwise the device is free even to make
4381 	 * some unlucky request wait for as long as the device
4382 	 * wishes.
4383 	 *
4384 	 * Of course, serving one request at at time may cause loss of
4385 	 * throughput.
4386 	 */
4387 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4388 		goto exit;
4389 
4390 	bfqq = bfq_select_queue(bfqd);
4391 	if (!bfqq)
4392 		goto exit;
4393 
4394 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4395 
4396 	if (rq) {
4397 inc_in_driver_start_rq:
4398 		bfqd->rq_in_driver++;
4399 start_rq:
4400 		rq->rq_flags |= RQF_STARTED;
4401 	}
4402 exit:
4403 	return rq;
4404 }
4405 
4406 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4407 static void bfq_update_dispatch_stats(struct request_queue *q,
4408 				      struct request *rq,
4409 				      struct bfq_queue *in_serv_queue,
4410 				      bool idle_timer_disabled)
4411 {
4412 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4413 
4414 	if (!idle_timer_disabled && !bfqq)
4415 		return;
4416 
4417 	/*
4418 	 * rq and bfqq are guaranteed to exist until this function
4419 	 * ends, for the following reasons. First, rq can be
4420 	 * dispatched to the device, and then can be completed and
4421 	 * freed, only after this function ends. Second, rq cannot be
4422 	 * merged (and thus freed because of a merge) any longer,
4423 	 * because it has already started. Thus rq cannot be freed
4424 	 * before this function ends, and, since rq has a reference to
4425 	 * bfqq, the same guarantee holds for bfqq too.
4426 	 *
4427 	 * In addition, the following queue lock guarantees that
4428 	 * bfqq_group(bfqq) exists as well.
4429 	 */
4430 	spin_lock_irq(&q->queue_lock);
4431 	if (idle_timer_disabled)
4432 		/*
4433 		 * Since the idle timer has been disabled,
4434 		 * in_serv_queue contained some request when
4435 		 * __bfq_dispatch_request was invoked above, which
4436 		 * implies that rq was picked exactly from
4437 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4438 		 * therefore guaranteed to exist because of the above
4439 		 * arguments.
4440 		 */
4441 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4442 	if (bfqq) {
4443 		struct bfq_group *bfqg = bfqq_group(bfqq);
4444 
4445 		bfqg_stats_update_avg_queue_size(bfqg);
4446 		bfqg_stats_set_start_empty_time(bfqg);
4447 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4448 	}
4449 	spin_unlock_irq(&q->queue_lock);
4450 }
4451 #else
4452 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4453 					     struct request *rq,
4454 					     struct bfq_queue *in_serv_queue,
4455 					     bool idle_timer_disabled) {}
4456 #endif
4457 
4458 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4459 {
4460 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4461 	struct request *rq;
4462 	struct bfq_queue *in_serv_queue;
4463 	bool waiting_rq, idle_timer_disabled;
4464 
4465 	spin_lock_irq(&bfqd->lock);
4466 
4467 	in_serv_queue = bfqd->in_service_queue;
4468 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4469 
4470 	rq = __bfq_dispatch_request(hctx);
4471 
4472 	idle_timer_disabled =
4473 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4474 
4475 	spin_unlock_irq(&bfqd->lock);
4476 
4477 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4478 				  idle_timer_disabled);
4479 
4480 	return rq;
4481 }
4482 
4483 /*
4484  * Task holds one reference to the queue, dropped when task exits.  Each rq
4485  * in-flight on this queue also holds a reference, dropped when rq is freed.
4486  *
4487  * Scheduler lock must be held here. Recall not to use bfqq after calling
4488  * this function on it.
4489  */
4490 void bfq_put_queue(struct bfq_queue *bfqq)
4491 {
4492 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4493 	struct bfq_group *bfqg = bfqq_group(bfqq);
4494 #endif
4495 
4496 	if (bfqq->bfqd)
4497 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4498 			     bfqq, bfqq->ref);
4499 
4500 	bfqq->ref--;
4501 	if (bfqq->ref)
4502 		return;
4503 
4504 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4505 		hlist_del_init(&bfqq->burst_list_node);
4506 		/*
4507 		 * Decrement also burst size after the removal, if the
4508 		 * process associated with bfqq is exiting, and thus
4509 		 * does not contribute to the burst any longer. This
4510 		 * decrement helps filter out false positives of large
4511 		 * bursts, when some short-lived process (often due to
4512 		 * the execution of commands by some service) happens
4513 		 * to start and exit while a complex application is
4514 		 * starting, and thus spawning several processes that
4515 		 * do I/O (and that *must not* be treated as a large
4516 		 * burst, see comments on bfq_handle_burst).
4517 		 *
4518 		 * In particular, the decrement is performed only if:
4519 		 * 1) bfqq is not a merged queue, because, if it is,
4520 		 * then this free of bfqq is not triggered by the exit
4521 		 * of the process bfqq is associated with, but exactly
4522 		 * by the fact that bfqq has just been merged.
4523 		 * 2) burst_size is greater than 0, to handle
4524 		 * unbalanced decrements. Unbalanced decrements may
4525 		 * happen in te following case: bfqq is inserted into
4526 		 * the current burst list--without incrementing
4527 		 * bust_size--because of a split, but the current
4528 		 * burst list is not the burst list bfqq belonged to
4529 		 * (see comments on the case of a split in
4530 		 * bfq_set_request).
4531 		 */
4532 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4533 			bfqq->bfqd->burst_size--;
4534 	}
4535 
4536 	kmem_cache_free(bfq_pool, bfqq);
4537 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4538 	bfqg_and_blkg_put(bfqg);
4539 #endif
4540 }
4541 
4542 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4543 {
4544 	struct bfq_queue *__bfqq, *next;
4545 
4546 	/*
4547 	 * If this queue was scheduled to merge with another queue, be
4548 	 * sure to drop the reference taken on that queue (and others in
4549 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4550 	 */
4551 	__bfqq = bfqq->new_bfqq;
4552 	while (__bfqq) {
4553 		if (__bfqq == bfqq)
4554 			break;
4555 		next = __bfqq->new_bfqq;
4556 		bfq_put_queue(__bfqq);
4557 		__bfqq = next;
4558 	}
4559 }
4560 
4561 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4562 {
4563 	if (bfqq == bfqd->in_service_queue) {
4564 		__bfq_bfqq_expire(bfqd, bfqq);
4565 		bfq_schedule_dispatch(bfqd);
4566 	}
4567 
4568 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4569 
4570 	bfq_put_cooperator(bfqq);
4571 
4572 	bfq_put_queue(bfqq); /* release process reference */
4573 }
4574 
4575 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4576 {
4577 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4578 	struct bfq_data *bfqd;
4579 
4580 	if (bfqq)
4581 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4582 
4583 	if (bfqq && bfqd) {
4584 		unsigned long flags;
4585 
4586 		spin_lock_irqsave(&bfqd->lock, flags);
4587 		bfq_exit_bfqq(bfqd, bfqq);
4588 		bic_set_bfqq(bic, NULL, is_sync);
4589 		spin_unlock_irqrestore(&bfqd->lock, flags);
4590 	}
4591 }
4592 
4593 static void bfq_exit_icq(struct io_cq *icq)
4594 {
4595 	struct bfq_io_cq *bic = icq_to_bic(icq);
4596 
4597 	bfq_exit_icq_bfqq(bic, true);
4598 	bfq_exit_icq_bfqq(bic, false);
4599 }
4600 
4601 /*
4602  * Update the entity prio values; note that the new values will not
4603  * be used until the next (re)activation.
4604  */
4605 static void
4606 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4607 {
4608 	struct task_struct *tsk = current;
4609 	int ioprio_class;
4610 	struct bfq_data *bfqd = bfqq->bfqd;
4611 
4612 	if (!bfqd)
4613 		return;
4614 
4615 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4616 	switch (ioprio_class) {
4617 	default:
4618 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4619 			"bfq: bad prio class %d\n", ioprio_class);
4620 		/* fall through */
4621 	case IOPRIO_CLASS_NONE:
4622 		/*
4623 		 * No prio set, inherit CPU scheduling settings.
4624 		 */
4625 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4626 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4627 		break;
4628 	case IOPRIO_CLASS_RT:
4629 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4630 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4631 		break;
4632 	case IOPRIO_CLASS_BE:
4633 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4634 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4635 		break;
4636 	case IOPRIO_CLASS_IDLE:
4637 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4638 		bfqq->new_ioprio = 7;
4639 		break;
4640 	}
4641 
4642 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4643 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4644 			bfqq->new_ioprio);
4645 		bfqq->new_ioprio = IOPRIO_BE_NR;
4646 	}
4647 
4648 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4649 	bfqq->entity.prio_changed = 1;
4650 }
4651 
4652 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4653 				       struct bio *bio, bool is_sync,
4654 				       struct bfq_io_cq *bic);
4655 
4656 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4657 {
4658 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4659 	struct bfq_queue *bfqq;
4660 	int ioprio = bic->icq.ioc->ioprio;
4661 
4662 	/*
4663 	 * This condition may trigger on a newly created bic, be sure to
4664 	 * drop the lock before returning.
4665 	 */
4666 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4667 		return;
4668 
4669 	bic->ioprio = ioprio;
4670 
4671 	bfqq = bic_to_bfqq(bic, false);
4672 	if (bfqq) {
4673 		/* release process reference on this queue */
4674 		bfq_put_queue(bfqq);
4675 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4676 		bic_set_bfqq(bic, bfqq, false);
4677 	}
4678 
4679 	bfqq = bic_to_bfqq(bic, true);
4680 	if (bfqq)
4681 		bfq_set_next_ioprio_data(bfqq, bic);
4682 }
4683 
4684 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4685 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4686 {
4687 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4688 	INIT_LIST_HEAD(&bfqq->fifo);
4689 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4690 
4691 	bfqq->ref = 0;
4692 	bfqq->bfqd = bfqd;
4693 
4694 	if (bic)
4695 		bfq_set_next_ioprio_data(bfqq, bic);
4696 
4697 	if (is_sync) {
4698 		/*
4699 		 * No need to mark as has_short_ttime if in
4700 		 * idle_class, because no device idling is performed
4701 		 * for queues in idle class
4702 		 */
4703 		if (!bfq_class_idle(bfqq))
4704 			/* tentatively mark as has_short_ttime */
4705 			bfq_mark_bfqq_has_short_ttime(bfqq);
4706 		bfq_mark_bfqq_sync(bfqq);
4707 		bfq_mark_bfqq_just_created(bfqq);
4708 	} else
4709 		bfq_clear_bfqq_sync(bfqq);
4710 
4711 	/* set end request to minus infinity from now */
4712 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4713 
4714 	bfq_mark_bfqq_IO_bound(bfqq);
4715 
4716 	bfqq->pid = pid;
4717 
4718 	/* Tentative initial value to trade off between thr and lat */
4719 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4720 	bfqq->budget_timeout = bfq_smallest_from_now();
4721 
4722 	bfqq->wr_coeff = 1;
4723 	bfqq->last_wr_start_finish = jiffies;
4724 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4725 	bfqq->split_time = bfq_smallest_from_now();
4726 
4727 	/*
4728 	 * To not forget the possibly high bandwidth consumed by a
4729 	 * process/queue in the recent past,
4730 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4731 	 * to the current value of bfqq->soft_rt_next_start (see
4732 	 * comments on bfq_bfqq_softrt_next_start).  Set
4733 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4734 	 * no bandwidth so far.
4735 	 */
4736 	bfqq->soft_rt_next_start = jiffies;
4737 
4738 	/* first request is almost certainly seeky */
4739 	bfqq->seek_history = 1;
4740 }
4741 
4742 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4743 					       struct bfq_group *bfqg,
4744 					       int ioprio_class, int ioprio)
4745 {
4746 	switch (ioprio_class) {
4747 	case IOPRIO_CLASS_RT:
4748 		return &bfqg->async_bfqq[0][ioprio];
4749 	case IOPRIO_CLASS_NONE:
4750 		ioprio = IOPRIO_NORM;
4751 		/* fall through */
4752 	case IOPRIO_CLASS_BE:
4753 		return &bfqg->async_bfqq[1][ioprio];
4754 	case IOPRIO_CLASS_IDLE:
4755 		return &bfqg->async_idle_bfqq;
4756 	default:
4757 		return NULL;
4758 	}
4759 }
4760 
4761 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4762 				       struct bio *bio, bool is_sync,
4763 				       struct bfq_io_cq *bic)
4764 {
4765 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4766 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4767 	struct bfq_queue **async_bfqq = NULL;
4768 	struct bfq_queue *bfqq;
4769 	struct bfq_group *bfqg;
4770 
4771 	rcu_read_lock();
4772 
4773 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
4774 	if (!bfqg) {
4775 		bfqq = &bfqd->oom_bfqq;
4776 		goto out;
4777 	}
4778 
4779 	if (!is_sync) {
4780 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4781 						  ioprio);
4782 		bfqq = *async_bfqq;
4783 		if (bfqq)
4784 			goto out;
4785 	}
4786 
4787 	bfqq = kmem_cache_alloc_node(bfq_pool,
4788 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4789 				     bfqd->queue->node);
4790 
4791 	if (bfqq) {
4792 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4793 			      is_sync);
4794 		bfq_init_entity(&bfqq->entity, bfqg);
4795 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4796 	} else {
4797 		bfqq = &bfqd->oom_bfqq;
4798 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4799 		goto out;
4800 	}
4801 
4802 	/*
4803 	 * Pin the queue now that it's allocated, scheduler exit will
4804 	 * prune it.
4805 	 */
4806 	if (async_bfqq) {
4807 		bfqq->ref++; /*
4808 			      * Extra group reference, w.r.t. sync
4809 			      * queue. This extra reference is removed
4810 			      * only if bfqq->bfqg disappears, to
4811 			      * guarantee that this queue is not freed
4812 			      * until its group goes away.
4813 			      */
4814 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4815 			     bfqq, bfqq->ref);
4816 		*async_bfqq = bfqq;
4817 	}
4818 
4819 out:
4820 	bfqq->ref++; /* get a process reference to this queue */
4821 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4822 	rcu_read_unlock();
4823 	return bfqq;
4824 }
4825 
4826 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4827 				    struct bfq_queue *bfqq)
4828 {
4829 	struct bfq_ttime *ttime = &bfqq->ttime;
4830 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4831 
4832 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4833 
4834 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4835 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4836 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4837 				     ttime->ttime_samples);
4838 }
4839 
4840 static void
4841 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4842 		       struct request *rq)
4843 {
4844 	bfqq->seek_history <<= 1;
4845 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
4846 
4847 	if (bfqq->wr_coeff > 1 &&
4848 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
4849 	    BFQQ_TOTALLY_SEEKY(bfqq))
4850 		bfq_bfqq_end_wr(bfqq);
4851 }
4852 
4853 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4854 				       struct bfq_queue *bfqq,
4855 				       struct bfq_io_cq *bic)
4856 {
4857 	bool has_short_ttime = true;
4858 
4859 	/*
4860 	 * No need to update has_short_ttime if bfqq is async or in
4861 	 * idle io prio class, or if bfq_slice_idle is zero, because
4862 	 * no device idling is performed for bfqq in this case.
4863 	 */
4864 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4865 	    bfqd->bfq_slice_idle == 0)
4866 		return;
4867 
4868 	/* Idle window just restored, statistics are meaningless. */
4869 	if (time_is_after_eq_jiffies(bfqq->split_time +
4870 				     bfqd->bfq_wr_min_idle_time))
4871 		return;
4872 
4873 	/* Think time is infinite if no process is linked to
4874 	 * bfqq. Otherwise check average think time to
4875 	 * decide whether to mark as has_short_ttime
4876 	 */
4877 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4878 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4879 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4880 		has_short_ttime = false;
4881 
4882 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4883 		     has_short_ttime);
4884 
4885 	if (has_short_ttime)
4886 		bfq_mark_bfqq_has_short_ttime(bfqq);
4887 	else
4888 		bfq_clear_bfqq_has_short_ttime(bfqq);
4889 }
4890 
4891 /*
4892  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4893  * something we should do about it.
4894  */
4895 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4896 			    struct request *rq)
4897 {
4898 	struct bfq_io_cq *bic = RQ_BIC(rq);
4899 
4900 	if (rq->cmd_flags & REQ_META)
4901 		bfqq->meta_pending++;
4902 
4903 	bfq_update_io_thinktime(bfqd, bfqq);
4904 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4905 	bfq_update_io_seektime(bfqd, bfqq, rq);
4906 
4907 	bfq_log_bfqq(bfqd, bfqq,
4908 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4909 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4910 
4911 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4912 
4913 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4914 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4915 				 blk_rq_sectors(rq) < 32;
4916 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4917 
4918 		/*
4919 		 * There is just this request queued: if
4920 		 * - the request is small, and
4921 		 * - we are idling to boost throughput, and
4922 		 * - the queue is not to be expired,
4923 		 * then just exit.
4924 		 *
4925 		 * In this way, if the device is being idled to wait
4926 		 * for a new request from the in-service queue, we
4927 		 * avoid unplugging the device and committing the
4928 		 * device to serve just a small request. In contrast
4929 		 * we wait for the block layer to decide when to
4930 		 * unplug the device: hopefully, new requests will be
4931 		 * merged to this one quickly, then the device will be
4932 		 * unplugged and larger requests will be dispatched.
4933 		 */
4934 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
4935 		    !budget_timeout)
4936 			return;
4937 
4938 		/*
4939 		 * A large enough request arrived, or idling is being
4940 		 * performed to preserve service guarantees, or
4941 		 * finally the queue is to be expired: in all these
4942 		 * cases disk idling is to be stopped, so clear
4943 		 * wait_request flag and reset timer.
4944 		 */
4945 		bfq_clear_bfqq_wait_request(bfqq);
4946 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4947 
4948 		/*
4949 		 * The queue is not empty, because a new request just
4950 		 * arrived. Hence we can safely expire the queue, in
4951 		 * case of budget timeout, without risking that the
4952 		 * timestamps of the queue are not updated correctly.
4953 		 * See [1] for more details.
4954 		 */
4955 		if (budget_timeout)
4956 			bfq_bfqq_expire(bfqd, bfqq, false,
4957 					BFQQE_BUDGET_TIMEOUT);
4958 	}
4959 }
4960 
4961 /* returns true if it causes the idle timer to be disabled */
4962 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4963 {
4964 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4965 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4966 	bool waiting, idle_timer_disabled = false;
4967 
4968 	if (new_bfqq) {
4969 		/*
4970 		 * Release the request's reference to the old bfqq
4971 		 * and make sure one is taken to the shared queue.
4972 		 */
4973 		new_bfqq->allocated++;
4974 		bfqq->allocated--;
4975 		new_bfqq->ref++;
4976 		/*
4977 		 * If the bic associated with the process
4978 		 * issuing this request still points to bfqq
4979 		 * (and thus has not been already redirected
4980 		 * to new_bfqq or even some other bfq_queue),
4981 		 * then complete the merge and redirect it to
4982 		 * new_bfqq.
4983 		 */
4984 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4985 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4986 					bfqq, new_bfqq);
4987 
4988 		bfq_clear_bfqq_just_created(bfqq);
4989 		/*
4990 		 * rq is about to be enqueued into new_bfqq,
4991 		 * release rq reference on bfqq
4992 		 */
4993 		bfq_put_queue(bfqq);
4994 		rq->elv.priv[1] = new_bfqq;
4995 		bfqq = new_bfqq;
4996 	}
4997 
4998 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4999 	bfq_add_request(rq);
5000 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5001 
5002 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5003 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5004 
5005 	bfq_rq_enqueued(bfqd, bfqq, rq);
5006 
5007 	return idle_timer_disabled;
5008 }
5009 
5010 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
5011 static void bfq_update_insert_stats(struct request_queue *q,
5012 				    struct bfq_queue *bfqq,
5013 				    bool idle_timer_disabled,
5014 				    unsigned int cmd_flags)
5015 {
5016 	if (!bfqq)
5017 		return;
5018 
5019 	/*
5020 	 * bfqq still exists, because it can disappear only after
5021 	 * either it is merged with another queue, or the process it
5022 	 * is associated with exits. But both actions must be taken by
5023 	 * the same process currently executing this flow of
5024 	 * instructions.
5025 	 *
5026 	 * In addition, the following queue lock guarantees that
5027 	 * bfqq_group(bfqq) exists as well.
5028 	 */
5029 	spin_lock_irq(&q->queue_lock);
5030 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5031 	if (idle_timer_disabled)
5032 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5033 	spin_unlock_irq(&q->queue_lock);
5034 }
5035 #else
5036 static inline void bfq_update_insert_stats(struct request_queue *q,
5037 					   struct bfq_queue *bfqq,
5038 					   bool idle_timer_disabled,
5039 					   unsigned int cmd_flags) {}
5040 #endif
5041 
5042 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5043 			       bool at_head)
5044 {
5045 	struct request_queue *q = hctx->queue;
5046 	struct bfq_data *bfqd = q->elevator->elevator_data;
5047 	struct bfq_queue *bfqq;
5048 	bool idle_timer_disabled = false;
5049 	unsigned int cmd_flags;
5050 
5051 	spin_lock_irq(&bfqd->lock);
5052 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5053 		spin_unlock_irq(&bfqd->lock);
5054 		return;
5055 	}
5056 
5057 	spin_unlock_irq(&bfqd->lock);
5058 
5059 	blk_mq_sched_request_inserted(rq);
5060 
5061 	spin_lock_irq(&bfqd->lock);
5062 	bfqq = bfq_init_rq(rq);
5063 	if (at_head || blk_rq_is_passthrough(rq)) {
5064 		if (at_head)
5065 			list_add(&rq->queuelist, &bfqd->dispatch);
5066 		else
5067 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5068 	} else { /* bfqq is assumed to be non null here */
5069 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5070 		/*
5071 		 * Update bfqq, because, if a queue merge has occurred
5072 		 * in __bfq_insert_request, then rq has been
5073 		 * redirected into a new queue.
5074 		 */
5075 		bfqq = RQ_BFQQ(rq);
5076 
5077 		if (rq_mergeable(rq)) {
5078 			elv_rqhash_add(q, rq);
5079 			if (!q->last_merge)
5080 				q->last_merge = rq;
5081 		}
5082 	}
5083 
5084 	/*
5085 	 * Cache cmd_flags before releasing scheduler lock, because rq
5086 	 * may disappear afterwards (for example, because of a request
5087 	 * merge).
5088 	 */
5089 	cmd_flags = rq->cmd_flags;
5090 
5091 	spin_unlock_irq(&bfqd->lock);
5092 
5093 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5094 				cmd_flags);
5095 }
5096 
5097 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5098 				struct list_head *list, bool at_head)
5099 {
5100 	while (!list_empty(list)) {
5101 		struct request *rq;
5102 
5103 		rq = list_first_entry(list, struct request, queuelist);
5104 		list_del_init(&rq->queuelist);
5105 		bfq_insert_request(hctx, rq, at_head);
5106 	}
5107 }
5108 
5109 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5110 {
5111 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5112 
5113 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5114 				       bfqd->rq_in_driver);
5115 
5116 	if (bfqd->hw_tag == 1)
5117 		return;
5118 
5119 	/*
5120 	 * This sample is valid if the number of outstanding requests
5121 	 * is large enough to allow a queueing behavior.  Note that the
5122 	 * sum is not exact, as it's not taking into account deactivated
5123 	 * requests.
5124 	 */
5125 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5126 		return;
5127 
5128 	/*
5129 	 * If active queue hasn't enough requests and can idle, bfq might not
5130 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5131 	 * case
5132 	 */
5133 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5134 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5135 	    BFQ_HW_QUEUE_THRESHOLD &&
5136 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5137 		return;
5138 
5139 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5140 		return;
5141 
5142 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5143 	bfqd->max_rq_in_driver = 0;
5144 	bfqd->hw_tag_samples = 0;
5145 
5146 	bfqd->nonrot_with_queueing =
5147 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5148 }
5149 
5150 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5151 {
5152 	u64 now_ns;
5153 	u32 delta_us;
5154 
5155 	bfq_update_hw_tag(bfqd);
5156 
5157 	bfqd->rq_in_driver--;
5158 	bfqq->dispatched--;
5159 
5160 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5161 		/*
5162 		 * Set budget_timeout (which we overload to store the
5163 		 * time at which the queue remains with no backlog and
5164 		 * no outstanding request; used by the weight-raising
5165 		 * mechanism).
5166 		 */
5167 		bfqq->budget_timeout = jiffies;
5168 
5169 		bfq_weights_tree_remove(bfqd, bfqq);
5170 	}
5171 
5172 	now_ns = ktime_get_ns();
5173 
5174 	bfqq->ttime.last_end_request = now_ns;
5175 
5176 	/*
5177 	 * Using us instead of ns, to get a reasonable precision in
5178 	 * computing rate in next check.
5179 	 */
5180 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5181 
5182 	/*
5183 	 * If the request took rather long to complete, and, according
5184 	 * to the maximum request size recorded, this completion latency
5185 	 * implies that the request was certainly served at a very low
5186 	 * rate (less than 1M sectors/sec), then the whole observation
5187 	 * interval that lasts up to this time instant cannot be a
5188 	 * valid time interval for computing a new peak rate.  Invoke
5189 	 * bfq_update_rate_reset to have the following three steps
5190 	 * taken:
5191 	 * - close the observation interval at the last (previous)
5192 	 *   request dispatch or completion
5193 	 * - compute rate, if possible, for that observation interval
5194 	 * - reset to zero samples, which will trigger a proper
5195 	 *   re-initialization of the observation interval on next
5196 	 *   dispatch
5197 	 */
5198 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5199 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5200 			1UL<<(BFQ_RATE_SHIFT - 10))
5201 		bfq_update_rate_reset(bfqd, NULL);
5202 	bfqd->last_completion = now_ns;
5203 
5204 	/*
5205 	 * If we are waiting to discover whether the request pattern
5206 	 * of the task associated with the queue is actually
5207 	 * isochronous, and both requisites for this condition to hold
5208 	 * are now satisfied, then compute soft_rt_next_start (see the
5209 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5210 	 * do not compute soft_rt_next_start if bfqq is in interactive
5211 	 * weight raising (see the comments in bfq_bfqq_expire() for
5212 	 * an explanation). We schedule this delayed update when bfqq
5213 	 * expires, if it still has in-flight requests.
5214 	 */
5215 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5216 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5217 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5218 		bfqq->soft_rt_next_start =
5219 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5220 
5221 	/*
5222 	 * If this is the in-service queue, check if it needs to be expired,
5223 	 * or if we want to idle in case it has no pending requests.
5224 	 */
5225 	if (bfqd->in_service_queue == bfqq) {
5226 		if (bfq_bfqq_must_idle(bfqq)) {
5227 			if (bfqq->dispatched == 0)
5228 				bfq_arm_slice_timer(bfqd);
5229 			/*
5230 			 * If we get here, we do not expire bfqq, even
5231 			 * if bfqq was in budget timeout or had no
5232 			 * more requests (as controlled in the next
5233 			 * conditional instructions). The reason for
5234 			 * not expiring bfqq is as follows.
5235 			 *
5236 			 * Here bfqq->dispatched > 0 holds, but
5237 			 * bfq_bfqq_must_idle() returned true. This
5238 			 * implies that, even if no request arrives
5239 			 * for bfqq before bfqq->dispatched reaches 0,
5240 			 * bfqq will, however, not be expired on the
5241 			 * completion event that causes bfqq->dispatch
5242 			 * to reach zero. In contrast, on this event,
5243 			 * bfqq will start enjoying device idling
5244 			 * (I/O-dispatch plugging).
5245 			 *
5246 			 * But, if we expired bfqq here, bfqq would
5247 			 * not have the chance to enjoy device idling
5248 			 * when bfqq->dispatched finally reaches
5249 			 * zero. This would expose bfqq to violation
5250 			 * of its reserved service guarantees.
5251 			 */
5252 			return;
5253 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5254 			bfq_bfqq_expire(bfqd, bfqq, false,
5255 					BFQQE_BUDGET_TIMEOUT);
5256 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5257 			 (bfqq->dispatched == 0 ||
5258 			  !bfq_better_to_idle(bfqq)))
5259 			bfq_bfqq_expire(bfqd, bfqq, false,
5260 					BFQQE_NO_MORE_REQUESTS);
5261 	}
5262 
5263 	if (!bfqd->rq_in_driver)
5264 		bfq_schedule_dispatch(bfqd);
5265 }
5266 
5267 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5268 {
5269 	bfqq->allocated--;
5270 
5271 	bfq_put_queue(bfqq);
5272 }
5273 
5274 /*
5275  * The processes associated with bfqq may happen to generate their
5276  * cumulative I/O at a lower rate than the rate at which the device
5277  * could serve the same I/O. This is rather probable, e.g., if only
5278  * one process is associated with bfqq and the device is an SSD. It
5279  * results in bfqq becoming often empty while in service. In this
5280  * respect, if BFQ is allowed to switch to another queue when bfqq
5281  * remains empty, then the device goes on being fed with I/O requests,
5282  * and the throughput is not affected. In contrast, if BFQ is not
5283  * allowed to switch to another queue---because bfqq is sync and
5284  * I/O-dispatch needs to be plugged while bfqq is temporarily
5285  * empty---then, during the service of bfqq, there will be frequent
5286  * "service holes", i.e., time intervals during which bfqq gets empty
5287  * and the device can only consume the I/O already queued in its
5288  * hardware queues. During service holes, the device may even get to
5289  * remaining idle. In the end, during the service of bfqq, the device
5290  * is driven at a lower speed than the one it can reach with the kind
5291  * of I/O flowing through bfqq.
5292  *
5293  * To counter this loss of throughput, BFQ implements a "request
5294  * injection mechanism", which tries to fill the above service holes
5295  * with I/O requests taken from other queues. The hard part in this
5296  * mechanism is finding the right amount of I/O to inject, so as to
5297  * both boost throughput and not break bfqq's bandwidth and latency
5298  * guarantees. In this respect, the mechanism maintains a per-queue
5299  * inject limit, computed as below. While bfqq is empty, the injection
5300  * mechanism dispatches extra I/O requests only until the total number
5301  * of I/O requests in flight---i.e., already dispatched but not yet
5302  * completed---remains lower than this limit.
5303  *
5304  * A first definition comes in handy to introduce the algorithm by
5305  * which the inject limit is computed.  We define as first request for
5306  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5307  * service, and causes bfqq to switch from empty to non-empty. The
5308  * algorithm updates the limit as a function of the effect of
5309  * injection on the service times of only the first requests of
5310  * bfqq. The reason for this restriction is that these are the
5311  * requests whose service time is affected most, because they are the
5312  * first to arrive after injection possibly occurred.
5313  *
5314  * To evaluate the effect of injection, the algorithm measures the
5315  * "total service time" of first requests. We define as total service
5316  * time of an I/O request, the time that elapses since when the
5317  * request is enqueued into bfqq, to when it is completed. This
5318  * quantity allows the whole effect of injection to be measured. It is
5319  * easy to see why. Suppose that some requests of other queues are
5320  * actually injected while bfqq is empty, and that a new request R
5321  * then arrives for bfqq. If the device does start to serve all or
5322  * part of the injected requests during the service hole, then,
5323  * because of this extra service, it may delay the next invocation of
5324  * the dispatch hook of BFQ. Then, even after R gets eventually
5325  * dispatched, the device may delay the actual service of R if it is
5326  * still busy serving the extra requests, or if it decides to serve,
5327  * before R, some extra request still present in its queues. As a
5328  * conclusion, the cumulative extra delay caused by injection can be
5329  * easily evaluated by just comparing the total service time of first
5330  * requests with and without injection.
5331  *
5332  * The limit-update algorithm works as follows. On the arrival of a
5333  * first request of bfqq, the algorithm measures the total time of the
5334  * request only if one of the three cases below holds, and, for each
5335  * case, it updates the limit as described below:
5336  *
5337  * (1) If there is no in-flight request. This gives a baseline for the
5338  *     total service time of the requests of bfqq. If the baseline has
5339  *     not been computed yet, then, after computing it, the limit is
5340  *     set to 1, to start boosting throughput, and to prepare the
5341  *     ground for the next case. If the baseline has already been
5342  *     computed, then it is updated, in case it results to be lower
5343  *     than the previous value.
5344  *
5345  * (2) If the limit is higher than 0 and there are in-flight
5346  *     requests. By comparing the total service time in this case with
5347  *     the above baseline, it is possible to know at which extent the
5348  *     current value of the limit is inflating the total service
5349  *     time. If the inflation is below a certain threshold, then bfqq
5350  *     is assumed to be suffering from no perceivable loss of its
5351  *     service guarantees, and the limit is even tentatively
5352  *     increased. If the inflation is above the threshold, then the
5353  *     limit is decreased. Due to the lack of any hysteresis, this
5354  *     logic makes the limit oscillate even in steady workload
5355  *     conditions. Yet we opted for it, because it is fast in reaching
5356  *     the best value for the limit, as a function of the current I/O
5357  *     workload. To reduce oscillations, this step is disabled for a
5358  *     short time interval after the limit happens to be decreased.
5359  *
5360  * (3) Periodically, after resetting the limit, to make sure that the
5361  *     limit eventually drops in case the workload changes. This is
5362  *     needed because, after the limit has gone safely up for a
5363  *     certain workload, it is impossible to guess whether the
5364  *     baseline total service time may have changed, without measuring
5365  *     it again without injection. A more effective version of this
5366  *     step might be to just sample the baseline, by interrupting
5367  *     injection only once, and then to reset/lower the limit only if
5368  *     the total service time with the current limit does happen to be
5369  *     too large.
5370  *
5371  * More details on each step are provided in the comments on the
5372  * pieces of code that implement these steps: the branch handling the
5373  * transition from empty to non empty in bfq_add_request(), the branch
5374  * handling injection in bfq_select_queue(), and the function
5375  * bfq_choose_bfqq_for_injection(). These comments also explain some
5376  * exceptions, made by the injection mechanism in some special cases.
5377  */
5378 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5379 				    struct bfq_queue *bfqq)
5380 {
5381 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5382 	unsigned int old_limit = bfqq->inject_limit;
5383 
5384 	if (bfqq->last_serv_time_ns > 0) {
5385 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5386 
5387 		if (tot_time_ns >= threshold && old_limit > 0) {
5388 			bfqq->inject_limit--;
5389 			bfqq->decrease_time_jif = jiffies;
5390 		} else if (tot_time_ns < threshold &&
5391 			   old_limit < bfqd->max_rq_in_driver<<1)
5392 			bfqq->inject_limit++;
5393 	}
5394 
5395 	/*
5396 	 * Either we still have to compute the base value for the
5397 	 * total service time, and there seem to be the right
5398 	 * conditions to do it, or we can lower the last base value
5399 	 * computed.
5400 	 */
5401 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 0) ||
5402 	    tot_time_ns < bfqq->last_serv_time_ns) {
5403 		bfqq->last_serv_time_ns = tot_time_ns;
5404 		/*
5405 		 * Now we certainly have a base value: make sure we
5406 		 * start trying injection.
5407 		 */
5408 		bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5409 	}
5410 
5411 	/* update complete, not waiting for any request completion any longer */
5412 	bfqd->waited_rq = NULL;
5413 }
5414 
5415 /*
5416  * Handle either a requeue or a finish for rq. The things to do are
5417  * the same in both cases: all references to rq are to be dropped. In
5418  * particular, rq is considered completed from the point of view of
5419  * the scheduler.
5420  */
5421 static void bfq_finish_requeue_request(struct request *rq)
5422 {
5423 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5424 	struct bfq_data *bfqd;
5425 
5426 	/*
5427 	 * Requeue and finish hooks are invoked in blk-mq without
5428 	 * checking whether the involved request is actually still
5429 	 * referenced in the scheduler. To handle this fact, the
5430 	 * following two checks make this function exit in case of
5431 	 * spurious invocations, for which there is nothing to do.
5432 	 *
5433 	 * First, check whether rq has nothing to do with an elevator.
5434 	 */
5435 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
5436 		return;
5437 
5438 	/*
5439 	 * rq either is not associated with any icq, or is an already
5440 	 * requeued request that has not (yet) been re-inserted into
5441 	 * a bfq_queue.
5442 	 */
5443 	if (!rq->elv.icq || !bfqq)
5444 		return;
5445 
5446 	bfqd = bfqq->bfqd;
5447 
5448 	if (rq->rq_flags & RQF_STARTED)
5449 		bfqg_stats_update_completion(bfqq_group(bfqq),
5450 					     rq->start_time_ns,
5451 					     rq->io_start_time_ns,
5452 					     rq->cmd_flags);
5453 
5454 	if (likely(rq->rq_flags & RQF_STARTED)) {
5455 		unsigned long flags;
5456 
5457 		spin_lock_irqsave(&bfqd->lock, flags);
5458 
5459 		if (rq == bfqd->waited_rq)
5460 			bfq_update_inject_limit(bfqd, bfqq);
5461 
5462 		bfq_completed_request(bfqq, bfqd);
5463 		bfq_finish_requeue_request_body(bfqq);
5464 
5465 		spin_unlock_irqrestore(&bfqd->lock, flags);
5466 	} else {
5467 		/*
5468 		 * Request rq may be still/already in the scheduler,
5469 		 * in which case we need to remove it (this should
5470 		 * never happen in case of requeue). And we cannot
5471 		 * defer such a check and removal, to avoid
5472 		 * inconsistencies in the time interval from the end
5473 		 * of this function to the start of the deferred work.
5474 		 * This situation seems to occur only in process
5475 		 * context, as a consequence of a merge. In the
5476 		 * current version of the code, this implies that the
5477 		 * lock is held.
5478 		 */
5479 
5480 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5481 			bfq_remove_request(rq->q, rq);
5482 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5483 						    rq->cmd_flags);
5484 		}
5485 		bfq_finish_requeue_request_body(bfqq);
5486 	}
5487 
5488 	/*
5489 	 * Reset private fields. In case of a requeue, this allows
5490 	 * this function to correctly do nothing if it is spuriously
5491 	 * invoked again on this same request (see the check at the
5492 	 * beginning of the function). Probably, a better general
5493 	 * design would be to prevent blk-mq from invoking the requeue
5494 	 * or finish hooks of an elevator, for a request that is not
5495 	 * referred by that elevator.
5496 	 *
5497 	 * Resetting the following fields would break the
5498 	 * request-insertion logic if rq is re-inserted into a bfq
5499 	 * internal queue, without a re-preparation. Here we assume
5500 	 * that re-insertions of requeued requests, without
5501 	 * re-preparation, can happen only for pass_through or at_head
5502 	 * requests (which are not re-inserted into bfq internal
5503 	 * queues).
5504 	 */
5505 	rq->elv.priv[0] = NULL;
5506 	rq->elv.priv[1] = NULL;
5507 }
5508 
5509 /*
5510  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5511  * was the last process referring to that bfqq.
5512  */
5513 static struct bfq_queue *
5514 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5515 {
5516 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5517 
5518 	if (bfqq_process_refs(bfqq) == 1) {
5519 		bfqq->pid = current->pid;
5520 		bfq_clear_bfqq_coop(bfqq);
5521 		bfq_clear_bfqq_split_coop(bfqq);
5522 		return bfqq;
5523 	}
5524 
5525 	bic_set_bfqq(bic, NULL, 1);
5526 
5527 	bfq_put_cooperator(bfqq);
5528 
5529 	bfq_put_queue(bfqq);
5530 	return NULL;
5531 }
5532 
5533 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5534 						   struct bfq_io_cq *bic,
5535 						   struct bio *bio,
5536 						   bool split, bool is_sync,
5537 						   bool *new_queue)
5538 {
5539 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5540 
5541 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5542 		return bfqq;
5543 
5544 	if (new_queue)
5545 		*new_queue = true;
5546 
5547 	if (bfqq)
5548 		bfq_put_queue(bfqq);
5549 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5550 
5551 	bic_set_bfqq(bic, bfqq, is_sync);
5552 	if (split && is_sync) {
5553 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5554 		    bic->saved_in_large_burst)
5555 			bfq_mark_bfqq_in_large_burst(bfqq);
5556 		else {
5557 			bfq_clear_bfqq_in_large_burst(bfqq);
5558 			if (bic->was_in_burst_list)
5559 				/*
5560 				 * If bfqq was in the current
5561 				 * burst list before being
5562 				 * merged, then we have to add
5563 				 * it back. And we do not need
5564 				 * to increase burst_size, as
5565 				 * we did not decrement
5566 				 * burst_size when we removed
5567 				 * bfqq from the burst list as
5568 				 * a consequence of a merge
5569 				 * (see comments in
5570 				 * bfq_put_queue). In this
5571 				 * respect, it would be rather
5572 				 * costly to know whether the
5573 				 * current burst list is still
5574 				 * the same burst list from
5575 				 * which bfqq was removed on
5576 				 * the merge. To avoid this
5577 				 * cost, if bfqq was in a
5578 				 * burst list, then we add
5579 				 * bfqq to the current burst
5580 				 * list without any further
5581 				 * check. This can cause
5582 				 * inappropriate insertions,
5583 				 * but rarely enough to not
5584 				 * harm the detection of large
5585 				 * bursts significantly.
5586 				 */
5587 				hlist_add_head(&bfqq->burst_list_node,
5588 					       &bfqd->burst_list);
5589 		}
5590 		bfqq->split_time = jiffies;
5591 	}
5592 
5593 	return bfqq;
5594 }
5595 
5596 /*
5597  * Only reset private fields. The actual request preparation will be
5598  * performed by bfq_init_rq, when rq is either inserted or merged. See
5599  * comments on bfq_init_rq for the reason behind this delayed
5600  * preparation.
5601  */
5602 static void bfq_prepare_request(struct request *rq, struct bio *bio)
5603 {
5604 	/*
5605 	 * Regardless of whether we have an icq attached, we have to
5606 	 * clear the scheduler pointers, as they might point to
5607 	 * previously allocated bic/bfqq structs.
5608 	 */
5609 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5610 }
5611 
5612 /*
5613  * If needed, init rq, allocate bfq data structures associated with
5614  * rq, and increment reference counters in the destination bfq_queue
5615  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5616  * not associated with any bfq_queue.
5617  *
5618  * This function is invoked by the functions that perform rq insertion
5619  * or merging. One may have expected the above preparation operations
5620  * to be performed in bfq_prepare_request, and not delayed to when rq
5621  * is inserted or merged. The rationale behind this delayed
5622  * preparation is that, after the prepare_request hook is invoked for
5623  * rq, rq may still be transformed into a request with no icq, i.e., a
5624  * request not associated with any queue. No bfq hook is invoked to
5625  * signal this transformation. As a consequence, should these
5626  * preparation operations be performed when the prepare_request hook
5627  * is invoked, and should rq be transformed one moment later, bfq
5628  * would end up in an inconsistent state, because it would have
5629  * incremented some queue counters for an rq destined to
5630  * transformation, without any chance to correctly lower these
5631  * counters back. In contrast, no transformation can still happen for
5632  * rq after rq has been inserted or merged. So, it is safe to execute
5633  * these preparation operations when rq is finally inserted or merged.
5634  */
5635 static struct bfq_queue *bfq_init_rq(struct request *rq)
5636 {
5637 	struct request_queue *q = rq->q;
5638 	struct bio *bio = rq->bio;
5639 	struct bfq_data *bfqd = q->elevator->elevator_data;
5640 	struct bfq_io_cq *bic;
5641 	const int is_sync = rq_is_sync(rq);
5642 	struct bfq_queue *bfqq;
5643 	bool new_queue = false;
5644 	bool bfqq_already_existing = false, split = false;
5645 
5646 	if (unlikely(!rq->elv.icq))
5647 		return NULL;
5648 
5649 	/*
5650 	 * Assuming that elv.priv[1] is set only if everything is set
5651 	 * for this rq. This holds true, because this function is
5652 	 * invoked only for insertion or merging, and, after such
5653 	 * events, a request cannot be manipulated any longer before
5654 	 * being removed from bfq.
5655 	 */
5656 	if (rq->elv.priv[1])
5657 		return rq->elv.priv[1];
5658 
5659 	bic = icq_to_bic(rq->elv.icq);
5660 
5661 	bfq_check_ioprio_change(bic, bio);
5662 
5663 	bfq_bic_update_cgroup(bic, bio);
5664 
5665 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5666 					 &new_queue);
5667 
5668 	if (likely(!new_queue)) {
5669 		/* If the queue was seeky for too long, break it apart. */
5670 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5671 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5672 
5673 			/* Update bic before losing reference to bfqq */
5674 			if (bfq_bfqq_in_large_burst(bfqq))
5675 				bic->saved_in_large_burst = true;
5676 
5677 			bfqq = bfq_split_bfqq(bic, bfqq);
5678 			split = true;
5679 
5680 			if (!bfqq)
5681 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5682 								 true, is_sync,
5683 								 NULL);
5684 			else
5685 				bfqq_already_existing = true;
5686 		}
5687 	}
5688 
5689 	bfqq->allocated++;
5690 	bfqq->ref++;
5691 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5692 		     rq, bfqq, bfqq->ref);
5693 
5694 	rq->elv.priv[0] = bic;
5695 	rq->elv.priv[1] = bfqq;
5696 
5697 	/*
5698 	 * If a bfq_queue has only one process reference, it is owned
5699 	 * by only this bic: we can then set bfqq->bic = bic. in
5700 	 * addition, if the queue has also just been split, we have to
5701 	 * resume its state.
5702 	 */
5703 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5704 		bfqq->bic = bic;
5705 		if (split) {
5706 			/*
5707 			 * The queue has just been split from a shared
5708 			 * queue: restore the idle window and the
5709 			 * possible weight raising period.
5710 			 */
5711 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5712 					      bfqq_already_existing);
5713 		}
5714 	}
5715 
5716 	/*
5717 	 * Consider bfqq as possibly belonging to a burst of newly
5718 	 * created queues only if:
5719 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
5720 	 * or
5721 	 * 2) There is no other active queue. In fact, if, in
5722 	 *    contrast, there are active queues not belonging to the
5723 	 *    possible burst bfqq may belong to, then there is no gain
5724 	 *    in considering bfqq as belonging to a burst, and
5725 	 *    therefore in not weight-raising bfqq. See comments on
5726 	 *    bfq_handle_burst().
5727 	 *
5728 	 * This filtering also helps eliminating false positives,
5729 	 * occurring when bfqq does not belong to an actual large
5730 	 * burst, but some background task (e.g., a service) happens
5731 	 * to trigger the creation of new queues very close to when
5732 	 * bfqq and its possible companion queues are created. See
5733 	 * comments on bfq_handle_burst() for further details also on
5734 	 * this issue.
5735 	 */
5736 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
5737 		     (bfqd->burst_size > 0 ||
5738 		      bfq_tot_busy_queues(bfqd) == 0)))
5739 		bfq_handle_burst(bfqd, bfqq);
5740 
5741 	return bfqq;
5742 }
5743 
5744 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5745 {
5746 	struct bfq_data *bfqd = bfqq->bfqd;
5747 	enum bfqq_expiration reason;
5748 	unsigned long flags;
5749 
5750 	spin_lock_irqsave(&bfqd->lock, flags);
5751 	bfq_clear_bfqq_wait_request(bfqq);
5752 
5753 	if (bfqq != bfqd->in_service_queue) {
5754 		spin_unlock_irqrestore(&bfqd->lock, flags);
5755 		return;
5756 	}
5757 
5758 	if (bfq_bfqq_budget_timeout(bfqq))
5759 		/*
5760 		 * Also here the queue can be safely expired
5761 		 * for budget timeout without wasting
5762 		 * guarantees
5763 		 */
5764 		reason = BFQQE_BUDGET_TIMEOUT;
5765 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5766 		/*
5767 		 * The queue may not be empty upon timer expiration,
5768 		 * because we may not disable the timer when the
5769 		 * first request of the in-service queue arrives
5770 		 * during disk idling.
5771 		 */
5772 		reason = BFQQE_TOO_IDLE;
5773 	else
5774 		goto schedule_dispatch;
5775 
5776 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5777 
5778 schedule_dispatch:
5779 	spin_unlock_irqrestore(&bfqd->lock, flags);
5780 	bfq_schedule_dispatch(bfqd);
5781 }
5782 
5783 /*
5784  * Handler of the expiration of the timer running if the in-service queue
5785  * is idling inside its time slice.
5786  */
5787 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5788 {
5789 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5790 					     idle_slice_timer);
5791 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5792 
5793 	/*
5794 	 * Theoretical race here: the in-service queue can be NULL or
5795 	 * different from the queue that was idling if a new request
5796 	 * arrives for the current queue and there is a full dispatch
5797 	 * cycle that changes the in-service queue.  This can hardly
5798 	 * happen, but in the worst case we just expire a queue too
5799 	 * early.
5800 	 */
5801 	if (bfqq)
5802 		bfq_idle_slice_timer_body(bfqq);
5803 
5804 	return HRTIMER_NORESTART;
5805 }
5806 
5807 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5808 				 struct bfq_queue **bfqq_ptr)
5809 {
5810 	struct bfq_queue *bfqq = *bfqq_ptr;
5811 
5812 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5813 	if (bfqq) {
5814 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5815 
5816 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5817 			     bfqq, bfqq->ref);
5818 		bfq_put_queue(bfqq);
5819 		*bfqq_ptr = NULL;
5820 	}
5821 }
5822 
5823 /*
5824  * Release all the bfqg references to its async queues.  If we are
5825  * deallocating the group these queues may still contain requests, so
5826  * we reparent them to the root cgroup (i.e., the only one that will
5827  * exist for sure until all the requests on a device are gone).
5828  */
5829 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5830 {
5831 	int i, j;
5832 
5833 	for (i = 0; i < 2; i++)
5834 		for (j = 0; j < IOPRIO_BE_NR; j++)
5835 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5836 
5837 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5838 }
5839 
5840 /*
5841  * See the comments on bfq_limit_depth for the purpose of
5842  * the depths set in the function. Return minimum shallow depth we'll use.
5843  */
5844 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5845 				      struct sbitmap_queue *bt)
5846 {
5847 	unsigned int i, j, min_shallow = UINT_MAX;
5848 
5849 	/*
5850 	 * In-word depths if no bfq_queue is being weight-raised:
5851 	 * leaving 25% of tags only for sync reads.
5852 	 *
5853 	 * In next formulas, right-shift the value
5854 	 * (1U<<bt->sb.shift), instead of computing directly
5855 	 * (1U<<(bt->sb.shift - something)), to be robust against
5856 	 * any possible value of bt->sb.shift, without having to
5857 	 * limit 'something'.
5858 	 */
5859 	/* no more than 50% of tags for async I/O */
5860 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5861 	/*
5862 	 * no more than 75% of tags for sync writes (25% extra tags
5863 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5864 	 * writes)
5865 	 */
5866 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5867 
5868 	/*
5869 	 * In-word depths in case some bfq_queue is being weight-
5870 	 * raised: leaving ~63% of tags for sync reads. This is the
5871 	 * highest percentage for which, in our tests, application
5872 	 * start-up times didn't suffer from any regression due to tag
5873 	 * shortage.
5874 	 */
5875 	/* no more than ~18% of tags for async I/O */
5876 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5877 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5878 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5879 
5880 	for (i = 0; i < 2; i++)
5881 		for (j = 0; j < 2; j++)
5882 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5883 
5884 	return min_shallow;
5885 }
5886 
5887 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
5888 {
5889 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5890 	struct blk_mq_tags *tags = hctx->sched_tags;
5891 	unsigned int min_shallow;
5892 
5893 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5894 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5895 }
5896 
5897 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5898 {
5899 	bfq_depth_updated(hctx);
5900 	return 0;
5901 }
5902 
5903 static void bfq_exit_queue(struct elevator_queue *e)
5904 {
5905 	struct bfq_data *bfqd = e->elevator_data;
5906 	struct bfq_queue *bfqq, *n;
5907 
5908 	hrtimer_cancel(&bfqd->idle_slice_timer);
5909 
5910 	spin_lock_irq(&bfqd->lock);
5911 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5912 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5913 	spin_unlock_irq(&bfqd->lock);
5914 
5915 	hrtimer_cancel(&bfqd->idle_slice_timer);
5916 
5917 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5918 	/* release oom-queue reference to root group */
5919 	bfqg_and_blkg_put(bfqd->root_group);
5920 
5921 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5922 #else
5923 	spin_lock_irq(&bfqd->lock);
5924 	bfq_put_async_queues(bfqd, bfqd->root_group);
5925 	kfree(bfqd->root_group);
5926 	spin_unlock_irq(&bfqd->lock);
5927 #endif
5928 
5929 	kfree(bfqd);
5930 }
5931 
5932 static void bfq_init_root_group(struct bfq_group *root_group,
5933 				struct bfq_data *bfqd)
5934 {
5935 	int i;
5936 
5937 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5938 	root_group->entity.parent = NULL;
5939 	root_group->my_entity = NULL;
5940 	root_group->bfqd = bfqd;
5941 #endif
5942 	root_group->rq_pos_tree = RB_ROOT;
5943 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5944 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5945 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5946 }
5947 
5948 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5949 {
5950 	struct bfq_data *bfqd;
5951 	struct elevator_queue *eq;
5952 
5953 	eq = elevator_alloc(q, e);
5954 	if (!eq)
5955 		return -ENOMEM;
5956 
5957 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5958 	if (!bfqd) {
5959 		kobject_put(&eq->kobj);
5960 		return -ENOMEM;
5961 	}
5962 	eq->elevator_data = bfqd;
5963 
5964 	spin_lock_irq(&q->queue_lock);
5965 	q->elevator = eq;
5966 	spin_unlock_irq(&q->queue_lock);
5967 
5968 	/*
5969 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5970 	 * Grab a permanent reference to it, so that the normal code flow
5971 	 * will not attempt to free it.
5972 	 */
5973 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5974 	bfqd->oom_bfqq.ref++;
5975 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5976 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5977 	bfqd->oom_bfqq.entity.new_weight =
5978 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5979 
5980 	/* oom_bfqq does not participate to bursts */
5981 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5982 
5983 	/*
5984 	 * Trigger weight initialization, according to ioprio, at the
5985 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5986 	 * class won't be changed any more.
5987 	 */
5988 	bfqd->oom_bfqq.entity.prio_changed = 1;
5989 
5990 	bfqd->queue = q;
5991 
5992 	INIT_LIST_HEAD(&bfqd->dispatch);
5993 
5994 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5995 		     HRTIMER_MODE_REL);
5996 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5997 
5998 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
5999 	bfqd->num_groups_with_pending_reqs = 0;
6000 
6001 	INIT_LIST_HEAD(&bfqd->active_list);
6002 	INIT_LIST_HEAD(&bfqd->idle_list);
6003 	INIT_HLIST_HEAD(&bfqd->burst_list);
6004 
6005 	bfqd->hw_tag = -1;
6006 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6007 
6008 	bfqd->bfq_max_budget = bfq_default_max_budget;
6009 
6010 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6011 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6012 	bfqd->bfq_back_max = bfq_back_max;
6013 	bfqd->bfq_back_penalty = bfq_back_penalty;
6014 	bfqd->bfq_slice_idle = bfq_slice_idle;
6015 	bfqd->bfq_timeout = bfq_timeout;
6016 
6017 	bfqd->bfq_requests_within_timer = 120;
6018 
6019 	bfqd->bfq_large_burst_thresh = 8;
6020 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6021 
6022 	bfqd->low_latency = true;
6023 
6024 	/*
6025 	 * Trade-off between responsiveness and fairness.
6026 	 */
6027 	bfqd->bfq_wr_coeff = 30;
6028 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6029 	bfqd->bfq_wr_max_time = 0;
6030 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6031 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6032 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6033 					      * Approximate rate required
6034 					      * to playback or record a
6035 					      * high-definition compressed
6036 					      * video.
6037 					      */
6038 	bfqd->wr_busy_queues = 0;
6039 
6040 	/*
6041 	 * Begin by assuming, optimistically, that the device peak
6042 	 * rate is equal to 2/3 of the highest reference rate.
6043 	 */
6044 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6045 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6046 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6047 
6048 	spin_lock_init(&bfqd->lock);
6049 
6050 	/*
6051 	 * The invocation of the next bfq_create_group_hierarchy
6052 	 * function is the head of a chain of function calls
6053 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6054 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6055 	 * has_work hook function. For this reason,
6056 	 * bfq_create_group_hierarchy is invoked only after all
6057 	 * scheduler data has been initialized, apart from the fields
6058 	 * that can be initialized only after invoking
6059 	 * bfq_create_group_hierarchy. This, in particular, enables
6060 	 * has_work to correctly return false. Of course, to avoid
6061 	 * other inconsistencies, the blk-mq stack must then refrain
6062 	 * from invoking further scheduler hooks before this init
6063 	 * function is finished.
6064 	 */
6065 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6066 	if (!bfqd->root_group)
6067 		goto out_free;
6068 	bfq_init_root_group(bfqd->root_group, bfqd);
6069 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6070 
6071 	wbt_disable_default(q);
6072 	return 0;
6073 
6074 out_free:
6075 	kfree(bfqd);
6076 	kobject_put(&eq->kobj);
6077 	return -ENOMEM;
6078 }
6079 
6080 static void bfq_slab_kill(void)
6081 {
6082 	kmem_cache_destroy(bfq_pool);
6083 }
6084 
6085 static int __init bfq_slab_setup(void)
6086 {
6087 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6088 	if (!bfq_pool)
6089 		return -ENOMEM;
6090 	return 0;
6091 }
6092 
6093 static ssize_t bfq_var_show(unsigned int var, char *page)
6094 {
6095 	return sprintf(page, "%u\n", var);
6096 }
6097 
6098 static int bfq_var_store(unsigned long *var, const char *page)
6099 {
6100 	unsigned long new_val;
6101 	int ret = kstrtoul(page, 10, &new_val);
6102 
6103 	if (ret)
6104 		return ret;
6105 	*var = new_val;
6106 	return 0;
6107 }
6108 
6109 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6110 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6111 {									\
6112 	struct bfq_data *bfqd = e->elevator_data;			\
6113 	u64 __data = __VAR;						\
6114 	if (__CONV == 1)						\
6115 		__data = jiffies_to_msecs(__data);			\
6116 	else if (__CONV == 2)						\
6117 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6118 	return bfq_var_show(__data, (page));				\
6119 }
6120 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6121 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6122 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6123 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6124 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6125 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6126 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6127 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6128 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6129 #undef SHOW_FUNCTION
6130 
6131 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6132 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6133 {									\
6134 	struct bfq_data *bfqd = e->elevator_data;			\
6135 	u64 __data = __VAR;						\
6136 	__data = div_u64(__data, NSEC_PER_USEC);			\
6137 	return bfq_var_show(__data, (page));				\
6138 }
6139 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6140 #undef USEC_SHOW_FUNCTION
6141 
6142 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6143 static ssize_t								\
6144 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6145 {									\
6146 	struct bfq_data *bfqd = e->elevator_data;			\
6147 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6148 	int ret;							\
6149 									\
6150 	ret = bfq_var_store(&__data, (page));				\
6151 	if (ret)							\
6152 		return ret;						\
6153 	if (__data < __min)						\
6154 		__data = __min;						\
6155 	else if (__data > __max)					\
6156 		__data = __max;						\
6157 	if (__CONV == 1)						\
6158 		*(__PTR) = msecs_to_jiffies(__data);			\
6159 	else if (__CONV == 2)						\
6160 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6161 	else								\
6162 		*(__PTR) = __data;					\
6163 	return count;							\
6164 }
6165 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6166 		INT_MAX, 2);
6167 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6168 		INT_MAX, 2);
6169 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6170 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6171 		INT_MAX, 0);
6172 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6173 #undef STORE_FUNCTION
6174 
6175 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6176 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6177 {									\
6178 	struct bfq_data *bfqd = e->elevator_data;			\
6179 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6180 	int ret;							\
6181 									\
6182 	ret = bfq_var_store(&__data, (page));				\
6183 	if (ret)							\
6184 		return ret;						\
6185 	if (__data < __min)						\
6186 		__data = __min;						\
6187 	else if (__data > __max)					\
6188 		__data = __max;						\
6189 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6190 	return count;							\
6191 }
6192 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6193 		    UINT_MAX);
6194 #undef USEC_STORE_FUNCTION
6195 
6196 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6197 				    const char *page, size_t count)
6198 {
6199 	struct bfq_data *bfqd = e->elevator_data;
6200 	unsigned long __data;
6201 	int ret;
6202 
6203 	ret = bfq_var_store(&__data, (page));
6204 	if (ret)
6205 		return ret;
6206 
6207 	if (__data == 0)
6208 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6209 	else {
6210 		if (__data > INT_MAX)
6211 			__data = INT_MAX;
6212 		bfqd->bfq_max_budget = __data;
6213 	}
6214 
6215 	bfqd->bfq_user_max_budget = __data;
6216 
6217 	return count;
6218 }
6219 
6220 /*
6221  * Leaving this name to preserve name compatibility with cfq
6222  * parameters, but this timeout is used for both sync and async.
6223  */
6224 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6225 				      const char *page, size_t count)
6226 {
6227 	struct bfq_data *bfqd = e->elevator_data;
6228 	unsigned long __data;
6229 	int ret;
6230 
6231 	ret = bfq_var_store(&__data, (page));
6232 	if (ret)
6233 		return ret;
6234 
6235 	if (__data < 1)
6236 		__data = 1;
6237 	else if (__data > INT_MAX)
6238 		__data = INT_MAX;
6239 
6240 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6241 	if (bfqd->bfq_user_max_budget == 0)
6242 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6243 
6244 	return count;
6245 }
6246 
6247 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6248 				     const char *page, size_t count)
6249 {
6250 	struct bfq_data *bfqd = e->elevator_data;
6251 	unsigned long __data;
6252 	int ret;
6253 
6254 	ret = bfq_var_store(&__data, (page));
6255 	if (ret)
6256 		return ret;
6257 
6258 	if (__data > 1)
6259 		__data = 1;
6260 	if (!bfqd->strict_guarantees && __data == 1
6261 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6262 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6263 
6264 	bfqd->strict_guarantees = __data;
6265 
6266 	return count;
6267 }
6268 
6269 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6270 				     const char *page, size_t count)
6271 {
6272 	struct bfq_data *bfqd = e->elevator_data;
6273 	unsigned long __data;
6274 	int ret;
6275 
6276 	ret = bfq_var_store(&__data, (page));
6277 	if (ret)
6278 		return ret;
6279 
6280 	if (__data > 1)
6281 		__data = 1;
6282 	if (__data == 0 && bfqd->low_latency != 0)
6283 		bfq_end_wr(bfqd);
6284 	bfqd->low_latency = __data;
6285 
6286 	return count;
6287 }
6288 
6289 #define BFQ_ATTR(name) \
6290 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6291 
6292 static struct elv_fs_entry bfq_attrs[] = {
6293 	BFQ_ATTR(fifo_expire_sync),
6294 	BFQ_ATTR(fifo_expire_async),
6295 	BFQ_ATTR(back_seek_max),
6296 	BFQ_ATTR(back_seek_penalty),
6297 	BFQ_ATTR(slice_idle),
6298 	BFQ_ATTR(slice_idle_us),
6299 	BFQ_ATTR(max_budget),
6300 	BFQ_ATTR(timeout_sync),
6301 	BFQ_ATTR(strict_guarantees),
6302 	BFQ_ATTR(low_latency),
6303 	__ATTR_NULL
6304 };
6305 
6306 static struct elevator_type iosched_bfq_mq = {
6307 	.ops = {
6308 		.limit_depth		= bfq_limit_depth,
6309 		.prepare_request	= bfq_prepare_request,
6310 		.requeue_request        = bfq_finish_requeue_request,
6311 		.finish_request		= bfq_finish_requeue_request,
6312 		.exit_icq		= bfq_exit_icq,
6313 		.insert_requests	= bfq_insert_requests,
6314 		.dispatch_request	= bfq_dispatch_request,
6315 		.next_request		= elv_rb_latter_request,
6316 		.former_request		= elv_rb_former_request,
6317 		.allow_merge		= bfq_allow_bio_merge,
6318 		.bio_merge		= bfq_bio_merge,
6319 		.request_merge		= bfq_request_merge,
6320 		.requests_merged	= bfq_requests_merged,
6321 		.request_merged		= bfq_request_merged,
6322 		.has_work		= bfq_has_work,
6323 		.depth_updated		= bfq_depth_updated,
6324 		.init_hctx		= bfq_init_hctx,
6325 		.init_sched		= bfq_init_queue,
6326 		.exit_sched		= bfq_exit_queue,
6327 	},
6328 
6329 	.icq_size =		sizeof(struct bfq_io_cq),
6330 	.icq_align =		__alignof__(struct bfq_io_cq),
6331 	.elevator_attrs =	bfq_attrs,
6332 	.elevator_name =	"bfq",
6333 	.elevator_owner =	THIS_MODULE,
6334 };
6335 MODULE_ALIAS("bfq-iosched");
6336 
6337 static int __init bfq_init(void)
6338 {
6339 	int ret;
6340 
6341 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6342 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6343 	if (ret)
6344 		return ret;
6345 #endif
6346 
6347 	ret = -ENOMEM;
6348 	if (bfq_slab_setup())
6349 		goto err_pol_unreg;
6350 
6351 	/*
6352 	 * Times to load large popular applications for the typical
6353 	 * systems installed on the reference devices (see the
6354 	 * comments before the definition of the next
6355 	 * array). Actually, we use slightly lower values, as the
6356 	 * estimated peak rate tends to be smaller than the actual
6357 	 * peak rate.  The reason for this last fact is that estimates
6358 	 * are computed over much shorter time intervals than the long
6359 	 * intervals typically used for benchmarking. Why? First, to
6360 	 * adapt more quickly to variations. Second, because an I/O
6361 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6362 	 * be run for a long time.
6363 	 */
6364 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6365 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6366 
6367 	ret = elv_register(&iosched_bfq_mq);
6368 	if (ret)
6369 		goto slab_kill;
6370 
6371 	return 0;
6372 
6373 slab_kill:
6374 	bfq_slab_kill();
6375 err_pol_unreg:
6376 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6377 	blkcg_policy_unregister(&blkcg_policy_bfq);
6378 #endif
6379 	return ret;
6380 }
6381 
6382 static void __exit bfq_exit(void)
6383 {
6384 	elv_unregister(&iosched_bfq_mq);
6385 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6386 	blkcg_policy_unregister(&blkcg_policy_bfq);
6387 #endif
6388 	bfq_slab_kill();
6389 }
6390 
6391 module_init(bfq_init);
6392 module_exit(bfq_exit);
6393 
6394 MODULE_AUTHOR("Paolo Valente");
6395 MODULE_LICENSE("GPL");
6396 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6397