xref: /openbmc/linux/block/bfq-iosched.c (revision 4e0ae876)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
142 
143 #define BFQ_BFQQ_FNS(name)						\
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
145 {									\
146 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
147 }									\
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
149 {									\
150 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
151 }									\
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
153 {									\
154 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
155 }
156 
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS						\
170 
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173 
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
176 
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
179 
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182 
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
185 
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
188 
189 /*
190  * When a sync request is dispatched, the queue that contains that
191  * request, and all the ancestor entities of that queue, are charged
192  * with the number of sectors of the request. In constrast, if the
193  * request is async, then the queue and its ancestor entities are
194  * charged with the number of sectors of the request, multiplied by
195  * the factor below. This throttles the bandwidth for async I/O,
196  * w.r.t. to sync I/O, and it is done to counter the tendency of async
197  * writes to steal I/O throughput to reads.
198  *
199  * The current value of this parameter is the result of a tuning with
200  * several hardware and software configurations. We tried to find the
201  * lowest value for which writes do not cause noticeable problems to
202  * reads. In fact, the lower this parameter, the stabler I/O control,
203  * in the following respect.  The lower this parameter is, the less
204  * the bandwidth enjoyed by a group decreases
205  * - when the group does writes, w.r.t. to when it does reads;
206  * - when other groups do reads, w.r.t. to when they do writes.
207  */
208 static const int bfq_async_charge_factor = 3;
209 
210 /* Default timeout values, in jiffies, approximating CFQ defaults. */
211 const int bfq_timeout = HZ / 8;
212 
213 /*
214  * Time limit for merging (see comments in bfq_setup_cooperator). Set
215  * to the slowest value that, in our tests, proved to be effective in
216  * removing false positives, while not causing true positives to miss
217  * queue merging.
218  *
219  * As can be deduced from the low time limit below, queue merging, if
220  * successful, happens at the very beggining of the I/O of the involved
221  * cooperating processes, as a consequence of the arrival of the very
222  * first requests from each cooperator.  After that, there is very
223  * little chance to find cooperators.
224  */
225 static const unsigned long bfq_merge_time_limit = HZ/10;
226 
227 static struct kmem_cache *bfq_pool;
228 
229 /* Below this threshold (in ns), we consider thinktime immediate. */
230 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
231 
232 /* hw_tag detection: parallel requests threshold and min samples needed. */
233 #define BFQ_HW_QUEUE_THRESHOLD	3
234 #define BFQ_HW_QUEUE_SAMPLES	32
235 
236 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
237 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
238 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
239 	(get_sdist(last_pos, rq) >			\
240 	 BFQQ_SEEK_THR &&				\
241 	 (!blk_queue_nonrot(bfqd->queue) ||		\
242 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
243 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
244 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
245 
246 /* Min number of samples required to perform peak-rate update */
247 #define BFQ_RATE_MIN_SAMPLES	32
248 /* Min observation time interval required to perform a peak-rate update (ns) */
249 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
250 /* Target observation time interval for a peak-rate update (ns) */
251 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
252 
253 /*
254  * Shift used for peak-rate fixed precision calculations.
255  * With
256  * - the current shift: 16 positions
257  * - the current type used to store rate: u32
258  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
259  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
260  * the range of rates that can be stored is
261  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
262  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
263  * [15, 65G] sectors/sec
264  * Which, assuming a sector size of 512B, corresponds to a range of
265  * [7.5K, 33T] B/sec
266  */
267 #define BFQ_RATE_SHIFT		16
268 
269 /*
270  * When configured for computing the duration of the weight-raising
271  * for interactive queues automatically (see the comments at the
272  * beginning of this file), BFQ does it using the following formula:
273  * duration = (ref_rate / r) * ref_wr_duration,
274  * where r is the peak rate of the device, and ref_rate and
275  * ref_wr_duration are two reference parameters.  In particular,
276  * ref_rate is the peak rate of the reference storage device (see
277  * below), and ref_wr_duration is about the maximum time needed, with
278  * BFQ and while reading two files in parallel, to load typical large
279  * applications on the reference device (see the comments on
280  * max_service_from_wr below, for more details on how ref_wr_duration
281  * is obtained).  In practice, the slower/faster the device at hand
282  * is, the more/less it takes to load applications with respect to the
283  * reference device.  Accordingly, the longer/shorter BFQ grants
284  * weight raising to interactive applications.
285  *
286  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
287  * depending on whether the device is rotational or non-rotational.
288  *
289  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
290  * are the reference values for a rotational device, whereas
291  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
292  * non-rotational device. The reference rates are not the actual peak
293  * rates of the devices used as a reference, but slightly lower
294  * values. The reason for using slightly lower values is that the
295  * peak-rate estimator tends to yield slightly lower values than the
296  * actual peak rate (it can yield the actual peak rate only if there
297  * is only one process doing I/O, and the process does sequential
298  * I/O).
299  *
300  * The reference peak rates are measured in sectors/usec, left-shifted
301  * by BFQ_RATE_SHIFT.
302  */
303 static int ref_rate[2] = {14000, 33000};
304 /*
305  * To improve readability, a conversion function is used to initialize
306  * the following array, which entails that the array can be
307  * initialized only in a function.
308  */
309 static int ref_wr_duration[2];
310 
311 /*
312  * BFQ uses the above-detailed, time-based weight-raising mechanism to
313  * privilege interactive tasks. This mechanism is vulnerable to the
314  * following false positives: I/O-bound applications that will go on
315  * doing I/O for much longer than the duration of weight
316  * raising. These applications have basically no benefit from being
317  * weight-raised at the beginning of their I/O. On the opposite end,
318  * while being weight-raised, these applications
319  * a) unjustly steal throughput to applications that may actually need
320  * low latency;
321  * b) make BFQ uselessly perform device idling; device idling results
322  * in loss of device throughput with most flash-based storage, and may
323  * increase latencies when used purposelessly.
324  *
325  * BFQ tries to reduce these problems, by adopting the following
326  * countermeasure. To introduce this countermeasure, we need first to
327  * finish explaining how the duration of weight-raising for
328  * interactive tasks is computed.
329  *
330  * For a bfq_queue deemed as interactive, the duration of weight
331  * raising is dynamically adjusted, as a function of the estimated
332  * peak rate of the device, so as to be equal to the time needed to
333  * execute the 'largest' interactive task we benchmarked so far. By
334  * largest task, we mean the task for which each involved process has
335  * to do more I/O than for any of the other tasks we benchmarked. This
336  * reference interactive task is the start-up of LibreOffice Writer,
337  * and in this task each process/bfq_queue needs to have at most ~110K
338  * sectors transferred.
339  *
340  * This last piece of information enables BFQ to reduce the actual
341  * duration of weight-raising for at least one class of I/O-bound
342  * applications: those doing sequential or quasi-sequential I/O. An
343  * example is file copy. In fact, once started, the main I/O-bound
344  * processes of these applications usually consume the above 110K
345  * sectors in much less time than the processes of an application that
346  * is starting, because these I/O-bound processes will greedily devote
347  * almost all their CPU cycles only to their target,
348  * throughput-friendly I/O operations. This is even more true if BFQ
349  * happens to be underestimating the device peak rate, and thus
350  * overestimating the duration of weight raising. But, according to
351  * our measurements, once transferred 110K sectors, these processes
352  * have no right to be weight-raised any longer.
353  *
354  * Basing on the last consideration, BFQ ends weight-raising for a
355  * bfq_queue if the latter happens to have received an amount of
356  * service at least equal to the following constant. The constant is
357  * set to slightly more than 110K, to have a minimum safety margin.
358  *
359  * This early ending of weight-raising reduces the amount of time
360  * during which interactive false positives cause the two problems
361  * described at the beginning of these comments.
362  */
363 static const unsigned long max_service_from_wr = 120000;
364 
365 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
366 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
367 
368 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
369 {
370 	return bic->bfqq[is_sync];
371 }
372 
373 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
374 {
375 	bic->bfqq[is_sync] = bfqq;
376 }
377 
378 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
379 {
380 	return bic->icq.q->elevator->elevator_data;
381 }
382 
383 /**
384  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
385  * @icq: the iocontext queue.
386  */
387 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
388 {
389 	/* bic->icq is the first member, %NULL will convert to %NULL */
390 	return container_of(icq, struct bfq_io_cq, icq);
391 }
392 
393 /**
394  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
395  * @bfqd: the lookup key.
396  * @ioc: the io_context of the process doing I/O.
397  * @q: the request queue.
398  */
399 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
400 					struct io_context *ioc,
401 					struct request_queue *q)
402 {
403 	if (ioc) {
404 		unsigned long flags;
405 		struct bfq_io_cq *icq;
406 
407 		spin_lock_irqsave(&q->queue_lock, flags);
408 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
409 		spin_unlock_irqrestore(&q->queue_lock, flags);
410 
411 		return icq;
412 	}
413 
414 	return NULL;
415 }
416 
417 /*
418  * Scheduler run of queue, if there are requests pending and no one in the
419  * driver that will restart queueing.
420  */
421 void bfq_schedule_dispatch(struct bfq_data *bfqd)
422 {
423 	if (bfqd->queued != 0) {
424 		bfq_log(bfqd, "schedule dispatch");
425 		blk_mq_run_hw_queues(bfqd->queue, true);
426 	}
427 }
428 
429 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
430 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
431 
432 #define bfq_sample_valid(samples)	((samples) > 80)
433 
434 /*
435  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
436  * We choose the request that is closesr to the head right now.  Distance
437  * behind the head is penalized and only allowed to a certain extent.
438  */
439 static struct request *bfq_choose_req(struct bfq_data *bfqd,
440 				      struct request *rq1,
441 				      struct request *rq2,
442 				      sector_t last)
443 {
444 	sector_t s1, s2, d1 = 0, d2 = 0;
445 	unsigned long back_max;
446 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
447 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
448 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
449 
450 	if (!rq1 || rq1 == rq2)
451 		return rq2;
452 	if (!rq2)
453 		return rq1;
454 
455 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
456 		return rq1;
457 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
458 		return rq2;
459 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
460 		return rq1;
461 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
462 		return rq2;
463 
464 	s1 = blk_rq_pos(rq1);
465 	s2 = blk_rq_pos(rq2);
466 
467 	/*
468 	 * By definition, 1KiB is 2 sectors.
469 	 */
470 	back_max = bfqd->bfq_back_max * 2;
471 
472 	/*
473 	 * Strict one way elevator _except_ in the case where we allow
474 	 * short backward seeks which are biased as twice the cost of a
475 	 * similar forward seek.
476 	 */
477 	if (s1 >= last)
478 		d1 = s1 - last;
479 	else if (s1 + back_max >= last)
480 		d1 = (last - s1) * bfqd->bfq_back_penalty;
481 	else
482 		wrap |= BFQ_RQ1_WRAP;
483 
484 	if (s2 >= last)
485 		d2 = s2 - last;
486 	else if (s2 + back_max >= last)
487 		d2 = (last - s2) * bfqd->bfq_back_penalty;
488 	else
489 		wrap |= BFQ_RQ2_WRAP;
490 
491 	/* Found required data */
492 
493 	/*
494 	 * By doing switch() on the bit mask "wrap" we avoid having to
495 	 * check two variables for all permutations: --> faster!
496 	 */
497 	switch (wrap) {
498 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
499 		if (d1 < d2)
500 			return rq1;
501 		else if (d2 < d1)
502 			return rq2;
503 
504 		if (s1 >= s2)
505 			return rq1;
506 		else
507 			return rq2;
508 
509 	case BFQ_RQ2_WRAP:
510 		return rq1;
511 	case BFQ_RQ1_WRAP:
512 		return rq2;
513 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
514 	default:
515 		/*
516 		 * Since both rqs are wrapped,
517 		 * start with the one that's further behind head
518 		 * (--> only *one* back seek required),
519 		 * since back seek takes more time than forward.
520 		 */
521 		if (s1 <= s2)
522 			return rq1;
523 		else
524 			return rq2;
525 	}
526 }
527 
528 /*
529  * Async I/O can easily starve sync I/O (both sync reads and sync
530  * writes), by consuming all tags. Similarly, storms of sync writes,
531  * such as those that sync(2) may trigger, can starve sync reads.
532  * Limit depths of async I/O and sync writes so as to counter both
533  * problems.
534  */
535 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
536 {
537 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
538 
539 	if (op_is_sync(op) && !op_is_write(op))
540 		return;
541 
542 	data->shallow_depth =
543 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
544 
545 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
546 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
547 			data->shallow_depth);
548 }
549 
550 static struct bfq_queue *
551 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
552 		     sector_t sector, struct rb_node **ret_parent,
553 		     struct rb_node ***rb_link)
554 {
555 	struct rb_node **p, *parent;
556 	struct bfq_queue *bfqq = NULL;
557 
558 	parent = NULL;
559 	p = &root->rb_node;
560 	while (*p) {
561 		struct rb_node **n;
562 
563 		parent = *p;
564 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
565 
566 		/*
567 		 * Sort strictly based on sector. Smallest to the left,
568 		 * largest to the right.
569 		 */
570 		if (sector > blk_rq_pos(bfqq->next_rq))
571 			n = &(*p)->rb_right;
572 		else if (sector < blk_rq_pos(bfqq->next_rq))
573 			n = &(*p)->rb_left;
574 		else
575 			break;
576 		p = n;
577 		bfqq = NULL;
578 	}
579 
580 	*ret_parent = parent;
581 	if (rb_link)
582 		*rb_link = p;
583 
584 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
585 		(unsigned long long)sector,
586 		bfqq ? bfqq->pid : 0);
587 
588 	return bfqq;
589 }
590 
591 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
592 {
593 	return bfqq->service_from_backlogged > 0 &&
594 		time_is_before_jiffies(bfqq->first_IO_time +
595 				       bfq_merge_time_limit);
596 }
597 
598 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
599 {
600 	struct rb_node **p, *parent;
601 	struct bfq_queue *__bfqq;
602 
603 	if (bfqq->pos_root) {
604 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
605 		bfqq->pos_root = NULL;
606 	}
607 
608 	/*
609 	 * bfqq cannot be merged any longer (see comments in
610 	 * bfq_setup_cooperator): no point in adding bfqq into the
611 	 * position tree.
612 	 */
613 	if (bfq_too_late_for_merging(bfqq))
614 		return;
615 
616 	if (bfq_class_idle(bfqq))
617 		return;
618 	if (!bfqq->next_rq)
619 		return;
620 
621 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
622 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
623 			blk_rq_pos(bfqq->next_rq), &parent, &p);
624 	if (!__bfqq) {
625 		rb_link_node(&bfqq->pos_node, parent, p);
626 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
627 	} else
628 		bfqq->pos_root = NULL;
629 }
630 
631 /*
632  * The following function returns true if every queue must receive the
633  * same share of the throughput (this condition is used when deciding
634  * whether idling may be disabled, see the comments in the function
635  * bfq_better_to_idle()).
636  *
637  * Such a scenario occurs when:
638  * 1) all active queues have the same weight,
639  * 2) all active queues belong to the same I/O-priority class,
640  * 3) all active groups at the same level in the groups tree have the same
641  *    weight,
642  * 4) all active groups at the same level in the groups tree have the same
643  *    number of children.
644  *
645  * Unfortunately, keeping the necessary state for evaluating exactly
646  * the last two symmetry sub-conditions above would be quite complex
647  * and time consuming. Therefore this function evaluates, instead,
648  * only the following stronger three sub-conditions, for which it is
649  * much easier to maintain the needed state:
650  * 1) all active queues have the same weight,
651  * 2) all active queues belong to the same I/O-priority class,
652  * 3) there are no active groups.
653  * In particular, the last condition is always true if hierarchical
654  * support or the cgroups interface are not enabled, thus no state
655  * needs to be maintained in this case.
656  */
657 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
658 {
659 	/*
660 	 * For queue weights to differ, queue_weights_tree must contain
661 	 * at least two nodes.
662 	 */
663 	bool varied_queue_weights = !RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
664 		(bfqd->queue_weights_tree.rb_node->rb_left ||
665 		 bfqd->queue_weights_tree.rb_node->rb_right);
666 
667 	bool multiple_classes_busy =
668 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
669 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
670 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
671 
672 	/*
673 	 * For queue weights to differ, queue_weights_tree must contain
674 	 * at least two nodes.
675 	 */
676 	return !(varied_queue_weights || multiple_classes_busy
677 #ifdef BFQ_GROUP_IOSCHED_ENABLED
678 	       || bfqd->num_groups_with_pending_reqs > 0
679 #endif
680 		);
681 }
682 
683 /*
684  * If the weight-counter tree passed as input contains no counter for
685  * the weight of the input queue, then add that counter; otherwise just
686  * increment the existing counter.
687  *
688  * Note that weight-counter trees contain few nodes in mostly symmetric
689  * scenarios. For example, if all queues have the same weight, then the
690  * weight-counter tree for the queues may contain at most one node.
691  * This holds even if low_latency is on, because weight-raised queues
692  * are not inserted in the tree.
693  * In most scenarios, the rate at which nodes are created/destroyed
694  * should be low too.
695  */
696 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
697 			  struct rb_root *root)
698 {
699 	struct bfq_entity *entity = &bfqq->entity;
700 	struct rb_node **new = &(root->rb_node), *parent = NULL;
701 
702 	/*
703 	 * Do not insert if the queue is already associated with a
704 	 * counter, which happens if:
705 	 *   1) a request arrival has caused the queue to become both
706 	 *      non-weight-raised, and hence change its weight, and
707 	 *      backlogged; in this respect, each of the two events
708 	 *      causes an invocation of this function,
709 	 *   2) this is the invocation of this function caused by the
710 	 *      second event. This second invocation is actually useless,
711 	 *      and we handle this fact by exiting immediately. More
712 	 *      efficient or clearer solutions might possibly be adopted.
713 	 */
714 	if (bfqq->weight_counter)
715 		return;
716 
717 	while (*new) {
718 		struct bfq_weight_counter *__counter = container_of(*new,
719 						struct bfq_weight_counter,
720 						weights_node);
721 		parent = *new;
722 
723 		if (entity->weight == __counter->weight) {
724 			bfqq->weight_counter = __counter;
725 			goto inc_counter;
726 		}
727 		if (entity->weight < __counter->weight)
728 			new = &((*new)->rb_left);
729 		else
730 			new = &((*new)->rb_right);
731 	}
732 
733 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
734 				       GFP_ATOMIC);
735 
736 	/*
737 	 * In the unlucky event of an allocation failure, we just
738 	 * exit. This will cause the weight of queue to not be
739 	 * considered in bfq_symmetric_scenario, which, in its turn,
740 	 * causes the scenario to be deemed wrongly symmetric in case
741 	 * bfqq's weight would have been the only weight making the
742 	 * scenario asymmetric.  On the bright side, no unbalance will
743 	 * however occur when bfqq becomes inactive again (the
744 	 * invocation of this function is triggered by an activation
745 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
746 	 * if !bfqq->weight_counter.
747 	 */
748 	if (unlikely(!bfqq->weight_counter))
749 		return;
750 
751 	bfqq->weight_counter->weight = entity->weight;
752 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
753 	rb_insert_color(&bfqq->weight_counter->weights_node, root);
754 
755 inc_counter:
756 	bfqq->weight_counter->num_active++;
757 	bfqq->ref++;
758 }
759 
760 /*
761  * Decrement the weight counter associated with the queue, and, if the
762  * counter reaches 0, remove the counter from the tree.
763  * See the comments to the function bfq_weights_tree_add() for considerations
764  * about overhead.
765  */
766 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
767 			       struct bfq_queue *bfqq,
768 			       struct rb_root *root)
769 {
770 	if (!bfqq->weight_counter)
771 		return;
772 
773 	bfqq->weight_counter->num_active--;
774 	if (bfqq->weight_counter->num_active > 0)
775 		goto reset_entity_pointer;
776 
777 	rb_erase(&bfqq->weight_counter->weights_node, root);
778 	kfree(bfqq->weight_counter);
779 
780 reset_entity_pointer:
781 	bfqq->weight_counter = NULL;
782 	bfq_put_queue(bfqq);
783 }
784 
785 /*
786  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
787  * of active groups for each queue's inactive parent entity.
788  */
789 void bfq_weights_tree_remove(struct bfq_data *bfqd,
790 			     struct bfq_queue *bfqq)
791 {
792 	struct bfq_entity *entity = bfqq->entity.parent;
793 
794 	for_each_entity(entity) {
795 		struct bfq_sched_data *sd = entity->my_sched_data;
796 
797 		if (sd->next_in_service || sd->in_service_entity) {
798 			/*
799 			 * entity is still active, because either
800 			 * next_in_service or in_service_entity is not
801 			 * NULL (see the comments on the definition of
802 			 * next_in_service for details on why
803 			 * in_service_entity must be checked too).
804 			 *
805 			 * As a consequence, its parent entities are
806 			 * active as well, and thus this loop must
807 			 * stop here.
808 			 */
809 			break;
810 		}
811 
812 		/*
813 		 * The decrement of num_groups_with_pending_reqs is
814 		 * not performed immediately upon the deactivation of
815 		 * entity, but it is delayed to when it also happens
816 		 * that the first leaf descendant bfqq of entity gets
817 		 * all its pending requests completed. The following
818 		 * instructions perform this delayed decrement, if
819 		 * needed. See the comments on
820 		 * num_groups_with_pending_reqs for details.
821 		 */
822 		if (entity->in_groups_with_pending_reqs) {
823 			entity->in_groups_with_pending_reqs = false;
824 			bfqd->num_groups_with_pending_reqs--;
825 		}
826 	}
827 
828 	/*
829 	 * Next function is invoked last, because it causes bfqq to be
830 	 * freed if the following holds: bfqq is not in service and
831 	 * has no dispatched request. DO NOT use bfqq after the next
832 	 * function invocation.
833 	 */
834 	__bfq_weights_tree_remove(bfqd, bfqq,
835 				  &bfqd->queue_weights_tree);
836 }
837 
838 /*
839  * Return expired entry, or NULL to just start from scratch in rbtree.
840  */
841 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
842 				      struct request *last)
843 {
844 	struct request *rq;
845 
846 	if (bfq_bfqq_fifo_expire(bfqq))
847 		return NULL;
848 
849 	bfq_mark_bfqq_fifo_expire(bfqq);
850 
851 	rq = rq_entry_fifo(bfqq->fifo.next);
852 
853 	if (rq == last || ktime_get_ns() < rq->fifo_time)
854 		return NULL;
855 
856 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
857 	return rq;
858 }
859 
860 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
861 					struct bfq_queue *bfqq,
862 					struct request *last)
863 {
864 	struct rb_node *rbnext = rb_next(&last->rb_node);
865 	struct rb_node *rbprev = rb_prev(&last->rb_node);
866 	struct request *next, *prev = NULL;
867 
868 	/* Follow expired path, else get first next available. */
869 	next = bfq_check_fifo(bfqq, last);
870 	if (next)
871 		return next;
872 
873 	if (rbprev)
874 		prev = rb_entry_rq(rbprev);
875 
876 	if (rbnext)
877 		next = rb_entry_rq(rbnext);
878 	else {
879 		rbnext = rb_first(&bfqq->sort_list);
880 		if (rbnext && rbnext != &last->rb_node)
881 			next = rb_entry_rq(rbnext);
882 	}
883 
884 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
885 }
886 
887 /* see the definition of bfq_async_charge_factor for details */
888 static unsigned long bfq_serv_to_charge(struct request *rq,
889 					struct bfq_queue *bfqq)
890 {
891 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
892 	    !bfq_symmetric_scenario(bfqq->bfqd))
893 		return blk_rq_sectors(rq);
894 
895 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
896 }
897 
898 /**
899  * bfq_updated_next_req - update the queue after a new next_rq selection.
900  * @bfqd: the device data the queue belongs to.
901  * @bfqq: the queue to update.
902  *
903  * If the first request of a queue changes we make sure that the queue
904  * has enough budget to serve at least its first request (if the
905  * request has grown).  We do this because if the queue has not enough
906  * budget for its first request, it has to go through two dispatch
907  * rounds to actually get it dispatched.
908  */
909 static void bfq_updated_next_req(struct bfq_data *bfqd,
910 				 struct bfq_queue *bfqq)
911 {
912 	struct bfq_entity *entity = &bfqq->entity;
913 	struct request *next_rq = bfqq->next_rq;
914 	unsigned long new_budget;
915 
916 	if (!next_rq)
917 		return;
918 
919 	if (bfqq == bfqd->in_service_queue)
920 		/*
921 		 * In order not to break guarantees, budgets cannot be
922 		 * changed after an entity has been selected.
923 		 */
924 		return;
925 
926 	new_budget = max_t(unsigned long,
927 			   max_t(unsigned long, bfqq->max_budget,
928 				 bfq_serv_to_charge(next_rq, bfqq)),
929 			   entity->service);
930 	if (entity->budget != new_budget) {
931 		entity->budget = new_budget;
932 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
933 					 new_budget);
934 		bfq_requeue_bfqq(bfqd, bfqq, false);
935 	}
936 }
937 
938 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
939 {
940 	u64 dur;
941 
942 	if (bfqd->bfq_wr_max_time > 0)
943 		return bfqd->bfq_wr_max_time;
944 
945 	dur = bfqd->rate_dur_prod;
946 	do_div(dur, bfqd->peak_rate);
947 
948 	/*
949 	 * Limit duration between 3 and 25 seconds. The upper limit
950 	 * has been conservatively set after the following worst case:
951 	 * on a QEMU/KVM virtual machine
952 	 * - running in a slow PC
953 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
954 	 * - serving a heavy I/O workload, such as the sequential reading
955 	 *   of several files
956 	 * mplayer took 23 seconds to start, if constantly weight-raised.
957 	 *
958 	 * As for higher values than that accomodating the above bad
959 	 * scenario, tests show that higher values would often yield
960 	 * the opposite of the desired result, i.e., would worsen
961 	 * responsiveness by allowing non-interactive applications to
962 	 * preserve weight raising for too long.
963 	 *
964 	 * On the other end, lower values than 3 seconds make it
965 	 * difficult for most interactive tasks to complete their jobs
966 	 * before weight-raising finishes.
967 	 */
968 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
969 }
970 
971 /* switch back from soft real-time to interactive weight raising */
972 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
973 					  struct bfq_data *bfqd)
974 {
975 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
976 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
977 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
978 }
979 
980 static void
981 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
982 		      struct bfq_io_cq *bic, bool bfq_already_existing)
983 {
984 	unsigned int old_wr_coeff = bfqq->wr_coeff;
985 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
986 
987 	if (bic->saved_has_short_ttime)
988 		bfq_mark_bfqq_has_short_ttime(bfqq);
989 	else
990 		bfq_clear_bfqq_has_short_ttime(bfqq);
991 
992 	if (bic->saved_IO_bound)
993 		bfq_mark_bfqq_IO_bound(bfqq);
994 	else
995 		bfq_clear_bfqq_IO_bound(bfqq);
996 
997 	bfqq->ttime = bic->saved_ttime;
998 	bfqq->wr_coeff = bic->saved_wr_coeff;
999 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1000 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1001 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1002 
1003 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1004 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1005 				   bfqq->wr_cur_max_time))) {
1006 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1007 		    !bfq_bfqq_in_large_burst(bfqq) &&
1008 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1009 					     bfq_wr_duration(bfqd))) {
1010 			switch_back_to_interactive_wr(bfqq, bfqd);
1011 		} else {
1012 			bfqq->wr_coeff = 1;
1013 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1014 				     "resume state: switching off wr");
1015 		}
1016 	}
1017 
1018 	/* make sure weight will be updated, however we got here */
1019 	bfqq->entity.prio_changed = 1;
1020 
1021 	if (likely(!busy))
1022 		return;
1023 
1024 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1025 		bfqd->wr_busy_queues++;
1026 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1027 		bfqd->wr_busy_queues--;
1028 }
1029 
1030 static int bfqq_process_refs(struct bfq_queue *bfqq)
1031 {
1032 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1033 		(bfqq->weight_counter != NULL);
1034 }
1035 
1036 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1037 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1038 {
1039 	struct bfq_queue *item;
1040 	struct hlist_node *n;
1041 
1042 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1043 		hlist_del_init(&item->burst_list_node);
1044 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1045 	bfqd->burst_size = 1;
1046 	bfqd->burst_parent_entity = bfqq->entity.parent;
1047 }
1048 
1049 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1050 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1051 {
1052 	/* Increment burst size to take into account also bfqq */
1053 	bfqd->burst_size++;
1054 
1055 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1056 		struct bfq_queue *pos, *bfqq_item;
1057 		struct hlist_node *n;
1058 
1059 		/*
1060 		 * Enough queues have been activated shortly after each
1061 		 * other to consider this burst as large.
1062 		 */
1063 		bfqd->large_burst = true;
1064 
1065 		/*
1066 		 * We can now mark all queues in the burst list as
1067 		 * belonging to a large burst.
1068 		 */
1069 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1070 				     burst_list_node)
1071 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1072 		bfq_mark_bfqq_in_large_burst(bfqq);
1073 
1074 		/*
1075 		 * From now on, and until the current burst finishes, any
1076 		 * new queue being activated shortly after the last queue
1077 		 * was inserted in the burst can be immediately marked as
1078 		 * belonging to a large burst. So the burst list is not
1079 		 * needed any more. Remove it.
1080 		 */
1081 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1082 					  burst_list_node)
1083 			hlist_del_init(&pos->burst_list_node);
1084 	} else /*
1085 		* Burst not yet large: add bfqq to the burst list. Do
1086 		* not increment the ref counter for bfqq, because bfqq
1087 		* is removed from the burst list before freeing bfqq
1088 		* in put_queue.
1089 		*/
1090 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1091 }
1092 
1093 /*
1094  * If many queues belonging to the same group happen to be created
1095  * shortly after each other, then the processes associated with these
1096  * queues have typically a common goal. In particular, bursts of queue
1097  * creations are usually caused by services or applications that spawn
1098  * many parallel threads/processes. Examples are systemd during boot,
1099  * or git grep. To help these processes get their job done as soon as
1100  * possible, it is usually better to not grant either weight-raising
1101  * or device idling to their queues.
1102  *
1103  * In this comment we describe, firstly, the reasons why this fact
1104  * holds, and, secondly, the next function, which implements the main
1105  * steps needed to properly mark these queues so that they can then be
1106  * treated in a different way.
1107  *
1108  * The above services or applications benefit mostly from a high
1109  * throughput: the quicker the requests of the activated queues are
1110  * cumulatively served, the sooner the target job of these queues gets
1111  * completed. As a consequence, weight-raising any of these queues,
1112  * which also implies idling the device for it, is almost always
1113  * counterproductive. In most cases it just lowers throughput.
1114  *
1115  * On the other hand, a burst of queue creations may be caused also by
1116  * the start of an application that does not consist of a lot of
1117  * parallel I/O-bound threads. In fact, with a complex application,
1118  * several short processes may need to be executed to start-up the
1119  * application. In this respect, to start an application as quickly as
1120  * possible, the best thing to do is in any case to privilege the I/O
1121  * related to the application with respect to all other
1122  * I/O. Therefore, the best strategy to start as quickly as possible
1123  * an application that causes a burst of queue creations is to
1124  * weight-raise all the queues created during the burst. This is the
1125  * exact opposite of the best strategy for the other type of bursts.
1126  *
1127  * In the end, to take the best action for each of the two cases, the
1128  * two types of bursts need to be distinguished. Fortunately, this
1129  * seems relatively easy, by looking at the sizes of the bursts. In
1130  * particular, we found a threshold such that only bursts with a
1131  * larger size than that threshold are apparently caused by
1132  * services or commands such as systemd or git grep. For brevity,
1133  * hereafter we call just 'large' these bursts. BFQ *does not*
1134  * weight-raise queues whose creation occurs in a large burst. In
1135  * addition, for each of these queues BFQ performs or does not perform
1136  * idling depending on which choice boosts the throughput more. The
1137  * exact choice depends on the device and request pattern at
1138  * hand.
1139  *
1140  * Unfortunately, false positives may occur while an interactive task
1141  * is starting (e.g., an application is being started). The
1142  * consequence is that the queues associated with the task do not
1143  * enjoy weight raising as expected. Fortunately these false positives
1144  * are very rare. They typically occur if some service happens to
1145  * start doing I/O exactly when the interactive task starts.
1146  *
1147  * Turning back to the next function, it implements all the steps
1148  * needed to detect the occurrence of a large burst and to properly
1149  * mark all the queues belonging to it (so that they can then be
1150  * treated in a different way). This goal is achieved by maintaining a
1151  * "burst list" that holds, temporarily, the queues that belong to the
1152  * burst in progress. The list is then used to mark these queues as
1153  * belonging to a large burst if the burst does become large. The main
1154  * steps are the following.
1155  *
1156  * . when the very first queue is created, the queue is inserted into the
1157  *   list (as it could be the first queue in a possible burst)
1158  *
1159  * . if the current burst has not yet become large, and a queue Q that does
1160  *   not yet belong to the burst is activated shortly after the last time
1161  *   at which a new queue entered the burst list, then the function appends
1162  *   Q to the burst list
1163  *
1164  * . if, as a consequence of the previous step, the burst size reaches
1165  *   the large-burst threshold, then
1166  *
1167  *     . all the queues in the burst list are marked as belonging to a
1168  *       large burst
1169  *
1170  *     . the burst list is deleted; in fact, the burst list already served
1171  *       its purpose (keeping temporarily track of the queues in a burst,
1172  *       so as to be able to mark them as belonging to a large burst in the
1173  *       previous sub-step), and now is not needed any more
1174  *
1175  *     . the device enters a large-burst mode
1176  *
1177  * . if a queue Q that does not belong to the burst is created while
1178  *   the device is in large-burst mode and shortly after the last time
1179  *   at which a queue either entered the burst list or was marked as
1180  *   belonging to the current large burst, then Q is immediately marked
1181  *   as belonging to a large burst.
1182  *
1183  * . if a queue Q that does not belong to the burst is created a while
1184  *   later, i.e., not shortly after, than the last time at which a queue
1185  *   either entered the burst list or was marked as belonging to the
1186  *   current large burst, then the current burst is deemed as finished and:
1187  *
1188  *        . the large-burst mode is reset if set
1189  *
1190  *        . the burst list is emptied
1191  *
1192  *        . Q is inserted in the burst list, as Q may be the first queue
1193  *          in a possible new burst (then the burst list contains just Q
1194  *          after this step).
1195  */
1196 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1197 {
1198 	/*
1199 	 * If bfqq is already in the burst list or is part of a large
1200 	 * burst, or finally has just been split, then there is
1201 	 * nothing else to do.
1202 	 */
1203 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1204 	    bfq_bfqq_in_large_burst(bfqq) ||
1205 	    time_is_after_eq_jiffies(bfqq->split_time +
1206 				     msecs_to_jiffies(10)))
1207 		return;
1208 
1209 	/*
1210 	 * If bfqq's creation happens late enough, or bfqq belongs to
1211 	 * a different group than the burst group, then the current
1212 	 * burst is finished, and related data structures must be
1213 	 * reset.
1214 	 *
1215 	 * In this respect, consider the special case where bfqq is
1216 	 * the very first queue created after BFQ is selected for this
1217 	 * device. In this case, last_ins_in_burst and
1218 	 * burst_parent_entity are not yet significant when we get
1219 	 * here. But it is easy to verify that, whether or not the
1220 	 * following condition is true, bfqq will end up being
1221 	 * inserted into the burst list. In particular the list will
1222 	 * happen to contain only bfqq. And this is exactly what has
1223 	 * to happen, as bfqq may be the first queue of the first
1224 	 * burst.
1225 	 */
1226 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1227 	    bfqd->bfq_burst_interval) ||
1228 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1229 		bfqd->large_burst = false;
1230 		bfq_reset_burst_list(bfqd, bfqq);
1231 		goto end;
1232 	}
1233 
1234 	/*
1235 	 * If we get here, then bfqq is being activated shortly after the
1236 	 * last queue. So, if the current burst is also large, we can mark
1237 	 * bfqq as belonging to this large burst immediately.
1238 	 */
1239 	if (bfqd->large_burst) {
1240 		bfq_mark_bfqq_in_large_burst(bfqq);
1241 		goto end;
1242 	}
1243 
1244 	/*
1245 	 * If we get here, then a large-burst state has not yet been
1246 	 * reached, but bfqq is being activated shortly after the last
1247 	 * queue. Then we add bfqq to the burst.
1248 	 */
1249 	bfq_add_to_burst(bfqd, bfqq);
1250 end:
1251 	/*
1252 	 * At this point, bfqq either has been added to the current
1253 	 * burst or has caused the current burst to terminate and a
1254 	 * possible new burst to start. In particular, in the second
1255 	 * case, bfqq has become the first queue in the possible new
1256 	 * burst.  In both cases last_ins_in_burst needs to be moved
1257 	 * forward.
1258 	 */
1259 	bfqd->last_ins_in_burst = jiffies;
1260 }
1261 
1262 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1263 {
1264 	struct bfq_entity *entity = &bfqq->entity;
1265 
1266 	return entity->budget - entity->service;
1267 }
1268 
1269 /*
1270  * If enough samples have been computed, return the current max budget
1271  * stored in bfqd, which is dynamically updated according to the
1272  * estimated disk peak rate; otherwise return the default max budget
1273  */
1274 static int bfq_max_budget(struct bfq_data *bfqd)
1275 {
1276 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1277 		return bfq_default_max_budget;
1278 	else
1279 		return bfqd->bfq_max_budget;
1280 }
1281 
1282 /*
1283  * Return min budget, which is a fraction of the current or default
1284  * max budget (trying with 1/32)
1285  */
1286 static int bfq_min_budget(struct bfq_data *bfqd)
1287 {
1288 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1289 		return bfq_default_max_budget / 32;
1290 	else
1291 		return bfqd->bfq_max_budget / 32;
1292 }
1293 
1294 /*
1295  * The next function, invoked after the input queue bfqq switches from
1296  * idle to busy, updates the budget of bfqq. The function also tells
1297  * whether the in-service queue should be expired, by returning
1298  * true. The purpose of expiring the in-service queue is to give bfqq
1299  * the chance to possibly preempt the in-service queue, and the reason
1300  * for preempting the in-service queue is to achieve one of the two
1301  * goals below.
1302  *
1303  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1304  * expired because it has remained idle. In particular, bfqq may have
1305  * expired for one of the following two reasons:
1306  *
1307  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1308  *   and did not make it to issue a new request before its last
1309  *   request was served;
1310  *
1311  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1312  *   a new request before the expiration of the idling-time.
1313  *
1314  * Even if bfqq has expired for one of the above reasons, the process
1315  * associated with the queue may be however issuing requests greedily,
1316  * and thus be sensitive to the bandwidth it receives (bfqq may have
1317  * remained idle for other reasons: CPU high load, bfqq not enjoying
1318  * idling, I/O throttling somewhere in the path from the process to
1319  * the I/O scheduler, ...). But if, after every expiration for one of
1320  * the above two reasons, bfqq has to wait for the service of at least
1321  * one full budget of another queue before being served again, then
1322  * bfqq is likely to get a much lower bandwidth or resource time than
1323  * its reserved ones. To address this issue, two countermeasures need
1324  * to be taken.
1325  *
1326  * First, the budget and the timestamps of bfqq need to be updated in
1327  * a special way on bfqq reactivation: they need to be updated as if
1328  * bfqq did not remain idle and did not expire. In fact, if they are
1329  * computed as if bfqq expired and remained idle until reactivation,
1330  * then the process associated with bfqq is treated as if, instead of
1331  * being greedy, it stopped issuing requests when bfqq remained idle,
1332  * and restarts issuing requests only on this reactivation. In other
1333  * words, the scheduler does not help the process recover the "service
1334  * hole" between bfqq expiration and reactivation. As a consequence,
1335  * the process receives a lower bandwidth than its reserved one. In
1336  * contrast, to recover this hole, the budget must be updated as if
1337  * bfqq was not expired at all before this reactivation, i.e., it must
1338  * be set to the value of the remaining budget when bfqq was
1339  * expired. Along the same line, timestamps need to be assigned the
1340  * value they had the last time bfqq was selected for service, i.e.,
1341  * before last expiration. Thus timestamps need to be back-shifted
1342  * with respect to their normal computation (see [1] for more details
1343  * on this tricky aspect).
1344  *
1345  * Secondly, to allow the process to recover the hole, the in-service
1346  * queue must be expired too, to give bfqq the chance to preempt it
1347  * immediately. In fact, if bfqq has to wait for a full budget of the
1348  * in-service queue to be completed, then it may become impossible to
1349  * let the process recover the hole, even if the back-shifted
1350  * timestamps of bfqq are lower than those of the in-service queue. If
1351  * this happens for most or all of the holes, then the process may not
1352  * receive its reserved bandwidth. In this respect, it is worth noting
1353  * that, being the service of outstanding requests unpreemptible, a
1354  * little fraction of the holes may however be unrecoverable, thereby
1355  * causing a little loss of bandwidth.
1356  *
1357  * The last important point is detecting whether bfqq does need this
1358  * bandwidth recovery. In this respect, the next function deems the
1359  * process associated with bfqq greedy, and thus allows it to recover
1360  * the hole, if: 1) the process is waiting for the arrival of a new
1361  * request (which implies that bfqq expired for one of the above two
1362  * reasons), and 2) such a request has arrived soon. The first
1363  * condition is controlled through the flag non_blocking_wait_rq,
1364  * while the second through the flag arrived_in_time. If both
1365  * conditions hold, then the function computes the budget in the
1366  * above-described special way, and signals that the in-service queue
1367  * should be expired. Timestamp back-shifting is done later in
1368  * __bfq_activate_entity.
1369  *
1370  * 2. Reduce latency. Even if timestamps are not backshifted to let
1371  * the process associated with bfqq recover a service hole, bfqq may
1372  * however happen to have, after being (re)activated, a lower finish
1373  * timestamp than the in-service queue.	 That is, the next budget of
1374  * bfqq may have to be completed before the one of the in-service
1375  * queue. If this is the case, then preempting the in-service queue
1376  * allows this goal to be achieved, apart from the unpreemptible,
1377  * outstanding requests mentioned above.
1378  *
1379  * Unfortunately, regardless of which of the above two goals one wants
1380  * to achieve, service trees need first to be updated to know whether
1381  * the in-service queue must be preempted. To have service trees
1382  * correctly updated, the in-service queue must be expired and
1383  * rescheduled, and bfqq must be scheduled too. This is one of the
1384  * most costly operations (in future versions, the scheduling
1385  * mechanism may be re-designed in such a way to make it possible to
1386  * know whether preemption is needed without needing to update service
1387  * trees). In addition, queue preemptions almost always cause random
1388  * I/O, and thus loss of throughput. Because of these facts, the next
1389  * function adopts the following simple scheme to avoid both costly
1390  * operations and too frequent preemptions: it requests the expiration
1391  * of the in-service queue (unconditionally) only for queues that need
1392  * to recover a hole, or that either are weight-raised or deserve to
1393  * be weight-raised.
1394  */
1395 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1396 						struct bfq_queue *bfqq,
1397 						bool arrived_in_time,
1398 						bool wr_or_deserves_wr)
1399 {
1400 	struct bfq_entity *entity = &bfqq->entity;
1401 
1402 	/*
1403 	 * In the next compound condition, we check also whether there
1404 	 * is some budget left, because otherwise there is no point in
1405 	 * trying to go on serving bfqq with this same budget: bfqq
1406 	 * would be expired immediately after being selected for
1407 	 * service. This would only cause useless overhead.
1408 	 */
1409 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1410 	    bfq_bfqq_budget_left(bfqq) > 0) {
1411 		/*
1412 		 * We do not clear the flag non_blocking_wait_rq here, as
1413 		 * the latter is used in bfq_activate_bfqq to signal
1414 		 * that timestamps need to be back-shifted (and is
1415 		 * cleared right after).
1416 		 */
1417 
1418 		/*
1419 		 * In next assignment we rely on that either
1420 		 * entity->service or entity->budget are not updated
1421 		 * on expiration if bfqq is empty (see
1422 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1423 		 * remain unchanged after such an expiration, and the
1424 		 * following statement therefore assigns to
1425 		 * entity->budget the remaining budget on such an
1426 		 * expiration.
1427 		 */
1428 		entity->budget = min_t(unsigned long,
1429 				       bfq_bfqq_budget_left(bfqq),
1430 				       bfqq->max_budget);
1431 
1432 		/*
1433 		 * At this point, we have used entity->service to get
1434 		 * the budget left (needed for updating
1435 		 * entity->budget). Thus we finally can, and have to,
1436 		 * reset entity->service. The latter must be reset
1437 		 * because bfqq would otherwise be charged again for
1438 		 * the service it has received during its previous
1439 		 * service slot(s).
1440 		 */
1441 		entity->service = 0;
1442 
1443 		return true;
1444 	}
1445 
1446 	/*
1447 	 * We can finally complete expiration, by setting service to 0.
1448 	 */
1449 	entity->service = 0;
1450 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1451 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1452 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1453 	return wr_or_deserves_wr;
1454 }
1455 
1456 /*
1457  * Return the farthest past time instant according to jiffies
1458  * macros.
1459  */
1460 static unsigned long bfq_smallest_from_now(void)
1461 {
1462 	return jiffies - MAX_JIFFY_OFFSET;
1463 }
1464 
1465 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1466 					     struct bfq_queue *bfqq,
1467 					     unsigned int old_wr_coeff,
1468 					     bool wr_or_deserves_wr,
1469 					     bool interactive,
1470 					     bool in_burst,
1471 					     bool soft_rt)
1472 {
1473 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1474 		/* start a weight-raising period */
1475 		if (interactive) {
1476 			bfqq->service_from_wr = 0;
1477 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1478 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1479 		} else {
1480 			/*
1481 			 * No interactive weight raising in progress
1482 			 * here: assign minus infinity to
1483 			 * wr_start_at_switch_to_srt, to make sure
1484 			 * that, at the end of the soft-real-time
1485 			 * weight raising periods that is starting
1486 			 * now, no interactive weight-raising period
1487 			 * may be wrongly considered as still in
1488 			 * progress (and thus actually started by
1489 			 * mistake).
1490 			 */
1491 			bfqq->wr_start_at_switch_to_srt =
1492 				bfq_smallest_from_now();
1493 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1494 				BFQ_SOFTRT_WEIGHT_FACTOR;
1495 			bfqq->wr_cur_max_time =
1496 				bfqd->bfq_wr_rt_max_time;
1497 		}
1498 
1499 		/*
1500 		 * If needed, further reduce budget to make sure it is
1501 		 * close to bfqq's backlog, so as to reduce the
1502 		 * scheduling-error component due to a too large
1503 		 * budget. Do not care about throughput consequences,
1504 		 * but only about latency. Finally, do not assign a
1505 		 * too small budget either, to avoid increasing
1506 		 * latency by causing too frequent expirations.
1507 		 */
1508 		bfqq->entity.budget = min_t(unsigned long,
1509 					    bfqq->entity.budget,
1510 					    2 * bfq_min_budget(bfqd));
1511 	} else if (old_wr_coeff > 1) {
1512 		if (interactive) { /* update wr coeff and duration */
1513 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1514 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1515 		} else if (in_burst)
1516 			bfqq->wr_coeff = 1;
1517 		else if (soft_rt) {
1518 			/*
1519 			 * The application is now or still meeting the
1520 			 * requirements for being deemed soft rt.  We
1521 			 * can then correctly and safely (re)charge
1522 			 * the weight-raising duration for the
1523 			 * application with the weight-raising
1524 			 * duration for soft rt applications.
1525 			 *
1526 			 * In particular, doing this recharge now, i.e.,
1527 			 * before the weight-raising period for the
1528 			 * application finishes, reduces the probability
1529 			 * of the following negative scenario:
1530 			 * 1) the weight of a soft rt application is
1531 			 *    raised at startup (as for any newly
1532 			 *    created application),
1533 			 * 2) since the application is not interactive,
1534 			 *    at a certain time weight-raising is
1535 			 *    stopped for the application,
1536 			 * 3) at that time the application happens to
1537 			 *    still have pending requests, and hence
1538 			 *    is destined to not have a chance to be
1539 			 *    deemed soft rt before these requests are
1540 			 *    completed (see the comments to the
1541 			 *    function bfq_bfqq_softrt_next_start()
1542 			 *    for details on soft rt detection),
1543 			 * 4) these pending requests experience a high
1544 			 *    latency because the application is not
1545 			 *    weight-raised while they are pending.
1546 			 */
1547 			if (bfqq->wr_cur_max_time !=
1548 				bfqd->bfq_wr_rt_max_time) {
1549 				bfqq->wr_start_at_switch_to_srt =
1550 					bfqq->last_wr_start_finish;
1551 
1552 				bfqq->wr_cur_max_time =
1553 					bfqd->bfq_wr_rt_max_time;
1554 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1555 					BFQ_SOFTRT_WEIGHT_FACTOR;
1556 			}
1557 			bfqq->last_wr_start_finish = jiffies;
1558 		}
1559 	}
1560 }
1561 
1562 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1563 					struct bfq_queue *bfqq)
1564 {
1565 	return bfqq->dispatched == 0 &&
1566 		time_is_before_jiffies(
1567 			bfqq->budget_timeout +
1568 			bfqd->bfq_wr_min_idle_time);
1569 }
1570 
1571 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1572 					     struct bfq_queue *bfqq,
1573 					     int old_wr_coeff,
1574 					     struct request *rq,
1575 					     bool *interactive)
1576 {
1577 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1578 		bfqq_wants_to_preempt,
1579 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1580 		/*
1581 		 * See the comments on
1582 		 * bfq_bfqq_update_budg_for_activation for
1583 		 * details on the usage of the next variable.
1584 		 */
1585 		arrived_in_time =  ktime_get_ns() <=
1586 			bfqq->ttime.last_end_request +
1587 			bfqd->bfq_slice_idle * 3;
1588 
1589 
1590 	/*
1591 	 * bfqq deserves to be weight-raised if:
1592 	 * - it is sync,
1593 	 * - it does not belong to a large burst,
1594 	 * - it has been idle for enough time or is soft real-time,
1595 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1596 	 */
1597 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1598 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1599 		!in_burst &&
1600 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1601 		bfqq->dispatched == 0;
1602 	*interactive = !in_burst && idle_for_long_time;
1603 	wr_or_deserves_wr = bfqd->low_latency &&
1604 		(bfqq->wr_coeff > 1 ||
1605 		 (bfq_bfqq_sync(bfqq) &&
1606 		  bfqq->bic && (*interactive || soft_rt)));
1607 
1608 	/*
1609 	 * Using the last flag, update budget and check whether bfqq
1610 	 * may want to preempt the in-service queue.
1611 	 */
1612 	bfqq_wants_to_preempt =
1613 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1614 						    arrived_in_time,
1615 						    wr_or_deserves_wr);
1616 
1617 	/*
1618 	 * If bfqq happened to be activated in a burst, but has been
1619 	 * idle for much more than an interactive queue, then we
1620 	 * assume that, in the overall I/O initiated in the burst, the
1621 	 * I/O associated with bfqq is finished. So bfqq does not need
1622 	 * to be treated as a queue belonging to a burst
1623 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1624 	 * if set, and remove bfqq from the burst list if it's
1625 	 * there. We do not decrement burst_size, because the fact
1626 	 * that bfqq does not need to belong to the burst list any
1627 	 * more does not invalidate the fact that bfqq was created in
1628 	 * a burst.
1629 	 */
1630 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1631 	    idle_for_long_time &&
1632 	    time_is_before_jiffies(
1633 		    bfqq->budget_timeout +
1634 		    msecs_to_jiffies(10000))) {
1635 		hlist_del_init(&bfqq->burst_list_node);
1636 		bfq_clear_bfqq_in_large_burst(bfqq);
1637 	}
1638 
1639 	bfq_clear_bfqq_just_created(bfqq);
1640 
1641 
1642 	if (!bfq_bfqq_IO_bound(bfqq)) {
1643 		if (arrived_in_time) {
1644 			bfqq->requests_within_timer++;
1645 			if (bfqq->requests_within_timer >=
1646 			    bfqd->bfq_requests_within_timer)
1647 				bfq_mark_bfqq_IO_bound(bfqq);
1648 		} else
1649 			bfqq->requests_within_timer = 0;
1650 	}
1651 
1652 	if (bfqd->low_latency) {
1653 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1654 			/* wraparound */
1655 			bfqq->split_time =
1656 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1657 
1658 		if (time_is_before_jiffies(bfqq->split_time +
1659 					   bfqd->bfq_wr_min_idle_time)) {
1660 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1661 							 old_wr_coeff,
1662 							 wr_or_deserves_wr,
1663 							 *interactive,
1664 							 in_burst,
1665 							 soft_rt);
1666 
1667 			if (old_wr_coeff != bfqq->wr_coeff)
1668 				bfqq->entity.prio_changed = 1;
1669 		}
1670 	}
1671 
1672 	bfqq->last_idle_bklogged = jiffies;
1673 	bfqq->service_from_backlogged = 0;
1674 	bfq_clear_bfqq_softrt_update(bfqq);
1675 
1676 	bfq_add_bfqq_busy(bfqd, bfqq);
1677 
1678 	/*
1679 	 * Expire in-service queue only if preemption may be needed
1680 	 * for guarantees. In this respect, the function
1681 	 * next_queue_may_preempt just checks a simple, necessary
1682 	 * condition, and not a sufficient condition based on
1683 	 * timestamps. In fact, for the latter condition to be
1684 	 * evaluated, timestamps would need first to be updated, and
1685 	 * this operation is quite costly (see the comments on the
1686 	 * function bfq_bfqq_update_budg_for_activation).
1687 	 */
1688 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1689 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1690 	    next_queue_may_preempt(bfqd))
1691 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1692 				false, BFQQE_PREEMPTED);
1693 }
1694 
1695 static void bfq_add_request(struct request *rq)
1696 {
1697 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1698 	struct bfq_data *bfqd = bfqq->bfqd;
1699 	struct request *next_rq, *prev;
1700 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1701 	bool interactive = false;
1702 
1703 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1704 	bfqq->queued[rq_is_sync(rq)]++;
1705 	bfqd->queued++;
1706 
1707 	elv_rb_add(&bfqq->sort_list, rq);
1708 
1709 	/*
1710 	 * Check if this request is a better next-serve candidate.
1711 	 */
1712 	prev = bfqq->next_rq;
1713 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1714 	bfqq->next_rq = next_rq;
1715 
1716 	/*
1717 	 * Adjust priority tree position, if next_rq changes.
1718 	 */
1719 	if (prev != bfqq->next_rq)
1720 		bfq_pos_tree_add_move(bfqd, bfqq);
1721 
1722 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1723 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1724 						 rq, &interactive);
1725 	else {
1726 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1727 		    time_is_before_jiffies(
1728 				bfqq->last_wr_start_finish +
1729 				bfqd->bfq_wr_min_inter_arr_async)) {
1730 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1731 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1732 
1733 			bfqd->wr_busy_queues++;
1734 			bfqq->entity.prio_changed = 1;
1735 		}
1736 		if (prev != bfqq->next_rq)
1737 			bfq_updated_next_req(bfqd, bfqq);
1738 	}
1739 
1740 	/*
1741 	 * Assign jiffies to last_wr_start_finish in the following
1742 	 * cases:
1743 	 *
1744 	 * . if bfqq is not going to be weight-raised, because, for
1745 	 *   non weight-raised queues, last_wr_start_finish stores the
1746 	 *   arrival time of the last request; as of now, this piece
1747 	 *   of information is used only for deciding whether to
1748 	 *   weight-raise async queues
1749 	 *
1750 	 * . if bfqq is not weight-raised, because, if bfqq is now
1751 	 *   switching to weight-raised, then last_wr_start_finish
1752 	 *   stores the time when weight-raising starts
1753 	 *
1754 	 * . if bfqq is interactive, because, regardless of whether
1755 	 *   bfqq is currently weight-raised, the weight-raising
1756 	 *   period must start or restart (this case is considered
1757 	 *   separately because it is not detected by the above
1758 	 *   conditions, if bfqq is already weight-raised)
1759 	 *
1760 	 * last_wr_start_finish has to be updated also if bfqq is soft
1761 	 * real-time, because the weight-raising period is constantly
1762 	 * restarted on idle-to-busy transitions for these queues, but
1763 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1764 	 * needed.
1765 	 */
1766 	if (bfqd->low_latency &&
1767 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1768 		bfqq->last_wr_start_finish = jiffies;
1769 }
1770 
1771 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1772 					  struct bio *bio,
1773 					  struct request_queue *q)
1774 {
1775 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1776 
1777 
1778 	if (bfqq)
1779 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1780 
1781 	return NULL;
1782 }
1783 
1784 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1785 {
1786 	if (last_pos)
1787 		return abs(blk_rq_pos(rq) - last_pos);
1788 
1789 	return 0;
1790 }
1791 
1792 #if 0 /* Still not clear if we can do without next two functions */
1793 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1794 {
1795 	struct bfq_data *bfqd = q->elevator->elevator_data;
1796 
1797 	bfqd->rq_in_driver++;
1798 }
1799 
1800 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1801 {
1802 	struct bfq_data *bfqd = q->elevator->elevator_data;
1803 
1804 	bfqd->rq_in_driver--;
1805 }
1806 #endif
1807 
1808 static void bfq_remove_request(struct request_queue *q,
1809 			       struct request *rq)
1810 {
1811 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1812 	struct bfq_data *bfqd = bfqq->bfqd;
1813 	const int sync = rq_is_sync(rq);
1814 
1815 	if (bfqq->next_rq == rq) {
1816 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1817 		bfq_updated_next_req(bfqd, bfqq);
1818 	}
1819 
1820 	if (rq->queuelist.prev != &rq->queuelist)
1821 		list_del_init(&rq->queuelist);
1822 	bfqq->queued[sync]--;
1823 	bfqd->queued--;
1824 	elv_rb_del(&bfqq->sort_list, rq);
1825 
1826 	elv_rqhash_del(q, rq);
1827 	if (q->last_merge == rq)
1828 		q->last_merge = NULL;
1829 
1830 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1831 		bfqq->next_rq = NULL;
1832 
1833 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1834 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1835 			/*
1836 			 * bfqq emptied. In normal operation, when
1837 			 * bfqq is empty, bfqq->entity.service and
1838 			 * bfqq->entity.budget must contain,
1839 			 * respectively, the service received and the
1840 			 * budget used last time bfqq emptied. These
1841 			 * facts do not hold in this case, as at least
1842 			 * this last removal occurred while bfqq is
1843 			 * not in service. To avoid inconsistencies,
1844 			 * reset both bfqq->entity.service and
1845 			 * bfqq->entity.budget, if bfqq has still a
1846 			 * process that may issue I/O requests to it.
1847 			 */
1848 			bfqq->entity.budget = bfqq->entity.service = 0;
1849 		}
1850 
1851 		/*
1852 		 * Remove queue from request-position tree as it is empty.
1853 		 */
1854 		if (bfqq->pos_root) {
1855 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1856 			bfqq->pos_root = NULL;
1857 		}
1858 	} else {
1859 		bfq_pos_tree_add_move(bfqd, bfqq);
1860 	}
1861 
1862 	if (rq->cmd_flags & REQ_META)
1863 		bfqq->meta_pending--;
1864 
1865 }
1866 
1867 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1868 {
1869 	struct request_queue *q = hctx->queue;
1870 	struct bfq_data *bfqd = q->elevator->elevator_data;
1871 	struct request *free = NULL;
1872 	/*
1873 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1874 	 * store its return value for later use, to avoid nesting
1875 	 * queue_lock inside the bfqd->lock. We assume that the bic
1876 	 * returned by bfq_bic_lookup does not go away before
1877 	 * bfqd->lock is taken.
1878 	 */
1879 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1880 	bool ret;
1881 
1882 	spin_lock_irq(&bfqd->lock);
1883 
1884 	if (bic)
1885 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1886 	else
1887 		bfqd->bio_bfqq = NULL;
1888 	bfqd->bio_bic = bic;
1889 
1890 	ret = blk_mq_sched_try_merge(q, bio, &free);
1891 
1892 	if (free)
1893 		blk_mq_free_request(free);
1894 	spin_unlock_irq(&bfqd->lock);
1895 
1896 	return ret;
1897 }
1898 
1899 static int bfq_request_merge(struct request_queue *q, struct request **req,
1900 			     struct bio *bio)
1901 {
1902 	struct bfq_data *bfqd = q->elevator->elevator_data;
1903 	struct request *__rq;
1904 
1905 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1906 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1907 		*req = __rq;
1908 		return ELEVATOR_FRONT_MERGE;
1909 	}
1910 
1911 	return ELEVATOR_NO_MERGE;
1912 }
1913 
1914 static struct bfq_queue *bfq_init_rq(struct request *rq);
1915 
1916 static void bfq_request_merged(struct request_queue *q, struct request *req,
1917 			       enum elv_merge type)
1918 {
1919 	if (type == ELEVATOR_FRONT_MERGE &&
1920 	    rb_prev(&req->rb_node) &&
1921 	    blk_rq_pos(req) <
1922 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1923 				    struct request, rb_node))) {
1924 		struct bfq_queue *bfqq = bfq_init_rq(req);
1925 		struct bfq_data *bfqd = bfqq->bfqd;
1926 		struct request *prev, *next_rq;
1927 
1928 		/* Reposition request in its sort_list */
1929 		elv_rb_del(&bfqq->sort_list, req);
1930 		elv_rb_add(&bfqq->sort_list, req);
1931 
1932 		/* Choose next request to be served for bfqq */
1933 		prev = bfqq->next_rq;
1934 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1935 					 bfqd->last_position);
1936 		bfqq->next_rq = next_rq;
1937 		/*
1938 		 * If next_rq changes, update both the queue's budget to
1939 		 * fit the new request and the queue's position in its
1940 		 * rq_pos_tree.
1941 		 */
1942 		if (prev != bfqq->next_rq) {
1943 			bfq_updated_next_req(bfqd, bfqq);
1944 			bfq_pos_tree_add_move(bfqd, bfqq);
1945 		}
1946 	}
1947 }
1948 
1949 /*
1950  * This function is called to notify the scheduler that the requests
1951  * rq and 'next' have been merged, with 'next' going away.  BFQ
1952  * exploits this hook to address the following issue: if 'next' has a
1953  * fifo_time lower that rq, then the fifo_time of rq must be set to
1954  * the value of 'next', to not forget the greater age of 'next'.
1955  *
1956  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1957  * on that rq is picked from the hash table q->elevator->hash, which,
1958  * in its turn, is filled only with I/O requests present in
1959  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1960  * the function that fills this hash table (elv_rqhash_add) is called
1961  * only by bfq_insert_request.
1962  */
1963 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1964 				struct request *next)
1965 {
1966 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1967 		*next_bfqq = bfq_init_rq(next);
1968 
1969 	/*
1970 	 * If next and rq belong to the same bfq_queue and next is older
1971 	 * than rq, then reposition rq in the fifo (by substituting next
1972 	 * with rq). Otherwise, if next and rq belong to different
1973 	 * bfq_queues, never reposition rq: in fact, we would have to
1974 	 * reposition it with respect to next's position in its own fifo,
1975 	 * which would most certainly be too expensive with respect to
1976 	 * the benefits.
1977 	 */
1978 	if (bfqq == next_bfqq &&
1979 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1980 	    next->fifo_time < rq->fifo_time) {
1981 		list_del_init(&rq->queuelist);
1982 		list_replace_init(&next->queuelist, &rq->queuelist);
1983 		rq->fifo_time = next->fifo_time;
1984 	}
1985 
1986 	if (bfqq->next_rq == next)
1987 		bfqq->next_rq = rq;
1988 
1989 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1990 }
1991 
1992 /* Must be called with bfqq != NULL */
1993 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1994 {
1995 	if (bfq_bfqq_busy(bfqq))
1996 		bfqq->bfqd->wr_busy_queues--;
1997 	bfqq->wr_coeff = 1;
1998 	bfqq->wr_cur_max_time = 0;
1999 	bfqq->last_wr_start_finish = jiffies;
2000 	/*
2001 	 * Trigger a weight change on the next invocation of
2002 	 * __bfq_entity_update_weight_prio.
2003 	 */
2004 	bfqq->entity.prio_changed = 1;
2005 }
2006 
2007 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2008 			     struct bfq_group *bfqg)
2009 {
2010 	int i, j;
2011 
2012 	for (i = 0; i < 2; i++)
2013 		for (j = 0; j < IOPRIO_BE_NR; j++)
2014 			if (bfqg->async_bfqq[i][j])
2015 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2016 	if (bfqg->async_idle_bfqq)
2017 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2018 }
2019 
2020 static void bfq_end_wr(struct bfq_data *bfqd)
2021 {
2022 	struct bfq_queue *bfqq;
2023 
2024 	spin_lock_irq(&bfqd->lock);
2025 
2026 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2027 		bfq_bfqq_end_wr(bfqq);
2028 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2029 		bfq_bfqq_end_wr(bfqq);
2030 	bfq_end_wr_async(bfqd);
2031 
2032 	spin_unlock_irq(&bfqd->lock);
2033 }
2034 
2035 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2036 {
2037 	if (request)
2038 		return blk_rq_pos(io_struct);
2039 	else
2040 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2041 }
2042 
2043 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2044 				  sector_t sector)
2045 {
2046 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2047 	       BFQQ_CLOSE_THR;
2048 }
2049 
2050 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2051 					 struct bfq_queue *bfqq,
2052 					 sector_t sector)
2053 {
2054 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2055 	struct rb_node *parent, *node;
2056 	struct bfq_queue *__bfqq;
2057 
2058 	if (RB_EMPTY_ROOT(root))
2059 		return NULL;
2060 
2061 	/*
2062 	 * First, if we find a request starting at the end of the last
2063 	 * request, choose it.
2064 	 */
2065 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2066 	if (__bfqq)
2067 		return __bfqq;
2068 
2069 	/*
2070 	 * If the exact sector wasn't found, the parent of the NULL leaf
2071 	 * will contain the closest sector (rq_pos_tree sorted by
2072 	 * next_request position).
2073 	 */
2074 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2075 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2076 		return __bfqq;
2077 
2078 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2079 		node = rb_next(&__bfqq->pos_node);
2080 	else
2081 		node = rb_prev(&__bfqq->pos_node);
2082 	if (!node)
2083 		return NULL;
2084 
2085 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2086 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2087 		return __bfqq;
2088 
2089 	return NULL;
2090 }
2091 
2092 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2093 						   struct bfq_queue *cur_bfqq,
2094 						   sector_t sector)
2095 {
2096 	struct bfq_queue *bfqq;
2097 
2098 	/*
2099 	 * We shall notice if some of the queues are cooperating,
2100 	 * e.g., working closely on the same area of the device. In
2101 	 * that case, we can group them together and: 1) don't waste
2102 	 * time idling, and 2) serve the union of their requests in
2103 	 * the best possible order for throughput.
2104 	 */
2105 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2106 	if (!bfqq || bfqq == cur_bfqq)
2107 		return NULL;
2108 
2109 	return bfqq;
2110 }
2111 
2112 static struct bfq_queue *
2113 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2114 {
2115 	int process_refs, new_process_refs;
2116 	struct bfq_queue *__bfqq;
2117 
2118 	/*
2119 	 * If there are no process references on the new_bfqq, then it is
2120 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2121 	 * may have dropped their last reference (not just their last process
2122 	 * reference).
2123 	 */
2124 	if (!bfqq_process_refs(new_bfqq))
2125 		return NULL;
2126 
2127 	/* Avoid a circular list and skip interim queue merges. */
2128 	while ((__bfqq = new_bfqq->new_bfqq)) {
2129 		if (__bfqq == bfqq)
2130 			return NULL;
2131 		new_bfqq = __bfqq;
2132 	}
2133 
2134 	process_refs = bfqq_process_refs(bfqq);
2135 	new_process_refs = bfqq_process_refs(new_bfqq);
2136 	/*
2137 	 * If the process for the bfqq has gone away, there is no
2138 	 * sense in merging the queues.
2139 	 */
2140 	if (process_refs == 0 || new_process_refs == 0)
2141 		return NULL;
2142 
2143 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2144 		new_bfqq->pid);
2145 
2146 	/*
2147 	 * Merging is just a redirection: the requests of the process
2148 	 * owning one of the two queues are redirected to the other queue.
2149 	 * The latter queue, in its turn, is set as shared if this is the
2150 	 * first time that the requests of some process are redirected to
2151 	 * it.
2152 	 *
2153 	 * We redirect bfqq to new_bfqq and not the opposite, because
2154 	 * we are in the context of the process owning bfqq, thus we
2155 	 * have the io_cq of this process. So we can immediately
2156 	 * configure this io_cq to redirect the requests of the
2157 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2158 	 * not available any more (new_bfqq->bic == NULL).
2159 	 *
2160 	 * Anyway, even in case new_bfqq coincides with the in-service
2161 	 * queue, redirecting requests the in-service queue is the
2162 	 * best option, as we feed the in-service queue with new
2163 	 * requests close to the last request served and, by doing so,
2164 	 * are likely to increase the throughput.
2165 	 */
2166 	bfqq->new_bfqq = new_bfqq;
2167 	new_bfqq->ref += process_refs;
2168 	return new_bfqq;
2169 }
2170 
2171 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2172 					struct bfq_queue *new_bfqq)
2173 {
2174 	if (bfq_too_late_for_merging(new_bfqq))
2175 		return false;
2176 
2177 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2178 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2179 		return false;
2180 
2181 	/*
2182 	 * If either of the queues has already been detected as seeky,
2183 	 * then merging it with the other queue is unlikely to lead to
2184 	 * sequential I/O.
2185 	 */
2186 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2187 		return false;
2188 
2189 	/*
2190 	 * Interleaved I/O is known to be done by (some) applications
2191 	 * only for reads, so it does not make sense to merge async
2192 	 * queues.
2193 	 */
2194 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2195 		return false;
2196 
2197 	return true;
2198 }
2199 
2200 /*
2201  * Attempt to schedule a merge of bfqq with the currently in-service
2202  * queue or with a close queue among the scheduled queues.  Return
2203  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2204  * structure otherwise.
2205  *
2206  * The OOM queue is not allowed to participate to cooperation: in fact, since
2207  * the requests temporarily redirected to the OOM queue could be redirected
2208  * again to dedicated queues at any time, the state needed to correctly
2209  * handle merging with the OOM queue would be quite complex and expensive
2210  * to maintain. Besides, in such a critical condition as an out of memory,
2211  * the benefits of queue merging may be little relevant, or even negligible.
2212  *
2213  * WARNING: queue merging may impair fairness among non-weight raised
2214  * queues, for at least two reasons: 1) the original weight of a
2215  * merged queue may change during the merged state, 2) even being the
2216  * weight the same, a merged queue may be bloated with many more
2217  * requests than the ones produced by its originally-associated
2218  * process.
2219  */
2220 static struct bfq_queue *
2221 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2222 		     void *io_struct, bool request)
2223 {
2224 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2225 
2226 	/*
2227 	 * Prevent bfqq from being merged if it has been created too
2228 	 * long ago. The idea is that true cooperating processes, and
2229 	 * thus their associated bfq_queues, are supposed to be
2230 	 * created shortly after each other. This is the case, e.g.,
2231 	 * for KVM/QEMU and dump I/O threads. Basing on this
2232 	 * assumption, the following filtering greatly reduces the
2233 	 * probability that two non-cooperating processes, which just
2234 	 * happen to do close I/O for some short time interval, have
2235 	 * their queues merged by mistake.
2236 	 */
2237 	if (bfq_too_late_for_merging(bfqq))
2238 		return NULL;
2239 
2240 	if (bfqq->new_bfqq)
2241 		return bfqq->new_bfqq;
2242 
2243 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2244 		return NULL;
2245 
2246 	/* If there is only one backlogged queue, don't search. */
2247 	if (bfq_tot_busy_queues(bfqd) == 1)
2248 		return NULL;
2249 
2250 	in_service_bfqq = bfqd->in_service_queue;
2251 
2252 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2253 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2254 	    bfq_rq_close_to_sector(io_struct, request,
2255 				   bfqd->in_serv_last_pos) &&
2256 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2257 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2258 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2259 		if (new_bfqq)
2260 			return new_bfqq;
2261 	}
2262 	/*
2263 	 * Check whether there is a cooperator among currently scheduled
2264 	 * queues. The only thing we need is that the bio/request is not
2265 	 * NULL, as we need it to establish whether a cooperator exists.
2266 	 */
2267 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2268 			bfq_io_struct_pos(io_struct, request));
2269 
2270 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2271 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2272 		return bfq_setup_merge(bfqq, new_bfqq);
2273 
2274 	return NULL;
2275 }
2276 
2277 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2278 {
2279 	struct bfq_io_cq *bic = bfqq->bic;
2280 
2281 	/*
2282 	 * If !bfqq->bic, the queue is already shared or its requests
2283 	 * have already been redirected to a shared queue; both idle window
2284 	 * and weight raising state have already been saved. Do nothing.
2285 	 */
2286 	if (!bic)
2287 		return;
2288 
2289 	bic->saved_ttime = bfqq->ttime;
2290 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2291 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2292 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2293 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2294 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2295 		     !bfq_bfqq_in_large_burst(bfqq) &&
2296 		     bfqq->bfqd->low_latency)) {
2297 		/*
2298 		 * bfqq being merged right after being created: bfqq
2299 		 * would have deserved interactive weight raising, but
2300 		 * did not make it to be set in a weight-raised state,
2301 		 * because of this early merge.	Store directly the
2302 		 * weight-raising state that would have been assigned
2303 		 * to bfqq, so that to avoid that bfqq unjustly fails
2304 		 * to enjoy weight raising if split soon.
2305 		 */
2306 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2307 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2308 		bic->saved_last_wr_start_finish = jiffies;
2309 	} else {
2310 		bic->saved_wr_coeff = bfqq->wr_coeff;
2311 		bic->saved_wr_start_at_switch_to_srt =
2312 			bfqq->wr_start_at_switch_to_srt;
2313 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2314 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2315 	}
2316 }
2317 
2318 static void
2319 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2320 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2321 {
2322 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2323 		(unsigned long)new_bfqq->pid);
2324 	/* Save weight raising and idle window of the merged queues */
2325 	bfq_bfqq_save_state(bfqq);
2326 	bfq_bfqq_save_state(new_bfqq);
2327 	if (bfq_bfqq_IO_bound(bfqq))
2328 		bfq_mark_bfqq_IO_bound(new_bfqq);
2329 	bfq_clear_bfqq_IO_bound(bfqq);
2330 
2331 	/*
2332 	 * If bfqq is weight-raised, then let new_bfqq inherit
2333 	 * weight-raising. To reduce false positives, neglect the case
2334 	 * where bfqq has just been created, but has not yet made it
2335 	 * to be weight-raised (which may happen because EQM may merge
2336 	 * bfqq even before bfq_add_request is executed for the first
2337 	 * time for bfqq). Handling this case would however be very
2338 	 * easy, thanks to the flag just_created.
2339 	 */
2340 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2341 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2342 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2343 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2344 		new_bfqq->wr_start_at_switch_to_srt =
2345 			bfqq->wr_start_at_switch_to_srt;
2346 		if (bfq_bfqq_busy(new_bfqq))
2347 			bfqd->wr_busy_queues++;
2348 		new_bfqq->entity.prio_changed = 1;
2349 	}
2350 
2351 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2352 		bfqq->wr_coeff = 1;
2353 		bfqq->entity.prio_changed = 1;
2354 		if (bfq_bfqq_busy(bfqq))
2355 			bfqd->wr_busy_queues--;
2356 	}
2357 
2358 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2359 		     bfqd->wr_busy_queues);
2360 
2361 	/*
2362 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2363 	 */
2364 	bic_set_bfqq(bic, new_bfqq, 1);
2365 	bfq_mark_bfqq_coop(new_bfqq);
2366 	/*
2367 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2368 	 * set new_bfqq->bic to NULL. bfqq either:
2369 	 * - does not belong to any bic any more, and hence bfqq->bic must
2370 	 *   be set to NULL, or
2371 	 * - is a queue whose owning bics have already been redirected to a
2372 	 *   different queue, hence the queue is destined to not belong to
2373 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2374 	 *   assignment causes no harm).
2375 	 */
2376 	new_bfqq->bic = NULL;
2377 	bfqq->bic = NULL;
2378 	/* release process reference to bfqq */
2379 	bfq_put_queue(bfqq);
2380 }
2381 
2382 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2383 				struct bio *bio)
2384 {
2385 	struct bfq_data *bfqd = q->elevator->elevator_data;
2386 	bool is_sync = op_is_sync(bio->bi_opf);
2387 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2388 
2389 	/*
2390 	 * Disallow merge of a sync bio into an async request.
2391 	 */
2392 	if (is_sync && !rq_is_sync(rq))
2393 		return false;
2394 
2395 	/*
2396 	 * Lookup the bfqq that this bio will be queued with. Allow
2397 	 * merge only if rq is queued there.
2398 	 */
2399 	if (!bfqq)
2400 		return false;
2401 
2402 	/*
2403 	 * We take advantage of this function to perform an early merge
2404 	 * of the queues of possible cooperating processes.
2405 	 */
2406 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2407 	if (new_bfqq) {
2408 		/*
2409 		 * bic still points to bfqq, then it has not yet been
2410 		 * redirected to some other bfq_queue, and a queue
2411 		 * merge beween bfqq and new_bfqq can be safely
2412 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2413 		 * and bfqq can be put.
2414 		 */
2415 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2416 				new_bfqq);
2417 		/*
2418 		 * If we get here, bio will be queued into new_queue,
2419 		 * so use new_bfqq to decide whether bio and rq can be
2420 		 * merged.
2421 		 */
2422 		bfqq = new_bfqq;
2423 
2424 		/*
2425 		 * Change also bqfd->bio_bfqq, as
2426 		 * bfqd->bio_bic now points to new_bfqq, and
2427 		 * this function may be invoked again (and then may
2428 		 * use again bqfd->bio_bfqq).
2429 		 */
2430 		bfqd->bio_bfqq = bfqq;
2431 	}
2432 
2433 	return bfqq == RQ_BFQQ(rq);
2434 }
2435 
2436 /*
2437  * Set the maximum time for the in-service queue to consume its
2438  * budget. This prevents seeky processes from lowering the throughput.
2439  * In practice, a time-slice service scheme is used with seeky
2440  * processes.
2441  */
2442 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2443 				   struct bfq_queue *bfqq)
2444 {
2445 	unsigned int timeout_coeff;
2446 
2447 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2448 		timeout_coeff = 1;
2449 	else
2450 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2451 
2452 	bfqd->last_budget_start = ktime_get();
2453 
2454 	bfqq->budget_timeout = jiffies +
2455 		bfqd->bfq_timeout * timeout_coeff;
2456 }
2457 
2458 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2459 				       struct bfq_queue *bfqq)
2460 {
2461 	if (bfqq) {
2462 		bfq_clear_bfqq_fifo_expire(bfqq);
2463 
2464 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2465 
2466 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2467 		    bfqq->wr_coeff > 1 &&
2468 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2469 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2470 			/*
2471 			 * For soft real-time queues, move the start
2472 			 * of the weight-raising period forward by the
2473 			 * time the queue has not received any
2474 			 * service. Otherwise, a relatively long
2475 			 * service delay is likely to cause the
2476 			 * weight-raising period of the queue to end,
2477 			 * because of the short duration of the
2478 			 * weight-raising period of a soft real-time
2479 			 * queue.  It is worth noting that this move
2480 			 * is not so dangerous for the other queues,
2481 			 * because soft real-time queues are not
2482 			 * greedy.
2483 			 *
2484 			 * To not add a further variable, we use the
2485 			 * overloaded field budget_timeout to
2486 			 * determine for how long the queue has not
2487 			 * received service, i.e., how much time has
2488 			 * elapsed since the queue expired. However,
2489 			 * this is a little imprecise, because
2490 			 * budget_timeout is set to jiffies if bfqq
2491 			 * not only expires, but also remains with no
2492 			 * request.
2493 			 */
2494 			if (time_after(bfqq->budget_timeout,
2495 				       bfqq->last_wr_start_finish))
2496 				bfqq->last_wr_start_finish +=
2497 					jiffies - bfqq->budget_timeout;
2498 			else
2499 				bfqq->last_wr_start_finish = jiffies;
2500 		}
2501 
2502 		bfq_set_budget_timeout(bfqd, bfqq);
2503 		bfq_log_bfqq(bfqd, bfqq,
2504 			     "set_in_service_queue, cur-budget = %d",
2505 			     bfqq->entity.budget);
2506 	}
2507 
2508 	bfqd->in_service_queue = bfqq;
2509 }
2510 
2511 /*
2512  * Get and set a new queue for service.
2513  */
2514 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2515 {
2516 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2517 
2518 	__bfq_set_in_service_queue(bfqd, bfqq);
2519 	return bfqq;
2520 }
2521 
2522 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2523 {
2524 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2525 	u32 sl;
2526 
2527 	bfq_mark_bfqq_wait_request(bfqq);
2528 
2529 	/*
2530 	 * We don't want to idle for seeks, but we do want to allow
2531 	 * fair distribution of slice time for a process doing back-to-back
2532 	 * seeks. So allow a little bit of time for him to submit a new rq.
2533 	 */
2534 	sl = bfqd->bfq_slice_idle;
2535 	/*
2536 	 * Unless the queue is being weight-raised or the scenario is
2537 	 * asymmetric, grant only minimum idle time if the queue
2538 	 * is seeky. A long idling is preserved for a weight-raised
2539 	 * queue, or, more in general, in an asymmetric scenario,
2540 	 * because a long idling is needed for guaranteeing to a queue
2541 	 * its reserved share of the throughput (in particular, it is
2542 	 * needed if the queue has a higher weight than some other
2543 	 * queue).
2544 	 */
2545 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2546 	    bfq_symmetric_scenario(bfqd))
2547 		sl = min_t(u64, sl, BFQ_MIN_TT);
2548 
2549 	bfqd->last_idling_start = ktime_get();
2550 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2551 		      HRTIMER_MODE_REL);
2552 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2553 }
2554 
2555 /*
2556  * In autotuning mode, max_budget is dynamically recomputed as the
2557  * amount of sectors transferred in timeout at the estimated peak
2558  * rate. This enables BFQ to utilize a full timeslice with a full
2559  * budget, even if the in-service queue is served at peak rate. And
2560  * this maximises throughput with sequential workloads.
2561  */
2562 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2563 {
2564 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2565 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2566 }
2567 
2568 /*
2569  * Update parameters related to throughput and responsiveness, as a
2570  * function of the estimated peak rate. See comments on
2571  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2572  */
2573 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2574 {
2575 	if (bfqd->bfq_user_max_budget == 0) {
2576 		bfqd->bfq_max_budget =
2577 			bfq_calc_max_budget(bfqd);
2578 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2579 	}
2580 }
2581 
2582 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2583 				       struct request *rq)
2584 {
2585 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2586 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2587 		bfqd->peak_rate_samples = 1;
2588 		bfqd->sequential_samples = 0;
2589 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2590 			blk_rq_sectors(rq);
2591 	} else /* no new rq dispatched, just reset the number of samples */
2592 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2593 
2594 	bfq_log(bfqd,
2595 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2596 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2597 		bfqd->tot_sectors_dispatched);
2598 }
2599 
2600 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2601 {
2602 	u32 rate, weight, divisor;
2603 
2604 	/*
2605 	 * For the convergence property to hold (see comments on
2606 	 * bfq_update_peak_rate()) and for the assessment to be
2607 	 * reliable, a minimum number of samples must be present, and
2608 	 * a minimum amount of time must have elapsed. If not so, do
2609 	 * not compute new rate. Just reset parameters, to get ready
2610 	 * for a new evaluation attempt.
2611 	 */
2612 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2613 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2614 		goto reset_computation;
2615 
2616 	/*
2617 	 * If a new request completion has occurred after last
2618 	 * dispatch, then, to approximate the rate at which requests
2619 	 * have been served by the device, it is more precise to
2620 	 * extend the observation interval to the last completion.
2621 	 */
2622 	bfqd->delta_from_first =
2623 		max_t(u64, bfqd->delta_from_first,
2624 		      bfqd->last_completion - bfqd->first_dispatch);
2625 
2626 	/*
2627 	 * Rate computed in sects/usec, and not sects/nsec, for
2628 	 * precision issues.
2629 	 */
2630 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2631 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2632 
2633 	/*
2634 	 * Peak rate not updated if:
2635 	 * - the percentage of sequential dispatches is below 3/4 of the
2636 	 *   total, and rate is below the current estimated peak rate
2637 	 * - rate is unreasonably high (> 20M sectors/sec)
2638 	 */
2639 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2640 	     rate <= bfqd->peak_rate) ||
2641 		rate > 20<<BFQ_RATE_SHIFT)
2642 		goto reset_computation;
2643 
2644 	/*
2645 	 * We have to update the peak rate, at last! To this purpose,
2646 	 * we use a low-pass filter. We compute the smoothing constant
2647 	 * of the filter as a function of the 'weight' of the new
2648 	 * measured rate.
2649 	 *
2650 	 * As can be seen in next formulas, we define this weight as a
2651 	 * quantity proportional to how sequential the workload is,
2652 	 * and to how long the observation time interval is.
2653 	 *
2654 	 * The weight runs from 0 to 8. The maximum value of the
2655 	 * weight, 8, yields the minimum value for the smoothing
2656 	 * constant. At this minimum value for the smoothing constant,
2657 	 * the measured rate contributes for half of the next value of
2658 	 * the estimated peak rate.
2659 	 *
2660 	 * So, the first step is to compute the weight as a function
2661 	 * of how sequential the workload is. Note that the weight
2662 	 * cannot reach 9, because bfqd->sequential_samples cannot
2663 	 * become equal to bfqd->peak_rate_samples, which, in its
2664 	 * turn, holds true because bfqd->sequential_samples is not
2665 	 * incremented for the first sample.
2666 	 */
2667 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2668 
2669 	/*
2670 	 * Second step: further refine the weight as a function of the
2671 	 * duration of the observation interval.
2672 	 */
2673 	weight = min_t(u32, 8,
2674 		       div_u64(weight * bfqd->delta_from_first,
2675 			       BFQ_RATE_REF_INTERVAL));
2676 
2677 	/*
2678 	 * Divisor ranging from 10, for minimum weight, to 2, for
2679 	 * maximum weight.
2680 	 */
2681 	divisor = 10 - weight;
2682 
2683 	/*
2684 	 * Finally, update peak rate:
2685 	 *
2686 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2687 	 */
2688 	bfqd->peak_rate *= divisor-1;
2689 	bfqd->peak_rate /= divisor;
2690 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2691 
2692 	bfqd->peak_rate += rate;
2693 
2694 	/*
2695 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2696 	 * the minimum representable values reported in the comments
2697 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2698 	 * divisions by zero where bfqd->peak_rate is used as a
2699 	 * divisor.
2700 	 */
2701 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2702 
2703 	update_thr_responsiveness_params(bfqd);
2704 
2705 reset_computation:
2706 	bfq_reset_rate_computation(bfqd, rq);
2707 }
2708 
2709 /*
2710  * Update the read/write peak rate (the main quantity used for
2711  * auto-tuning, see update_thr_responsiveness_params()).
2712  *
2713  * It is not trivial to estimate the peak rate (correctly): because of
2714  * the presence of sw and hw queues between the scheduler and the
2715  * device components that finally serve I/O requests, it is hard to
2716  * say exactly when a given dispatched request is served inside the
2717  * device, and for how long. As a consequence, it is hard to know
2718  * precisely at what rate a given set of requests is actually served
2719  * by the device.
2720  *
2721  * On the opposite end, the dispatch time of any request is trivially
2722  * available, and, from this piece of information, the "dispatch rate"
2723  * of requests can be immediately computed. So, the idea in the next
2724  * function is to use what is known, namely request dispatch times
2725  * (plus, when useful, request completion times), to estimate what is
2726  * unknown, namely in-device request service rate.
2727  *
2728  * The main issue is that, because of the above facts, the rate at
2729  * which a certain set of requests is dispatched over a certain time
2730  * interval can vary greatly with respect to the rate at which the
2731  * same requests are then served. But, since the size of any
2732  * intermediate queue is limited, and the service scheme is lossless
2733  * (no request is silently dropped), the following obvious convergence
2734  * property holds: the number of requests dispatched MUST become
2735  * closer and closer to the number of requests completed as the
2736  * observation interval grows. This is the key property used in
2737  * the next function to estimate the peak service rate as a function
2738  * of the observed dispatch rate. The function assumes to be invoked
2739  * on every request dispatch.
2740  */
2741 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2742 {
2743 	u64 now_ns = ktime_get_ns();
2744 
2745 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2746 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2747 			bfqd->peak_rate_samples);
2748 		bfq_reset_rate_computation(bfqd, rq);
2749 		goto update_last_values; /* will add one sample */
2750 	}
2751 
2752 	/*
2753 	 * Device idle for very long: the observation interval lasting
2754 	 * up to this dispatch cannot be a valid observation interval
2755 	 * for computing a new peak rate (similarly to the late-
2756 	 * completion event in bfq_completed_request()). Go to
2757 	 * update_rate_and_reset to have the following three steps
2758 	 * taken:
2759 	 * - close the observation interval at the last (previous)
2760 	 *   request dispatch or completion
2761 	 * - compute rate, if possible, for that observation interval
2762 	 * - start a new observation interval with this dispatch
2763 	 */
2764 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2765 	    bfqd->rq_in_driver == 0)
2766 		goto update_rate_and_reset;
2767 
2768 	/* Update sampling information */
2769 	bfqd->peak_rate_samples++;
2770 
2771 	if ((bfqd->rq_in_driver > 0 ||
2772 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2773 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
2774 		bfqd->sequential_samples++;
2775 
2776 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2777 
2778 	/* Reset max observed rq size every 32 dispatches */
2779 	if (likely(bfqd->peak_rate_samples % 32))
2780 		bfqd->last_rq_max_size =
2781 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2782 	else
2783 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2784 
2785 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2786 
2787 	/* Target observation interval not yet reached, go on sampling */
2788 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2789 		goto update_last_values;
2790 
2791 update_rate_and_reset:
2792 	bfq_update_rate_reset(bfqd, rq);
2793 update_last_values:
2794 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2795 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
2796 		bfqd->in_serv_last_pos = bfqd->last_position;
2797 	bfqd->last_dispatch = now_ns;
2798 }
2799 
2800 /*
2801  * Remove request from internal lists.
2802  */
2803 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2804 {
2805 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2806 
2807 	/*
2808 	 * For consistency, the next instruction should have been
2809 	 * executed after removing the request from the queue and
2810 	 * dispatching it.  We execute instead this instruction before
2811 	 * bfq_remove_request() (and hence introduce a temporary
2812 	 * inconsistency), for efficiency.  In fact, should this
2813 	 * dispatch occur for a non in-service bfqq, this anticipated
2814 	 * increment prevents two counters related to bfqq->dispatched
2815 	 * from risking to be, first, uselessly decremented, and then
2816 	 * incremented again when the (new) value of bfqq->dispatched
2817 	 * happens to be taken into account.
2818 	 */
2819 	bfqq->dispatched++;
2820 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2821 
2822 	bfq_remove_request(q, rq);
2823 }
2824 
2825 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2826 {
2827 	/*
2828 	 * If this bfqq is shared between multiple processes, check
2829 	 * to make sure that those processes are still issuing I/Os
2830 	 * within the mean seek distance. If not, it may be time to
2831 	 * break the queues apart again.
2832 	 */
2833 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2834 		bfq_mark_bfqq_split_coop(bfqq);
2835 
2836 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2837 		if (bfqq->dispatched == 0)
2838 			/*
2839 			 * Overloading budget_timeout field to store
2840 			 * the time at which the queue remains with no
2841 			 * backlog and no outstanding request; used by
2842 			 * the weight-raising mechanism.
2843 			 */
2844 			bfqq->budget_timeout = jiffies;
2845 
2846 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2847 	} else {
2848 		bfq_requeue_bfqq(bfqd, bfqq, true);
2849 		/*
2850 		 * Resort priority tree of potential close cooperators.
2851 		 */
2852 		bfq_pos_tree_add_move(bfqd, bfqq);
2853 	}
2854 
2855 	/*
2856 	 * All in-service entities must have been properly deactivated
2857 	 * or requeued before executing the next function, which
2858 	 * resets all in-service entites as no more in service.
2859 	 */
2860 	__bfq_bfqd_reset_in_service(bfqd);
2861 }
2862 
2863 /**
2864  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2865  * @bfqd: device data.
2866  * @bfqq: queue to update.
2867  * @reason: reason for expiration.
2868  *
2869  * Handle the feedback on @bfqq budget at queue expiration.
2870  * See the body for detailed comments.
2871  */
2872 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2873 				     struct bfq_queue *bfqq,
2874 				     enum bfqq_expiration reason)
2875 {
2876 	struct request *next_rq;
2877 	int budget, min_budget;
2878 
2879 	min_budget = bfq_min_budget(bfqd);
2880 
2881 	if (bfqq->wr_coeff == 1)
2882 		budget = bfqq->max_budget;
2883 	else /*
2884 	      * Use a constant, low budget for weight-raised queues,
2885 	      * to help achieve a low latency. Keep it slightly higher
2886 	      * than the minimum possible budget, to cause a little
2887 	      * bit fewer expirations.
2888 	      */
2889 		budget = 2 * min_budget;
2890 
2891 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2892 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2893 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2894 		budget, bfq_min_budget(bfqd));
2895 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2896 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2897 
2898 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2899 		switch (reason) {
2900 		/*
2901 		 * Caveat: in all the following cases we trade latency
2902 		 * for throughput.
2903 		 */
2904 		case BFQQE_TOO_IDLE:
2905 			/*
2906 			 * This is the only case where we may reduce
2907 			 * the budget: if there is no request of the
2908 			 * process still waiting for completion, then
2909 			 * we assume (tentatively) that the timer has
2910 			 * expired because the batch of requests of
2911 			 * the process could have been served with a
2912 			 * smaller budget.  Hence, betting that
2913 			 * process will behave in the same way when it
2914 			 * becomes backlogged again, we reduce its
2915 			 * next budget.  As long as we guess right,
2916 			 * this budget cut reduces the latency
2917 			 * experienced by the process.
2918 			 *
2919 			 * However, if there are still outstanding
2920 			 * requests, then the process may have not yet
2921 			 * issued its next request just because it is
2922 			 * still waiting for the completion of some of
2923 			 * the still outstanding ones.  So in this
2924 			 * subcase we do not reduce its budget, on the
2925 			 * contrary we increase it to possibly boost
2926 			 * the throughput, as discussed in the
2927 			 * comments to the BUDGET_TIMEOUT case.
2928 			 */
2929 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2930 				budget = min(budget * 2, bfqd->bfq_max_budget);
2931 			else {
2932 				if (budget > 5 * min_budget)
2933 					budget -= 4 * min_budget;
2934 				else
2935 					budget = min_budget;
2936 			}
2937 			break;
2938 		case BFQQE_BUDGET_TIMEOUT:
2939 			/*
2940 			 * We double the budget here because it gives
2941 			 * the chance to boost the throughput if this
2942 			 * is not a seeky process (and has bumped into
2943 			 * this timeout because of, e.g., ZBR).
2944 			 */
2945 			budget = min(budget * 2, bfqd->bfq_max_budget);
2946 			break;
2947 		case BFQQE_BUDGET_EXHAUSTED:
2948 			/*
2949 			 * The process still has backlog, and did not
2950 			 * let either the budget timeout or the disk
2951 			 * idling timeout expire. Hence it is not
2952 			 * seeky, has a short thinktime and may be
2953 			 * happy with a higher budget too. So
2954 			 * definitely increase the budget of this good
2955 			 * candidate to boost the disk throughput.
2956 			 */
2957 			budget = min(budget * 4, bfqd->bfq_max_budget);
2958 			break;
2959 		case BFQQE_NO_MORE_REQUESTS:
2960 			/*
2961 			 * For queues that expire for this reason, it
2962 			 * is particularly important to keep the
2963 			 * budget close to the actual service they
2964 			 * need. Doing so reduces the timestamp
2965 			 * misalignment problem described in the
2966 			 * comments in the body of
2967 			 * __bfq_activate_entity. In fact, suppose
2968 			 * that a queue systematically expires for
2969 			 * BFQQE_NO_MORE_REQUESTS and presents a
2970 			 * new request in time to enjoy timestamp
2971 			 * back-shifting. The larger the budget of the
2972 			 * queue is with respect to the service the
2973 			 * queue actually requests in each service
2974 			 * slot, the more times the queue can be
2975 			 * reactivated with the same virtual finish
2976 			 * time. It follows that, even if this finish
2977 			 * time is pushed to the system virtual time
2978 			 * to reduce the consequent timestamp
2979 			 * misalignment, the queue unjustly enjoys for
2980 			 * many re-activations a lower finish time
2981 			 * than all newly activated queues.
2982 			 *
2983 			 * The service needed by bfqq is measured
2984 			 * quite precisely by bfqq->entity.service.
2985 			 * Since bfqq does not enjoy device idling,
2986 			 * bfqq->entity.service is equal to the number
2987 			 * of sectors that the process associated with
2988 			 * bfqq requested to read/write before waiting
2989 			 * for request completions, or blocking for
2990 			 * other reasons.
2991 			 */
2992 			budget = max_t(int, bfqq->entity.service, min_budget);
2993 			break;
2994 		default:
2995 			return;
2996 		}
2997 	} else if (!bfq_bfqq_sync(bfqq)) {
2998 		/*
2999 		 * Async queues get always the maximum possible
3000 		 * budget, as for them we do not care about latency
3001 		 * (in addition, their ability to dispatch is limited
3002 		 * by the charging factor).
3003 		 */
3004 		budget = bfqd->bfq_max_budget;
3005 	}
3006 
3007 	bfqq->max_budget = budget;
3008 
3009 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3010 	    !bfqd->bfq_user_max_budget)
3011 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3012 
3013 	/*
3014 	 * If there is still backlog, then assign a new budget, making
3015 	 * sure that it is large enough for the next request.  Since
3016 	 * the finish time of bfqq must be kept in sync with the
3017 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3018 	 * update.
3019 	 *
3020 	 * If there is no backlog, then no need to update the budget;
3021 	 * it will be updated on the arrival of a new request.
3022 	 */
3023 	next_rq = bfqq->next_rq;
3024 	if (next_rq)
3025 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3026 					    bfq_serv_to_charge(next_rq, bfqq));
3027 
3028 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3029 			next_rq ? blk_rq_sectors(next_rq) : 0,
3030 			bfqq->entity.budget);
3031 }
3032 
3033 /*
3034  * Return true if the process associated with bfqq is "slow". The slow
3035  * flag is used, in addition to the budget timeout, to reduce the
3036  * amount of service provided to seeky processes, and thus reduce
3037  * their chances to lower the throughput. More details in the comments
3038  * on the function bfq_bfqq_expire().
3039  *
3040  * An important observation is in order: as discussed in the comments
3041  * on the function bfq_update_peak_rate(), with devices with internal
3042  * queues, it is hard if ever possible to know when and for how long
3043  * an I/O request is processed by the device (apart from the trivial
3044  * I/O pattern where a new request is dispatched only after the
3045  * previous one has been completed). This makes it hard to evaluate
3046  * the real rate at which the I/O requests of each bfq_queue are
3047  * served.  In fact, for an I/O scheduler like BFQ, serving a
3048  * bfq_queue means just dispatching its requests during its service
3049  * slot (i.e., until the budget of the queue is exhausted, or the
3050  * queue remains idle, or, finally, a timeout fires). But, during the
3051  * service slot of a bfq_queue, around 100 ms at most, the device may
3052  * be even still processing requests of bfq_queues served in previous
3053  * service slots. On the opposite end, the requests of the in-service
3054  * bfq_queue may be completed after the service slot of the queue
3055  * finishes.
3056  *
3057  * Anyway, unless more sophisticated solutions are used
3058  * (where possible), the sum of the sizes of the requests dispatched
3059  * during the service slot of a bfq_queue is probably the only
3060  * approximation available for the service received by the bfq_queue
3061  * during its service slot. And this sum is the quantity used in this
3062  * function to evaluate the I/O speed of a process.
3063  */
3064 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3065 				 bool compensate, enum bfqq_expiration reason,
3066 				 unsigned long *delta_ms)
3067 {
3068 	ktime_t delta_ktime;
3069 	u32 delta_usecs;
3070 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3071 
3072 	if (!bfq_bfqq_sync(bfqq))
3073 		return false;
3074 
3075 	if (compensate)
3076 		delta_ktime = bfqd->last_idling_start;
3077 	else
3078 		delta_ktime = ktime_get();
3079 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3080 	delta_usecs = ktime_to_us(delta_ktime);
3081 
3082 	/* don't use too short time intervals */
3083 	if (delta_usecs < 1000) {
3084 		if (blk_queue_nonrot(bfqd->queue))
3085 			 /*
3086 			  * give same worst-case guarantees as idling
3087 			  * for seeky
3088 			  */
3089 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3090 		else /* charge at least one seek */
3091 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3092 
3093 		return slow;
3094 	}
3095 
3096 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3097 
3098 	/*
3099 	 * Use only long (> 20ms) intervals to filter out excessive
3100 	 * spikes in service rate estimation.
3101 	 */
3102 	if (delta_usecs > 20000) {
3103 		/*
3104 		 * Caveat for rotational devices: processes doing I/O
3105 		 * in the slower disk zones tend to be slow(er) even
3106 		 * if not seeky. In this respect, the estimated peak
3107 		 * rate is likely to be an average over the disk
3108 		 * surface. Accordingly, to not be too harsh with
3109 		 * unlucky processes, a process is deemed slow only if
3110 		 * its rate has been lower than half of the estimated
3111 		 * peak rate.
3112 		 */
3113 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3114 	}
3115 
3116 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3117 
3118 	return slow;
3119 }
3120 
3121 /*
3122  * To be deemed as soft real-time, an application must meet two
3123  * requirements. First, the application must not require an average
3124  * bandwidth higher than the approximate bandwidth required to playback or
3125  * record a compressed high-definition video.
3126  * The next function is invoked on the completion of the last request of a
3127  * batch, to compute the next-start time instant, soft_rt_next_start, such
3128  * that, if the next request of the application does not arrive before
3129  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3130  *
3131  * The second requirement is that the request pattern of the application is
3132  * isochronous, i.e., that, after issuing a request or a batch of requests,
3133  * the application stops issuing new requests until all its pending requests
3134  * have been completed. After that, the application may issue a new batch,
3135  * and so on.
3136  * For this reason the next function is invoked to compute
3137  * soft_rt_next_start only for applications that meet this requirement,
3138  * whereas soft_rt_next_start is set to infinity for applications that do
3139  * not.
3140  *
3141  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3142  * happen to meet, occasionally or systematically, both the above
3143  * bandwidth and isochrony requirements. This may happen at least in
3144  * the following circumstances. First, if the CPU load is high. The
3145  * application may stop issuing requests while the CPUs are busy
3146  * serving other processes, then restart, then stop again for a while,
3147  * and so on. The other circumstances are related to the storage
3148  * device: the storage device is highly loaded or reaches a low-enough
3149  * throughput with the I/O of the application (e.g., because the I/O
3150  * is random and/or the device is slow). In all these cases, the
3151  * I/O of the application may be simply slowed down enough to meet
3152  * the bandwidth and isochrony requirements. To reduce the probability
3153  * that greedy applications are deemed as soft real-time in these
3154  * corner cases, a further rule is used in the computation of
3155  * soft_rt_next_start: the return value of this function is forced to
3156  * be higher than the maximum between the following two quantities.
3157  *
3158  * (a) Current time plus: (1) the maximum time for which the arrival
3159  *     of a request is waited for when a sync queue becomes idle,
3160  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3161  *     postpone for a moment the reason for adding a few extra
3162  *     jiffies; we get back to it after next item (b).  Lower-bounding
3163  *     the return value of this function with the current time plus
3164  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3165  *     because the latter issue their next request as soon as possible
3166  *     after the last one has been completed. In contrast, a soft
3167  *     real-time application spends some time processing data, after a
3168  *     batch of its requests has been completed.
3169  *
3170  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3171  *     above, greedy applications may happen to meet both the
3172  *     bandwidth and isochrony requirements under heavy CPU or
3173  *     storage-device load. In more detail, in these scenarios, these
3174  *     applications happen, only for limited time periods, to do I/O
3175  *     slowly enough to meet all the requirements described so far,
3176  *     including the filtering in above item (a). These slow-speed
3177  *     time intervals are usually interspersed between other time
3178  *     intervals during which these applications do I/O at a very high
3179  *     speed. Fortunately, exactly because of the high speed of the
3180  *     I/O in the high-speed intervals, the values returned by this
3181  *     function happen to be so high, near the end of any such
3182  *     high-speed interval, to be likely to fall *after* the end of
3183  *     the low-speed time interval that follows. These high values are
3184  *     stored in bfqq->soft_rt_next_start after each invocation of
3185  *     this function. As a consequence, if the last value of
3186  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3187  *     next value that this function may return, then, from the very
3188  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3189  *     likely to be constantly kept so high that any I/O request
3190  *     issued during the low-speed interval is considered as arriving
3191  *     to soon for the application to be deemed as soft
3192  *     real-time. Then, in the high-speed interval that follows, the
3193  *     application will not be deemed as soft real-time, just because
3194  *     it will do I/O at a high speed. And so on.
3195  *
3196  * Getting back to the filtering in item (a), in the following two
3197  * cases this filtering might be easily passed by a greedy
3198  * application, if the reference quantity was just
3199  * bfqd->bfq_slice_idle:
3200  * 1) HZ is so low that the duration of a jiffy is comparable to or
3201  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3202  *    devices with HZ=100. The time granularity may be so coarse
3203  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3204  *    is rather lower than the exact value.
3205  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3206  *    for a while, then suddenly 'jump' by several units to recover the lost
3207  *    increments. This seems to happen, e.g., inside virtual machines.
3208  * To address this issue, in the filtering in (a) we do not use as a
3209  * reference time interval just bfqd->bfq_slice_idle, but
3210  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3211  * minimum number of jiffies for which the filter seems to be quite
3212  * precise also in embedded systems and KVM/QEMU virtual machines.
3213  */
3214 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3215 						struct bfq_queue *bfqq)
3216 {
3217 	return max3(bfqq->soft_rt_next_start,
3218 		    bfqq->last_idle_bklogged +
3219 		    HZ * bfqq->service_from_backlogged /
3220 		    bfqd->bfq_wr_max_softrt_rate,
3221 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3222 }
3223 
3224 static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3225 {
3226 	return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3227 		blk_queue_nonrot(bfqq->bfqd->queue) &&
3228 		bfqq->bfqd->hw_tag;
3229 }
3230 
3231 /**
3232  * bfq_bfqq_expire - expire a queue.
3233  * @bfqd: device owning the queue.
3234  * @bfqq: the queue to expire.
3235  * @compensate: if true, compensate for the time spent idling.
3236  * @reason: the reason causing the expiration.
3237  *
3238  * If the process associated with bfqq does slow I/O (e.g., because it
3239  * issues random requests), we charge bfqq with the time it has been
3240  * in service instead of the service it has received (see
3241  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3242  * a consequence, bfqq will typically get higher timestamps upon
3243  * reactivation, and hence it will be rescheduled as if it had
3244  * received more service than what it has actually received. In the
3245  * end, bfqq receives less service in proportion to how slowly its
3246  * associated process consumes its budgets (and hence how seriously it
3247  * tends to lower the throughput). In addition, this time-charging
3248  * strategy guarantees time fairness among slow processes. In
3249  * contrast, if the process associated with bfqq is not slow, we
3250  * charge bfqq exactly with the service it has received.
3251  *
3252  * Charging time to the first type of queues and the exact service to
3253  * the other has the effect of using the WF2Q+ policy to schedule the
3254  * former on a timeslice basis, without violating service domain
3255  * guarantees among the latter.
3256  */
3257 void bfq_bfqq_expire(struct bfq_data *bfqd,
3258 		     struct bfq_queue *bfqq,
3259 		     bool compensate,
3260 		     enum bfqq_expiration reason)
3261 {
3262 	bool slow;
3263 	unsigned long delta = 0;
3264 	struct bfq_entity *entity = &bfqq->entity;
3265 	int ref;
3266 
3267 	/*
3268 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3269 	 */
3270 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3271 
3272 	/*
3273 	 * As above explained, charge slow (typically seeky) and
3274 	 * timed-out queues with the time and not the service
3275 	 * received, to favor sequential workloads.
3276 	 *
3277 	 * Processes doing I/O in the slower disk zones will tend to
3278 	 * be slow(er) even if not seeky. Therefore, since the
3279 	 * estimated peak rate is actually an average over the disk
3280 	 * surface, these processes may timeout just for bad luck. To
3281 	 * avoid punishing them, do not charge time to processes that
3282 	 * succeeded in consuming at least 2/3 of their budget. This
3283 	 * allows BFQ to preserve enough elasticity to still perform
3284 	 * bandwidth, and not time, distribution with little unlucky
3285 	 * or quasi-sequential processes.
3286 	 */
3287 	if (bfqq->wr_coeff == 1 &&
3288 	    (slow ||
3289 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3290 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3291 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3292 
3293 	if (reason == BFQQE_TOO_IDLE &&
3294 	    entity->service <= 2 * entity->budget / 10)
3295 		bfq_clear_bfqq_IO_bound(bfqq);
3296 
3297 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3298 		bfqq->last_wr_start_finish = jiffies;
3299 
3300 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3301 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3302 		/*
3303 		 * If we get here, and there are no outstanding
3304 		 * requests, then the request pattern is isochronous
3305 		 * (see the comments on the function
3306 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3307 		 * soft_rt_next_start. And we do it, unless bfqq is in
3308 		 * interactive weight raising. We do not do it in the
3309 		 * latter subcase, for the following reason. bfqq may
3310 		 * be conveying the I/O needed to load a soft
3311 		 * real-time application. Such an application will
3312 		 * actually exhibit a soft real-time I/O pattern after
3313 		 * it finally starts doing its job. But, if
3314 		 * soft_rt_next_start is computed here for an
3315 		 * interactive bfqq, and bfqq had received a lot of
3316 		 * service before remaining with no outstanding
3317 		 * request (likely to happen on a fast device), then
3318 		 * soft_rt_next_start would be assigned such a high
3319 		 * value that, for a very long time, bfqq would be
3320 		 * prevented from being possibly considered as soft
3321 		 * real time.
3322 		 *
3323 		 * If, instead, the queue still has outstanding
3324 		 * requests, then we have to wait for the completion
3325 		 * of all the outstanding requests to discover whether
3326 		 * the request pattern is actually isochronous.
3327 		 */
3328 		if (bfqq->dispatched == 0 &&
3329 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
3330 			bfqq->soft_rt_next_start =
3331 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3332 		else if (bfqq->dispatched > 0) {
3333 			/*
3334 			 * Schedule an update of soft_rt_next_start to when
3335 			 * the task may be discovered to be isochronous.
3336 			 */
3337 			bfq_mark_bfqq_softrt_update(bfqq);
3338 		}
3339 	}
3340 
3341 	bfq_log_bfqq(bfqd, bfqq,
3342 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3343 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3344 
3345 	/*
3346 	 * Increase, decrease or leave budget unchanged according to
3347 	 * reason.
3348 	 */
3349 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3350 	ref = bfqq->ref;
3351 	__bfq_bfqq_expire(bfqd, bfqq);
3352 
3353 	if (ref == 1) /* bfqq is gone, no more actions on it */
3354 		return;
3355 
3356 	bfqq->injected_service = 0;
3357 
3358 	/* mark bfqq as waiting a request only if a bic still points to it */
3359 	if (!bfq_bfqq_busy(bfqq) &&
3360 	    reason != BFQQE_BUDGET_TIMEOUT &&
3361 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3362 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3363 		/*
3364 		 * Not setting service to 0, because, if the next rq
3365 		 * arrives in time, the queue will go on receiving
3366 		 * service with this same budget (as if it never expired)
3367 		 */
3368 	} else
3369 		entity->service = 0;
3370 
3371 	/*
3372 	 * Reset the received-service counter for every parent entity.
3373 	 * Differently from what happens with bfqq->entity.service,
3374 	 * the resetting of this counter never needs to be postponed
3375 	 * for parent entities. In fact, in case bfqq may have a
3376 	 * chance to go on being served using the last, partially
3377 	 * consumed budget, bfqq->entity.service needs to be kept,
3378 	 * because if bfqq then actually goes on being served using
3379 	 * the same budget, the last value of bfqq->entity.service is
3380 	 * needed to properly decrement bfqq->entity.budget by the
3381 	 * portion already consumed. In contrast, it is not necessary
3382 	 * to keep entity->service for parent entities too, because
3383 	 * the bubble up of the new value of bfqq->entity.budget will
3384 	 * make sure that the budgets of parent entities are correct,
3385 	 * even in case bfqq and thus parent entities go on receiving
3386 	 * service with the same budget.
3387 	 */
3388 	entity = entity->parent;
3389 	for_each_entity(entity)
3390 		entity->service = 0;
3391 }
3392 
3393 /*
3394  * Budget timeout is not implemented through a dedicated timer, but
3395  * just checked on request arrivals and completions, as well as on
3396  * idle timer expirations.
3397  */
3398 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3399 {
3400 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3401 }
3402 
3403 /*
3404  * If we expire a queue that is actively waiting (i.e., with the
3405  * device idled) for the arrival of a new request, then we may incur
3406  * the timestamp misalignment problem described in the body of the
3407  * function __bfq_activate_entity. Hence we return true only if this
3408  * condition does not hold, or if the queue is slow enough to deserve
3409  * only to be kicked off for preserving a high throughput.
3410  */
3411 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3412 {
3413 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3414 		"may_budget_timeout: wait_request %d left %d timeout %d",
3415 		bfq_bfqq_wait_request(bfqq),
3416 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3417 		bfq_bfqq_budget_timeout(bfqq));
3418 
3419 	return (!bfq_bfqq_wait_request(bfqq) ||
3420 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3421 		&&
3422 		bfq_bfqq_budget_timeout(bfqq);
3423 }
3424 
3425 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
3426 					     struct bfq_queue *bfqq)
3427 {
3428 	bool rot_without_queueing =
3429 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3430 		bfqq_sequential_and_IO_bound,
3431 		idling_boosts_thr;
3432 
3433 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3434 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3435 
3436 	/*
3437 	 * The next variable takes into account the cases where idling
3438 	 * boosts the throughput.
3439 	 *
3440 	 * The value of the variable is computed considering, first, that
3441 	 * idling is virtually always beneficial for the throughput if:
3442 	 * (a) the device is not NCQ-capable and rotational, or
3443 	 * (b) regardless of the presence of NCQ, the device is rotational and
3444 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3445 	 * (c) regardless of whether it is rotational, the device is
3446 	 *     not NCQ-capable and the request pattern for bfqq is
3447 	 *     I/O-bound and sequential.
3448 	 *
3449 	 * Secondly, and in contrast to the above item (b), idling an
3450 	 * NCQ-capable flash-based device would not boost the
3451 	 * throughput even with sequential I/O; rather it would lower
3452 	 * the throughput in proportion to how fast the device
3453 	 * is. Accordingly, the next variable is true if any of the
3454 	 * above conditions (a), (b) or (c) is true, and, in
3455 	 * particular, happens to be false if bfqd is an NCQ-capable
3456 	 * flash-based device.
3457 	 */
3458 	idling_boosts_thr = rot_without_queueing ||
3459 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3460 		 bfqq_sequential_and_IO_bound);
3461 
3462 	/*
3463 	 * The return value of this function is equal to that of
3464 	 * idling_boosts_thr, unless a special case holds. In this
3465 	 * special case, described below, idling may cause problems to
3466 	 * weight-raised queues.
3467 	 *
3468 	 * When the request pool is saturated (e.g., in the presence
3469 	 * of write hogs), if the processes associated with
3470 	 * non-weight-raised queues ask for requests at a lower rate,
3471 	 * then processes associated with weight-raised queues have a
3472 	 * higher probability to get a request from the pool
3473 	 * immediately (or at least soon) when they need one. Thus
3474 	 * they have a higher probability to actually get a fraction
3475 	 * of the device throughput proportional to their high
3476 	 * weight. This is especially true with NCQ-capable drives,
3477 	 * which enqueue several requests in advance, and further
3478 	 * reorder internally-queued requests.
3479 	 *
3480 	 * For this reason, we force to false the return value if
3481 	 * there are weight-raised busy queues. In this case, and if
3482 	 * bfqq is not weight-raised, this guarantees that the device
3483 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
3484 	 * then idling will be guaranteed by another variable, see
3485 	 * below). Combined with the timestamping rules of BFQ (see
3486 	 * [1] for details), this behavior causes bfqq, and hence any
3487 	 * sync non-weight-raised queue, to get a lower number of
3488 	 * requests served, and thus to ask for a lower number of
3489 	 * requests from the request pool, before the busy
3490 	 * weight-raised queues get served again. This often mitigates
3491 	 * starvation problems in the presence of heavy write
3492 	 * workloads and NCQ, thereby guaranteeing a higher
3493 	 * application and system responsiveness in these hostile
3494 	 * scenarios.
3495 	 */
3496 	return idling_boosts_thr &&
3497 		bfqd->wr_busy_queues == 0;
3498 }
3499 
3500 /*
3501  * There is a case where idling must be performed not for
3502  * throughput concerns, but to preserve service guarantees.
3503  *
3504  * To introduce this case, we can note that allowing the drive
3505  * to enqueue more than one request at a time, and hence
3506  * delegating de facto final scheduling decisions to the
3507  * drive's internal scheduler, entails loss of control on the
3508  * actual request service order. In particular, the critical
3509  * situation is when requests from different processes happen
3510  * to be present, at the same time, in the internal queue(s)
3511  * of the drive. In such a situation, the drive, by deciding
3512  * the service order of the internally-queued requests, does
3513  * determine also the actual throughput distribution among
3514  * these processes. But the drive typically has no notion or
3515  * concern about per-process throughput distribution, and
3516  * makes its decisions only on a per-request basis. Therefore,
3517  * the service distribution enforced by the drive's internal
3518  * scheduler is likely to coincide with the desired
3519  * device-throughput distribution only in a completely
3520  * symmetric scenario where:
3521  * (i)  each of these processes must get the same throughput as
3522  *      the others;
3523  * (ii) the I/O of each process has the same properties, in
3524  *      terms of locality (sequential or random), direction
3525  *      (reads or writes), request sizes, greediness
3526  *      (from I/O-bound to sporadic), and so on.
3527  * In fact, in such a scenario, the drive tends to treat
3528  * the requests of each of these processes in about the same
3529  * way as the requests of the others, and thus to provide
3530  * each of these processes with about the same throughput
3531  * (which is exactly the desired throughput distribution). In
3532  * contrast, in any asymmetric scenario, device idling is
3533  * certainly needed to guarantee that bfqq receives its
3534  * assigned fraction of the device throughput (see [1] for
3535  * details).
3536  * The problem is that idling may significantly reduce
3537  * throughput with certain combinations of types of I/O and
3538  * devices. An important example is sync random I/O, on flash
3539  * storage with command queueing. So, unless bfqq falls in the
3540  * above cases where idling also boosts throughput, it would
3541  * be important to check conditions (i) and (ii) accurately,
3542  * so as to avoid idling when not strictly needed for service
3543  * guarantees.
3544  *
3545  * Unfortunately, it is extremely difficult to thoroughly
3546  * check condition (ii). And, in case there are active groups,
3547  * it becomes very difficult to check condition (i) too. In
3548  * fact, if there are active groups, then, for condition (i)
3549  * to become false, it is enough that an active group contains
3550  * more active processes or sub-groups than some other active
3551  * group. More precisely, for condition (i) to hold because of
3552  * such a group, it is not even necessary that the group is
3553  * (still) active: it is sufficient that, even if the group
3554  * has become inactive, some of its descendant processes still
3555  * have some request already dispatched but still waiting for
3556  * completion. In fact, requests have still to be guaranteed
3557  * their share of the throughput even after being
3558  * dispatched. In this respect, it is easy to show that, if a
3559  * group frequently becomes inactive while still having
3560  * in-flight requests, and if, when this happens, the group is
3561  * not considered in the calculation of whether the scenario
3562  * is asymmetric, then the group may fail to be guaranteed its
3563  * fair share of the throughput (basically because idling may
3564  * not be performed for the descendant processes of the group,
3565  * but it had to be).  We address this issue with the
3566  * following bi-modal behavior, implemented in the function
3567  * bfq_symmetric_scenario().
3568  *
3569  * If there are groups with requests waiting for completion
3570  * (as commented above, some of these groups may even be
3571  * already inactive), then the scenario is tagged as
3572  * asymmetric, conservatively, without checking any of the
3573  * conditions (i) and (ii). So the device is idled for bfqq.
3574  * This behavior matches also the fact that groups are created
3575  * exactly if controlling I/O is a primary concern (to
3576  * preserve bandwidth and latency guarantees).
3577  *
3578  * On the opposite end, if there are no groups with requests
3579  * waiting for completion, then only condition (i) is actually
3580  * controlled, i.e., provided that condition (i) holds, idling
3581  * is not performed, regardless of whether condition (ii)
3582  * holds. In other words, only if condition (i) does not hold,
3583  * then idling is allowed, and the device tends to be
3584  * prevented from queueing many requests, possibly of several
3585  * processes. Since there are no groups with requests waiting
3586  * for completion, then, to control condition (i) it is enough
3587  * to check just whether all the queues with requests waiting
3588  * for completion also have the same weight.
3589  *
3590  * Not checking condition (ii) evidently exposes bfqq to the
3591  * risk of getting less throughput than its fair share.
3592  * However, for queues with the same weight, a further
3593  * mechanism, preemption, mitigates or even eliminates this
3594  * problem. And it does so without consequences on overall
3595  * throughput. This mechanism and its benefits are explained
3596  * in the next three paragraphs.
3597  *
3598  * Even if a queue, say Q, is expired when it remains idle, Q
3599  * can still preempt the new in-service queue if the next
3600  * request of Q arrives soon (see the comments on
3601  * bfq_bfqq_update_budg_for_activation). If all queues and
3602  * groups have the same weight, this form of preemption,
3603  * combined with the hole-recovery heuristic described in the
3604  * comments on function bfq_bfqq_update_budg_for_activation,
3605  * are enough to preserve a correct bandwidth distribution in
3606  * the mid term, even without idling. In fact, even if not
3607  * idling allows the internal queues of the device to contain
3608  * many requests, and thus to reorder requests, we can rather
3609  * safely assume that the internal scheduler still preserves a
3610  * minimum of mid-term fairness.
3611  *
3612  * More precisely, this preemption-based, idleless approach
3613  * provides fairness in terms of IOPS, and not sectors per
3614  * second. This can be seen with a simple example. Suppose
3615  * that there are two queues with the same weight, but that
3616  * the first queue receives requests of 8 sectors, while the
3617  * second queue receives requests of 1024 sectors. In
3618  * addition, suppose that each of the two queues contains at
3619  * most one request at a time, which implies that each queue
3620  * always remains idle after it is served. Finally, after
3621  * remaining idle, each queue receives very quickly a new
3622  * request. It follows that the two queues are served
3623  * alternatively, preempting each other if needed. This
3624  * implies that, although both queues have the same weight,
3625  * the queue with large requests receives a service that is
3626  * 1024/8 times as high as the service received by the other
3627  * queue.
3628  *
3629  * The motivation for using preemption instead of idling (for
3630  * queues with the same weight) is that, by not idling,
3631  * service guarantees are preserved (completely or at least in
3632  * part) without minimally sacrificing throughput. And, if
3633  * there is no active group, then the primary expectation for
3634  * this device is probably a high throughput.
3635  *
3636  * We are now left only with explaining the additional
3637  * compound condition that is checked below for deciding
3638  * whether the scenario is asymmetric. To explain this
3639  * compound condition, we need to add that the function
3640  * bfq_symmetric_scenario checks the weights of only
3641  * non-weight-raised queues, for efficiency reasons (see
3642  * comments on bfq_weights_tree_add()). Then the fact that
3643  * bfqq is weight-raised is checked explicitly here. More
3644  * precisely, the compound condition below takes into account
3645  * also the fact that, even if bfqq is being weight-raised,
3646  * the scenario is still symmetric if all queues with requests
3647  * waiting for completion happen to be
3648  * weight-raised. Actually, we should be even more precise
3649  * here, and differentiate between interactive weight raising
3650  * and soft real-time weight raising.
3651  *
3652  * As a side note, it is worth considering that the above
3653  * device-idling countermeasures may however fail in the
3654  * following unlucky scenario: if idling is (correctly)
3655  * disabled in a time period during which all symmetry
3656  * sub-conditions hold, and hence the device is allowed to
3657  * enqueue many requests, but at some later point in time some
3658  * sub-condition stops to hold, then it may become impossible
3659  * to let requests be served in the desired order until all
3660  * the requests already queued in the device have been served.
3661  */
3662 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3663 						 struct bfq_queue *bfqq)
3664 {
3665 	return (bfqq->wr_coeff > 1 &&
3666 		bfqd->wr_busy_queues <
3667 		bfq_tot_busy_queues(bfqd)) ||
3668 		!bfq_symmetric_scenario(bfqd);
3669 }
3670 
3671 /*
3672  * For a queue that becomes empty, device idling is allowed only if
3673  * this function returns true for that queue. As a consequence, since
3674  * device idling plays a critical role for both throughput boosting
3675  * and service guarantees, the return value of this function plays a
3676  * critical role as well.
3677  *
3678  * In a nutshell, this function returns true only if idling is
3679  * beneficial for throughput or, even if detrimental for throughput,
3680  * idling is however necessary to preserve service guarantees (low
3681  * latency, desired throughput distribution, ...). In particular, on
3682  * NCQ-capable devices, this function tries to return false, so as to
3683  * help keep the drives' internal queues full, whenever this helps the
3684  * device boost the throughput without causing any service-guarantee
3685  * issue.
3686  *
3687  * Most of the issues taken into account to get the return value of
3688  * this function are not trivial. We discuss these issues in the two
3689  * functions providing the main pieces of information needed by this
3690  * function.
3691  */
3692 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3693 {
3694 	struct bfq_data *bfqd = bfqq->bfqd;
3695 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
3696 
3697 	if (unlikely(bfqd->strict_guarantees))
3698 		return true;
3699 
3700 	/*
3701 	 * Idling is performed only if slice_idle > 0. In addition, we
3702 	 * do not idle if
3703 	 * (a) bfqq is async
3704 	 * (b) bfqq is in the idle io prio class: in this case we do
3705 	 * not idle because we want to minimize the bandwidth that
3706 	 * queues in this class can steal to higher-priority queues
3707 	 */
3708 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3709 	   bfq_class_idle(bfqq))
3710 		return false;
3711 
3712 	idling_boosts_thr_with_no_issue =
3713 		idling_boosts_thr_without_issues(bfqd, bfqq);
3714 
3715 	idling_needed_for_service_guar =
3716 		idling_needed_for_service_guarantees(bfqd, bfqq);
3717 
3718 	/*
3719 	 * We have now the two components we need to compute the
3720 	 * return value of the function, which is true only if idling
3721 	 * either boosts the throughput (without issues), or is
3722 	 * necessary to preserve service guarantees.
3723 	 */
3724 	return idling_boosts_thr_with_no_issue ||
3725 		idling_needed_for_service_guar;
3726 }
3727 
3728 /*
3729  * If the in-service queue is empty but the function bfq_better_to_idle
3730  * returns true, then:
3731  * 1) the queue must remain in service and cannot be expired, and
3732  * 2) the device must be idled to wait for the possible arrival of a new
3733  *    request for the queue.
3734  * See the comments on the function bfq_better_to_idle for the reasons
3735  * why performing device idling is the best choice to boost the throughput
3736  * and preserve service guarantees when bfq_better_to_idle itself
3737  * returns true.
3738  */
3739 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3740 {
3741 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3742 }
3743 
3744 static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3745 {
3746 	struct bfq_queue *bfqq;
3747 
3748 	/*
3749 	 * A linear search; but, with a high probability, very few
3750 	 * steps are needed to find a candidate queue, i.e., a queue
3751 	 * with enough budget left for its next request. In fact:
3752 	 * - BFQ dynamically updates the budget of every queue so as
3753 	 *   to accommodate the expected backlog of the queue;
3754 	 * - if a queue gets all its requests dispatched as injected
3755 	 *   service, then the queue is removed from the active list
3756 	 *   (and re-added only if it gets new requests, but with
3757 	 *   enough budget for its new backlog).
3758 	 */
3759 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3760 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3761 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3762 		    bfq_bfqq_budget_left(bfqq))
3763 			return bfqq;
3764 
3765 	return NULL;
3766 }
3767 
3768 /*
3769  * Select a queue for service.  If we have a current queue in service,
3770  * check whether to continue servicing it, or retrieve and set a new one.
3771  */
3772 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3773 {
3774 	struct bfq_queue *bfqq;
3775 	struct request *next_rq;
3776 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3777 
3778 	bfqq = bfqd->in_service_queue;
3779 	if (!bfqq)
3780 		goto new_queue;
3781 
3782 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3783 
3784 	/*
3785 	 * Do not expire bfqq for budget timeout if bfqq may be about
3786 	 * to enjoy device idling. The reason why, in this case, we
3787 	 * prevent bfqq from expiring is the same as in the comments
3788 	 * on the case where bfq_bfqq_must_idle() returns true, in
3789 	 * bfq_completed_request().
3790 	 */
3791 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3792 	    !bfq_bfqq_must_idle(bfqq))
3793 		goto expire;
3794 
3795 check_queue:
3796 	/*
3797 	 * This loop is rarely executed more than once. Even when it
3798 	 * happens, it is much more convenient to re-execute this loop
3799 	 * than to return NULL and trigger a new dispatch to get a
3800 	 * request served.
3801 	 */
3802 	next_rq = bfqq->next_rq;
3803 	/*
3804 	 * If bfqq has requests queued and it has enough budget left to
3805 	 * serve them, keep the queue, otherwise expire it.
3806 	 */
3807 	if (next_rq) {
3808 		if (bfq_serv_to_charge(next_rq, bfqq) >
3809 			bfq_bfqq_budget_left(bfqq)) {
3810 			/*
3811 			 * Expire the queue for budget exhaustion,
3812 			 * which makes sure that the next budget is
3813 			 * enough to serve the next request, even if
3814 			 * it comes from the fifo expired path.
3815 			 */
3816 			reason = BFQQE_BUDGET_EXHAUSTED;
3817 			goto expire;
3818 		} else {
3819 			/*
3820 			 * The idle timer may be pending because we may
3821 			 * not disable disk idling even when a new request
3822 			 * arrives.
3823 			 */
3824 			if (bfq_bfqq_wait_request(bfqq)) {
3825 				/*
3826 				 * If we get here: 1) at least a new request
3827 				 * has arrived but we have not disabled the
3828 				 * timer because the request was too small,
3829 				 * 2) then the block layer has unplugged
3830 				 * the device, causing the dispatch to be
3831 				 * invoked.
3832 				 *
3833 				 * Since the device is unplugged, now the
3834 				 * requests are probably large enough to
3835 				 * provide a reasonable throughput.
3836 				 * So we disable idling.
3837 				 */
3838 				bfq_clear_bfqq_wait_request(bfqq);
3839 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3840 			}
3841 			goto keep_queue;
3842 		}
3843 	}
3844 
3845 	/*
3846 	 * No requests pending. However, if the in-service queue is idling
3847 	 * for a new request, or has requests waiting for a completion and
3848 	 * may idle after their completion, then keep it anyway.
3849 	 *
3850 	 * Yet, to boost throughput, inject service from other queues if
3851 	 * possible.
3852 	 */
3853 	if (bfq_bfqq_wait_request(bfqq) ||
3854 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3855 		if (bfq_bfqq_injectable(bfqq) &&
3856 		    bfqq->injected_service * bfqq->inject_coeff <
3857 		    bfqq->entity.service * 10)
3858 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
3859 		else
3860 			bfqq = NULL;
3861 
3862 		goto keep_queue;
3863 	}
3864 
3865 	reason = BFQQE_NO_MORE_REQUESTS;
3866 expire:
3867 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3868 new_queue:
3869 	bfqq = bfq_set_in_service_queue(bfqd);
3870 	if (bfqq) {
3871 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3872 		goto check_queue;
3873 	}
3874 keep_queue:
3875 	if (bfqq)
3876 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3877 	else
3878 		bfq_log(bfqd, "select_queue: no queue returned");
3879 
3880 	return bfqq;
3881 }
3882 
3883 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3884 {
3885 	struct bfq_entity *entity = &bfqq->entity;
3886 
3887 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3888 		bfq_log_bfqq(bfqd, bfqq,
3889 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3890 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3891 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3892 			bfqq->wr_coeff,
3893 			bfqq->entity.weight, bfqq->entity.orig_weight);
3894 
3895 		if (entity->prio_changed)
3896 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3897 
3898 		/*
3899 		 * If the queue was activated in a burst, or too much
3900 		 * time has elapsed from the beginning of this
3901 		 * weight-raising period, then end weight raising.
3902 		 */
3903 		if (bfq_bfqq_in_large_burst(bfqq))
3904 			bfq_bfqq_end_wr(bfqq);
3905 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3906 						bfqq->wr_cur_max_time)) {
3907 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3908 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3909 					       bfq_wr_duration(bfqd)))
3910 				bfq_bfqq_end_wr(bfqq);
3911 			else {
3912 				switch_back_to_interactive_wr(bfqq, bfqd);
3913 				bfqq->entity.prio_changed = 1;
3914 			}
3915 		}
3916 		if (bfqq->wr_coeff > 1 &&
3917 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3918 		    bfqq->service_from_wr > max_service_from_wr) {
3919 			/* see comments on max_service_from_wr */
3920 			bfq_bfqq_end_wr(bfqq);
3921 		}
3922 	}
3923 	/*
3924 	 * To improve latency (for this or other queues), immediately
3925 	 * update weight both if it must be raised and if it must be
3926 	 * lowered. Since, entity may be on some active tree here, and
3927 	 * might have a pending change of its ioprio class, invoke
3928 	 * next function with the last parameter unset (see the
3929 	 * comments on the function).
3930 	 */
3931 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3932 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3933 						entity, false);
3934 }
3935 
3936 /*
3937  * Dispatch next request from bfqq.
3938  */
3939 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3940 						 struct bfq_queue *bfqq)
3941 {
3942 	struct request *rq = bfqq->next_rq;
3943 	unsigned long service_to_charge;
3944 
3945 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3946 
3947 	bfq_bfqq_served(bfqq, service_to_charge);
3948 
3949 	bfq_dispatch_remove(bfqd->queue, rq);
3950 
3951 	if (bfqq != bfqd->in_service_queue) {
3952 		if (likely(bfqd->in_service_queue))
3953 			bfqd->in_service_queue->injected_service +=
3954 				bfq_serv_to_charge(rq, bfqq);
3955 
3956 		goto return_rq;
3957 	}
3958 
3959 	/*
3960 	 * If weight raising has to terminate for bfqq, then next
3961 	 * function causes an immediate update of bfqq's weight,
3962 	 * without waiting for next activation. As a consequence, on
3963 	 * expiration, bfqq will be timestamped as if has never been
3964 	 * weight-raised during this service slot, even if it has
3965 	 * received part or even most of the service as a
3966 	 * weight-raised queue. This inflates bfqq's timestamps, which
3967 	 * is beneficial, as bfqq is then more willing to leave the
3968 	 * device immediately to possible other weight-raised queues.
3969 	 */
3970 	bfq_update_wr_data(bfqd, bfqq);
3971 
3972 	/*
3973 	 * Expire bfqq, pretending that its budget expired, if bfqq
3974 	 * belongs to CLASS_IDLE and other queues are waiting for
3975 	 * service.
3976 	 */
3977 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
3978 		goto return_rq;
3979 
3980 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3981 
3982 return_rq:
3983 	return rq;
3984 }
3985 
3986 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3987 {
3988 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3989 
3990 	/*
3991 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3992 	 * most a call to dispatch for nothing
3993 	 */
3994 	return !list_empty_careful(&bfqd->dispatch) ||
3995 		bfq_tot_busy_queues(bfqd) > 0;
3996 }
3997 
3998 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3999 {
4000 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4001 	struct request *rq = NULL;
4002 	struct bfq_queue *bfqq = NULL;
4003 
4004 	if (!list_empty(&bfqd->dispatch)) {
4005 		rq = list_first_entry(&bfqd->dispatch, struct request,
4006 				      queuelist);
4007 		list_del_init(&rq->queuelist);
4008 
4009 		bfqq = RQ_BFQQ(rq);
4010 
4011 		if (bfqq) {
4012 			/*
4013 			 * Increment counters here, because this
4014 			 * dispatch does not follow the standard
4015 			 * dispatch flow (where counters are
4016 			 * incremented)
4017 			 */
4018 			bfqq->dispatched++;
4019 
4020 			goto inc_in_driver_start_rq;
4021 		}
4022 
4023 		/*
4024 		 * We exploit the bfq_finish_requeue_request hook to
4025 		 * decrement rq_in_driver, but
4026 		 * bfq_finish_requeue_request will not be invoked on
4027 		 * this request. So, to avoid unbalance, just start
4028 		 * this request, without incrementing rq_in_driver. As
4029 		 * a negative consequence, rq_in_driver is deceptively
4030 		 * lower than it should be while this request is in
4031 		 * service. This may cause bfq_schedule_dispatch to be
4032 		 * invoked uselessly.
4033 		 *
4034 		 * As for implementing an exact solution, the
4035 		 * bfq_finish_requeue_request hook, if defined, is
4036 		 * probably invoked also on this request. So, by
4037 		 * exploiting this hook, we could 1) increment
4038 		 * rq_in_driver here, and 2) decrement it in
4039 		 * bfq_finish_requeue_request. Such a solution would
4040 		 * let the value of the counter be always accurate,
4041 		 * but it would entail using an extra interface
4042 		 * function. This cost seems higher than the benefit,
4043 		 * being the frequency of non-elevator-private
4044 		 * requests very low.
4045 		 */
4046 		goto start_rq;
4047 	}
4048 
4049 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4050 		bfq_tot_busy_queues(bfqd));
4051 
4052 	if (bfq_tot_busy_queues(bfqd) == 0)
4053 		goto exit;
4054 
4055 	/*
4056 	 * Force device to serve one request at a time if
4057 	 * strict_guarantees is true. Forcing this service scheme is
4058 	 * currently the ONLY way to guarantee that the request
4059 	 * service order enforced by the scheduler is respected by a
4060 	 * queueing device. Otherwise the device is free even to make
4061 	 * some unlucky request wait for as long as the device
4062 	 * wishes.
4063 	 *
4064 	 * Of course, serving one request at at time may cause loss of
4065 	 * throughput.
4066 	 */
4067 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4068 		goto exit;
4069 
4070 	bfqq = bfq_select_queue(bfqd);
4071 	if (!bfqq)
4072 		goto exit;
4073 
4074 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4075 
4076 	if (rq) {
4077 inc_in_driver_start_rq:
4078 		bfqd->rq_in_driver++;
4079 start_rq:
4080 		rq->rq_flags |= RQF_STARTED;
4081 	}
4082 exit:
4083 	return rq;
4084 }
4085 
4086 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4087 static void bfq_update_dispatch_stats(struct request_queue *q,
4088 				      struct request *rq,
4089 				      struct bfq_queue *in_serv_queue,
4090 				      bool idle_timer_disabled)
4091 {
4092 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4093 
4094 	if (!idle_timer_disabled && !bfqq)
4095 		return;
4096 
4097 	/*
4098 	 * rq and bfqq are guaranteed to exist until this function
4099 	 * ends, for the following reasons. First, rq can be
4100 	 * dispatched to the device, and then can be completed and
4101 	 * freed, only after this function ends. Second, rq cannot be
4102 	 * merged (and thus freed because of a merge) any longer,
4103 	 * because it has already started. Thus rq cannot be freed
4104 	 * before this function ends, and, since rq has a reference to
4105 	 * bfqq, the same guarantee holds for bfqq too.
4106 	 *
4107 	 * In addition, the following queue lock guarantees that
4108 	 * bfqq_group(bfqq) exists as well.
4109 	 */
4110 	spin_lock_irq(&q->queue_lock);
4111 	if (idle_timer_disabled)
4112 		/*
4113 		 * Since the idle timer has been disabled,
4114 		 * in_serv_queue contained some request when
4115 		 * __bfq_dispatch_request was invoked above, which
4116 		 * implies that rq was picked exactly from
4117 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4118 		 * therefore guaranteed to exist because of the above
4119 		 * arguments.
4120 		 */
4121 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4122 	if (bfqq) {
4123 		struct bfq_group *bfqg = bfqq_group(bfqq);
4124 
4125 		bfqg_stats_update_avg_queue_size(bfqg);
4126 		bfqg_stats_set_start_empty_time(bfqg);
4127 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4128 	}
4129 	spin_unlock_irq(&q->queue_lock);
4130 }
4131 #else
4132 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4133 					     struct request *rq,
4134 					     struct bfq_queue *in_serv_queue,
4135 					     bool idle_timer_disabled) {}
4136 #endif
4137 
4138 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4139 {
4140 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4141 	struct request *rq;
4142 	struct bfq_queue *in_serv_queue;
4143 	bool waiting_rq, idle_timer_disabled;
4144 
4145 	spin_lock_irq(&bfqd->lock);
4146 
4147 	in_serv_queue = bfqd->in_service_queue;
4148 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4149 
4150 	rq = __bfq_dispatch_request(hctx);
4151 
4152 	idle_timer_disabled =
4153 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4154 
4155 	spin_unlock_irq(&bfqd->lock);
4156 
4157 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4158 				  idle_timer_disabled);
4159 
4160 	return rq;
4161 }
4162 
4163 /*
4164  * Task holds one reference to the queue, dropped when task exits.  Each rq
4165  * in-flight on this queue also holds a reference, dropped when rq is freed.
4166  *
4167  * Scheduler lock must be held here. Recall not to use bfqq after calling
4168  * this function on it.
4169  */
4170 void bfq_put_queue(struct bfq_queue *bfqq)
4171 {
4172 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4173 	struct bfq_group *bfqg = bfqq_group(bfqq);
4174 #endif
4175 
4176 	if (bfqq->bfqd)
4177 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4178 			     bfqq, bfqq->ref);
4179 
4180 	bfqq->ref--;
4181 	if (bfqq->ref)
4182 		return;
4183 
4184 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4185 		hlist_del_init(&bfqq->burst_list_node);
4186 		/*
4187 		 * Decrement also burst size after the removal, if the
4188 		 * process associated with bfqq is exiting, and thus
4189 		 * does not contribute to the burst any longer. This
4190 		 * decrement helps filter out false positives of large
4191 		 * bursts, when some short-lived process (often due to
4192 		 * the execution of commands by some service) happens
4193 		 * to start and exit while a complex application is
4194 		 * starting, and thus spawning several processes that
4195 		 * do I/O (and that *must not* be treated as a large
4196 		 * burst, see comments on bfq_handle_burst).
4197 		 *
4198 		 * In particular, the decrement is performed only if:
4199 		 * 1) bfqq is not a merged queue, because, if it is,
4200 		 * then this free of bfqq is not triggered by the exit
4201 		 * of the process bfqq is associated with, but exactly
4202 		 * by the fact that bfqq has just been merged.
4203 		 * 2) burst_size is greater than 0, to handle
4204 		 * unbalanced decrements. Unbalanced decrements may
4205 		 * happen in te following case: bfqq is inserted into
4206 		 * the current burst list--without incrementing
4207 		 * bust_size--because of a split, but the current
4208 		 * burst list is not the burst list bfqq belonged to
4209 		 * (see comments on the case of a split in
4210 		 * bfq_set_request).
4211 		 */
4212 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4213 			bfqq->bfqd->burst_size--;
4214 	}
4215 
4216 	kmem_cache_free(bfq_pool, bfqq);
4217 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4218 	bfqg_and_blkg_put(bfqg);
4219 #endif
4220 }
4221 
4222 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4223 {
4224 	struct bfq_queue *__bfqq, *next;
4225 
4226 	/*
4227 	 * If this queue was scheduled to merge with another queue, be
4228 	 * sure to drop the reference taken on that queue (and others in
4229 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4230 	 */
4231 	__bfqq = bfqq->new_bfqq;
4232 	while (__bfqq) {
4233 		if (__bfqq == bfqq)
4234 			break;
4235 		next = __bfqq->new_bfqq;
4236 		bfq_put_queue(__bfqq);
4237 		__bfqq = next;
4238 	}
4239 }
4240 
4241 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4242 {
4243 	if (bfqq == bfqd->in_service_queue) {
4244 		__bfq_bfqq_expire(bfqd, bfqq);
4245 		bfq_schedule_dispatch(bfqd);
4246 	}
4247 
4248 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4249 
4250 	bfq_put_cooperator(bfqq);
4251 
4252 	bfq_put_queue(bfqq); /* release process reference */
4253 }
4254 
4255 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4256 {
4257 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4258 	struct bfq_data *bfqd;
4259 
4260 	if (bfqq)
4261 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4262 
4263 	if (bfqq && bfqd) {
4264 		unsigned long flags;
4265 
4266 		spin_lock_irqsave(&bfqd->lock, flags);
4267 		bfq_exit_bfqq(bfqd, bfqq);
4268 		bic_set_bfqq(bic, NULL, is_sync);
4269 		spin_unlock_irqrestore(&bfqd->lock, flags);
4270 	}
4271 }
4272 
4273 static void bfq_exit_icq(struct io_cq *icq)
4274 {
4275 	struct bfq_io_cq *bic = icq_to_bic(icq);
4276 
4277 	bfq_exit_icq_bfqq(bic, true);
4278 	bfq_exit_icq_bfqq(bic, false);
4279 }
4280 
4281 /*
4282  * Update the entity prio values; note that the new values will not
4283  * be used until the next (re)activation.
4284  */
4285 static void
4286 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4287 {
4288 	struct task_struct *tsk = current;
4289 	int ioprio_class;
4290 	struct bfq_data *bfqd = bfqq->bfqd;
4291 
4292 	if (!bfqd)
4293 		return;
4294 
4295 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4296 	switch (ioprio_class) {
4297 	default:
4298 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4299 			"bfq: bad prio class %d\n", ioprio_class);
4300 		/* fall through */
4301 	case IOPRIO_CLASS_NONE:
4302 		/*
4303 		 * No prio set, inherit CPU scheduling settings.
4304 		 */
4305 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4306 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4307 		break;
4308 	case IOPRIO_CLASS_RT:
4309 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4310 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4311 		break;
4312 	case IOPRIO_CLASS_BE:
4313 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4314 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4315 		break;
4316 	case IOPRIO_CLASS_IDLE:
4317 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4318 		bfqq->new_ioprio = 7;
4319 		break;
4320 	}
4321 
4322 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4323 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4324 			bfqq->new_ioprio);
4325 		bfqq->new_ioprio = IOPRIO_BE_NR;
4326 	}
4327 
4328 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4329 	bfqq->entity.prio_changed = 1;
4330 }
4331 
4332 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4333 				       struct bio *bio, bool is_sync,
4334 				       struct bfq_io_cq *bic);
4335 
4336 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4337 {
4338 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4339 	struct bfq_queue *bfqq;
4340 	int ioprio = bic->icq.ioc->ioprio;
4341 
4342 	/*
4343 	 * This condition may trigger on a newly created bic, be sure to
4344 	 * drop the lock before returning.
4345 	 */
4346 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4347 		return;
4348 
4349 	bic->ioprio = ioprio;
4350 
4351 	bfqq = bic_to_bfqq(bic, false);
4352 	if (bfqq) {
4353 		/* release process reference on this queue */
4354 		bfq_put_queue(bfqq);
4355 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4356 		bic_set_bfqq(bic, bfqq, false);
4357 	}
4358 
4359 	bfqq = bic_to_bfqq(bic, true);
4360 	if (bfqq)
4361 		bfq_set_next_ioprio_data(bfqq, bic);
4362 }
4363 
4364 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4365 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4366 {
4367 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4368 	INIT_LIST_HEAD(&bfqq->fifo);
4369 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4370 
4371 	bfqq->ref = 0;
4372 	bfqq->bfqd = bfqd;
4373 
4374 	if (bic)
4375 		bfq_set_next_ioprio_data(bfqq, bic);
4376 
4377 	if (is_sync) {
4378 		/*
4379 		 * No need to mark as has_short_ttime if in
4380 		 * idle_class, because no device idling is performed
4381 		 * for queues in idle class
4382 		 */
4383 		if (!bfq_class_idle(bfqq))
4384 			/* tentatively mark as has_short_ttime */
4385 			bfq_mark_bfqq_has_short_ttime(bfqq);
4386 		bfq_mark_bfqq_sync(bfqq);
4387 		bfq_mark_bfqq_just_created(bfqq);
4388 		/*
4389 		 * Aggressively inject a lot of service: up to 90%.
4390 		 * This coefficient remains constant during bfqq life,
4391 		 * but this behavior might be changed, after enough
4392 		 * testing and tuning.
4393 		 */
4394 		bfqq->inject_coeff = 1;
4395 	} else
4396 		bfq_clear_bfqq_sync(bfqq);
4397 
4398 	/* set end request to minus infinity from now */
4399 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4400 
4401 	bfq_mark_bfqq_IO_bound(bfqq);
4402 
4403 	bfqq->pid = pid;
4404 
4405 	/* Tentative initial value to trade off between thr and lat */
4406 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4407 	bfqq->budget_timeout = bfq_smallest_from_now();
4408 
4409 	bfqq->wr_coeff = 1;
4410 	bfqq->last_wr_start_finish = jiffies;
4411 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4412 	bfqq->split_time = bfq_smallest_from_now();
4413 
4414 	/*
4415 	 * To not forget the possibly high bandwidth consumed by a
4416 	 * process/queue in the recent past,
4417 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4418 	 * to the current value of bfqq->soft_rt_next_start (see
4419 	 * comments on bfq_bfqq_softrt_next_start).  Set
4420 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4421 	 * no bandwidth so far.
4422 	 */
4423 	bfqq->soft_rt_next_start = jiffies;
4424 
4425 	/* first request is almost certainly seeky */
4426 	bfqq->seek_history = 1;
4427 }
4428 
4429 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4430 					       struct bfq_group *bfqg,
4431 					       int ioprio_class, int ioprio)
4432 {
4433 	switch (ioprio_class) {
4434 	case IOPRIO_CLASS_RT:
4435 		return &bfqg->async_bfqq[0][ioprio];
4436 	case IOPRIO_CLASS_NONE:
4437 		ioprio = IOPRIO_NORM;
4438 		/* fall through */
4439 	case IOPRIO_CLASS_BE:
4440 		return &bfqg->async_bfqq[1][ioprio];
4441 	case IOPRIO_CLASS_IDLE:
4442 		return &bfqg->async_idle_bfqq;
4443 	default:
4444 		return NULL;
4445 	}
4446 }
4447 
4448 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4449 				       struct bio *bio, bool is_sync,
4450 				       struct bfq_io_cq *bic)
4451 {
4452 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4453 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4454 	struct bfq_queue **async_bfqq = NULL;
4455 	struct bfq_queue *bfqq;
4456 	struct bfq_group *bfqg;
4457 
4458 	rcu_read_lock();
4459 
4460 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
4461 	if (!bfqg) {
4462 		bfqq = &bfqd->oom_bfqq;
4463 		goto out;
4464 	}
4465 
4466 	if (!is_sync) {
4467 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4468 						  ioprio);
4469 		bfqq = *async_bfqq;
4470 		if (bfqq)
4471 			goto out;
4472 	}
4473 
4474 	bfqq = kmem_cache_alloc_node(bfq_pool,
4475 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4476 				     bfqd->queue->node);
4477 
4478 	if (bfqq) {
4479 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4480 			      is_sync);
4481 		bfq_init_entity(&bfqq->entity, bfqg);
4482 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4483 	} else {
4484 		bfqq = &bfqd->oom_bfqq;
4485 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4486 		goto out;
4487 	}
4488 
4489 	/*
4490 	 * Pin the queue now that it's allocated, scheduler exit will
4491 	 * prune it.
4492 	 */
4493 	if (async_bfqq) {
4494 		bfqq->ref++; /*
4495 			      * Extra group reference, w.r.t. sync
4496 			      * queue. This extra reference is removed
4497 			      * only if bfqq->bfqg disappears, to
4498 			      * guarantee that this queue is not freed
4499 			      * until its group goes away.
4500 			      */
4501 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4502 			     bfqq, bfqq->ref);
4503 		*async_bfqq = bfqq;
4504 	}
4505 
4506 out:
4507 	bfqq->ref++; /* get a process reference to this queue */
4508 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4509 	rcu_read_unlock();
4510 	return bfqq;
4511 }
4512 
4513 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4514 				    struct bfq_queue *bfqq)
4515 {
4516 	struct bfq_ttime *ttime = &bfqq->ttime;
4517 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4518 
4519 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4520 
4521 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4522 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4523 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4524 				     ttime->ttime_samples);
4525 }
4526 
4527 static void
4528 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4529 		       struct request *rq)
4530 {
4531 	bfqq->seek_history <<= 1;
4532 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
4533 }
4534 
4535 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4536 				       struct bfq_queue *bfqq,
4537 				       struct bfq_io_cq *bic)
4538 {
4539 	bool has_short_ttime = true;
4540 
4541 	/*
4542 	 * No need to update has_short_ttime if bfqq is async or in
4543 	 * idle io prio class, or if bfq_slice_idle is zero, because
4544 	 * no device idling is performed for bfqq in this case.
4545 	 */
4546 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4547 	    bfqd->bfq_slice_idle == 0)
4548 		return;
4549 
4550 	/* Idle window just restored, statistics are meaningless. */
4551 	if (time_is_after_eq_jiffies(bfqq->split_time +
4552 				     bfqd->bfq_wr_min_idle_time))
4553 		return;
4554 
4555 	/* Think time is infinite if no process is linked to
4556 	 * bfqq. Otherwise check average think time to
4557 	 * decide whether to mark as has_short_ttime
4558 	 */
4559 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4560 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4561 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4562 		has_short_ttime = false;
4563 
4564 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4565 		     has_short_ttime);
4566 
4567 	if (has_short_ttime)
4568 		bfq_mark_bfqq_has_short_ttime(bfqq);
4569 	else
4570 		bfq_clear_bfqq_has_short_ttime(bfqq);
4571 }
4572 
4573 /*
4574  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4575  * something we should do about it.
4576  */
4577 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4578 			    struct request *rq)
4579 {
4580 	struct bfq_io_cq *bic = RQ_BIC(rq);
4581 
4582 	if (rq->cmd_flags & REQ_META)
4583 		bfqq->meta_pending++;
4584 
4585 	bfq_update_io_thinktime(bfqd, bfqq);
4586 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4587 	bfq_update_io_seektime(bfqd, bfqq, rq);
4588 
4589 	bfq_log_bfqq(bfqd, bfqq,
4590 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4591 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4592 
4593 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4594 
4595 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4596 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4597 				 blk_rq_sectors(rq) < 32;
4598 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4599 
4600 		/*
4601 		 * There is just this request queued: if
4602 		 * - the request is small, and
4603 		 * - we are idling to boost throughput, and
4604 		 * - the queue is not to be expired,
4605 		 * then just exit.
4606 		 *
4607 		 * In this way, if the device is being idled to wait
4608 		 * for a new request from the in-service queue, we
4609 		 * avoid unplugging the device and committing the
4610 		 * device to serve just a small request. In contrast
4611 		 * we wait for the block layer to decide when to
4612 		 * unplug the device: hopefully, new requests will be
4613 		 * merged to this one quickly, then the device will be
4614 		 * unplugged and larger requests will be dispatched.
4615 		 */
4616 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
4617 		    !budget_timeout)
4618 			return;
4619 
4620 		/*
4621 		 * A large enough request arrived, or idling is being
4622 		 * performed to preserve service guarantees, or
4623 		 * finally the queue is to be expired: in all these
4624 		 * cases disk idling is to be stopped, so clear
4625 		 * wait_request flag and reset timer.
4626 		 */
4627 		bfq_clear_bfqq_wait_request(bfqq);
4628 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4629 
4630 		/*
4631 		 * The queue is not empty, because a new request just
4632 		 * arrived. Hence we can safely expire the queue, in
4633 		 * case of budget timeout, without risking that the
4634 		 * timestamps of the queue are not updated correctly.
4635 		 * See [1] for more details.
4636 		 */
4637 		if (budget_timeout)
4638 			bfq_bfqq_expire(bfqd, bfqq, false,
4639 					BFQQE_BUDGET_TIMEOUT);
4640 	}
4641 }
4642 
4643 /* returns true if it causes the idle timer to be disabled */
4644 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4645 {
4646 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4647 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4648 	bool waiting, idle_timer_disabled = false;
4649 
4650 	if (new_bfqq) {
4651 		/*
4652 		 * Release the request's reference to the old bfqq
4653 		 * and make sure one is taken to the shared queue.
4654 		 */
4655 		new_bfqq->allocated++;
4656 		bfqq->allocated--;
4657 		new_bfqq->ref++;
4658 		/*
4659 		 * If the bic associated with the process
4660 		 * issuing this request still points to bfqq
4661 		 * (and thus has not been already redirected
4662 		 * to new_bfqq or even some other bfq_queue),
4663 		 * then complete the merge and redirect it to
4664 		 * new_bfqq.
4665 		 */
4666 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4667 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4668 					bfqq, new_bfqq);
4669 
4670 		bfq_clear_bfqq_just_created(bfqq);
4671 		/*
4672 		 * rq is about to be enqueued into new_bfqq,
4673 		 * release rq reference on bfqq
4674 		 */
4675 		bfq_put_queue(bfqq);
4676 		rq->elv.priv[1] = new_bfqq;
4677 		bfqq = new_bfqq;
4678 	}
4679 
4680 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4681 	bfq_add_request(rq);
4682 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4683 
4684 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4685 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4686 
4687 	bfq_rq_enqueued(bfqd, bfqq, rq);
4688 
4689 	return idle_timer_disabled;
4690 }
4691 
4692 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4693 static void bfq_update_insert_stats(struct request_queue *q,
4694 				    struct bfq_queue *bfqq,
4695 				    bool idle_timer_disabled,
4696 				    unsigned int cmd_flags)
4697 {
4698 	if (!bfqq)
4699 		return;
4700 
4701 	/*
4702 	 * bfqq still exists, because it can disappear only after
4703 	 * either it is merged with another queue, or the process it
4704 	 * is associated with exits. But both actions must be taken by
4705 	 * the same process currently executing this flow of
4706 	 * instructions.
4707 	 *
4708 	 * In addition, the following queue lock guarantees that
4709 	 * bfqq_group(bfqq) exists as well.
4710 	 */
4711 	spin_lock_irq(&q->queue_lock);
4712 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4713 	if (idle_timer_disabled)
4714 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4715 	spin_unlock_irq(&q->queue_lock);
4716 }
4717 #else
4718 static inline void bfq_update_insert_stats(struct request_queue *q,
4719 					   struct bfq_queue *bfqq,
4720 					   bool idle_timer_disabled,
4721 					   unsigned int cmd_flags) {}
4722 #endif
4723 
4724 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4725 			       bool at_head)
4726 {
4727 	struct request_queue *q = hctx->queue;
4728 	struct bfq_data *bfqd = q->elevator->elevator_data;
4729 	struct bfq_queue *bfqq;
4730 	bool idle_timer_disabled = false;
4731 	unsigned int cmd_flags;
4732 
4733 	spin_lock_irq(&bfqd->lock);
4734 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4735 		spin_unlock_irq(&bfqd->lock);
4736 		return;
4737 	}
4738 
4739 	spin_unlock_irq(&bfqd->lock);
4740 
4741 	blk_mq_sched_request_inserted(rq);
4742 
4743 	spin_lock_irq(&bfqd->lock);
4744 	bfqq = bfq_init_rq(rq);
4745 	if (at_head || blk_rq_is_passthrough(rq)) {
4746 		if (at_head)
4747 			list_add(&rq->queuelist, &bfqd->dispatch);
4748 		else
4749 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4750 	} else { /* bfqq is assumed to be non null here */
4751 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4752 		/*
4753 		 * Update bfqq, because, if a queue merge has occurred
4754 		 * in __bfq_insert_request, then rq has been
4755 		 * redirected into a new queue.
4756 		 */
4757 		bfqq = RQ_BFQQ(rq);
4758 
4759 		if (rq_mergeable(rq)) {
4760 			elv_rqhash_add(q, rq);
4761 			if (!q->last_merge)
4762 				q->last_merge = rq;
4763 		}
4764 	}
4765 
4766 	/*
4767 	 * Cache cmd_flags before releasing scheduler lock, because rq
4768 	 * may disappear afterwards (for example, because of a request
4769 	 * merge).
4770 	 */
4771 	cmd_flags = rq->cmd_flags;
4772 
4773 	spin_unlock_irq(&bfqd->lock);
4774 
4775 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4776 				cmd_flags);
4777 }
4778 
4779 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4780 				struct list_head *list, bool at_head)
4781 {
4782 	while (!list_empty(list)) {
4783 		struct request *rq;
4784 
4785 		rq = list_first_entry(list, struct request, queuelist);
4786 		list_del_init(&rq->queuelist);
4787 		bfq_insert_request(hctx, rq, at_head);
4788 	}
4789 }
4790 
4791 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4792 {
4793 	struct bfq_queue *bfqq = bfqd->in_service_queue;
4794 
4795 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4796 				       bfqd->rq_in_driver);
4797 
4798 	if (bfqd->hw_tag == 1)
4799 		return;
4800 
4801 	/*
4802 	 * This sample is valid if the number of outstanding requests
4803 	 * is large enough to allow a queueing behavior.  Note that the
4804 	 * sum is not exact, as it's not taking into account deactivated
4805 	 * requests.
4806 	 */
4807 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
4808 		return;
4809 
4810 	/*
4811 	 * If active queue hasn't enough requests and can idle, bfq might not
4812 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4813 	 * case
4814 	 */
4815 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
4816 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
4817 	    BFQ_HW_QUEUE_THRESHOLD &&
4818 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
4819 		return;
4820 
4821 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4822 		return;
4823 
4824 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4825 	bfqd->max_rq_in_driver = 0;
4826 	bfqd->hw_tag_samples = 0;
4827 }
4828 
4829 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4830 {
4831 	u64 now_ns;
4832 	u32 delta_us;
4833 
4834 	bfq_update_hw_tag(bfqd);
4835 
4836 	bfqd->rq_in_driver--;
4837 	bfqq->dispatched--;
4838 
4839 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4840 		/*
4841 		 * Set budget_timeout (which we overload to store the
4842 		 * time at which the queue remains with no backlog and
4843 		 * no outstanding request; used by the weight-raising
4844 		 * mechanism).
4845 		 */
4846 		bfqq->budget_timeout = jiffies;
4847 
4848 		bfq_weights_tree_remove(bfqd, bfqq);
4849 	}
4850 
4851 	now_ns = ktime_get_ns();
4852 
4853 	bfqq->ttime.last_end_request = now_ns;
4854 
4855 	/*
4856 	 * Using us instead of ns, to get a reasonable precision in
4857 	 * computing rate in next check.
4858 	 */
4859 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4860 
4861 	/*
4862 	 * If the request took rather long to complete, and, according
4863 	 * to the maximum request size recorded, this completion latency
4864 	 * implies that the request was certainly served at a very low
4865 	 * rate (less than 1M sectors/sec), then the whole observation
4866 	 * interval that lasts up to this time instant cannot be a
4867 	 * valid time interval for computing a new peak rate.  Invoke
4868 	 * bfq_update_rate_reset to have the following three steps
4869 	 * taken:
4870 	 * - close the observation interval at the last (previous)
4871 	 *   request dispatch or completion
4872 	 * - compute rate, if possible, for that observation interval
4873 	 * - reset to zero samples, which will trigger a proper
4874 	 *   re-initialization of the observation interval on next
4875 	 *   dispatch
4876 	 */
4877 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4878 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4879 			1UL<<(BFQ_RATE_SHIFT - 10))
4880 		bfq_update_rate_reset(bfqd, NULL);
4881 	bfqd->last_completion = now_ns;
4882 
4883 	/*
4884 	 * If we are waiting to discover whether the request pattern
4885 	 * of the task associated with the queue is actually
4886 	 * isochronous, and both requisites for this condition to hold
4887 	 * are now satisfied, then compute soft_rt_next_start (see the
4888 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4889 	 * do not compute soft_rt_next_start if bfqq is in interactive
4890 	 * weight raising (see the comments in bfq_bfqq_expire() for
4891 	 * an explanation). We schedule this delayed update when bfqq
4892 	 * expires, if it still has in-flight requests.
4893 	 */
4894 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4895 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
4896 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
4897 		bfqq->soft_rt_next_start =
4898 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4899 
4900 	/*
4901 	 * If this is the in-service queue, check if it needs to be expired,
4902 	 * or if we want to idle in case it has no pending requests.
4903 	 */
4904 	if (bfqd->in_service_queue == bfqq) {
4905 		if (bfq_bfqq_must_idle(bfqq)) {
4906 			if (bfqq->dispatched == 0)
4907 				bfq_arm_slice_timer(bfqd);
4908 			/*
4909 			 * If we get here, we do not expire bfqq, even
4910 			 * if bfqq was in budget timeout or had no
4911 			 * more requests (as controlled in the next
4912 			 * conditional instructions). The reason for
4913 			 * not expiring bfqq is as follows.
4914 			 *
4915 			 * Here bfqq->dispatched > 0 holds, but
4916 			 * bfq_bfqq_must_idle() returned true. This
4917 			 * implies that, even if no request arrives
4918 			 * for bfqq before bfqq->dispatched reaches 0,
4919 			 * bfqq will, however, not be expired on the
4920 			 * completion event that causes bfqq->dispatch
4921 			 * to reach zero. In contrast, on this event,
4922 			 * bfqq will start enjoying device idling
4923 			 * (I/O-dispatch plugging).
4924 			 *
4925 			 * But, if we expired bfqq here, bfqq would
4926 			 * not have the chance to enjoy device idling
4927 			 * when bfqq->dispatched finally reaches
4928 			 * zero. This would expose bfqq to violation
4929 			 * of its reserved service guarantees.
4930 			 */
4931 			return;
4932 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4933 			bfq_bfqq_expire(bfqd, bfqq, false,
4934 					BFQQE_BUDGET_TIMEOUT);
4935 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4936 			 (bfqq->dispatched == 0 ||
4937 			  !bfq_better_to_idle(bfqq)))
4938 			bfq_bfqq_expire(bfqd, bfqq, false,
4939 					BFQQE_NO_MORE_REQUESTS);
4940 	}
4941 
4942 	if (!bfqd->rq_in_driver)
4943 		bfq_schedule_dispatch(bfqd);
4944 }
4945 
4946 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4947 {
4948 	bfqq->allocated--;
4949 
4950 	bfq_put_queue(bfqq);
4951 }
4952 
4953 /*
4954  * Handle either a requeue or a finish for rq. The things to do are
4955  * the same in both cases: all references to rq are to be dropped. In
4956  * particular, rq is considered completed from the point of view of
4957  * the scheduler.
4958  */
4959 static void bfq_finish_requeue_request(struct request *rq)
4960 {
4961 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4962 	struct bfq_data *bfqd;
4963 
4964 	/*
4965 	 * Requeue and finish hooks are invoked in blk-mq without
4966 	 * checking whether the involved request is actually still
4967 	 * referenced in the scheduler. To handle this fact, the
4968 	 * following two checks make this function exit in case of
4969 	 * spurious invocations, for which there is nothing to do.
4970 	 *
4971 	 * First, check whether rq has nothing to do with an elevator.
4972 	 */
4973 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4974 		return;
4975 
4976 	/*
4977 	 * rq either is not associated with any icq, or is an already
4978 	 * requeued request that has not (yet) been re-inserted into
4979 	 * a bfq_queue.
4980 	 */
4981 	if (!rq->elv.icq || !bfqq)
4982 		return;
4983 
4984 	bfqd = bfqq->bfqd;
4985 
4986 	if (rq->rq_flags & RQF_STARTED)
4987 		bfqg_stats_update_completion(bfqq_group(bfqq),
4988 					     rq->start_time_ns,
4989 					     rq->io_start_time_ns,
4990 					     rq->cmd_flags);
4991 
4992 	if (likely(rq->rq_flags & RQF_STARTED)) {
4993 		unsigned long flags;
4994 
4995 		spin_lock_irqsave(&bfqd->lock, flags);
4996 
4997 		bfq_completed_request(bfqq, bfqd);
4998 		bfq_finish_requeue_request_body(bfqq);
4999 
5000 		spin_unlock_irqrestore(&bfqd->lock, flags);
5001 	} else {
5002 		/*
5003 		 * Request rq may be still/already in the scheduler,
5004 		 * in which case we need to remove it (this should
5005 		 * never happen in case of requeue). And we cannot
5006 		 * defer such a check and removal, to avoid
5007 		 * inconsistencies in the time interval from the end
5008 		 * of this function to the start of the deferred work.
5009 		 * This situation seems to occur only in process
5010 		 * context, as a consequence of a merge. In the
5011 		 * current version of the code, this implies that the
5012 		 * lock is held.
5013 		 */
5014 
5015 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5016 			bfq_remove_request(rq->q, rq);
5017 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5018 						    rq->cmd_flags);
5019 		}
5020 		bfq_finish_requeue_request_body(bfqq);
5021 	}
5022 
5023 	/*
5024 	 * Reset private fields. In case of a requeue, this allows
5025 	 * this function to correctly do nothing if it is spuriously
5026 	 * invoked again on this same request (see the check at the
5027 	 * beginning of the function). Probably, a better general
5028 	 * design would be to prevent blk-mq from invoking the requeue
5029 	 * or finish hooks of an elevator, for a request that is not
5030 	 * referred by that elevator.
5031 	 *
5032 	 * Resetting the following fields would break the
5033 	 * request-insertion logic if rq is re-inserted into a bfq
5034 	 * internal queue, without a re-preparation. Here we assume
5035 	 * that re-insertions of requeued requests, without
5036 	 * re-preparation, can happen only for pass_through or at_head
5037 	 * requests (which are not re-inserted into bfq internal
5038 	 * queues).
5039 	 */
5040 	rq->elv.priv[0] = NULL;
5041 	rq->elv.priv[1] = NULL;
5042 }
5043 
5044 /*
5045  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5046  * was the last process referring to that bfqq.
5047  */
5048 static struct bfq_queue *
5049 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5050 {
5051 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5052 
5053 	if (bfqq_process_refs(bfqq) == 1) {
5054 		bfqq->pid = current->pid;
5055 		bfq_clear_bfqq_coop(bfqq);
5056 		bfq_clear_bfqq_split_coop(bfqq);
5057 		return bfqq;
5058 	}
5059 
5060 	bic_set_bfqq(bic, NULL, 1);
5061 
5062 	bfq_put_cooperator(bfqq);
5063 
5064 	bfq_put_queue(bfqq);
5065 	return NULL;
5066 }
5067 
5068 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5069 						   struct bfq_io_cq *bic,
5070 						   struct bio *bio,
5071 						   bool split, bool is_sync,
5072 						   bool *new_queue)
5073 {
5074 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5075 
5076 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5077 		return bfqq;
5078 
5079 	if (new_queue)
5080 		*new_queue = true;
5081 
5082 	if (bfqq)
5083 		bfq_put_queue(bfqq);
5084 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5085 
5086 	bic_set_bfqq(bic, bfqq, is_sync);
5087 	if (split && is_sync) {
5088 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5089 		    bic->saved_in_large_burst)
5090 			bfq_mark_bfqq_in_large_burst(bfqq);
5091 		else {
5092 			bfq_clear_bfqq_in_large_burst(bfqq);
5093 			if (bic->was_in_burst_list)
5094 				/*
5095 				 * If bfqq was in the current
5096 				 * burst list before being
5097 				 * merged, then we have to add
5098 				 * it back. And we do not need
5099 				 * to increase burst_size, as
5100 				 * we did not decrement
5101 				 * burst_size when we removed
5102 				 * bfqq from the burst list as
5103 				 * a consequence of a merge
5104 				 * (see comments in
5105 				 * bfq_put_queue). In this
5106 				 * respect, it would be rather
5107 				 * costly to know whether the
5108 				 * current burst list is still
5109 				 * the same burst list from
5110 				 * which bfqq was removed on
5111 				 * the merge. To avoid this
5112 				 * cost, if bfqq was in a
5113 				 * burst list, then we add
5114 				 * bfqq to the current burst
5115 				 * list without any further
5116 				 * check. This can cause
5117 				 * inappropriate insertions,
5118 				 * but rarely enough to not
5119 				 * harm the detection of large
5120 				 * bursts significantly.
5121 				 */
5122 				hlist_add_head(&bfqq->burst_list_node,
5123 					       &bfqd->burst_list);
5124 		}
5125 		bfqq->split_time = jiffies;
5126 	}
5127 
5128 	return bfqq;
5129 }
5130 
5131 /*
5132  * Only reset private fields. The actual request preparation will be
5133  * performed by bfq_init_rq, when rq is either inserted or merged. See
5134  * comments on bfq_init_rq for the reason behind this delayed
5135  * preparation.
5136  */
5137 static void bfq_prepare_request(struct request *rq, struct bio *bio)
5138 {
5139 	/*
5140 	 * Regardless of whether we have an icq attached, we have to
5141 	 * clear the scheduler pointers, as they might point to
5142 	 * previously allocated bic/bfqq structs.
5143 	 */
5144 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5145 }
5146 
5147 /*
5148  * If needed, init rq, allocate bfq data structures associated with
5149  * rq, and increment reference counters in the destination bfq_queue
5150  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5151  * not associated with any bfq_queue.
5152  *
5153  * This function is invoked by the functions that perform rq insertion
5154  * or merging. One may have expected the above preparation operations
5155  * to be performed in bfq_prepare_request, and not delayed to when rq
5156  * is inserted or merged. The rationale behind this delayed
5157  * preparation is that, after the prepare_request hook is invoked for
5158  * rq, rq may still be transformed into a request with no icq, i.e., a
5159  * request not associated with any queue. No bfq hook is invoked to
5160  * signal this tranformation. As a consequence, should these
5161  * preparation operations be performed when the prepare_request hook
5162  * is invoked, and should rq be transformed one moment later, bfq
5163  * would end up in an inconsistent state, because it would have
5164  * incremented some queue counters for an rq destined to
5165  * transformation, without any chance to correctly lower these
5166  * counters back. In contrast, no transformation can still happen for
5167  * rq after rq has been inserted or merged. So, it is safe to execute
5168  * these preparation operations when rq is finally inserted or merged.
5169  */
5170 static struct bfq_queue *bfq_init_rq(struct request *rq)
5171 {
5172 	struct request_queue *q = rq->q;
5173 	struct bio *bio = rq->bio;
5174 	struct bfq_data *bfqd = q->elevator->elevator_data;
5175 	struct bfq_io_cq *bic;
5176 	const int is_sync = rq_is_sync(rq);
5177 	struct bfq_queue *bfqq;
5178 	bool new_queue = false;
5179 	bool bfqq_already_existing = false, split = false;
5180 
5181 	if (unlikely(!rq->elv.icq))
5182 		return NULL;
5183 
5184 	/*
5185 	 * Assuming that elv.priv[1] is set only if everything is set
5186 	 * for this rq. This holds true, because this function is
5187 	 * invoked only for insertion or merging, and, after such
5188 	 * events, a request cannot be manipulated any longer before
5189 	 * being removed from bfq.
5190 	 */
5191 	if (rq->elv.priv[1])
5192 		return rq->elv.priv[1];
5193 
5194 	bic = icq_to_bic(rq->elv.icq);
5195 
5196 	bfq_check_ioprio_change(bic, bio);
5197 
5198 	bfq_bic_update_cgroup(bic, bio);
5199 
5200 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5201 					 &new_queue);
5202 
5203 	if (likely(!new_queue)) {
5204 		/* If the queue was seeky for too long, break it apart. */
5205 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5206 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5207 
5208 			/* Update bic before losing reference to bfqq */
5209 			if (bfq_bfqq_in_large_burst(bfqq))
5210 				bic->saved_in_large_burst = true;
5211 
5212 			bfqq = bfq_split_bfqq(bic, bfqq);
5213 			split = true;
5214 
5215 			if (!bfqq)
5216 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5217 								 true, is_sync,
5218 								 NULL);
5219 			else
5220 				bfqq_already_existing = true;
5221 		}
5222 	}
5223 
5224 	bfqq->allocated++;
5225 	bfqq->ref++;
5226 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5227 		     rq, bfqq, bfqq->ref);
5228 
5229 	rq->elv.priv[0] = bic;
5230 	rq->elv.priv[1] = bfqq;
5231 
5232 	/*
5233 	 * If a bfq_queue has only one process reference, it is owned
5234 	 * by only this bic: we can then set bfqq->bic = bic. in
5235 	 * addition, if the queue has also just been split, we have to
5236 	 * resume its state.
5237 	 */
5238 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5239 		bfqq->bic = bic;
5240 		if (split) {
5241 			/*
5242 			 * The queue has just been split from a shared
5243 			 * queue: restore the idle window and the
5244 			 * possible weight raising period.
5245 			 */
5246 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5247 					      bfqq_already_existing);
5248 		}
5249 	}
5250 
5251 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5252 		bfq_handle_burst(bfqd, bfqq);
5253 
5254 	return bfqq;
5255 }
5256 
5257 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5258 {
5259 	struct bfq_data *bfqd = bfqq->bfqd;
5260 	enum bfqq_expiration reason;
5261 	unsigned long flags;
5262 
5263 	spin_lock_irqsave(&bfqd->lock, flags);
5264 	bfq_clear_bfqq_wait_request(bfqq);
5265 
5266 	if (bfqq != bfqd->in_service_queue) {
5267 		spin_unlock_irqrestore(&bfqd->lock, flags);
5268 		return;
5269 	}
5270 
5271 	if (bfq_bfqq_budget_timeout(bfqq))
5272 		/*
5273 		 * Also here the queue can be safely expired
5274 		 * for budget timeout without wasting
5275 		 * guarantees
5276 		 */
5277 		reason = BFQQE_BUDGET_TIMEOUT;
5278 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5279 		/*
5280 		 * The queue may not be empty upon timer expiration,
5281 		 * because we may not disable the timer when the
5282 		 * first request of the in-service queue arrives
5283 		 * during disk idling.
5284 		 */
5285 		reason = BFQQE_TOO_IDLE;
5286 	else
5287 		goto schedule_dispatch;
5288 
5289 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5290 
5291 schedule_dispatch:
5292 	spin_unlock_irqrestore(&bfqd->lock, flags);
5293 	bfq_schedule_dispatch(bfqd);
5294 }
5295 
5296 /*
5297  * Handler of the expiration of the timer running if the in-service queue
5298  * is idling inside its time slice.
5299  */
5300 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5301 {
5302 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5303 					     idle_slice_timer);
5304 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5305 
5306 	/*
5307 	 * Theoretical race here: the in-service queue can be NULL or
5308 	 * different from the queue that was idling if a new request
5309 	 * arrives for the current queue and there is a full dispatch
5310 	 * cycle that changes the in-service queue.  This can hardly
5311 	 * happen, but in the worst case we just expire a queue too
5312 	 * early.
5313 	 */
5314 	if (bfqq)
5315 		bfq_idle_slice_timer_body(bfqq);
5316 
5317 	return HRTIMER_NORESTART;
5318 }
5319 
5320 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5321 				 struct bfq_queue **bfqq_ptr)
5322 {
5323 	struct bfq_queue *bfqq = *bfqq_ptr;
5324 
5325 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5326 	if (bfqq) {
5327 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5328 
5329 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5330 			     bfqq, bfqq->ref);
5331 		bfq_put_queue(bfqq);
5332 		*bfqq_ptr = NULL;
5333 	}
5334 }
5335 
5336 /*
5337  * Release all the bfqg references to its async queues.  If we are
5338  * deallocating the group these queues may still contain requests, so
5339  * we reparent them to the root cgroup (i.e., the only one that will
5340  * exist for sure until all the requests on a device are gone).
5341  */
5342 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5343 {
5344 	int i, j;
5345 
5346 	for (i = 0; i < 2; i++)
5347 		for (j = 0; j < IOPRIO_BE_NR; j++)
5348 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5349 
5350 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5351 }
5352 
5353 /*
5354  * See the comments on bfq_limit_depth for the purpose of
5355  * the depths set in the function. Return minimum shallow depth we'll use.
5356  */
5357 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5358 				      struct sbitmap_queue *bt)
5359 {
5360 	unsigned int i, j, min_shallow = UINT_MAX;
5361 
5362 	/*
5363 	 * In-word depths if no bfq_queue is being weight-raised:
5364 	 * leaving 25% of tags only for sync reads.
5365 	 *
5366 	 * In next formulas, right-shift the value
5367 	 * (1U<<bt->sb.shift), instead of computing directly
5368 	 * (1U<<(bt->sb.shift - something)), to be robust against
5369 	 * any possible value of bt->sb.shift, without having to
5370 	 * limit 'something'.
5371 	 */
5372 	/* no more than 50% of tags for async I/O */
5373 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5374 	/*
5375 	 * no more than 75% of tags for sync writes (25% extra tags
5376 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5377 	 * writes)
5378 	 */
5379 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5380 
5381 	/*
5382 	 * In-word depths in case some bfq_queue is being weight-
5383 	 * raised: leaving ~63% of tags for sync reads. This is the
5384 	 * highest percentage for which, in our tests, application
5385 	 * start-up times didn't suffer from any regression due to tag
5386 	 * shortage.
5387 	 */
5388 	/* no more than ~18% of tags for async I/O */
5389 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5390 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5391 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5392 
5393 	for (i = 0; i < 2; i++)
5394 		for (j = 0; j < 2; j++)
5395 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5396 
5397 	return min_shallow;
5398 }
5399 
5400 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5401 {
5402 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5403 	struct blk_mq_tags *tags = hctx->sched_tags;
5404 	unsigned int min_shallow;
5405 
5406 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5407 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5408 	return 0;
5409 }
5410 
5411 static void bfq_exit_queue(struct elevator_queue *e)
5412 {
5413 	struct bfq_data *bfqd = e->elevator_data;
5414 	struct bfq_queue *bfqq, *n;
5415 
5416 	hrtimer_cancel(&bfqd->idle_slice_timer);
5417 
5418 	spin_lock_irq(&bfqd->lock);
5419 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5420 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5421 	spin_unlock_irq(&bfqd->lock);
5422 
5423 	hrtimer_cancel(&bfqd->idle_slice_timer);
5424 
5425 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5426 	/* release oom-queue reference to root group */
5427 	bfqg_and_blkg_put(bfqd->root_group);
5428 
5429 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5430 #else
5431 	spin_lock_irq(&bfqd->lock);
5432 	bfq_put_async_queues(bfqd, bfqd->root_group);
5433 	kfree(bfqd->root_group);
5434 	spin_unlock_irq(&bfqd->lock);
5435 #endif
5436 
5437 	kfree(bfqd);
5438 }
5439 
5440 static void bfq_init_root_group(struct bfq_group *root_group,
5441 				struct bfq_data *bfqd)
5442 {
5443 	int i;
5444 
5445 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5446 	root_group->entity.parent = NULL;
5447 	root_group->my_entity = NULL;
5448 	root_group->bfqd = bfqd;
5449 #endif
5450 	root_group->rq_pos_tree = RB_ROOT;
5451 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5452 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5453 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5454 }
5455 
5456 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5457 {
5458 	struct bfq_data *bfqd;
5459 	struct elevator_queue *eq;
5460 
5461 	eq = elevator_alloc(q, e);
5462 	if (!eq)
5463 		return -ENOMEM;
5464 
5465 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5466 	if (!bfqd) {
5467 		kobject_put(&eq->kobj);
5468 		return -ENOMEM;
5469 	}
5470 	eq->elevator_data = bfqd;
5471 
5472 	spin_lock_irq(&q->queue_lock);
5473 	q->elevator = eq;
5474 	spin_unlock_irq(&q->queue_lock);
5475 
5476 	/*
5477 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5478 	 * Grab a permanent reference to it, so that the normal code flow
5479 	 * will not attempt to free it.
5480 	 */
5481 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5482 	bfqd->oom_bfqq.ref++;
5483 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5484 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5485 	bfqd->oom_bfqq.entity.new_weight =
5486 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5487 
5488 	/* oom_bfqq does not participate to bursts */
5489 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5490 
5491 	/*
5492 	 * Trigger weight initialization, according to ioprio, at the
5493 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5494 	 * class won't be changed any more.
5495 	 */
5496 	bfqd->oom_bfqq.entity.prio_changed = 1;
5497 
5498 	bfqd->queue = q;
5499 
5500 	INIT_LIST_HEAD(&bfqd->dispatch);
5501 
5502 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5503 		     HRTIMER_MODE_REL);
5504 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5505 
5506 	bfqd->queue_weights_tree = RB_ROOT;
5507 	bfqd->num_groups_with_pending_reqs = 0;
5508 
5509 	INIT_LIST_HEAD(&bfqd->active_list);
5510 	INIT_LIST_HEAD(&bfqd->idle_list);
5511 	INIT_HLIST_HEAD(&bfqd->burst_list);
5512 
5513 	bfqd->hw_tag = -1;
5514 
5515 	bfqd->bfq_max_budget = bfq_default_max_budget;
5516 
5517 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5518 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5519 	bfqd->bfq_back_max = bfq_back_max;
5520 	bfqd->bfq_back_penalty = bfq_back_penalty;
5521 	bfqd->bfq_slice_idle = bfq_slice_idle;
5522 	bfqd->bfq_timeout = bfq_timeout;
5523 
5524 	bfqd->bfq_requests_within_timer = 120;
5525 
5526 	bfqd->bfq_large_burst_thresh = 8;
5527 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5528 
5529 	bfqd->low_latency = true;
5530 
5531 	/*
5532 	 * Trade-off between responsiveness and fairness.
5533 	 */
5534 	bfqd->bfq_wr_coeff = 30;
5535 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5536 	bfqd->bfq_wr_max_time = 0;
5537 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5538 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5539 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5540 					      * Approximate rate required
5541 					      * to playback or record a
5542 					      * high-definition compressed
5543 					      * video.
5544 					      */
5545 	bfqd->wr_busy_queues = 0;
5546 
5547 	/*
5548 	 * Begin by assuming, optimistically, that the device peak
5549 	 * rate is equal to 2/3 of the highest reference rate.
5550 	 */
5551 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5552 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5553 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5554 
5555 	spin_lock_init(&bfqd->lock);
5556 
5557 	/*
5558 	 * The invocation of the next bfq_create_group_hierarchy
5559 	 * function is the head of a chain of function calls
5560 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5561 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5562 	 * has_work hook function. For this reason,
5563 	 * bfq_create_group_hierarchy is invoked only after all
5564 	 * scheduler data has been initialized, apart from the fields
5565 	 * that can be initialized only after invoking
5566 	 * bfq_create_group_hierarchy. This, in particular, enables
5567 	 * has_work to correctly return false. Of course, to avoid
5568 	 * other inconsistencies, the blk-mq stack must then refrain
5569 	 * from invoking further scheduler hooks before this init
5570 	 * function is finished.
5571 	 */
5572 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5573 	if (!bfqd->root_group)
5574 		goto out_free;
5575 	bfq_init_root_group(bfqd->root_group, bfqd);
5576 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5577 
5578 	wbt_disable_default(q);
5579 	return 0;
5580 
5581 out_free:
5582 	kfree(bfqd);
5583 	kobject_put(&eq->kobj);
5584 	return -ENOMEM;
5585 }
5586 
5587 static void bfq_slab_kill(void)
5588 {
5589 	kmem_cache_destroy(bfq_pool);
5590 }
5591 
5592 static int __init bfq_slab_setup(void)
5593 {
5594 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5595 	if (!bfq_pool)
5596 		return -ENOMEM;
5597 	return 0;
5598 }
5599 
5600 static ssize_t bfq_var_show(unsigned int var, char *page)
5601 {
5602 	return sprintf(page, "%u\n", var);
5603 }
5604 
5605 static int bfq_var_store(unsigned long *var, const char *page)
5606 {
5607 	unsigned long new_val;
5608 	int ret = kstrtoul(page, 10, &new_val);
5609 
5610 	if (ret)
5611 		return ret;
5612 	*var = new_val;
5613 	return 0;
5614 }
5615 
5616 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5617 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5618 {									\
5619 	struct bfq_data *bfqd = e->elevator_data;			\
5620 	u64 __data = __VAR;						\
5621 	if (__CONV == 1)						\
5622 		__data = jiffies_to_msecs(__data);			\
5623 	else if (__CONV == 2)						\
5624 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5625 	return bfq_var_show(__data, (page));				\
5626 }
5627 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5628 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5629 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5630 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5631 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5632 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5633 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5634 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5635 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5636 #undef SHOW_FUNCTION
5637 
5638 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5639 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5640 {									\
5641 	struct bfq_data *bfqd = e->elevator_data;			\
5642 	u64 __data = __VAR;						\
5643 	__data = div_u64(__data, NSEC_PER_USEC);			\
5644 	return bfq_var_show(__data, (page));				\
5645 }
5646 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5647 #undef USEC_SHOW_FUNCTION
5648 
5649 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5650 static ssize_t								\
5651 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5652 {									\
5653 	struct bfq_data *bfqd = e->elevator_data;			\
5654 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5655 	int ret;							\
5656 									\
5657 	ret = bfq_var_store(&__data, (page));				\
5658 	if (ret)							\
5659 		return ret;						\
5660 	if (__data < __min)						\
5661 		__data = __min;						\
5662 	else if (__data > __max)					\
5663 		__data = __max;						\
5664 	if (__CONV == 1)						\
5665 		*(__PTR) = msecs_to_jiffies(__data);			\
5666 	else if (__CONV == 2)						\
5667 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5668 	else								\
5669 		*(__PTR) = __data;					\
5670 	return count;							\
5671 }
5672 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5673 		INT_MAX, 2);
5674 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5675 		INT_MAX, 2);
5676 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5677 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5678 		INT_MAX, 0);
5679 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5680 #undef STORE_FUNCTION
5681 
5682 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5683 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5684 {									\
5685 	struct bfq_data *bfqd = e->elevator_data;			\
5686 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5687 	int ret;							\
5688 									\
5689 	ret = bfq_var_store(&__data, (page));				\
5690 	if (ret)							\
5691 		return ret;						\
5692 	if (__data < __min)						\
5693 		__data = __min;						\
5694 	else if (__data > __max)					\
5695 		__data = __max;						\
5696 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5697 	return count;							\
5698 }
5699 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5700 		    UINT_MAX);
5701 #undef USEC_STORE_FUNCTION
5702 
5703 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5704 				    const char *page, size_t count)
5705 {
5706 	struct bfq_data *bfqd = e->elevator_data;
5707 	unsigned long __data;
5708 	int ret;
5709 
5710 	ret = bfq_var_store(&__data, (page));
5711 	if (ret)
5712 		return ret;
5713 
5714 	if (__data == 0)
5715 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5716 	else {
5717 		if (__data > INT_MAX)
5718 			__data = INT_MAX;
5719 		bfqd->bfq_max_budget = __data;
5720 	}
5721 
5722 	bfqd->bfq_user_max_budget = __data;
5723 
5724 	return count;
5725 }
5726 
5727 /*
5728  * Leaving this name to preserve name compatibility with cfq
5729  * parameters, but this timeout is used for both sync and async.
5730  */
5731 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5732 				      const char *page, size_t count)
5733 {
5734 	struct bfq_data *bfqd = e->elevator_data;
5735 	unsigned long __data;
5736 	int ret;
5737 
5738 	ret = bfq_var_store(&__data, (page));
5739 	if (ret)
5740 		return ret;
5741 
5742 	if (__data < 1)
5743 		__data = 1;
5744 	else if (__data > INT_MAX)
5745 		__data = INT_MAX;
5746 
5747 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5748 	if (bfqd->bfq_user_max_budget == 0)
5749 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5750 
5751 	return count;
5752 }
5753 
5754 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5755 				     const char *page, size_t count)
5756 {
5757 	struct bfq_data *bfqd = e->elevator_data;
5758 	unsigned long __data;
5759 	int ret;
5760 
5761 	ret = bfq_var_store(&__data, (page));
5762 	if (ret)
5763 		return ret;
5764 
5765 	if (__data > 1)
5766 		__data = 1;
5767 	if (!bfqd->strict_guarantees && __data == 1
5768 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5769 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5770 
5771 	bfqd->strict_guarantees = __data;
5772 
5773 	return count;
5774 }
5775 
5776 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5777 				     const char *page, size_t count)
5778 {
5779 	struct bfq_data *bfqd = e->elevator_data;
5780 	unsigned long __data;
5781 	int ret;
5782 
5783 	ret = bfq_var_store(&__data, (page));
5784 	if (ret)
5785 		return ret;
5786 
5787 	if (__data > 1)
5788 		__data = 1;
5789 	if (__data == 0 && bfqd->low_latency != 0)
5790 		bfq_end_wr(bfqd);
5791 	bfqd->low_latency = __data;
5792 
5793 	return count;
5794 }
5795 
5796 #define BFQ_ATTR(name) \
5797 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5798 
5799 static struct elv_fs_entry bfq_attrs[] = {
5800 	BFQ_ATTR(fifo_expire_sync),
5801 	BFQ_ATTR(fifo_expire_async),
5802 	BFQ_ATTR(back_seek_max),
5803 	BFQ_ATTR(back_seek_penalty),
5804 	BFQ_ATTR(slice_idle),
5805 	BFQ_ATTR(slice_idle_us),
5806 	BFQ_ATTR(max_budget),
5807 	BFQ_ATTR(timeout_sync),
5808 	BFQ_ATTR(strict_guarantees),
5809 	BFQ_ATTR(low_latency),
5810 	__ATTR_NULL
5811 };
5812 
5813 static struct elevator_type iosched_bfq_mq = {
5814 	.ops = {
5815 		.limit_depth		= bfq_limit_depth,
5816 		.prepare_request	= bfq_prepare_request,
5817 		.requeue_request        = bfq_finish_requeue_request,
5818 		.finish_request		= bfq_finish_requeue_request,
5819 		.exit_icq		= bfq_exit_icq,
5820 		.insert_requests	= bfq_insert_requests,
5821 		.dispatch_request	= bfq_dispatch_request,
5822 		.next_request		= elv_rb_latter_request,
5823 		.former_request		= elv_rb_former_request,
5824 		.allow_merge		= bfq_allow_bio_merge,
5825 		.bio_merge		= bfq_bio_merge,
5826 		.request_merge		= bfq_request_merge,
5827 		.requests_merged	= bfq_requests_merged,
5828 		.request_merged		= bfq_request_merged,
5829 		.has_work		= bfq_has_work,
5830 		.init_hctx		= bfq_init_hctx,
5831 		.init_sched		= bfq_init_queue,
5832 		.exit_sched		= bfq_exit_queue,
5833 	},
5834 
5835 	.icq_size =		sizeof(struct bfq_io_cq),
5836 	.icq_align =		__alignof__(struct bfq_io_cq),
5837 	.elevator_attrs =	bfq_attrs,
5838 	.elevator_name =	"bfq",
5839 	.elevator_owner =	THIS_MODULE,
5840 };
5841 MODULE_ALIAS("bfq-iosched");
5842 
5843 static int __init bfq_init(void)
5844 {
5845 	int ret;
5846 
5847 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5848 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5849 	if (ret)
5850 		return ret;
5851 #endif
5852 
5853 	ret = -ENOMEM;
5854 	if (bfq_slab_setup())
5855 		goto err_pol_unreg;
5856 
5857 	/*
5858 	 * Times to load large popular applications for the typical
5859 	 * systems installed on the reference devices (see the
5860 	 * comments before the definition of the next
5861 	 * array). Actually, we use slightly lower values, as the
5862 	 * estimated peak rate tends to be smaller than the actual
5863 	 * peak rate.  The reason for this last fact is that estimates
5864 	 * are computed over much shorter time intervals than the long
5865 	 * intervals typically used for benchmarking. Why? First, to
5866 	 * adapt more quickly to variations. Second, because an I/O
5867 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5868 	 * be run for a long time.
5869 	 */
5870 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5871 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5872 
5873 	ret = elv_register(&iosched_bfq_mq);
5874 	if (ret)
5875 		goto slab_kill;
5876 
5877 	return 0;
5878 
5879 slab_kill:
5880 	bfq_slab_kill();
5881 err_pol_unreg:
5882 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5883 	blkcg_policy_unregister(&blkcg_policy_bfq);
5884 #endif
5885 	return ret;
5886 }
5887 
5888 static void __exit bfq_exit(void)
5889 {
5890 	elv_unregister(&iosched_bfq_mq);
5891 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5892 	blkcg_policy_unregister(&blkcg_policy_bfq);
5893 #endif
5894 	bfq_slab_kill();
5895 }
5896 
5897 module_init(bfq_init);
5898 module_exit(bfq_exit);
5899 
5900 MODULE_AUTHOR("Paolo Valente");
5901 MODULE_LICENSE("GPL");
5902 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5903