xref: /openbmc/linux/block/bfq-iosched.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include <trace/events/block.h>
129 
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
368 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
369 
370 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
371 {
372 	return bic->bfqq[is_sync];
373 }
374 
375 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
376 {
377 	bic->bfqq[is_sync] = bfqq;
378 }
379 
380 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
381 {
382 	return bic->icq.q->elevator->elevator_data;
383 }
384 
385 /**
386  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
387  * @icq: the iocontext queue.
388  */
389 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
390 {
391 	/* bic->icq is the first member, %NULL will convert to %NULL */
392 	return container_of(icq, struct bfq_io_cq, icq);
393 }
394 
395 /**
396  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
397  * @bfqd: the lookup key.
398  * @ioc: the io_context of the process doing I/O.
399  * @q: the request queue.
400  */
401 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
402 					struct io_context *ioc,
403 					struct request_queue *q)
404 {
405 	if (ioc) {
406 		unsigned long flags;
407 		struct bfq_io_cq *icq;
408 
409 		spin_lock_irqsave(&q->queue_lock, flags);
410 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
411 		spin_unlock_irqrestore(&q->queue_lock, flags);
412 
413 		return icq;
414 	}
415 
416 	return NULL;
417 }
418 
419 /*
420  * Scheduler run of queue, if there are requests pending and no one in the
421  * driver that will restart queueing.
422  */
423 void bfq_schedule_dispatch(struct bfq_data *bfqd)
424 {
425 	if (bfqd->queued != 0) {
426 		bfq_log(bfqd, "schedule dispatch");
427 		blk_mq_run_hw_queues(bfqd->queue, true);
428 	}
429 }
430 
431 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
432 
433 #define bfq_sample_valid(samples)	((samples) > 80)
434 
435 /*
436  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
437  * We choose the request that is closer to the head right now.  Distance
438  * behind the head is penalized and only allowed to a certain extent.
439  */
440 static struct request *bfq_choose_req(struct bfq_data *bfqd,
441 				      struct request *rq1,
442 				      struct request *rq2,
443 				      sector_t last)
444 {
445 	sector_t s1, s2, d1 = 0, d2 = 0;
446 	unsigned long back_max;
447 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
448 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
449 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
450 
451 	if (!rq1 || rq1 == rq2)
452 		return rq2;
453 	if (!rq2)
454 		return rq1;
455 
456 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
457 		return rq1;
458 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
459 		return rq2;
460 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
461 		return rq1;
462 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
463 		return rq2;
464 
465 	s1 = blk_rq_pos(rq1);
466 	s2 = blk_rq_pos(rq2);
467 
468 	/*
469 	 * By definition, 1KiB is 2 sectors.
470 	 */
471 	back_max = bfqd->bfq_back_max * 2;
472 
473 	/*
474 	 * Strict one way elevator _except_ in the case where we allow
475 	 * short backward seeks which are biased as twice the cost of a
476 	 * similar forward seek.
477 	 */
478 	if (s1 >= last)
479 		d1 = s1 - last;
480 	else if (s1 + back_max >= last)
481 		d1 = (last - s1) * bfqd->bfq_back_penalty;
482 	else
483 		wrap |= BFQ_RQ1_WRAP;
484 
485 	if (s2 >= last)
486 		d2 = s2 - last;
487 	else if (s2 + back_max >= last)
488 		d2 = (last - s2) * bfqd->bfq_back_penalty;
489 	else
490 		wrap |= BFQ_RQ2_WRAP;
491 
492 	/* Found required data */
493 
494 	/*
495 	 * By doing switch() on the bit mask "wrap" we avoid having to
496 	 * check two variables for all permutations: --> faster!
497 	 */
498 	switch (wrap) {
499 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
500 		if (d1 < d2)
501 			return rq1;
502 		else if (d2 < d1)
503 			return rq2;
504 
505 		if (s1 >= s2)
506 			return rq1;
507 		else
508 			return rq2;
509 
510 	case BFQ_RQ2_WRAP:
511 		return rq1;
512 	case BFQ_RQ1_WRAP:
513 		return rq2;
514 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
515 	default:
516 		/*
517 		 * Since both rqs are wrapped,
518 		 * start with the one that's further behind head
519 		 * (--> only *one* back seek required),
520 		 * since back seek takes more time than forward.
521 		 */
522 		if (s1 <= s2)
523 			return rq1;
524 		else
525 			return rq2;
526 	}
527 }
528 
529 /*
530  * Async I/O can easily starve sync I/O (both sync reads and sync
531  * writes), by consuming all tags. Similarly, storms of sync writes,
532  * such as those that sync(2) may trigger, can starve sync reads.
533  * Limit depths of async I/O and sync writes so as to counter both
534  * problems.
535  */
536 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
537 {
538 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
539 
540 	if (op_is_sync(op) && !op_is_write(op))
541 		return;
542 
543 	data->shallow_depth =
544 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
545 
546 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
547 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
548 			data->shallow_depth);
549 }
550 
551 static struct bfq_queue *
552 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
553 		     sector_t sector, struct rb_node **ret_parent,
554 		     struct rb_node ***rb_link)
555 {
556 	struct rb_node **p, *parent;
557 	struct bfq_queue *bfqq = NULL;
558 
559 	parent = NULL;
560 	p = &root->rb_node;
561 	while (*p) {
562 		struct rb_node **n;
563 
564 		parent = *p;
565 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
566 
567 		/*
568 		 * Sort strictly based on sector. Smallest to the left,
569 		 * largest to the right.
570 		 */
571 		if (sector > blk_rq_pos(bfqq->next_rq))
572 			n = &(*p)->rb_right;
573 		else if (sector < blk_rq_pos(bfqq->next_rq))
574 			n = &(*p)->rb_left;
575 		else
576 			break;
577 		p = n;
578 		bfqq = NULL;
579 	}
580 
581 	*ret_parent = parent;
582 	if (rb_link)
583 		*rb_link = p;
584 
585 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
586 		(unsigned long long)sector,
587 		bfqq ? bfqq->pid : 0);
588 
589 	return bfqq;
590 }
591 
592 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
593 {
594 	return bfqq->service_from_backlogged > 0 &&
595 		time_is_before_jiffies(bfqq->first_IO_time +
596 				       bfq_merge_time_limit);
597 }
598 
599 /*
600  * The following function is not marked as __cold because it is
601  * actually cold, but for the same performance goal described in the
602  * comments on the likely() at the beginning of
603  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
604  * execution time for the case where this function is not invoked, we
605  * had to add an unlikely() in each involved if().
606  */
607 void __cold
608 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
609 {
610 	struct rb_node **p, *parent;
611 	struct bfq_queue *__bfqq;
612 
613 	if (bfqq->pos_root) {
614 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
615 		bfqq->pos_root = NULL;
616 	}
617 
618 	/* oom_bfqq does not participate in queue merging */
619 	if (bfqq == &bfqd->oom_bfqq)
620 		return;
621 
622 	/*
623 	 * bfqq cannot be merged any longer (see comments in
624 	 * bfq_setup_cooperator): no point in adding bfqq into the
625 	 * position tree.
626 	 */
627 	if (bfq_too_late_for_merging(bfqq))
628 		return;
629 
630 	if (bfq_class_idle(bfqq))
631 		return;
632 	if (!bfqq->next_rq)
633 		return;
634 
635 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
636 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
637 			blk_rq_pos(bfqq->next_rq), &parent, &p);
638 	if (!__bfqq) {
639 		rb_link_node(&bfqq->pos_node, parent, p);
640 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
641 	} else
642 		bfqq->pos_root = NULL;
643 }
644 
645 /*
646  * The following function returns false either if every active queue
647  * must receive the same share of the throughput (symmetric scenario),
648  * or, as a special case, if bfqq must receive a share of the
649  * throughput lower than or equal to the share that every other active
650  * queue must receive.  If bfqq does sync I/O, then these are the only
651  * two cases where bfqq happens to be guaranteed its share of the
652  * throughput even if I/O dispatching is not plugged when bfqq remains
653  * temporarily empty (for more details, see the comments in the
654  * function bfq_better_to_idle()). For this reason, the return value
655  * of this function is used to check whether I/O-dispatch plugging can
656  * be avoided.
657  *
658  * The above first case (symmetric scenario) occurs when:
659  * 1) all active queues have the same weight,
660  * 2) all active queues belong to the same I/O-priority class,
661  * 3) all active groups at the same level in the groups tree have the same
662  *    weight,
663  * 4) all active groups at the same level in the groups tree have the same
664  *    number of children.
665  *
666  * Unfortunately, keeping the necessary state for evaluating exactly
667  * the last two symmetry sub-conditions above would be quite complex
668  * and time consuming. Therefore this function evaluates, instead,
669  * only the following stronger three sub-conditions, for which it is
670  * much easier to maintain the needed state:
671  * 1) all active queues have the same weight,
672  * 2) all active queues belong to the same I/O-priority class,
673  * 3) there are no active groups.
674  * In particular, the last condition is always true if hierarchical
675  * support or the cgroups interface are not enabled, thus no state
676  * needs to be maintained in this case.
677  */
678 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
679 				   struct bfq_queue *bfqq)
680 {
681 	bool smallest_weight = bfqq &&
682 		bfqq->weight_counter &&
683 		bfqq->weight_counter ==
684 		container_of(
685 			rb_first_cached(&bfqd->queue_weights_tree),
686 			struct bfq_weight_counter,
687 			weights_node);
688 
689 	/*
690 	 * For queue weights to differ, queue_weights_tree must contain
691 	 * at least two nodes.
692 	 */
693 	bool varied_queue_weights = !smallest_weight &&
694 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
695 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
696 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
697 
698 	bool multiple_classes_busy =
699 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
700 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
701 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
702 
703 	return varied_queue_weights || multiple_classes_busy
704 #ifdef CONFIG_BFQ_GROUP_IOSCHED
705 	       || bfqd->num_groups_with_pending_reqs > 0
706 #endif
707 		;
708 }
709 
710 /*
711  * If the weight-counter tree passed as input contains no counter for
712  * the weight of the input queue, then add that counter; otherwise just
713  * increment the existing counter.
714  *
715  * Note that weight-counter trees contain few nodes in mostly symmetric
716  * scenarios. For example, if all queues have the same weight, then the
717  * weight-counter tree for the queues may contain at most one node.
718  * This holds even if low_latency is on, because weight-raised queues
719  * are not inserted in the tree.
720  * In most scenarios, the rate at which nodes are created/destroyed
721  * should be low too.
722  */
723 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
724 			  struct rb_root_cached *root)
725 {
726 	struct bfq_entity *entity = &bfqq->entity;
727 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
728 	bool leftmost = true;
729 
730 	/*
731 	 * Do not insert if the queue is already associated with a
732 	 * counter, which happens if:
733 	 *   1) a request arrival has caused the queue to become both
734 	 *      non-weight-raised, and hence change its weight, and
735 	 *      backlogged; in this respect, each of the two events
736 	 *      causes an invocation of this function,
737 	 *   2) this is the invocation of this function caused by the
738 	 *      second event. This second invocation is actually useless,
739 	 *      and we handle this fact by exiting immediately. More
740 	 *      efficient or clearer solutions might possibly be adopted.
741 	 */
742 	if (bfqq->weight_counter)
743 		return;
744 
745 	while (*new) {
746 		struct bfq_weight_counter *__counter = container_of(*new,
747 						struct bfq_weight_counter,
748 						weights_node);
749 		parent = *new;
750 
751 		if (entity->weight == __counter->weight) {
752 			bfqq->weight_counter = __counter;
753 			goto inc_counter;
754 		}
755 		if (entity->weight < __counter->weight)
756 			new = &((*new)->rb_left);
757 		else {
758 			new = &((*new)->rb_right);
759 			leftmost = false;
760 		}
761 	}
762 
763 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
764 				       GFP_ATOMIC);
765 
766 	/*
767 	 * In the unlucky event of an allocation failure, we just
768 	 * exit. This will cause the weight of queue to not be
769 	 * considered in bfq_asymmetric_scenario, which, in its turn,
770 	 * causes the scenario to be deemed wrongly symmetric in case
771 	 * bfqq's weight would have been the only weight making the
772 	 * scenario asymmetric.  On the bright side, no unbalance will
773 	 * however occur when bfqq becomes inactive again (the
774 	 * invocation of this function is triggered by an activation
775 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
776 	 * if !bfqq->weight_counter.
777 	 */
778 	if (unlikely(!bfqq->weight_counter))
779 		return;
780 
781 	bfqq->weight_counter->weight = entity->weight;
782 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
783 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
784 				leftmost);
785 
786 inc_counter:
787 	bfqq->weight_counter->num_active++;
788 	bfqq->ref++;
789 }
790 
791 /*
792  * Decrement the weight counter associated with the queue, and, if the
793  * counter reaches 0, remove the counter from the tree.
794  * See the comments to the function bfq_weights_tree_add() for considerations
795  * about overhead.
796  */
797 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
798 			       struct bfq_queue *bfqq,
799 			       struct rb_root_cached *root)
800 {
801 	if (!bfqq->weight_counter)
802 		return;
803 
804 	bfqq->weight_counter->num_active--;
805 	if (bfqq->weight_counter->num_active > 0)
806 		goto reset_entity_pointer;
807 
808 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
809 	kfree(bfqq->weight_counter);
810 
811 reset_entity_pointer:
812 	bfqq->weight_counter = NULL;
813 	bfq_put_queue(bfqq);
814 }
815 
816 /*
817  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
818  * of active groups for each queue's inactive parent entity.
819  */
820 void bfq_weights_tree_remove(struct bfq_data *bfqd,
821 			     struct bfq_queue *bfqq)
822 {
823 	struct bfq_entity *entity = bfqq->entity.parent;
824 
825 	for_each_entity(entity) {
826 		struct bfq_sched_data *sd = entity->my_sched_data;
827 
828 		if (sd->next_in_service || sd->in_service_entity) {
829 			/*
830 			 * entity is still active, because either
831 			 * next_in_service or in_service_entity is not
832 			 * NULL (see the comments on the definition of
833 			 * next_in_service for details on why
834 			 * in_service_entity must be checked too).
835 			 *
836 			 * As a consequence, its parent entities are
837 			 * active as well, and thus this loop must
838 			 * stop here.
839 			 */
840 			break;
841 		}
842 
843 		/*
844 		 * The decrement of num_groups_with_pending_reqs is
845 		 * not performed immediately upon the deactivation of
846 		 * entity, but it is delayed to when it also happens
847 		 * that the first leaf descendant bfqq of entity gets
848 		 * all its pending requests completed. The following
849 		 * instructions perform this delayed decrement, if
850 		 * needed. See the comments on
851 		 * num_groups_with_pending_reqs for details.
852 		 */
853 		if (entity->in_groups_with_pending_reqs) {
854 			entity->in_groups_with_pending_reqs = false;
855 			bfqd->num_groups_with_pending_reqs--;
856 		}
857 	}
858 
859 	/*
860 	 * Next function is invoked last, because it causes bfqq to be
861 	 * freed if the following holds: bfqq is not in service and
862 	 * has no dispatched request. DO NOT use bfqq after the next
863 	 * function invocation.
864 	 */
865 	__bfq_weights_tree_remove(bfqd, bfqq,
866 				  &bfqd->queue_weights_tree);
867 }
868 
869 /*
870  * Return expired entry, or NULL to just start from scratch in rbtree.
871  */
872 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
873 				      struct request *last)
874 {
875 	struct request *rq;
876 
877 	if (bfq_bfqq_fifo_expire(bfqq))
878 		return NULL;
879 
880 	bfq_mark_bfqq_fifo_expire(bfqq);
881 
882 	rq = rq_entry_fifo(bfqq->fifo.next);
883 
884 	if (rq == last || ktime_get_ns() < rq->fifo_time)
885 		return NULL;
886 
887 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
888 	return rq;
889 }
890 
891 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
892 					struct bfq_queue *bfqq,
893 					struct request *last)
894 {
895 	struct rb_node *rbnext = rb_next(&last->rb_node);
896 	struct rb_node *rbprev = rb_prev(&last->rb_node);
897 	struct request *next, *prev = NULL;
898 
899 	/* Follow expired path, else get first next available. */
900 	next = bfq_check_fifo(bfqq, last);
901 	if (next)
902 		return next;
903 
904 	if (rbprev)
905 		prev = rb_entry_rq(rbprev);
906 
907 	if (rbnext)
908 		next = rb_entry_rq(rbnext);
909 	else {
910 		rbnext = rb_first(&bfqq->sort_list);
911 		if (rbnext && rbnext != &last->rb_node)
912 			next = rb_entry_rq(rbnext);
913 	}
914 
915 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
916 }
917 
918 /* see the definition of bfq_async_charge_factor for details */
919 static unsigned long bfq_serv_to_charge(struct request *rq,
920 					struct bfq_queue *bfqq)
921 {
922 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
923 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
924 		return blk_rq_sectors(rq);
925 
926 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
927 }
928 
929 /**
930  * bfq_updated_next_req - update the queue after a new next_rq selection.
931  * @bfqd: the device data the queue belongs to.
932  * @bfqq: the queue to update.
933  *
934  * If the first request of a queue changes we make sure that the queue
935  * has enough budget to serve at least its first request (if the
936  * request has grown).  We do this because if the queue has not enough
937  * budget for its first request, it has to go through two dispatch
938  * rounds to actually get it dispatched.
939  */
940 static void bfq_updated_next_req(struct bfq_data *bfqd,
941 				 struct bfq_queue *bfqq)
942 {
943 	struct bfq_entity *entity = &bfqq->entity;
944 	struct request *next_rq = bfqq->next_rq;
945 	unsigned long new_budget;
946 
947 	if (!next_rq)
948 		return;
949 
950 	if (bfqq == bfqd->in_service_queue)
951 		/*
952 		 * In order not to break guarantees, budgets cannot be
953 		 * changed after an entity has been selected.
954 		 */
955 		return;
956 
957 	new_budget = max_t(unsigned long,
958 			   max_t(unsigned long, bfqq->max_budget,
959 				 bfq_serv_to_charge(next_rq, bfqq)),
960 			   entity->service);
961 	if (entity->budget != new_budget) {
962 		entity->budget = new_budget;
963 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
964 					 new_budget);
965 		bfq_requeue_bfqq(bfqd, bfqq, false);
966 	}
967 }
968 
969 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
970 {
971 	u64 dur;
972 
973 	if (bfqd->bfq_wr_max_time > 0)
974 		return bfqd->bfq_wr_max_time;
975 
976 	dur = bfqd->rate_dur_prod;
977 	do_div(dur, bfqd->peak_rate);
978 
979 	/*
980 	 * Limit duration between 3 and 25 seconds. The upper limit
981 	 * has been conservatively set after the following worst case:
982 	 * on a QEMU/KVM virtual machine
983 	 * - running in a slow PC
984 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
985 	 * - serving a heavy I/O workload, such as the sequential reading
986 	 *   of several files
987 	 * mplayer took 23 seconds to start, if constantly weight-raised.
988 	 *
989 	 * As for higher values than that accommodating the above bad
990 	 * scenario, tests show that higher values would often yield
991 	 * the opposite of the desired result, i.e., would worsen
992 	 * responsiveness by allowing non-interactive applications to
993 	 * preserve weight raising for too long.
994 	 *
995 	 * On the other end, lower values than 3 seconds make it
996 	 * difficult for most interactive tasks to complete their jobs
997 	 * before weight-raising finishes.
998 	 */
999 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1000 }
1001 
1002 /* switch back from soft real-time to interactive weight raising */
1003 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1004 					  struct bfq_data *bfqd)
1005 {
1006 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1007 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1008 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1009 }
1010 
1011 static void
1012 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1013 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1014 {
1015 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1016 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1017 
1018 	if (bic->saved_has_short_ttime)
1019 		bfq_mark_bfqq_has_short_ttime(bfqq);
1020 	else
1021 		bfq_clear_bfqq_has_short_ttime(bfqq);
1022 
1023 	if (bic->saved_IO_bound)
1024 		bfq_mark_bfqq_IO_bound(bfqq);
1025 	else
1026 		bfq_clear_bfqq_IO_bound(bfqq);
1027 
1028 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1029 	bfqq->inject_limit = bic->saved_inject_limit;
1030 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1031 
1032 	bfqq->entity.new_weight = bic->saved_weight;
1033 	bfqq->ttime = bic->saved_ttime;
1034 	bfqq->io_start_time = bic->saved_io_start_time;
1035 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1036 	bfqq->wr_coeff = bic->saved_wr_coeff;
1037 	bfqq->service_from_wr = bic->saved_service_from_wr;
1038 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1039 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1040 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1041 
1042 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1043 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1044 				   bfqq->wr_cur_max_time))) {
1045 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1046 		    !bfq_bfqq_in_large_burst(bfqq) &&
1047 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1048 					     bfq_wr_duration(bfqd))) {
1049 			switch_back_to_interactive_wr(bfqq, bfqd);
1050 		} else {
1051 			bfqq->wr_coeff = 1;
1052 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1053 				     "resume state: switching off wr");
1054 		}
1055 	}
1056 
1057 	/* make sure weight will be updated, however we got here */
1058 	bfqq->entity.prio_changed = 1;
1059 
1060 	if (likely(!busy))
1061 		return;
1062 
1063 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1064 		bfqd->wr_busy_queues++;
1065 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1066 		bfqd->wr_busy_queues--;
1067 }
1068 
1069 static int bfqq_process_refs(struct bfq_queue *bfqq)
1070 {
1071 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1072 		(bfqq->weight_counter != NULL);
1073 }
1074 
1075 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1076 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1077 {
1078 	struct bfq_queue *item;
1079 	struct hlist_node *n;
1080 
1081 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1082 		hlist_del_init(&item->burst_list_node);
1083 
1084 	/*
1085 	 * Start the creation of a new burst list only if there is no
1086 	 * active queue. See comments on the conditional invocation of
1087 	 * bfq_handle_burst().
1088 	 */
1089 	if (bfq_tot_busy_queues(bfqd) == 0) {
1090 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1091 		bfqd->burst_size = 1;
1092 	} else
1093 		bfqd->burst_size = 0;
1094 
1095 	bfqd->burst_parent_entity = bfqq->entity.parent;
1096 }
1097 
1098 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1099 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1100 {
1101 	/* Increment burst size to take into account also bfqq */
1102 	bfqd->burst_size++;
1103 
1104 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1105 		struct bfq_queue *pos, *bfqq_item;
1106 		struct hlist_node *n;
1107 
1108 		/*
1109 		 * Enough queues have been activated shortly after each
1110 		 * other to consider this burst as large.
1111 		 */
1112 		bfqd->large_burst = true;
1113 
1114 		/*
1115 		 * We can now mark all queues in the burst list as
1116 		 * belonging to a large burst.
1117 		 */
1118 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1119 				     burst_list_node)
1120 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1121 		bfq_mark_bfqq_in_large_burst(bfqq);
1122 
1123 		/*
1124 		 * From now on, and until the current burst finishes, any
1125 		 * new queue being activated shortly after the last queue
1126 		 * was inserted in the burst can be immediately marked as
1127 		 * belonging to a large burst. So the burst list is not
1128 		 * needed any more. Remove it.
1129 		 */
1130 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1131 					  burst_list_node)
1132 			hlist_del_init(&pos->burst_list_node);
1133 	} else /*
1134 		* Burst not yet large: add bfqq to the burst list. Do
1135 		* not increment the ref counter for bfqq, because bfqq
1136 		* is removed from the burst list before freeing bfqq
1137 		* in put_queue.
1138 		*/
1139 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1140 }
1141 
1142 /*
1143  * If many queues belonging to the same group happen to be created
1144  * shortly after each other, then the processes associated with these
1145  * queues have typically a common goal. In particular, bursts of queue
1146  * creations are usually caused by services or applications that spawn
1147  * many parallel threads/processes. Examples are systemd during boot,
1148  * or git grep. To help these processes get their job done as soon as
1149  * possible, it is usually better to not grant either weight-raising
1150  * or device idling to their queues, unless these queues must be
1151  * protected from the I/O flowing through other active queues.
1152  *
1153  * In this comment we describe, firstly, the reasons why this fact
1154  * holds, and, secondly, the next function, which implements the main
1155  * steps needed to properly mark these queues so that they can then be
1156  * treated in a different way.
1157  *
1158  * The above services or applications benefit mostly from a high
1159  * throughput: the quicker the requests of the activated queues are
1160  * cumulatively served, the sooner the target job of these queues gets
1161  * completed. As a consequence, weight-raising any of these queues,
1162  * which also implies idling the device for it, is almost always
1163  * counterproductive, unless there are other active queues to isolate
1164  * these new queues from. If there no other active queues, then
1165  * weight-raising these new queues just lowers throughput in most
1166  * cases.
1167  *
1168  * On the other hand, a burst of queue creations may be caused also by
1169  * the start of an application that does not consist of a lot of
1170  * parallel I/O-bound threads. In fact, with a complex application,
1171  * several short processes may need to be executed to start-up the
1172  * application. In this respect, to start an application as quickly as
1173  * possible, the best thing to do is in any case to privilege the I/O
1174  * related to the application with respect to all other
1175  * I/O. Therefore, the best strategy to start as quickly as possible
1176  * an application that causes a burst of queue creations is to
1177  * weight-raise all the queues created during the burst. This is the
1178  * exact opposite of the best strategy for the other type of bursts.
1179  *
1180  * In the end, to take the best action for each of the two cases, the
1181  * two types of bursts need to be distinguished. Fortunately, this
1182  * seems relatively easy, by looking at the sizes of the bursts. In
1183  * particular, we found a threshold such that only bursts with a
1184  * larger size than that threshold are apparently caused by
1185  * services or commands such as systemd or git grep. For brevity,
1186  * hereafter we call just 'large' these bursts. BFQ *does not*
1187  * weight-raise queues whose creation occurs in a large burst. In
1188  * addition, for each of these queues BFQ performs or does not perform
1189  * idling depending on which choice boosts the throughput more. The
1190  * exact choice depends on the device and request pattern at
1191  * hand.
1192  *
1193  * Unfortunately, false positives may occur while an interactive task
1194  * is starting (e.g., an application is being started). The
1195  * consequence is that the queues associated with the task do not
1196  * enjoy weight raising as expected. Fortunately these false positives
1197  * are very rare. They typically occur if some service happens to
1198  * start doing I/O exactly when the interactive task starts.
1199  *
1200  * Turning back to the next function, it is invoked only if there are
1201  * no active queues (apart from active queues that would belong to the
1202  * same, possible burst bfqq would belong to), and it implements all
1203  * the steps needed to detect the occurrence of a large burst and to
1204  * properly mark all the queues belonging to it (so that they can then
1205  * be treated in a different way). This goal is achieved by
1206  * maintaining a "burst list" that holds, temporarily, the queues that
1207  * belong to the burst in progress. The list is then used to mark
1208  * these queues as belonging to a large burst if the burst does become
1209  * large. The main steps are the following.
1210  *
1211  * . when the very first queue is created, the queue is inserted into the
1212  *   list (as it could be the first queue in a possible burst)
1213  *
1214  * . if the current burst has not yet become large, and a queue Q that does
1215  *   not yet belong to the burst is activated shortly after the last time
1216  *   at which a new queue entered the burst list, then the function appends
1217  *   Q to the burst list
1218  *
1219  * . if, as a consequence of the previous step, the burst size reaches
1220  *   the large-burst threshold, then
1221  *
1222  *     . all the queues in the burst list are marked as belonging to a
1223  *       large burst
1224  *
1225  *     . the burst list is deleted; in fact, the burst list already served
1226  *       its purpose (keeping temporarily track of the queues in a burst,
1227  *       so as to be able to mark them as belonging to a large burst in the
1228  *       previous sub-step), and now is not needed any more
1229  *
1230  *     . the device enters a large-burst mode
1231  *
1232  * . if a queue Q that does not belong to the burst is created while
1233  *   the device is in large-burst mode and shortly after the last time
1234  *   at which a queue either entered the burst list or was marked as
1235  *   belonging to the current large burst, then Q is immediately marked
1236  *   as belonging to a large burst.
1237  *
1238  * . if a queue Q that does not belong to the burst is created a while
1239  *   later, i.e., not shortly after, than the last time at which a queue
1240  *   either entered the burst list or was marked as belonging to the
1241  *   current large burst, then the current burst is deemed as finished and:
1242  *
1243  *        . the large-burst mode is reset if set
1244  *
1245  *        . the burst list is emptied
1246  *
1247  *        . Q is inserted in the burst list, as Q may be the first queue
1248  *          in a possible new burst (then the burst list contains just Q
1249  *          after this step).
1250  */
1251 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1252 {
1253 	/*
1254 	 * If bfqq is already in the burst list or is part of a large
1255 	 * burst, or finally has just been split, then there is
1256 	 * nothing else to do.
1257 	 */
1258 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1259 	    bfq_bfqq_in_large_burst(bfqq) ||
1260 	    time_is_after_eq_jiffies(bfqq->split_time +
1261 				     msecs_to_jiffies(10)))
1262 		return;
1263 
1264 	/*
1265 	 * If bfqq's creation happens late enough, or bfqq belongs to
1266 	 * a different group than the burst group, then the current
1267 	 * burst is finished, and related data structures must be
1268 	 * reset.
1269 	 *
1270 	 * In this respect, consider the special case where bfqq is
1271 	 * the very first queue created after BFQ is selected for this
1272 	 * device. In this case, last_ins_in_burst and
1273 	 * burst_parent_entity are not yet significant when we get
1274 	 * here. But it is easy to verify that, whether or not the
1275 	 * following condition is true, bfqq will end up being
1276 	 * inserted into the burst list. In particular the list will
1277 	 * happen to contain only bfqq. And this is exactly what has
1278 	 * to happen, as bfqq may be the first queue of the first
1279 	 * burst.
1280 	 */
1281 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1282 	    bfqd->bfq_burst_interval) ||
1283 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1284 		bfqd->large_burst = false;
1285 		bfq_reset_burst_list(bfqd, bfqq);
1286 		goto end;
1287 	}
1288 
1289 	/*
1290 	 * If we get here, then bfqq is being activated shortly after the
1291 	 * last queue. So, if the current burst is also large, we can mark
1292 	 * bfqq as belonging to this large burst immediately.
1293 	 */
1294 	if (bfqd->large_burst) {
1295 		bfq_mark_bfqq_in_large_burst(bfqq);
1296 		goto end;
1297 	}
1298 
1299 	/*
1300 	 * If we get here, then a large-burst state has not yet been
1301 	 * reached, but bfqq is being activated shortly after the last
1302 	 * queue. Then we add bfqq to the burst.
1303 	 */
1304 	bfq_add_to_burst(bfqd, bfqq);
1305 end:
1306 	/*
1307 	 * At this point, bfqq either has been added to the current
1308 	 * burst or has caused the current burst to terminate and a
1309 	 * possible new burst to start. In particular, in the second
1310 	 * case, bfqq has become the first queue in the possible new
1311 	 * burst.  In both cases last_ins_in_burst needs to be moved
1312 	 * forward.
1313 	 */
1314 	bfqd->last_ins_in_burst = jiffies;
1315 }
1316 
1317 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1318 {
1319 	struct bfq_entity *entity = &bfqq->entity;
1320 
1321 	return entity->budget - entity->service;
1322 }
1323 
1324 /*
1325  * If enough samples have been computed, return the current max budget
1326  * stored in bfqd, which is dynamically updated according to the
1327  * estimated disk peak rate; otherwise return the default max budget
1328  */
1329 static int bfq_max_budget(struct bfq_data *bfqd)
1330 {
1331 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1332 		return bfq_default_max_budget;
1333 	else
1334 		return bfqd->bfq_max_budget;
1335 }
1336 
1337 /*
1338  * Return min budget, which is a fraction of the current or default
1339  * max budget (trying with 1/32)
1340  */
1341 static int bfq_min_budget(struct bfq_data *bfqd)
1342 {
1343 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1344 		return bfq_default_max_budget / 32;
1345 	else
1346 		return bfqd->bfq_max_budget / 32;
1347 }
1348 
1349 /*
1350  * The next function, invoked after the input queue bfqq switches from
1351  * idle to busy, updates the budget of bfqq. The function also tells
1352  * whether the in-service queue should be expired, by returning
1353  * true. The purpose of expiring the in-service queue is to give bfqq
1354  * the chance to possibly preempt the in-service queue, and the reason
1355  * for preempting the in-service queue is to achieve one of the two
1356  * goals below.
1357  *
1358  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1359  * expired because it has remained idle. In particular, bfqq may have
1360  * expired for one of the following two reasons:
1361  *
1362  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1363  *   and did not make it to issue a new request before its last
1364  *   request was served;
1365  *
1366  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1367  *   a new request before the expiration of the idling-time.
1368  *
1369  * Even if bfqq has expired for one of the above reasons, the process
1370  * associated with the queue may be however issuing requests greedily,
1371  * and thus be sensitive to the bandwidth it receives (bfqq may have
1372  * remained idle for other reasons: CPU high load, bfqq not enjoying
1373  * idling, I/O throttling somewhere in the path from the process to
1374  * the I/O scheduler, ...). But if, after every expiration for one of
1375  * the above two reasons, bfqq has to wait for the service of at least
1376  * one full budget of another queue before being served again, then
1377  * bfqq is likely to get a much lower bandwidth or resource time than
1378  * its reserved ones. To address this issue, two countermeasures need
1379  * to be taken.
1380  *
1381  * First, the budget and the timestamps of bfqq need to be updated in
1382  * a special way on bfqq reactivation: they need to be updated as if
1383  * bfqq did not remain idle and did not expire. In fact, if they are
1384  * computed as if bfqq expired and remained idle until reactivation,
1385  * then the process associated with bfqq is treated as if, instead of
1386  * being greedy, it stopped issuing requests when bfqq remained idle,
1387  * and restarts issuing requests only on this reactivation. In other
1388  * words, the scheduler does not help the process recover the "service
1389  * hole" between bfqq expiration and reactivation. As a consequence,
1390  * the process receives a lower bandwidth than its reserved one. In
1391  * contrast, to recover this hole, the budget must be updated as if
1392  * bfqq was not expired at all before this reactivation, i.e., it must
1393  * be set to the value of the remaining budget when bfqq was
1394  * expired. Along the same line, timestamps need to be assigned the
1395  * value they had the last time bfqq was selected for service, i.e.,
1396  * before last expiration. Thus timestamps need to be back-shifted
1397  * with respect to their normal computation (see [1] for more details
1398  * on this tricky aspect).
1399  *
1400  * Secondly, to allow the process to recover the hole, the in-service
1401  * queue must be expired too, to give bfqq the chance to preempt it
1402  * immediately. In fact, if bfqq has to wait for a full budget of the
1403  * in-service queue to be completed, then it may become impossible to
1404  * let the process recover the hole, even if the back-shifted
1405  * timestamps of bfqq are lower than those of the in-service queue. If
1406  * this happens for most or all of the holes, then the process may not
1407  * receive its reserved bandwidth. In this respect, it is worth noting
1408  * that, being the service of outstanding requests unpreemptible, a
1409  * little fraction of the holes may however be unrecoverable, thereby
1410  * causing a little loss of bandwidth.
1411  *
1412  * The last important point is detecting whether bfqq does need this
1413  * bandwidth recovery. In this respect, the next function deems the
1414  * process associated with bfqq greedy, and thus allows it to recover
1415  * the hole, if: 1) the process is waiting for the arrival of a new
1416  * request (which implies that bfqq expired for one of the above two
1417  * reasons), and 2) such a request has arrived soon. The first
1418  * condition is controlled through the flag non_blocking_wait_rq,
1419  * while the second through the flag arrived_in_time. If both
1420  * conditions hold, then the function computes the budget in the
1421  * above-described special way, and signals that the in-service queue
1422  * should be expired. Timestamp back-shifting is done later in
1423  * __bfq_activate_entity.
1424  *
1425  * 2. Reduce latency. Even if timestamps are not backshifted to let
1426  * the process associated with bfqq recover a service hole, bfqq may
1427  * however happen to have, after being (re)activated, a lower finish
1428  * timestamp than the in-service queue.	 That is, the next budget of
1429  * bfqq may have to be completed before the one of the in-service
1430  * queue. If this is the case, then preempting the in-service queue
1431  * allows this goal to be achieved, apart from the unpreemptible,
1432  * outstanding requests mentioned above.
1433  *
1434  * Unfortunately, regardless of which of the above two goals one wants
1435  * to achieve, service trees need first to be updated to know whether
1436  * the in-service queue must be preempted. To have service trees
1437  * correctly updated, the in-service queue must be expired and
1438  * rescheduled, and bfqq must be scheduled too. This is one of the
1439  * most costly operations (in future versions, the scheduling
1440  * mechanism may be re-designed in such a way to make it possible to
1441  * know whether preemption is needed without needing to update service
1442  * trees). In addition, queue preemptions almost always cause random
1443  * I/O, which may in turn cause loss of throughput. Finally, there may
1444  * even be no in-service queue when the next function is invoked (so,
1445  * no queue to compare timestamps with). Because of these facts, the
1446  * next function adopts the following simple scheme to avoid costly
1447  * operations, too frequent preemptions and too many dependencies on
1448  * the state of the scheduler: it requests the expiration of the
1449  * in-service queue (unconditionally) only for queues that need to
1450  * recover a hole. Then it delegates to other parts of the code the
1451  * responsibility of handling the above case 2.
1452  */
1453 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1454 						struct bfq_queue *bfqq,
1455 						bool arrived_in_time)
1456 {
1457 	struct bfq_entity *entity = &bfqq->entity;
1458 
1459 	/*
1460 	 * In the next compound condition, we check also whether there
1461 	 * is some budget left, because otherwise there is no point in
1462 	 * trying to go on serving bfqq with this same budget: bfqq
1463 	 * would be expired immediately after being selected for
1464 	 * service. This would only cause useless overhead.
1465 	 */
1466 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1467 	    bfq_bfqq_budget_left(bfqq) > 0) {
1468 		/*
1469 		 * We do not clear the flag non_blocking_wait_rq here, as
1470 		 * the latter is used in bfq_activate_bfqq to signal
1471 		 * that timestamps need to be back-shifted (and is
1472 		 * cleared right after).
1473 		 */
1474 
1475 		/*
1476 		 * In next assignment we rely on that either
1477 		 * entity->service or entity->budget are not updated
1478 		 * on expiration if bfqq is empty (see
1479 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1480 		 * remain unchanged after such an expiration, and the
1481 		 * following statement therefore assigns to
1482 		 * entity->budget the remaining budget on such an
1483 		 * expiration.
1484 		 */
1485 		entity->budget = min_t(unsigned long,
1486 				       bfq_bfqq_budget_left(bfqq),
1487 				       bfqq->max_budget);
1488 
1489 		/*
1490 		 * At this point, we have used entity->service to get
1491 		 * the budget left (needed for updating
1492 		 * entity->budget). Thus we finally can, and have to,
1493 		 * reset entity->service. The latter must be reset
1494 		 * because bfqq would otherwise be charged again for
1495 		 * the service it has received during its previous
1496 		 * service slot(s).
1497 		 */
1498 		entity->service = 0;
1499 
1500 		return true;
1501 	}
1502 
1503 	/*
1504 	 * We can finally complete expiration, by setting service to 0.
1505 	 */
1506 	entity->service = 0;
1507 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1508 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1509 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1510 	return false;
1511 }
1512 
1513 /*
1514  * Return the farthest past time instant according to jiffies
1515  * macros.
1516  */
1517 static unsigned long bfq_smallest_from_now(void)
1518 {
1519 	return jiffies - MAX_JIFFY_OFFSET;
1520 }
1521 
1522 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1523 					     struct bfq_queue *bfqq,
1524 					     unsigned int old_wr_coeff,
1525 					     bool wr_or_deserves_wr,
1526 					     bool interactive,
1527 					     bool in_burst,
1528 					     bool soft_rt)
1529 {
1530 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1531 		/* start a weight-raising period */
1532 		if (interactive) {
1533 			bfqq->service_from_wr = 0;
1534 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1535 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1536 		} else {
1537 			/*
1538 			 * No interactive weight raising in progress
1539 			 * here: assign minus infinity to
1540 			 * wr_start_at_switch_to_srt, to make sure
1541 			 * that, at the end of the soft-real-time
1542 			 * weight raising periods that is starting
1543 			 * now, no interactive weight-raising period
1544 			 * may be wrongly considered as still in
1545 			 * progress (and thus actually started by
1546 			 * mistake).
1547 			 */
1548 			bfqq->wr_start_at_switch_to_srt =
1549 				bfq_smallest_from_now();
1550 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1551 				BFQ_SOFTRT_WEIGHT_FACTOR;
1552 			bfqq->wr_cur_max_time =
1553 				bfqd->bfq_wr_rt_max_time;
1554 		}
1555 
1556 		/*
1557 		 * If needed, further reduce budget to make sure it is
1558 		 * close to bfqq's backlog, so as to reduce the
1559 		 * scheduling-error component due to a too large
1560 		 * budget. Do not care about throughput consequences,
1561 		 * but only about latency. Finally, do not assign a
1562 		 * too small budget either, to avoid increasing
1563 		 * latency by causing too frequent expirations.
1564 		 */
1565 		bfqq->entity.budget = min_t(unsigned long,
1566 					    bfqq->entity.budget,
1567 					    2 * bfq_min_budget(bfqd));
1568 	} else if (old_wr_coeff > 1) {
1569 		if (interactive) { /* update wr coeff and duration */
1570 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1571 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1572 		} else if (in_burst)
1573 			bfqq->wr_coeff = 1;
1574 		else if (soft_rt) {
1575 			/*
1576 			 * The application is now or still meeting the
1577 			 * requirements for being deemed soft rt.  We
1578 			 * can then correctly and safely (re)charge
1579 			 * the weight-raising duration for the
1580 			 * application with the weight-raising
1581 			 * duration for soft rt applications.
1582 			 *
1583 			 * In particular, doing this recharge now, i.e.,
1584 			 * before the weight-raising period for the
1585 			 * application finishes, reduces the probability
1586 			 * of the following negative scenario:
1587 			 * 1) the weight of a soft rt application is
1588 			 *    raised at startup (as for any newly
1589 			 *    created application),
1590 			 * 2) since the application is not interactive,
1591 			 *    at a certain time weight-raising is
1592 			 *    stopped for the application,
1593 			 * 3) at that time the application happens to
1594 			 *    still have pending requests, and hence
1595 			 *    is destined to not have a chance to be
1596 			 *    deemed soft rt before these requests are
1597 			 *    completed (see the comments to the
1598 			 *    function bfq_bfqq_softrt_next_start()
1599 			 *    for details on soft rt detection),
1600 			 * 4) these pending requests experience a high
1601 			 *    latency because the application is not
1602 			 *    weight-raised while they are pending.
1603 			 */
1604 			if (bfqq->wr_cur_max_time !=
1605 				bfqd->bfq_wr_rt_max_time) {
1606 				bfqq->wr_start_at_switch_to_srt =
1607 					bfqq->last_wr_start_finish;
1608 
1609 				bfqq->wr_cur_max_time =
1610 					bfqd->bfq_wr_rt_max_time;
1611 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1612 					BFQ_SOFTRT_WEIGHT_FACTOR;
1613 			}
1614 			bfqq->last_wr_start_finish = jiffies;
1615 		}
1616 	}
1617 }
1618 
1619 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1620 					struct bfq_queue *bfqq)
1621 {
1622 	return bfqq->dispatched == 0 &&
1623 		time_is_before_jiffies(
1624 			bfqq->budget_timeout +
1625 			bfqd->bfq_wr_min_idle_time);
1626 }
1627 
1628 
1629 /*
1630  * Return true if bfqq is in a higher priority class, or has a higher
1631  * weight than the in-service queue.
1632  */
1633 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1634 					    struct bfq_queue *in_serv_bfqq)
1635 {
1636 	int bfqq_weight, in_serv_weight;
1637 
1638 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1639 		return true;
1640 
1641 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1642 		bfqq_weight = bfqq->entity.weight;
1643 		in_serv_weight = in_serv_bfqq->entity.weight;
1644 	} else {
1645 		if (bfqq->entity.parent)
1646 			bfqq_weight = bfqq->entity.parent->weight;
1647 		else
1648 			bfqq_weight = bfqq->entity.weight;
1649 		if (in_serv_bfqq->entity.parent)
1650 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1651 		else
1652 			in_serv_weight = in_serv_bfqq->entity.weight;
1653 	}
1654 
1655 	return bfqq_weight > in_serv_weight;
1656 }
1657 
1658 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1659 
1660 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1661 					     struct bfq_queue *bfqq,
1662 					     int old_wr_coeff,
1663 					     struct request *rq,
1664 					     bool *interactive)
1665 {
1666 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1667 		bfqq_wants_to_preempt,
1668 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1669 		/*
1670 		 * See the comments on
1671 		 * bfq_bfqq_update_budg_for_activation for
1672 		 * details on the usage of the next variable.
1673 		 */
1674 		arrived_in_time =  ktime_get_ns() <=
1675 			bfqq->ttime.last_end_request +
1676 			bfqd->bfq_slice_idle * 3;
1677 
1678 
1679 	/*
1680 	 * bfqq deserves to be weight-raised if:
1681 	 * - it is sync,
1682 	 * - it does not belong to a large burst,
1683 	 * - it has been idle for enough time or is soft real-time,
1684 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1685 	 * - has a default weight (otherwise we assume the user wanted
1686 	 *   to control its weight explicitly)
1687 	 */
1688 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1689 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1690 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1691 		!in_burst &&
1692 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1693 		bfqq->dispatched == 0 &&
1694 		bfqq->entity.new_weight == 40;
1695 	*interactive = !in_burst && idle_for_long_time &&
1696 		bfqq->entity.new_weight == 40;
1697 	wr_or_deserves_wr = bfqd->low_latency &&
1698 		(bfqq->wr_coeff > 1 ||
1699 		 (bfq_bfqq_sync(bfqq) &&
1700 		  bfqq->bic && (*interactive || soft_rt)));
1701 
1702 	/*
1703 	 * Using the last flag, update budget and check whether bfqq
1704 	 * may want to preempt the in-service queue.
1705 	 */
1706 	bfqq_wants_to_preempt =
1707 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1708 						    arrived_in_time);
1709 
1710 	/*
1711 	 * If bfqq happened to be activated in a burst, but has been
1712 	 * idle for much more than an interactive queue, then we
1713 	 * assume that, in the overall I/O initiated in the burst, the
1714 	 * I/O associated with bfqq is finished. So bfqq does not need
1715 	 * to be treated as a queue belonging to a burst
1716 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1717 	 * if set, and remove bfqq from the burst list if it's
1718 	 * there. We do not decrement burst_size, because the fact
1719 	 * that bfqq does not need to belong to the burst list any
1720 	 * more does not invalidate the fact that bfqq was created in
1721 	 * a burst.
1722 	 */
1723 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1724 	    idle_for_long_time &&
1725 	    time_is_before_jiffies(
1726 		    bfqq->budget_timeout +
1727 		    msecs_to_jiffies(10000))) {
1728 		hlist_del_init(&bfqq->burst_list_node);
1729 		bfq_clear_bfqq_in_large_burst(bfqq);
1730 	}
1731 
1732 	bfq_clear_bfqq_just_created(bfqq);
1733 
1734 	if (bfqd->low_latency) {
1735 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1736 			/* wraparound */
1737 			bfqq->split_time =
1738 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1739 
1740 		if (time_is_before_jiffies(bfqq->split_time +
1741 					   bfqd->bfq_wr_min_idle_time)) {
1742 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1743 							 old_wr_coeff,
1744 							 wr_or_deserves_wr,
1745 							 *interactive,
1746 							 in_burst,
1747 							 soft_rt);
1748 
1749 			if (old_wr_coeff != bfqq->wr_coeff)
1750 				bfqq->entity.prio_changed = 1;
1751 		}
1752 	}
1753 
1754 	bfqq->last_idle_bklogged = jiffies;
1755 	bfqq->service_from_backlogged = 0;
1756 	bfq_clear_bfqq_softrt_update(bfqq);
1757 
1758 	bfq_add_bfqq_busy(bfqd, bfqq);
1759 
1760 	/*
1761 	 * Expire in-service queue if preemption may be needed for
1762 	 * guarantees or throughput. As for guarantees, we care
1763 	 * explicitly about two cases. The first is that bfqq has to
1764 	 * recover a service hole, as explained in the comments on
1765 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1766 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1767 	 * carry time-critical I/O, then bfqq's bandwidth is less
1768 	 * important than that of queues that carry time-critical I/O.
1769 	 * So, as a further constraint, we consider this case only if
1770 	 * bfqq is at least as weight-raised, i.e., at least as time
1771 	 * critical, as the in-service queue.
1772 	 *
1773 	 * The second case is that bfqq is in a higher priority class,
1774 	 * or has a higher weight than the in-service queue. If this
1775 	 * condition does not hold, we don't care because, even if
1776 	 * bfqq does not start to be served immediately, the resulting
1777 	 * delay for bfqq's I/O is however lower or much lower than
1778 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1779 	 *
1780 	 * In both cases, preemption is needed only if, according to
1781 	 * the timestamps of both bfqq and of the in-service queue,
1782 	 * bfqq actually is the next queue to serve. So, to reduce
1783 	 * useless preemptions, the return value of
1784 	 * next_queue_may_preempt() is considered in the next compound
1785 	 * condition too. Yet next_queue_may_preempt() just checks a
1786 	 * simple, necessary condition for bfqq to be the next queue
1787 	 * to serve. In fact, to evaluate a sufficient condition, the
1788 	 * timestamps of the in-service queue would need to be
1789 	 * updated, and this operation is quite costly (see the
1790 	 * comments on bfq_bfqq_update_budg_for_activation()).
1791 	 *
1792 	 * As for throughput, we ask bfq_better_to_idle() whether we
1793 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1794 	 * says no, then plugging is not needed any longer, either to
1795 	 * boost throughput or to perserve service guarantees. Then
1796 	 * the best option is to stop plugging I/O, as not doing so
1797 	 * would certainly lower throughput. We may end up in this
1798 	 * case if: (1) upon a dispatch attempt, we detected that it
1799 	 * was better to plug I/O dispatch, and to wait for a new
1800 	 * request to arrive for the currently in-service queue, but
1801 	 * (2) this switch of bfqq to busy changes the scenario.
1802 	 */
1803 	if (bfqd->in_service_queue &&
1804 	    ((bfqq_wants_to_preempt &&
1805 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1806 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1807 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1808 	    next_queue_may_preempt(bfqd))
1809 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1810 				false, BFQQE_PREEMPTED);
1811 }
1812 
1813 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1814 				   struct bfq_queue *bfqq)
1815 {
1816 	/* invalidate baseline total service time */
1817 	bfqq->last_serv_time_ns = 0;
1818 
1819 	/*
1820 	 * Reset pointer in case we are waiting for
1821 	 * some request completion.
1822 	 */
1823 	bfqd->waited_rq = NULL;
1824 
1825 	/*
1826 	 * If bfqq has a short think time, then start by setting the
1827 	 * inject limit to 0 prudentially, because the service time of
1828 	 * an injected I/O request may be higher than the think time
1829 	 * of bfqq, and therefore, if one request was injected when
1830 	 * bfqq remains empty, this injected request might delay the
1831 	 * service of the next I/O request for bfqq significantly. In
1832 	 * case bfqq can actually tolerate some injection, then the
1833 	 * adaptive update will however raise the limit soon. This
1834 	 * lucky circumstance holds exactly because bfqq has a short
1835 	 * think time, and thus, after remaining empty, is likely to
1836 	 * get new I/O enqueued---and then completed---before being
1837 	 * expired. This is the very pattern that gives the
1838 	 * limit-update algorithm the chance to measure the effect of
1839 	 * injection on request service times, and then to update the
1840 	 * limit accordingly.
1841 	 *
1842 	 * However, in the following special case, the inject limit is
1843 	 * left to 1 even if the think time is short: bfqq's I/O is
1844 	 * synchronized with that of some other queue, i.e., bfqq may
1845 	 * receive new I/O only after the I/O of the other queue is
1846 	 * completed. Keeping the inject limit to 1 allows the
1847 	 * blocking I/O to be served while bfqq is in service. And
1848 	 * this is very convenient both for bfqq and for overall
1849 	 * throughput, as explained in detail in the comments in
1850 	 * bfq_update_has_short_ttime().
1851 	 *
1852 	 * On the opposite end, if bfqq has a long think time, then
1853 	 * start directly by 1, because:
1854 	 * a) on the bright side, keeping at most one request in
1855 	 * service in the drive is unlikely to cause any harm to the
1856 	 * latency of bfqq's requests, as the service time of a single
1857 	 * request is likely to be lower than the think time of bfqq;
1858 	 * b) on the downside, after becoming empty, bfqq is likely to
1859 	 * expire before getting its next request. With this request
1860 	 * arrival pattern, it is very hard to sample total service
1861 	 * times and update the inject limit accordingly (see comments
1862 	 * on bfq_update_inject_limit()). So the limit is likely to be
1863 	 * never, or at least seldom, updated.  As a consequence, by
1864 	 * setting the limit to 1, we avoid that no injection ever
1865 	 * occurs with bfqq. On the downside, this proactive step
1866 	 * further reduces chances to actually compute the baseline
1867 	 * total service time. Thus it reduces chances to execute the
1868 	 * limit-update algorithm and possibly raise the limit to more
1869 	 * than 1.
1870 	 */
1871 	if (bfq_bfqq_has_short_ttime(bfqq))
1872 		bfqq->inject_limit = 0;
1873 	else
1874 		bfqq->inject_limit = 1;
1875 
1876 	bfqq->decrease_time_jif = jiffies;
1877 }
1878 
1879 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1880 {
1881 	u64 tot_io_time = now_ns - bfqq->io_start_time;
1882 
1883 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1884 		bfqq->tot_idle_time +=
1885 			now_ns - bfqq->ttime.last_end_request;
1886 
1887 	if (unlikely(bfq_bfqq_just_created(bfqq)))
1888 		return;
1889 
1890 	/*
1891 	 * Must be busy for at least about 80% of the time to be
1892 	 * considered I/O bound.
1893 	 */
1894 	if (bfqq->tot_idle_time * 5 > tot_io_time)
1895 		bfq_clear_bfqq_IO_bound(bfqq);
1896 	else
1897 		bfq_mark_bfqq_IO_bound(bfqq);
1898 
1899 	/*
1900 	 * Keep an observation window of at most 200 ms in the past
1901 	 * from now.
1902 	 */
1903 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
1904 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
1905 		bfqq->tot_idle_time >>= 1;
1906 	}
1907 }
1908 
1909 /*
1910  * Detect whether bfqq's I/O seems synchronized with that of some
1911  * other queue, i.e., whether bfqq, after remaining empty, happens to
1912  * receive new I/O only right after some I/O request of the other
1913  * queue has been completed. We call waker queue the other queue, and
1914  * we assume, for simplicity, that bfqq may have at most one waker
1915  * queue.
1916  *
1917  * A remarkable throughput boost can be reached by unconditionally
1918  * injecting the I/O of the waker queue, every time a new
1919  * bfq_dispatch_request happens to be invoked while I/O is being
1920  * plugged for bfqq.  In addition to boosting throughput, this
1921  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1922  * bfqq. Note that these same results may be achieved with the general
1923  * injection mechanism, but less effectively. For details on this
1924  * aspect, see the comments on the choice of the queue for injection
1925  * in bfq_select_queue().
1926  *
1927  * Turning back to the detection of a waker queue, a queue Q is deemed
1928  * as a waker queue for bfqq if, for three consecutive times, bfqq
1929  * happens to become non empty right after a request of Q has been
1930  * completed. In particular, on the first time, Q is tentatively set
1931  * as a candidate waker queue, while on the third consecutive time
1932  * that Q is detected, the field waker_bfqq is set to Q, to confirm
1933  * that Q is a waker queue for bfqq. These detection steps are
1934  * performed only if bfqq has a long think time, so as to make it more
1935  * likely that bfqq's I/O is actually being blocked by a
1936  * synchronization. This last filter, plus the above three-times
1937  * requirement, make false positives less likely.
1938  *
1939  * NOTE
1940  *
1941  * The sooner a waker queue is detected, the sooner throughput can be
1942  * boosted by injecting I/O from the waker queue. Fortunately,
1943  * detection is likely to be actually fast, for the following
1944  * reasons. While blocked by synchronization, bfqq has a long think
1945  * time. This implies that bfqq's inject limit is at least equal to 1
1946  * (see the comments in bfq_update_inject_limit()). So, thanks to
1947  * injection, the waker queue is likely to be served during the very
1948  * first I/O-plugging time interval for bfqq. This triggers the first
1949  * step of the detection mechanism. Thanks again to injection, the
1950  * candidate waker queue is then likely to be confirmed no later than
1951  * during the next I/O-plugging interval for bfqq.
1952  *
1953  * ISSUE
1954  *
1955  * On queue merging all waker information is lost.
1956  */
1957 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1958 			    u64 now_ns)
1959 {
1960 	if (!bfqd->last_completed_rq_bfqq ||
1961 	    bfqd->last_completed_rq_bfqq == bfqq ||
1962 	    bfq_bfqq_has_short_ttime(bfqq) ||
1963 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
1964 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
1965 		return;
1966 
1967 	if (bfqd->last_completed_rq_bfqq !=
1968 	    bfqq->tentative_waker_bfqq) {
1969 		/*
1970 		 * First synchronization detected with a
1971 		 * candidate waker queue, or with a different
1972 		 * candidate waker queue from the current one.
1973 		 */
1974 		bfqq->tentative_waker_bfqq =
1975 			bfqd->last_completed_rq_bfqq;
1976 		bfqq->num_waker_detections = 1;
1977 	} else /* Same tentative waker queue detected again */
1978 		bfqq->num_waker_detections++;
1979 
1980 	if (bfqq->num_waker_detections == 3) {
1981 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1982 		bfqq->tentative_waker_bfqq = NULL;
1983 
1984 		/*
1985 		 * If the waker queue disappears, then
1986 		 * bfqq->waker_bfqq must be reset. To
1987 		 * this goal, we maintain in each
1988 		 * waker queue a list, woken_list, of
1989 		 * all the queues that reference the
1990 		 * waker queue through their
1991 		 * waker_bfqq pointer. When the waker
1992 		 * queue exits, the waker_bfqq pointer
1993 		 * of all the queues in the woken_list
1994 		 * is reset.
1995 		 *
1996 		 * In addition, if bfqq is already in
1997 		 * the woken_list of a waker queue,
1998 		 * then, before being inserted into
1999 		 * the woken_list of a new waker
2000 		 * queue, bfqq must be removed from
2001 		 * the woken_list of the old waker
2002 		 * queue.
2003 		 */
2004 		if (!hlist_unhashed(&bfqq->woken_list_node))
2005 			hlist_del_init(&bfqq->woken_list_node);
2006 		hlist_add_head(&bfqq->woken_list_node,
2007 			       &bfqd->last_completed_rq_bfqq->woken_list);
2008 	}
2009 }
2010 
2011 static void bfq_add_request(struct request *rq)
2012 {
2013 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2014 	struct bfq_data *bfqd = bfqq->bfqd;
2015 	struct request *next_rq, *prev;
2016 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2017 	bool interactive = false;
2018 	u64 now_ns = ktime_get_ns();
2019 
2020 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2021 	bfqq->queued[rq_is_sync(rq)]++;
2022 	bfqd->queued++;
2023 
2024 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2025 		bfq_check_waker(bfqd, bfqq, now_ns);
2026 
2027 		/*
2028 		 * Periodically reset inject limit, to make sure that
2029 		 * the latter eventually drops in case workload
2030 		 * changes, see step (3) in the comments on
2031 		 * bfq_update_inject_limit().
2032 		 */
2033 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2034 					     msecs_to_jiffies(1000)))
2035 			bfq_reset_inject_limit(bfqd, bfqq);
2036 
2037 		/*
2038 		 * The following conditions must hold to setup a new
2039 		 * sampling of total service time, and then a new
2040 		 * update of the inject limit:
2041 		 * - bfqq is in service, because the total service
2042 		 *   time is evaluated only for the I/O requests of
2043 		 *   the queues in service;
2044 		 * - this is the right occasion to compute or to
2045 		 *   lower the baseline total service time, because
2046 		 *   there are actually no requests in the drive,
2047 		 *   or
2048 		 *   the baseline total service time is available, and
2049 		 *   this is the right occasion to compute the other
2050 		 *   quantity needed to update the inject limit, i.e.,
2051 		 *   the total service time caused by the amount of
2052 		 *   injection allowed by the current value of the
2053 		 *   limit. It is the right occasion because injection
2054 		 *   has actually been performed during the service
2055 		 *   hole, and there are still in-flight requests,
2056 		 *   which are very likely to be exactly the injected
2057 		 *   requests, or part of them;
2058 		 * - the minimum interval for sampling the total
2059 		 *   service time and updating the inject limit has
2060 		 *   elapsed.
2061 		 */
2062 		if (bfqq == bfqd->in_service_queue &&
2063 		    (bfqd->rq_in_driver == 0 ||
2064 		     (bfqq->last_serv_time_ns > 0 &&
2065 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2066 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2067 					      msecs_to_jiffies(10))) {
2068 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2069 			/*
2070 			 * Start the state machine for measuring the
2071 			 * total service time of rq: setting
2072 			 * wait_dispatch will cause bfqd->waited_rq to
2073 			 * be set when rq will be dispatched.
2074 			 */
2075 			bfqd->wait_dispatch = true;
2076 			/*
2077 			 * If there is no I/O in service in the drive,
2078 			 * then possible injection occurred before the
2079 			 * arrival of rq will not affect the total
2080 			 * service time of rq. So the injection limit
2081 			 * must not be updated as a function of such
2082 			 * total service time, unless new injection
2083 			 * occurs before rq is completed. To have the
2084 			 * injection limit updated only in the latter
2085 			 * case, reset rqs_injected here (rqs_injected
2086 			 * will be set in case injection is performed
2087 			 * on bfqq before rq is completed).
2088 			 */
2089 			if (bfqd->rq_in_driver == 0)
2090 				bfqd->rqs_injected = false;
2091 		}
2092 	}
2093 
2094 	if (bfq_bfqq_sync(bfqq))
2095 		bfq_update_io_intensity(bfqq, now_ns);
2096 
2097 	elv_rb_add(&bfqq->sort_list, rq);
2098 
2099 	/*
2100 	 * Check if this request is a better next-serve candidate.
2101 	 */
2102 	prev = bfqq->next_rq;
2103 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2104 	bfqq->next_rq = next_rq;
2105 
2106 	/*
2107 	 * Adjust priority tree position, if next_rq changes.
2108 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2109 	 */
2110 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2111 		bfq_pos_tree_add_move(bfqd, bfqq);
2112 
2113 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2114 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2115 						 rq, &interactive);
2116 	else {
2117 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2118 		    time_is_before_jiffies(
2119 				bfqq->last_wr_start_finish +
2120 				bfqd->bfq_wr_min_inter_arr_async)) {
2121 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2122 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2123 
2124 			bfqd->wr_busy_queues++;
2125 			bfqq->entity.prio_changed = 1;
2126 		}
2127 		if (prev != bfqq->next_rq)
2128 			bfq_updated_next_req(bfqd, bfqq);
2129 	}
2130 
2131 	/*
2132 	 * Assign jiffies to last_wr_start_finish in the following
2133 	 * cases:
2134 	 *
2135 	 * . if bfqq is not going to be weight-raised, because, for
2136 	 *   non weight-raised queues, last_wr_start_finish stores the
2137 	 *   arrival time of the last request; as of now, this piece
2138 	 *   of information is used only for deciding whether to
2139 	 *   weight-raise async queues
2140 	 *
2141 	 * . if bfqq is not weight-raised, because, if bfqq is now
2142 	 *   switching to weight-raised, then last_wr_start_finish
2143 	 *   stores the time when weight-raising starts
2144 	 *
2145 	 * . if bfqq is interactive, because, regardless of whether
2146 	 *   bfqq is currently weight-raised, the weight-raising
2147 	 *   period must start or restart (this case is considered
2148 	 *   separately because it is not detected by the above
2149 	 *   conditions, if bfqq is already weight-raised)
2150 	 *
2151 	 * last_wr_start_finish has to be updated also if bfqq is soft
2152 	 * real-time, because the weight-raising period is constantly
2153 	 * restarted on idle-to-busy transitions for these queues, but
2154 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2155 	 * needed.
2156 	 */
2157 	if (bfqd->low_latency &&
2158 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2159 		bfqq->last_wr_start_finish = jiffies;
2160 }
2161 
2162 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2163 					  struct bio *bio,
2164 					  struct request_queue *q)
2165 {
2166 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2167 
2168 
2169 	if (bfqq)
2170 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2171 
2172 	return NULL;
2173 }
2174 
2175 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2176 {
2177 	if (last_pos)
2178 		return abs(blk_rq_pos(rq) - last_pos);
2179 
2180 	return 0;
2181 }
2182 
2183 #if 0 /* Still not clear if we can do without next two functions */
2184 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2185 {
2186 	struct bfq_data *bfqd = q->elevator->elevator_data;
2187 
2188 	bfqd->rq_in_driver++;
2189 }
2190 
2191 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2192 {
2193 	struct bfq_data *bfqd = q->elevator->elevator_data;
2194 
2195 	bfqd->rq_in_driver--;
2196 }
2197 #endif
2198 
2199 static void bfq_remove_request(struct request_queue *q,
2200 			       struct request *rq)
2201 {
2202 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2203 	struct bfq_data *bfqd = bfqq->bfqd;
2204 	const int sync = rq_is_sync(rq);
2205 
2206 	if (bfqq->next_rq == rq) {
2207 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2208 		bfq_updated_next_req(bfqd, bfqq);
2209 	}
2210 
2211 	if (rq->queuelist.prev != &rq->queuelist)
2212 		list_del_init(&rq->queuelist);
2213 	bfqq->queued[sync]--;
2214 	bfqd->queued--;
2215 	elv_rb_del(&bfqq->sort_list, rq);
2216 
2217 	elv_rqhash_del(q, rq);
2218 	if (q->last_merge == rq)
2219 		q->last_merge = NULL;
2220 
2221 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2222 		bfqq->next_rq = NULL;
2223 
2224 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2225 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2226 			/*
2227 			 * bfqq emptied. In normal operation, when
2228 			 * bfqq is empty, bfqq->entity.service and
2229 			 * bfqq->entity.budget must contain,
2230 			 * respectively, the service received and the
2231 			 * budget used last time bfqq emptied. These
2232 			 * facts do not hold in this case, as at least
2233 			 * this last removal occurred while bfqq is
2234 			 * not in service. To avoid inconsistencies,
2235 			 * reset both bfqq->entity.service and
2236 			 * bfqq->entity.budget, if bfqq has still a
2237 			 * process that may issue I/O requests to it.
2238 			 */
2239 			bfqq->entity.budget = bfqq->entity.service = 0;
2240 		}
2241 
2242 		/*
2243 		 * Remove queue from request-position tree as it is empty.
2244 		 */
2245 		if (bfqq->pos_root) {
2246 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2247 			bfqq->pos_root = NULL;
2248 		}
2249 	} else {
2250 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2251 		if (unlikely(!bfqd->nonrot_with_queueing))
2252 			bfq_pos_tree_add_move(bfqd, bfqq);
2253 	}
2254 
2255 	if (rq->cmd_flags & REQ_META)
2256 		bfqq->meta_pending--;
2257 
2258 }
2259 
2260 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
2261 		unsigned int nr_segs)
2262 {
2263 	struct request_queue *q = hctx->queue;
2264 	struct bfq_data *bfqd = q->elevator->elevator_data;
2265 	struct request *free = NULL;
2266 	/*
2267 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2268 	 * store its return value for later use, to avoid nesting
2269 	 * queue_lock inside the bfqd->lock. We assume that the bic
2270 	 * returned by bfq_bic_lookup does not go away before
2271 	 * bfqd->lock is taken.
2272 	 */
2273 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2274 	bool ret;
2275 
2276 	spin_lock_irq(&bfqd->lock);
2277 
2278 	if (bic)
2279 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2280 	else
2281 		bfqd->bio_bfqq = NULL;
2282 	bfqd->bio_bic = bic;
2283 
2284 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2285 
2286 	if (free)
2287 		blk_mq_free_request(free);
2288 	spin_unlock_irq(&bfqd->lock);
2289 
2290 	return ret;
2291 }
2292 
2293 static int bfq_request_merge(struct request_queue *q, struct request **req,
2294 			     struct bio *bio)
2295 {
2296 	struct bfq_data *bfqd = q->elevator->elevator_data;
2297 	struct request *__rq;
2298 
2299 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2300 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2301 		*req = __rq;
2302 		return ELEVATOR_FRONT_MERGE;
2303 	}
2304 
2305 	return ELEVATOR_NO_MERGE;
2306 }
2307 
2308 static struct bfq_queue *bfq_init_rq(struct request *rq);
2309 
2310 static void bfq_request_merged(struct request_queue *q, struct request *req,
2311 			       enum elv_merge type)
2312 {
2313 	if (type == ELEVATOR_FRONT_MERGE &&
2314 	    rb_prev(&req->rb_node) &&
2315 	    blk_rq_pos(req) <
2316 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2317 				    struct request, rb_node))) {
2318 		struct bfq_queue *bfqq = bfq_init_rq(req);
2319 		struct bfq_data *bfqd;
2320 		struct request *prev, *next_rq;
2321 
2322 		if (!bfqq)
2323 			return;
2324 
2325 		bfqd = bfqq->bfqd;
2326 
2327 		/* Reposition request in its sort_list */
2328 		elv_rb_del(&bfqq->sort_list, req);
2329 		elv_rb_add(&bfqq->sort_list, req);
2330 
2331 		/* Choose next request to be served for bfqq */
2332 		prev = bfqq->next_rq;
2333 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2334 					 bfqd->last_position);
2335 		bfqq->next_rq = next_rq;
2336 		/*
2337 		 * If next_rq changes, update both the queue's budget to
2338 		 * fit the new request and the queue's position in its
2339 		 * rq_pos_tree.
2340 		 */
2341 		if (prev != bfqq->next_rq) {
2342 			bfq_updated_next_req(bfqd, bfqq);
2343 			/*
2344 			 * See comments on bfq_pos_tree_add_move() for
2345 			 * the unlikely().
2346 			 */
2347 			if (unlikely(!bfqd->nonrot_with_queueing))
2348 				bfq_pos_tree_add_move(bfqd, bfqq);
2349 		}
2350 	}
2351 }
2352 
2353 /*
2354  * This function is called to notify the scheduler that the requests
2355  * rq and 'next' have been merged, with 'next' going away.  BFQ
2356  * exploits this hook to address the following issue: if 'next' has a
2357  * fifo_time lower that rq, then the fifo_time of rq must be set to
2358  * the value of 'next', to not forget the greater age of 'next'.
2359  *
2360  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2361  * on that rq is picked from the hash table q->elevator->hash, which,
2362  * in its turn, is filled only with I/O requests present in
2363  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2364  * the function that fills this hash table (elv_rqhash_add) is called
2365  * only by bfq_insert_request.
2366  */
2367 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2368 				struct request *next)
2369 {
2370 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2371 		*next_bfqq = bfq_init_rq(next);
2372 
2373 	if (!bfqq)
2374 		return;
2375 
2376 	/*
2377 	 * If next and rq belong to the same bfq_queue and next is older
2378 	 * than rq, then reposition rq in the fifo (by substituting next
2379 	 * with rq). Otherwise, if next and rq belong to different
2380 	 * bfq_queues, never reposition rq: in fact, we would have to
2381 	 * reposition it with respect to next's position in its own fifo,
2382 	 * which would most certainly be too expensive with respect to
2383 	 * the benefits.
2384 	 */
2385 	if (bfqq == next_bfqq &&
2386 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2387 	    next->fifo_time < rq->fifo_time) {
2388 		list_del_init(&rq->queuelist);
2389 		list_replace_init(&next->queuelist, &rq->queuelist);
2390 		rq->fifo_time = next->fifo_time;
2391 	}
2392 
2393 	if (bfqq->next_rq == next)
2394 		bfqq->next_rq = rq;
2395 
2396 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2397 }
2398 
2399 /* Must be called with bfqq != NULL */
2400 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2401 {
2402 	/*
2403 	 * If bfqq has been enjoying interactive weight-raising, then
2404 	 * reset soft_rt_next_start. We do it for the following
2405 	 * reason. bfqq may have been conveying the I/O needed to load
2406 	 * a soft real-time application. Such an application actually
2407 	 * exhibits a soft real-time I/O pattern after it finishes
2408 	 * loading, and finally starts doing its job. But, if bfqq has
2409 	 * been receiving a lot of bandwidth so far (likely to happen
2410 	 * on a fast device), then soft_rt_next_start now contains a
2411 	 * high value that. So, without this reset, bfqq would be
2412 	 * prevented from being possibly considered as soft_rt for a
2413 	 * very long time.
2414 	 */
2415 
2416 	if (bfqq->wr_cur_max_time !=
2417 	    bfqq->bfqd->bfq_wr_rt_max_time)
2418 		bfqq->soft_rt_next_start = jiffies;
2419 
2420 	if (bfq_bfqq_busy(bfqq))
2421 		bfqq->bfqd->wr_busy_queues--;
2422 	bfqq->wr_coeff = 1;
2423 	bfqq->wr_cur_max_time = 0;
2424 	bfqq->last_wr_start_finish = jiffies;
2425 	/*
2426 	 * Trigger a weight change on the next invocation of
2427 	 * __bfq_entity_update_weight_prio.
2428 	 */
2429 	bfqq->entity.prio_changed = 1;
2430 }
2431 
2432 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2433 			     struct bfq_group *bfqg)
2434 {
2435 	int i, j;
2436 
2437 	for (i = 0; i < 2; i++)
2438 		for (j = 0; j < IOPRIO_BE_NR; j++)
2439 			if (bfqg->async_bfqq[i][j])
2440 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2441 	if (bfqg->async_idle_bfqq)
2442 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2443 }
2444 
2445 static void bfq_end_wr(struct bfq_data *bfqd)
2446 {
2447 	struct bfq_queue *bfqq;
2448 
2449 	spin_lock_irq(&bfqd->lock);
2450 
2451 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2452 		bfq_bfqq_end_wr(bfqq);
2453 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2454 		bfq_bfqq_end_wr(bfqq);
2455 	bfq_end_wr_async(bfqd);
2456 
2457 	spin_unlock_irq(&bfqd->lock);
2458 }
2459 
2460 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2461 {
2462 	if (request)
2463 		return blk_rq_pos(io_struct);
2464 	else
2465 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2466 }
2467 
2468 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2469 				  sector_t sector)
2470 {
2471 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2472 	       BFQQ_CLOSE_THR;
2473 }
2474 
2475 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2476 					 struct bfq_queue *bfqq,
2477 					 sector_t sector)
2478 {
2479 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2480 	struct rb_node *parent, *node;
2481 	struct bfq_queue *__bfqq;
2482 
2483 	if (RB_EMPTY_ROOT(root))
2484 		return NULL;
2485 
2486 	/*
2487 	 * First, if we find a request starting at the end of the last
2488 	 * request, choose it.
2489 	 */
2490 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2491 	if (__bfqq)
2492 		return __bfqq;
2493 
2494 	/*
2495 	 * If the exact sector wasn't found, the parent of the NULL leaf
2496 	 * will contain the closest sector (rq_pos_tree sorted by
2497 	 * next_request position).
2498 	 */
2499 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2500 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2501 		return __bfqq;
2502 
2503 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2504 		node = rb_next(&__bfqq->pos_node);
2505 	else
2506 		node = rb_prev(&__bfqq->pos_node);
2507 	if (!node)
2508 		return NULL;
2509 
2510 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2511 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2512 		return __bfqq;
2513 
2514 	return NULL;
2515 }
2516 
2517 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2518 						   struct bfq_queue *cur_bfqq,
2519 						   sector_t sector)
2520 {
2521 	struct bfq_queue *bfqq;
2522 
2523 	/*
2524 	 * We shall notice if some of the queues are cooperating,
2525 	 * e.g., working closely on the same area of the device. In
2526 	 * that case, we can group them together and: 1) don't waste
2527 	 * time idling, and 2) serve the union of their requests in
2528 	 * the best possible order for throughput.
2529 	 */
2530 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2531 	if (!bfqq || bfqq == cur_bfqq)
2532 		return NULL;
2533 
2534 	return bfqq;
2535 }
2536 
2537 static struct bfq_queue *
2538 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2539 {
2540 	int process_refs, new_process_refs;
2541 	struct bfq_queue *__bfqq;
2542 
2543 	/*
2544 	 * If there are no process references on the new_bfqq, then it is
2545 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2546 	 * may have dropped their last reference (not just their last process
2547 	 * reference).
2548 	 */
2549 	if (!bfqq_process_refs(new_bfqq))
2550 		return NULL;
2551 
2552 	/* Avoid a circular list and skip interim queue merges. */
2553 	while ((__bfqq = new_bfqq->new_bfqq)) {
2554 		if (__bfqq == bfqq)
2555 			return NULL;
2556 		new_bfqq = __bfqq;
2557 	}
2558 
2559 	process_refs = bfqq_process_refs(bfqq);
2560 	new_process_refs = bfqq_process_refs(new_bfqq);
2561 	/*
2562 	 * If the process for the bfqq has gone away, there is no
2563 	 * sense in merging the queues.
2564 	 */
2565 	if (process_refs == 0 || new_process_refs == 0)
2566 		return NULL;
2567 
2568 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2569 		new_bfqq->pid);
2570 
2571 	/*
2572 	 * Merging is just a redirection: the requests of the process
2573 	 * owning one of the two queues are redirected to the other queue.
2574 	 * The latter queue, in its turn, is set as shared if this is the
2575 	 * first time that the requests of some process are redirected to
2576 	 * it.
2577 	 *
2578 	 * We redirect bfqq to new_bfqq and not the opposite, because
2579 	 * we are in the context of the process owning bfqq, thus we
2580 	 * have the io_cq of this process. So we can immediately
2581 	 * configure this io_cq to redirect the requests of the
2582 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2583 	 * not available any more (new_bfqq->bic == NULL).
2584 	 *
2585 	 * Anyway, even in case new_bfqq coincides with the in-service
2586 	 * queue, redirecting requests the in-service queue is the
2587 	 * best option, as we feed the in-service queue with new
2588 	 * requests close to the last request served and, by doing so,
2589 	 * are likely to increase the throughput.
2590 	 */
2591 	bfqq->new_bfqq = new_bfqq;
2592 	new_bfqq->ref += process_refs;
2593 	return new_bfqq;
2594 }
2595 
2596 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2597 					struct bfq_queue *new_bfqq)
2598 {
2599 	if (bfq_too_late_for_merging(new_bfqq))
2600 		return false;
2601 
2602 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2603 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2604 		return false;
2605 
2606 	/*
2607 	 * If either of the queues has already been detected as seeky,
2608 	 * then merging it with the other queue is unlikely to lead to
2609 	 * sequential I/O.
2610 	 */
2611 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2612 		return false;
2613 
2614 	/*
2615 	 * Interleaved I/O is known to be done by (some) applications
2616 	 * only for reads, so it does not make sense to merge async
2617 	 * queues.
2618 	 */
2619 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2620 		return false;
2621 
2622 	return true;
2623 }
2624 
2625 /*
2626  * Attempt to schedule a merge of bfqq with the currently in-service
2627  * queue or with a close queue among the scheduled queues.  Return
2628  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2629  * structure otherwise.
2630  *
2631  * The OOM queue is not allowed to participate to cooperation: in fact, since
2632  * the requests temporarily redirected to the OOM queue could be redirected
2633  * again to dedicated queues at any time, the state needed to correctly
2634  * handle merging with the OOM queue would be quite complex and expensive
2635  * to maintain. Besides, in such a critical condition as an out of memory,
2636  * the benefits of queue merging may be little relevant, or even negligible.
2637  *
2638  * WARNING: queue merging may impair fairness among non-weight raised
2639  * queues, for at least two reasons: 1) the original weight of a
2640  * merged queue may change during the merged state, 2) even being the
2641  * weight the same, a merged queue may be bloated with many more
2642  * requests than the ones produced by its originally-associated
2643  * process.
2644  */
2645 static struct bfq_queue *
2646 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2647 		     void *io_struct, bool request)
2648 {
2649 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2650 
2651 	/*
2652 	 * Do not perform queue merging if the device is non
2653 	 * rotational and performs internal queueing. In fact, such a
2654 	 * device reaches a high speed through internal parallelism
2655 	 * and pipelining. This means that, to reach a high
2656 	 * throughput, it must have many requests enqueued at the same
2657 	 * time. But, in this configuration, the internal scheduling
2658 	 * algorithm of the device does exactly the job of queue
2659 	 * merging: it reorders requests so as to obtain as much as
2660 	 * possible a sequential I/O pattern. As a consequence, with
2661 	 * the workload generated by processes doing interleaved I/O,
2662 	 * the throughput reached by the device is likely to be the
2663 	 * same, with and without queue merging.
2664 	 *
2665 	 * Disabling merging also provides a remarkable benefit in
2666 	 * terms of throughput. Merging tends to make many workloads
2667 	 * artificially more uneven, because of shared queues
2668 	 * remaining non empty for incomparably more time than
2669 	 * non-merged queues. This may accentuate workload
2670 	 * asymmetries. For example, if one of the queues in a set of
2671 	 * merged queues has a higher weight than a normal queue, then
2672 	 * the shared queue may inherit such a high weight and, by
2673 	 * staying almost always active, may force BFQ to perform I/O
2674 	 * plugging most of the time. This evidently makes it harder
2675 	 * for BFQ to let the device reach a high throughput.
2676 	 *
2677 	 * Finally, the likely() macro below is not used because one
2678 	 * of the two branches is more likely than the other, but to
2679 	 * have the code path after the following if() executed as
2680 	 * fast as possible for the case of a non rotational device
2681 	 * with queueing. We want it because this is the fastest kind
2682 	 * of device. On the opposite end, the likely() may lengthen
2683 	 * the execution time of BFQ for the case of slower devices
2684 	 * (rotational or at least without queueing). But in this case
2685 	 * the execution time of BFQ matters very little, if not at
2686 	 * all.
2687 	 */
2688 	if (likely(bfqd->nonrot_with_queueing))
2689 		return NULL;
2690 
2691 	/*
2692 	 * Prevent bfqq from being merged if it has been created too
2693 	 * long ago. The idea is that true cooperating processes, and
2694 	 * thus their associated bfq_queues, are supposed to be
2695 	 * created shortly after each other. This is the case, e.g.,
2696 	 * for KVM/QEMU and dump I/O threads. Basing on this
2697 	 * assumption, the following filtering greatly reduces the
2698 	 * probability that two non-cooperating processes, which just
2699 	 * happen to do close I/O for some short time interval, have
2700 	 * their queues merged by mistake.
2701 	 */
2702 	if (bfq_too_late_for_merging(bfqq))
2703 		return NULL;
2704 
2705 	if (bfqq->new_bfqq)
2706 		return bfqq->new_bfqq;
2707 
2708 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2709 		return NULL;
2710 
2711 	/* If there is only one backlogged queue, don't search. */
2712 	if (bfq_tot_busy_queues(bfqd) == 1)
2713 		return NULL;
2714 
2715 	in_service_bfqq = bfqd->in_service_queue;
2716 
2717 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2718 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2719 	    bfq_rq_close_to_sector(io_struct, request,
2720 				   bfqd->in_serv_last_pos) &&
2721 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2722 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2723 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2724 		if (new_bfqq)
2725 			return new_bfqq;
2726 	}
2727 	/*
2728 	 * Check whether there is a cooperator among currently scheduled
2729 	 * queues. The only thing we need is that the bio/request is not
2730 	 * NULL, as we need it to establish whether a cooperator exists.
2731 	 */
2732 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2733 			bfq_io_struct_pos(io_struct, request));
2734 
2735 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2736 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2737 		return bfq_setup_merge(bfqq, new_bfqq);
2738 
2739 	return NULL;
2740 }
2741 
2742 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2743 {
2744 	struct bfq_io_cq *bic = bfqq->bic;
2745 
2746 	/*
2747 	 * If !bfqq->bic, the queue is already shared or its requests
2748 	 * have already been redirected to a shared queue; both idle window
2749 	 * and weight raising state have already been saved. Do nothing.
2750 	 */
2751 	if (!bic)
2752 		return;
2753 
2754 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2755 	bic->saved_inject_limit = bfqq->inject_limit;
2756 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2757 
2758 	bic->saved_weight = bfqq->entity.orig_weight;
2759 	bic->saved_ttime = bfqq->ttime;
2760 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2761 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2762 	bic->saved_io_start_time = bfqq->io_start_time;
2763 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2764 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2765 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2766 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2767 		     !bfq_bfqq_in_large_burst(bfqq) &&
2768 		     bfqq->bfqd->low_latency)) {
2769 		/*
2770 		 * bfqq being merged right after being created: bfqq
2771 		 * would have deserved interactive weight raising, but
2772 		 * did not make it to be set in a weight-raised state,
2773 		 * because of this early merge.	Store directly the
2774 		 * weight-raising state that would have been assigned
2775 		 * to bfqq, so that to avoid that bfqq unjustly fails
2776 		 * to enjoy weight raising if split soon.
2777 		 */
2778 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2779 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2780 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2781 		bic->saved_last_wr_start_finish = jiffies;
2782 	} else {
2783 		bic->saved_wr_coeff = bfqq->wr_coeff;
2784 		bic->saved_wr_start_at_switch_to_srt =
2785 			bfqq->wr_start_at_switch_to_srt;
2786 		bic->saved_service_from_wr = bfqq->service_from_wr;
2787 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2788 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2789 	}
2790 }
2791 
2792 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2793 {
2794 	/*
2795 	 * To prevent bfqq's service guarantees from being violated,
2796 	 * bfqq may be left busy, i.e., queued for service, even if
2797 	 * empty (see comments in __bfq_bfqq_expire() for
2798 	 * details). But, if no process will send requests to bfqq any
2799 	 * longer, then there is no point in keeping bfqq queued for
2800 	 * service. In addition, keeping bfqq queued for service, but
2801 	 * with no process ref any longer, may have caused bfqq to be
2802 	 * freed when dequeued from service. But this is assumed to
2803 	 * never happen.
2804 	 */
2805 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2806 	    bfqq != bfqd->in_service_queue)
2807 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2808 
2809 	bfq_put_queue(bfqq);
2810 }
2811 
2812 static void
2813 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2814 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2815 {
2816 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2817 		(unsigned long)new_bfqq->pid);
2818 	/* Save weight raising and idle window of the merged queues */
2819 	bfq_bfqq_save_state(bfqq);
2820 	bfq_bfqq_save_state(new_bfqq);
2821 	if (bfq_bfqq_IO_bound(bfqq))
2822 		bfq_mark_bfqq_IO_bound(new_bfqq);
2823 	bfq_clear_bfqq_IO_bound(bfqq);
2824 
2825 	/*
2826 	 * If bfqq is weight-raised, then let new_bfqq inherit
2827 	 * weight-raising. To reduce false positives, neglect the case
2828 	 * where bfqq has just been created, but has not yet made it
2829 	 * to be weight-raised (which may happen because EQM may merge
2830 	 * bfqq even before bfq_add_request is executed for the first
2831 	 * time for bfqq). Handling this case would however be very
2832 	 * easy, thanks to the flag just_created.
2833 	 */
2834 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2835 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2836 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2837 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2838 		new_bfqq->wr_start_at_switch_to_srt =
2839 			bfqq->wr_start_at_switch_to_srt;
2840 		if (bfq_bfqq_busy(new_bfqq))
2841 			bfqd->wr_busy_queues++;
2842 		new_bfqq->entity.prio_changed = 1;
2843 	}
2844 
2845 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2846 		bfqq->wr_coeff = 1;
2847 		bfqq->entity.prio_changed = 1;
2848 		if (bfq_bfqq_busy(bfqq))
2849 			bfqd->wr_busy_queues--;
2850 	}
2851 
2852 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2853 		     bfqd->wr_busy_queues);
2854 
2855 	/*
2856 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2857 	 */
2858 	bic_set_bfqq(bic, new_bfqq, 1);
2859 	bfq_mark_bfqq_coop(new_bfqq);
2860 	/*
2861 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2862 	 * set new_bfqq->bic to NULL. bfqq either:
2863 	 * - does not belong to any bic any more, and hence bfqq->bic must
2864 	 *   be set to NULL, or
2865 	 * - is a queue whose owning bics have already been redirected to a
2866 	 *   different queue, hence the queue is destined to not belong to
2867 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2868 	 *   assignment causes no harm).
2869 	 */
2870 	new_bfqq->bic = NULL;
2871 	/*
2872 	 * If the queue is shared, the pid is the pid of one of the associated
2873 	 * processes. Which pid depends on the exact sequence of merge events
2874 	 * the queue underwent. So printing such a pid is useless and confusing
2875 	 * because it reports a random pid between those of the associated
2876 	 * processes.
2877 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2878 	 * a pid in logging messages.
2879 	 */
2880 	new_bfqq->pid = -1;
2881 	bfqq->bic = NULL;
2882 	bfq_release_process_ref(bfqd, bfqq);
2883 }
2884 
2885 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2886 				struct bio *bio)
2887 {
2888 	struct bfq_data *bfqd = q->elevator->elevator_data;
2889 	bool is_sync = op_is_sync(bio->bi_opf);
2890 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2891 
2892 	/*
2893 	 * Disallow merge of a sync bio into an async request.
2894 	 */
2895 	if (is_sync && !rq_is_sync(rq))
2896 		return false;
2897 
2898 	/*
2899 	 * Lookup the bfqq that this bio will be queued with. Allow
2900 	 * merge only if rq is queued there.
2901 	 */
2902 	if (!bfqq)
2903 		return false;
2904 
2905 	/*
2906 	 * We take advantage of this function to perform an early merge
2907 	 * of the queues of possible cooperating processes.
2908 	 */
2909 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2910 	if (new_bfqq) {
2911 		/*
2912 		 * bic still points to bfqq, then it has not yet been
2913 		 * redirected to some other bfq_queue, and a queue
2914 		 * merge between bfqq and new_bfqq can be safely
2915 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2916 		 * and bfqq can be put.
2917 		 */
2918 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2919 				new_bfqq);
2920 		/*
2921 		 * If we get here, bio will be queued into new_queue,
2922 		 * so use new_bfqq to decide whether bio and rq can be
2923 		 * merged.
2924 		 */
2925 		bfqq = new_bfqq;
2926 
2927 		/*
2928 		 * Change also bqfd->bio_bfqq, as
2929 		 * bfqd->bio_bic now points to new_bfqq, and
2930 		 * this function may be invoked again (and then may
2931 		 * use again bqfd->bio_bfqq).
2932 		 */
2933 		bfqd->bio_bfqq = bfqq;
2934 	}
2935 
2936 	return bfqq == RQ_BFQQ(rq);
2937 }
2938 
2939 /*
2940  * Set the maximum time for the in-service queue to consume its
2941  * budget. This prevents seeky processes from lowering the throughput.
2942  * In practice, a time-slice service scheme is used with seeky
2943  * processes.
2944  */
2945 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2946 				   struct bfq_queue *bfqq)
2947 {
2948 	unsigned int timeout_coeff;
2949 
2950 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2951 		timeout_coeff = 1;
2952 	else
2953 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2954 
2955 	bfqd->last_budget_start = ktime_get();
2956 
2957 	bfqq->budget_timeout = jiffies +
2958 		bfqd->bfq_timeout * timeout_coeff;
2959 }
2960 
2961 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2962 				       struct bfq_queue *bfqq)
2963 {
2964 	if (bfqq) {
2965 		bfq_clear_bfqq_fifo_expire(bfqq);
2966 
2967 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2968 
2969 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2970 		    bfqq->wr_coeff > 1 &&
2971 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2972 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2973 			/*
2974 			 * For soft real-time queues, move the start
2975 			 * of the weight-raising period forward by the
2976 			 * time the queue has not received any
2977 			 * service. Otherwise, a relatively long
2978 			 * service delay is likely to cause the
2979 			 * weight-raising period of the queue to end,
2980 			 * because of the short duration of the
2981 			 * weight-raising period of a soft real-time
2982 			 * queue.  It is worth noting that this move
2983 			 * is not so dangerous for the other queues,
2984 			 * because soft real-time queues are not
2985 			 * greedy.
2986 			 *
2987 			 * To not add a further variable, we use the
2988 			 * overloaded field budget_timeout to
2989 			 * determine for how long the queue has not
2990 			 * received service, i.e., how much time has
2991 			 * elapsed since the queue expired. However,
2992 			 * this is a little imprecise, because
2993 			 * budget_timeout is set to jiffies if bfqq
2994 			 * not only expires, but also remains with no
2995 			 * request.
2996 			 */
2997 			if (time_after(bfqq->budget_timeout,
2998 				       bfqq->last_wr_start_finish))
2999 				bfqq->last_wr_start_finish +=
3000 					jiffies - bfqq->budget_timeout;
3001 			else
3002 				bfqq->last_wr_start_finish = jiffies;
3003 		}
3004 
3005 		bfq_set_budget_timeout(bfqd, bfqq);
3006 		bfq_log_bfqq(bfqd, bfqq,
3007 			     "set_in_service_queue, cur-budget = %d",
3008 			     bfqq->entity.budget);
3009 	}
3010 
3011 	bfqd->in_service_queue = bfqq;
3012 	bfqd->in_serv_last_pos = 0;
3013 }
3014 
3015 /*
3016  * Get and set a new queue for service.
3017  */
3018 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3019 {
3020 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3021 
3022 	__bfq_set_in_service_queue(bfqd, bfqq);
3023 	return bfqq;
3024 }
3025 
3026 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3027 {
3028 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3029 	u32 sl;
3030 
3031 	bfq_mark_bfqq_wait_request(bfqq);
3032 
3033 	/*
3034 	 * We don't want to idle for seeks, but we do want to allow
3035 	 * fair distribution of slice time for a process doing back-to-back
3036 	 * seeks. So allow a little bit of time for him to submit a new rq.
3037 	 */
3038 	sl = bfqd->bfq_slice_idle;
3039 	/*
3040 	 * Unless the queue is being weight-raised or the scenario is
3041 	 * asymmetric, grant only minimum idle time if the queue
3042 	 * is seeky. A long idling is preserved for a weight-raised
3043 	 * queue, or, more in general, in an asymmetric scenario,
3044 	 * because a long idling is needed for guaranteeing to a queue
3045 	 * its reserved share of the throughput (in particular, it is
3046 	 * needed if the queue has a higher weight than some other
3047 	 * queue).
3048 	 */
3049 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3050 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3051 		sl = min_t(u64, sl, BFQ_MIN_TT);
3052 	else if (bfqq->wr_coeff > 1)
3053 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3054 
3055 	bfqd->last_idling_start = ktime_get();
3056 	bfqd->last_idling_start_jiffies = jiffies;
3057 
3058 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3059 		      HRTIMER_MODE_REL);
3060 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3061 }
3062 
3063 /*
3064  * In autotuning mode, max_budget is dynamically recomputed as the
3065  * amount of sectors transferred in timeout at the estimated peak
3066  * rate. This enables BFQ to utilize a full timeslice with a full
3067  * budget, even if the in-service queue is served at peak rate. And
3068  * this maximises throughput with sequential workloads.
3069  */
3070 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3071 {
3072 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3073 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3074 }
3075 
3076 /*
3077  * Update parameters related to throughput and responsiveness, as a
3078  * function of the estimated peak rate. See comments on
3079  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3080  */
3081 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3082 {
3083 	if (bfqd->bfq_user_max_budget == 0) {
3084 		bfqd->bfq_max_budget =
3085 			bfq_calc_max_budget(bfqd);
3086 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3087 	}
3088 }
3089 
3090 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3091 				       struct request *rq)
3092 {
3093 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3094 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3095 		bfqd->peak_rate_samples = 1;
3096 		bfqd->sequential_samples = 0;
3097 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3098 			blk_rq_sectors(rq);
3099 	} else /* no new rq dispatched, just reset the number of samples */
3100 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3101 
3102 	bfq_log(bfqd,
3103 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3104 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3105 		bfqd->tot_sectors_dispatched);
3106 }
3107 
3108 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3109 {
3110 	u32 rate, weight, divisor;
3111 
3112 	/*
3113 	 * For the convergence property to hold (see comments on
3114 	 * bfq_update_peak_rate()) and for the assessment to be
3115 	 * reliable, a minimum number of samples must be present, and
3116 	 * a minimum amount of time must have elapsed. If not so, do
3117 	 * not compute new rate. Just reset parameters, to get ready
3118 	 * for a new evaluation attempt.
3119 	 */
3120 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3121 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3122 		goto reset_computation;
3123 
3124 	/*
3125 	 * If a new request completion has occurred after last
3126 	 * dispatch, then, to approximate the rate at which requests
3127 	 * have been served by the device, it is more precise to
3128 	 * extend the observation interval to the last completion.
3129 	 */
3130 	bfqd->delta_from_first =
3131 		max_t(u64, bfqd->delta_from_first,
3132 		      bfqd->last_completion - bfqd->first_dispatch);
3133 
3134 	/*
3135 	 * Rate computed in sects/usec, and not sects/nsec, for
3136 	 * precision issues.
3137 	 */
3138 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3139 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3140 
3141 	/*
3142 	 * Peak rate not updated if:
3143 	 * - the percentage of sequential dispatches is below 3/4 of the
3144 	 *   total, and rate is below the current estimated peak rate
3145 	 * - rate is unreasonably high (> 20M sectors/sec)
3146 	 */
3147 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3148 	     rate <= bfqd->peak_rate) ||
3149 		rate > 20<<BFQ_RATE_SHIFT)
3150 		goto reset_computation;
3151 
3152 	/*
3153 	 * We have to update the peak rate, at last! To this purpose,
3154 	 * we use a low-pass filter. We compute the smoothing constant
3155 	 * of the filter as a function of the 'weight' of the new
3156 	 * measured rate.
3157 	 *
3158 	 * As can be seen in next formulas, we define this weight as a
3159 	 * quantity proportional to how sequential the workload is,
3160 	 * and to how long the observation time interval is.
3161 	 *
3162 	 * The weight runs from 0 to 8. The maximum value of the
3163 	 * weight, 8, yields the minimum value for the smoothing
3164 	 * constant. At this minimum value for the smoothing constant,
3165 	 * the measured rate contributes for half of the next value of
3166 	 * the estimated peak rate.
3167 	 *
3168 	 * So, the first step is to compute the weight as a function
3169 	 * of how sequential the workload is. Note that the weight
3170 	 * cannot reach 9, because bfqd->sequential_samples cannot
3171 	 * become equal to bfqd->peak_rate_samples, which, in its
3172 	 * turn, holds true because bfqd->sequential_samples is not
3173 	 * incremented for the first sample.
3174 	 */
3175 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3176 
3177 	/*
3178 	 * Second step: further refine the weight as a function of the
3179 	 * duration of the observation interval.
3180 	 */
3181 	weight = min_t(u32, 8,
3182 		       div_u64(weight * bfqd->delta_from_first,
3183 			       BFQ_RATE_REF_INTERVAL));
3184 
3185 	/*
3186 	 * Divisor ranging from 10, for minimum weight, to 2, for
3187 	 * maximum weight.
3188 	 */
3189 	divisor = 10 - weight;
3190 
3191 	/*
3192 	 * Finally, update peak rate:
3193 	 *
3194 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3195 	 */
3196 	bfqd->peak_rate *= divisor-1;
3197 	bfqd->peak_rate /= divisor;
3198 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3199 
3200 	bfqd->peak_rate += rate;
3201 
3202 	/*
3203 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3204 	 * the minimum representable values reported in the comments
3205 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3206 	 * divisions by zero where bfqd->peak_rate is used as a
3207 	 * divisor.
3208 	 */
3209 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3210 
3211 	update_thr_responsiveness_params(bfqd);
3212 
3213 reset_computation:
3214 	bfq_reset_rate_computation(bfqd, rq);
3215 }
3216 
3217 /*
3218  * Update the read/write peak rate (the main quantity used for
3219  * auto-tuning, see update_thr_responsiveness_params()).
3220  *
3221  * It is not trivial to estimate the peak rate (correctly): because of
3222  * the presence of sw and hw queues between the scheduler and the
3223  * device components that finally serve I/O requests, it is hard to
3224  * say exactly when a given dispatched request is served inside the
3225  * device, and for how long. As a consequence, it is hard to know
3226  * precisely at what rate a given set of requests is actually served
3227  * by the device.
3228  *
3229  * On the opposite end, the dispatch time of any request is trivially
3230  * available, and, from this piece of information, the "dispatch rate"
3231  * of requests can be immediately computed. So, the idea in the next
3232  * function is to use what is known, namely request dispatch times
3233  * (plus, when useful, request completion times), to estimate what is
3234  * unknown, namely in-device request service rate.
3235  *
3236  * The main issue is that, because of the above facts, the rate at
3237  * which a certain set of requests is dispatched over a certain time
3238  * interval can vary greatly with respect to the rate at which the
3239  * same requests are then served. But, since the size of any
3240  * intermediate queue is limited, and the service scheme is lossless
3241  * (no request is silently dropped), the following obvious convergence
3242  * property holds: the number of requests dispatched MUST become
3243  * closer and closer to the number of requests completed as the
3244  * observation interval grows. This is the key property used in
3245  * the next function to estimate the peak service rate as a function
3246  * of the observed dispatch rate. The function assumes to be invoked
3247  * on every request dispatch.
3248  */
3249 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3250 {
3251 	u64 now_ns = ktime_get_ns();
3252 
3253 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3254 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3255 			bfqd->peak_rate_samples);
3256 		bfq_reset_rate_computation(bfqd, rq);
3257 		goto update_last_values; /* will add one sample */
3258 	}
3259 
3260 	/*
3261 	 * Device idle for very long: the observation interval lasting
3262 	 * up to this dispatch cannot be a valid observation interval
3263 	 * for computing a new peak rate (similarly to the late-
3264 	 * completion event in bfq_completed_request()). Go to
3265 	 * update_rate_and_reset to have the following three steps
3266 	 * taken:
3267 	 * - close the observation interval at the last (previous)
3268 	 *   request dispatch or completion
3269 	 * - compute rate, if possible, for that observation interval
3270 	 * - start a new observation interval with this dispatch
3271 	 */
3272 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3273 	    bfqd->rq_in_driver == 0)
3274 		goto update_rate_and_reset;
3275 
3276 	/* Update sampling information */
3277 	bfqd->peak_rate_samples++;
3278 
3279 	if ((bfqd->rq_in_driver > 0 ||
3280 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3281 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3282 		bfqd->sequential_samples++;
3283 
3284 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3285 
3286 	/* Reset max observed rq size every 32 dispatches */
3287 	if (likely(bfqd->peak_rate_samples % 32))
3288 		bfqd->last_rq_max_size =
3289 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3290 	else
3291 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3292 
3293 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3294 
3295 	/* Target observation interval not yet reached, go on sampling */
3296 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3297 		goto update_last_values;
3298 
3299 update_rate_and_reset:
3300 	bfq_update_rate_reset(bfqd, rq);
3301 update_last_values:
3302 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3303 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3304 		bfqd->in_serv_last_pos = bfqd->last_position;
3305 	bfqd->last_dispatch = now_ns;
3306 }
3307 
3308 /*
3309  * Remove request from internal lists.
3310  */
3311 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3312 {
3313 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3314 
3315 	/*
3316 	 * For consistency, the next instruction should have been
3317 	 * executed after removing the request from the queue and
3318 	 * dispatching it.  We execute instead this instruction before
3319 	 * bfq_remove_request() (and hence introduce a temporary
3320 	 * inconsistency), for efficiency.  In fact, should this
3321 	 * dispatch occur for a non in-service bfqq, this anticipated
3322 	 * increment prevents two counters related to bfqq->dispatched
3323 	 * from risking to be, first, uselessly decremented, and then
3324 	 * incremented again when the (new) value of bfqq->dispatched
3325 	 * happens to be taken into account.
3326 	 */
3327 	bfqq->dispatched++;
3328 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3329 
3330 	bfq_remove_request(q, rq);
3331 }
3332 
3333 /*
3334  * There is a case where idling does not have to be performed for
3335  * throughput concerns, but to preserve the throughput share of
3336  * the process associated with bfqq.
3337  *
3338  * To introduce this case, we can note that allowing the drive
3339  * to enqueue more than one request at a time, and hence
3340  * delegating de facto final scheduling decisions to the
3341  * drive's internal scheduler, entails loss of control on the
3342  * actual request service order. In particular, the critical
3343  * situation is when requests from different processes happen
3344  * to be present, at the same time, in the internal queue(s)
3345  * of the drive. In such a situation, the drive, by deciding
3346  * the service order of the internally-queued requests, does
3347  * determine also the actual throughput distribution among
3348  * these processes. But the drive typically has no notion or
3349  * concern about per-process throughput distribution, and
3350  * makes its decisions only on a per-request basis. Therefore,
3351  * the service distribution enforced by the drive's internal
3352  * scheduler is likely to coincide with the desired throughput
3353  * distribution only in a completely symmetric, or favorably
3354  * skewed scenario where:
3355  * (i-a) each of these processes must get the same throughput as
3356  *	 the others,
3357  * (i-b) in case (i-a) does not hold, it holds that the process
3358  *       associated with bfqq must receive a lower or equal
3359  *	 throughput than any of the other processes;
3360  * (ii)  the I/O of each process has the same properties, in
3361  *       terms of locality (sequential or random), direction
3362  *       (reads or writes), request sizes, greediness
3363  *       (from I/O-bound to sporadic), and so on;
3364 
3365  * In fact, in such a scenario, the drive tends to treat the requests
3366  * of each process in about the same way as the requests of the
3367  * others, and thus to provide each of these processes with about the
3368  * same throughput.  This is exactly the desired throughput
3369  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3370  * even more convenient distribution for (the process associated with)
3371  * bfqq.
3372  *
3373  * In contrast, in any asymmetric or unfavorable scenario, device
3374  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3375  * that bfqq receives its assigned fraction of the device throughput
3376  * (see [1] for details).
3377  *
3378  * The problem is that idling may significantly reduce throughput with
3379  * certain combinations of types of I/O and devices. An important
3380  * example is sync random I/O on flash storage with command
3381  * queueing. So, unless bfqq falls in cases where idling also boosts
3382  * throughput, it is important to check conditions (i-a), i(-b) and
3383  * (ii) accurately, so as to avoid idling when not strictly needed for
3384  * service guarantees.
3385  *
3386  * Unfortunately, it is extremely difficult to thoroughly check
3387  * condition (ii). And, in case there are active groups, it becomes
3388  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3389  * if there are active groups, then, for conditions (i-a) or (i-b) to
3390  * become false 'indirectly', it is enough that an active group
3391  * contains more active processes or sub-groups than some other active
3392  * group. More precisely, for conditions (i-a) or (i-b) to become
3393  * false because of such a group, it is not even necessary that the
3394  * group is (still) active: it is sufficient that, even if the group
3395  * has become inactive, some of its descendant processes still have
3396  * some request already dispatched but still waiting for
3397  * completion. In fact, requests have still to be guaranteed their
3398  * share of the throughput even after being dispatched. In this
3399  * respect, it is easy to show that, if a group frequently becomes
3400  * inactive while still having in-flight requests, and if, when this
3401  * happens, the group is not considered in the calculation of whether
3402  * the scenario is asymmetric, then the group may fail to be
3403  * guaranteed its fair share of the throughput (basically because
3404  * idling may not be performed for the descendant processes of the
3405  * group, but it had to be).  We address this issue with the following
3406  * bi-modal behavior, implemented in the function
3407  * bfq_asymmetric_scenario().
3408  *
3409  * If there are groups with requests waiting for completion
3410  * (as commented above, some of these groups may even be
3411  * already inactive), then the scenario is tagged as
3412  * asymmetric, conservatively, without checking any of the
3413  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3414  * This behavior matches also the fact that groups are created
3415  * exactly if controlling I/O is a primary concern (to
3416  * preserve bandwidth and latency guarantees).
3417  *
3418  * On the opposite end, if there are no groups with requests waiting
3419  * for completion, then only conditions (i-a) and (i-b) are actually
3420  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3421  * idling is not performed, regardless of whether condition (ii)
3422  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3423  * hold, then idling is allowed, and the device tends to be prevented
3424  * from queueing many requests, possibly of several processes. Since
3425  * there are no groups with requests waiting for completion, then, to
3426  * control conditions (i-a) and (i-b) it is enough to check just
3427  * whether all the queues with requests waiting for completion also
3428  * have the same weight.
3429  *
3430  * Not checking condition (ii) evidently exposes bfqq to the
3431  * risk of getting less throughput than its fair share.
3432  * However, for queues with the same weight, a further
3433  * mechanism, preemption, mitigates or even eliminates this
3434  * problem. And it does so without consequences on overall
3435  * throughput. This mechanism and its benefits are explained
3436  * in the next three paragraphs.
3437  *
3438  * Even if a queue, say Q, is expired when it remains idle, Q
3439  * can still preempt the new in-service queue if the next
3440  * request of Q arrives soon (see the comments on
3441  * bfq_bfqq_update_budg_for_activation). If all queues and
3442  * groups have the same weight, this form of preemption,
3443  * combined with the hole-recovery heuristic described in the
3444  * comments on function bfq_bfqq_update_budg_for_activation,
3445  * are enough to preserve a correct bandwidth distribution in
3446  * the mid term, even without idling. In fact, even if not
3447  * idling allows the internal queues of the device to contain
3448  * many requests, and thus to reorder requests, we can rather
3449  * safely assume that the internal scheduler still preserves a
3450  * minimum of mid-term fairness.
3451  *
3452  * More precisely, this preemption-based, idleless approach
3453  * provides fairness in terms of IOPS, and not sectors per
3454  * second. This can be seen with a simple example. Suppose
3455  * that there are two queues with the same weight, but that
3456  * the first queue receives requests of 8 sectors, while the
3457  * second queue receives requests of 1024 sectors. In
3458  * addition, suppose that each of the two queues contains at
3459  * most one request at a time, which implies that each queue
3460  * always remains idle after it is served. Finally, after
3461  * remaining idle, each queue receives very quickly a new
3462  * request. It follows that the two queues are served
3463  * alternatively, preempting each other if needed. This
3464  * implies that, although both queues have the same weight,
3465  * the queue with large requests receives a service that is
3466  * 1024/8 times as high as the service received by the other
3467  * queue.
3468  *
3469  * The motivation for using preemption instead of idling (for
3470  * queues with the same weight) is that, by not idling,
3471  * service guarantees are preserved (completely or at least in
3472  * part) without minimally sacrificing throughput. And, if
3473  * there is no active group, then the primary expectation for
3474  * this device is probably a high throughput.
3475  *
3476  * We are now left only with explaining the two sub-conditions in the
3477  * additional compound condition that is checked below for deciding
3478  * whether the scenario is asymmetric. To explain the first
3479  * sub-condition, we need to add that the function
3480  * bfq_asymmetric_scenario checks the weights of only
3481  * non-weight-raised queues, for efficiency reasons (see comments on
3482  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3483  * is checked explicitly here. More precisely, the compound condition
3484  * below takes into account also the fact that, even if bfqq is being
3485  * weight-raised, the scenario is still symmetric if all queues with
3486  * requests waiting for completion happen to be
3487  * weight-raised. Actually, we should be even more precise here, and
3488  * differentiate between interactive weight raising and soft real-time
3489  * weight raising.
3490  *
3491  * The second sub-condition checked in the compound condition is
3492  * whether there is a fair amount of already in-flight I/O not
3493  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3494  * following reason. The drive may decide to serve in-flight
3495  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3496  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3497  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3498  * basically uncontrolled amount of I/O from other queues may be
3499  * dispatched too, possibly causing the service of bfqq's I/O to be
3500  * delayed even longer in the drive. This problem gets more and more
3501  * serious as the speed and the queue depth of the drive grow,
3502  * because, as these two quantities grow, the probability to find no
3503  * queue busy but many requests in flight grows too. By contrast,
3504  * plugging I/O dispatching minimizes the delay induced by already
3505  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3506  * lose because of this delay.
3507  *
3508  * As a side note, it is worth considering that the above
3509  * device-idling countermeasures may however fail in the following
3510  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3511  * in a time period during which all symmetry sub-conditions hold, and
3512  * therefore the device is allowed to enqueue many requests, but at
3513  * some later point in time some sub-condition stops to hold, then it
3514  * may become impossible to make requests be served in the desired
3515  * order until all the requests already queued in the device have been
3516  * served. The last sub-condition commented above somewhat mitigates
3517  * this problem for weight-raised queues.
3518  *
3519  * However, as an additional mitigation for this problem, we preserve
3520  * plugging for a special symmetric case that may suddenly turn into
3521  * asymmetric: the case where only bfqq is busy. In this case, not
3522  * expiring bfqq does not cause any harm to any other queues in terms
3523  * of service guarantees. In contrast, it avoids the following unlucky
3524  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3525  * lower weight than bfqq becomes busy (or more queues), (3) the new
3526  * queue is served until a new request arrives for bfqq, (4) when bfqq
3527  * is finally served, there are so many requests of the new queue in
3528  * the drive that the pending requests for bfqq take a lot of time to
3529  * be served. In particular, event (2) may case even already
3530  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3531  * avoid this series of events, the scenario is preventively declared
3532  * as asymmetric also if bfqq is the only busy queues
3533  */
3534 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3535 						 struct bfq_queue *bfqq)
3536 {
3537 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3538 
3539 	/* No point in idling for bfqq if it won't get requests any longer */
3540 	if (unlikely(!bfqq_process_refs(bfqq)))
3541 		return false;
3542 
3543 	return (bfqq->wr_coeff > 1 &&
3544 		(bfqd->wr_busy_queues <
3545 		 tot_busy_queues ||
3546 		 bfqd->rq_in_driver >=
3547 		 bfqq->dispatched + 4)) ||
3548 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3549 		tot_busy_queues == 1;
3550 }
3551 
3552 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3553 			      enum bfqq_expiration reason)
3554 {
3555 	/*
3556 	 * If this bfqq is shared between multiple processes, check
3557 	 * to make sure that those processes are still issuing I/Os
3558 	 * within the mean seek distance. If not, it may be time to
3559 	 * break the queues apart again.
3560 	 */
3561 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3562 		bfq_mark_bfqq_split_coop(bfqq);
3563 
3564 	/*
3565 	 * Consider queues with a higher finish virtual time than
3566 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3567 	 * true, then bfqq's bandwidth would be violated if an
3568 	 * uncontrolled amount of I/O from these queues were
3569 	 * dispatched while bfqq is waiting for its new I/O to
3570 	 * arrive. This is exactly what may happen if this is a forced
3571 	 * expiration caused by a preemption attempt, and if bfqq is
3572 	 * not re-scheduled. To prevent this from happening, re-queue
3573 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3574 	 * empty. By doing so, bfqq is granted to be served before the
3575 	 * above queues (provided that bfqq is of course eligible).
3576 	 */
3577 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3578 	    !(reason == BFQQE_PREEMPTED &&
3579 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3580 		if (bfqq->dispatched == 0)
3581 			/*
3582 			 * Overloading budget_timeout field to store
3583 			 * the time at which the queue remains with no
3584 			 * backlog and no outstanding request; used by
3585 			 * the weight-raising mechanism.
3586 			 */
3587 			bfqq->budget_timeout = jiffies;
3588 
3589 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3590 	} else {
3591 		bfq_requeue_bfqq(bfqd, bfqq, true);
3592 		/*
3593 		 * Resort priority tree of potential close cooperators.
3594 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3595 		 */
3596 		if (unlikely(!bfqd->nonrot_with_queueing &&
3597 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3598 			bfq_pos_tree_add_move(bfqd, bfqq);
3599 	}
3600 
3601 	/*
3602 	 * All in-service entities must have been properly deactivated
3603 	 * or requeued before executing the next function, which
3604 	 * resets all in-service entities as no more in service. This
3605 	 * may cause bfqq to be freed. If this happens, the next
3606 	 * function returns true.
3607 	 */
3608 	return __bfq_bfqd_reset_in_service(bfqd);
3609 }
3610 
3611 /**
3612  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3613  * @bfqd: device data.
3614  * @bfqq: queue to update.
3615  * @reason: reason for expiration.
3616  *
3617  * Handle the feedback on @bfqq budget at queue expiration.
3618  * See the body for detailed comments.
3619  */
3620 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3621 				     struct bfq_queue *bfqq,
3622 				     enum bfqq_expiration reason)
3623 {
3624 	struct request *next_rq;
3625 	int budget, min_budget;
3626 
3627 	min_budget = bfq_min_budget(bfqd);
3628 
3629 	if (bfqq->wr_coeff == 1)
3630 		budget = bfqq->max_budget;
3631 	else /*
3632 	      * Use a constant, low budget for weight-raised queues,
3633 	      * to help achieve a low latency. Keep it slightly higher
3634 	      * than the minimum possible budget, to cause a little
3635 	      * bit fewer expirations.
3636 	      */
3637 		budget = 2 * min_budget;
3638 
3639 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3640 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3641 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3642 		budget, bfq_min_budget(bfqd));
3643 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3644 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3645 
3646 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3647 		switch (reason) {
3648 		/*
3649 		 * Caveat: in all the following cases we trade latency
3650 		 * for throughput.
3651 		 */
3652 		case BFQQE_TOO_IDLE:
3653 			/*
3654 			 * This is the only case where we may reduce
3655 			 * the budget: if there is no request of the
3656 			 * process still waiting for completion, then
3657 			 * we assume (tentatively) that the timer has
3658 			 * expired because the batch of requests of
3659 			 * the process could have been served with a
3660 			 * smaller budget.  Hence, betting that
3661 			 * process will behave in the same way when it
3662 			 * becomes backlogged again, we reduce its
3663 			 * next budget.  As long as we guess right,
3664 			 * this budget cut reduces the latency
3665 			 * experienced by the process.
3666 			 *
3667 			 * However, if there are still outstanding
3668 			 * requests, then the process may have not yet
3669 			 * issued its next request just because it is
3670 			 * still waiting for the completion of some of
3671 			 * the still outstanding ones.  So in this
3672 			 * subcase we do not reduce its budget, on the
3673 			 * contrary we increase it to possibly boost
3674 			 * the throughput, as discussed in the
3675 			 * comments to the BUDGET_TIMEOUT case.
3676 			 */
3677 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3678 				budget = min(budget * 2, bfqd->bfq_max_budget);
3679 			else {
3680 				if (budget > 5 * min_budget)
3681 					budget -= 4 * min_budget;
3682 				else
3683 					budget = min_budget;
3684 			}
3685 			break;
3686 		case BFQQE_BUDGET_TIMEOUT:
3687 			/*
3688 			 * We double the budget here because it gives
3689 			 * the chance to boost the throughput if this
3690 			 * is not a seeky process (and has bumped into
3691 			 * this timeout because of, e.g., ZBR).
3692 			 */
3693 			budget = min(budget * 2, bfqd->bfq_max_budget);
3694 			break;
3695 		case BFQQE_BUDGET_EXHAUSTED:
3696 			/*
3697 			 * The process still has backlog, and did not
3698 			 * let either the budget timeout or the disk
3699 			 * idling timeout expire. Hence it is not
3700 			 * seeky, has a short thinktime and may be
3701 			 * happy with a higher budget too. So
3702 			 * definitely increase the budget of this good
3703 			 * candidate to boost the disk throughput.
3704 			 */
3705 			budget = min(budget * 4, bfqd->bfq_max_budget);
3706 			break;
3707 		case BFQQE_NO_MORE_REQUESTS:
3708 			/*
3709 			 * For queues that expire for this reason, it
3710 			 * is particularly important to keep the
3711 			 * budget close to the actual service they
3712 			 * need. Doing so reduces the timestamp
3713 			 * misalignment problem described in the
3714 			 * comments in the body of
3715 			 * __bfq_activate_entity. In fact, suppose
3716 			 * that a queue systematically expires for
3717 			 * BFQQE_NO_MORE_REQUESTS and presents a
3718 			 * new request in time to enjoy timestamp
3719 			 * back-shifting. The larger the budget of the
3720 			 * queue is with respect to the service the
3721 			 * queue actually requests in each service
3722 			 * slot, the more times the queue can be
3723 			 * reactivated with the same virtual finish
3724 			 * time. It follows that, even if this finish
3725 			 * time is pushed to the system virtual time
3726 			 * to reduce the consequent timestamp
3727 			 * misalignment, the queue unjustly enjoys for
3728 			 * many re-activations a lower finish time
3729 			 * than all newly activated queues.
3730 			 *
3731 			 * The service needed by bfqq is measured
3732 			 * quite precisely by bfqq->entity.service.
3733 			 * Since bfqq does not enjoy device idling,
3734 			 * bfqq->entity.service is equal to the number
3735 			 * of sectors that the process associated with
3736 			 * bfqq requested to read/write before waiting
3737 			 * for request completions, or blocking for
3738 			 * other reasons.
3739 			 */
3740 			budget = max_t(int, bfqq->entity.service, min_budget);
3741 			break;
3742 		default:
3743 			return;
3744 		}
3745 	} else if (!bfq_bfqq_sync(bfqq)) {
3746 		/*
3747 		 * Async queues get always the maximum possible
3748 		 * budget, as for them we do not care about latency
3749 		 * (in addition, their ability to dispatch is limited
3750 		 * by the charging factor).
3751 		 */
3752 		budget = bfqd->bfq_max_budget;
3753 	}
3754 
3755 	bfqq->max_budget = budget;
3756 
3757 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3758 	    !bfqd->bfq_user_max_budget)
3759 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3760 
3761 	/*
3762 	 * If there is still backlog, then assign a new budget, making
3763 	 * sure that it is large enough for the next request.  Since
3764 	 * the finish time of bfqq must be kept in sync with the
3765 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3766 	 * update.
3767 	 *
3768 	 * If there is no backlog, then no need to update the budget;
3769 	 * it will be updated on the arrival of a new request.
3770 	 */
3771 	next_rq = bfqq->next_rq;
3772 	if (next_rq)
3773 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3774 					    bfq_serv_to_charge(next_rq, bfqq));
3775 
3776 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3777 			next_rq ? blk_rq_sectors(next_rq) : 0,
3778 			bfqq->entity.budget);
3779 }
3780 
3781 /*
3782  * Return true if the process associated with bfqq is "slow". The slow
3783  * flag is used, in addition to the budget timeout, to reduce the
3784  * amount of service provided to seeky processes, and thus reduce
3785  * their chances to lower the throughput. More details in the comments
3786  * on the function bfq_bfqq_expire().
3787  *
3788  * An important observation is in order: as discussed in the comments
3789  * on the function bfq_update_peak_rate(), with devices with internal
3790  * queues, it is hard if ever possible to know when and for how long
3791  * an I/O request is processed by the device (apart from the trivial
3792  * I/O pattern where a new request is dispatched only after the
3793  * previous one has been completed). This makes it hard to evaluate
3794  * the real rate at which the I/O requests of each bfq_queue are
3795  * served.  In fact, for an I/O scheduler like BFQ, serving a
3796  * bfq_queue means just dispatching its requests during its service
3797  * slot (i.e., until the budget of the queue is exhausted, or the
3798  * queue remains idle, or, finally, a timeout fires). But, during the
3799  * service slot of a bfq_queue, around 100 ms at most, the device may
3800  * be even still processing requests of bfq_queues served in previous
3801  * service slots. On the opposite end, the requests of the in-service
3802  * bfq_queue may be completed after the service slot of the queue
3803  * finishes.
3804  *
3805  * Anyway, unless more sophisticated solutions are used
3806  * (where possible), the sum of the sizes of the requests dispatched
3807  * during the service slot of a bfq_queue is probably the only
3808  * approximation available for the service received by the bfq_queue
3809  * during its service slot. And this sum is the quantity used in this
3810  * function to evaluate the I/O speed of a process.
3811  */
3812 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3813 				 bool compensate, enum bfqq_expiration reason,
3814 				 unsigned long *delta_ms)
3815 {
3816 	ktime_t delta_ktime;
3817 	u32 delta_usecs;
3818 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3819 
3820 	if (!bfq_bfqq_sync(bfqq))
3821 		return false;
3822 
3823 	if (compensate)
3824 		delta_ktime = bfqd->last_idling_start;
3825 	else
3826 		delta_ktime = ktime_get();
3827 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3828 	delta_usecs = ktime_to_us(delta_ktime);
3829 
3830 	/* don't use too short time intervals */
3831 	if (delta_usecs < 1000) {
3832 		if (blk_queue_nonrot(bfqd->queue))
3833 			 /*
3834 			  * give same worst-case guarantees as idling
3835 			  * for seeky
3836 			  */
3837 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3838 		else /* charge at least one seek */
3839 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3840 
3841 		return slow;
3842 	}
3843 
3844 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3845 
3846 	/*
3847 	 * Use only long (> 20ms) intervals to filter out excessive
3848 	 * spikes in service rate estimation.
3849 	 */
3850 	if (delta_usecs > 20000) {
3851 		/*
3852 		 * Caveat for rotational devices: processes doing I/O
3853 		 * in the slower disk zones tend to be slow(er) even
3854 		 * if not seeky. In this respect, the estimated peak
3855 		 * rate is likely to be an average over the disk
3856 		 * surface. Accordingly, to not be too harsh with
3857 		 * unlucky processes, a process is deemed slow only if
3858 		 * its rate has been lower than half of the estimated
3859 		 * peak rate.
3860 		 */
3861 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3862 	}
3863 
3864 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3865 
3866 	return slow;
3867 }
3868 
3869 /*
3870  * To be deemed as soft real-time, an application must meet two
3871  * requirements. First, the application must not require an average
3872  * bandwidth higher than the approximate bandwidth required to playback or
3873  * record a compressed high-definition video.
3874  * The next function is invoked on the completion of the last request of a
3875  * batch, to compute the next-start time instant, soft_rt_next_start, such
3876  * that, if the next request of the application does not arrive before
3877  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3878  *
3879  * The second requirement is that the request pattern of the application is
3880  * isochronous, i.e., that, after issuing a request or a batch of requests,
3881  * the application stops issuing new requests until all its pending requests
3882  * have been completed. After that, the application may issue a new batch,
3883  * and so on.
3884  * For this reason the next function is invoked to compute
3885  * soft_rt_next_start only for applications that meet this requirement,
3886  * whereas soft_rt_next_start is set to infinity for applications that do
3887  * not.
3888  *
3889  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3890  * happen to meet, occasionally or systematically, both the above
3891  * bandwidth and isochrony requirements. This may happen at least in
3892  * the following circumstances. First, if the CPU load is high. The
3893  * application may stop issuing requests while the CPUs are busy
3894  * serving other processes, then restart, then stop again for a while,
3895  * and so on. The other circumstances are related to the storage
3896  * device: the storage device is highly loaded or reaches a low-enough
3897  * throughput with the I/O of the application (e.g., because the I/O
3898  * is random and/or the device is slow). In all these cases, the
3899  * I/O of the application may be simply slowed down enough to meet
3900  * the bandwidth and isochrony requirements. To reduce the probability
3901  * that greedy applications are deemed as soft real-time in these
3902  * corner cases, a further rule is used in the computation of
3903  * soft_rt_next_start: the return value of this function is forced to
3904  * be higher than the maximum between the following two quantities.
3905  *
3906  * (a) Current time plus: (1) the maximum time for which the arrival
3907  *     of a request is waited for when a sync queue becomes idle,
3908  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3909  *     postpone for a moment the reason for adding a few extra
3910  *     jiffies; we get back to it after next item (b).  Lower-bounding
3911  *     the return value of this function with the current time plus
3912  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3913  *     because the latter issue their next request as soon as possible
3914  *     after the last one has been completed. In contrast, a soft
3915  *     real-time application spends some time processing data, after a
3916  *     batch of its requests has been completed.
3917  *
3918  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3919  *     above, greedy applications may happen to meet both the
3920  *     bandwidth and isochrony requirements under heavy CPU or
3921  *     storage-device load. In more detail, in these scenarios, these
3922  *     applications happen, only for limited time periods, to do I/O
3923  *     slowly enough to meet all the requirements described so far,
3924  *     including the filtering in above item (a). These slow-speed
3925  *     time intervals are usually interspersed between other time
3926  *     intervals during which these applications do I/O at a very high
3927  *     speed. Fortunately, exactly because of the high speed of the
3928  *     I/O in the high-speed intervals, the values returned by this
3929  *     function happen to be so high, near the end of any such
3930  *     high-speed interval, to be likely to fall *after* the end of
3931  *     the low-speed time interval that follows. These high values are
3932  *     stored in bfqq->soft_rt_next_start after each invocation of
3933  *     this function. As a consequence, if the last value of
3934  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3935  *     next value that this function may return, then, from the very
3936  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3937  *     likely to be constantly kept so high that any I/O request
3938  *     issued during the low-speed interval is considered as arriving
3939  *     to soon for the application to be deemed as soft
3940  *     real-time. Then, in the high-speed interval that follows, the
3941  *     application will not be deemed as soft real-time, just because
3942  *     it will do I/O at a high speed. And so on.
3943  *
3944  * Getting back to the filtering in item (a), in the following two
3945  * cases this filtering might be easily passed by a greedy
3946  * application, if the reference quantity was just
3947  * bfqd->bfq_slice_idle:
3948  * 1) HZ is so low that the duration of a jiffy is comparable to or
3949  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3950  *    devices with HZ=100. The time granularity may be so coarse
3951  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3952  *    is rather lower than the exact value.
3953  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3954  *    for a while, then suddenly 'jump' by several units to recover the lost
3955  *    increments. This seems to happen, e.g., inside virtual machines.
3956  * To address this issue, in the filtering in (a) we do not use as a
3957  * reference time interval just bfqd->bfq_slice_idle, but
3958  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3959  * minimum number of jiffies for which the filter seems to be quite
3960  * precise also in embedded systems and KVM/QEMU virtual machines.
3961  */
3962 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3963 						struct bfq_queue *bfqq)
3964 {
3965 	return max3(bfqq->soft_rt_next_start,
3966 		    bfqq->last_idle_bklogged +
3967 		    HZ * bfqq->service_from_backlogged /
3968 		    bfqd->bfq_wr_max_softrt_rate,
3969 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3970 }
3971 
3972 /**
3973  * bfq_bfqq_expire - expire a queue.
3974  * @bfqd: device owning the queue.
3975  * @bfqq: the queue to expire.
3976  * @compensate: if true, compensate for the time spent idling.
3977  * @reason: the reason causing the expiration.
3978  *
3979  * If the process associated with bfqq does slow I/O (e.g., because it
3980  * issues random requests), we charge bfqq with the time it has been
3981  * in service instead of the service it has received (see
3982  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3983  * a consequence, bfqq will typically get higher timestamps upon
3984  * reactivation, and hence it will be rescheduled as if it had
3985  * received more service than what it has actually received. In the
3986  * end, bfqq receives less service in proportion to how slowly its
3987  * associated process consumes its budgets (and hence how seriously it
3988  * tends to lower the throughput). In addition, this time-charging
3989  * strategy guarantees time fairness among slow processes. In
3990  * contrast, if the process associated with bfqq is not slow, we
3991  * charge bfqq exactly with the service it has received.
3992  *
3993  * Charging time to the first type of queues and the exact service to
3994  * the other has the effect of using the WF2Q+ policy to schedule the
3995  * former on a timeslice basis, without violating service domain
3996  * guarantees among the latter.
3997  */
3998 void bfq_bfqq_expire(struct bfq_data *bfqd,
3999 		     struct bfq_queue *bfqq,
4000 		     bool compensate,
4001 		     enum bfqq_expiration reason)
4002 {
4003 	bool slow;
4004 	unsigned long delta = 0;
4005 	struct bfq_entity *entity = &bfqq->entity;
4006 
4007 	/*
4008 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4009 	 */
4010 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4011 
4012 	/*
4013 	 * As above explained, charge slow (typically seeky) and
4014 	 * timed-out queues with the time and not the service
4015 	 * received, to favor sequential workloads.
4016 	 *
4017 	 * Processes doing I/O in the slower disk zones will tend to
4018 	 * be slow(er) even if not seeky. Therefore, since the
4019 	 * estimated peak rate is actually an average over the disk
4020 	 * surface, these processes may timeout just for bad luck. To
4021 	 * avoid punishing them, do not charge time to processes that
4022 	 * succeeded in consuming at least 2/3 of their budget. This
4023 	 * allows BFQ to preserve enough elasticity to still perform
4024 	 * bandwidth, and not time, distribution with little unlucky
4025 	 * or quasi-sequential processes.
4026 	 */
4027 	if (bfqq->wr_coeff == 1 &&
4028 	    (slow ||
4029 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4030 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4031 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4032 
4033 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4034 		bfqq->last_wr_start_finish = jiffies;
4035 
4036 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4037 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4038 		/*
4039 		 * If we get here, and there are no outstanding
4040 		 * requests, then the request pattern is isochronous
4041 		 * (see the comments on the function
4042 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4043 		 * compute soft_rt_next_start.
4044 		 *
4045 		 * If, instead, the queue still has outstanding
4046 		 * requests, then we have to wait for the completion
4047 		 * of all the outstanding requests to discover whether
4048 		 * the request pattern is actually isochronous.
4049 		 */
4050 		if (bfqq->dispatched == 0)
4051 			bfqq->soft_rt_next_start =
4052 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4053 		else if (bfqq->dispatched > 0) {
4054 			/*
4055 			 * Schedule an update of soft_rt_next_start to when
4056 			 * the task may be discovered to be isochronous.
4057 			 */
4058 			bfq_mark_bfqq_softrt_update(bfqq);
4059 		}
4060 	}
4061 
4062 	bfq_log_bfqq(bfqd, bfqq,
4063 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4064 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4065 
4066 	/*
4067 	 * bfqq expired, so no total service time needs to be computed
4068 	 * any longer: reset state machine for measuring total service
4069 	 * times.
4070 	 */
4071 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4072 	bfqd->waited_rq = NULL;
4073 
4074 	/*
4075 	 * Increase, decrease or leave budget unchanged according to
4076 	 * reason.
4077 	 */
4078 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4079 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4080 		/* bfqq is gone, no more actions on it */
4081 		return;
4082 
4083 	/* mark bfqq as waiting a request only if a bic still points to it */
4084 	if (!bfq_bfqq_busy(bfqq) &&
4085 	    reason != BFQQE_BUDGET_TIMEOUT &&
4086 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4087 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4088 		/*
4089 		 * Not setting service to 0, because, if the next rq
4090 		 * arrives in time, the queue will go on receiving
4091 		 * service with this same budget (as if it never expired)
4092 		 */
4093 	} else
4094 		entity->service = 0;
4095 
4096 	/*
4097 	 * Reset the received-service counter for every parent entity.
4098 	 * Differently from what happens with bfqq->entity.service,
4099 	 * the resetting of this counter never needs to be postponed
4100 	 * for parent entities. In fact, in case bfqq may have a
4101 	 * chance to go on being served using the last, partially
4102 	 * consumed budget, bfqq->entity.service needs to be kept,
4103 	 * because if bfqq then actually goes on being served using
4104 	 * the same budget, the last value of bfqq->entity.service is
4105 	 * needed to properly decrement bfqq->entity.budget by the
4106 	 * portion already consumed. In contrast, it is not necessary
4107 	 * to keep entity->service for parent entities too, because
4108 	 * the bubble up of the new value of bfqq->entity.budget will
4109 	 * make sure that the budgets of parent entities are correct,
4110 	 * even in case bfqq and thus parent entities go on receiving
4111 	 * service with the same budget.
4112 	 */
4113 	entity = entity->parent;
4114 	for_each_entity(entity)
4115 		entity->service = 0;
4116 }
4117 
4118 /*
4119  * Budget timeout is not implemented through a dedicated timer, but
4120  * just checked on request arrivals and completions, as well as on
4121  * idle timer expirations.
4122  */
4123 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4124 {
4125 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4126 }
4127 
4128 /*
4129  * If we expire a queue that is actively waiting (i.e., with the
4130  * device idled) for the arrival of a new request, then we may incur
4131  * the timestamp misalignment problem described in the body of the
4132  * function __bfq_activate_entity. Hence we return true only if this
4133  * condition does not hold, or if the queue is slow enough to deserve
4134  * only to be kicked off for preserving a high throughput.
4135  */
4136 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4137 {
4138 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4139 		"may_budget_timeout: wait_request %d left %d timeout %d",
4140 		bfq_bfqq_wait_request(bfqq),
4141 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4142 		bfq_bfqq_budget_timeout(bfqq));
4143 
4144 	return (!bfq_bfqq_wait_request(bfqq) ||
4145 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4146 		&&
4147 		bfq_bfqq_budget_timeout(bfqq);
4148 }
4149 
4150 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4151 					     struct bfq_queue *bfqq)
4152 {
4153 	bool rot_without_queueing =
4154 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4155 		bfqq_sequential_and_IO_bound,
4156 		idling_boosts_thr;
4157 
4158 	/* No point in idling for bfqq if it won't get requests any longer */
4159 	if (unlikely(!bfqq_process_refs(bfqq)))
4160 		return false;
4161 
4162 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4163 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4164 
4165 	/*
4166 	 * The next variable takes into account the cases where idling
4167 	 * boosts the throughput.
4168 	 *
4169 	 * The value of the variable is computed considering, first, that
4170 	 * idling is virtually always beneficial for the throughput if:
4171 	 * (a) the device is not NCQ-capable and rotational, or
4172 	 * (b) regardless of the presence of NCQ, the device is rotational and
4173 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4174 	 * (c) regardless of whether it is rotational, the device is
4175 	 *     not NCQ-capable and the request pattern for bfqq is
4176 	 *     I/O-bound and sequential.
4177 	 *
4178 	 * Secondly, and in contrast to the above item (b), idling an
4179 	 * NCQ-capable flash-based device would not boost the
4180 	 * throughput even with sequential I/O; rather it would lower
4181 	 * the throughput in proportion to how fast the device
4182 	 * is. Accordingly, the next variable is true if any of the
4183 	 * above conditions (a), (b) or (c) is true, and, in
4184 	 * particular, happens to be false if bfqd is an NCQ-capable
4185 	 * flash-based device.
4186 	 */
4187 	idling_boosts_thr = rot_without_queueing ||
4188 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4189 		 bfqq_sequential_and_IO_bound);
4190 
4191 	/*
4192 	 * The return value of this function is equal to that of
4193 	 * idling_boosts_thr, unless a special case holds. In this
4194 	 * special case, described below, idling may cause problems to
4195 	 * weight-raised queues.
4196 	 *
4197 	 * When the request pool is saturated (e.g., in the presence
4198 	 * of write hogs), if the processes associated with
4199 	 * non-weight-raised queues ask for requests at a lower rate,
4200 	 * then processes associated with weight-raised queues have a
4201 	 * higher probability to get a request from the pool
4202 	 * immediately (or at least soon) when they need one. Thus
4203 	 * they have a higher probability to actually get a fraction
4204 	 * of the device throughput proportional to their high
4205 	 * weight. This is especially true with NCQ-capable drives,
4206 	 * which enqueue several requests in advance, and further
4207 	 * reorder internally-queued requests.
4208 	 *
4209 	 * For this reason, we force to false the return value if
4210 	 * there are weight-raised busy queues. In this case, and if
4211 	 * bfqq is not weight-raised, this guarantees that the device
4212 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4213 	 * then idling will be guaranteed by another variable, see
4214 	 * below). Combined with the timestamping rules of BFQ (see
4215 	 * [1] for details), this behavior causes bfqq, and hence any
4216 	 * sync non-weight-raised queue, to get a lower number of
4217 	 * requests served, and thus to ask for a lower number of
4218 	 * requests from the request pool, before the busy
4219 	 * weight-raised queues get served again. This often mitigates
4220 	 * starvation problems in the presence of heavy write
4221 	 * workloads and NCQ, thereby guaranteeing a higher
4222 	 * application and system responsiveness in these hostile
4223 	 * scenarios.
4224 	 */
4225 	return idling_boosts_thr &&
4226 		bfqd->wr_busy_queues == 0;
4227 }
4228 
4229 /*
4230  * For a queue that becomes empty, device idling is allowed only if
4231  * this function returns true for that queue. As a consequence, since
4232  * device idling plays a critical role for both throughput boosting
4233  * and service guarantees, the return value of this function plays a
4234  * critical role as well.
4235  *
4236  * In a nutshell, this function returns true only if idling is
4237  * beneficial for throughput or, even if detrimental for throughput,
4238  * idling is however necessary to preserve service guarantees (low
4239  * latency, desired throughput distribution, ...). In particular, on
4240  * NCQ-capable devices, this function tries to return false, so as to
4241  * help keep the drives' internal queues full, whenever this helps the
4242  * device boost the throughput without causing any service-guarantee
4243  * issue.
4244  *
4245  * Most of the issues taken into account to get the return value of
4246  * this function are not trivial. We discuss these issues in the two
4247  * functions providing the main pieces of information needed by this
4248  * function.
4249  */
4250 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4251 {
4252 	struct bfq_data *bfqd = bfqq->bfqd;
4253 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4254 
4255 	/* No point in idling for bfqq if it won't get requests any longer */
4256 	if (unlikely(!bfqq_process_refs(bfqq)))
4257 		return false;
4258 
4259 	if (unlikely(bfqd->strict_guarantees))
4260 		return true;
4261 
4262 	/*
4263 	 * Idling is performed only if slice_idle > 0. In addition, we
4264 	 * do not idle if
4265 	 * (a) bfqq is async
4266 	 * (b) bfqq is in the idle io prio class: in this case we do
4267 	 * not idle because we want to minimize the bandwidth that
4268 	 * queues in this class can steal to higher-priority queues
4269 	 */
4270 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4271 	   bfq_class_idle(bfqq))
4272 		return false;
4273 
4274 	idling_boosts_thr_with_no_issue =
4275 		idling_boosts_thr_without_issues(bfqd, bfqq);
4276 
4277 	idling_needed_for_service_guar =
4278 		idling_needed_for_service_guarantees(bfqd, bfqq);
4279 
4280 	/*
4281 	 * We have now the two components we need to compute the
4282 	 * return value of the function, which is true only if idling
4283 	 * either boosts the throughput (without issues), or is
4284 	 * necessary to preserve service guarantees.
4285 	 */
4286 	return idling_boosts_thr_with_no_issue ||
4287 		idling_needed_for_service_guar;
4288 }
4289 
4290 /*
4291  * If the in-service queue is empty but the function bfq_better_to_idle
4292  * returns true, then:
4293  * 1) the queue must remain in service and cannot be expired, and
4294  * 2) the device must be idled to wait for the possible arrival of a new
4295  *    request for the queue.
4296  * See the comments on the function bfq_better_to_idle for the reasons
4297  * why performing device idling is the best choice to boost the throughput
4298  * and preserve service guarantees when bfq_better_to_idle itself
4299  * returns true.
4300  */
4301 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4302 {
4303 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4304 }
4305 
4306 /*
4307  * This function chooses the queue from which to pick the next extra
4308  * I/O request to inject, if it finds a compatible queue. See the
4309  * comments on bfq_update_inject_limit() for details on the injection
4310  * mechanism, and for the definitions of the quantities mentioned
4311  * below.
4312  */
4313 static struct bfq_queue *
4314 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4315 {
4316 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4317 	unsigned int limit = in_serv_bfqq->inject_limit;
4318 	/*
4319 	 * If
4320 	 * - bfqq is not weight-raised and therefore does not carry
4321 	 *   time-critical I/O,
4322 	 * or
4323 	 * - regardless of whether bfqq is weight-raised, bfqq has
4324 	 *   however a long think time, during which it can absorb the
4325 	 *   effect of an appropriate number of extra I/O requests
4326 	 *   from other queues (see bfq_update_inject_limit for
4327 	 *   details on the computation of this number);
4328 	 * then injection can be performed without restrictions.
4329 	 */
4330 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4331 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4332 
4333 	/*
4334 	 * If
4335 	 * - the baseline total service time could not be sampled yet,
4336 	 *   so the inject limit happens to be still 0, and
4337 	 * - a lot of time has elapsed since the plugging of I/O
4338 	 *   dispatching started, so drive speed is being wasted
4339 	 *   significantly;
4340 	 * then temporarily raise inject limit to one request.
4341 	 */
4342 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4343 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4344 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4345 				      bfqd->bfq_slice_idle)
4346 		)
4347 		limit = 1;
4348 
4349 	if (bfqd->rq_in_driver >= limit)
4350 		return NULL;
4351 
4352 	/*
4353 	 * Linear search of the source queue for injection; but, with
4354 	 * a high probability, very few steps are needed to find a
4355 	 * candidate queue, i.e., a queue with enough budget left for
4356 	 * its next request. In fact:
4357 	 * - BFQ dynamically updates the budget of every queue so as
4358 	 *   to accommodate the expected backlog of the queue;
4359 	 * - if a queue gets all its requests dispatched as injected
4360 	 *   service, then the queue is removed from the active list
4361 	 *   (and re-added only if it gets new requests, but then it
4362 	 *   is assigned again enough budget for its new backlog).
4363 	 */
4364 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4365 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4366 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4367 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4368 		    bfq_bfqq_budget_left(bfqq)) {
4369 			/*
4370 			 * Allow for only one large in-flight request
4371 			 * on non-rotational devices, for the
4372 			 * following reason. On non-rotationl drives,
4373 			 * large requests take much longer than
4374 			 * smaller requests to be served. In addition,
4375 			 * the drive prefers to serve large requests
4376 			 * w.r.t. to small ones, if it can choose. So,
4377 			 * having more than one large requests queued
4378 			 * in the drive may easily make the next first
4379 			 * request of the in-service queue wait for so
4380 			 * long to break bfqq's service guarantees. On
4381 			 * the bright side, large requests let the
4382 			 * drive reach a very high throughput, even if
4383 			 * there is only one in-flight large request
4384 			 * at a time.
4385 			 */
4386 			if (blk_queue_nonrot(bfqd->queue) &&
4387 			    blk_rq_sectors(bfqq->next_rq) >=
4388 			    BFQQ_SECT_THR_NONROT)
4389 				limit = min_t(unsigned int, 1, limit);
4390 			else
4391 				limit = in_serv_bfqq->inject_limit;
4392 
4393 			if (bfqd->rq_in_driver < limit) {
4394 				bfqd->rqs_injected = true;
4395 				return bfqq;
4396 			}
4397 		}
4398 
4399 	return NULL;
4400 }
4401 
4402 /*
4403  * Select a queue for service.  If we have a current queue in service,
4404  * check whether to continue servicing it, or retrieve and set a new one.
4405  */
4406 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4407 {
4408 	struct bfq_queue *bfqq;
4409 	struct request *next_rq;
4410 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4411 
4412 	bfqq = bfqd->in_service_queue;
4413 	if (!bfqq)
4414 		goto new_queue;
4415 
4416 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4417 
4418 	/*
4419 	 * Do not expire bfqq for budget timeout if bfqq may be about
4420 	 * to enjoy device idling. The reason why, in this case, we
4421 	 * prevent bfqq from expiring is the same as in the comments
4422 	 * on the case where bfq_bfqq_must_idle() returns true, in
4423 	 * bfq_completed_request().
4424 	 */
4425 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4426 	    !bfq_bfqq_must_idle(bfqq))
4427 		goto expire;
4428 
4429 check_queue:
4430 	/*
4431 	 * This loop is rarely executed more than once. Even when it
4432 	 * happens, it is much more convenient to re-execute this loop
4433 	 * than to return NULL and trigger a new dispatch to get a
4434 	 * request served.
4435 	 */
4436 	next_rq = bfqq->next_rq;
4437 	/*
4438 	 * If bfqq has requests queued and it has enough budget left to
4439 	 * serve them, keep the queue, otherwise expire it.
4440 	 */
4441 	if (next_rq) {
4442 		if (bfq_serv_to_charge(next_rq, bfqq) >
4443 			bfq_bfqq_budget_left(bfqq)) {
4444 			/*
4445 			 * Expire the queue for budget exhaustion,
4446 			 * which makes sure that the next budget is
4447 			 * enough to serve the next request, even if
4448 			 * it comes from the fifo expired path.
4449 			 */
4450 			reason = BFQQE_BUDGET_EXHAUSTED;
4451 			goto expire;
4452 		} else {
4453 			/*
4454 			 * The idle timer may be pending because we may
4455 			 * not disable disk idling even when a new request
4456 			 * arrives.
4457 			 */
4458 			if (bfq_bfqq_wait_request(bfqq)) {
4459 				/*
4460 				 * If we get here: 1) at least a new request
4461 				 * has arrived but we have not disabled the
4462 				 * timer because the request was too small,
4463 				 * 2) then the block layer has unplugged
4464 				 * the device, causing the dispatch to be
4465 				 * invoked.
4466 				 *
4467 				 * Since the device is unplugged, now the
4468 				 * requests are probably large enough to
4469 				 * provide a reasonable throughput.
4470 				 * So we disable idling.
4471 				 */
4472 				bfq_clear_bfqq_wait_request(bfqq);
4473 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4474 			}
4475 			goto keep_queue;
4476 		}
4477 	}
4478 
4479 	/*
4480 	 * No requests pending. However, if the in-service queue is idling
4481 	 * for a new request, or has requests waiting for a completion and
4482 	 * may idle after their completion, then keep it anyway.
4483 	 *
4484 	 * Yet, inject service from other queues if it boosts
4485 	 * throughput and is possible.
4486 	 */
4487 	if (bfq_bfqq_wait_request(bfqq) ||
4488 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4489 		struct bfq_queue *async_bfqq =
4490 			bfqq->bic && bfqq->bic->bfqq[0] &&
4491 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4492 			bfqq->bic->bfqq[0]->next_rq ?
4493 			bfqq->bic->bfqq[0] : NULL;
4494 
4495 		/*
4496 		 * The next three mutually-exclusive ifs decide
4497 		 * whether to try injection, and choose the queue to
4498 		 * pick an I/O request from.
4499 		 *
4500 		 * The first if checks whether the process associated
4501 		 * with bfqq has also async I/O pending. If so, it
4502 		 * injects such I/O unconditionally. Injecting async
4503 		 * I/O from the same process can cause no harm to the
4504 		 * process. On the contrary, it can only increase
4505 		 * bandwidth and reduce latency for the process.
4506 		 *
4507 		 * The second if checks whether there happens to be a
4508 		 * non-empty waker queue for bfqq, i.e., a queue whose
4509 		 * I/O needs to be completed for bfqq to receive new
4510 		 * I/O. This happens, e.g., if bfqq is associated with
4511 		 * a process that does some sync. A sync generates
4512 		 * extra blocking I/O, which must be completed before
4513 		 * the process associated with bfqq can go on with its
4514 		 * I/O. If the I/O of the waker queue is not served,
4515 		 * then bfqq remains empty, and no I/O is dispatched,
4516 		 * until the idle timeout fires for bfqq. This is
4517 		 * likely to result in lower bandwidth and higher
4518 		 * latencies for bfqq, and in a severe loss of total
4519 		 * throughput. The best action to take is therefore to
4520 		 * serve the waker queue as soon as possible. So do it
4521 		 * (without relying on the third alternative below for
4522 		 * eventually serving waker_bfqq's I/O; see the last
4523 		 * paragraph for further details). This systematic
4524 		 * injection of I/O from the waker queue does not
4525 		 * cause any delay to bfqq's I/O. On the contrary,
4526 		 * next bfqq's I/O is brought forward dramatically,
4527 		 * for it is not blocked for milliseconds.
4528 		 *
4529 		 * The third if checks whether bfqq is a queue for
4530 		 * which it is better to avoid injection. It is so if
4531 		 * bfqq delivers more throughput when served without
4532 		 * any further I/O from other queues in the middle, or
4533 		 * if the service times of bfqq's I/O requests both
4534 		 * count more than overall throughput, and may be
4535 		 * easily increased by injection (this happens if bfqq
4536 		 * has a short think time). If none of these
4537 		 * conditions holds, then a candidate queue for
4538 		 * injection is looked for through
4539 		 * bfq_choose_bfqq_for_injection(). Note that the
4540 		 * latter may return NULL (for example if the inject
4541 		 * limit for bfqq is currently 0).
4542 		 *
4543 		 * NOTE: motivation for the second alternative
4544 		 *
4545 		 * Thanks to the way the inject limit is updated in
4546 		 * bfq_update_has_short_ttime(), it is rather likely
4547 		 * that, if I/O is being plugged for bfqq and the
4548 		 * waker queue has pending I/O requests that are
4549 		 * blocking bfqq's I/O, then the third alternative
4550 		 * above lets the waker queue get served before the
4551 		 * I/O-plugging timeout fires. So one may deem the
4552 		 * second alternative superfluous. It is not, because
4553 		 * the third alternative may be way less effective in
4554 		 * case of a synchronization. For two main
4555 		 * reasons. First, throughput may be low because the
4556 		 * inject limit may be too low to guarantee the same
4557 		 * amount of injected I/O, from the waker queue or
4558 		 * other queues, that the second alternative
4559 		 * guarantees (the second alternative unconditionally
4560 		 * injects a pending I/O request of the waker queue
4561 		 * for each bfq_dispatch_request()). Second, with the
4562 		 * third alternative, the duration of the plugging,
4563 		 * i.e., the time before bfqq finally receives new I/O,
4564 		 * may not be minimized, because the waker queue may
4565 		 * happen to be served only after other queues.
4566 		 */
4567 		if (async_bfqq &&
4568 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4569 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4570 		    bfq_bfqq_budget_left(async_bfqq))
4571 			bfqq = bfqq->bic->bfqq[0];
4572 		else if (bfqq->waker_bfqq &&
4573 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4574 			   bfqq->waker_bfqq->next_rq &&
4575 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4576 					      bfqq->waker_bfqq) <=
4577 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4578 			)
4579 			bfqq = bfqq->waker_bfqq;
4580 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4581 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4582 			  !bfq_bfqq_has_short_ttime(bfqq)))
4583 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4584 		else
4585 			bfqq = NULL;
4586 
4587 		goto keep_queue;
4588 	}
4589 
4590 	reason = BFQQE_NO_MORE_REQUESTS;
4591 expire:
4592 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4593 new_queue:
4594 	bfqq = bfq_set_in_service_queue(bfqd);
4595 	if (bfqq) {
4596 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4597 		goto check_queue;
4598 	}
4599 keep_queue:
4600 	if (bfqq)
4601 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4602 	else
4603 		bfq_log(bfqd, "select_queue: no queue returned");
4604 
4605 	return bfqq;
4606 }
4607 
4608 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4609 {
4610 	struct bfq_entity *entity = &bfqq->entity;
4611 
4612 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4613 		bfq_log_bfqq(bfqd, bfqq,
4614 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4615 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4616 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4617 			bfqq->wr_coeff,
4618 			bfqq->entity.weight, bfqq->entity.orig_weight);
4619 
4620 		if (entity->prio_changed)
4621 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4622 
4623 		/*
4624 		 * If the queue was activated in a burst, or too much
4625 		 * time has elapsed from the beginning of this
4626 		 * weight-raising period, then end weight raising.
4627 		 */
4628 		if (bfq_bfqq_in_large_burst(bfqq))
4629 			bfq_bfqq_end_wr(bfqq);
4630 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4631 						bfqq->wr_cur_max_time)) {
4632 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4633 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4634 					       bfq_wr_duration(bfqd))) {
4635 				/*
4636 				 * Either in interactive weight
4637 				 * raising, or in soft_rt weight
4638 				 * raising with the
4639 				 * interactive-weight-raising period
4640 				 * elapsed (so no switch back to
4641 				 * interactive weight raising).
4642 				 */
4643 				bfq_bfqq_end_wr(bfqq);
4644 			} else { /*
4645 				  * soft_rt finishing while still in
4646 				  * interactive period, switch back to
4647 				  * interactive weight raising
4648 				  */
4649 				switch_back_to_interactive_wr(bfqq, bfqd);
4650 				bfqq->entity.prio_changed = 1;
4651 			}
4652 		}
4653 		if (bfqq->wr_coeff > 1 &&
4654 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4655 		    bfqq->service_from_wr > max_service_from_wr) {
4656 			/* see comments on max_service_from_wr */
4657 			bfq_bfqq_end_wr(bfqq);
4658 		}
4659 	}
4660 	/*
4661 	 * To improve latency (for this or other queues), immediately
4662 	 * update weight both if it must be raised and if it must be
4663 	 * lowered. Since, entity may be on some active tree here, and
4664 	 * might have a pending change of its ioprio class, invoke
4665 	 * next function with the last parameter unset (see the
4666 	 * comments on the function).
4667 	 */
4668 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4669 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4670 						entity, false);
4671 }
4672 
4673 /*
4674  * Dispatch next request from bfqq.
4675  */
4676 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4677 						 struct bfq_queue *bfqq)
4678 {
4679 	struct request *rq = bfqq->next_rq;
4680 	unsigned long service_to_charge;
4681 
4682 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4683 
4684 	bfq_bfqq_served(bfqq, service_to_charge);
4685 
4686 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4687 		bfqd->wait_dispatch = false;
4688 		bfqd->waited_rq = rq;
4689 	}
4690 
4691 	bfq_dispatch_remove(bfqd->queue, rq);
4692 
4693 	if (bfqq != bfqd->in_service_queue)
4694 		goto return_rq;
4695 
4696 	/*
4697 	 * If weight raising has to terminate for bfqq, then next
4698 	 * function causes an immediate update of bfqq's weight,
4699 	 * without waiting for next activation. As a consequence, on
4700 	 * expiration, bfqq will be timestamped as if has never been
4701 	 * weight-raised during this service slot, even if it has
4702 	 * received part or even most of the service as a
4703 	 * weight-raised queue. This inflates bfqq's timestamps, which
4704 	 * is beneficial, as bfqq is then more willing to leave the
4705 	 * device immediately to possible other weight-raised queues.
4706 	 */
4707 	bfq_update_wr_data(bfqd, bfqq);
4708 
4709 	/*
4710 	 * Expire bfqq, pretending that its budget expired, if bfqq
4711 	 * belongs to CLASS_IDLE and other queues are waiting for
4712 	 * service.
4713 	 */
4714 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4715 		goto return_rq;
4716 
4717 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4718 
4719 return_rq:
4720 	return rq;
4721 }
4722 
4723 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4724 {
4725 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4726 
4727 	/*
4728 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4729 	 * most a call to dispatch for nothing
4730 	 */
4731 	return !list_empty_careful(&bfqd->dispatch) ||
4732 		bfq_tot_busy_queues(bfqd) > 0;
4733 }
4734 
4735 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4736 {
4737 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4738 	struct request *rq = NULL;
4739 	struct bfq_queue *bfqq = NULL;
4740 
4741 	if (!list_empty(&bfqd->dispatch)) {
4742 		rq = list_first_entry(&bfqd->dispatch, struct request,
4743 				      queuelist);
4744 		list_del_init(&rq->queuelist);
4745 
4746 		bfqq = RQ_BFQQ(rq);
4747 
4748 		if (bfqq) {
4749 			/*
4750 			 * Increment counters here, because this
4751 			 * dispatch does not follow the standard
4752 			 * dispatch flow (where counters are
4753 			 * incremented)
4754 			 */
4755 			bfqq->dispatched++;
4756 
4757 			goto inc_in_driver_start_rq;
4758 		}
4759 
4760 		/*
4761 		 * We exploit the bfq_finish_requeue_request hook to
4762 		 * decrement rq_in_driver, but
4763 		 * bfq_finish_requeue_request will not be invoked on
4764 		 * this request. So, to avoid unbalance, just start
4765 		 * this request, without incrementing rq_in_driver. As
4766 		 * a negative consequence, rq_in_driver is deceptively
4767 		 * lower than it should be while this request is in
4768 		 * service. This may cause bfq_schedule_dispatch to be
4769 		 * invoked uselessly.
4770 		 *
4771 		 * As for implementing an exact solution, the
4772 		 * bfq_finish_requeue_request hook, if defined, is
4773 		 * probably invoked also on this request. So, by
4774 		 * exploiting this hook, we could 1) increment
4775 		 * rq_in_driver here, and 2) decrement it in
4776 		 * bfq_finish_requeue_request. Such a solution would
4777 		 * let the value of the counter be always accurate,
4778 		 * but it would entail using an extra interface
4779 		 * function. This cost seems higher than the benefit,
4780 		 * being the frequency of non-elevator-private
4781 		 * requests very low.
4782 		 */
4783 		goto start_rq;
4784 	}
4785 
4786 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4787 		bfq_tot_busy_queues(bfqd));
4788 
4789 	if (bfq_tot_busy_queues(bfqd) == 0)
4790 		goto exit;
4791 
4792 	/*
4793 	 * Force device to serve one request at a time if
4794 	 * strict_guarantees is true. Forcing this service scheme is
4795 	 * currently the ONLY way to guarantee that the request
4796 	 * service order enforced by the scheduler is respected by a
4797 	 * queueing device. Otherwise the device is free even to make
4798 	 * some unlucky request wait for as long as the device
4799 	 * wishes.
4800 	 *
4801 	 * Of course, serving one request at a time may cause loss of
4802 	 * throughput.
4803 	 */
4804 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4805 		goto exit;
4806 
4807 	bfqq = bfq_select_queue(bfqd);
4808 	if (!bfqq)
4809 		goto exit;
4810 
4811 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4812 
4813 	if (rq) {
4814 inc_in_driver_start_rq:
4815 		bfqd->rq_in_driver++;
4816 start_rq:
4817 		rq->rq_flags |= RQF_STARTED;
4818 	}
4819 exit:
4820 	return rq;
4821 }
4822 
4823 #ifdef CONFIG_BFQ_CGROUP_DEBUG
4824 static void bfq_update_dispatch_stats(struct request_queue *q,
4825 				      struct request *rq,
4826 				      struct bfq_queue *in_serv_queue,
4827 				      bool idle_timer_disabled)
4828 {
4829 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4830 
4831 	if (!idle_timer_disabled && !bfqq)
4832 		return;
4833 
4834 	/*
4835 	 * rq and bfqq are guaranteed to exist until this function
4836 	 * ends, for the following reasons. First, rq can be
4837 	 * dispatched to the device, and then can be completed and
4838 	 * freed, only after this function ends. Second, rq cannot be
4839 	 * merged (and thus freed because of a merge) any longer,
4840 	 * because it has already started. Thus rq cannot be freed
4841 	 * before this function ends, and, since rq has a reference to
4842 	 * bfqq, the same guarantee holds for bfqq too.
4843 	 *
4844 	 * In addition, the following queue lock guarantees that
4845 	 * bfqq_group(bfqq) exists as well.
4846 	 */
4847 	spin_lock_irq(&q->queue_lock);
4848 	if (idle_timer_disabled)
4849 		/*
4850 		 * Since the idle timer has been disabled,
4851 		 * in_serv_queue contained some request when
4852 		 * __bfq_dispatch_request was invoked above, which
4853 		 * implies that rq was picked exactly from
4854 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4855 		 * therefore guaranteed to exist because of the above
4856 		 * arguments.
4857 		 */
4858 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4859 	if (bfqq) {
4860 		struct bfq_group *bfqg = bfqq_group(bfqq);
4861 
4862 		bfqg_stats_update_avg_queue_size(bfqg);
4863 		bfqg_stats_set_start_empty_time(bfqg);
4864 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4865 	}
4866 	spin_unlock_irq(&q->queue_lock);
4867 }
4868 #else
4869 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4870 					     struct request *rq,
4871 					     struct bfq_queue *in_serv_queue,
4872 					     bool idle_timer_disabled) {}
4873 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4874 
4875 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4876 {
4877 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4878 	struct request *rq;
4879 	struct bfq_queue *in_serv_queue;
4880 	bool waiting_rq, idle_timer_disabled;
4881 
4882 	spin_lock_irq(&bfqd->lock);
4883 
4884 	in_serv_queue = bfqd->in_service_queue;
4885 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4886 
4887 	rq = __bfq_dispatch_request(hctx);
4888 
4889 	idle_timer_disabled =
4890 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4891 
4892 	spin_unlock_irq(&bfqd->lock);
4893 
4894 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4895 				  idle_timer_disabled);
4896 
4897 	return rq;
4898 }
4899 
4900 /*
4901  * Task holds one reference to the queue, dropped when task exits.  Each rq
4902  * in-flight on this queue also holds a reference, dropped when rq is freed.
4903  *
4904  * Scheduler lock must be held here. Recall not to use bfqq after calling
4905  * this function on it.
4906  */
4907 void bfq_put_queue(struct bfq_queue *bfqq)
4908 {
4909 	struct bfq_queue *item;
4910 	struct hlist_node *n;
4911 	struct bfq_group *bfqg = bfqq_group(bfqq);
4912 
4913 	if (bfqq->bfqd)
4914 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4915 			     bfqq, bfqq->ref);
4916 
4917 	bfqq->ref--;
4918 	if (bfqq->ref)
4919 		return;
4920 
4921 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4922 		hlist_del_init(&bfqq->burst_list_node);
4923 		/*
4924 		 * Decrement also burst size after the removal, if the
4925 		 * process associated with bfqq is exiting, and thus
4926 		 * does not contribute to the burst any longer. This
4927 		 * decrement helps filter out false positives of large
4928 		 * bursts, when some short-lived process (often due to
4929 		 * the execution of commands by some service) happens
4930 		 * to start and exit while a complex application is
4931 		 * starting, and thus spawning several processes that
4932 		 * do I/O (and that *must not* be treated as a large
4933 		 * burst, see comments on bfq_handle_burst).
4934 		 *
4935 		 * In particular, the decrement is performed only if:
4936 		 * 1) bfqq is not a merged queue, because, if it is,
4937 		 * then this free of bfqq is not triggered by the exit
4938 		 * of the process bfqq is associated with, but exactly
4939 		 * by the fact that bfqq has just been merged.
4940 		 * 2) burst_size is greater than 0, to handle
4941 		 * unbalanced decrements. Unbalanced decrements may
4942 		 * happen in te following case: bfqq is inserted into
4943 		 * the current burst list--without incrementing
4944 		 * bust_size--because of a split, but the current
4945 		 * burst list is not the burst list bfqq belonged to
4946 		 * (see comments on the case of a split in
4947 		 * bfq_set_request).
4948 		 */
4949 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4950 			bfqq->bfqd->burst_size--;
4951 	}
4952 
4953 	/*
4954 	 * bfqq does not exist any longer, so it cannot be woken by
4955 	 * any other queue, and cannot wake any other queue. Then bfqq
4956 	 * must be removed from the woken list of its possible waker
4957 	 * queue, and all queues in the woken list of bfqq must stop
4958 	 * having a waker queue. Strictly speaking, these updates
4959 	 * should be performed when bfqq remains with no I/O source
4960 	 * attached to it, which happens before bfqq gets freed. In
4961 	 * particular, this happens when the last process associated
4962 	 * with bfqq exits or gets associated with a different
4963 	 * queue. However, both events lead to bfqq being freed soon,
4964 	 * and dangling references would come out only after bfqq gets
4965 	 * freed. So these updates are done here, as a simple and safe
4966 	 * way to handle all cases.
4967 	 */
4968 	/* remove bfqq from woken list */
4969 	if (!hlist_unhashed(&bfqq->woken_list_node))
4970 		hlist_del_init(&bfqq->woken_list_node);
4971 
4972 	/* reset waker for all queues in woken list */
4973 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4974 				  woken_list_node) {
4975 		item->waker_bfqq = NULL;
4976 		hlist_del_init(&item->woken_list_node);
4977 	}
4978 
4979 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4980 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4981 
4982 	kmem_cache_free(bfq_pool, bfqq);
4983 	bfqg_and_blkg_put(bfqg);
4984 }
4985 
4986 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4987 {
4988 	struct bfq_queue *__bfqq, *next;
4989 
4990 	/*
4991 	 * If this queue was scheduled to merge with another queue, be
4992 	 * sure to drop the reference taken on that queue (and others in
4993 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4994 	 */
4995 	__bfqq = bfqq->new_bfqq;
4996 	while (__bfqq) {
4997 		if (__bfqq == bfqq)
4998 			break;
4999 		next = __bfqq->new_bfqq;
5000 		bfq_put_queue(__bfqq);
5001 		__bfqq = next;
5002 	}
5003 }
5004 
5005 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5006 {
5007 	if (bfqq == bfqd->in_service_queue) {
5008 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5009 		bfq_schedule_dispatch(bfqd);
5010 	}
5011 
5012 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5013 
5014 	bfq_put_cooperator(bfqq);
5015 
5016 	bfq_release_process_ref(bfqd, bfqq);
5017 }
5018 
5019 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5020 {
5021 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5022 	struct bfq_data *bfqd;
5023 
5024 	if (bfqq)
5025 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5026 
5027 	if (bfqq && bfqd) {
5028 		unsigned long flags;
5029 
5030 		spin_lock_irqsave(&bfqd->lock, flags);
5031 		bfqq->bic = NULL;
5032 		bfq_exit_bfqq(bfqd, bfqq);
5033 		bic_set_bfqq(bic, NULL, is_sync);
5034 		spin_unlock_irqrestore(&bfqd->lock, flags);
5035 	}
5036 }
5037 
5038 static void bfq_exit_icq(struct io_cq *icq)
5039 {
5040 	struct bfq_io_cq *bic = icq_to_bic(icq);
5041 
5042 	bfq_exit_icq_bfqq(bic, true);
5043 	bfq_exit_icq_bfqq(bic, false);
5044 }
5045 
5046 /*
5047  * Update the entity prio values; note that the new values will not
5048  * be used until the next (re)activation.
5049  */
5050 static void
5051 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5052 {
5053 	struct task_struct *tsk = current;
5054 	int ioprio_class;
5055 	struct bfq_data *bfqd = bfqq->bfqd;
5056 
5057 	if (!bfqd)
5058 		return;
5059 
5060 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5061 	switch (ioprio_class) {
5062 	default:
5063 		pr_err("bdi %s: bfq: bad prio class %d\n",
5064 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5065 				ioprio_class);
5066 		fallthrough;
5067 	case IOPRIO_CLASS_NONE:
5068 		/*
5069 		 * No prio set, inherit CPU scheduling settings.
5070 		 */
5071 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5072 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5073 		break;
5074 	case IOPRIO_CLASS_RT:
5075 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5076 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5077 		break;
5078 	case IOPRIO_CLASS_BE:
5079 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5080 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5081 		break;
5082 	case IOPRIO_CLASS_IDLE:
5083 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5084 		bfqq->new_ioprio = 7;
5085 		break;
5086 	}
5087 
5088 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5089 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5090 			bfqq->new_ioprio);
5091 		bfqq->new_ioprio = IOPRIO_BE_NR;
5092 	}
5093 
5094 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5095 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5096 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5097 	bfqq->entity.prio_changed = 1;
5098 }
5099 
5100 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5101 				       struct bio *bio, bool is_sync,
5102 				       struct bfq_io_cq *bic);
5103 
5104 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5105 {
5106 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5107 	struct bfq_queue *bfqq;
5108 	int ioprio = bic->icq.ioc->ioprio;
5109 
5110 	/*
5111 	 * This condition may trigger on a newly created bic, be sure to
5112 	 * drop the lock before returning.
5113 	 */
5114 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5115 		return;
5116 
5117 	bic->ioprio = ioprio;
5118 
5119 	bfqq = bic_to_bfqq(bic, false);
5120 	if (bfqq) {
5121 		bfq_release_process_ref(bfqd, bfqq);
5122 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5123 		bic_set_bfqq(bic, bfqq, false);
5124 	}
5125 
5126 	bfqq = bic_to_bfqq(bic, true);
5127 	if (bfqq)
5128 		bfq_set_next_ioprio_data(bfqq, bic);
5129 }
5130 
5131 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5132 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5133 {
5134 	u64 now_ns = ktime_get_ns();
5135 
5136 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5137 	INIT_LIST_HEAD(&bfqq->fifo);
5138 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5139 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5140 	INIT_HLIST_HEAD(&bfqq->woken_list);
5141 
5142 	bfqq->ref = 0;
5143 	bfqq->bfqd = bfqd;
5144 
5145 	if (bic)
5146 		bfq_set_next_ioprio_data(bfqq, bic);
5147 
5148 	if (is_sync) {
5149 		/*
5150 		 * No need to mark as has_short_ttime if in
5151 		 * idle_class, because no device idling is performed
5152 		 * for queues in idle class
5153 		 */
5154 		if (!bfq_class_idle(bfqq))
5155 			/* tentatively mark as has_short_ttime */
5156 			bfq_mark_bfqq_has_short_ttime(bfqq);
5157 		bfq_mark_bfqq_sync(bfqq);
5158 		bfq_mark_bfqq_just_created(bfqq);
5159 	} else
5160 		bfq_clear_bfqq_sync(bfqq);
5161 
5162 	/* set end request to minus infinity from now */
5163 	bfqq->ttime.last_end_request = now_ns + 1;
5164 
5165 	bfqq->io_start_time = now_ns;
5166 
5167 	bfq_mark_bfqq_IO_bound(bfqq);
5168 
5169 	bfqq->pid = pid;
5170 
5171 	/* Tentative initial value to trade off between thr and lat */
5172 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5173 	bfqq->budget_timeout = bfq_smallest_from_now();
5174 
5175 	bfqq->wr_coeff = 1;
5176 	bfqq->last_wr_start_finish = jiffies;
5177 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5178 	bfqq->split_time = bfq_smallest_from_now();
5179 
5180 	/*
5181 	 * To not forget the possibly high bandwidth consumed by a
5182 	 * process/queue in the recent past,
5183 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5184 	 * to the current value of bfqq->soft_rt_next_start (see
5185 	 * comments on bfq_bfqq_softrt_next_start).  Set
5186 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5187 	 * no bandwidth so far.
5188 	 */
5189 	bfqq->soft_rt_next_start = jiffies;
5190 
5191 	/* first request is almost certainly seeky */
5192 	bfqq->seek_history = 1;
5193 }
5194 
5195 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5196 					       struct bfq_group *bfqg,
5197 					       int ioprio_class, int ioprio)
5198 {
5199 	switch (ioprio_class) {
5200 	case IOPRIO_CLASS_RT:
5201 		return &bfqg->async_bfqq[0][ioprio];
5202 	case IOPRIO_CLASS_NONE:
5203 		ioprio = IOPRIO_NORM;
5204 		fallthrough;
5205 	case IOPRIO_CLASS_BE:
5206 		return &bfqg->async_bfqq[1][ioprio];
5207 	case IOPRIO_CLASS_IDLE:
5208 		return &bfqg->async_idle_bfqq;
5209 	default:
5210 		return NULL;
5211 	}
5212 }
5213 
5214 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5215 				       struct bio *bio, bool is_sync,
5216 				       struct bfq_io_cq *bic)
5217 {
5218 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5219 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5220 	struct bfq_queue **async_bfqq = NULL;
5221 	struct bfq_queue *bfqq;
5222 	struct bfq_group *bfqg;
5223 
5224 	rcu_read_lock();
5225 
5226 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5227 	if (!bfqg) {
5228 		bfqq = &bfqd->oom_bfqq;
5229 		goto out;
5230 	}
5231 
5232 	if (!is_sync) {
5233 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5234 						  ioprio);
5235 		bfqq = *async_bfqq;
5236 		if (bfqq)
5237 			goto out;
5238 	}
5239 
5240 	bfqq = kmem_cache_alloc_node(bfq_pool,
5241 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5242 				     bfqd->queue->node);
5243 
5244 	if (bfqq) {
5245 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5246 			      is_sync);
5247 		bfq_init_entity(&bfqq->entity, bfqg);
5248 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5249 	} else {
5250 		bfqq = &bfqd->oom_bfqq;
5251 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5252 		goto out;
5253 	}
5254 
5255 	/*
5256 	 * Pin the queue now that it's allocated, scheduler exit will
5257 	 * prune it.
5258 	 */
5259 	if (async_bfqq) {
5260 		bfqq->ref++; /*
5261 			      * Extra group reference, w.r.t. sync
5262 			      * queue. This extra reference is removed
5263 			      * only if bfqq->bfqg disappears, to
5264 			      * guarantee that this queue is not freed
5265 			      * until its group goes away.
5266 			      */
5267 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5268 			     bfqq, bfqq->ref);
5269 		*async_bfqq = bfqq;
5270 	}
5271 
5272 out:
5273 	bfqq->ref++; /* get a process reference to this queue */
5274 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5275 	rcu_read_unlock();
5276 	return bfqq;
5277 }
5278 
5279 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5280 				    struct bfq_queue *bfqq)
5281 {
5282 	struct bfq_ttime *ttime = &bfqq->ttime;
5283 	u64 elapsed;
5284 
5285 	/*
5286 	 * We are really interested in how long it takes for the queue to
5287 	 * become busy when there is no outstanding IO for this queue. So
5288 	 * ignore cases when the bfq queue has already IO queued.
5289 	 */
5290 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5291 		return;
5292 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5293 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5294 
5295 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5296 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5297 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5298 				     ttime->ttime_samples);
5299 }
5300 
5301 static void
5302 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5303 		       struct request *rq)
5304 {
5305 	bfqq->seek_history <<= 1;
5306 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5307 
5308 	if (bfqq->wr_coeff > 1 &&
5309 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5310 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5311 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5312 					   bfq_wr_duration(bfqd))) {
5313 			/*
5314 			 * In soft_rt weight raising with the
5315 			 * interactive-weight-raising period
5316 			 * elapsed (so no switch back to
5317 			 * interactive weight raising).
5318 			 */
5319 			bfq_bfqq_end_wr(bfqq);
5320 		} else { /*
5321 			  * stopping soft_rt weight raising
5322 			  * while still in interactive period,
5323 			  * switch back to interactive weight
5324 			  * raising
5325 			  */
5326 			switch_back_to_interactive_wr(bfqq, bfqd);
5327 			bfqq->entity.prio_changed = 1;
5328 		}
5329 	}
5330 }
5331 
5332 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5333 				       struct bfq_queue *bfqq,
5334 				       struct bfq_io_cq *bic)
5335 {
5336 	bool has_short_ttime = true, state_changed;
5337 
5338 	/*
5339 	 * No need to update has_short_ttime if bfqq is async or in
5340 	 * idle io prio class, or if bfq_slice_idle is zero, because
5341 	 * no device idling is performed for bfqq in this case.
5342 	 */
5343 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5344 	    bfqd->bfq_slice_idle == 0)
5345 		return;
5346 
5347 	/* Idle window just restored, statistics are meaningless. */
5348 	if (time_is_after_eq_jiffies(bfqq->split_time +
5349 				     bfqd->bfq_wr_min_idle_time))
5350 		return;
5351 
5352 	/* Think time is infinite if no process is linked to
5353 	 * bfqq. Otherwise check average think time to decide whether
5354 	 * to mark as has_short_ttime. To this goal, compare average
5355 	 * think time with half the I/O-plugging timeout.
5356 	 */
5357 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5358 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5359 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5360 		has_short_ttime = false;
5361 
5362 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5363 
5364 	if (has_short_ttime)
5365 		bfq_mark_bfqq_has_short_ttime(bfqq);
5366 	else
5367 		bfq_clear_bfqq_has_short_ttime(bfqq);
5368 
5369 	/*
5370 	 * Until the base value for the total service time gets
5371 	 * finally computed for bfqq, the inject limit does depend on
5372 	 * the think-time state (short|long). In particular, the limit
5373 	 * is 0 or 1 if the think time is deemed, respectively, as
5374 	 * short or long (details in the comments in
5375 	 * bfq_update_inject_limit()). Accordingly, the next
5376 	 * instructions reset the inject limit if the think-time state
5377 	 * has changed and the above base value is still to be
5378 	 * computed.
5379 	 *
5380 	 * However, the reset is performed only if more than 100 ms
5381 	 * have elapsed since the last update of the inject limit, or
5382 	 * (inclusive) if the change is from short to long think
5383 	 * time. The reason for this waiting is as follows.
5384 	 *
5385 	 * bfqq may have a long think time because of a
5386 	 * synchronization with some other queue, i.e., because the
5387 	 * I/O of some other queue may need to be completed for bfqq
5388 	 * to receive new I/O. Details in the comments on the choice
5389 	 * of the queue for injection in bfq_select_queue().
5390 	 *
5391 	 * As stressed in those comments, if such a synchronization is
5392 	 * actually in place, then, without injection on bfqq, the
5393 	 * blocking I/O cannot happen to served while bfqq is in
5394 	 * service. As a consequence, if bfqq is granted
5395 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5396 	 * is dispatched, until the idle timeout fires. This is likely
5397 	 * to result in lower bandwidth and higher latencies for bfqq,
5398 	 * and in a severe loss of total throughput.
5399 	 *
5400 	 * On the opposite end, a non-zero inject limit may allow the
5401 	 * I/O that blocks bfqq to be executed soon, and therefore
5402 	 * bfqq to receive new I/O soon.
5403 	 *
5404 	 * But, if the blocking gets actually eliminated, then the
5405 	 * next think-time sample for bfqq may be very low. This in
5406 	 * turn may cause bfqq's think time to be deemed
5407 	 * short. Without the 100 ms barrier, this new state change
5408 	 * would cause the body of the next if to be executed
5409 	 * immediately. But this would set to 0 the inject
5410 	 * limit. Without injection, the blocking I/O would cause the
5411 	 * think time of bfqq to become long again, and therefore the
5412 	 * inject limit to be raised again, and so on. The only effect
5413 	 * of such a steady oscillation between the two think-time
5414 	 * states would be to prevent effective injection on bfqq.
5415 	 *
5416 	 * In contrast, if the inject limit is not reset during such a
5417 	 * long time interval as 100 ms, then the number of short
5418 	 * think time samples can grow significantly before the reset
5419 	 * is performed. As a consequence, the think time state can
5420 	 * become stable before the reset. Therefore there will be no
5421 	 * state change when the 100 ms elapse, and no reset of the
5422 	 * inject limit. The inject limit remains steadily equal to 1
5423 	 * both during and after the 100 ms. So injection can be
5424 	 * performed at all times, and throughput gets boosted.
5425 	 *
5426 	 * An inject limit equal to 1 is however in conflict, in
5427 	 * general, with the fact that the think time of bfqq is
5428 	 * short, because injection may be likely to delay bfqq's I/O
5429 	 * (as explained in the comments in
5430 	 * bfq_update_inject_limit()). But this does not happen in
5431 	 * this special case, because bfqq's low think time is due to
5432 	 * an effective handling of a synchronization, through
5433 	 * injection. In this special case, bfqq's I/O does not get
5434 	 * delayed by injection; on the contrary, bfqq's I/O is
5435 	 * brought forward, because it is not blocked for
5436 	 * milliseconds.
5437 	 *
5438 	 * In addition, serving the blocking I/O much sooner, and much
5439 	 * more frequently than once per I/O-plugging timeout, makes
5440 	 * it much quicker to detect a waker queue (the concept of
5441 	 * waker queue is defined in the comments in
5442 	 * bfq_add_request()). This makes it possible to start sooner
5443 	 * to boost throughput more effectively, by injecting the I/O
5444 	 * of the waker queue unconditionally on every
5445 	 * bfq_dispatch_request().
5446 	 *
5447 	 * One last, important benefit of not resetting the inject
5448 	 * limit before 100 ms is that, during this time interval, the
5449 	 * base value for the total service time is likely to get
5450 	 * finally computed for bfqq, freeing the inject limit from
5451 	 * its relation with the think time.
5452 	 */
5453 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5454 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5455 				      msecs_to_jiffies(100)) ||
5456 	     !has_short_ttime))
5457 		bfq_reset_inject_limit(bfqd, bfqq);
5458 }
5459 
5460 /*
5461  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5462  * something we should do about it.
5463  */
5464 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5465 			    struct request *rq)
5466 {
5467 	if (rq->cmd_flags & REQ_META)
5468 		bfqq->meta_pending++;
5469 
5470 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5471 
5472 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5473 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5474 				 blk_rq_sectors(rq) < 32;
5475 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5476 
5477 		/*
5478 		 * There is just this request queued: if
5479 		 * - the request is small, and
5480 		 * - we are idling to boost throughput, and
5481 		 * - the queue is not to be expired,
5482 		 * then just exit.
5483 		 *
5484 		 * In this way, if the device is being idled to wait
5485 		 * for a new request from the in-service queue, we
5486 		 * avoid unplugging the device and committing the
5487 		 * device to serve just a small request. In contrast
5488 		 * we wait for the block layer to decide when to
5489 		 * unplug the device: hopefully, new requests will be
5490 		 * merged to this one quickly, then the device will be
5491 		 * unplugged and larger requests will be dispatched.
5492 		 */
5493 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5494 		    !budget_timeout)
5495 			return;
5496 
5497 		/*
5498 		 * A large enough request arrived, or idling is being
5499 		 * performed to preserve service guarantees, or
5500 		 * finally the queue is to be expired: in all these
5501 		 * cases disk idling is to be stopped, so clear
5502 		 * wait_request flag and reset timer.
5503 		 */
5504 		bfq_clear_bfqq_wait_request(bfqq);
5505 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5506 
5507 		/*
5508 		 * The queue is not empty, because a new request just
5509 		 * arrived. Hence we can safely expire the queue, in
5510 		 * case of budget timeout, without risking that the
5511 		 * timestamps of the queue are not updated correctly.
5512 		 * See [1] for more details.
5513 		 */
5514 		if (budget_timeout)
5515 			bfq_bfqq_expire(bfqd, bfqq, false,
5516 					BFQQE_BUDGET_TIMEOUT);
5517 	}
5518 }
5519 
5520 /* returns true if it causes the idle timer to be disabled */
5521 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5522 {
5523 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5524 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5525 	bool waiting, idle_timer_disabled = false;
5526 
5527 	if (new_bfqq) {
5528 		/*
5529 		 * Release the request's reference to the old bfqq
5530 		 * and make sure one is taken to the shared queue.
5531 		 */
5532 		new_bfqq->allocated++;
5533 		bfqq->allocated--;
5534 		new_bfqq->ref++;
5535 		/*
5536 		 * If the bic associated with the process
5537 		 * issuing this request still points to bfqq
5538 		 * (and thus has not been already redirected
5539 		 * to new_bfqq or even some other bfq_queue),
5540 		 * then complete the merge and redirect it to
5541 		 * new_bfqq.
5542 		 */
5543 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5544 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5545 					bfqq, new_bfqq);
5546 
5547 		bfq_clear_bfqq_just_created(bfqq);
5548 		/*
5549 		 * rq is about to be enqueued into new_bfqq,
5550 		 * release rq reference on bfqq
5551 		 */
5552 		bfq_put_queue(bfqq);
5553 		rq->elv.priv[1] = new_bfqq;
5554 		bfqq = new_bfqq;
5555 	}
5556 
5557 	bfq_update_io_thinktime(bfqd, bfqq);
5558 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5559 	bfq_update_io_seektime(bfqd, bfqq, rq);
5560 
5561 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5562 	bfq_add_request(rq);
5563 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5564 
5565 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5566 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5567 
5568 	bfq_rq_enqueued(bfqd, bfqq, rq);
5569 
5570 	return idle_timer_disabled;
5571 }
5572 
5573 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5574 static void bfq_update_insert_stats(struct request_queue *q,
5575 				    struct bfq_queue *bfqq,
5576 				    bool idle_timer_disabled,
5577 				    unsigned int cmd_flags)
5578 {
5579 	if (!bfqq)
5580 		return;
5581 
5582 	/*
5583 	 * bfqq still exists, because it can disappear only after
5584 	 * either it is merged with another queue, or the process it
5585 	 * is associated with exits. But both actions must be taken by
5586 	 * the same process currently executing this flow of
5587 	 * instructions.
5588 	 *
5589 	 * In addition, the following queue lock guarantees that
5590 	 * bfqq_group(bfqq) exists as well.
5591 	 */
5592 	spin_lock_irq(&q->queue_lock);
5593 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5594 	if (idle_timer_disabled)
5595 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5596 	spin_unlock_irq(&q->queue_lock);
5597 }
5598 #else
5599 static inline void bfq_update_insert_stats(struct request_queue *q,
5600 					   struct bfq_queue *bfqq,
5601 					   bool idle_timer_disabled,
5602 					   unsigned int cmd_flags) {}
5603 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5604 
5605 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5606 			       bool at_head)
5607 {
5608 	struct request_queue *q = hctx->queue;
5609 	struct bfq_data *bfqd = q->elevator->elevator_data;
5610 	struct bfq_queue *bfqq;
5611 	bool idle_timer_disabled = false;
5612 	unsigned int cmd_flags;
5613 
5614 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5615 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5616 		bfqg_stats_update_legacy_io(q, rq);
5617 #endif
5618 	spin_lock_irq(&bfqd->lock);
5619 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5620 		spin_unlock_irq(&bfqd->lock);
5621 		return;
5622 	}
5623 
5624 	spin_unlock_irq(&bfqd->lock);
5625 
5626 	trace_block_rq_insert(rq);
5627 
5628 	spin_lock_irq(&bfqd->lock);
5629 	bfqq = bfq_init_rq(rq);
5630 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5631 		if (at_head)
5632 			list_add(&rq->queuelist, &bfqd->dispatch);
5633 		else
5634 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5635 	} else {
5636 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5637 		/*
5638 		 * Update bfqq, because, if a queue merge has occurred
5639 		 * in __bfq_insert_request, then rq has been
5640 		 * redirected into a new queue.
5641 		 */
5642 		bfqq = RQ_BFQQ(rq);
5643 
5644 		if (rq_mergeable(rq)) {
5645 			elv_rqhash_add(q, rq);
5646 			if (!q->last_merge)
5647 				q->last_merge = rq;
5648 		}
5649 	}
5650 
5651 	/*
5652 	 * Cache cmd_flags before releasing scheduler lock, because rq
5653 	 * may disappear afterwards (for example, because of a request
5654 	 * merge).
5655 	 */
5656 	cmd_flags = rq->cmd_flags;
5657 
5658 	spin_unlock_irq(&bfqd->lock);
5659 
5660 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5661 				cmd_flags);
5662 }
5663 
5664 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5665 				struct list_head *list, bool at_head)
5666 {
5667 	while (!list_empty(list)) {
5668 		struct request *rq;
5669 
5670 		rq = list_first_entry(list, struct request, queuelist);
5671 		list_del_init(&rq->queuelist);
5672 		bfq_insert_request(hctx, rq, at_head);
5673 	}
5674 }
5675 
5676 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5677 {
5678 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5679 
5680 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5681 				       bfqd->rq_in_driver);
5682 
5683 	if (bfqd->hw_tag == 1)
5684 		return;
5685 
5686 	/*
5687 	 * This sample is valid if the number of outstanding requests
5688 	 * is large enough to allow a queueing behavior.  Note that the
5689 	 * sum is not exact, as it's not taking into account deactivated
5690 	 * requests.
5691 	 */
5692 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5693 		return;
5694 
5695 	/*
5696 	 * If active queue hasn't enough requests and can idle, bfq might not
5697 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5698 	 * case
5699 	 */
5700 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5701 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5702 	    BFQ_HW_QUEUE_THRESHOLD &&
5703 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5704 		return;
5705 
5706 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5707 		return;
5708 
5709 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5710 	bfqd->max_rq_in_driver = 0;
5711 	bfqd->hw_tag_samples = 0;
5712 
5713 	bfqd->nonrot_with_queueing =
5714 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5715 }
5716 
5717 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5718 {
5719 	u64 now_ns;
5720 	u32 delta_us;
5721 
5722 	bfq_update_hw_tag(bfqd);
5723 
5724 	bfqd->rq_in_driver--;
5725 	bfqq->dispatched--;
5726 
5727 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5728 		/*
5729 		 * Set budget_timeout (which we overload to store the
5730 		 * time at which the queue remains with no backlog and
5731 		 * no outstanding request; used by the weight-raising
5732 		 * mechanism).
5733 		 */
5734 		bfqq->budget_timeout = jiffies;
5735 
5736 		bfq_weights_tree_remove(bfqd, bfqq);
5737 	}
5738 
5739 	now_ns = ktime_get_ns();
5740 
5741 	bfqq->ttime.last_end_request = now_ns;
5742 
5743 	/*
5744 	 * Using us instead of ns, to get a reasonable precision in
5745 	 * computing rate in next check.
5746 	 */
5747 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5748 
5749 	/*
5750 	 * If the request took rather long to complete, and, according
5751 	 * to the maximum request size recorded, this completion latency
5752 	 * implies that the request was certainly served at a very low
5753 	 * rate (less than 1M sectors/sec), then the whole observation
5754 	 * interval that lasts up to this time instant cannot be a
5755 	 * valid time interval for computing a new peak rate.  Invoke
5756 	 * bfq_update_rate_reset to have the following three steps
5757 	 * taken:
5758 	 * - close the observation interval at the last (previous)
5759 	 *   request dispatch or completion
5760 	 * - compute rate, if possible, for that observation interval
5761 	 * - reset to zero samples, which will trigger a proper
5762 	 *   re-initialization of the observation interval on next
5763 	 *   dispatch
5764 	 */
5765 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5766 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5767 			1UL<<(BFQ_RATE_SHIFT - 10))
5768 		bfq_update_rate_reset(bfqd, NULL);
5769 	bfqd->last_completion = now_ns;
5770 	bfqd->last_completed_rq_bfqq = bfqq;
5771 
5772 	/*
5773 	 * If we are waiting to discover whether the request pattern
5774 	 * of the task associated with the queue is actually
5775 	 * isochronous, and both requisites for this condition to hold
5776 	 * are now satisfied, then compute soft_rt_next_start (see the
5777 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5778 	 * do not compute soft_rt_next_start if bfqq is in interactive
5779 	 * weight raising (see the comments in bfq_bfqq_expire() for
5780 	 * an explanation). We schedule this delayed update when bfqq
5781 	 * expires, if it still has in-flight requests.
5782 	 */
5783 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5784 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5785 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5786 		bfqq->soft_rt_next_start =
5787 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5788 
5789 	/*
5790 	 * If this is the in-service queue, check if it needs to be expired,
5791 	 * or if we want to idle in case it has no pending requests.
5792 	 */
5793 	if (bfqd->in_service_queue == bfqq) {
5794 		if (bfq_bfqq_must_idle(bfqq)) {
5795 			if (bfqq->dispatched == 0)
5796 				bfq_arm_slice_timer(bfqd);
5797 			/*
5798 			 * If we get here, we do not expire bfqq, even
5799 			 * if bfqq was in budget timeout or had no
5800 			 * more requests (as controlled in the next
5801 			 * conditional instructions). The reason for
5802 			 * not expiring bfqq is as follows.
5803 			 *
5804 			 * Here bfqq->dispatched > 0 holds, but
5805 			 * bfq_bfqq_must_idle() returned true. This
5806 			 * implies that, even if no request arrives
5807 			 * for bfqq before bfqq->dispatched reaches 0,
5808 			 * bfqq will, however, not be expired on the
5809 			 * completion event that causes bfqq->dispatch
5810 			 * to reach zero. In contrast, on this event,
5811 			 * bfqq will start enjoying device idling
5812 			 * (I/O-dispatch plugging).
5813 			 *
5814 			 * But, if we expired bfqq here, bfqq would
5815 			 * not have the chance to enjoy device idling
5816 			 * when bfqq->dispatched finally reaches
5817 			 * zero. This would expose bfqq to violation
5818 			 * of its reserved service guarantees.
5819 			 */
5820 			return;
5821 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5822 			bfq_bfqq_expire(bfqd, bfqq, false,
5823 					BFQQE_BUDGET_TIMEOUT);
5824 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5825 			 (bfqq->dispatched == 0 ||
5826 			  !bfq_better_to_idle(bfqq)))
5827 			bfq_bfqq_expire(bfqd, bfqq, false,
5828 					BFQQE_NO_MORE_REQUESTS);
5829 	}
5830 
5831 	if (!bfqd->rq_in_driver)
5832 		bfq_schedule_dispatch(bfqd);
5833 }
5834 
5835 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5836 {
5837 	bfqq->allocated--;
5838 
5839 	bfq_put_queue(bfqq);
5840 }
5841 
5842 /*
5843  * The processes associated with bfqq may happen to generate their
5844  * cumulative I/O at a lower rate than the rate at which the device
5845  * could serve the same I/O. This is rather probable, e.g., if only
5846  * one process is associated with bfqq and the device is an SSD. It
5847  * results in bfqq becoming often empty while in service. In this
5848  * respect, if BFQ is allowed to switch to another queue when bfqq
5849  * remains empty, then the device goes on being fed with I/O requests,
5850  * and the throughput is not affected. In contrast, if BFQ is not
5851  * allowed to switch to another queue---because bfqq is sync and
5852  * I/O-dispatch needs to be plugged while bfqq is temporarily
5853  * empty---then, during the service of bfqq, there will be frequent
5854  * "service holes", i.e., time intervals during which bfqq gets empty
5855  * and the device can only consume the I/O already queued in its
5856  * hardware queues. During service holes, the device may even get to
5857  * remaining idle. In the end, during the service of bfqq, the device
5858  * is driven at a lower speed than the one it can reach with the kind
5859  * of I/O flowing through bfqq.
5860  *
5861  * To counter this loss of throughput, BFQ implements a "request
5862  * injection mechanism", which tries to fill the above service holes
5863  * with I/O requests taken from other queues. The hard part in this
5864  * mechanism is finding the right amount of I/O to inject, so as to
5865  * both boost throughput and not break bfqq's bandwidth and latency
5866  * guarantees. In this respect, the mechanism maintains a per-queue
5867  * inject limit, computed as below. While bfqq is empty, the injection
5868  * mechanism dispatches extra I/O requests only until the total number
5869  * of I/O requests in flight---i.e., already dispatched but not yet
5870  * completed---remains lower than this limit.
5871  *
5872  * A first definition comes in handy to introduce the algorithm by
5873  * which the inject limit is computed.  We define as first request for
5874  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5875  * service, and causes bfqq to switch from empty to non-empty. The
5876  * algorithm updates the limit as a function of the effect of
5877  * injection on the service times of only the first requests of
5878  * bfqq. The reason for this restriction is that these are the
5879  * requests whose service time is affected most, because they are the
5880  * first to arrive after injection possibly occurred.
5881  *
5882  * To evaluate the effect of injection, the algorithm measures the
5883  * "total service time" of first requests. We define as total service
5884  * time of an I/O request, the time that elapses since when the
5885  * request is enqueued into bfqq, to when it is completed. This
5886  * quantity allows the whole effect of injection to be measured. It is
5887  * easy to see why. Suppose that some requests of other queues are
5888  * actually injected while bfqq is empty, and that a new request R
5889  * then arrives for bfqq. If the device does start to serve all or
5890  * part of the injected requests during the service hole, then,
5891  * because of this extra service, it may delay the next invocation of
5892  * the dispatch hook of BFQ. Then, even after R gets eventually
5893  * dispatched, the device may delay the actual service of R if it is
5894  * still busy serving the extra requests, or if it decides to serve,
5895  * before R, some extra request still present in its queues. As a
5896  * conclusion, the cumulative extra delay caused by injection can be
5897  * easily evaluated by just comparing the total service time of first
5898  * requests with and without injection.
5899  *
5900  * The limit-update algorithm works as follows. On the arrival of a
5901  * first request of bfqq, the algorithm measures the total time of the
5902  * request only if one of the three cases below holds, and, for each
5903  * case, it updates the limit as described below:
5904  *
5905  * (1) If there is no in-flight request. This gives a baseline for the
5906  *     total service time of the requests of bfqq. If the baseline has
5907  *     not been computed yet, then, after computing it, the limit is
5908  *     set to 1, to start boosting throughput, and to prepare the
5909  *     ground for the next case. If the baseline has already been
5910  *     computed, then it is updated, in case it results to be lower
5911  *     than the previous value.
5912  *
5913  * (2) If the limit is higher than 0 and there are in-flight
5914  *     requests. By comparing the total service time in this case with
5915  *     the above baseline, it is possible to know at which extent the
5916  *     current value of the limit is inflating the total service
5917  *     time. If the inflation is below a certain threshold, then bfqq
5918  *     is assumed to be suffering from no perceivable loss of its
5919  *     service guarantees, and the limit is even tentatively
5920  *     increased. If the inflation is above the threshold, then the
5921  *     limit is decreased. Due to the lack of any hysteresis, this
5922  *     logic makes the limit oscillate even in steady workload
5923  *     conditions. Yet we opted for it, because it is fast in reaching
5924  *     the best value for the limit, as a function of the current I/O
5925  *     workload. To reduce oscillations, this step is disabled for a
5926  *     short time interval after the limit happens to be decreased.
5927  *
5928  * (3) Periodically, after resetting the limit, to make sure that the
5929  *     limit eventually drops in case the workload changes. This is
5930  *     needed because, after the limit has gone safely up for a
5931  *     certain workload, it is impossible to guess whether the
5932  *     baseline total service time may have changed, without measuring
5933  *     it again without injection. A more effective version of this
5934  *     step might be to just sample the baseline, by interrupting
5935  *     injection only once, and then to reset/lower the limit only if
5936  *     the total service time with the current limit does happen to be
5937  *     too large.
5938  *
5939  * More details on each step are provided in the comments on the
5940  * pieces of code that implement these steps: the branch handling the
5941  * transition from empty to non empty in bfq_add_request(), the branch
5942  * handling injection in bfq_select_queue(), and the function
5943  * bfq_choose_bfqq_for_injection(). These comments also explain some
5944  * exceptions, made by the injection mechanism in some special cases.
5945  */
5946 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5947 				    struct bfq_queue *bfqq)
5948 {
5949 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5950 	unsigned int old_limit = bfqq->inject_limit;
5951 
5952 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5953 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5954 
5955 		if (tot_time_ns >= threshold && old_limit > 0) {
5956 			bfqq->inject_limit--;
5957 			bfqq->decrease_time_jif = jiffies;
5958 		} else if (tot_time_ns < threshold &&
5959 			   old_limit <= bfqd->max_rq_in_driver)
5960 			bfqq->inject_limit++;
5961 	}
5962 
5963 	/*
5964 	 * Either we still have to compute the base value for the
5965 	 * total service time, and there seem to be the right
5966 	 * conditions to do it, or we can lower the last base value
5967 	 * computed.
5968 	 *
5969 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5970 	 * request in flight, because this function is in the code
5971 	 * path that handles the completion of a request of bfqq, and,
5972 	 * in particular, this function is executed before
5973 	 * bfqd->rq_in_driver is decremented in such a code path.
5974 	 */
5975 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5976 	    tot_time_ns < bfqq->last_serv_time_ns) {
5977 		if (bfqq->last_serv_time_ns == 0) {
5978 			/*
5979 			 * Now we certainly have a base value: make sure we
5980 			 * start trying injection.
5981 			 */
5982 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5983 		}
5984 		bfqq->last_serv_time_ns = tot_time_ns;
5985 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5986 		/*
5987 		 * No I/O injected and no request still in service in
5988 		 * the drive: these are the exact conditions for
5989 		 * computing the base value of the total service time
5990 		 * for bfqq. So let's update this value, because it is
5991 		 * rather variable. For example, it varies if the size
5992 		 * or the spatial locality of the I/O requests in bfqq
5993 		 * change.
5994 		 */
5995 		bfqq->last_serv_time_ns = tot_time_ns;
5996 
5997 
5998 	/* update complete, not waiting for any request completion any longer */
5999 	bfqd->waited_rq = NULL;
6000 	bfqd->rqs_injected = false;
6001 }
6002 
6003 /*
6004  * Handle either a requeue or a finish for rq. The things to do are
6005  * the same in both cases: all references to rq are to be dropped. In
6006  * particular, rq is considered completed from the point of view of
6007  * the scheduler.
6008  */
6009 static void bfq_finish_requeue_request(struct request *rq)
6010 {
6011 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6012 	struct bfq_data *bfqd;
6013 
6014 	/*
6015 	 * rq either is not associated with any icq, or is an already
6016 	 * requeued request that has not (yet) been re-inserted into
6017 	 * a bfq_queue.
6018 	 */
6019 	if (!rq->elv.icq || !bfqq)
6020 		return;
6021 
6022 	bfqd = bfqq->bfqd;
6023 
6024 	if (rq->rq_flags & RQF_STARTED)
6025 		bfqg_stats_update_completion(bfqq_group(bfqq),
6026 					     rq->start_time_ns,
6027 					     rq->io_start_time_ns,
6028 					     rq->cmd_flags);
6029 
6030 	if (likely(rq->rq_flags & RQF_STARTED)) {
6031 		unsigned long flags;
6032 
6033 		spin_lock_irqsave(&bfqd->lock, flags);
6034 
6035 		if (rq == bfqd->waited_rq)
6036 			bfq_update_inject_limit(bfqd, bfqq);
6037 
6038 		bfq_completed_request(bfqq, bfqd);
6039 		bfq_finish_requeue_request_body(bfqq);
6040 
6041 		spin_unlock_irqrestore(&bfqd->lock, flags);
6042 	} else {
6043 		/*
6044 		 * Request rq may be still/already in the scheduler,
6045 		 * in which case we need to remove it (this should
6046 		 * never happen in case of requeue). And we cannot
6047 		 * defer such a check and removal, to avoid
6048 		 * inconsistencies in the time interval from the end
6049 		 * of this function to the start of the deferred work.
6050 		 * This situation seems to occur only in process
6051 		 * context, as a consequence of a merge. In the
6052 		 * current version of the code, this implies that the
6053 		 * lock is held.
6054 		 */
6055 
6056 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
6057 			bfq_remove_request(rq->q, rq);
6058 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
6059 						    rq->cmd_flags);
6060 		}
6061 		bfq_finish_requeue_request_body(bfqq);
6062 	}
6063 
6064 	/*
6065 	 * Reset private fields. In case of a requeue, this allows
6066 	 * this function to correctly do nothing if it is spuriously
6067 	 * invoked again on this same request (see the check at the
6068 	 * beginning of the function). Probably, a better general
6069 	 * design would be to prevent blk-mq from invoking the requeue
6070 	 * or finish hooks of an elevator, for a request that is not
6071 	 * referred by that elevator.
6072 	 *
6073 	 * Resetting the following fields would break the
6074 	 * request-insertion logic if rq is re-inserted into a bfq
6075 	 * internal queue, without a re-preparation. Here we assume
6076 	 * that re-insertions of requeued requests, without
6077 	 * re-preparation, can happen only for pass_through or at_head
6078 	 * requests (which are not re-inserted into bfq internal
6079 	 * queues).
6080 	 */
6081 	rq->elv.priv[0] = NULL;
6082 	rq->elv.priv[1] = NULL;
6083 }
6084 
6085 /*
6086  * Removes the association between the current task and bfqq, assuming
6087  * that bic points to the bfq iocontext of the task.
6088  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6089  * was the last process referring to that bfqq.
6090  */
6091 static struct bfq_queue *
6092 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6093 {
6094 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6095 
6096 	if (bfqq_process_refs(bfqq) == 1) {
6097 		bfqq->pid = current->pid;
6098 		bfq_clear_bfqq_coop(bfqq);
6099 		bfq_clear_bfqq_split_coop(bfqq);
6100 		return bfqq;
6101 	}
6102 
6103 	bic_set_bfqq(bic, NULL, 1);
6104 
6105 	bfq_put_cooperator(bfqq);
6106 
6107 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6108 	return NULL;
6109 }
6110 
6111 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6112 						   struct bfq_io_cq *bic,
6113 						   struct bio *bio,
6114 						   bool split, bool is_sync,
6115 						   bool *new_queue)
6116 {
6117 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6118 
6119 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6120 		return bfqq;
6121 
6122 	if (new_queue)
6123 		*new_queue = true;
6124 
6125 	if (bfqq)
6126 		bfq_put_queue(bfqq);
6127 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6128 
6129 	bic_set_bfqq(bic, bfqq, is_sync);
6130 	if (split && is_sync) {
6131 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6132 		    bic->saved_in_large_burst)
6133 			bfq_mark_bfqq_in_large_burst(bfqq);
6134 		else {
6135 			bfq_clear_bfqq_in_large_burst(bfqq);
6136 			if (bic->was_in_burst_list)
6137 				/*
6138 				 * If bfqq was in the current
6139 				 * burst list before being
6140 				 * merged, then we have to add
6141 				 * it back. And we do not need
6142 				 * to increase burst_size, as
6143 				 * we did not decrement
6144 				 * burst_size when we removed
6145 				 * bfqq from the burst list as
6146 				 * a consequence of a merge
6147 				 * (see comments in
6148 				 * bfq_put_queue). In this
6149 				 * respect, it would be rather
6150 				 * costly to know whether the
6151 				 * current burst list is still
6152 				 * the same burst list from
6153 				 * which bfqq was removed on
6154 				 * the merge. To avoid this
6155 				 * cost, if bfqq was in a
6156 				 * burst list, then we add
6157 				 * bfqq to the current burst
6158 				 * list without any further
6159 				 * check. This can cause
6160 				 * inappropriate insertions,
6161 				 * but rarely enough to not
6162 				 * harm the detection of large
6163 				 * bursts significantly.
6164 				 */
6165 				hlist_add_head(&bfqq->burst_list_node,
6166 					       &bfqd->burst_list);
6167 		}
6168 		bfqq->split_time = jiffies;
6169 	}
6170 
6171 	return bfqq;
6172 }
6173 
6174 /*
6175  * Only reset private fields. The actual request preparation will be
6176  * performed by bfq_init_rq, when rq is either inserted or merged. See
6177  * comments on bfq_init_rq for the reason behind this delayed
6178  * preparation.
6179  */
6180 static void bfq_prepare_request(struct request *rq)
6181 {
6182 	/*
6183 	 * Regardless of whether we have an icq attached, we have to
6184 	 * clear the scheduler pointers, as they might point to
6185 	 * previously allocated bic/bfqq structs.
6186 	 */
6187 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6188 }
6189 
6190 /*
6191  * If needed, init rq, allocate bfq data structures associated with
6192  * rq, and increment reference counters in the destination bfq_queue
6193  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6194  * not associated with any bfq_queue.
6195  *
6196  * This function is invoked by the functions that perform rq insertion
6197  * or merging. One may have expected the above preparation operations
6198  * to be performed in bfq_prepare_request, and not delayed to when rq
6199  * is inserted or merged. The rationale behind this delayed
6200  * preparation is that, after the prepare_request hook is invoked for
6201  * rq, rq may still be transformed into a request with no icq, i.e., a
6202  * request not associated with any queue. No bfq hook is invoked to
6203  * signal this transformation. As a consequence, should these
6204  * preparation operations be performed when the prepare_request hook
6205  * is invoked, and should rq be transformed one moment later, bfq
6206  * would end up in an inconsistent state, because it would have
6207  * incremented some queue counters for an rq destined to
6208  * transformation, without any chance to correctly lower these
6209  * counters back. In contrast, no transformation can still happen for
6210  * rq after rq has been inserted or merged. So, it is safe to execute
6211  * these preparation operations when rq is finally inserted or merged.
6212  */
6213 static struct bfq_queue *bfq_init_rq(struct request *rq)
6214 {
6215 	struct request_queue *q = rq->q;
6216 	struct bio *bio = rq->bio;
6217 	struct bfq_data *bfqd = q->elevator->elevator_data;
6218 	struct bfq_io_cq *bic;
6219 	const int is_sync = rq_is_sync(rq);
6220 	struct bfq_queue *bfqq;
6221 	bool new_queue = false;
6222 	bool bfqq_already_existing = false, split = false;
6223 
6224 	if (unlikely(!rq->elv.icq))
6225 		return NULL;
6226 
6227 	/*
6228 	 * Assuming that elv.priv[1] is set only if everything is set
6229 	 * for this rq. This holds true, because this function is
6230 	 * invoked only for insertion or merging, and, after such
6231 	 * events, a request cannot be manipulated any longer before
6232 	 * being removed from bfq.
6233 	 */
6234 	if (rq->elv.priv[1])
6235 		return rq->elv.priv[1];
6236 
6237 	bic = icq_to_bic(rq->elv.icq);
6238 
6239 	bfq_check_ioprio_change(bic, bio);
6240 
6241 	bfq_bic_update_cgroup(bic, bio);
6242 
6243 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6244 					 &new_queue);
6245 
6246 	if (likely(!new_queue)) {
6247 		/* If the queue was seeky for too long, break it apart. */
6248 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6249 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6250 
6251 			/* Update bic before losing reference to bfqq */
6252 			if (bfq_bfqq_in_large_burst(bfqq))
6253 				bic->saved_in_large_burst = true;
6254 
6255 			bfqq = bfq_split_bfqq(bic, bfqq);
6256 			split = true;
6257 
6258 			if (!bfqq)
6259 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6260 								 true, is_sync,
6261 								 NULL);
6262 			else
6263 				bfqq_already_existing = true;
6264 		}
6265 	}
6266 
6267 	bfqq->allocated++;
6268 	bfqq->ref++;
6269 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6270 		     rq, bfqq, bfqq->ref);
6271 
6272 	rq->elv.priv[0] = bic;
6273 	rq->elv.priv[1] = bfqq;
6274 
6275 	/*
6276 	 * If a bfq_queue has only one process reference, it is owned
6277 	 * by only this bic: we can then set bfqq->bic = bic. in
6278 	 * addition, if the queue has also just been split, we have to
6279 	 * resume its state.
6280 	 */
6281 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6282 		bfqq->bic = bic;
6283 		if (split) {
6284 			/*
6285 			 * The queue has just been split from a shared
6286 			 * queue: restore the idle window and the
6287 			 * possible weight raising period.
6288 			 */
6289 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6290 					      bfqq_already_existing);
6291 		}
6292 	}
6293 
6294 	/*
6295 	 * Consider bfqq as possibly belonging to a burst of newly
6296 	 * created queues only if:
6297 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6298 	 * or
6299 	 * 2) There is no other active queue. In fact, if, in
6300 	 *    contrast, there are active queues not belonging to the
6301 	 *    possible burst bfqq may belong to, then there is no gain
6302 	 *    in considering bfqq as belonging to a burst, and
6303 	 *    therefore in not weight-raising bfqq. See comments on
6304 	 *    bfq_handle_burst().
6305 	 *
6306 	 * This filtering also helps eliminating false positives,
6307 	 * occurring when bfqq does not belong to an actual large
6308 	 * burst, but some background task (e.g., a service) happens
6309 	 * to trigger the creation of new queues very close to when
6310 	 * bfqq and its possible companion queues are created. See
6311 	 * comments on bfq_handle_burst() for further details also on
6312 	 * this issue.
6313 	 */
6314 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6315 		     (bfqd->burst_size > 0 ||
6316 		      bfq_tot_busy_queues(bfqd) == 0)))
6317 		bfq_handle_burst(bfqd, bfqq);
6318 
6319 	return bfqq;
6320 }
6321 
6322 static void
6323 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6324 {
6325 	enum bfqq_expiration reason;
6326 	unsigned long flags;
6327 
6328 	spin_lock_irqsave(&bfqd->lock, flags);
6329 
6330 	/*
6331 	 * Considering that bfqq may be in race, we should firstly check
6332 	 * whether bfqq is in service before doing something on it. If
6333 	 * the bfqq in race is not in service, it has already been expired
6334 	 * through __bfq_bfqq_expire func and its wait_request flags has
6335 	 * been cleared in __bfq_bfqd_reset_in_service func.
6336 	 */
6337 	if (bfqq != bfqd->in_service_queue) {
6338 		spin_unlock_irqrestore(&bfqd->lock, flags);
6339 		return;
6340 	}
6341 
6342 	bfq_clear_bfqq_wait_request(bfqq);
6343 
6344 	if (bfq_bfqq_budget_timeout(bfqq))
6345 		/*
6346 		 * Also here the queue can be safely expired
6347 		 * for budget timeout without wasting
6348 		 * guarantees
6349 		 */
6350 		reason = BFQQE_BUDGET_TIMEOUT;
6351 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6352 		/*
6353 		 * The queue may not be empty upon timer expiration,
6354 		 * because we may not disable the timer when the
6355 		 * first request of the in-service queue arrives
6356 		 * during disk idling.
6357 		 */
6358 		reason = BFQQE_TOO_IDLE;
6359 	else
6360 		goto schedule_dispatch;
6361 
6362 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6363 
6364 schedule_dispatch:
6365 	spin_unlock_irqrestore(&bfqd->lock, flags);
6366 	bfq_schedule_dispatch(bfqd);
6367 }
6368 
6369 /*
6370  * Handler of the expiration of the timer running if the in-service queue
6371  * is idling inside its time slice.
6372  */
6373 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6374 {
6375 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6376 					     idle_slice_timer);
6377 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6378 
6379 	/*
6380 	 * Theoretical race here: the in-service queue can be NULL or
6381 	 * different from the queue that was idling if a new request
6382 	 * arrives for the current queue and there is a full dispatch
6383 	 * cycle that changes the in-service queue.  This can hardly
6384 	 * happen, but in the worst case we just expire a queue too
6385 	 * early.
6386 	 */
6387 	if (bfqq)
6388 		bfq_idle_slice_timer_body(bfqd, bfqq);
6389 
6390 	return HRTIMER_NORESTART;
6391 }
6392 
6393 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6394 				 struct bfq_queue **bfqq_ptr)
6395 {
6396 	struct bfq_queue *bfqq = *bfqq_ptr;
6397 
6398 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6399 	if (bfqq) {
6400 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6401 
6402 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6403 			     bfqq, bfqq->ref);
6404 		bfq_put_queue(bfqq);
6405 		*bfqq_ptr = NULL;
6406 	}
6407 }
6408 
6409 /*
6410  * Release all the bfqg references to its async queues.  If we are
6411  * deallocating the group these queues may still contain requests, so
6412  * we reparent them to the root cgroup (i.e., the only one that will
6413  * exist for sure until all the requests on a device are gone).
6414  */
6415 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6416 {
6417 	int i, j;
6418 
6419 	for (i = 0; i < 2; i++)
6420 		for (j = 0; j < IOPRIO_BE_NR; j++)
6421 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6422 
6423 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6424 }
6425 
6426 /*
6427  * See the comments on bfq_limit_depth for the purpose of
6428  * the depths set in the function. Return minimum shallow depth we'll use.
6429  */
6430 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6431 				      struct sbitmap_queue *bt)
6432 {
6433 	unsigned int i, j, min_shallow = UINT_MAX;
6434 
6435 	/*
6436 	 * In-word depths if no bfq_queue is being weight-raised:
6437 	 * leaving 25% of tags only for sync reads.
6438 	 *
6439 	 * In next formulas, right-shift the value
6440 	 * (1U<<bt->sb.shift), instead of computing directly
6441 	 * (1U<<(bt->sb.shift - something)), to be robust against
6442 	 * any possible value of bt->sb.shift, without having to
6443 	 * limit 'something'.
6444 	 */
6445 	/* no more than 50% of tags for async I/O */
6446 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6447 	/*
6448 	 * no more than 75% of tags for sync writes (25% extra tags
6449 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6450 	 * writes)
6451 	 */
6452 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6453 
6454 	/*
6455 	 * In-word depths in case some bfq_queue is being weight-
6456 	 * raised: leaving ~63% of tags for sync reads. This is the
6457 	 * highest percentage for which, in our tests, application
6458 	 * start-up times didn't suffer from any regression due to tag
6459 	 * shortage.
6460 	 */
6461 	/* no more than ~18% of tags for async I/O */
6462 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6463 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6464 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6465 
6466 	for (i = 0; i < 2; i++)
6467 		for (j = 0; j < 2; j++)
6468 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6469 
6470 	return min_shallow;
6471 }
6472 
6473 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6474 {
6475 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6476 	struct blk_mq_tags *tags = hctx->sched_tags;
6477 	unsigned int min_shallow;
6478 
6479 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6480 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6481 }
6482 
6483 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6484 {
6485 	bfq_depth_updated(hctx);
6486 	return 0;
6487 }
6488 
6489 static void bfq_exit_queue(struct elevator_queue *e)
6490 {
6491 	struct bfq_data *bfqd = e->elevator_data;
6492 	struct bfq_queue *bfqq, *n;
6493 
6494 	hrtimer_cancel(&bfqd->idle_slice_timer);
6495 
6496 	spin_lock_irq(&bfqd->lock);
6497 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6498 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6499 	spin_unlock_irq(&bfqd->lock);
6500 
6501 	hrtimer_cancel(&bfqd->idle_slice_timer);
6502 
6503 	/* release oom-queue reference to root group */
6504 	bfqg_and_blkg_put(bfqd->root_group);
6505 
6506 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6507 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6508 #else
6509 	spin_lock_irq(&bfqd->lock);
6510 	bfq_put_async_queues(bfqd, bfqd->root_group);
6511 	kfree(bfqd->root_group);
6512 	spin_unlock_irq(&bfqd->lock);
6513 #endif
6514 
6515 	kfree(bfqd);
6516 }
6517 
6518 static void bfq_init_root_group(struct bfq_group *root_group,
6519 				struct bfq_data *bfqd)
6520 {
6521 	int i;
6522 
6523 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6524 	root_group->entity.parent = NULL;
6525 	root_group->my_entity = NULL;
6526 	root_group->bfqd = bfqd;
6527 #endif
6528 	root_group->rq_pos_tree = RB_ROOT;
6529 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6530 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6531 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6532 }
6533 
6534 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6535 {
6536 	struct bfq_data *bfqd;
6537 	struct elevator_queue *eq;
6538 
6539 	eq = elevator_alloc(q, e);
6540 	if (!eq)
6541 		return -ENOMEM;
6542 
6543 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6544 	if (!bfqd) {
6545 		kobject_put(&eq->kobj);
6546 		return -ENOMEM;
6547 	}
6548 	eq->elevator_data = bfqd;
6549 
6550 	spin_lock_irq(&q->queue_lock);
6551 	q->elevator = eq;
6552 	spin_unlock_irq(&q->queue_lock);
6553 
6554 	/*
6555 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6556 	 * Grab a permanent reference to it, so that the normal code flow
6557 	 * will not attempt to free it.
6558 	 */
6559 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6560 	bfqd->oom_bfqq.ref++;
6561 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6562 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6563 	bfqd->oom_bfqq.entity.new_weight =
6564 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6565 
6566 	/* oom_bfqq does not participate to bursts */
6567 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6568 
6569 	/*
6570 	 * Trigger weight initialization, according to ioprio, at the
6571 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6572 	 * class won't be changed any more.
6573 	 */
6574 	bfqd->oom_bfqq.entity.prio_changed = 1;
6575 
6576 	bfqd->queue = q;
6577 
6578 	INIT_LIST_HEAD(&bfqd->dispatch);
6579 
6580 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6581 		     HRTIMER_MODE_REL);
6582 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6583 
6584 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6585 	bfqd->num_groups_with_pending_reqs = 0;
6586 
6587 	INIT_LIST_HEAD(&bfqd->active_list);
6588 	INIT_LIST_HEAD(&bfqd->idle_list);
6589 	INIT_HLIST_HEAD(&bfqd->burst_list);
6590 
6591 	bfqd->hw_tag = -1;
6592 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6593 
6594 	bfqd->bfq_max_budget = bfq_default_max_budget;
6595 
6596 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6597 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6598 	bfqd->bfq_back_max = bfq_back_max;
6599 	bfqd->bfq_back_penalty = bfq_back_penalty;
6600 	bfqd->bfq_slice_idle = bfq_slice_idle;
6601 	bfqd->bfq_timeout = bfq_timeout;
6602 
6603 	bfqd->bfq_large_burst_thresh = 8;
6604 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6605 
6606 	bfqd->low_latency = true;
6607 
6608 	/*
6609 	 * Trade-off between responsiveness and fairness.
6610 	 */
6611 	bfqd->bfq_wr_coeff = 30;
6612 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6613 	bfqd->bfq_wr_max_time = 0;
6614 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6615 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6616 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6617 					      * Approximate rate required
6618 					      * to playback or record a
6619 					      * high-definition compressed
6620 					      * video.
6621 					      */
6622 	bfqd->wr_busy_queues = 0;
6623 
6624 	/*
6625 	 * Begin by assuming, optimistically, that the device peak
6626 	 * rate is equal to 2/3 of the highest reference rate.
6627 	 */
6628 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6629 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6630 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6631 
6632 	spin_lock_init(&bfqd->lock);
6633 
6634 	/*
6635 	 * The invocation of the next bfq_create_group_hierarchy
6636 	 * function is the head of a chain of function calls
6637 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6638 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6639 	 * has_work hook function. For this reason,
6640 	 * bfq_create_group_hierarchy is invoked only after all
6641 	 * scheduler data has been initialized, apart from the fields
6642 	 * that can be initialized only after invoking
6643 	 * bfq_create_group_hierarchy. This, in particular, enables
6644 	 * has_work to correctly return false. Of course, to avoid
6645 	 * other inconsistencies, the blk-mq stack must then refrain
6646 	 * from invoking further scheduler hooks before this init
6647 	 * function is finished.
6648 	 */
6649 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6650 	if (!bfqd->root_group)
6651 		goto out_free;
6652 	bfq_init_root_group(bfqd->root_group, bfqd);
6653 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6654 
6655 	wbt_disable_default(q);
6656 	return 0;
6657 
6658 out_free:
6659 	kfree(bfqd);
6660 	kobject_put(&eq->kobj);
6661 	return -ENOMEM;
6662 }
6663 
6664 static void bfq_slab_kill(void)
6665 {
6666 	kmem_cache_destroy(bfq_pool);
6667 }
6668 
6669 static int __init bfq_slab_setup(void)
6670 {
6671 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6672 	if (!bfq_pool)
6673 		return -ENOMEM;
6674 	return 0;
6675 }
6676 
6677 static ssize_t bfq_var_show(unsigned int var, char *page)
6678 {
6679 	return sprintf(page, "%u\n", var);
6680 }
6681 
6682 static int bfq_var_store(unsigned long *var, const char *page)
6683 {
6684 	unsigned long new_val;
6685 	int ret = kstrtoul(page, 10, &new_val);
6686 
6687 	if (ret)
6688 		return ret;
6689 	*var = new_val;
6690 	return 0;
6691 }
6692 
6693 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6694 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6695 {									\
6696 	struct bfq_data *bfqd = e->elevator_data;			\
6697 	u64 __data = __VAR;						\
6698 	if (__CONV == 1)						\
6699 		__data = jiffies_to_msecs(__data);			\
6700 	else if (__CONV == 2)						\
6701 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6702 	return bfq_var_show(__data, (page));				\
6703 }
6704 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6705 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6706 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6707 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6708 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6709 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6710 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6711 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6712 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6713 #undef SHOW_FUNCTION
6714 
6715 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6716 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6717 {									\
6718 	struct bfq_data *bfqd = e->elevator_data;			\
6719 	u64 __data = __VAR;						\
6720 	__data = div_u64(__data, NSEC_PER_USEC);			\
6721 	return bfq_var_show(__data, (page));				\
6722 }
6723 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6724 #undef USEC_SHOW_FUNCTION
6725 
6726 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6727 static ssize_t								\
6728 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6729 {									\
6730 	struct bfq_data *bfqd = e->elevator_data;			\
6731 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6732 	int ret;							\
6733 									\
6734 	ret = bfq_var_store(&__data, (page));				\
6735 	if (ret)							\
6736 		return ret;						\
6737 	if (__data < __min)						\
6738 		__data = __min;						\
6739 	else if (__data > __max)					\
6740 		__data = __max;						\
6741 	if (__CONV == 1)						\
6742 		*(__PTR) = msecs_to_jiffies(__data);			\
6743 	else if (__CONV == 2)						\
6744 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6745 	else								\
6746 		*(__PTR) = __data;					\
6747 	return count;							\
6748 }
6749 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6750 		INT_MAX, 2);
6751 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6752 		INT_MAX, 2);
6753 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6754 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6755 		INT_MAX, 0);
6756 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6757 #undef STORE_FUNCTION
6758 
6759 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6760 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6761 {									\
6762 	struct bfq_data *bfqd = e->elevator_data;			\
6763 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6764 	int ret;							\
6765 									\
6766 	ret = bfq_var_store(&__data, (page));				\
6767 	if (ret)							\
6768 		return ret;						\
6769 	if (__data < __min)						\
6770 		__data = __min;						\
6771 	else if (__data > __max)					\
6772 		__data = __max;						\
6773 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6774 	return count;							\
6775 }
6776 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6777 		    UINT_MAX);
6778 #undef USEC_STORE_FUNCTION
6779 
6780 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6781 				    const char *page, size_t count)
6782 {
6783 	struct bfq_data *bfqd = e->elevator_data;
6784 	unsigned long __data;
6785 	int ret;
6786 
6787 	ret = bfq_var_store(&__data, (page));
6788 	if (ret)
6789 		return ret;
6790 
6791 	if (__data == 0)
6792 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6793 	else {
6794 		if (__data > INT_MAX)
6795 			__data = INT_MAX;
6796 		bfqd->bfq_max_budget = __data;
6797 	}
6798 
6799 	bfqd->bfq_user_max_budget = __data;
6800 
6801 	return count;
6802 }
6803 
6804 /*
6805  * Leaving this name to preserve name compatibility with cfq
6806  * parameters, but this timeout is used for both sync and async.
6807  */
6808 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6809 				      const char *page, size_t count)
6810 {
6811 	struct bfq_data *bfqd = e->elevator_data;
6812 	unsigned long __data;
6813 	int ret;
6814 
6815 	ret = bfq_var_store(&__data, (page));
6816 	if (ret)
6817 		return ret;
6818 
6819 	if (__data < 1)
6820 		__data = 1;
6821 	else if (__data > INT_MAX)
6822 		__data = INT_MAX;
6823 
6824 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6825 	if (bfqd->bfq_user_max_budget == 0)
6826 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6827 
6828 	return count;
6829 }
6830 
6831 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6832 				     const char *page, size_t count)
6833 {
6834 	struct bfq_data *bfqd = e->elevator_data;
6835 	unsigned long __data;
6836 	int ret;
6837 
6838 	ret = bfq_var_store(&__data, (page));
6839 	if (ret)
6840 		return ret;
6841 
6842 	if (__data > 1)
6843 		__data = 1;
6844 	if (!bfqd->strict_guarantees && __data == 1
6845 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6846 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6847 
6848 	bfqd->strict_guarantees = __data;
6849 
6850 	return count;
6851 }
6852 
6853 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6854 				     const char *page, size_t count)
6855 {
6856 	struct bfq_data *bfqd = e->elevator_data;
6857 	unsigned long __data;
6858 	int ret;
6859 
6860 	ret = bfq_var_store(&__data, (page));
6861 	if (ret)
6862 		return ret;
6863 
6864 	if (__data > 1)
6865 		__data = 1;
6866 	if (__data == 0 && bfqd->low_latency != 0)
6867 		bfq_end_wr(bfqd);
6868 	bfqd->low_latency = __data;
6869 
6870 	return count;
6871 }
6872 
6873 #define BFQ_ATTR(name) \
6874 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6875 
6876 static struct elv_fs_entry bfq_attrs[] = {
6877 	BFQ_ATTR(fifo_expire_sync),
6878 	BFQ_ATTR(fifo_expire_async),
6879 	BFQ_ATTR(back_seek_max),
6880 	BFQ_ATTR(back_seek_penalty),
6881 	BFQ_ATTR(slice_idle),
6882 	BFQ_ATTR(slice_idle_us),
6883 	BFQ_ATTR(max_budget),
6884 	BFQ_ATTR(timeout_sync),
6885 	BFQ_ATTR(strict_guarantees),
6886 	BFQ_ATTR(low_latency),
6887 	__ATTR_NULL
6888 };
6889 
6890 static struct elevator_type iosched_bfq_mq = {
6891 	.ops = {
6892 		.limit_depth		= bfq_limit_depth,
6893 		.prepare_request	= bfq_prepare_request,
6894 		.requeue_request        = bfq_finish_requeue_request,
6895 		.finish_request		= bfq_finish_requeue_request,
6896 		.exit_icq		= bfq_exit_icq,
6897 		.insert_requests	= bfq_insert_requests,
6898 		.dispatch_request	= bfq_dispatch_request,
6899 		.next_request		= elv_rb_latter_request,
6900 		.former_request		= elv_rb_former_request,
6901 		.allow_merge		= bfq_allow_bio_merge,
6902 		.bio_merge		= bfq_bio_merge,
6903 		.request_merge		= bfq_request_merge,
6904 		.requests_merged	= bfq_requests_merged,
6905 		.request_merged		= bfq_request_merged,
6906 		.has_work		= bfq_has_work,
6907 		.depth_updated		= bfq_depth_updated,
6908 		.init_hctx		= bfq_init_hctx,
6909 		.init_sched		= bfq_init_queue,
6910 		.exit_sched		= bfq_exit_queue,
6911 	},
6912 
6913 	.icq_size =		sizeof(struct bfq_io_cq),
6914 	.icq_align =		__alignof__(struct bfq_io_cq),
6915 	.elevator_attrs =	bfq_attrs,
6916 	.elevator_name =	"bfq",
6917 	.elevator_owner =	THIS_MODULE,
6918 };
6919 MODULE_ALIAS("bfq-iosched");
6920 
6921 static int __init bfq_init(void)
6922 {
6923 	int ret;
6924 
6925 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6926 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6927 	if (ret)
6928 		return ret;
6929 #endif
6930 
6931 	ret = -ENOMEM;
6932 	if (bfq_slab_setup())
6933 		goto err_pol_unreg;
6934 
6935 	/*
6936 	 * Times to load large popular applications for the typical
6937 	 * systems installed on the reference devices (see the
6938 	 * comments before the definition of the next
6939 	 * array). Actually, we use slightly lower values, as the
6940 	 * estimated peak rate tends to be smaller than the actual
6941 	 * peak rate.  The reason for this last fact is that estimates
6942 	 * are computed over much shorter time intervals than the long
6943 	 * intervals typically used for benchmarking. Why? First, to
6944 	 * adapt more quickly to variations. Second, because an I/O
6945 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6946 	 * be run for a long time.
6947 	 */
6948 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6949 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6950 
6951 	ret = elv_register(&iosched_bfq_mq);
6952 	if (ret)
6953 		goto slab_kill;
6954 
6955 	return 0;
6956 
6957 slab_kill:
6958 	bfq_slab_kill();
6959 err_pol_unreg:
6960 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6961 	blkcg_policy_unregister(&blkcg_policy_bfq);
6962 #endif
6963 	return ret;
6964 }
6965 
6966 static void __exit bfq_exit(void)
6967 {
6968 	elv_unregister(&iosched_bfq_mq);
6969 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6970 	blkcg_policy_unregister(&blkcg_policy_bfq);
6971 #endif
6972 	bfq_slab_kill();
6973 }
6974 
6975 module_init(bfq_init);
6976 module_exit(bfq_exit);
6977 
6978 MODULE_AUTHOR("Paolo Valente");
6979 MODULE_LICENSE("GPL");
6980 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6981