1 /* 2 * Budget Fair Queueing (BFQ) I/O scheduler. 3 * 4 * Based on ideas and code from CFQ: 5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 6 * 7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 8 * Paolo Valente <paolo.valente@unimore.it> 9 * 10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 11 * Arianna Avanzini <avanzini@google.com> 12 * 13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License as 17 * published by the Free Software Foundation; either version 2 of the 18 * License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * BFQ is a proportional-share I/O scheduler, with some extra 26 * low-latency capabilities. BFQ also supports full hierarchical 27 * scheduling through cgroups. Next paragraphs provide an introduction 28 * on BFQ inner workings. Details on BFQ benefits, usage and 29 * limitations can be found in Documentation/block/bfq-iosched.txt. 30 * 31 * BFQ is a proportional-share storage-I/O scheduling algorithm based 32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns 33 * budgets, measured in number of sectors, to processes instead of 34 * time slices. The device is not granted to the in-service process 35 * for a given time slice, but until it has exhausted its assigned 36 * budget. This change from the time to the service domain enables BFQ 37 * to distribute the device throughput among processes as desired, 38 * without any distortion due to throughput fluctuations, or to device 39 * internal queueing. BFQ uses an ad hoc internal scheduler, called 40 * B-WF2Q+, to schedule processes according to their budgets. More 41 * precisely, BFQ schedules queues associated with processes. Each 42 * process/queue is assigned a user-configurable weight, and B-WF2Q+ 43 * guarantees that each queue receives a fraction of the throughput 44 * proportional to its weight. Thanks to the accurate policy of 45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 46 * processes issuing sequential requests (to boost the throughput), 47 * and yet guarantee a low latency to interactive and soft real-time 48 * applications. 49 * 50 * In particular, to provide these low-latency guarantees, BFQ 51 * explicitly privileges the I/O of two classes of time-sensitive 52 * applications: interactive and soft real-time. This feature enables 53 * BFQ to provide applications in these classes with a very low 54 * latency. Finally, BFQ also features additional heuristics for 55 * preserving both a low latency and a high throughput on NCQ-capable, 56 * rotational or flash-based devices, and to get the job done quickly 57 * for applications consisting in many I/O-bound processes. 58 * 59 * NOTE: if the main or only goal, with a given device, is to achieve 60 * the maximum-possible throughput at all times, then do switch off 61 * all low-latency heuristics for that device, by setting low_latency 62 * to 0. 63 * 64 * BFQ is described in [1], where also a reference to the initial, more 65 * theoretical paper on BFQ can be found. The interested reader can find 66 * in the latter paper full details on the main algorithm, as well as 67 * formulas of the guarantees and formal proofs of all the properties. 68 * With respect to the version of BFQ presented in these papers, this 69 * implementation adds a few more heuristics, such as the one that 70 * guarantees a low latency to soft real-time applications, and a 71 * hierarchical extension based on H-WF2Q+. 72 * 73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 75 * with O(log N) complexity derives from the one introduced with EEVDF 76 * in [3]. 77 * 78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 79 * Scheduler", Proceedings of the First Workshop on Mobile System 80 * Technologies (MST-2015), May 2015. 81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 82 * 83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 85 * Oct 1997. 86 * 87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 88 * 89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 90 * First: A Flexible and Accurate Mechanism for Proportional Share 91 * Resource Allocation", technical report. 92 * 93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 94 */ 95 #include <linux/module.h> 96 #include <linux/slab.h> 97 #include <linux/blkdev.h> 98 #include <linux/cgroup.h> 99 #include <linux/elevator.h> 100 #include <linux/ktime.h> 101 #include <linux/rbtree.h> 102 #include <linux/ioprio.h> 103 #include <linux/sbitmap.h> 104 #include <linux/delay.h> 105 106 #include "blk.h" 107 #include "blk-mq.h" 108 #include "blk-mq-tag.h" 109 #include "blk-mq-sched.h" 110 #include "bfq-iosched.h" 111 #include "blk-wbt.h" 112 113 #define BFQ_BFQQ_FNS(name) \ 114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 115 { \ 116 __set_bit(BFQQF_##name, &(bfqq)->flags); \ 117 } \ 118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 119 { \ 120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 121 } \ 122 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 123 { \ 124 return test_bit(BFQQF_##name, &(bfqq)->flags); \ 125 } 126 127 BFQ_BFQQ_FNS(just_created); 128 BFQ_BFQQ_FNS(busy); 129 BFQ_BFQQ_FNS(wait_request); 130 BFQ_BFQQ_FNS(non_blocking_wait_rq); 131 BFQ_BFQQ_FNS(fifo_expire); 132 BFQ_BFQQ_FNS(has_short_ttime); 133 BFQ_BFQQ_FNS(sync); 134 BFQ_BFQQ_FNS(IO_bound); 135 BFQ_BFQQ_FNS(in_large_burst); 136 BFQ_BFQQ_FNS(coop); 137 BFQ_BFQQ_FNS(split_coop); 138 BFQ_BFQQ_FNS(softrt_update); 139 #undef BFQ_BFQQ_FNS \ 140 141 /* Expiration time of sync (0) and async (1) requests, in ns. */ 142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 143 144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 145 static const int bfq_back_max = 16 * 1024; 146 147 /* Penalty of a backwards seek, in number of sectors. */ 148 static const int bfq_back_penalty = 2; 149 150 /* Idling period duration, in ns. */ 151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125; 152 153 /* Minimum number of assigned budgets for which stats are safe to compute. */ 154 static const int bfq_stats_min_budgets = 194; 155 156 /* Default maximum budget values, in sectors and number of requests. */ 157 static const int bfq_default_max_budget = 16 * 1024; 158 159 /* 160 * Async to sync throughput distribution is controlled as follows: 161 * when an async request is served, the entity is charged the number 162 * of sectors of the request, multiplied by the factor below 163 */ 164 static const int bfq_async_charge_factor = 10; 165 166 /* Default timeout values, in jiffies, approximating CFQ defaults. */ 167 const int bfq_timeout = HZ / 8; 168 169 static struct kmem_cache *bfq_pool; 170 171 /* Below this threshold (in ns), we consider thinktime immediate. */ 172 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 173 174 /* hw_tag detection: parallel requests threshold and min samples needed. */ 175 #define BFQ_HW_QUEUE_THRESHOLD 4 176 #define BFQ_HW_QUEUE_SAMPLES 32 177 178 #define BFQQ_SEEK_THR (sector_t)(8 * 100) 179 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 180 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 181 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) 182 183 /* Min number of samples required to perform peak-rate update */ 184 #define BFQ_RATE_MIN_SAMPLES 32 185 /* Min observation time interval required to perform a peak-rate update (ns) */ 186 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 187 /* Target observation time interval for a peak-rate update (ns) */ 188 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 189 190 /* Shift used for peak rate fixed precision calculations. */ 191 #define BFQ_RATE_SHIFT 16 192 193 /* 194 * By default, BFQ computes the duration of the weight raising for 195 * interactive applications automatically, using the following formula: 196 * duration = (R / r) * T, where r is the peak rate of the device, and 197 * R and T are two reference parameters. 198 * In particular, R is the peak rate of the reference device (see below), 199 * and T is a reference time: given the systems that are likely to be 200 * installed on the reference device according to its speed class, T is 201 * about the maximum time needed, under BFQ and while reading two files in 202 * parallel, to load typical large applications on these systems. 203 * In practice, the slower/faster the device at hand is, the more/less it 204 * takes to load applications with respect to the reference device. 205 * Accordingly, the longer/shorter BFQ grants weight raising to interactive 206 * applications. 207 * 208 * BFQ uses four different reference pairs (R, T), depending on: 209 * . whether the device is rotational or non-rotational; 210 * . whether the device is slow, such as old or portable HDDs, as well as 211 * SD cards, or fast, such as newer HDDs and SSDs. 212 * 213 * The device's speed class is dynamically (re)detected in 214 * bfq_update_peak_rate() every time the estimated peak rate is updated. 215 * 216 * In the following definitions, R_slow[0]/R_fast[0] and 217 * T_slow[0]/T_fast[0] are the reference values for a slow/fast 218 * rotational device, whereas R_slow[1]/R_fast[1] and 219 * T_slow[1]/T_fast[1] are the reference values for a slow/fast 220 * non-rotational device. Finally, device_speed_thresh are the 221 * thresholds used to switch between speed classes. The reference 222 * rates are not the actual peak rates of the devices used as a 223 * reference, but slightly lower values. The reason for using these 224 * slightly lower values is that the peak-rate estimator tends to 225 * yield slightly lower values than the actual peak rate (it can yield 226 * the actual peak rate only if there is only one process doing I/O, 227 * and the process does sequential I/O). 228 * 229 * Both the reference peak rates and the thresholds are measured in 230 * sectors/usec, left-shifted by BFQ_RATE_SHIFT. 231 */ 232 static int R_slow[2] = {1000, 10700}; 233 static int R_fast[2] = {14000, 33000}; 234 /* 235 * To improve readability, a conversion function is used to initialize the 236 * following arrays, which entails that they can be initialized only in a 237 * function. 238 */ 239 static int T_slow[2]; 240 static int T_fast[2]; 241 static int device_speed_thresh[2]; 242 243 #define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0]) 244 #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 245 246 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) 247 { 248 return bic->bfqq[is_sync]; 249 } 250 251 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) 252 { 253 bic->bfqq[is_sync] = bfqq; 254 } 255 256 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 257 { 258 return bic->icq.q->elevator->elevator_data; 259 } 260 261 /** 262 * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 263 * @icq: the iocontext queue. 264 */ 265 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 266 { 267 /* bic->icq is the first member, %NULL will convert to %NULL */ 268 return container_of(icq, struct bfq_io_cq, icq); 269 } 270 271 /** 272 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 273 * @bfqd: the lookup key. 274 * @ioc: the io_context of the process doing I/O. 275 * @q: the request queue. 276 */ 277 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, 278 struct io_context *ioc, 279 struct request_queue *q) 280 { 281 if (ioc) { 282 unsigned long flags; 283 struct bfq_io_cq *icq; 284 285 spin_lock_irqsave(q->queue_lock, flags); 286 icq = icq_to_bic(ioc_lookup_icq(ioc, q)); 287 spin_unlock_irqrestore(q->queue_lock, flags); 288 289 return icq; 290 } 291 292 return NULL; 293 } 294 295 /* 296 * Scheduler run of queue, if there are requests pending and no one in the 297 * driver that will restart queueing. 298 */ 299 void bfq_schedule_dispatch(struct bfq_data *bfqd) 300 { 301 if (bfqd->queued != 0) { 302 bfq_log(bfqd, "schedule dispatch"); 303 blk_mq_run_hw_queues(bfqd->queue, true); 304 } 305 } 306 307 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 308 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) 309 310 #define bfq_sample_valid(samples) ((samples) > 80) 311 312 /* 313 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 314 * We choose the request that is closesr to the head right now. Distance 315 * behind the head is penalized and only allowed to a certain extent. 316 */ 317 static struct request *bfq_choose_req(struct bfq_data *bfqd, 318 struct request *rq1, 319 struct request *rq2, 320 sector_t last) 321 { 322 sector_t s1, s2, d1 = 0, d2 = 0; 323 unsigned long back_max; 324 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 325 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 326 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 327 328 if (!rq1 || rq1 == rq2) 329 return rq2; 330 if (!rq2) 331 return rq1; 332 333 if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 334 return rq1; 335 else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 336 return rq2; 337 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 338 return rq1; 339 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 340 return rq2; 341 342 s1 = blk_rq_pos(rq1); 343 s2 = blk_rq_pos(rq2); 344 345 /* 346 * By definition, 1KiB is 2 sectors. 347 */ 348 back_max = bfqd->bfq_back_max * 2; 349 350 /* 351 * Strict one way elevator _except_ in the case where we allow 352 * short backward seeks which are biased as twice the cost of a 353 * similar forward seek. 354 */ 355 if (s1 >= last) 356 d1 = s1 - last; 357 else if (s1 + back_max >= last) 358 d1 = (last - s1) * bfqd->bfq_back_penalty; 359 else 360 wrap |= BFQ_RQ1_WRAP; 361 362 if (s2 >= last) 363 d2 = s2 - last; 364 else if (s2 + back_max >= last) 365 d2 = (last - s2) * bfqd->bfq_back_penalty; 366 else 367 wrap |= BFQ_RQ2_WRAP; 368 369 /* Found required data */ 370 371 /* 372 * By doing switch() on the bit mask "wrap" we avoid having to 373 * check two variables for all permutations: --> faster! 374 */ 375 switch (wrap) { 376 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 377 if (d1 < d2) 378 return rq1; 379 else if (d2 < d1) 380 return rq2; 381 382 if (s1 >= s2) 383 return rq1; 384 else 385 return rq2; 386 387 case BFQ_RQ2_WRAP: 388 return rq1; 389 case BFQ_RQ1_WRAP: 390 return rq2; 391 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 392 default: 393 /* 394 * Since both rqs are wrapped, 395 * start with the one that's further behind head 396 * (--> only *one* back seek required), 397 * since back seek takes more time than forward. 398 */ 399 if (s1 <= s2) 400 return rq1; 401 else 402 return rq2; 403 } 404 } 405 406 static struct bfq_queue * 407 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 408 sector_t sector, struct rb_node **ret_parent, 409 struct rb_node ***rb_link) 410 { 411 struct rb_node **p, *parent; 412 struct bfq_queue *bfqq = NULL; 413 414 parent = NULL; 415 p = &root->rb_node; 416 while (*p) { 417 struct rb_node **n; 418 419 parent = *p; 420 bfqq = rb_entry(parent, struct bfq_queue, pos_node); 421 422 /* 423 * Sort strictly based on sector. Smallest to the left, 424 * largest to the right. 425 */ 426 if (sector > blk_rq_pos(bfqq->next_rq)) 427 n = &(*p)->rb_right; 428 else if (sector < blk_rq_pos(bfqq->next_rq)) 429 n = &(*p)->rb_left; 430 else 431 break; 432 p = n; 433 bfqq = NULL; 434 } 435 436 *ret_parent = parent; 437 if (rb_link) 438 *rb_link = p; 439 440 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 441 (unsigned long long)sector, 442 bfqq ? bfqq->pid : 0); 443 444 return bfqq; 445 } 446 447 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 448 { 449 struct rb_node **p, *parent; 450 struct bfq_queue *__bfqq; 451 452 if (bfqq->pos_root) { 453 rb_erase(&bfqq->pos_node, bfqq->pos_root); 454 bfqq->pos_root = NULL; 455 } 456 457 if (bfq_class_idle(bfqq)) 458 return; 459 if (!bfqq->next_rq) 460 return; 461 462 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 463 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 464 blk_rq_pos(bfqq->next_rq), &parent, &p); 465 if (!__bfqq) { 466 rb_link_node(&bfqq->pos_node, parent, p); 467 rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 468 } else 469 bfqq->pos_root = NULL; 470 } 471 472 /* 473 * Tell whether there are active queues or groups with differentiated weights. 474 */ 475 static bool bfq_differentiated_weights(struct bfq_data *bfqd) 476 { 477 /* 478 * For weights to differ, at least one of the trees must contain 479 * at least two nodes. 480 */ 481 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) && 482 (bfqd->queue_weights_tree.rb_node->rb_left || 483 bfqd->queue_weights_tree.rb_node->rb_right) 484 #ifdef CONFIG_BFQ_GROUP_IOSCHED 485 ) || 486 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) && 487 (bfqd->group_weights_tree.rb_node->rb_left || 488 bfqd->group_weights_tree.rb_node->rb_right) 489 #endif 490 ); 491 } 492 493 /* 494 * The following function returns true if every queue must receive the 495 * same share of the throughput (this condition is used when deciding 496 * whether idling may be disabled, see the comments in the function 497 * bfq_bfqq_may_idle()). 498 * 499 * Such a scenario occurs when: 500 * 1) all active queues have the same weight, 501 * 2) all active groups at the same level in the groups tree have the same 502 * weight, 503 * 3) all active groups at the same level in the groups tree have the same 504 * number of children. 505 * 506 * Unfortunately, keeping the necessary state for evaluating exactly the 507 * above symmetry conditions would be quite complex and time-consuming. 508 * Therefore this function evaluates, instead, the following stronger 509 * sub-conditions, for which it is much easier to maintain the needed 510 * state: 511 * 1) all active queues have the same weight, 512 * 2) all active groups have the same weight, 513 * 3) all active groups have at most one active child each. 514 * In particular, the last two conditions are always true if hierarchical 515 * support and the cgroups interface are not enabled, thus no state needs 516 * to be maintained in this case. 517 */ 518 static bool bfq_symmetric_scenario(struct bfq_data *bfqd) 519 { 520 return !bfq_differentiated_weights(bfqd); 521 } 522 523 /* 524 * If the weight-counter tree passed as input contains no counter for 525 * the weight of the input entity, then add that counter; otherwise just 526 * increment the existing counter. 527 * 528 * Note that weight-counter trees contain few nodes in mostly symmetric 529 * scenarios. For example, if all queues have the same weight, then the 530 * weight-counter tree for the queues may contain at most one node. 531 * This holds even if low_latency is on, because weight-raised queues 532 * are not inserted in the tree. 533 * In most scenarios, the rate at which nodes are created/destroyed 534 * should be low too. 535 */ 536 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, 537 struct rb_root *root) 538 { 539 struct rb_node **new = &(root->rb_node), *parent = NULL; 540 541 /* 542 * Do not insert if the entity is already associated with a 543 * counter, which happens if: 544 * 1) the entity is associated with a queue, 545 * 2) a request arrival has caused the queue to become both 546 * non-weight-raised, and hence change its weight, and 547 * backlogged; in this respect, each of the two events 548 * causes an invocation of this function, 549 * 3) this is the invocation of this function caused by the 550 * second event. This second invocation is actually useless, 551 * and we handle this fact by exiting immediately. More 552 * efficient or clearer solutions might possibly be adopted. 553 */ 554 if (entity->weight_counter) 555 return; 556 557 while (*new) { 558 struct bfq_weight_counter *__counter = container_of(*new, 559 struct bfq_weight_counter, 560 weights_node); 561 parent = *new; 562 563 if (entity->weight == __counter->weight) { 564 entity->weight_counter = __counter; 565 goto inc_counter; 566 } 567 if (entity->weight < __counter->weight) 568 new = &((*new)->rb_left); 569 else 570 new = &((*new)->rb_right); 571 } 572 573 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 574 GFP_ATOMIC); 575 576 /* 577 * In the unlucky event of an allocation failure, we just 578 * exit. This will cause the weight of entity to not be 579 * considered in bfq_differentiated_weights, which, in its 580 * turn, causes the scenario to be deemed wrongly symmetric in 581 * case entity's weight would have been the only weight making 582 * the scenario asymmetric. On the bright side, no unbalance 583 * will however occur when entity becomes inactive again (the 584 * invocation of this function is triggered by an activation 585 * of entity). In fact, bfq_weights_tree_remove does nothing 586 * if !entity->weight_counter. 587 */ 588 if (unlikely(!entity->weight_counter)) 589 return; 590 591 entity->weight_counter->weight = entity->weight; 592 rb_link_node(&entity->weight_counter->weights_node, parent, new); 593 rb_insert_color(&entity->weight_counter->weights_node, root); 594 595 inc_counter: 596 entity->weight_counter->num_active++; 597 } 598 599 /* 600 * Decrement the weight counter associated with the entity, and, if the 601 * counter reaches 0, remove the counter from the tree. 602 * See the comments to the function bfq_weights_tree_add() for considerations 603 * about overhead. 604 */ 605 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, 606 struct rb_root *root) 607 { 608 if (!entity->weight_counter) 609 return; 610 611 entity->weight_counter->num_active--; 612 if (entity->weight_counter->num_active > 0) 613 goto reset_entity_pointer; 614 615 rb_erase(&entity->weight_counter->weights_node, root); 616 kfree(entity->weight_counter); 617 618 reset_entity_pointer: 619 entity->weight_counter = NULL; 620 } 621 622 /* 623 * Return expired entry, or NULL to just start from scratch in rbtree. 624 */ 625 static struct request *bfq_check_fifo(struct bfq_queue *bfqq, 626 struct request *last) 627 { 628 struct request *rq; 629 630 if (bfq_bfqq_fifo_expire(bfqq)) 631 return NULL; 632 633 bfq_mark_bfqq_fifo_expire(bfqq); 634 635 rq = rq_entry_fifo(bfqq->fifo.next); 636 637 if (rq == last || ktime_get_ns() < rq->fifo_time) 638 return NULL; 639 640 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 641 return rq; 642 } 643 644 static struct request *bfq_find_next_rq(struct bfq_data *bfqd, 645 struct bfq_queue *bfqq, 646 struct request *last) 647 { 648 struct rb_node *rbnext = rb_next(&last->rb_node); 649 struct rb_node *rbprev = rb_prev(&last->rb_node); 650 struct request *next, *prev = NULL; 651 652 /* Follow expired path, else get first next available. */ 653 next = bfq_check_fifo(bfqq, last); 654 if (next) 655 return next; 656 657 if (rbprev) 658 prev = rb_entry_rq(rbprev); 659 660 if (rbnext) 661 next = rb_entry_rq(rbnext); 662 else { 663 rbnext = rb_first(&bfqq->sort_list); 664 if (rbnext && rbnext != &last->rb_node) 665 next = rb_entry_rq(rbnext); 666 } 667 668 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 669 } 670 671 /* see the definition of bfq_async_charge_factor for details */ 672 static unsigned long bfq_serv_to_charge(struct request *rq, 673 struct bfq_queue *bfqq) 674 { 675 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) 676 return blk_rq_sectors(rq); 677 678 /* 679 * If there are no weight-raised queues, then amplify service 680 * by just the async charge factor; otherwise amplify service 681 * by twice the async charge factor, to further reduce latency 682 * for weight-raised queues. 683 */ 684 if (bfqq->bfqd->wr_busy_queues == 0) 685 return blk_rq_sectors(rq) * bfq_async_charge_factor; 686 687 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor; 688 } 689 690 /** 691 * bfq_updated_next_req - update the queue after a new next_rq selection. 692 * @bfqd: the device data the queue belongs to. 693 * @bfqq: the queue to update. 694 * 695 * If the first request of a queue changes we make sure that the queue 696 * has enough budget to serve at least its first request (if the 697 * request has grown). We do this because if the queue has not enough 698 * budget for its first request, it has to go through two dispatch 699 * rounds to actually get it dispatched. 700 */ 701 static void bfq_updated_next_req(struct bfq_data *bfqd, 702 struct bfq_queue *bfqq) 703 { 704 struct bfq_entity *entity = &bfqq->entity; 705 struct request *next_rq = bfqq->next_rq; 706 unsigned long new_budget; 707 708 if (!next_rq) 709 return; 710 711 if (bfqq == bfqd->in_service_queue) 712 /* 713 * In order not to break guarantees, budgets cannot be 714 * changed after an entity has been selected. 715 */ 716 return; 717 718 new_budget = max_t(unsigned long, bfqq->max_budget, 719 bfq_serv_to_charge(next_rq, bfqq)); 720 if (entity->budget != new_budget) { 721 entity->budget = new_budget; 722 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 723 new_budget); 724 bfq_requeue_bfqq(bfqd, bfqq, false); 725 } 726 } 727 728 static unsigned int bfq_wr_duration(struct bfq_data *bfqd) 729 { 730 u64 dur; 731 732 if (bfqd->bfq_wr_max_time > 0) 733 return bfqd->bfq_wr_max_time; 734 735 dur = bfqd->RT_prod; 736 do_div(dur, bfqd->peak_rate); 737 738 /* 739 * Limit duration between 3 and 13 seconds. Tests show that 740 * higher values than 13 seconds often yield the opposite of 741 * the desired result, i.e., worsen responsiveness by letting 742 * non-interactive and non-soft-real-time applications 743 * preserve weight raising for a too long time interval. 744 * 745 * On the other end, lower values than 3 seconds make it 746 * difficult for most interactive tasks to complete their jobs 747 * before weight-raising finishes. 748 */ 749 if (dur > msecs_to_jiffies(13000)) 750 dur = msecs_to_jiffies(13000); 751 else if (dur < msecs_to_jiffies(3000)) 752 dur = msecs_to_jiffies(3000); 753 754 return dur; 755 } 756 757 /* switch back from soft real-time to interactive weight raising */ 758 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq, 759 struct bfq_data *bfqd) 760 { 761 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 762 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 763 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt; 764 } 765 766 static void 767 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd, 768 struct bfq_io_cq *bic, bool bfq_already_existing) 769 { 770 unsigned int old_wr_coeff = bfqq->wr_coeff; 771 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq); 772 773 if (bic->saved_has_short_ttime) 774 bfq_mark_bfqq_has_short_ttime(bfqq); 775 else 776 bfq_clear_bfqq_has_short_ttime(bfqq); 777 778 if (bic->saved_IO_bound) 779 bfq_mark_bfqq_IO_bound(bfqq); 780 else 781 bfq_clear_bfqq_IO_bound(bfqq); 782 783 bfqq->ttime = bic->saved_ttime; 784 bfqq->wr_coeff = bic->saved_wr_coeff; 785 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt; 786 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish; 787 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time; 788 789 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 790 time_is_before_jiffies(bfqq->last_wr_start_finish + 791 bfqq->wr_cur_max_time))) { 792 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 793 !bfq_bfqq_in_large_burst(bfqq) && 794 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt + 795 bfq_wr_duration(bfqd))) { 796 switch_back_to_interactive_wr(bfqq, bfqd); 797 } else { 798 bfqq->wr_coeff = 1; 799 bfq_log_bfqq(bfqq->bfqd, bfqq, 800 "resume state: switching off wr"); 801 } 802 } 803 804 /* make sure weight will be updated, however we got here */ 805 bfqq->entity.prio_changed = 1; 806 807 if (likely(!busy)) 808 return; 809 810 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) 811 bfqd->wr_busy_queues++; 812 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) 813 bfqd->wr_busy_queues--; 814 } 815 816 static int bfqq_process_refs(struct bfq_queue *bfqq) 817 { 818 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st; 819 } 820 821 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 822 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 823 { 824 struct bfq_queue *item; 825 struct hlist_node *n; 826 827 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 828 hlist_del_init(&item->burst_list_node); 829 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 830 bfqd->burst_size = 1; 831 bfqd->burst_parent_entity = bfqq->entity.parent; 832 } 833 834 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 835 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 836 { 837 /* Increment burst size to take into account also bfqq */ 838 bfqd->burst_size++; 839 840 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 841 struct bfq_queue *pos, *bfqq_item; 842 struct hlist_node *n; 843 844 /* 845 * Enough queues have been activated shortly after each 846 * other to consider this burst as large. 847 */ 848 bfqd->large_burst = true; 849 850 /* 851 * We can now mark all queues in the burst list as 852 * belonging to a large burst. 853 */ 854 hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 855 burst_list_node) 856 bfq_mark_bfqq_in_large_burst(bfqq_item); 857 bfq_mark_bfqq_in_large_burst(bfqq); 858 859 /* 860 * From now on, and until the current burst finishes, any 861 * new queue being activated shortly after the last queue 862 * was inserted in the burst can be immediately marked as 863 * belonging to a large burst. So the burst list is not 864 * needed any more. Remove it. 865 */ 866 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 867 burst_list_node) 868 hlist_del_init(&pos->burst_list_node); 869 } else /* 870 * Burst not yet large: add bfqq to the burst list. Do 871 * not increment the ref counter for bfqq, because bfqq 872 * is removed from the burst list before freeing bfqq 873 * in put_queue. 874 */ 875 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 876 } 877 878 /* 879 * If many queues belonging to the same group happen to be created 880 * shortly after each other, then the processes associated with these 881 * queues have typically a common goal. In particular, bursts of queue 882 * creations are usually caused by services or applications that spawn 883 * many parallel threads/processes. Examples are systemd during boot, 884 * or git grep. To help these processes get their job done as soon as 885 * possible, it is usually better to not grant either weight-raising 886 * or device idling to their queues. 887 * 888 * In this comment we describe, firstly, the reasons why this fact 889 * holds, and, secondly, the next function, which implements the main 890 * steps needed to properly mark these queues so that they can then be 891 * treated in a different way. 892 * 893 * The above services or applications benefit mostly from a high 894 * throughput: the quicker the requests of the activated queues are 895 * cumulatively served, the sooner the target job of these queues gets 896 * completed. As a consequence, weight-raising any of these queues, 897 * which also implies idling the device for it, is almost always 898 * counterproductive. In most cases it just lowers throughput. 899 * 900 * On the other hand, a burst of queue creations may be caused also by 901 * the start of an application that does not consist of a lot of 902 * parallel I/O-bound threads. In fact, with a complex application, 903 * several short processes may need to be executed to start-up the 904 * application. In this respect, to start an application as quickly as 905 * possible, the best thing to do is in any case to privilege the I/O 906 * related to the application with respect to all other 907 * I/O. Therefore, the best strategy to start as quickly as possible 908 * an application that causes a burst of queue creations is to 909 * weight-raise all the queues created during the burst. This is the 910 * exact opposite of the best strategy for the other type of bursts. 911 * 912 * In the end, to take the best action for each of the two cases, the 913 * two types of bursts need to be distinguished. Fortunately, this 914 * seems relatively easy, by looking at the sizes of the bursts. In 915 * particular, we found a threshold such that only bursts with a 916 * larger size than that threshold are apparently caused by 917 * services or commands such as systemd or git grep. For brevity, 918 * hereafter we call just 'large' these bursts. BFQ *does not* 919 * weight-raise queues whose creation occurs in a large burst. In 920 * addition, for each of these queues BFQ performs or does not perform 921 * idling depending on which choice boosts the throughput more. The 922 * exact choice depends on the device and request pattern at 923 * hand. 924 * 925 * Unfortunately, false positives may occur while an interactive task 926 * is starting (e.g., an application is being started). The 927 * consequence is that the queues associated with the task do not 928 * enjoy weight raising as expected. Fortunately these false positives 929 * are very rare. They typically occur if some service happens to 930 * start doing I/O exactly when the interactive task starts. 931 * 932 * Turning back to the next function, it implements all the steps 933 * needed to detect the occurrence of a large burst and to properly 934 * mark all the queues belonging to it (so that they can then be 935 * treated in a different way). This goal is achieved by maintaining a 936 * "burst list" that holds, temporarily, the queues that belong to the 937 * burst in progress. The list is then used to mark these queues as 938 * belonging to a large burst if the burst does become large. The main 939 * steps are the following. 940 * 941 * . when the very first queue is created, the queue is inserted into the 942 * list (as it could be the first queue in a possible burst) 943 * 944 * . if the current burst has not yet become large, and a queue Q that does 945 * not yet belong to the burst is activated shortly after the last time 946 * at which a new queue entered the burst list, then the function appends 947 * Q to the burst list 948 * 949 * . if, as a consequence of the previous step, the burst size reaches 950 * the large-burst threshold, then 951 * 952 * . all the queues in the burst list are marked as belonging to a 953 * large burst 954 * 955 * . the burst list is deleted; in fact, the burst list already served 956 * its purpose (keeping temporarily track of the queues in a burst, 957 * so as to be able to mark them as belonging to a large burst in the 958 * previous sub-step), and now is not needed any more 959 * 960 * . the device enters a large-burst mode 961 * 962 * . if a queue Q that does not belong to the burst is created while 963 * the device is in large-burst mode and shortly after the last time 964 * at which a queue either entered the burst list or was marked as 965 * belonging to the current large burst, then Q is immediately marked 966 * as belonging to a large burst. 967 * 968 * . if a queue Q that does not belong to the burst is created a while 969 * later, i.e., not shortly after, than the last time at which a queue 970 * either entered the burst list or was marked as belonging to the 971 * current large burst, then the current burst is deemed as finished and: 972 * 973 * . the large-burst mode is reset if set 974 * 975 * . the burst list is emptied 976 * 977 * . Q is inserted in the burst list, as Q may be the first queue 978 * in a possible new burst (then the burst list contains just Q 979 * after this step). 980 */ 981 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 982 { 983 /* 984 * If bfqq is already in the burst list or is part of a large 985 * burst, or finally has just been split, then there is 986 * nothing else to do. 987 */ 988 if (!hlist_unhashed(&bfqq->burst_list_node) || 989 bfq_bfqq_in_large_burst(bfqq) || 990 time_is_after_eq_jiffies(bfqq->split_time + 991 msecs_to_jiffies(10))) 992 return; 993 994 /* 995 * If bfqq's creation happens late enough, or bfqq belongs to 996 * a different group than the burst group, then the current 997 * burst is finished, and related data structures must be 998 * reset. 999 * 1000 * In this respect, consider the special case where bfqq is 1001 * the very first queue created after BFQ is selected for this 1002 * device. In this case, last_ins_in_burst and 1003 * burst_parent_entity are not yet significant when we get 1004 * here. But it is easy to verify that, whether or not the 1005 * following condition is true, bfqq will end up being 1006 * inserted into the burst list. In particular the list will 1007 * happen to contain only bfqq. And this is exactly what has 1008 * to happen, as bfqq may be the first queue of the first 1009 * burst. 1010 */ 1011 if (time_is_before_jiffies(bfqd->last_ins_in_burst + 1012 bfqd->bfq_burst_interval) || 1013 bfqq->entity.parent != bfqd->burst_parent_entity) { 1014 bfqd->large_burst = false; 1015 bfq_reset_burst_list(bfqd, bfqq); 1016 goto end; 1017 } 1018 1019 /* 1020 * If we get here, then bfqq is being activated shortly after the 1021 * last queue. So, if the current burst is also large, we can mark 1022 * bfqq as belonging to this large burst immediately. 1023 */ 1024 if (bfqd->large_burst) { 1025 bfq_mark_bfqq_in_large_burst(bfqq); 1026 goto end; 1027 } 1028 1029 /* 1030 * If we get here, then a large-burst state has not yet been 1031 * reached, but bfqq is being activated shortly after the last 1032 * queue. Then we add bfqq to the burst. 1033 */ 1034 bfq_add_to_burst(bfqd, bfqq); 1035 end: 1036 /* 1037 * At this point, bfqq either has been added to the current 1038 * burst or has caused the current burst to terminate and a 1039 * possible new burst to start. In particular, in the second 1040 * case, bfqq has become the first queue in the possible new 1041 * burst. In both cases last_ins_in_burst needs to be moved 1042 * forward. 1043 */ 1044 bfqd->last_ins_in_burst = jiffies; 1045 } 1046 1047 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 1048 { 1049 struct bfq_entity *entity = &bfqq->entity; 1050 1051 return entity->budget - entity->service; 1052 } 1053 1054 /* 1055 * If enough samples have been computed, return the current max budget 1056 * stored in bfqd, which is dynamically updated according to the 1057 * estimated disk peak rate; otherwise return the default max budget 1058 */ 1059 static int bfq_max_budget(struct bfq_data *bfqd) 1060 { 1061 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1062 return bfq_default_max_budget; 1063 else 1064 return bfqd->bfq_max_budget; 1065 } 1066 1067 /* 1068 * Return min budget, which is a fraction of the current or default 1069 * max budget (trying with 1/32) 1070 */ 1071 static int bfq_min_budget(struct bfq_data *bfqd) 1072 { 1073 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1074 return bfq_default_max_budget / 32; 1075 else 1076 return bfqd->bfq_max_budget / 32; 1077 } 1078 1079 /* 1080 * The next function, invoked after the input queue bfqq switches from 1081 * idle to busy, updates the budget of bfqq. The function also tells 1082 * whether the in-service queue should be expired, by returning 1083 * true. The purpose of expiring the in-service queue is to give bfqq 1084 * the chance to possibly preempt the in-service queue, and the reason 1085 * for preempting the in-service queue is to achieve one of the two 1086 * goals below. 1087 * 1088 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 1089 * expired because it has remained idle. In particular, bfqq may have 1090 * expired for one of the following two reasons: 1091 * 1092 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 1093 * and did not make it to issue a new request before its last 1094 * request was served; 1095 * 1096 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 1097 * a new request before the expiration of the idling-time. 1098 * 1099 * Even if bfqq has expired for one of the above reasons, the process 1100 * associated with the queue may be however issuing requests greedily, 1101 * and thus be sensitive to the bandwidth it receives (bfqq may have 1102 * remained idle for other reasons: CPU high load, bfqq not enjoying 1103 * idling, I/O throttling somewhere in the path from the process to 1104 * the I/O scheduler, ...). But if, after every expiration for one of 1105 * the above two reasons, bfqq has to wait for the service of at least 1106 * one full budget of another queue before being served again, then 1107 * bfqq is likely to get a much lower bandwidth or resource time than 1108 * its reserved ones. To address this issue, two countermeasures need 1109 * to be taken. 1110 * 1111 * First, the budget and the timestamps of bfqq need to be updated in 1112 * a special way on bfqq reactivation: they need to be updated as if 1113 * bfqq did not remain idle and did not expire. In fact, if they are 1114 * computed as if bfqq expired and remained idle until reactivation, 1115 * then the process associated with bfqq is treated as if, instead of 1116 * being greedy, it stopped issuing requests when bfqq remained idle, 1117 * and restarts issuing requests only on this reactivation. In other 1118 * words, the scheduler does not help the process recover the "service 1119 * hole" between bfqq expiration and reactivation. As a consequence, 1120 * the process receives a lower bandwidth than its reserved one. In 1121 * contrast, to recover this hole, the budget must be updated as if 1122 * bfqq was not expired at all before this reactivation, i.e., it must 1123 * be set to the value of the remaining budget when bfqq was 1124 * expired. Along the same line, timestamps need to be assigned the 1125 * value they had the last time bfqq was selected for service, i.e., 1126 * before last expiration. Thus timestamps need to be back-shifted 1127 * with respect to their normal computation (see [1] for more details 1128 * on this tricky aspect). 1129 * 1130 * Secondly, to allow the process to recover the hole, the in-service 1131 * queue must be expired too, to give bfqq the chance to preempt it 1132 * immediately. In fact, if bfqq has to wait for a full budget of the 1133 * in-service queue to be completed, then it may become impossible to 1134 * let the process recover the hole, even if the back-shifted 1135 * timestamps of bfqq are lower than those of the in-service queue. If 1136 * this happens for most or all of the holes, then the process may not 1137 * receive its reserved bandwidth. In this respect, it is worth noting 1138 * that, being the service of outstanding requests unpreemptible, a 1139 * little fraction of the holes may however be unrecoverable, thereby 1140 * causing a little loss of bandwidth. 1141 * 1142 * The last important point is detecting whether bfqq does need this 1143 * bandwidth recovery. In this respect, the next function deems the 1144 * process associated with bfqq greedy, and thus allows it to recover 1145 * the hole, if: 1) the process is waiting for the arrival of a new 1146 * request (which implies that bfqq expired for one of the above two 1147 * reasons), and 2) such a request has arrived soon. The first 1148 * condition is controlled through the flag non_blocking_wait_rq, 1149 * while the second through the flag arrived_in_time. If both 1150 * conditions hold, then the function computes the budget in the 1151 * above-described special way, and signals that the in-service queue 1152 * should be expired. Timestamp back-shifting is done later in 1153 * __bfq_activate_entity. 1154 * 1155 * 2. Reduce latency. Even if timestamps are not backshifted to let 1156 * the process associated with bfqq recover a service hole, bfqq may 1157 * however happen to have, after being (re)activated, a lower finish 1158 * timestamp than the in-service queue. That is, the next budget of 1159 * bfqq may have to be completed before the one of the in-service 1160 * queue. If this is the case, then preempting the in-service queue 1161 * allows this goal to be achieved, apart from the unpreemptible, 1162 * outstanding requests mentioned above. 1163 * 1164 * Unfortunately, regardless of which of the above two goals one wants 1165 * to achieve, service trees need first to be updated to know whether 1166 * the in-service queue must be preempted. To have service trees 1167 * correctly updated, the in-service queue must be expired and 1168 * rescheduled, and bfqq must be scheduled too. This is one of the 1169 * most costly operations (in future versions, the scheduling 1170 * mechanism may be re-designed in such a way to make it possible to 1171 * know whether preemption is needed without needing to update service 1172 * trees). In addition, queue preemptions almost always cause random 1173 * I/O, and thus loss of throughput. Because of these facts, the next 1174 * function adopts the following simple scheme to avoid both costly 1175 * operations and too frequent preemptions: it requests the expiration 1176 * of the in-service queue (unconditionally) only for queues that need 1177 * to recover a hole, or that either are weight-raised or deserve to 1178 * be weight-raised. 1179 */ 1180 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 1181 struct bfq_queue *bfqq, 1182 bool arrived_in_time, 1183 bool wr_or_deserves_wr) 1184 { 1185 struct bfq_entity *entity = &bfqq->entity; 1186 1187 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { 1188 /* 1189 * We do not clear the flag non_blocking_wait_rq here, as 1190 * the latter is used in bfq_activate_bfqq to signal 1191 * that timestamps need to be back-shifted (and is 1192 * cleared right after). 1193 */ 1194 1195 /* 1196 * In next assignment we rely on that either 1197 * entity->service or entity->budget are not updated 1198 * on expiration if bfqq is empty (see 1199 * __bfq_bfqq_recalc_budget). Thus both quantities 1200 * remain unchanged after such an expiration, and the 1201 * following statement therefore assigns to 1202 * entity->budget the remaining budget on such an 1203 * expiration. For clarity, entity->service is not 1204 * updated on expiration in any case, and, in normal 1205 * operation, is reset only when bfqq is selected for 1206 * service (see bfq_get_next_queue). 1207 */ 1208 entity->budget = min_t(unsigned long, 1209 bfq_bfqq_budget_left(bfqq), 1210 bfqq->max_budget); 1211 1212 return true; 1213 } 1214 1215 entity->budget = max_t(unsigned long, bfqq->max_budget, 1216 bfq_serv_to_charge(bfqq->next_rq, bfqq)); 1217 bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 1218 return wr_or_deserves_wr; 1219 } 1220 1221 /* 1222 * Return the farthest future time instant according to jiffies 1223 * macros. 1224 */ 1225 static unsigned long bfq_greatest_from_now(void) 1226 { 1227 return jiffies + MAX_JIFFY_OFFSET; 1228 } 1229 1230 /* 1231 * Return the farthest past time instant according to jiffies 1232 * macros. 1233 */ 1234 static unsigned long bfq_smallest_from_now(void) 1235 { 1236 return jiffies - MAX_JIFFY_OFFSET; 1237 } 1238 1239 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 1240 struct bfq_queue *bfqq, 1241 unsigned int old_wr_coeff, 1242 bool wr_or_deserves_wr, 1243 bool interactive, 1244 bool in_burst, 1245 bool soft_rt) 1246 { 1247 if (old_wr_coeff == 1 && wr_or_deserves_wr) { 1248 /* start a weight-raising period */ 1249 if (interactive) { 1250 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1251 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1252 } else { 1253 /* 1254 * No interactive weight raising in progress 1255 * here: assign minus infinity to 1256 * wr_start_at_switch_to_srt, to make sure 1257 * that, at the end of the soft-real-time 1258 * weight raising periods that is starting 1259 * now, no interactive weight-raising period 1260 * may be wrongly considered as still in 1261 * progress (and thus actually started by 1262 * mistake). 1263 */ 1264 bfqq->wr_start_at_switch_to_srt = 1265 bfq_smallest_from_now(); 1266 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1267 BFQ_SOFTRT_WEIGHT_FACTOR; 1268 bfqq->wr_cur_max_time = 1269 bfqd->bfq_wr_rt_max_time; 1270 } 1271 1272 /* 1273 * If needed, further reduce budget to make sure it is 1274 * close to bfqq's backlog, so as to reduce the 1275 * scheduling-error component due to a too large 1276 * budget. Do not care about throughput consequences, 1277 * but only about latency. Finally, do not assign a 1278 * too small budget either, to avoid increasing 1279 * latency by causing too frequent expirations. 1280 */ 1281 bfqq->entity.budget = min_t(unsigned long, 1282 bfqq->entity.budget, 1283 2 * bfq_min_budget(bfqd)); 1284 } else if (old_wr_coeff > 1) { 1285 if (interactive) { /* update wr coeff and duration */ 1286 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1287 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1288 } else if (in_burst) 1289 bfqq->wr_coeff = 1; 1290 else if (soft_rt) { 1291 /* 1292 * The application is now or still meeting the 1293 * requirements for being deemed soft rt. We 1294 * can then correctly and safely (re)charge 1295 * the weight-raising duration for the 1296 * application with the weight-raising 1297 * duration for soft rt applications. 1298 * 1299 * In particular, doing this recharge now, i.e., 1300 * before the weight-raising period for the 1301 * application finishes, reduces the probability 1302 * of the following negative scenario: 1303 * 1) the weight of a soft rt application is 1304 * raised at startup (as for any newly 1305 * created application), 1306 * 2) since the application is not interactive, 1307 * at a certain time weight-raising is 1308 * stopped for the application, 1309 * 3) at that time the application happens to 1310 * still have pending requests, and hence 1311 * is destined to not have a chance to be 1312 * deemed soft rt before these requests are 1313 * completed (see the comments to the 1314 * function bfq_bfqq_softrt_next_start() 1315 * for details on soft rt detection), 1316 * 4) these pending requests experience a high 1317 * latency because the application is not 1318 * weight-raised while they are pending. 1319 */ 1320 if (bfqq->wr_cur_max_time != 1321 bfqd->bfq_wr_rt_max_time) { 1322 bfqq->wr_start_at_switch_to_srt = 1323 bfqq->last_wr_start_finish; 1324 1325 bfqq->wr_cur_max_time = 1326 bfqd->bfq_wr_rt_max_time; 1327 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1328 BFQ_SOFTRT_WEIGHT_FACTOR; 1329 } 1330 bfqq->last_wr_start_finish = jiffies; 1331 } 1332 } 1333 } 1334 1335 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 1336 struct bfq_queue *bfqq) 1337 { 1338 return bfqq->dispatched == 0 && 1339 time_is_before_jiffies( 1340 bfqq->budget_timeout + 1341 bfqd->bfq_wr_min_idle_time); 1342 } 1343 1344 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 1345 struct bfq_queue *bfqq, 1346 int old_wr_coeff, 1347 struct request *rq, 1348 bool *interactive) 1349 { 1350 bool soft_rt, in_burst, wr_or_deserves_wr, 1351 bfqq_wants_to_preempt, 1352 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 1353 /* 1354 * See the comments on 1355 * bfq_bfqq_update_budg_for_activation for 1356 * details on the usage of the next variable. 1357 */ 1358 arrived_in_time = ktime_get_ns() <= 1359 bfqq->ttime.last_end_request + 1360 bfqd->bfq_slice_idle * 3; 1361 1362 1363 /* 1364 * bfqq deserves to be weight-raised if: 1365 * - it is sync, 1366 * - it does not belong to a large burst, 1367 * - it has been idle for enough time or is soft real-time, 1368 * - is linked to a bfq_io_cq (it is not shared in any sense). 1369 */ 1370 in_burst = bfq_bfqq_in_large_burst(bfqq); 1371 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 1372 !in_burst && 1373 time_is_before_jiffies(bfqq->soft_rt_next_start); 1374 *interactive = !in_burst && idle_for_long_time; 1375 wr_or_deserves_wr = bfqd->low_latency && 1376 (bfqq->wr_coeff > 1 || 1377 (bfq_bfqq_sync(bfqq) && 1378 bfqq->bic && (*interactive || soft_rt))); 1379 1380 /* 1381 * Using the last flag, update budget and check whether bfqq 1382 * may want to preempt the in-service queue. 1383 */ 1384 bfqq_wants_to_preempt = 1385 bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 1386 arrived_in_time, 1387 wr_or_deserves_wr); 1388 1389 /* 1390 * If bfqq happened to be activated in a burst, but has been 1391 * idle for much more than an interactive queue, then we 1392 * assume that, in the overall I/O initiated in the burst, the 1393 * I/O associated with bfqq is finished. So bfqq does not need 1394 * to be treated as a queue belonging to a burst 1395 * anymore. Accordingly, we reset bfqq's in_large_burst flag 1396 * if set, and remove bfqq from the burst list if it's 1397 * there. We do not decrement burst_size, because the fact 1398 * that bfqq does not need to belong to the burst list any 1399 * more does not invalidate the fact that bfqq was created in 1400 * a burst. 1401 */ 1402 if (likely(!bfq_bfqq_just_created(bfqq)) && 1403 idle_for_long_time && 1404 time_is_before_jiffies( 1405 bfqq->budget_timeout + 1406 msecs_to_jiffies(10000))) { 1407 hlist_del_init(&bfqq->burst_list_node); 1408 bfq_clear_bfqq_in_large_burst(bfqq); 1409 } 1410 1411 bfq_clear_bfqq_just_created(bfqq); 1412 1413 1414 if (!bfq_bfqq_IO_bound(bfqq)) { 1415 if (arrived_in_time) { 1416 bfqq->requests_within_timer++; 1417 if (bfqq->requests_within_timer >= 1418 bfqd->bfq_requests_within_timer) 1419 bfq_mark_bfqq_IO_bound(bfqq); 1420 } else 1421 bfqq->requests_within_timer = 0; 1422 } 1423 1424 if (bfqd->low_latency) { 1425 if (unlikely(time_is_after_jiffies(bfqq->split_time))) 1426 /* wraparound */ 1427 bfqq->split_time = 1428 jiffies - bfqd->bfq_wr_min_idle_time - 1; 1429 1430 if (time_is_before_jiffies(bfqq->split_time + 1431 bfqd->bfq_wr_min_idle_time)) { 1432 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 1433 old_wr_coeff, 1434 wr_or_deserves_wr, 1435 *interactive, 1436 in_burst, 1437 soft_rt); 1438 1439 if (old_wr_coeff != bfqq->wr_coeff) 1440 bfqq->entity.prio_changed = 1; 1441 } 1442 } 1443 1444 bfqq->last_idle_bklogged = jiffies; 1445 bfqq->service_from_backlogged = 0; 1446 bfq_clear_bfqq_softrt_update(bfqq); 1447 1448 bfq_add_bfqq_busy(bfqd, bfqq); 1449 1450 /* 1451 * Expire in-service queue only if preemption may be needed 1452 * for guarantees. In this respect, the function 1453 * next_queue_may_preempt just checks a simple, necessary 1454 * condition, and not a sufficient condition based on 1455 * timestamps. In fact, for the latter condition to be 1456 * evaluated, timestamps would need first to be updated, and 1457 * this operation is quite costly (see the comments on the 1458 * function bfq_bfqq_update_budg_for_activation). 1459 */ 1460 if (bfqd->in_service_queue && bfqq_wants_to_preempt && 1461 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && 1462 next_queue_may_preempt(bfqd)) 1463 bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 1464 false, BFQQE_PREEMPTED); 1465 } 1466 1467 static void bfq_add_request(struct request *rq) 1468 { 1469 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1470 struct bfq_data *bfqd = bfqq->bfqd; 1471 struct request *next_rq, *prev; 1472 unsigned int old_wr_coeff = bfqq->wr_coeff; 1473 bool interactive = false; 1474 1475 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 1476 bfqq->queued[rq_is_sync(rq)]++; 1477 bfqd->queued++; 1478 1479 elv_rb_add(&bfqq->sort_list, rq); 1480 1481 /* 1482 * Check if this request is a better next-serve candidate. 1483 */ 1484 prev = bfqq->next_rq; 1485 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 1486 bfqq->next_rq = next_rq; 1487 1488 /* 1489 * Adjust priority tree position, if next_rq changes. 1490 */ 1491 if (prev != bfqq->next_rq) 1492 bfq_pos_tree_add_move(bfqd, bfqq); 1493 1494 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 1495 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 1496 rq, &interactive); 1497 else { 1498 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 1499 time_is_before_jiffies( 1500 bfqq->last_wr_start_finish + 1501 bfqd->bfq_wr_min_inter_arr_async)) { 1502 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1503 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1504 1505 bfqd->wr_busy_queues++; 1506 bfqq->entity.prio_changed = 1; 1507 } 1508 if (prev != bfqq->next_rq) 1509 bfq_updated_next_req(bfqd, bfqq); 1510 } 1511 1512 /* 1513 * Assign jiffies to last_wr_start_finish in the following 1514 * cases: 1515 * 1516 * . if bfqq is not going to be weight-raised, because, for 1517 * non weight-raised queues, last_wr_start_finish stores the 1518 * arrival time of the last request; as of now, this piece 1519 * of information is used only for deciding whether to 1520 * weight-raise async queues 1521 * 1522 * . if bfqq is not weight-raised, because, if bfqq is now 1523 * switching to weight-raised, then last_wr_start_finish 1524 * stores the time when weight-raising starts 1525 * 1526 * . if bfqq is interactive, because, regardless of whether 1527 * bfqq is currently weight-raised, the weight-raising 1528 * period must start or restart (this case is considered 1529 * separately because it is not detected by the above 1530 * conditions, if bfqq is already weight-raised) 1531 * 1532 * last_wr_start_finish has to be updated also if bfqq is soft 1533 * real-time, because the weight-raising period is constantly 1534 * restarted on idle-to-busy transitions for these queues, but 1535 * this is already done in bfq_bfqq_handle_idle_busy_switch if 1536 * needed. 1537 */ 1538 if (bfqd->low_latency && 1539 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 1540 bfqq->last_wr_start_finish = jiffies; 1541 } 1542 1543 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 1544 struct bio *bio, 1545 struct request_queue *q) 1546 { 1547 struct bfq_queue *bfqq = bfqd->bio_bfqq; 1548 1549 1550 if (bfqq) 1551 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 1552 1553 return NULL; 1554 } 1555 1556 static sector_t get_sdist(sector_t last_pos, struct request *rq) 1557 { 1558 if (last_pos) 1559 return abs(blk_rq_pos(rq) - last_pos); 1560 1561 return 0; 1562 } 1563 1564 #if 0 /* Still not clear if we can do without next two functions */ 1565 static void bfq_activate_request(struct request_queue *q, struct request *rq) 1566 { 1567 struct bfq_data *bfqd = q->elevator->elevator_data; 1568 1569 bfqd->rq_in_driver++; 1570 } 1571 1572 static void bfq_deactivate_request(struct request_queue *q, struct request *rq) 1573 { 1574 struct bfq_data *bfqd = q->elevator->elevator_data; 1575 1576 bfqd->rq_in_driver--; 1577 } 1578 #endif 1579 1580 static void bfq_remove_request(struct request_queue *q, 1581 struct request *rq) 1582 { 1583 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1584 struct bfq_data *bfqd = bfqq->bfqd; 1585 const int sync = rq_is_sync(rq); 1586 1587 if (bfqq->next_rq == rq) { 1588 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 1589 bfq_updated_next_req(bfqd, bfqq); 1590 } 1591 1592 if (rq->queuelist.prev != &rq->queuelist) 1593 list_del_init(&rq->queuelist); 1594 bfqq->queued[sync]--; 1595 bfqd->queued--; 1596 elv_rb_del(&bfqq->sort_list, rq); 1597 1598 elv_rqhash_del(q, rq); 1599 if (q->last_merge == rq) 1600 q->last_merge = NULL; 1601 1602 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 1603 bfqq->next_rq = NULL; 1604 1605 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 1606 bfq_del_bfqq_busy(bfqd, bfqq, false); 1607 /* 1608 * bfqq emptied. In normal operation, when 1609 * bfqq is empty, bfqq->entity.service and 1610 * bfqq->entity.budget must contain, 1611 * respectively, the service received and the 1612 * budget used last time bfqq emptied. These 1613 * facts do not hold in this case, as at least 1614 * this last removal occurred while bfqq is 1615 * not in service. To avoid inconsistencies, 1616 * reset both bfqq->entity.service and 1617 * bfqq->entity.budget, if bfqq has still a 1618 * process that may issue I/O requests to it. 1619 */ 1620 bfqq->entity.budget = bfqq->entity.service = 0; 1621 } 1622 1623 /* 1624 * Remove queue from request-position tree as it is empty. 1625 */ 1626 if (bfqq->pos_root) { 1627 rb_erase(&bfqq->pos_node, bfqq->pos_root); 1628 bfqq->pos_root = NULL; 1629 } 1630 } 1631 1632 if (rq->cmd_flags & REQ_META) 1633 bfqq->meta_pending--; 1634 1635 } 1636 1637 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 1638 { 1639 struct request_queue *q = hctx->queue; 1640 struct bfq_data *bfqd = q->elevator->elevator_data; 1641 struct request *free = NULL; 1642 /* 1643 * bfq_bic_lookup grabs the queue_lock: invoke it now and 1644 * store its return value for later use, to avoid nesting 1645 * queue_lock inside the bfqd->lock. We assume that the bic 1646 * returned by bfq_bic_lookup does not go away before 1647 * bfqd->lock is taken. 1648 */ 1649 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); 1650 bool ret; 1651 1652 spin_lock_irq(&bfqd->lock); 1653 1654 if (bic) 1655 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); 1656 else 1657 bfqd->bio_bfqq = NULL; 1658 bfqd->bio_bic = bic; 1659 1660 ret = blk_mq_sched_try_merge(q, bio, &free); 1661 1662 if (free) 1663 blk_mq_free_request(free); 1664 spin_unlock_irq(&bfqd->lock); 1665 1666 return ret; 1667 } 1668 1669 static int bfq_request_merge(struct request_queue *q, struct request **req, 1670 struct bio *bio) 1671 { 1672 struct bfq_data *bfqd = q->elevator->elevator_data; 1673 struct request *__rq; 1674 1675 __rq = bfq_find_rq_fmerge(bfqd, bio, q); 1676 if (__rq && elv_bio_merge_ok(__rq, bio)) { 1677 *req = __rq; 1678 return ELEVATOR_FRONT_MERGE; 1679 } 1680 1681 return ELEVATOR_NO_MERGE; 1682 } 1683 1684 static void bfq_request_merged(struct request_queue *q, struct request *req, 1685 enum elv_merge type) 1686 { 1687 if (type == ELEVATOR_FRONT_MERGE && 1688 rb_prev(&req->rb_node) && 1689 blk_rq_pos(req) < 1690 blk_rq_pos(container_of(rb_prev(&req->rb_node), 1691 struct request, rb_node))) { 1692 struct bfq_queue *bfqq = RQ_BFQQ(req); 1693 struct bfq_data *bfqd = bfqq->bfqd; 1694 struct request *prev, *next_rq; 1695 1696 /* Reposition request in its sort_list */ 1697 elv_rb_del(&bfqq->sort_list, req); 1698 elv_rb_add(&bfqq->sort_list, req); 1699 1700 /* Choose next request to be served for bfqq */ 1701 prev = bfqq->next_rq; 1702 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 1703 bfqd->last_position); 1704 bfqq->next_rq = next_rq; 1705 /* 1706 * If next_rq changes, update both the queue's budget to 1707 * fit the new request and the queue's position in its 1708 * rq_pos_tree. 1709 */ 1710 if (prev != bfqq->next_rq) { 1711 bfq_updated_next_req(bfqd, bfqq); 1712 bfq_pos_tree_add_move(bfqd, bfqq); 1713 } 1714 } 1715 } 1716 1717 static void bfq_requests_merged(struct request_queue *q, struct request *rq, 1718 struct request *next) 1719 { 1720 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); 1721 1722 if (!RB_EMPTY_NODE(&rq->rb_node)) 1723 goto end; 1724 spin_lock_irq(&bfqq->bfqd->lock); 1725 1726 /* 1727 * If next and rq belong to the same bfq_queue and next is older 1728 * than rq, then reposition rq in the fifo (by substituting next 1729 * with rq). Otherwise, if next and rq belong to different 1730 * bfq_queues, never reposition rq: in fact, we would have to 1731 * reposition it with respect to next's position in its own fifo, 1732 * which would most certainly be too expensive with respect to 1733 * the benefits. 1734 */ 1735 if (bfqq == next_bfqq && 1736 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 1737 next->fifo_time < rq->fifo_time) { 1738 list_del_init(&rq->queuelist); 1739 list_replace_init(&next->queuelist, &rq->queuelist); 1740 rq->fifo_time = next->fifo_time; 1741 } 1742 1743 if (bfqq->next_rq == next) 1744 bfqq->next_rq = rq; 1745 1746 bfq_remove_request(q, next); 1747 bfqg_stats_update_io_remove(bfqq_group(bfqq), next->cmd_flags); 1748 1749 spin_unlock_irq(&bfqq->bfqd->lock); 1750 end: 1751 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 1752 } 1753 1754 /* Must be called with bfqq != NULL */ 1755 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 1756 { 1757 if (bfq_bfqq_busy(bfqq)) 1758 bfqq->bfqd->wr_busy_queues--; 1759 bfqq->wr_coeff = 1; 1760 bfqq->wr_cur_max_time = 0; 1761 bfqq->last_wr_start_finish = jiffies; 1762 /* 1763 * Trigger a weight change on the next invocation of 1764 * __bfq_entity_update_weight_prio. 1765 */ 1766 bfqq->entity.prio_changed = 1; 1767 } 1768 1769 void bfq_end_wr_async_queues(struct bfq_data *bfqd, 1770 struct bfq_group *bfqg) 1771 { 1772 int i, j; 1773 1774 for (i = 0; i < 2; i++) 1775 for (j = 0; j < IOPRIO_BE_NR; j++) 1776 if (bfqg->async_bfqq[i][j]) 1777 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); 1778 if (bfqg->async_idle_bfqq) 1779 bfq_bfqq_end_wr(bfqg->async_idle_bfqq); 1780 } 1781 1782 static void bfq_end_wr(struct bfq_data *bfqd) 1783 { 1784 struct bfq_queue *bfqq; 1785 1786 spin_lock_irq(&bfqd->lock); 1787 1788 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) 1789 bfq_bfqq_end_wr(bfqq); 1790 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 1791 bfq_bfqq_end_wr(bfqq); 1792 bfq_end_wr_async(bfqd); 1793 1794 spin_unlock_irq(&bfqd->lock); 1795 } 1796 1797 static sector_t bfq_io_struct_pos(void *io_struct, bool request) 1798 { 1799 if (request) 1800 return blk_rq_pos(io_struct); 1801 else 1802 return ((struct bio *)io_struct)->bi_iter.bi_sector; 1803 } 1804 1805 static int bfq_rq_close_to_sector(void *io_struct, bool request, 1806 sector_t sector) 1807 { 1808 return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 1809 BFQQ_CLOSE_THR; 1810 } 1811 1812 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 1813 struct bfq_queue *bfqq, 1814 sector_t sector) 1815 { 1816 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 1817 struct rb_node *parent, *node; 1818 struct bfq_queue *__bfqq; 1819 1820 if (RB_EMPTY_ROOT(root)) 1821 return NULL; 1822 1823 /* 1824 * First, if we find a request starting at the end of the last 1825 * request, choose it. 1826 */ 1827 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 1828 if (__bfqq) 1829 return __bfqq; 1830 1831 /* 1832 * If the exact sector wasn't found, the parent of the NULL leaf 1833 * will contain the closest sector (rq_pos_tree sorted by 1834 * next_request position). 1835 */ 1836 __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 1837 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1838 return __bfqq; 1839 1840 if (blk_rq_pos(__bfqq->next_rq) < sector) 1841 node = rb_next(&__bfqq->pos_node); 1842 else 1843 node = rb_prev(&__bfqq->pos_node); 1844 if (!node) 1845 return NULL; 1846 1847 __bfqq = rb_entry(node, struct bfq_queue, pos_node); 1848 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1849 return __bfqq; 1850 1851 return NULL; 1852 } 1853 1854 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 1855 struct bfq_queue *cur_bfqq, 1856 sector_t sector) 1857 { 1858 struct bfq_queue *bfqq; 1859 1860 /* 1861 * We shall notice if some of the queues are cooperating, 1862 * e.g., working closely on the same area of the device. In 1863 * that case, we can group them together and: 1) don't waste 1864 * time idling, and 2) serve the union of their requests in 1865 * the best possible order for throughput. 1866 */ 1867 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 1868 if (!bfqq || bfqq == cur_bfqq) 1869 return NULL; 1870 1871 return bfqq; 1872 } 1873 1874 static struct bfq_queue * 1875 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 1876 { 1877 int process_refs, new_process_refs; 1878 struct bfq_queue *__bfqq; 1879 1880 /* 1881 * If there are no process references on the new_bfqq, then it is 1882 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 1883 * may have dropped their last reference (not just their last process 1884 * reference). 1885 */ 1886 if (!bfqq_process_refs(new_bfqq)) 1887 return NULL; 1888 1889 /* Avoid a circular list and skip interim queue merges. */ 1890 while ((__bfqq = new_bfqq->new_bfqq)) { 1891 if (__bfqq == bfqq) 1892 return NULL; 1893 new_bfqq = __bfqq; 1894 } 1895 1896 process_refs = bfqq_process_refs(bfqq); 1897 new_process_refs = bfqq_process_refs(new_bfqq); 1898 /* 1899 * If the process for the bfqq has gone away, there is no 1900 * sense in merging the queues. 1901 */ 1902 if (process_refs == 0 || new_process_refs == 0) 1903 return NULL; 1904 1905 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 1906 new_bfqq->pid); 1907 1908 /* 1909 * Merging is just a redirection: the requests of the process 1910 * owning one of the two queues are redirected to the other queue. 1911 * The latter queue, in its turn, is set as shared if this is the 1912 * first time that the requests of some process are redirected to 1913 * it. 1914 * 1915 * We redirect bfqq to new_bfqq and not the opposite, because 1916 * we are in the context of the process owning bfqq, thus we 1917 * have the io_cq of this process. So we can immediately 1918 * configure this io_cq to redirect the requests of the 1919 * process to new_bfqq. In contrast, the io_cq of new_bfqq is 1920 * not available any more (new_bfqq->bic == NULL). 1921 * 1922 * Anyway, even in case new_bfqq coincides with the in-service 1923 * queue, redirecting requests the in-service queue is the 1924 * best option, as we feed the in-service queue with new 1925 * requests close to the last request served and, by doing so, 1926 * are likely to increase the throughput. 1927 */ 1928 bfqq->new_bfqq = new_bfqq; 1929 new_bfqq->ref += process_refs; 1930 return new_bfqq; 1931 } 1932 1933 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 1934 struct bfq_queue *new_bfqq) 1935 { 1936 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 1937 (bfqq->ioprio_class != new_bfqq->ioprio_class)) 1938 return false; 1939 1940 /* 1941 * If either of the queues has already been detected as seeky, 1942 * then merging it with the other queue is unlikely to lead to 1943 * sequential I/O. 1944 */ 1945 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 1946 return false; 1947 1948 /* 1949 * Interleaved I/O is known to be done by (some) applications 1950 * only for reads, so it does not make sense to merge async 1951 * queues. 1952 */ 1953 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 1954 return false; 1955 1956 return true; 1957 } 1958 1959 /* 1960 * If this function returns true, then bfqq cannot be merged. The idea 1961 * is that true cooperation happens very early after processes start 1962 * to do I/O. Usually, late cooperations are just accidental false 1963 * positives. In case bfqq is weight-raised, such false positives 1964 * would evidently degrade latency guarantees for bfqq. 1965 */ 1966 static bool wr_from_too_long(struct bfq_queue *bfqq) 1967 { 1968 return bfqq->wr_coeff > 1 && 1969 time_is_before_jiffies(bfqq->last_wr_start_finish + 1970 msecs_to_jiffies(100)); 1971 } 1972 1973 /* 1974 * Attempt to schedule a merge of bfqq with the currently in-service 1975 * queue or with a close queue among the scheduled queues. Return 1976 * NULL if no merge was scheduled, a pointer to the shared bfq_queue 1977 * structure otherwise. 1978 * 1979 * The OOM queue is not allowed to participate to cooperation: in fact, since 1980 * the requests temporarily redirected to the OOM queue could be redirected 1981 * again to dedicated queues at any time, the state needed to correctly 1982 * handle merging with the OOM queue would be quite complex and expensive 1983 * to maintain. Besides, in such a critical condition as an out of memory, 1984 * the benefits of queue merging may be little relevant, or even negligible. 1985 * 1986 * Weight-raised queues can be merged only if their weight-raising 1987 * period has just started. In fact cooperating processes are usually 1988 * started together. Thus, with this filter we avoid false positives 1989 * that would jeopardize low-latency guarantees. 1990 * 1991 * WARNING: queue merging may impair fairness among non-weight raised 1992 * queues, for at least two reasons: 1) the original weight of a 1993 * merged queue may change during the merged state, 2) even being the 1994 * weight the same, a merged queue may be bloated with many more 1995 * requests than the ones produced by its originally-associated 1996 * process. 1997 */ 1998 static struct bfq_queue * 1999 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2000 void *io_struct, bool request) 2001 { 2002 struct bfq_queue *in_service_bfqq, *new_bfqq; 2003 2004 if (bfqq->new_bfqq) 2005 return bfqq->new_bfqq; 2006 2007 if (!io_struct || 2008 wr_from_too_long(bfqq) || 2009 unlikely(bfqq == &bfqd->oom_bfqq)) 2010 return NULL; 2011 2012 /* If there is only one backlogged queue, don't search. */ 2013 if (bfqd->busy_queues == 1) 2014 return NULL; 2015 2016 in_service_bfqq = bfqd->in_service_queue; 2017 2018 if (!in_service_bfqq || in_service_bfqq == bfqq 2019 || wr_from_too_long(in_service_bfqq) || 2020 unlikely(in_service_bfqq == &bfqd->oom_bfqq)) 2021 goto check_scheduled; 2022 2023 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) && 2024 bfqq->entity.parent == in_service_bfqq->entity.parent && 2025 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 2026 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 2027 if (new_bfqq) 2028 return new_bfqq; 2029 } 2030 /* 2031 * Check whether there is a cooperator among currently scheduled 2032 * queues. The only thing we need is that the bio/request is not 2033 * NULL, as we need it to establish whether a cooperator exists. 2034 */ 2035 check_scheduled: 2036 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 2037 bfq_io_struct_pos(io_struct, request)); 2038 2039 if (new_bfqq && !wr_from_too_long(new_bfqq) && 2040 likely(new_bfqq != &bfqd->oom_bfqq) && 2041 bfq_may_be_close_cooperator(bfqq, new_bfqq)) 2042 return bfq_setup_merge(bfqq, new_bfqq); 2043 2044 return NULL; 2045 } 2046 2047 static void bfq_bfqq_save_state(struct bfq_queue *bfqq) 2048 { 2049 struct bfq_io_cq *bic = bfqq->bic; 2050 2051 /* 2052 * If !bfqq->bic, the queue is already shared or its requests 2053 * have already been redirected to a shared queue; both idle window 2054 * and weight raising state have already been saved. Do nothing. 2055 */ 2056 if (!bic) 2057 return; 2058 2059 bic->saved_ttime = bfqq->ttime; 2060 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq); 2061 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 2062 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 2063 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node); 2064 if (unlikely(bfq_bfqq_just_created(bfqq) && 2065 !bfq_bfqq_in_large_burst(bfqq))) { 2066 /* 2067 * bfqq being merged right after being created: bfqq 2068 * would have deserved interactive weight raising, but 2069 * did not make it to be set in a weight-raised state, 2070 * because of this early merge. Store directly the 2071 * weight-raising state that would have been assigned 2072 * to bfqq, so that to avoid that bfqq unjustly fails 2073 * to enjoy weight raising if split soon. 2074 */ 2075 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff; 2076 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd); 2077 bic->saved_last_wr_start_finish = jiffies; 2078 } else { 2079 bic->saved_wr_coeff = bfqq->wr_coeff; 2080 bic->saved_wr_start_at_switch_to_srt = 2081 bfqq->wr_start_at_switch_to_srt; 2082 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish; 2083 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 2084 } 2085 } 2086 2087 static void 2088 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 2089 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 2090 { 2091 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 2092 (unsigned long)new_bfqq->pid); 2093 /* Save weight raising and idle window of the merged queues */ 2094 bfq_bfqq_save_state(bfqq); 2095 bfq_bfqq_save_state(new_bfqq); 2096 if (bfq_bfqq_IO_bound(bfqq)) 2097 bfq_mark_bfqq_IO_bound(new_bfqq); 2098 bfq_clear_bfqq_IO_bound(bfqq); 2099 2100 /* 2101 * If bfqq is weight-raised, then let new_bfqq inherit 2102 * weight-raising. To reduce false positives, neglect the case 2103 * where bfqq has just been created, but has not yet made it 2104 * to be weight-raised (which may happen because EQM may merge 2105 * bfqq even before bfq_add_request is executed for the first 2106 * time for bfqq). Handling this case would however be very 2107 * easy, thanks to the flag just_created. 2108 */ 2109 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 2110 new_bfqq->wr_coeff = bfqq->wr_coeff; 2111 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 2112 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 2113 new_bfqq->wr_start_at_switch_to_srt = 2114 bfqq->wr_start_at_switch_to_srt; 2115 if (bfq_bfqq_busy(new_bfqq)) 2116 bfqd->wr_busy_queues++; 2117 new_bfqq->entity.prio_changed = 1; 2118 } 2119 2120 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 2121 bfqq->wr_coeff = 1; 2122 bfqq->entity.prio_changed = 1; 2123 if (bfq_bfqq_busy(bfqq)) 2124 bfqd->wr_busy_queues--; 2125 } 2126 2127 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 2128 bfqd->wr_busy_queues); 2129 2130 /* 2131 * Merge queues (that is, let bic redirect its requests to new_bfqq) 2132 */ 2133 bic_set_bfqq(bic, new_bfqq, 1); 2134 bfq_mark_bfqq_coop(new_bfqq); 2135 /* 2136 * new_bfqq now belongs to at least two bics (it is a shared queue): 2137 * set new_bfqq->bic to NULL. bfqq either: 2138 * - does not belong to any bic any more, and hence bfqq->bic must 2139 * be set to NULL, or 2140 * - is a queue whose owning bics have already been redirected to a 2141 * different queue, hence the queue is destined to not belong to 2142 * any bic soon and bfqq->bic is already NULL (therefore the next 2143 * assignment causes no harm). 2144 */ 2145 new_bfqq->bic = NULL; 2146 bfqq->bic = NULL; 2147 /* release process reference to bfqq */ 2148 bfq_put_queue(bfqq); 2149 } 2150 2151 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2152 struct bio *bio) 2153 { 2154 struct bfq_data *bfqd = q->elevator->elevator_data; 2155 bool is_sync = op_is_sync(bio->bi_opf); 2156 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 2157 2158 /* 2159 * Disallow merge of a sync bio into an async request. 2160 */ 2161 if (is_sync && !rq_is_sync(rq)) 2162 return false; 2163 2164 /* 2165 * Lookup the bfqq that this bio will be queued with. Allow 2166 * merge only if rq is queued there. 2167 */ 2168 if (!bfqq) 2169 return false; 2170 2171 /* 2172 * We take advantage of this function to perform an early merge 2173 * of the queues of possible cooperating processes. 2174 */ 2175 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false); 2176 if (new_bfqq) { 2177 /* 2178 * bic still points to bfqq, then it has not yet been 2179 * redirected to some other bfq_queue, and a queue 2180 * merge beween bfqq and new_bfqq can be safely 2181 * fulfillled, i.e., bic can be redirected to new_bfqq 2182 * and bfqq can be put. 2183 */ 2184 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 2185 new_bfqq); 2186 /* 2187 * If we get here, bio will be queued into new_queue, 2188 * so use new_bfqq to decide whether bio and rq can be 2189 * merged. 2190 */ 2191 bfqq = new_bfqq; 2192 2193 /* 2194 * Change also bqfd->bio_bfqq, as 2195 * bfqd->bio_bic now points to new_bfqq, and 2196 * this function may be invoked again (and then may 2197 * use again bqfd->bio_bfqq). 2198 */ 2199 bfqd->bio_bfqq = bfqq; 2200 } 2201 2202 return bfqq == RQ_BFQQ(rq); 2203 } 2204 2205 /* 2206 * Set the maximum time for the in-service queue to consume its 2207 * budget. This prevents seeky processes from lowering the throughput. 2208 * In practice, a time-slice service scheme is used with seeky 2209 * processes. 2210 */ 2211 static void bfq_set_budget_timeout(struct bfq_data *bfqd, 2212 struct bfq_queue *bfqq) 2213 { 2214 unsigned int timeout_coeff; 2215 2216 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 2217 timeout_coeff = 1; 2218 else 2219 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 2220 2221 bfqd->last_budget_start = ktime_get(); 2222 2223 bfqq->budget_timeout = jiffies + 2224 bfqd->bfq_timeout * timeout_coeff; 2225 } 2226 2227 static void __bfq_set_in_service_queue(struct bfq_data *bfqd, 2228 struct bfq_queue *bfqq) 2229 { 2230 if (bfqq) { 2231 bfq_clear_bfqq_fifo_expire(bfqq); 2232 2233 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 2234 2235 if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 2236 bfqq->wr_coeff > 1 && 2237 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 2238 time_is_before_jiffies(bfqq->budget_timeout)) { 2239 /* 2240 * For soft real-time queues, move the start 2241 * of the weight-raising period forward by the 2242 * time the queue has not received any 2243 * service. Otherwise, a relatively long 2244 * service delay is likely to cause the 2245 * weight-raising period of the queue to end, 2246 * because of the short duration of the 2247 * weight-raising period of a soft real-time 2248 * queue. It is worth noting that this move 2249 * is not so dangerous for the other queues, 2250 * because soft real-time queues are not 2251 * greedy. 2252 * 2253 * To not add a further variable, we use the 2254 * overloaded field budget_timeout to 2255 * determine for how long the queue has not 2256 * received service, i.e., how much time has 2257 * elapsed since the queue expired. However, 2258 * this is a little imprecise, because 2259 * budget_timeout is set to jiffies if bfqq 2260 * not only expires, but also remains with no 2261 * request. 2262 */ 2263 if (time_after(bfqq->budget_timeout, 2264 bfqq->last_wr_start_finish)) 2265 bfqq->last_wr_start_finish += 2266 jiffies - bfqq->budget_timeout; 2267 else 2268 bfqq->last_wr_start_finish = jiffies; 2269 } 2270 2271 bfq_set_budget_timeout(bfqd, bfqq); 2272 bfq_log_bfqq(bfqd, bfqq, 2273 "set_in_service_queue, cur-budget = %d", 2274 bfqq->entity.budget); 2275 } 2276 2277 bfqd->in_service_queue = bfqq; 2278 } 2279 2280 /* 2281 * Get and set a new queue for service. 2282 */ 2283 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 2284 { 2285 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 2286 2287 __bfq_set_in_service_queue(bfqd, bfqq); 2288 return bfqq; 2289 } 2290 2291 static void bfq_arm_slice_timer(struct bfq_data *bfqd) 2292 { 2293 struct bfq_queue *bfqq = bfqd->in_service_queue; 2294 u32 sl; 2295 2296 bfq_mark_bfqq_wait_request(bfqq); 2297 2298 /* 2299 * We don't want to idle for seeks, but we do want to allow 2300 * fair distribution of slice time for a process doing back-to-back 2301 * seeks. So allow a little bit of time for him to submit a new rq. 2302 */ 2303 sl = bfqd->bfq_slice_idle; 2304 /* 2305 * Unless the queue is being weight-raised or the scenario is 2306 * asymmetric, grant only minimum idle time if the queue 2307 * is seeky. A long idling is preserved for a weight-raised 2308 * queue, or, more in general, in an asymmetric scenario, 2309 * because a long idling is needed for guaranteeing to a queue 2310 * its reserved share of the throughput (in particular, it is 2311 * needed if the queue has a higher weight than some other 2312 * queue). 2313 */ 2314 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 2315 bfq_symmetric_scenario(bfqd)) 2316 sl = min_t(u64, sl, BFQ_MIN_TT); 2317 2318 bfqd->last_idling_start = ktime_get(); 2319 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 2320 HRTIMER_MODE_REL); 2321 bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 2322 } 2323 2324 /* 2325 * In autotuning mode, max_budget is dynamically recomputed as the 2326 * amount of sectors transferred in timeout at the estimated peak 2327 * rate. This enables BFQ to utilize a full timeslice with a full 2328 * budget, even if the in-service queue is served at peak rate. And 2329 * this maximises throughput with sequential workloads. 2330 */ 2331 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 2332 { 2333 return (u64)bfqd->peak_rate * USEC_PER_MSEC * 2334 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 2335 } 2336 2337 /* 2338 * Update parameters related to throughput and responsiveness, as a 2339 * function of the estimated peak rate. See comments on 2340 * bfq_calc_max_budget(), and on T_slow and T_fast arrays. 2341 */ 2342 static void update_thr_responsiveness_params(struct bfq_data *bfqd) 2343 { 2344 int dev_type = blk_queue_nonrot(bfqd->queue); 2345 2346 if (bfqd->bfq_user_max_budget == 0) 2347 bfqd->bfq_max_budget = 2348 bfq_calc_max_budget(bfqd); 2349 2350 if (bfqd->device_speed == BFQ_BFQD_FAST && 2351 bfqd->peak_rate < device_speed_thresh[dev_type]) { 2352 bfqd->device_speed = BFQ_BFQD_SLOW; 2353 bfqd->RT_prod = R_slow[dev_type] * 2354 T_slow[dev_type]; 2355 } else if (bfqd->device_speed == BFQ_BFQD_SLOW && 2356 bfqd->peak_rate > device_speed_thresh[dev_type]) { 2357 bfqd->device_speed = BFQ_BFQD_FAST; 2358 bfqd->RT_prod = R_fast[dev_type] * 2359 T_fast[dev_type]; 2360 } 2361 2362 bfq_log(bfqd, 2363 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", 2364 dev_type == 0 ? "ROT" : "NONROT", 2365 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", 2366 bfqd->device_speed == BFQ_BFQD_FAST ? 2367 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : 2368 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, 2369 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> 2370 BFQ_RATE_SHIFT); 2371 } 2372 2373 static void bfq_reset_rate_computation(struct bfq_data *bfqd, 2374 struct request *rq) 2375 { 2376 if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 2377 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 2378 bfqd->peak_rate_samples = 1; 2379 bfqd->sequential_samples = 0; 2380 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 2381 blk_rq_sectors(rq); 2382 } else /* no new rq dispatched, just reset the number of samples */ 2383 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 2384 2385 bfq_log(bfqd, 2386 "reset_rate_computation at end, sample %u/%u tot_sects %llu", 2387 bfqd->peak_rate_samples, bfqd->sequential_samples, 2388 bfqd->tot_sectors_dispatched); 2389 } 2390 2391 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 2392 { 2393 u32 rate, weight, divisor; 2394 2395 /* 2396 * For the convergence property to hold (see comments on 2397 * bfq_update_peak_rate()) and for the assessment to be 2398 * reliable, a minimum number of samples must be present, and 2399 * a minimum amount of time must have elapsed. If not so, do 2400 * not compute new rate. Just reset parameters, to get ready 2401 * for a new evaluation attempt. 2402 */ 2403 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 2404 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 2405 goto reset_computation; 2406 2407 /* 2408 * If a new request completion has occurred after last 2409 * dispatch, then, to approximate the rate at which requests 2410 * have been served by the device, it is more precise to 2411 * extend the observation interval to the last completion. 2412 */ 2413 bfqd->delta_from_first = 2414 max_t(u64, bfqd->delta_from_first, 2415 bfqd->last_completion - bfqd->first_dispatch); 2416 2417 /* 2418 * Rate computed in sects/usec, and not sects/nsec, for 2419 * precision issues. 2420 */ 2421 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 2422 div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 2423 2424 /* 2425 * Peak rate not updated if: 2426 * - the percentage of sequential dispatches is below 3/4 of the 2427 * total, and rate is below the current estimated peak rate 2428 * - rate is unreasonably high (> 20M sectors/sec) 2429 */ 2430 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 2431 rate <= bfqd->peak_rate) || 2432 rate > 20<<BFQ_RATE_SHIFT) 2433 goto reset_computation; 2434 2435 /* 2436 * We have to update the peak rate, at last! To this purpose, 2437 * we use a low-pass filter. We compute the smoothing constant 2438 * of the filter as a function of the 'weight' of the new 2439 * measured rate. 2440 * 2441 * As can be seen in next formulas, we define this weight as a 2442 * quantity proportional to how sequential the workload is, 2443 * and to how long the observation time interval is. 2444 * 2445 * The weight runs from 0 to 8. The maximum value of the 2446 * weight, 8, yields the minimum value for the smoothing 2447 * constant. At this minimum value for the smoothing constant, 2448 * the measured rate contributes for half of the next value of 2449 * the estimated peak rate. 2450 * 2451 * So, the first step is to compute the weight as a function 2452 * of how sequential the workload is. Note that the weight 2453 * cannot reach 9, because bfqd->sequential_samples cannot 2454 * become equal to bfqd->peak_rate_samples, which, in its 2455 * turn, holds true because bfqd->sequential_samples is not 2456 * incremented for the first sample. 2457 */ 2458 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 2459 2460 /* 2461 * Second step: further refine the weight as a function of the 2462 * duration of the observation interval. 2463 */ 2464 weight = min_t(u32, 8, 2465 div_u64(weight * bfqd->delta_from_first, 2466 BFQ_RATE_REF_INTERVAL)); 2467 2468 /* 2469 * Divisor ranging from 10, for minimum weight, to 2, for 2470 * maximum weight. 2471 */ 2472 divisor = 10 - weight; 2473 2474 /* 2475 * Finally, update peak rate: 2476 * 2477 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 2478 */ 2479 bfqd->peak_rate *= divisor-1; 2480 bfqd->peak_rate /= divisor; 2481 rate /= divisor; /* smoothing constant alpha = 1/divisor */ 2482 2483 bfqd->peak_rate += rate; 2484 update_thr_responsiveness_params(bfqd); 2485 2486 reset_computation: 2487 bfq_reset_rate_computation(bfqd, rq); 2488 } 2489 2490 /* 2491 * Update the read/write peak rate (the main quantity used for 2492 * auto-tuning, see update_thr_responsiveness_params()). 2493 * 2494 * It is not trivial to estimate the peak rate (correctly): because of 2495 * the presence of sw and hw queues between the scheduler and the 2496 * device components that finally serve I/O requests, it is hard to 2497 * say exactly when a given dispatched request is served inside the 2498 * device, and for how long. As a consequence, it is hard to know 2499 * precisely at what rate a given set of requests is actually served 2500 * by the device. 2501 * 2502 * On the opposite end, the dispatch time of any request is trivially 2503 * available, and, from this piece of information, the "dispatch rate" 2504 * of requests can be immediately computed. So, the idea in the next 2505 * function is to use what is known, namely request dispatch times 2506 * (plus, when useful, request completion times), to estimate what is 2507 * unknown, namely in-device request service rate. 2508 * 2509 * The main issue is that, because of the above facts, the rate at 2510 * which a certain set of requests is dispatched over a certain time 2511 * interval can vary greatly with respect to the rate at which the 2512 * same requests are then served. But, since the size of any 2513 * intermediate queue is limited, and the service scheme is lossless 2514 * (no request is silently dropped), the following obvious convergence 2515 * property holds: the number of requests dispatched MUST become 2516 * closer and closer to the number of requests completed as the 2517 * observation interval grows. This is the key property used in 2518 * the next function to estimate the peak service rate as a function 2519 * of the observed dispatch rate. The function assumes to be invoked 2520 * on every request dispatch. 2521 */ 2522 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 2523 { 2524 u64 now_ns = ktime_get_ns(); 2525 2526 if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 2527 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 2528 bfqd->peak_rate_samples); 2529 bfq_reset_rate_computation(bfqd, rq); 2530 goto update_last_values; /* will add one sample */ 2531 } 2532 2533 /* 2534 * Device idle for very long: the observation interval lasting 2535 * up to this dispatch cannot be a valid observation interval 2536 * for computing a new peak rate (similarly to the late- 2537 * completion event in bfq_completed_request()). Go to 2538 * update_rate_and_reset to have the following three steps 2539 * taken: 2540 * - close the observation interval at the last (previous) 2541 * request dispatch or completion 2542 * - compute rate, if possible, for that observation interval 2543 * - start a new observation interval with this dispatch 2544 */ 2545 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 2546 bfqd->rq_in_driver == 0) 2547 goto update_rate_and_reset; 2548 2549 /* Update sampling information */ 2550 bfqd->peak_rate_samples++; 2551 2552 if ((bfqd->rq_in_driver > 0 || 2553 now_ns - bfqd->last_completion < BFQ_MIN_TT) 2554 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) 2555 bfqd->sequential_samples++; 2556 2557 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 2558 2559 /* Reset max observed rq size every 32 dispatches */ 2560 if (likely(bfqd->peak_rate_samples % 32)) 2561 bfqd->last_rq_max_size = 2562 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 2563 else 2564 bfqd->last_rq_max_size = blk_rq_sectors(rq); 2565 2566 bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 2567 2568 /* Target observation interval not yet reached, go on sampling */ 2569 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 2570 goto update_last_values; 2571 2572 update_rate_and_reset: 2573 bfq_update_rate_reset(bfqd, rq); 2574 update_last_values: 2575 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2576 bfqd->last_dispatch = now_ns; 2577 } 2578 2579 /* 2580 * Remove request from internal lists. 2581 */ 2582 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 2583 { 2584 struct bfq_queue *bfqq = RQ_BFQQ(rq); 2585 2586 /* 2587 * For consistency, the next instruction should have been 2588 * executed after removing the request from the queue and 2589 * dispatching it. We execute instead this instruction before 2590 * bfq_remove_request() (and hence introduce a temporary 2591 * inconsistency), for efficiency. In fact, should this 2592 * dispatch occur for a non in-service bfqq, this anticipated 2593 * increment prevents two counters related to bfqq->dispatched 2594 * from risking to be, first, uselessly decremented, and then 2595 * incremented again when the (new) value of bfqq->dispatched 2596 * happens to be taken into account. 2597 */ 2598 bfqq->dispatched++; 2599 bfq_update_peak_rate(q->elevator->elevator_data, rq); 2600 2601 bfq_remove_request(q, rq); 2602 } 2603 2604 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) 2605 { 2606 /* 2607 * If this bfqq is shared between multiple processes, check 2608 * to make sure that those processes are still issuing I/Os 2609 * within the mean seek distance. If not, it may be time to 2610 * break the queues apart again. 2611 */ 2612 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 2613 bfq_mark_bfqq_split_coop(bfqq); 2614 2615 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 2616 if (bfqq->dispatched == 0) 2617 /* 2618 * Overloading budget_timeout field to store 2619 * the time at which the queue remains with no 2620 * backlog and no outstanding request; used by 2621 * the weight-raising mechanism. 2622 */ 2623 bfqq->budget_timeout = jiffies; 2624 2625 bfq_del_bfqq_busy(bfqd, bfqq, true); 2626 } else { 2627 bfq_requeue_bfqq(bfqd, bfqq, true); 2628 /* 2629 * Resort priority tree of potential close cooperators. 2630 */ 2631 bfq_pos_tree_add_move(bfqd, bfqq); 2632 } 2633 2634 /* 2635 * All in-service entities must have been properly deactivated 2636 * or requeued before executing the next function, which 2637 * resets all in-service entites as no more in service. 2638 */ 2639 __bfq_bfqd_reset_in_service(bfqd); 2640 } 2641 2642 /** 2643 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 2644 * @bfqd: device data. 2645 * @bfqq: queue to update. 2646 * @reason: reason for expiration. 2647 * 2648 * Handle the feedback on @bfqq budget at queue expiration. 2649 * See the body for detailed comments. 2650 */ 2651 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 2652 struct bfq_queue *bfqq, 2653 enum bfqq_expiration reason) 2654 { 2655 struct request *next_rq; 2656 int budget, min_budget; 2657 2658 min_budget = bfq_min_budget(bfqd); 2659 2660 if (bfqq->wr_coeff == 1) 2661 budget = bfqq->max_budget; 2662 else /* 2663 * Use a constant, low budget for weight-raised queues, 2664 * to help achieve a low latency. Keep it slightly higher 2665 * than the minimum possible budget, to cause a little 2666 * bit fewer expirations. 2667 */ 2668 budget = 2 * min_budget; 2669 2670 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 2671 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 2672 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 2673 budget, bfq_min_budget(bfqd)); 2674 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 2675 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 2676 2677 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 2678 switch (reason) { 2679 /* 2680 * Caveat: in all the following cases we trade latency 2681 * for throughput. 2682 */ 2683 case BFQQE_TOO_IDLE: 2684 /* 2685 * This is the only case where we may reduce 2686 * the budget: if there is no request of the 2687 * process still waiting for completion, then 2688 * we assume (tentatively) that the timer has 2689 * expired because the batch of requests of 2690 * the process could have been served with a 2691 * smaller budget. Hence, betting that 2692 * process will behave in the same way when it 2693 * becomes backlogged again, we reduce its 2694 * next budget. As long as we guess right, 2695 * this budget cut reduces the latency 2696 * experienced by the process. 2697 * 2698 * However, if there are still outstanding 2699 * requests, then the process may have not yet 2700 * issued its next request just because it is 2701 * still waiting for the completion of some of 2702 * the still outstanding ones. So in this 2703 * subcase we do not reduce its budget, on the 2704 * contrary we increase it to possibly boost 2705 * the throughput, as discussed in the 2706 * comments to the BUDGET_TIMEOUT case. 2707 */ 2708 if (bfqq->dispatched > 0) /* still outstanding reqs */ 2709 budget = min(budget * 2, bfqd->bfq_max_budget); 2710 else { 2711 if (budget > 5 * min_budget) 2712 budget -= 4 * min_budget; 2713 else 2714 budget = min_budget; 2715 } 2716 break; 2717 case BFQQE_BUDGET_TIMEOUT: 2718 /* 2719 * We double the budget here because it gives 2720 * the chance to boost the throughput if this 2721 * is not a seeky process (and has bumped into 2722 * this timeout because of, e.g., ZBR). 2723 */ 2724 budget = min(budget * 2, bfqd->bfq_max_budget); 2725 break; 2726 case BFQQE_BUDGET_EXHAUSTED: 2727 /* 2728 * The process still has backlog, and did not 2729 * let either the budget timeout or the disk 2730 * idling timeout expire. Hence it is not 2731 * seeky, has a short thinktime and may be 2732 * happy with a higher budget too. So 2733 * definitely increase the budget of this good 2734 * candidate to boost the disk throughput. 2735 */ 2736 budget = min(budget * 4, bfqd->bfq_max_budget); 2737 break; 2738 case BFQQE_NO_MORE_REQUESTS: 2739 /* 2740 * For queues that expire for this reason, it 2741 * is particularly important to keep the 2742 * budget close to the actual service they 2743 * need. Doing so reduces the timestamp 2744 * misalignment problem described in the 2745 * comments in the body of 2746 * __bfq_activate_entity. In fact, suppose 2747 * that a queue systematically expires for 2748 * BFQQE_NO_MORE_REQUESTS and presents a 2749 * new request in time to enjoy timestamp 2750 * back-shifting. The larger the budget of the 2751 * queue is with respect to the service the 2752 * queue actually requests in each service 2753 * slot, the more times the queue can be 2754 * reactivated with the same virtual finish 2755 * time. It follows that, even if this finish 2756 * time is pushed to the system virtual time 2757 * to reduce the consequent timestamp 2758 * misalignment, the queue unjustly enjoys for 2759 * many re-activations a lower finish time 2760 * than all newly activated queues. 2761 * 2762 * The service needed by bfqq is measured 2763 * quite precisely by bfqq->entity.service. 2764 * Since bfqq does not enjoy device idling, 2765 * bfqq->entity.service is equal to the number 2766 * of sectors that the process associated with 2767 * bfqq requested to read/write before waiting 2768 * for request completions, or blocking for 2769 * other reasons. 2770 */ 2771 budget = max_t(int, bfqq->entity.service, min_budget); 2772 break; 2773 default: 2774 return; 2775 } 2776 } else if (!bfq_bfqq_sync(bfqq)) { 2777 /* 2778 * Async queues get always the maximum possible 2779 * budget, as for them we do not care about latency 2780 * (in addition, their ability to dispatch is limited 2781 * by the charging factor). 2782 */ 2783 budget = bfqd->bfq_max_budget; 2784 } 2785 2786 bfqq->max_budget = budget; 2787 2788 if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 2789 !bfqd->bfq_user_max_budget) 2790 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 2791 2792 /* 2793 * If there is still backlog, then assign a new budget, making 2794 * sure that it is large enough for the next request. Since 2795 * the finish time of bfqq must be kept in sync with the 2796 * budget, be sure to call __bfq_bfqq_expire() *after* this 2797 * update. 2798 * 2799 * If there is no backlog, then no need to update the budget; 2800 * it will be updated on the arrival of a new request. 2801 */ 2802 next_rq = bfqq->next_rq; 2803 if (next_rq) 2804 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 2805 bfq_serv_to_charge(next_rq, bfqq)); 2806 2807 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 2808 next_rq ? blk_rq_sectors(next_rq) : 0, 2809 bfqq->entity.budget); 2810 } 2811 2812 /* 2813 * Return true if the process associated with bfqq is "slow". The slow 2814 * flag is used, in addition to the budget timeout, to reduce the 2815 * amount of service provided to seeky processes, and thus reduce 2816 * their chances to lower the throughput. More details in the comments 2817 * on the function bfq_bfqq_expire(). 2818 * 2819 * An important observation is in order: as discussed in the comments 2820 * on the function bfq_update_peak_rate(), with devices with internal 2821 * queues, it is hard if ever possible to know when and for how long 2822 * an I/O request is processed by the device (apart from the trivial 2823 * I/O pattern where a new request is dispatched only after the 2824 * previous one has been completed). This makes it hard to evaluate 2825 * the real rate at which the I/O requests of each bfq_queue are 2826 * served. In fact, for an I/O scheduler like BFQ, serving a 2827 * bfq_queue means just dispatching its requests during its service 2828 * slot (i.e., until the budget of the queue is exhausted, or the 2829 * queue remains idle, or, finally, a timeout fires). But, during the 2830 * service slot of a bfq_queue, around 100 ms at most, the device may 2831 * be even still processing requests of bfq_queues served in previous 2832 * service slots. On the opposite end, the requests of the in-service 2833 * bfq_queue may be completed after the service slot of the queue 2834 * finishes. 2835 * 2836 * Anyway, unless more sophisticated solutions are used 2837 * (where possible), the sum of the sizes of the requests dispatched 2838 * during the service slot of a bfq_queue is probably the only 2839 * approximation available for the service received by the bfq_queue 2840 * during its service slot. And this sum is the quantity used in this 2841 * function to evaluate the I/O speed of a process. 2842 */ 2843 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2844 bool compensate, enum bfqq_expiration reason, 2845 unsigned long *delta_ms) 2846 { 2847 ktime_t delta_ktime; 2848 u32 delta_usecs; 2849 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 2850 2851 if (!bfq_bfqq_sync(bfqq)) 2852 return false; 2853 2854 if (compensate) 2855 delta_ktime = bfqd->last_idling_start; 2856 else 2857 delta_ktime = ktime_get(); 2858 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 2859 delta_usecs = ktime_to_us(delta_ktime); 2860 2861 /* don't use too short time intervals */ 2862 if (delta_usecs < 1000) { 2863 if (blk_queue_nonrot(bfqd->queue)) 2864 /* 2865 * give same worst-case guarantees as idling 2866 * for seeky 2867 */ 2868 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 2869 else /* charge at least one seek */ 2870 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 2871 2872 return slow; 2873 } 2874 2875 *delta_ms = delta_usecs / USEC_PER_MSEC; 2876 2877 /* 2878 * Use only long (> 20ms) intervals to filter out excessive 2879 * spikes in service rate estimation. 2880 */ 2881 if (delta_usecs > 20000) { 2882 /* 2883 * Caveat for rotational devices: processes doing I/O 2884 * in the slower disk zones tend to be slow(er) even 2885 * if not seeky. In this respect, the estimated peak 2886 * rate is likely to be an average over the disk 2887 * surface. Accordingly, to not be too harsh with 2888 * unlucky processes, a process is deemed slow only if 2889 * its rate has been lower than half of the estimated 2890 * peak rate. 2891 */ 2892 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 2893 } 2894 2895 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 2896 2897 return slow; 2898 } 2899 2900 /* 2901 * To be deemed as soft real-time, an application must meet two 2902 * requirements. First, the application must not require an average 2903 * bandwidth higher than the approximate bandwidth required to playback or 2904 * record a compressed high-definition video. 2905 * The next function is invoked on the completion of the last request of a 2906 * batch, to compute the next-start time instant, soft_rt_next_start, such 2907 * that, if the next request of the application does not arrive before 2908 * soft_rt_next_start, then the above requirement on the bandwidth is met. 2909 * 2910 * The second requirement is that the request pattern of the application is 2911 * isochronous, i.e., that, after issuing a request or a batch of requests, 2912 * the application stops issuing new requests until all its pending requests 2913 * have been completed. After that, the application may issue a new batch, 2914 * and so on. 2915 * For this reason the next function is invoked to compute 2916 * soft_rt_next_start only for applications that meet this requirement, 2917 * whereas soft_rt_next_start is set to infinity for applications that do 2918 * not. 2919 * 2920 * Unfortunately, even a greedy application may happen to behave in an 2921 * isochronous way if the CPU load is high. In fact, the application may 2922 * stop issuing requests while the CPUs are busy serving other processes, 2923 * then restart, then stop again for a while, and so on. In addition, if 2924 * the disk achieves a low enough throughput with the request pattern 2925 * issued by the application (e.g., because the request pattern is random 2926 * and/or the device is slow), then the application may meet the above 2927 * bandwidth requirement too. To prevent such a greedy application to be 2928 * deemed as soft real-time, a further rule is used in the computation of 2929 * soft_rt_next_start: soft_rt_next_start must be higher than the current 2930 * time plus the maximum time for which the arrival of a request is waited 2931 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. 2932 * This filters out greedy applications, as the latter issue instead their 2933 * next request as soon as possible after the last one has been completed 2934 * (in contrast, when a batch of requests is completed, a soft real-time 2935 * application spends some time processing data). 2936 * 2937 * Unfortunately, the last filter may easily generate false positives if 2938 * only bfqd->bfq_slice_idle is used as a reference time interval and one 2939 * or both the following cases occur: 2940 * 1) HZ is so low that the duration of a jiffy is comparable to or higher 2941 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with 2942 * HZ=100. 2943 * 2) jiffies, instead of increasing at a constant rate, may stop increasing 2944 * for a while, then suddenly 'jump' by several units to recover the lost 2945 * increments. This seems to happen, e.g., inside virtual machines. 2946 * To address this issue, we do not use as a reference time interval just 2947 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In 2948 * particular we add the minimum number of jiffies for which the filter 2949 * seems to be quite precise also in embedded systems and KVM/QEMU virtual 2950 * machines. 2951 */ 2952 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 2953 struct bfq_queue *bfqq) 2954 { 2955 return max(bfqq->last_idle_bklogged + 2956 HZ * bfqq->service_from_backlogged / 2957 bfqd->bfq_wr_max_softrt_rate, 2958 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 2959 } 2960 2961 /** 2962 * bfq_bfqq_expire - expire a queue. 2963 * @bfqd: device owning the queue. 2964 * @bfqq: the queue to expire. 2965 * @compensate: if true, compensate for the time spent idling. 2966 * @reason: the reason causing the expiration. 2967 * 2968 * If the process associated with bfqq does slow I/O (e.g., because it 2969 * issues random requests), we charge bfqq with the time it has been 2970 * in service instead of the service it has received (see 2971 * bfq_bfqq_charge_time for details on how this goal is achieved). As 2972 * a consequence, bfqq will typically get higher timestamps upon 2973 * reactivation, and hence it will be rescheduled as if it had 2974 * received more service than what it has actually received. In the 2975 * end, bfqq receives less service in proportion to how slowly its 2976 * associated process consumes its budgets (and hence how seriously it 2977 * tends to lower the throughput). In addition, this time-charging 2978 * strategy guarantees time fairness among slow processes. In 2979 * contrast, if the process associated with bfqq is not slow, we 2980 * charge bfqq exactly with the service it has received. 2981 * 2982 * Charging time to the first type of queues and the exact service to 2983 * the other has the effect of using the WF2Q+ policy to schedule the 2984 * former on a timeslice basis, without violating service domain 2985 * guarantees among the latter. 2986 */ 2987 void bfq_bfqq_expire(struct bfq_data *bfqd, 2988 struct bfq_queue *bfqq, 2989 bool compensate, 2990 enum bfqq_expiration reason) 2991 { 2992 bool slow; 2993 unsigned long delta = 0; 2994 struct bfq_entity *entity = &bfqq->entity; 2995 int ref; 2996 2997 /* 2998 * Check whether the process is slow (see bfq_bfqq_is_slow). 2999 */ 3000 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); 3001 3002 /* 3003 * Increase service_from_backlogged before next statement, 3004 * because the possible next invocation of 3005 * bfq_bfqq_charge_time would likely inflate 3006 * entity->service. In contrast, service_from_backlogged must 3007 * contain real service, to enable the soft real-time 3008 * heuristic to correctly compute the bandwidth consumed by 3009 * bfqq. 3010 */ 3011 bfqq->service_from_backlogged += entity->service; 3012 3013 /* 3014 * As above explained, charge slow (typically seeky) and 3015 * timed-out queues with the time and not the service 3016 * received, to favor sequential workloads. 3017 * 3018 * Processes doing I/O in the slower disk zones will tend to 3019 * be slow(er) even if not seeky. Therefore, since the 3020 * estimated peak rate is actually an average over the disk 3021 * surface, these processes may timeout just for bad luck. To 3022 * avoid punishing them, do not charge time to processes that 3023 * succeeded in consuming at least 2/3 of their budget. This 3024 * allows BFQ to preserve enough elasticity to still perform 3025 * bandwidth, and not time, distribution with little unlucky 3026 * or quasi-sequential processes. 3027 */ 3028 if (bfqq->wr_coeff == 1 && 3029 (slow || 3030 (reason == BFQQE_BUDGET_TIMEOUT && 3031 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 3032 bfq_bfqq_charge_time(bfqd, bfqq, delta); 3033 3034 if (reason == BFQQE_TOO_IDLE && 3035 entity->service <= 2 * entity->budget / 10) 3036 bfq_clear_bfqq_IO_bound(bfqq); 3037 3038 if (bfqd->low_latency && bfqq->wr_coeff == 1) 3039 bfqq->last_wr_start_finish = jiffies; 3040 3041 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 3042 RB_EMPTY_ROOT(&bfqq->sort_list)) { 3043 /* 3044 * If we get here, and there are no outstanding 3045 * requests, then the request pattern is isochronous 3046 * (see the comments on the function 3047 * bfq_bfqq_softrt_next_start()). Thus we can compute 3048 * soft_rt_next_start. If, instead, the queue still 3049 * has outstanding requests, then we have to wait for 3050 * the completion of all the outstanding requests to 3051 * discover whether the request pattern is actually 3052 * isochronous. 3053 */ 3054 if (bfqq->dispatched == 0) 3055 bfqq->soft_rt_next_start = 3056 bfq_bfqq_softrt_next_start(bfqd, bfqq); 3057 else { 3058 /* 3059 * The application is still waiting for the 3060 * completion of one or more requests: 3061 * prevent it from possibly being incorrectly 3062 * deemed as soft real-time by setting its 3063 * soft_rt_next_start to infinity. In fact, 3064 * without this assignment, the application 3065 * would be incorrectly deemed as soft 3066 * real-time if: 3067 * 1) it issued a new request before the 3068 * completion of all its in-flight 3069 * requests, and 3070 * 2) at that time, its soft_rt_next_start 3071 * happened to be in the past. 3072 */ 3073 bfqq->soft_rt_next_start = 3074 bfq_greatest_from_now(); 3075 /* 3076 * Schedule an update of soft_rt_next_start to when 3077 * the task may be discovered to be isochronous. 3078 */ 3079 bfq_mark_bfqq_softrt_update(bfqq); 3080 } 3081 } 3082 3083 bfq_log_bfqq(bfqd, bfqq, 3084 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason, 3085 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq)); 3086 3087 /* 3088 * Increase, decrease or leave budget unchanged according to 3089 * reason. 3090 */ 3091 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 3092 ref = bfqq->ref; 3093 __bfq_bfqq_expire(bfqd, bfqq); 3094 3095 /* mark bfqq as waiting a request only if a bic still points to it */ 3096 if (ref > 1 && !bfq_bfqq_busy(bfqq) && 3097 reason != BFQQE_BUDGET_TIMEOUT && 3098 reason != BFQQE_BUDGET_EXHAUSTED) 3099 bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 3100 } 3101 3102 /* 3103 * Budget timeout is not implemented through a dedicated timer, but 3104 * just checked on request arrivals and completions, as well as on 3105 * idle timer expirations. 3106 */ 3107 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 3108 { 3109 return time_is_before_eq_jiffies(bfqq->budget_timeout); 3110 } 3111 3112 /* 3113 * If we expire a queue that is actively waiting (i.e., with the 3114 * device idled) for the arrival of a new request, then we may incur 3115 * the timestamp misalignment problem described in the body of the 3116 * function __bfq_activate_entity. Hence we return true only if this 3117 * condition does not hold, or if the queue is slow enough to deserve 3118 * only to be kicked off for preserving a high throughput. 3119 */ 3120 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 3121 { 3122 bfq_log_bfqq(bfqq->bfqd, bfqq, 3123 "may_budget_timeout: wait_request %d left %d timeout %d", 3124 bfq_bfqq_wait_request(bfqq), 3125 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 3126 bfq_bfqq_budget_timeout(bfqq)); 3127 3128 return (!bfq_bfqq_wait_request(bfqq) || 3129 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 3130 && 3131 bfq_bfqq_budget_timeout(bfqq); 3132 } 3133 3134 /* 3135 * For a queue that becomes empty, device idling is allowed only if 3136 * this function returns true for the queue. As a consequence, since 3137 * device idling plays a critical role in both throughput boosting and 3138 * service guarantees, the return value of this function plays a 3139 * critical role in both these aspects as well. 3140 * 3141 * In a nutshell, this function returns true only if idling is 3142 * beneficial for throughput or, even if detrimental for throughput, 3143 * idling is however necessary to preserve service guarantees (low 3144 * latency, desired throughput distribution, ...). In particular, on 3145 * NCQ-capable devices, this function tries to return false, so as to 3146 * help keep the drives' internal queues full, whenever this helps the 3147 * device boost the throughput without causing any service-guarantee 3148 * issue. 3149 * 3150 * In more detail, the return value of this function is obtained by, 3151 * first, computing a number of boolean variables that take into 3152 * account throughput and service-guarantee issues, and, then, 3153 * combining these variables in a logical expression. Most of the 3154 * issues taken into account are not trivial. We discuss these issues 3155 * individually while introducing the variables. 3156 */ 3157 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) 3158 { 3159 struct bfq_data *bfqd = bfqq->bfqd; 3160 bool rot_without_queueing = 3161 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag, 3162 bfqq_sequential_and_IO_bound, 3163 idling_boosts_thr, idling_boosts_thr_without_issues, 3164 idling_needed_for_service_guarantees, 3165 asymmetric_scenario; 3166 3167 if (bfqd->strict_guarantees) 3168 return true; 3169 3170 /* 3171 * Idling is performed only if slice_idle > 0. In addition, we 3172 * do not idle if 3173 * (a) bfqq is async 3174 * (b) bfqq is in the idle io prio class: in this case we do 3175 * not idle because we want to minimize the bandwidth that 3176 * queues in this class can steal to higher-priority queues 3177 */ 3178 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) || 3179 bfq_class_idle(bfqq)) 3180 return false; 3181 3182 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) && 3183 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq); 3184 3185 /* 3186 * The next variable takes into account the cases where idling 3187 * boosts the throughput. 3188 * 3189 * The value of the variable is computed considering, first, that 3190 * idling is virtually always beneficial for the throughput if: 3191 * (a) the device is not NCQ-capable and rotational, or 3192 * (b) regardless of the presence of NCQ, the device is rotational and 3193 * the request pattern for bfqq is I/O-bound and sequential, or 3194 * (c) regardless of whether it is rotational, the device is 3195 * not NCQ-capable and the request pattern for bfqq is 3196 * I/O-bound and sequential. 3197 * 3198 * Secondly, and in contrast to the above item (b), idling an 3199 * NCQ-capable flash-based device would not boost the 3200 * throughput even with sequential I/O; rather it would lower 3201 * the throughput in proportion to how fast the device 3202 * is. Accordingly, the next variable is true if any of the 3203 * above conditions (a), (b) or (c) is true, and, in 3204 * particular, happens to be false if bfqd is an NCQ-capable 3205 * flash-based device. 3206 */ 3207 idling_boosts_thr = rot_without_queueing || 3208 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) && 3209 bfqq_sequential_and_IO_bound); 3210 3211 /* 3212 * The value of the next variable, 3213 * idling_boosts_thr_without_issues, is equal to that of 3214 * idling_boosts_thr, unless a special case holds. In this 3215 * special case, described below, idling may cause problems to 3216 * weight-raised queues. 3217 * 3218 * When the request pool is saturated (e.g., in the presence 3219 * of write hogs), if the processes associated with 3220 * non-weight-raised queues ask for requests at a lower rate, 3221 * then processes associated with weight-raised queues have a 3222 * higher probability to get a request from the pool 3223 * immediately (or at least soon) when they need one. Thus 3224 * they have a higher probability to actually get a fraction 3225 * of the device throughput proportional to their high 3226 * weight. This is especially true with NCQ-capable drives, 3227 * which enqueue several requests in advance, and further 3228 * reorder internally-queued requests. 3229 * 3230 * For this reason, we force to false the value of 3231 * idling_boosts_thr_without_issues if there are weight-raised 3232 * busy queues. In this case, and if bfqq is not weight-raised, 3233 * this guarantees that the device is not idled for bfqq (if, 3234 * instead, bfqq is weight-raised, then idling will be 3235 * guaranteed by another variable, see below). Combined with 3236 * the timestamping rules of BFQ (see [1] for details), this 3237 * behavior causes bfqq, and hence any sync non-weight-raised 3238 * queue, to get a lower number of requests served, and thus 3239 * to ask for a lower number of requests from the request 3240 * pool, before the busy weight-raised queues get served 3241 * again. This often mitigates starvation problems in the 3242 * presence of heavy write workloads and NCQ, thereby 3243 * guaranteeing a higher application and system responsiveness 3244 * in these hostile scenarios. 3245 */ 3246 idling_boosts_thr_without_issues = idling_boosts_thr && 3247 bfqd->wr_busy_queues == 0; 3248 3249 /* 3250 * There is then a case where idling must be performed not 3251 * for throughput concerns, but to preserve service 3252 * guarantees. 3253 * 3254 * To introduce this case, we can note that allowing the drive 3255 * to enqueue more than one request at a time, and hence 3256 * delegating de facto final scheduling decisions to the 3257 * drive's internal scheduler, entails loss of control on the 3258 * actual request service order. In particular, the critical 3259 * situation is when requests from different processes happen 3260 * to be present, at the same time, in the internal queue(s) 3261 * of the drive. In such a situation, the drive, by deciding 3262 * the service order of the internally-queued requests, does 3263 * determine also the actual throughput distribution among 3264 * these processes. But the drive typically has no notion or 3265 * concern about per-process throughput distribution, and 3266 * makes its decisions only on a per-request basis. Therefore, 3267 * the service distribution enforced by the drive's internal 3268 * scheduler is likely to coincide with the desired 3269 * device-throughput distribution only in a completely 3270 * symmetric scenario where: 3271 * (i) each of these processes must get the same throughput as 3272 * the others; 3273 * (ii) all these processes have the same I/O pattern 3274 (either sequential or random). 3275 * In fact, in such a scenario, the drive will tend to treat 3276 * the requests of each of these processes in about the same 3277 * way as the requests of the others, and thus to provide 3278 * each of these processes with about the same throughput 3279 * (which is exactly the desired throughput distribution). In 3280 * contrast, in any asymmetric scenario, device idling is 3281 * certainly needed to guarantee that bfqq receives its 3282 * assigned fraction of the device throughput (see [1] for 3283 * details). 3284 * 3285 * We address this issue by controlling, actually, only the 3286 * symmetry sub-condition (i), i.e., provided that 3287 * sub-condition (i) holds, idling is not performed, 3288 * regardless of whether sub-condition (ii) holds. In other 3289 * words, only if sub-condition (i) holds, then idling is 3290 * allowed, and the device tends to be prevented from queueing 3291 * many requests, possibly of several processes. The reason 3292 * for not controlling also sub-condition (ii) is that we 3293 * exploit preemption to preserve guarantees in case of 3294 * symmetric scenarios, even if (ii) does not hold, as 3295 * explained in the next two paragraphs. 3296 * 3297 * Even if a queue, say Q, is expired when it remains idle, Q 3298 * can still preempt the new in-service queue if the next 3299 * request of Q arrives soon (see the comments on 3300 * bfq_bfqq_update_budg_for_activation). If all queues and 3301 * groups have the same weight, this form of preemption, 3302 * combined with the hole-recovery heuristic described in the 3303 * comments on function bfq_bfqq_update_budg_for_activation, 3304 * are enough to preserve a correct bandwidth distribution in 3305 * the mid term, even without idling. In fact, even if not 3306 * idling allows the internal queues of the device to contain 3307 * many requests, and thus to reorder requests, we can rather 3308 * safely assume that the internal scheduler still preserves a 3309 * minimum of mid-term fairness. The motivation for using 3310 * preemption instead of idling is that, by not idling, 3311 * service guarantees are preserved without minimally 3312 * sacrificing throughput. In other words, both a high 3313 * throughput and its desired distribution are obtained. 3314 * 3315 * More precisely, this preemption-based, idleless approach 3316 * provides fairness in terms of IOPS, and not sectors per 3317 * second. This can be seen with a simple example. Suppose 3318 * that there are two queues with the same weight, but that 3319 * the first queue receives requests of 8 sectors, while the 3320 * second queue receives requests of 1024 sectors. In 3321 * addition, suppose that each of the two queues contains at 3322 * most one request at a time, which implies that each queue 3323 * always remains idle after it is served. Finally, after 3324 * remaining idle, each queue receives very quickly a new 3325 * request. It follows that the two queues are served 3326 * alternatively, preempting each other if needed. This 3327 * implies that, although both queues have the same weight, 3328 * the queue with large requests receives a service that is 3329 * 1024/8 times as high as the service received by the other 3330 * queue. 3331 * 3332 * On the other hand, device idling is performed, and thus 3333 * pure sector-domain guarantees are provided, for the 3334 * following queues, which are likely to need stronger 3335 * throughput guarantees: weight-raised queues, and queues 3336 * with a higher weight than other queues. When such queues 3337 * are active, sub-condition (i) is false, which triggers 3338 * device idling. 3339 * 3340 * According to the above considerations, the next variable is 3341 * true (only) if sub-condition (i) holds. To compute the 3342 * value of this variable, we not only use the return value of 3343 * the function bfq_symmetric_scenario(), but also check 3344 * whether bfqq is being weight-raised, because 3345 * bfq_symmetric_scenario() does not take into account also 3346 * weight-raised queues (see comments on 3347 * bfq_weights_tree_add()). 3348 * 3349 * As a side note, it is worth considering that the above 3350 * device-idling countermeasures may however fail in the 3351 * following unlucky scenario: if idling is (correctly) 3352 * disabled in a time period during which all symmetry 3353 * sub-conditions hold, and hence the device is allowed to 3354 * enqueue many requests, but at some later point in time some 3355 * sub-condition stops to hold, then it may become impossible 3356 * to let requests be served in the desired order until all 3357 * the requests already queued in the device have been served. 3358 */ 3359 asymmetric_scenario = bfqq->wr_coeff > 1 || 3360 !bfq_symmetric_scenario(bfqd); 3361 3362 /* 3363 * Finally, there is a case where maximizing throughput is the 3364 * best choice even if it may cause unfairness toward 3365 * bfqq. Such a case is when bfqq became active in a burst of 3366 * queue activations. Queues that became active during a large 3367 * burst benefit only from throughput, as discussed in the 3368 * comments on bfq_handle_burst. Thus, if bfqq became active 3369 * in a burst and not idling the device maximizes throughput, 3370 * then the device must no be idled, because not idling the 3371 * device provides bfqq and all other queues in the burst with 3372 * maximum benefit. Combining this and the above case, we can 3373 * now establish when idling is actually needed to preserve 3374 * service guarantees. 3375 */ 3376 idling_needed_for_service_guarantees = 3377 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq); 3378 3379 /* 3380 * We have now all the components we need to compute the 3381 * return value of the function, which is true only if idling 3382 * either boosts the throughput (without issues), or is 3383 * necessary to preserve service guarantees. 3384 */ 3385 return idling_boosts_thr_without_issues || 3386 idling_needed_for_service_guarantees; 3387 } 3388 3389 /* 3390 * If the in-service queue is empty but the function bfq_bfqq_may_idle 3391 * returns true, then: 3392 * 1) the queue must remain in service and cannot be expired, and 3393 * 2) the device must be idled to wait for the possible arrival of a new 3394 * request for the queue. 3395 * See the comments on the function bfq_bfqq_may_idle for the reasons 3396 * why performing device idling is the best choice to boost the throughput 3397 * and preserve service guarantees when bfq_bfqq_may_idle itself 3398 * returns true. 3399 */ 3400 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 3401 { 3402 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq); 3403 } 3404 3405 /* 3406 * Select a queue for service. If we have a current queue in service, 3407 * check whether to continue servicing it, or retrieve and set a new one. 3408 */ 3409 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 3410 { 3411 struct bfq_queue *bfqq; 3412 struct request *next_rq; 3413 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 3414 3415 bfqq = bfqd->in_service_queue; 3416 if (!bfqq) 3417 goto new_queue; 3418 3419 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 3420 3421 if (bfq_may_expire_for_budg_timeout(bfqq) && 3422 !bfq_bfqq_wait_request(bfqq) && 3423 !bfq_bfqq_must_idle(bfqq)) 3424 goto expire; 3425 3426 check_queue: 3427 /* 3428 * This loop is rarely executed more than once. Even when it 3429 * happens, it is much more convenient to re-execute this loop 3430 * than to return NULL and trigger a new dispatch to get a 3431 * request served. 3432 */ 3433 next_rq = bfqq->next_rq; 3434 /* 3435 * If bfqq has requests queued and it has enough budget left to 3436 * serve them, keep the queue, otherwise expire it. 3437 */ 3438 if (next_rq) { 3439 if (bfq_serv_to_charge(next_rq, bfqq) > 3440 bfq_bfqq_budget_left(bfqq)) { 3441 /* 3442 * Expire the queue for budget exhaustion, 3443 * which makes sure that the next budget is 3444 * enough to serve the next request, even if 3445 * it comes from the fifo expired path. 3446 */ 3447 reason = BFQQE_BUDGET_EXHAUSTED; 3448 goto expire; 3449 } else { 3450 /* 3451 * The idle timer may be pending because we may 3452 * not disable disk idling even when a new request 3453 * arrives. 3454 */ 3455 if (bfq_bfqq_wait_request(bfqq)) { 3456 /* 3457 * If we get here: 1) at least a new request 3458 * has arrived but we have not disabled the 3459 * timer because the request was too small, 3460 * 2) then the block layer has unplugged 3461 * the device, causing the dispatch to be 3462 * invoked. 3463 * 3464 * Since the device is unplugged, now the 3465 * requests are probably large enough to 3466 * provide a reasonable throughput. 3467 * So we disable idling. 3468 */ 3469 bfq_clear_bfqq_wait_request(bfqq); 3470 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 3471 } 3472 goto keep_queue; 3473 } 3474 } 3475 3476 /* 3477 * No requests pending. However, if the in-service queue is idling 3478 * for a new request, or has requests waiting for a completion and 3479 * may idle after their completion, then keep it anyway. 3480 */ 3481 if (bfq_bfqq_wait_request(bfqq) || 3482 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { 3483 bfqq = NULL; 3484 goto keep_queue; 3485 } 3486 3487 reason = BFQQE_NO_MORE_REQUESTS; 3488 expire: 3489 bfq_bfqq_expire(bfqd, bfqq, false, reason); 3490 new_queue: 3491 bfqq = bfq_set_in_service_queue(bfqd); 3492 if (bfqq) { 3493 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 3494 goto check_queue; 3495 } 3496 keep_queue: 3497 if (bfqq) 3498 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 3499 else 3500 bfq_log(bfqd, "select_queue: no queue returned"); 3501 3502 return bfqq; 3503 } 3504 3505 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3506 { 3507 struct bfq_entity *entity = &bfqq->entity; 3508 3509 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 3510 bfq_log_bfqq(bfqd, bfqq, 3511 "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 3512 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 3513 jiffies_to_msecs(bfqq->wr_cur_max_time), 3514 bfqq->wr_coeff, 3515 bfqq->entity.weight, bfqq->entity.orig_weight); 3516 3517 if (entity->prio_changed) 3518 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 3519 3520 /* 3521 * If the queue was activated in a burst, or too much 3522 * time has elapsed from the beginning of this 3523 * weight-raising period, then end weight raising. 3524 */ 3525 if (bfq_bfqq_in_large_burst(bfqq)) 3526 bfq_bfqq_end_wr(bfqq); 3527 else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 3528 bfqq->wr_cur_max_time)) { 3529 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 3530 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 3531 bfq_wr_duration(bfqd))) 3532 bfq_bfqq_end_wr(bfqq); 3533 else { 3534 switch_back_to_interactive_wr(bfqq, bfqd); 3535 bfqq->entity.prio_changed = 1; 3536 } 3537 } 3538 } 3539 /* 3540 * To improve latency (for this or other queues), immediately 3541 * update weight both if it must be raised and if it must be 3542 * lowered. Since, entity may be on some active tree here, and 3543 * might have a pending change of its ioprio class, invoke 3544 * next function with the last parameter unset (see the 3545 * comments on the function). 3546 */ 3547 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 3548 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity), 3549 entity, false); 3550 } 3551 3552 /* 3553 * Dispatch next request from bfqq. 3554 */ 3555 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 3556 struct bfq_queue *bfqq) 3557 { 3558 struct request *rq = bfqq->next_rq; 3559 unsigned long service_to_charge; 3560 3561 service_to_charge = bfq_serv_to_charge(rq, bfqq); 3562 3563 bfq_bfqq_served(bfqq, service_to_charge); 3564 3565 bfq_dispatch_remove(bfqd->queue, rq); 3566 3567 /* 3568 * If weight raising has to terminate for bfqq, then next 3569 * function causes an immediate update of bfqq's weight, 3570 * without waiting for next activation. As a consequence, on 3571 * expiration, bfqq will be timestamped as if has never been 3572 * weight-raised during this service slot, even if it has 3573 * received part or even most of the service as a 3574 * weight-raised queue. This inflates bfqq's timestamps, which 3575 * is beneficial, as bfqq is then more willing to leave the 3576 * device immediately to possible other weight-raised queues. 3577 */ 3578 bfq_update_wr_data(bfqd, bfqq); 3579 3580 /* 3581 * Expire bfqq, pretending that its budget expired, if bfqq 3582 * belongs to CLASS_IDLE and other queues are waiting for 3583 * service. 3584 */ 3585 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) 3586 goto expire; 3587 3588 return rq; 3589 3590 expire: 3591 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 3592 return rq; 3593 } 3594 3595 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 3596 { 3597 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3598 3599 /* 3600 * Avoiding lock: a race on bfqd->busy_queues should cause at 3601 * most a call to dispatch for nothing 3602 */ 3603 return !list_empty_careful(&bfqd->dispatch) || 3604 bfqd->busy_queues > 0; 3605 } 3606 3607 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3608 { 3609 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3610 struct request *rq = NULL; 3611 struct bfq_queue *bfqq = NULL; 3612 3613 if (!list_empty(&bfqd->dispatch)) { 3614 rq = list_first_entry(&bfqd->dispatch, struct request, 3615 queuelist); 3616 list_del_init(&rq->queuelist); 3617 3618 bfqq = RQ_BFQQ(rq); 3619 3620 if (bfqq) { 3621 /* 3622 * Increment counters here, because this 3623 * dispatch does not follow the standard 3624 * dispatch flow (where counters are 3625 * incremented) 3626 */ 3627 bfqq->dispatched++; 3628 3629 goto inc_in_driver_start_rq; 3630 } 3631 3632 /* 3633 * We exploit the put_rq_private hook to decrement 3634 * rq_in_driver, but put_rq_private will not be 3635 * invoked on this request. So, to avoid unbalance, 3636 * just start this request, without incrementing 3637 * rq_in_driver. As a negative consequence, 3638 * rq_in_driver is deceptively lower than it should be 3639 * while this request is in service. This may cause 3640 * bfq_schedule_dispatch to be invoked uselessly. 3641 * 3642 * As for implementing an exact solution, the 3643 * put_request hook, if defined, is probably invoked 3644 * also on this request. So, by exploiting this hook, 3645 * we could 1) increment rq_in_driver here, and 2) 3646 * decrement it in put_request. Such a solution would 3647 * let the value of the counter be always accurate, 3648 * but it would entail using an extra interface 3649 * function. This cost seems higher than the benefit, 3650 * being the frequency of non-elevator-private 3651 * requests very low. 3652 */ 3653 goto start_rq; 3654 } 3655 3656 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); 3657 3658 if (bfqd->busy_queues == 0) 3659 goto exit; 3660 3661 /* 3662 * Force device to serve one request at a time if 3663 * strict_guarantees is true. Forcing this service scheme is 3664 * currently the ONLY way to guarantee that the request 3665 * service order enforced by the scheduler is respected by a 3666 * queueing device. Otherwise the device is free even to make 3667 * some unlucky request wait for as long as the device 3668 * wishes. 3669 * 3670 * Of course, serving one request at at time may cause loss of 3671 * throughput. 3672 */ 3673 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) 3674 goto exit; 3675 3676 bfqq = bfq_select_queue(bfqd); 3677 if (!bfqq) 3678 goto exit; 3679 3680 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 3681 3682 if (rq) { 3683 inc_in_driver_start_rq: 3684 bfqd->rq_in_driver++; 3685 start_rq: 3686 rq->rq_flags |= RQF_STARTED; 3687 } 3688 exit: 3689 return rq; 3690 } 3691 3692 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3693 { 3694 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3695 struct request *rq; 3696 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 3697 struct bfq_queue *in_serv_queue, *bfqq; 3698 bool waiting_rq, idle_timer_disabled; 3699 #endif 3700 3701 spin_lock_irq(&bfqd->lock); 3702 3703 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 3704 in_serv_queue = bfqd->in_service_queue; 3705 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue); 3706 3707 rq = __bfq_dispatch_request(hctx); 3708 3709 idle_timer_disabled = 3710 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue); 3711 3712 #else 3713 rq = __bfq_dispatch_request(hctx); 3714 #endif 3715 spin_unlock_irq(&bfqd->lock); 3716 3717 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 3718 bfqq = rq ? RQ_BFQQ(rq) : NULL; 3719 if (!idle_timer_disabled && !bfqq) 3720 return rq; 3721 3722 /* 3723 * rq and bfqq are guaranteed to exist until this function 3724 * ends, for the following reasons. First, rq can be 3725 * dispatched to the device, and then can be completed and 3726 * freed, only after this function ends. Second, rq cannot be 3727 * merged (and thus freed because of a merge) any longer, 3728 * because it has already started. Thus rq cannot be freed 3729 * before this function ends, and, since rq has a reference to 3730 * bfqq, the same guarantee holds for bfqq too. 3731 * 3732 * In addition, the following queue lock guarantees that 3733 * bfqq_group(bfqq) exists as well. 3734 */ 3735 spin_lock_irq(hctx->queue->queue_lock); 3736 if (idle_timer_disabled) 3737 /* 3738 * Since the idle timer has been disabled, 3739 * in_serv_queue contained some request when 3740 * __bfq_dispatch_request was invoked above, which 3741 * implies that rq was picked exactly from 3742 * in_serv_queue. Thus in_serv_queue == bfqq, and is 3743 * therefore guaranteed to exist because of the above 3744 * arguments. 3745 */ 3746 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue)); 3747 if (bfqq) { 3748 struct bfq_group *bfqg = bfqq_group(bfqq); 3749 3750 bfqg_stats_update_avg_queue_size(bfqg); 3751 bfqg_stats_set_start_empty_time(bfqg); 3752 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags); 3753 } 3754 spin_unlock_irq(hctx->queue->queue_lock); 3755 #endif 3756 3757 return rq; 3758 } 3759 3760 /* 3761 * Task holds one reference to the queue, dropped when task exits. Each rq 3762 * in-flight on this queue also holds a reference, dropped when rq is freed. 3763 * 3764 * Scheduler lock must be held here. Recall not to use bfqq after calling 3765 * this function on it. 3766 */ 3767 void bfq_put_queue(struct bfq_queue *bfqq) 3768 { 3769 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3770 struct bfq_group *bfqg = bfqq_group(bfqq); 3771 #endif 3772 3773 if (bfqq->bfqd) 3774 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", 3775 bfqq, bfqq->ref); 3776 3777 bfqq->ref--; 3778 if (bfqq->ref) 3779 return; 3780 3781 if (!hlist_unhashed(&bfqq->burst_list_node)) { 3782 hlist_del_init(&bfqq->burst_list_node); 3783 /* 3784 * Decrement also burst size after the removal, if the 3785 * process associated with bfqq is exiting, and thus 3786 * does not contribute to the burst any longer. This 3787 * decrement helps filter out false positives of large 3788 * bursts, when some short-lived process (often due to 3789 * the execution of commands by some service) happens 3790 * to start and exit while a complex application is 3791 * starting, and thus spawning several processes that 3792 * do I/O (and that *must not* be treated as a large 3793 * burst, see comments on bfq_handle_burst). 3794 * 3795 * In particular, the decrement is performed only if: 3796 * 1) bfqq is not a merged queue, because, if it is, 3797 * then this free of bfqq is not triggered by the exit 3798 * of the process bfqq is associated with, but exactly 3799 * by the fact that bfqq has just been merged. 3800 * 2) burst_size is greater than 0, to handle 3801 * unbalanced decrements. Unbalanced decrements may 3802 * happen in te following case: bfqq is inserted into 3803 * the current burst list--without incrementing 3804 * bust_size--because of a split, but the current 3805 * burst list is not the burst list bfqq belonged to 3806 * (see comments on the case of a split in 3807 * bfq_set_request). 3808 */ 3809 if (bfqq->bic && bfqq->bfqd->burst_size > 0) 3810 bfqq->bfqd->burst_size--; 3811 } 3812 3813 kmem_cache_free(bfq_pool, bfqq); 3814 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3815 bfqg_and_blkg_put(bfqg); 3816 #endif 3817 } 3818 3819 static void bfq_put_cooperator(struct bfq_queue *bfqq) 3820 { 3821 struct bfq_queue *__bfqq, *next; 3822 3823 /* 3824 * If this queue was scheduled to merge with another queue, be 3825 * sure to drop the reference taken on that queue (and others in 3826 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 3827 */ 3828 __bfqq = bfqq->new_bfqq; 3829 while (__bfqq) { 3830 if (__bfqq == bfqq) 3831 break; 3832 next = __bfqq->new_bfqq; 3833 bfq_put_queue(__bfqq); 3834 __bfqq = next; 3835 } 3836 } 3837 3838 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3839 { 3840 if (bfqq == bfqd->in_service_queue) { 3841 __bfq_bfqq_expire(bfqd, bfqq); 3842 bfq_schedule_dispatch(bfqd); 3843 } 3844 3845 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 3846 3847 bfq_put_cooperator(bfqq); 3848 3849 bfq_put_queue(bfqq); /* release process reference */ 3850 } 3851 3852 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) 3853 { 3854 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 3855 struct bfq_data *bfqd; 3856 3857 if (bfqq) 3858 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 3859 3860 if (bfqq && bfqd) { 3861 unsigned long flags; 3862 3863 spin_lock_irqsave(&bfqd->lock, flags); 3864 bfq_exit_bfqq(bfqd, bfqq); 3865 bic_set_bfqq(bic, NULL, is_sync); 3866 spin_unlock_irqrestore(&bfqd->lock, flags); 3867 } 3868 } 3869 3870 static void bfq_exit_icq(struct io_cq *icq) 3871 { 3872 struct bfq_io_cq *bic = icq_to_bic(icq); 3873 3874 bfq_exit_icq_bfqq(bic, true); 3875 bfq_exit_icq_bfqq(bic, false); 3876 } 3877 3878 /* 3879 * Update the entity prio values; note that the new values will not 3880 * be used until the next (re)activation. 3881 */ 3882 static void 3883 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 3884 { 3885 struct task_struct *tsk = current; 3886 int ioprio_class; 3887 struct bfq_data *bfqd = bfqq->bfqd; 3888 3889 if (!bfqd) 3890 return; 3891 3892 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3893 switch (ioprio_class) { 3894 default: 3895 dev_err(bfqq->bfqd->queue->backing_dev_info->dev, 3896 "bfq: bad prio class %d\n", ioprio_class); 3897 /* fall through */ 3898 case IOPRIO_CLASS_NONE: 3899 /* 3900 * No prio set, inherit CPU scheduling settings. 3901 */ 3902 bfqq->new_ioprio = task_nice_ioprio(tsk); 3903 bfqq->new_ioprio_class = task_nice_ioclass(tsk); 3904 break; 3905 case IOPRIO_CLASS_RT: 3906 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3907 bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 3908 break; 3909 case IOPRIO_CLASS_BE: 3910 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3911 bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 3912 break; 3913 case IOPRIO_CLASS_IDLE: 3914 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 3915 bfqq->new_ioprio = 7; 3916 break; 3917 } 3918 3919 if (bfqq->new_ioprio >= IOPRIO_BE_NR) { 3920 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 3921 bfqq->new_ioprio); 3922 bfqq->new_ioprio = IOPRIO_BE_NR; 3923 } 3924 3925 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 3926 bfqq->entity.prio_changed = 1; 3927 } 3928 3929 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3930 struct bio *bio, bool is_sync, 3931 struct bfq_io_cq *bic); 3932 3933 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 3934 { 3935 struct bfq_data *bfqd = bic_to_bfqd(bic); 3936 struct bfq_queue *bfqq; 3937 int ioprio = bic->icq.ioc->ioprio; 3938 3939 /* 3940 * This condition may trigger on a newly created bic, be sure to 3941 * drop the lock before returning. 3942 */ 3943 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 3944 return; 3945 3946 bic->ioprio = ioprio; 3947 3948 bfqq = bic_to_bfqq(bic, false); 3949 if (bfqq) { 3950 /* release process reference on this queue */ 3951 bfq_put_queue(bfqq); 3952 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); 3953 bic_set_bfqq(bic, bfqq, false); 3954 } 3955 3956 bfqq = bic_to_bfqq(bic, true); 3957 if (bfqq) 3958 bfq_set_next_ioprio_data(bfqq, bic); 3959 } 3960 3961 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3962 struct bfq_io_cq *bic, pid_t pid, int is_sync) 3963 { 3964 RB_CLEAR_NODE(&bfqq->entity.rb_node); 3965 INIT_LIST_HEAD(&bfqq->fifo); 3966 INIT_HLIST_NODE(&bfqq->burst_list_node); 3967 3968 bfqq->ref = 0; 3969 bfqq->bfqd = bfqd; 3970 3971 if (bic) 3972 bfq_set_next_ioprio_data(bfqq, bic); 3973 3974 if (is_sync) { 3975 /* 3976 * No need to mark as has_short_ttime if in 3977 * idle_class, because no device idling is performed 3978 * for queues in idle class 3979 */ 3980 if (!bfq_class_idle(bfqq)) 3981 /* tentatively mark as has_short_ttime */ 3982 bfq_mark_bfqq_has_short_ttime(bfqq); 3983 bfq_mark_bfqq_sync(bfqq); 3984 bfq_mark_bfqq_just_created(bfqq); 3985 } else 3986 bfq_clear_bfqq_sync(bfqq); 3987 3988 /* set end request to minus infinity from now */ 3989 bfqq->ttime.last_end_request = ktime_get_ns() + 1; 3990 3991 bfq_mark_bfqq_IO_bound(bfqq); 3992 3993 bfqq->pid = pid; 3994 3995 /* Tentative initial value to trade off between thr and lat */ 3996 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 3997 bfqq->budget_timeout = bfq_smallest_from_now(); 3998 3999 bfqq->wr_coeff = 1; 4000 bfqq->last_wr_start_finish = jiffies; 4001 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 4002 bfqq->split_time = bfq_smallest_from_now(); 4003 4004 /* 4005 * Set to the value for which bfqq will not be deemed as 4006 * soft rt when it becomes backlogged. 4007 */ 4008 bfqq->soft_rt_next_start = bfq_greatest_from_now(); 4009 4010 /* first request is almost certainly seeky */ 4011 bfqq->seek_history = 1; 4012 } 4013 4014 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 4015 struct bfq_group *bfqg, 4016 int ioprio_class, int ioprio) 4017 { 4018 switch (ioprio_class) { 4019 case IOPRIO_CLASS_RT: 4020 return &bfqg->async_bfqq[0][ioprio]; 4021 case IOPRIO_CLASS_NONE: 4022 ioprio = IOPRIO_NORM; 4023 /* fall through */ 4024 case IOPRIO_CLASS_BE: 4025 return &bfqg->async_bfqq[1][ioprio]; 4026 case IOPRIO_CLASS_IDLE: 4027 return &bfqg->async_idle_bfqq; 4028 default: 4029 return NULL; 4030 } 4031 } 4032 4033 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 4034 struct bio *bio, bool is_sync, 4035 struct bfq_io_cq *bic) 4036 { 4037 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 4038 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 4039 struct bfq_queue **async_bfqq = NULL; 4040 struct bfq_queue *bfqq; 4041 struct bfq_group *bfqg; 4042 4043 rcu_read_lock(); 4044 4045 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); 4046 if (!bfqg) { 4047 bfqq = &bfqd->oom_bfqq; 4048 goto out; 4049 } 4050 4051 if (!is_sync) { 4052 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 4053 ioprio); 4054 bfqq = *async_bfqq; 4055 if (bfqq) 4056 goto out; 4057 } 4058 4059 bfqq = kmem_cache_alloc_node(bfq_pool, 4060 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 4061 bfqd->queue->node); 4062 4063 if (bfqq) { 4064 bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 4065 is_sync); 4066 bfq_init_entity(&bfqq->entity, bfqg); 4067 bfq_log_bfqq(bfqd, bfqq, "allocated"); 4068 } else { 4069 bfqq = &bfqd->oom_bfqq; 4070 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 4071 goto out; 4072 } 4073 4074 /* 4075 * Pin the queue now that it's allocated, scheduler exit will 4076 * prune it. 4077 */ 4078 if (async_bfqq) { 4079 bfqq->ref++; /* 4080 * Extra group reference, w.r.t. sync 4081 * queue. This extra reference is removed 4082 * only if bfqq->bfqg disappears, to 4083 * guarantee that this queue is not freed 4084 * until its group goes away. 4085 */ 4086 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 4087 bfqq, bfqq->ref); 4088 *async_bfqq = bfqq; 4089 } 4090 4091 out: 4092 bfqq->ref++; /* get a process reference to this queue */ 4093 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); 4094 rcu_read_unlock(); 4095 return bfqq; 4096 } 4097 4098 static void bfq_update_io_thinktime(struct bfq_data *bfqd, 4099 struct bfq_queue *bfqq) 4100 { 4101 struct bfq_ttime *ttime = &bfqq->ttime; 4102 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 4103 4104 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 4105 4106 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; 4107 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 4108 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 4109 ttime->ttime_samples); 4110 } 4111 4112 static void 4113 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4114 struct request *rq) 4115 { 4116 bfqq->seek_history <<= 1; 4117 bfqq->seek_history |= 4118 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && 4119 (!blk_queue_nonrot(bfqd->queue) || 4120 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); 4121 } 4122 4123 static void bfq_update_has_short_ttime(struct bfq_data *bfqd, 4124 struct bfq_queue *bfqq, 4125 struct bfq_io_cq *bic) 4126 { 4127 bool has_short_ttime = true; 4128 4129 /* 4130 * No need to update has_short_ttime if bfqq is async or in 4131 * idle io prio class, or if bfq_slice_idle is zero, because 4132 * no device idling is performed for bfqq in this case. 4133 */ 4134 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) || 4135 bfqd->bfq_slice_idle == 0) 4136 return; 4137 4138 /* Idle window just restored, statistics are meaningless. */ 4139 if (time_is_after_eq_jiffies(bfqq->split_time + 4140 bfqd->bfq_wr_min_idle_time)) 4141 return; 4142 4143 /* Think time is infinite if no process is linked to 4144 * bfqq. Otherwise check average think time to 4145 * decide whether to mark as has_short_ttime 4146 */ 4147 if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 4148 (bfq_sample_valid(bfqq->ttime.ttime_samples) && 4149 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle)) 4150 has_short_ttime = false; 4151 4152 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d", 4153 has_short_ttime); 4154 4155 if (has_short_ttime) 4156 bfq_mark_bfqq_has_short_ttime(bfqq); 4157 else 4158 bfq_clear_bfqq_has_short_ttime(bfqq); 4159 } 4160 4161 /* 4162 * Called when a new fs request (rq) is added to bfqq. Check if there's 4163 * something we should do about it. 4164 */ 4165 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4166 struct request *rq) 4167 { 4168 struct bfq_io_cq *bic = RQ_BIC(rq); 4169 4170 if (rq->cmd_flags & REQ_META) 4171 bfqq->meta_pending++; 4172 4173 bfq_update_io_thinktime(bfqd, bfqq); 4174 bfq_update_has_short_ttime(bfqd, bfqq, bic); 4175 bfq_update_io_seektime(bfqd, bfqq, rq); 4176 4177 bfq_log_bfqq(bfqd, bfqq, 4178 "rq_enqueued: has_short_ttime=%d (seeky %d)", 4179 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq)); 4180 4181 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4182 4183 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 4184 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 4185 blk_rq_sectors(rq) < 32; 4186 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 4187 4188 /* 4189 * There is just this request queued: if the request 4190 * is small and the queue is not to be expired, then 4191 * just exit. 4192 * 4193 * In this way, if the device is being idled to wait 4194 * for a new request from the in-service queue, we 4195 * avoid unplugging the device and committing the 4196 * device to serve just a small request. On the 4197 * contrary, we wait for the block layer to decide 4198 * when to unplug the device: hopefully, new requests 4199 * will be merged to this one quickly, then the device 4200 * will be unplugged and larger requests will be 4201 * dispatched. 4202 */ 4203 if (small_req && !budget_timeout) 4204 return; 4205 4206 /* 4207 * A large enough request arrived, or the queue is to 4208 * be expired: in both cases disk idling is to be 4209 * stopped, so clear wait_request flag and reset 4210 * timer. 4211 */ 4212 bfq_clear_bfqq_wait_request(bfqq); 4213 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 4214 4215 /* 4216 * The queue is not empty, because a new request just 4217 * arrived. Hence we can safely expire the queue, in 4218 * case of budget timeout, without risking that the 4219 * timestamps of the queue are not updated correctly. 4220 * See [1] for more details. 4221 */ 4222 if (budget_timeout) 4223 bfq_bfqq_expire(bfqd, bfqq, false, 4224 BFQQE_BUDGET_TIMEOUT); 4225 } 4226 } 4227 4228 /* returns true if it causes the idle timer to be disabled */ 4229 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 4230 { 4231 struct bfq_queue *bfqq = RQ_BFQQ(rq), 4232 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true); 4233 bool waiting, idle_timer_disabled = false; 4234 4235 if (new_bfqq) { 4236 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq) 4237 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1); 4238 /* 4239 * Release the request's reference to the old bfqq 4240 * and make sure one is taken to the shared queue. 4241 */ 4242 new_bfqq->allocated++; 4243 bfqq->allocated--; 4244 new_bfqq->ref++; 4245 /* 4246 * If the bic associated with the process 4247 * issuing this request still points to bfqq 4248 * (and thus has not been already redirected 4249 * to new_bfqq or even some other bfq_queue), 4250 * then complete the merge and redirect it to 4251 * new_bfqq. 4252 */ 4253 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq) 4254 bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 4255 bfqq, new_bfqq); 4256 4257 bfq_clear_bfqq_just_created(bfqq); 4258 /* 4259 * rq is about to be enqueued into new_bfqq, 4260 * release rq reference on bfqq 4261 */ 4262 bfq_put_queue(bfqq); 4263 rq->elv.priv[1] = new_bfqq; 4264 bfqq = new_bfqq; 4265 } 4266 4267 waiting = bfqq && bfq_bfqq_wait_request(bfqq); 4268 bfq_add_request(rq); 4269 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq); 4270 4271 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 4272 list_add_tail(&rq->queuelist, &bfqq->fifo); 4273 4274 bfq_rq_enqueued(bfqd, bfqq, rq); 4275 4276 return idle_timer_disabled; 4277 } 4278 4279 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 4280 bool at_head) 4281 { 4282 struct request_queue *q = hctx->queue; 4283 struct bfq_data *bfqd = q->elevator->elevator_data; 4284 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 4285 struct bfq_queue *bfqq = RQ_BFQQ(rq); 4286 bool idle_timer_disabled = false; 4287 unsigned int cmd_flags; 4288 #endif 4289 4290 spin_lock_irq(&bfqd->lock); 4291 if (blk_mq_sched_try_insert_merge(q, rq)) { 4292 spin_unlock_irq(&bfqd->lock); 4293 return; 4294 } 4295 4296 spin_unlock_irq(&bfqd->lock); 4297 4298 blk_mq_sched_request_inserted(rq); 4299 4300 spin_lock_irq(&bfqd->lock); 4301 if (at_head || blk_rq_is_passthrough(rq)) { 4302 if (at_head) 4303 list_add(&rq->queuelist, &bfqd->dispatch); 4304 else 4305 list_add_tail(&rq->queuelist, &bfqd->dispatch); 4306 } else { 4307 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 4308 idle_timer_disabled = __bfq_insert_request(bfqd, rq); 4309 /* 4310 * Update bfqq, because, if a queue merge has occurred 4311 * in __bfq_insert_request, then rq has been 4312 * redirected into a new queue. 4313 */ 4314 bfqq = RQ_BFQQ(rq); 4315 #else 4316 __bfq_insert_request(bfqd, rq); 4317 #endif 4318 4319 if (rq_mergeable(rq)) { 4320 elv_rqhash_add(q, rq); 4321 if (!q->last_merge) 4322 q->last_merge = rq; 4323 } 4324 } 4325 4326 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 4327 /* 4328 * Cache cmd_flags before releasing scheduler lock, because rq 4329 * may disappear afterwards (for example, because of a request 4330 * merge). 4331 */ 4332 cmd_flags = rq->cmd_flags; 4333 #endif 4334 spin_unlock_irq(&bfqd->lock); 4335 4336 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 4337 if (!bfqq) 4338 return; 4339 /* 4340 * bfqq still exists, because it can disappear only after 4341 * either it is merged with another queue, or the process it 4342 * is associated with exits. But both actions must be taken by 4343 * the same process currently executing this flow of 4344 * instruction. 4345 * 4346 * In addition, the following queue lock guarantees that 4347 * bfqq_group(bfqq) exists as well. 4348 */ 4349 spin_lock_irq(q->queue_lock); 4350 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags); 4351 if (idle_timer_disabled) 4352 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 4353 spin_unlock_irq(q->queue_lock); 4354 #endif 4355 } 4356 4357 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 4358 struct list_head *list, bool at_head) 4359 { 4360 while (!list_empty(list)) { 4361 struct request *rq; 4362 4363 rq = list_first_entry(list, struct request, queuelist); 4364 list_del_init(&rq->queuelist); 4365 bfq_insert_request(hctx, rq, at_head); 4366 } 4367 } 4368 4369 static void bfq_update_hw_tag(struct bfq_data *bfqd) 4370 { 4371 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 4372 bfqd->rq_in_driver); 4373 4374 if (bfqd->hw_tag == 1) 4375 return; 4376 4377 /* 4378 * This sample is valid if the number of outstanding requests 4379 * is large enough to allow a queueing behavior. Note that the 4380 * sum is not exact, as it's not taking into account deactivated 4381 * requests. 4382 */ 4383 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) 4384 return; 4385 4386 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 4387 return; 4388 4389 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 4390 bfqd->max_rq_in_driver = 0; 4391 bfqd->hw_tag_samples = 0; 4392 } 4393 4394 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 4395 { 4396 u64 now_ns; 4397 u32 delta_us; 4398 4399 bfq_update_hw_tag(bfqd); 4400 4401 bfqd->rq_in_driver--; 4402 bfqq->dispatched--; 4403 4404 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 4405 /* 4406 * Set budget_timeout (which we overload to store the 4407 * time at which the queue remains with no backlog and 4408 * no outstanding request; used by the weight-raising 4409 * mechanism). 4410 */ 4411 bfqq->budget_timeout = jiffies; 4412 4413 bfq_weights_tree_remove(bfqd, &bfqq->entity, 4414 &bfqd->queue_weights_tree); 4415 } 4416 4417 now_ns = ktime_get_ns(); 4418 4419 bfqq->ttime.last_end_request = now_ns; 4420 4421 /* 4422 * Using us instead of ns, to get a reasonable precision in 4423 * computing rate in next check. 4424 */ 4425 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 4426 4427 /* 4428 * If the request took rather long to complete, and, according 4429 * to the maximum request size recorded, this completion latency 4430 * implies that the request was certainly served at a very low 4431 * rate (less than 1M sectors/sec), then the whole observation 4432 * interval that lasts up to this time instant cannot be a 4433 * valid time interval for computing a new peak rate. Invoke 4434 * bfq_update_rate_reset to have the following three steps 4435 * taken: 4436 * - close the observation interval at the last (previous) 4437 * request dispatch or completion 4438 * - compute rate, if possible, for that observation interval 4439 * - reset to zero samples, which will trigger a proper 4440 * re-initialization of the observation interval on next 4441 * dispatch 4442 */ 4443 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 4444 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 4445 1UL<<(BFQ_RATE_SHIFT - 10)) 4446 bfq_update_rate_reset(bfqd, NULL); 4447 bfqd->last_completion = now_ns; 4448 4449 /* 4450 * If we are waiting to discover whether the request pattern 4451 * of the task associated with the queue is actually 4452 * isochronous, and both requisites for this condition to hold 4453 * are now satisfied, then compute soft_rt_next_start (see the 4454 * comments on the function bfq_bfqq_softrt_next_start()). We 4455 * schedule this delayed check when bfqq expires, if it still 4456 * has in-flight requests. 4457 */ 4458 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 4459 RB_EMPTY_ROOT(&bfqq->sort_list)) 4460 bfqq->soft_rt_next_start = 4461 bfq_bfqq_softrt_next_start(bfqd, bfqq); 4462 4463 /* 4464 * If this is the in-service queue, check if it needs to be expired, 4465 * or if we want to idle in case it has no pending requests. 4466 */ 4467 if (bfqd->in_service_queue == bfqq) { 4468 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { 4469 bfq_arm_slice_timer(bfqd); 4470 return; 4471 } else if (bfq_may_expire_for_budg_timeout(bfqq)) 4472 bfq_bfqq_expire(bfqd, bfqq, false, 4473 BFQQE_BUDGET_TIMEOUT); 4474 else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 4475 (bfqq->dispatched == 0 || 4476 !bfq_bfqq_may_idle(bfqq))) 4477 bfq_bfqq_expire(bfqd, bfqq, false, 4478 BFQQE_NO_MORE_REQUESTS); 4479 } 4480 4481 if (!bfqd->rq_in_driver) 4482 bfq_schedule_dispatch(bfqd); 4483 } 4484 4485 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) 4486 { 4487 bfqq->allocated--; 4488 4489 bfq_put_queue(bfqq); 4490 } 4491 4492 static void bfq_finish_request(struct request *rq) 4493 { 4494 struct bfq_queue *bfqq; 4495 struct bfq_data *bfqd; 4496 4497 if (!rq->elv.icq) 4498 return; 4499 4500 bfqq = RQ_BFQQ(rq); 4501 bfqd = bfqq->bfqd; 4502 4503 if (rq->rq_flags & RQF_STARTED) 4504 bfqg_stats_update_completion(bfqq_group(bfqq), 4505 rq_start_time_ns(rq), 4506 rq_io_start_time_ns(rq), 4507 rq->cmd_flags); 4508 4509 if (likely(rq->rq_flags & RQF_STARTED)) { 4510 unsigned long flags; 4511 4512 spin_lock_irqsave(&bfqd->lock, flags); 4513 4514 bfq_completed_request(bfqq, bfqd); 4515 bfq_put_rq_priv_body(bfqq); 4516 4517 spin_unlock_irqrestore(&bfqd->lock, flags); 4518 } else { 4519 /* 4520 * Request rq may be still/already in the scheduler, 4521 * in which case we need to remove it. And we cannot 4522 * defer such a check and removal, to avoid 4523 * inconsistencies in the time interval from the end 4524 * of this function to the start of the deferred work. 4525 * This situation seems to occur only in process 4526 * context, as a consequence of a merge. In the 4527 * current version of the code, this implies that the 4528 * lock is held. 4529 */ 4530 4531 if (!RB_EMPTY_NODE(&rq->rb_node)) { 4532 bfq_remove_request(rq->q, rq); 4533 bfqg_stats_update_io_remove(bfqq_group(bfqq), 4534 rq->cmd_flags); 4535 } 4536 bfq_put_rq_priv_body(bfqq); 4537 } 4538 4539 rq->elv.priv[0] = NULL; 4540 rq->elv.priv[1] = NULL; 4541 } 4542 4543 /* 4544 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 4545 * was the last process referring to that bfqq. 4546 */ 4547 static struct bfq_queue * 4548 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 4549 { 4550 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 4551 4552 if (bfqq_process_refs(bfqq) == 1) { 4553 bfqq->pid = current->pid; 4554 bfq_clear_bfqq_coop(bfqq); 4555 bfq_clear_bfqq_split_coop(bfqq); 4556 return bfqq; 4557 } 4558 4559 bic_set_bfqq(bic, NULL, 1); 4560 4561 bfq_put_cooperator(bfqq); 4562 4563 bfq_put_queue(bfqq); 4564 return NULL; 4565 } 4566 4567 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 4568 struct bfq_io_cq *bic, 4569 struct bio *bio, 4570 bool split, bool is_sync, 4571 bool *new_queue) 4572 { 4573 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 4574 4575 if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 4576 return bfqq; 4577 4578 if (new_queue) 4579 *new_queue = true; 4580 4581 if (bfqq) 4582 bfq_put_queue(bfqq); 4583 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); 4584 4585 bic_set_bfqq(bic, bfqq, is_sync); 4586 if (split && is_sync) { 4587 if ((bic->was_in_burst_list && bfqd->large_burst) || 4588 bic->saved_in_large_burst) 4589 bfq_mark_bfqq_in_large_burst(bfqq); 4590 else { 4591 bfq_clear_bfqq_in_large_burst(bfqq); 4592 if (bic->was_in_burst_list) 4593 /* 4594 * If bfqq was in the current 4595 * burst list before being 4596 * merged, then we have to add 4597 * it back. And we do not need 4598 * to increase burst_size, as 4599 * we did not decrement 4600 * burst_size when we removed 4601 * bfqq from the burst list as 4602 * a consequence of a merge 4603 * (see comments in 4604 * bfq_put_queue). In this 4605 * respect, it would be rather 4606 * costly to know whether the 4607 * current burst list is still 4608 * the same burst list from 4609 * which bfqq was removed on 4610 * the merge. To avoid this 4611 * cost, if bfqq was in a 4612 * burst list, then we add 4613 * bfqq to the current burst 4614 * list without any further 4615 * check. This can cause 4616 * inappropriate insertions, 4617 * but rarely enough to not 4618 * harm the detection of large 4619 * bursts significantly. 4620 */ 4621 hlist_add_head(&bfqq->burst_list_node, 4622 &bfqd->burst_list); 4623 } 4624 bfqq->split_time = jiffies; 4625 } 4626 4627 return bfqq; 4628 } 4629 4630 /* 4631 * Allocate bfq data structures associated with this request. 4632 */ 4633 static void bfq_prepare_request(struct request *rq, struct bio *bio) 4634 { 4635 struct request_queue *q = rq->q; 4636 struct bfq_data *bfqd = q->elevator->elevator_data; 4637 struct bfq_io_cq *bic; 4638 const int is_sync = rq_is_sync(rq); 4639 struct bfq_queue *bfqq; 4640 bool new_queue = false; 4641 bool bfqq_already_existing = false, split = false; 4642 4643 if (!rq->elv.icq) 4644 return; 4645 bic = icq_to_bic(rq->elv.icq); 4646 4647 spin_lock_irq(&bfqd->lock); 4648 4649 bfq_check_ioprio_change(bic, bio); 4650 4651 bfq_bic_update_cgroup(bic, bio); 4652 4653 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 4654 &new_queue); 4655 4656 if (likely(!new_queue)) { 4657 /* If the queue was seeky for too long, break it apart. */ 4658 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) { 4659 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq"); 4660 4661 /* Update bic before losing reference to bfqq */ 4662 if (bfq_bfqq_in_large_burst(bfqq)) 4663 bic->saved_in_large_burst = true; 4664 4665 bfqq = bfq_split_bfqq(bic, bfqq); 4666 split = true; 4667 4668 if (!bfqq) 4669 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 4670 true, is_sync, 4671 NULL); 4672 else 4673 bfqq_already_existing = true; 4674 } 4675 } 4676 4677 bfqq->allocated++; 4678 bfqq->ref++; 4679 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 4680 rq, bfqq, bfqq->ref); 4681 4682 rq->elv.priv[0] = bic; 4683 rq->elv.priv[1] = bfqq; 4684 4685 /* 4686 * If a bfq_queue has only one process reference, it is owned 4687 * by only this bic: we can then set bfqq->bic = bic. in 4688 * addition, if the queue has also just been split, we have to 4689 * resume its state. 4690 */ 4691 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 4692 bfqq->bic = bic; 4693 if (split) { 4694 /* 4695 * The queue has just been split from a shared 4696 * queue: restore the idle window and the 4697 * possible weight raising period. 4698 */ 4699 bfq_bfqq_resume_state(bfqq, bfqd, bic, 4700 bfqq_already_existing); 4701 } 4702 } 4703 4704 if (unlikely(bfq_bfqq_just_created(bfqq))) 4705 bfq_handle_burst(bfqd, bfqq); 4706 4707 spin_unlock_irq(&bfqd->lock); 4708 } 4709 4710 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) 4711 { 4712 struct bfq_data *bfqd = bfqq->bfqd; 4713 enum bfqq_expiration reason; 4714 unsigned long flags; 4715 4716 spin_lock_irqsave(&bfqd->lock, flags); 4717 bfq_clear_bfqq_wait_request(bfqq); 4718 4719 if (bfqq != bfqd->in_service_queue) { 4720 spin_unlock_irqrestore(&bfqd->lock, flags); 4721 return; 4722 } 4723 4724 if (bfq_bfqq_budget_timeout(bfqq)) 4725 /* 4726 * Also here the queue can be safely expired 4727 * for budget timeout without wasting 4728 * guarantees 4729 */ 4730 reason = BFQQE_BUDGET_TIMEOUT; 4731 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 4732 /* 4733 * The queue may not be empty upon timer expiration, 4734 * because we may not disable the timer when the 4735 * first request of the in-service queue arrives 4736 * during disk idling. 4737 */ 4738 reason = BFQQE_TOO_IDLE; 4739 else 4740 goto schedule_dispatch; 4741 4742 bfq_bfqq_expire(bfqd, bfqq, true, reason); 4743 4744 schedule_dispatch: 4745 spin_unlock_irqrestore(&bfqd->lock, flags); 4746 bfq_schedule_dispatch(bfqd); 4747 } 4748 4749 /* 4750 * Handler of the expiration of the timer running if the in-service queue 4751 * is idling inside its time slice. 4752 */ 4753 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 4754 { 4755 struct bfq_data *bfqd = container_of(timer, struct bfq_data, 4756 idle_slice_timer); 4757 struct bfq_queue *bfqq = bfqd->in_service_queue; 4758 4759 /* 4760 * Theoretical race here: the in-service queue can be NULL or 4761 * different from the queue that was idling if a new request 4762 * arrives for the current queue and there is a full dispatch 4763 * cycle that changes the in-service queue. This can hardly 4764 * happen, but in the worst case we just expire a queue too 4765 * early. 4766 */ 4767 if (bfqq) 4768 bfq_idle_slice_timer_body(bfqq); 4769 4770 return HRTIMER_NORESTART; 4771 } 4772 4773 static void __bfq_put_async_bfqq(struct bfq_data *bfqd, 4774 struct bfq_queue **bfqq_ptr) 4775 { 4776 struct bfq_queue *bfqq = *bfqq_ptr; 4777 4778 bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 4779 if (bfqq) { 4780 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 4781 4782 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 4783 bfqq, bfqq->ref); 4784 bfq_put_queue(bfqq); 4785 *bfqq_ptr = NULL; 4786 } 4787 } 4788 4789 /* 4790 * Release all the bfqg references to its async queues. If we are 4791 * deallocating the group these queues may still contain requests, so 4792 * we reparent them to the root cgroup (i.e., the only one that will 4793 * exist for sure until all the requests on a device are gone). 4794 */ 4795 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 4796 { 4797 int i, j; 4798 4799 for (i = 0; i < 2; i++) 4800 for (j = 0; j < IOPRIO_BE_NR; j++) 4801 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); 4802 4803 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); 4804 } 4805 4806 static void bfq_exit_queue(struct elevator_queue *e) 4807 { 4808 struct bfq_data *bfqd = e->elevator_data; 4809 struct bfq_queue *bfqq, *n; 4810 4811 hrtimer_cancel(&bfqd->idle_slice_timer); 4812 4813 spin_lock_irq(&bfqd->lock); 4814 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 4815 bfq_deactivate_bfqq(bfqd, bfqq, false, false); 4816 spin_unlock_irq(&bfqd->lock); 4817 4818 hrtimer_cancel(&bfqd->idle_slice_timer); 4819 4820 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4821 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); 4822 #else 4823 spin_lock_irq(&bfqd->lock); 4824 bfq_put_async_queues(bfqd, bfqd->root_group); 4825 kfree(bfqd->root_group); 4826 spin_unlock_irq(&bfqd->lock); 4827 #endif 4828 4829 kfree(bfqd); 4830 } 4831 4832 static void bfq_init_root_group(struct bfq_group *root_group, 4833 struct bfq_data *bfqd) 4834 { 4835 int i; 4836 4837 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4838 root_group->entity.parent = NULL; 4839 root_group->my_entity = NULL; 4840 root_group->bfqd = bfqd; 4841 #endif 4842 root_group->rq_pos_tree = RB_ROOT; 4843 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 4844 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 4845 root_group->sched_data.bfq_class_idle_last_service = jiffies; 4846 } 4847 4848 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 4849 { 4850 struct bfq_data *bfqd; 4851 struct elevator_queue *eq; 4852 4853 eq = elevator_alloc(q, e); 4854 if (!eq) 4855 return -ENOMEM; 4856 4857 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 4858 if (!bfqd) { 4859 kobject_put(&eq->kobj); 4860 return -ENOMEM; 4861 } 4862 eq->elevator_data = bfqd; 4863 4864 spin_lock_irq(q->queue_lock); 4865 q->elevator = eq; 4866 spin_unlock_irq(q->queue_lock); 4867 4868 /* 4869 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 4870 * Grab a permanent reference to it, so that the normal code flow 4871 * will not attempt to free it. 4872 */ 4873 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); 4874 bfqd->oom_bfqq.ref++; 4875 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 4876 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 4877 bfqd->oom_bfqq.entity.new_weight = 4878 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 4879 4880 /* oom_bfqq does not participate to bursts */ 4881 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 4882 4883 /* 4884 * Trigger weight initialization, according to ioprio, at the 4885 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 4886 * class won't be changed any more. 4887 */ 4888 bfqd->oom_bfqq.entity.prio_changed = 1; 4889 4890 bfqd->queue = q; 4891 4892 INIT_LIST_HEAD(&bfqd->dispatch); 4893 4894 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 4895 HRTIMER_MODE_REL); 4896 bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 4897 4898 bfqd->queue_weights_tree = RB_ROOT; 4899 bfqd->group_weights_tree = RB_ROOT; 4900 4901 INIT_LIST_HEAD(&bfqd->active_list); 4902 INIT_LIST_HEAD(&bfqd->idle_list); 4903 INIT_HLIST_HEAD(&bfqd->burst_list); 4904 4905 bfqd->hw_tag = -1; 4906 4907 bfqd->bfq_max_budget = bfq_default_max_budget; 4908 4909 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 4910 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 4911 bfqd->bfq_back_max = bfq_back_max; 4912 bfqd->bfq_back_penalty = bfq_back_penalty; 4913 bfqd->bfq_slice_idle = bfq_slice_idle; 4914 bfqd->bfq_timeout = bfq_timeout; 4915 4916 bfqd->bfq_requests_within_timer = 120; 4917 4918 bfqd->bfq_large_burst_thresh = 8; 4919 bfqd->bfq_burst_interval = msecs_to_jiffies(180); 4920 4921 bfqd->low_latency = true; 4922 4923 /* 4924 * Trade-off between responsiveness and fairness. 4925 */ 4926 bfqd->bfq_wr_coeff = 30; 4927 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 4928 bfqd->bfq_wr_max_time = 0; 4929 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 4930 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 4931 bfqd->bfq_wr_max_softrt_rate = 7000; /* 4932 * Approximate rate required 4933 * to playback or record a 4934 * high-definition compressed 4935 * video. 4936 */ 4937 bfqd->wr_busy_queues = 0; 4938 4939 /* 4940 * Begin by assuming, optimistically, that the device is a 4941 * high-speed one, and that its peak rate is equal to 2/3 of 4942 * the highest reference rate. 4943 */ 4944 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * 4945 T_fast[blk_queue_nonrot(bfqd->queue)]; 4946 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 4947 bfqd->device_speed = BFQ_BFQD_FAST; 4948 4949 spin_lock_init(&bfqd->lock); 4950 4951 /* 4952 * The invocation of the next bfq_create_group_hierarchy 4953 * function is the head of a chain of function calls 4954 * (bfq_create_group_hierarchy->blkcg_activate_policy-> 4955 * blk_mq_freeze_queue) that may lead to the invocation of the 4956 * has_work hook function. For this reason, 4957 * bfq_create_group_hierarchy is invoked only after all 4958 * scheduler data has been initialized, apart from the fields 4959 * that can be initialized only after invoking 4960 * bfq_create_group_hierarchy. This, in particular, enables 4961 * has_work to correctly return false. Of course, to avoid 4962 * other inconsistencies, the blk-mq stack must then refrain 4963 * from invoking further scheduler hooks before this init 4964 * function is finished. 4965 */ 4966 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 4967 if (!bfqd->root_group) 4968 goto out_free; 4969 bfq_init_root_group(bfqd->root_group, bfqd); 4970 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 4971 4972 wbt_disable_default(q); 4973 return 0; 4974 4975 out_free: 4976 kfree(bfqd); 4977 kobject_put(&eq->kobj); 4978 return -ENOMEM; 4979 } 4980 4981 static void bfq_slab_kill(void) 4982 { 4983 kmem_cache_destroy(bfq_pool); 4984 } 4985 4986 static int __init bfq_slab_setup(void) 4987 { 4988 bfq_pool = KMEM_CACHE(bfq_queue, 0); 4989 if (!bfq_pool) 4990 return -ENOMEM; 4991 return 0; 4992 } 4993 4994 static ssize_t bfq_var_show(unsigned int var, char *page) 4995 { 4996 return sprintf(page, "%u\n", var); 4997 } 4998 4999 static int bfq_var_store(unsigned long *var, const char *page) 5000 { 5001 unsigned long new_val; 5002 int ret = kstrtoul(page, 10, &new_val); 5003 5004 if (ret) 5005 return ret; 5006 *var = new_val; 5007 return 0; 5008 } 5009 5010 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 5011 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 5012 { \ 5013 struct bfq_data *bfqd = e->elevator_data; \ 5014 u64 __data = __VAR; \ 5015 if (__CONV == 1) \ 5016 __data = jiffies_to_msecs(__data); \ 5017 else if (__CONV == 2) \ 5018 __data = div_u64(__data, NSEC_PER_MSEC); \ 5019 return bfq_var_show(__data, (page)); \ 5020 } 5021 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 5022 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 5023 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 5024 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 5025 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 5026 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 5027 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 5028 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 5029 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 5030 #undef SHOW_FUNCTION 5031 5032 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 5033 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 5034 { \ 5035 struct bfq_data *bfqd = e->elevator_data; \ 5036 u64 __data = __VAR; \ 5037 __data = div_u64(__data, NSEC_PER_USEC); \ 5038 return bfq_var_show(__data, (page)); \ 5039 } 5040 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 5041 #undef USEC_SHOW_FUNCTION 5042 5043 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 5044 static ssize_t \ 5045 __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 5046 { \ 5047 struct bfq_data *bfqd = e->elevator_data; \ 5048 unsigned long __data, __min = (MIN), __max = (MAX); \ 5049 int ret; \ 5050 \ 5051 ret = bfq_var_store(&__data, (page)); \ 5052 if (ret) \ 5053 return ret; \ 5054 if (__data < __min) \ 5055 __data = __min; \ 5056 else if (__data > __max) \ 5057 __data = __max; \ 5058 if (__CONV == 1) \ 5059 *(__PTR) = msecs_to_jiffies(__data); \ 5060 else if (__CONV == 2) \ 5061 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 5062 else \ 5063 *(__PTR) = __data; \ 5064 return count; \ 5065 } 5066 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 5067 INT_MAX, 2); 5068 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 5069 INT_MAX, 2); 5070 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 5071 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 5072 INT_MAX, 0); 5073 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 5074 #undef STORE_FUNCTION 5075 5076 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 5077 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 5078 { \ 5079 struct bfq_data *bfqd = e->elevator_data; \ 5080 unsigned long __data, __min = (MIN), __max = (MAX); \ 5081 int ret; \ 5082 \ 5083 ret = bfq_var_store(&__data, (page)); \ 5084 if (ret) \ 5085 return ret; \ 5086 if (__data < __min) \ 5087 __data = __min; \ 5088 else if (__data > __max) \ 5089 __data = __max; \ 5090 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 5091 return count; \ 5092 } 5093 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 5094 UINT_MAX); 5095 #undef USEC_STORE_FUNCTION 5096 5097 static ssize_t bfq_max_budget_store(struct elevator_queue *e, 5098 const char *page, size_t count) 5099 { 5100 struct bfq_data *bfqd = e->elevator_data; 5101 unsigned long __data; 5102 int ret; 5103 5104 ret = bfq_var_store(&__data, (page)); 5105 if (ret) 5106 return ret; 5107 5108 if (__data == 0) 5109 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 5110 else { 5111 if (__data > INT_MAX) 5112 __data = INT_MAX; 5113 bfqd->bfq_max_budget = __data; 5114 } 5115 5116 bfqd->bfq_user_max_budget = __data; 5117 5118 return count; 5119 } 5120 5121 /* 5122 * Leaving this name to preserve name compatibility with cfq 5123 * parameters, but this timeout is used for both sync and async. 5124 */ 5125 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 5126 const char *page, size_t count) 5127 { 5128 struct bfq_data *bfqd = e->elevator_data; 5129 unsigned long __data; 5130 int ret; 5131 5132 ret = bfq_var_store(&__data, (page)); 5133 if (ret) 5134 return ret; 5135 5136 if (__data < 1) 5137 __data = 1; 5138 else if (__data > INT_MAX) 5139 __data = INT_MAX; 5140 5141 bfqd->bfq_timeout = msecs_to_jiffies(__data); 5142 if (bfqd->bfq_user_max_budget == 0) 5143 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 5144 5145 return count; 5146 } 5147 5148 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 5149 const char *page, size_t count) 5150 { 5151 struct bfq_data *bfqd = e->elevator_data; 5152 unsigned long __data; 5153 int ret; 5154 5155 ret = bfq_var_store(&__data, (page)); 5156 if (ret) 5157 return ret; 5158 5159 if (__data > 1) 5160 __data = 1; 5161 if (!bfqd->strict_guarantees && __data == 1 5162 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 5163 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 5164 5165 bfqd->strict_guarantees = __data; 5166 5167 return count; 5168 } 5169 5170 static ssize_t bfq_low_latency_store(struct elevator_queue *e, 5171 const char *page, size_t count) 5172 { 5173 struct bfq_data *bfqd = e->elevator_data; 5174 unsigned long __data; 5175 int ret; 5176 5177 ret = bfq_var_store(&__data, (page)); 5178 if (ret) 5179 return ret; 5180 5181 if (__data > 1) 5182 __data = 1; 5183 if (__data == 0 && bfqd->low_latency != 0) 5184 bfq_end_wr(bfqd); 5185 bfqd->low_latency = __data; 5186 5187 return count; 5188 } 5189 5190 #define BFQ_ATTR(name) \ 5191 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 5192 5193 static struct elv_fs_entry bfq_attrs[] = { 5194 BFQ_ATTR(fifo_expire_sync), 5195 BFQ_ATTR(fifo_expire_async), 5196 BFQ_ATTR(back_seek_max), 5197 BFQ_ATTR(back_seek_penalty), 5198 BFQ_ATTR(slice_idle), 5199 BFQ_ATTR(slice_idle_us), 5200 BFQ_ATTR(max_budget), 5201 BFQ_ATTR(timeout_sync), 5202 BFQ_ATTR(strict_guarantees), 5203 BFQ_ATTR(low_latency), 5204 __ATTR_NULL 5205 }; 5206 5207 static struct elevator_type iosched_bfq_mq = { 5208 .ops.mq = { 5209 .prepare_request = bfq_prepare_request, 5210 .finish_request = bfq_finish_request, 5211 .exit_icq = bfq_exit_icq, 5212 .insert_requests = bfq_insert_requests, 5213 .dispatch_request = bfq_dispatch_request, 5214 .next_request = elv_rb_latter_request, 5215 .former_request = elv_rb_former_request, 5216 .allow_merge = bfq_allow_bio_merge, 5217 .bio_merge = bfq_bio_merge, 5218 .request_merge = bfq_request_merge, 5219 .requests_merged = bfq_requests_merged, 5220 .request_merged = bfq_request_merged, 5221 .has_work = bfq_has_work, 5222 .init_sched = bfq_init_queue, 5223 .exit_sched = bfq_exit_queue, 5224 }, 5225 5226 .uses_mq = true, 5227 .icq_size = sizeof(struct bfq_io_cq), 5228 .icq_align = __alignof__(struct bfq_io_cq), 5229 .elevator_attrs = bfq_attrs, 5230 .elevator_name = "bfq", 5231 .elevator_owner = THIS_MODULE, 5232 }; 5233 MODULE_ALIAS("bfq-iosched"); 5234 5235 static int __init bfq_init(void) 5236 { 5237 int ret; 5238 5239 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5240 ret = blkcg_policy_register(&blkcg_policy_bfq); 5241 if (ret) 5242 return ret; 5243 #endif 5244 5245 ret = -ENOMEM; 5246 if (bfq_slab_setup()) 5247 goto err_pol_unreg; 5248 5249 /* 5250 * Times to load large popular applications for the typical 5251 * systems installed on the reference devices (see the 5252 * comments before the definitions of the next two 5253 * arrays). Actually, we use slightly slower values, as the 5254 * estimated peak rate tends to be smaller than the actual 5255 * peak rate. The reason for this last fact is that estimates 5256 * are computed over much shorter time intervals than the long 5257 * intervals typically used for benchmarking. Why? First, to 5258 * adapt more quickly to variations. Second, because an I/O 5259 * scheduler cannot rely on a peak-rate-evaluation workload to 5260 * be run for a long time. 5261 */ 5262 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ 5263 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ 5264 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 5265 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 5266 5267 /* 5268 * Thresholds that determine the switch between speed classes 5269 * (see the comments before the definition of the array 5270 * device_speed_thresh). These thresholds are biased towards 5271 * transitions to the fast class. This is safer than the 5272 * opposite bias. In fact, a wrong transition to the slow 5273 * class results in short weight-raising periods, because the 5274 * speed of the device then tends to be higher that the 5275 * reference peak rate. On the opposite end, a wrong 5276 * transition to the fast class tends to increase 5277 * weight-raising periods, because of the opposite reason. 5278 */ 5279 device_speed_thresh[0] = (4 * R_slow[0]) / 3; 5280 device_speed_thresh[1] = (4 * R_slow[1]) / 3; 5281 5282 ret = elv_register(&iosched_bfq_mq); 5283 if (ret) 5284 goto slab_kill; 5285 5286 return 0; 5287 5288 slab_kill: 5289 bfq_slab_kill(); 5290 err_pol_unreg: 5291 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5292 blkcg_policy_unregister(&blkcg_policy_bfq); 5293 #endif 5294 return ret; 5295 } 5296 5297 static void __exit bfq_exit(void) 5298 { 5299 elv_unregister(&iosched_bfq_mq); 5300 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5301 blkcg_policy_unregister(&blkcg_policy_bfq); 5302 #endif 5303 bfq_slab_kill(); 5304 } 5305 5306 module_init(bfq_init); 5307 module_exit(bfq_exit); 5308 5309 MODULE_AUTHOR("Paolo Valente"); 5310 MODULE_LICENSE("GPL"); 5311 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 5312