xref: /openbmc/linux/block/bfq-iosched.c (revision 349f631d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include <trace/events/block.h>
129 
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	/*
390 	 * If bfqq != NULL, then a non-stable queue merge between
391 	 * bic->bfqq and bfqq is happening here. This causes troubles
392 	 * in the following case: bic->bfqq has also been scheduled
393 	 * for a possible stable merge with bic->stable_merge_bfqq,
394 	 * and bic->stable_merge_bfqq == bfqq happens to
395 	 * hold. Troubles occur because bfqq may then undergo a split,
396 	 * thereby becoming eligible for a stable merge. Yet, if
397 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
398 	 * would be stably merged with itself. To avoid this anomaly,
399 	 * we cancel the stable merge if
400 	 * bic->stable_merge_bfqq == bfqq.
401 	 */
402 	bic->bfqq[is_sync] = bfqq;
403 
404 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
405 		/*
406 		 * Actually, these same instructions are executed also
407 		 * in bfq_setup_cooperator, in case of abort or actual
408 		 * execution of a stable merge. We could avoid
409 		 * repeating these instructions there too, but if we
410 		 * did so, we would nest even more complexity in this
411 		 * function.
412 		 */
413 		bfq_put_stable_ref(bic->stable_merge_bfqq);
414 
415 		bic->stable_merge_bfqq = NULL;
416 	}
417 }
418 
419 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
420 {
421 	return bic->icq.q->elevator->elevator_data;
422 }
423 
424 /**
425  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
426  * @icq: the iocontext queue.
427  */
428 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
429 {
430 	/* bic->icq is the first member, %NULL will convert to %NULL */
431 	return container_of(icq, struct bfq_io_cq, icq);
432 }
433 
434 /**
435  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
436  * @bfqd: the lookup key.
437  * @ioc: the io_context of the process doing I/O.
438  * @q: the request queue.
439  */
440 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
441 					struct io_context *ioc,
442 					struct request_queue *q)
443 {
444 	if (ioc) {
445 		unsigned long flags;
446 		struct bfq_io_cq *icq;
447 
448 		spin_lock_irqsave(&q->queue_lock, flags);
449 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
450 		spin_unlock_irqrestore(&q->queue_lock, flags);
451 
452 		return icq;
453 	}
454 
455 	return NULL;
456 }
457 
458 /*
459  * Scheduler run of queue, if there are requests pending and no one in the
460  * driver that will restart queueing.
461  */
462 void bfq_schedule_dispatch(struct bfq_data *bfqd)
463 {
464 	if (bfqd->queued != 0) {
465 		bfq_log(bfqd, "schedule dispatch");
466 		blk_mq_run_hw_queues(bfqd->queue, true);
467 	}
468 }
469 
470 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
471 
472 #define bfq_sample_valid(samples)	((samples) > 80)
473 
474 /*
475  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
476  * We choose the request that is closer to the head right now.  Distance
477  * behind the head is penalized and only allowed to a certain extent.
478  */
479 static struct request *bfq_choose_req(struct bfq_data *bfqd,
480 				      struct request *rq1,
481 				      struct request *rq2,
482 				      sector_t last)
483 {
484 	sector_t s1, s2, d1 = 0, d2 = 0;
485 	unsigned long back_max;
486 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
487 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
488 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
489 
490 	if (!rq1 || rq1 == rq2)
491 		return rq2;
492 	if (!rq2)
493 		return rq1;
494 
495 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
496 		return rq1;
497 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
498 		return rq2;
499 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
500 		return rq1;
501 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
502 		return rq2;
503 
504 	s1 = blk_rq_pos(rq1);
505 	s2 = blk_rq_pos(rq2);
506 
507 	/*
508 	 * By definition, 1KiB is 2 sectors.
509 	 */
510 	back_max = bfqd->bfq_back_max * 2;
511 
512 	/*
513 	 * Strict one way elevator _except_ in the case where we allow
514 	 * short backward seeks which are biased as twice the cost of a
515 	 * similar forward seek.
516 	 */
517 	if (s1 >= last)
518 		d1 = s1 - last;
519 	else if (s1 + back_max >= last)
520 		d1 = (last - s1) * bfqd->bfq_back_penalty;
521 	else
522 		wrap |= BFQ_RQ1_WRAP;
523 
524 	if (s2 >= last)
525 		d2 = s2 - last;
526 	else if (s2 + back_max >= last)
527 		d2 = (last - s2) * bfqd->bfq_back_penalty;
528 	else
529 		wrap |= BFQ_RQ2_WRAP;
530 
531 	/* Found required data */
532 
533 	/*
534 	 * By doing switch() on the bit mask "wrap" we avoid having to
535 	 * check two variables for all permutations: --> faster!
536 	 */
537 	switch (wrap) {
538 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
539 		if (d1 < d2)
540 			return rq1;
541 		else if (d2 < d1)
542 			return rq2;
543 
544 		if (s1 >= s2)
545 			return rq1;
546 		else
547 			return rq2;
548 
549 	case BFQ_RQ2_WRAP:
550 		return rq1;
551 	case BFQ_RQ1_WRAP:
552 		return rq2;
553 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
554 	default:
555 		/*
556 		 * Since both rqs are wrapped,
557 		 * start with the one that's further behind head
558 		 * (--> only *one* back seek required),
559 		 * since back seek takes more time than forward.
560 		 */
561 		if (s1 <= s2)
562 			return rq1;
563 		else
564 			return rq2;
565 	}
566 }
567 
568 /*
569  * Async I/O can easily starve sync I/O (both sync reads and sync
570  * writes), by consuming all tags. Similarly, storms of sync writes,
571  * such as those that sync(2) may trigger, can starve sync reads.
572  * Limit depths of async I/O and sync writes so as to counter both
573  * problems.
574  */
575 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
576 {
577 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
578 
579 	if (op_is_sync(op) && !op_is_write(op))
580 		return;
581 
582 	data->shallow_depth =
583 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
584 
585 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
586 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
587 			data->shallow_depth);
588 }
589 
590 static struct bfq_queue *
591 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
592 		     sector_t sector, struct rb_node **ret_parent,
593 		     struct rb_node ***rb_link)
594 {
595 	struct rb_node **p, *parent;
596 	struct bfq_queue *bfqq = NULL;
597 
598 	parent = NULL;
599 	p = &root->rb_node;
600 	while (*p) {
601 		struct rb_node **n;
602 
603 		parent = *p;
604 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
605 
606 		/*
607 		 * Sort strictly based on sector. Smallest to the left,
608 		 * largest to the right.
609 		 */
610 		if (sector > blk_rq_pos(bfqq->next_rq))
611 			n = &(*p)->rb_right;
612 		else if (sector < blk_rq_pos(bfqq->next_rq))
613 			n = &(*p)->rb_left;
614 		else
615 			break;
616 		p = n;
617 		bfqq = NULL;
618 	}
619 
620 	*ret_parent = parent;
621 	if (rb_link)
622 		*rb_link = p;
623 
624 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
625 		(unsigned long long)sector,
626 		bfqq ? bfqq->pid : 0);
627 
628 	return bfqq;
629 }
630 
631 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
632 {
633 	return bfqq->service_from_backlogged > 0 &&
634 		time_is_before_jiffies(bfqq->first_IO_time +
635 				       bfq_merge_time_limit);
636 }
637 
638 /*
639  * The following function is not marked as __cold because it is
640  * actually cold, but for the same performance goal described in the
641  * comments on the likely() at the beginning of
642  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
643  * execution time for the case where this function is not invoked, we
644  * had to add an unlikely() in each involved if().
645  */
646 void __cold
647 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
648 {
649 	struct rb_node **p, *parent;
650 	struct bfq_queue *__bfqq;
651 
652 	if (bfqq->pos_root) {
653 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
654 		bfqq->pos_root = NULL;
655 	}
656 
657 	/* oom_bfqq does not participate in queue merging */
658 	if (bfqq == &bfqd->oom_bfqq)
659 		return;
660 
661 	/*
662 	 * bfqq cannot be merged any longer (see comments in
663 	 * bfq_setup_cooperator): no point in adding bfqq into the
664 	 * position tree.
665 	 */
666 	if (bfq_too_late_for_merging(bfqq))
667 		return;
668 
669 	if (bfq_class_idle(bfqq))
670 		return;
671 	if (!bfqq->next_rq)
672 		return;
673 
674 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
675 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
676 			blk_rq_pos(bfqq->next_rq), &parent, &p);
677 	if (!__bfqq) {
678 		rb_link_node(&bfqq->pos_node, parent, p);
679 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
680 	} else
681 		bfqq->pos_root = NULL;
682 }
683 
684 /*
685  * The following function returns false either if every active queue
686  * must receive the same share of the throughput (symmetric scenario),
687  * or, as a special case, if bfqq must receive a share of the
688  * throughput lower than or equal to the share that every other active
689  * queue must receive.  If bfqq does sync I/O, then these are the only
690  * two cases where bfqq happens to be guaranteed its share of the
691  * throughput even if I/O dispatching is not plugged when bfqq remains
692  * temporarily empty (for more details, see the comments in the
693  * function bfq_better_to_idle()). For this reason, the return value
694  * of this function is used to check whether I/O-dispatch plugging can
695  * be avoided.
696  *
697  * The above first case (symmetric scenario) occurs when:
698  * 1) all active queues have the same weight,
699  * 2) all active queues belong to the same I/O-priority class,
700  * 3) all active groups at the same level in the groups tree have the same
701  *    weight,
702  * 4) all active groups at the same level in the groups tree have the same
703  *    number of children.
704  *
705  * Unfortunately, keeping the necessary state for evaluating exactly
706  * the last two symmetry sub-conditions above would be quite complex
707  * and time consuming. Therefore this function evaluates, instead,
708  * only the following stronger three sub-conditions, for which it is
709  * much easier to maintain the needed state:
710  * 1) all active queues have the same weight,
711  * 2) all active queues belong to the same I/O-priority class,
712  * 3) there are no active groups.
713  * In particular, the last condition is always true if hierarchical
714  * support or the cgroups interface are not enabled, thus no state
715  * needs to be maintained in this case.
716  */
717 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
718 				   struct bfq_queue *bfqq)
719 {
720 	bool smallest_weight = bfqq &&
721 		bfqq->weight_counter &&
722 		bfqq->weight_counter ==
723 		container_of(
724 			rb_first_cached(&bfqd->queue_weights_tree),
725 			struct bfq_weight_counter,
726 			weights_node);
727 
728 	/*
729 	 * For queue weights to differ, queue_weights_tree must contain
730 	 * at least two nodes.
731 	 */
732 	bool varied_queue_weights = !smallest_weight &&
733 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
734 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
735 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
736 
737 	bool multiple_classes_busy =
738 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
739 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
740 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
741 
742 	return varied_queue_weights || multiple_classes_busy
743 #ifdef CONFIG_BFQ_GROUP_IOSCHED
744 	       || bfqd->num_groups_with_pending_reqs > 0
745 #endif
746 		;
747 }
748 
749 /*
750  * If the weight-counter tree passed as input contains no counter for
751  * the weight of the input queue, then add that counter; otherwise just
752  * increment the existing counter.
753  *
754  * Note that weight-counter trees contain few nodes in mostly symmetric
755  * scenarios. For example, if all queues have the same weight, then the
756  * weight-counter tree for the queues may contain at most one node.
757  * This holds even if low_latency is on, because weight-raised queues
758  * are not inserted in the tree.
759  * In most scenarios, the rate at which nodes are created/destroyed
760  * should be low too.
761  */
762 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
763 			  struct rb_root_cached *root)
764 {
765 	struct bfq_entity *entity = &bfqq->entity;
766 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
767 	bool leftmost = true;
768 
769 	/*
770 	 * Do not insert if the queue is already associated with a
771 	 * counter, which happens if:
772 	 *   1) a request arrival has caused the queue to become both
773 	 *      non-weight-raised, and hence change its weight, and
774 	 *      backlogged; in this respect, each of the two events
775 	 *      causes an invocation of this function,
776 	 *   2) this is the invocation of this function caused by the
777 	 *      second event. This second invocation is actually useless,
778 	 *      and we handle this fact by exiting immediately. More
779 	 *      efficient or clearer solutions might possibly be adopted.
780 	 */
781 	if (bfqq->weight_counter)
782 		return;
783 
784 	while (*new) {
785 		struct bfq_weight_counter *__counter = container_of(*new,
786 						struct bfq_weight_counter,
787 						weights_node);
788 		parent = *new;
789 
790 		if (entity->weight == __counter->weight) {
791 			bfqq->weight_counter = __counter;
792 			goto inc_counter;
793 		}
794 		if (entity->weight < __counter->weight)
795 			new = &((*new)->rb_left);
796 		else {
797 			new = &((*new)->rb_right);
798 			leftmost = false;
799 		}
800 	}
801 
802 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
803 				       GFP_ATOMIC);
804 
805 	/*
806 	 * In the unlucky event of an allocation failure, we just
807 	 * exit. This will cause the weight of queue to not be
808 	 * considered in bfq_asymmetric_scenario, which, in its turn,
809 	 * causes the scenario to be deemed wrongly symmetric in case
810 	 * bfqq's weight would have been the only weight making the
811 	 * scenario asymmetric.  On the bright side, no unbalance will
812 	 * however occur when bfqq becomes inactive again (the
813 	 * invocation of this function is triggered by an activation
814 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
815 	 * if !bfqq->weight_counter.
816 	 */
817 	if (unlikely(!bfqq->weight_counter))
818 		return;
819 
820 	bfqq->weight_counter->weight = entity->weight;
821 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
822 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
823 				leftmost);
824 
825 inc_counter:
826 	bfqq->weight_counter->num_active++;
827 	bfqq->ref++;
828 }
829 
830 /*
831  * Decrement the weight counter associated with the queue, and, if the
832  * counter reaches 0, remove the counter from the tree.
833  * See the comments to the function bfq_weights_tree_add() for considerations
834  * about overhead.
835  */
836 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
837 			       struct bfq_queue *bfqq,
838 			       struct rb_root_cached *root)
839 {
840 	if (!bfqq->weight_counter)
841 		return;
842 
843 	bfqq->weight_counter->num_active--;
844 	if (bfqq->weight_counter->num_active > 0)
845 		goto reset_entity_pointer;
846 
847 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
848 	kfree(bfqq->weight_counter);
849 
850 reset_entity_pointer:
851 	bfqq->weight_counter = NULL;
852 	bfq_put_queue(bfqq);
853 }
854 
855 /*
856  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
857  * of active groups for each queue's inactive parent entity.
858  */
859 void bfq_weights_tree_remove(struct bfq_data *bfqd,
860 			     struct bfq_queue *bfqq)
861 {
862 	struct bfq_entity *entity = bfqq->entity.parent;
863 
864 	for_each_entity(entity) {
865 		struct bfq_sched_data *sd = entity->my_sched_data;
866 
867 		if (sd->next_in_service || sd->in_service_entity) {
868 			/*
869 			 * entity is still active, because either
870 			 * next_in_service or in_service_entity is not
871 			 * NULL (see the comments on the definition of
872 			 * next_in_service for details on why
873 			 * in_service_entity must be checked too).
874 			 *
875 			 * As a consequence, its parent entities are
876 			 * active as well, and thus this loop must
877 			 * stop here.
878 			 */
879 			break;
880 		}
881 
882 		/*
883 		 * The decrement of num_groups_with_pending_reqs is
884 		 * not performed immediately upon the deactivation of
885 		 * entity, but it is delayed to when it also happens
886 		 * that the first leaf descendant bfqq of entity gets
887 		 * all its pending requests completed. The following
888 		 * instructions perform this delayed decrement, if
889 		 * needed. See the comments on
890 		 * num_groups_with_pending_reqs for details.
891 		 */
892 		if (entity->in_groups_with_pending_reqs) {
893 			entity->in_groups_with_pending_reqs = false;
894 			bfqd->num_groups_with_pending_reqs--;
895 		}
896 	}
897 
898 	/*
899 	 * Next function is invoked last, because it causes bfqq to be
900 	 * freed if the following holds: bfqq is not in service and
901 	 * has no dispatched request. DO NOT use bfqq after the next
902 	 * function invocation.
903 	 */
904 	__bfq_weights_tree_remove(bfqd, bfqq,
905 				  &bfqd->queue_weights_tree);
906 }
907 
908 /*
909  * Return expired entry, or NULL to just start from scratch in rbtree.
910  */
911 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
912 				      struct request *last)
913 {
914 	struct request *rq;
915 
916 	if (bfq_bfqq_fifo_expire(bfqq))
917 		return NULL;
918 
919 	bfq_mark_bfqq_fifo_expire(bfqq);
920 
921 	rq = rq_entry_fifo(bfqq->fifo.next);
922 
923 	if (rq == last || ktime_get_ns() < rq->fifo_time)
924 		return NULL;
925 
926 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
927 	return rq;
928 }
929 
930 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
931 					struct bfq_queue *bfqq,
932 					struct request *last)
933 {
934 	struct rb_node *rbnext = rb_next(&last->rb_node);
935 	struct rb_node *rbprev = rb_prev(&last->rb_node);
936 	struct request *next, *prev = NULL;
937 
938 	/* Follow expired path, else get first next available. */
939 	next = bfq_check_fifo(bfqq, last);
940 	if (next)
941 		return next;
942 
943 	if (rbprev)
944 		prev = rb_entry_rq(rbprev);
945 
946 	if (rbnext)
947 		next = rb_entry_rq(rbnext);
948 	else {
949 		rbnext = rb_first(&bfqq->sort_list);
950 		if (rbnext && rbnext != &last->rb_node)
951 			next = rb_entry_rq(rbnext);
952 	}
953 
954 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
955 }
956 
957 /* see the definition of bfq_async_charge_factor for details */
958 static unsigned long bfq_serv_to_charge(struct request *rq,
959 					struct bfq_queue *bfqq)
960 {
961 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
962 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
963 		return blk_rq_sectors(rq);
964 
965 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
966 }
967 
968 /**
969  * bfq_updated_next_req - update the queue after a new next_rq selection.
970  * @bfqd: the device data the queue belongs to.
971  * @bfqq: the queue to update.
972  *
973  * If the first request of a queue changes we make sure that the queue
974  * has enough budget to serve at least its first request (if the
975  * request has grown).  We do this because if the queue has not enough
976  * budget for its first request, it has to go through two dispatch
977  * rounds to actually get it dispatched.
978  */
979 static void bfq_updated_next_req(struct bfq_data *bfqd,
980 				 struct bfq_queue *bfqq)
981 {
982 	struct bfq_entity *entity = &bfqq->entity;
983 	struct request *next_rq = bfqq->next_rq;
984 	unsigned long new_budget;
985 
986 	if (!next_rq)
987 		return;
988 
989 	if (bfqq == bfqd->in_service_queue)
990 		/*
991 		 * In order not to break guarantees, budgets cannot be
992 		 * changed after an entity has been selected.
993 		 */
994 		return;
995 
996 	new_budget = max_t(unsigned long,
997 			   max_t(unsigned long, bfqq->max_budget,
998 				 bfq_serv_to_charge(next_rq, bfqq)),
999 			   entity->service);
1000 	if (entity->budget != new_budget) {
1001 		entity->budget = new_budget;
1002 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1003 					 new_budget);
1004 		bfq_requeue_bfqq(bfqd, bfqq, false);
1005 	}
1006 }
1007 
1008 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1009 {
1010 	u64 dur;
1011 
1012 	if (bfqd->bfq_wr_max_time > 0)
1013 		return bfqd->bfq_wr_max_time;
1014 
1015 	dur = bfqd->rate_dur_prod;
1016 	do_div(dur, bfqd->peak_rate);
1017 
1018 	/*
1019 	 * Limit duration between 3 and 25 seconds. The upper limit
1020 	 * has been conservatively set after the following worst case:
1021 	 * on a QEMU/KVM virtual machine
1022 	 * - running in a slow PC
1023 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1024 	 * - serving a heavy I/O workload, such as the sequential reading
1025 	 *   of several files
1026 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1027 	 *
1028 	 * As for higher values than that accommodating the above bad
1029 	 * scenario, tests show that higher values would often yield
1030 	 * the opposite of the desired result, i.e., would worsen
1031 	 * responsiveness by allowing non-interactive applications to
1032 	 * preserve weight raising for too long.
1033 	 *
1034 	 * On the other end, lower values than 3 seconds make it
1035 	 * difficult for most interactive tasks to complete their jobs
1036 	 * before weight-raising finishes.
1037 	 */
1038 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1039 }
1040 
1041 /* switch back from soft real-time to interactive weight raising */
1042 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1043 					  struct bfq_data *bfqd)
1044 {
1045 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1046 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1047 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1048 }
1049 
1050 static void
1051 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1052 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1053 {
1054 	unsigned int old_wr_coeff = 1;
1055 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1056 
1057 	if (bic->saved_has_short_ttime)
1058 		bfq_mark_bfqq_has_short_ttime(bfqq);
1059 	else
1060 		bfq_clear_bfqq_has_short_ttime(bfqq);
1061 
1062 	if (bic->saved_IO_bound)
1063 		bfq_mark_bfqq_IO_bound(bfqq);
1064 	else
1065 		bfq_clear_bfqq_IO_bound(bfqq);
1066 
1067 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1068 	bfqq->inject_limit = bic->saved_inject_limit;
1069 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1070 
1071 	bfqq->entity.new_weight = bic->saved_weight;
1072 	bfqq->ttime = bic->saved_ttime;
1073 	bfqq->io_start_time = bic->saved_io_start_time;
1074 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1075 	/*
1076 	 * Restore weight coefficient only if low_latency is on
1077 	 */
1078 	if (bfqd->low_latency) {
1079 		old_wr_coeff = bfqq->wr_coeff;
1080 		bfqq->wr_coeff = bic->saved_wr_coeff;
1081 	}
1082 	bfqq->service_from_wr = bic->saved_service_from_wr;
1083 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1084 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1085 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1086 
1087 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1088 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1089 				   bfqq->wr_cur_max_time))) {
1090 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1091 		    !bfq_bfqq_in_large_burst(bfqq) &&
1092 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1093 					     bfq_wr_duration(bfqd))) {
1094 			switch_back_to_interactive_wr(bfqq, bfqd);
1095 		} else {
1096 			bfqq->wr_coeff = 1;
1097 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1098 				     "resume state: switching off wr");
1099 		}
1100 	}
1101 
1102 	/* make sure weight will be updated, however we got here */
1103 	bfqq->entity.prio_changed = 1;
1104 
1105 	if (likely(!busy))
1106 		return;
1107 
1108 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1109 		bfqd->wr_busy_queues++;
1110 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1111 		bfqd->wr_busy_queues--;
1112 }
1113 
1114 static int bfqq_process_refs(struct bfq_queue *bfqq)
1115 {
1116 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1117 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1118 }
1119 
1120 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1121 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1122 {
1123 	struct bfq_queue *item;
1124 	struct hlist_node *n;
1125 
1126 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1127 		hlist_del_init(&item->burst_list_node);
1128 
1129 	/*
1130 	 * Start the creation of a new burst list only if there is no
1131 	 * active queue. See comments on the conditional invocation of
1132 	 * bfq_handle_burst().
1133 	 */
1134 	if (bfq_tot_busy_queues(bfqd) == 0) {
1135 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1136 		bfqd->burst_size = 1;
1137 	} else
1138 		bfqd->burst_size = 0;
1139 
1140 	bfqd->burst_parent_entity = bfqq->entity.parent;
1141 }
1142 
1143 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1144 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1145 {
1146 	/* Increment burst size to take into account also bfqq */
1147 	bfqd->burst_size++;
1148 
1149 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1150 		struct bfq_queue *pos, *bfqq_item;
1151 		struct hlist_node *n;
1152 
1153 		/*
1154 		 * Enough queues have been activated shortly after each
1155 		 * other to consider this burst as large.
1156 		 */
1157 		bfqd->large_burst = true;
1158 
1159 		/*
1160 		 * We can now mark all queues in the burst list as
1161 		 * belonging to a large burst.
1162 		 */
1163 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1164 				     burst_list_node)
1165 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1166 		bfq_mark_bfqq_in_large_burst(bfqq);
1167 
1168 		/*
1169 		 * From now on, and until the current burst finishes, any
1170 		 * new queue being activated shortly after the last queue
1171 		 * was inserted in the burst can be immediately marked as
1172 		 * belonging to a large burst. So the burst list is not
1173 		 * needed any more. Remove it.
1174 		 */
1175 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1176 					  burst_list_node)
1177 			hlist_del_init(&pos->burst_list_node);
1178 	} else /*
1179 		* Burst not yet large: add bfqq to the burst list. Do
1180 		* not increment the ref counter for bfqq, because bfqq
1181 		* is removed from the burst list before freeing bfqq
1182 		* in put_queue.
1183 		*/
1184 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1185 }
1186 
1187 /*
1188  * If many queues belonging to the same group happen to be created
1189  * shortly after each other, then the processes associated with these
1190  * queues have typically a common goal. In particular, bursts of queue
1191  * creations are usually caused by services or applications that spawn
1192  * many parallel threads/processes. Examples are systemd during boot,
1193  * or git grep. To help these processes get their job done as soon as
1194  * possible, it is usually better to not grant either weight-raising
1195  * or device idling to their queues, unless these queues must be
1196  * protected from the I/O flowing through other active queues.
1197  *
1198  * In this comment we describe, firstly, the reasons why this fact
1199  * holds, and, secondly, the next function, which implements the main
1200  * steps needed to properly mark these queues so that they can then be
1201  * treated in a different way.
1202  *
1203  * The above services or applications benefit mostly from a high
1204  * throughput: the quicker the requests of the activated queues are
1205  * cumulatively served, the sooner the target job of these queues gets
1206  * completed. As a consequence, weight-raising any of these queues,
1207  * which also implies idling the device for it, is almost always
1208  * counterproductive, unless there are other active queues to isolate
1209  * these new queues from. If there no other active queues, then
1210  * weight-raising these new queues just lowers throughput in most
1211  * cases.
1212  *
1213  * On the other hand, a burst of queue creations may be caused also by
1214  * the start of an application that does not consist of a lot of
1215  * parallel I/O-bound threads. In fact, with a complex application,
1216  * several short processes may need to be executed to start-up the
1217  * application. In this respect, to start an application as quickly as
1218  * possible, the best thing to do is in any case to privilege the I/O
1219  * related to the application with respect to all other
1220  * I/O. Therefore, the best strategy to start as quickly as possible
1221  * an application that causes a burst of queue creations is to
1222  * weight-raise all the queues created during the burst. This is the
1223  * exact opposite of the best strategy for the other type of bursts.
1224  *
1225  * In the end, to take the best action for each of the two cases, the
1226  * two types of bursts need to be distinguished. Fortunately, this
1227  * seems relatively easy, by looking at the sizes of the bursts. In
1228  * particular, we found a threshold such that only bursts with a
1229  * larger size than that threshold are apparently caused by
1230  * services or commands such as systemd or git grep. For brevity,
1231  * hereafter we call just 'large' these bursts. BFQ *does not*
1232  * weight-raise queues whose creation occurs in a large burst. In
1233  * addition, for each of these queues BFQ performs or does not perform
1234  * idling depending on which choice boosts the throughput more. The
1235  * exact choice depends on the device and request pattern at
1236  * hand.
1237  *
1238  * Unfortunately, false positives may occur while an interactive task
1239  * is starting (e.g., an application is being started). The
1240  * consequence is that the queues associated with the task do not
1241  * enjoy weight raising as expected. Fortunately these false positives
1242  * are very rare. They typically occur if some service happens to
1243  * start doing I/O exactly when the interactive task starts.
1244  *
1245  * Turning back to the next function, it is invoked only if there are
1246  * no active queues (apart from active queues that would belong to the
1247  * same, possible burst bfqq would belong to), and it implements all
1248  * the steps needed to detect the occurrence of a large burst and to
1249  * properly mark all the queues belonging to it (so that they can then
1250  * be treated in a different way). This goal is achieved by
1251  * maintaining a "burst list" that holds, temporarily, the queues that
1252  * belong to the burst in progress. The list is then used to mark
1253  * these queues as belonging to a large burst if the burst does become
1254  * large. The main steps are the following.
1255  *
1256  * . when the very first queue is created, the queue is inserted into the
1257  *   list (as it could be the first queue in a possible burst)
1258  *
1259  * . if the current burst has not yet become large, and a queue Q that does
1260  *   not yet belong to the burst is activated shortly after the last time
1261  *   at which a new queue entered the burst list, then the function appends
1262  *   Q to the burst list
1263  *
1264  * . if, as a consequence of the previous step, the burst size reaches
1265  *   the large-burst threshold, then
1266  *
1267  *     . all the queues in the burst list are marked as belonging to a
1268  *       large burst
1269  *
1270  *     . the burst list is deleted; in fact, the burst list already served
1271  *       its purpose (keeping temporarily track of the queues in a burst,
1272  *       so as to be able to mark them as belonging to a large burst in the
1273  *       previous sub-step), and now is not needed any more
1274  *
1275  *     . the device enters a large-burst mode
1276  *
1277  * . if a queue Q that does not belong to the burst is created while
1278  *   the device is in large-burst mode and shortly after the last time
1279  *   at which a queue either entered the burst list or was marked as
1280  *   belonging to the current large burst, then Q is immediately marked
1281  *   as belonging to a large burst.
1282  *
1283  * . if a queue Q that does not belong to the burst is created a while
1284  *   later, i.e., not shortly after, than the last time at which a queue
1285  *   either entered the burst list or was marked as belonging to the
1286  *   current large burst, then the current burst is deemed as finished and:
1287  *
1288  *        . the large-burst mode is reset if set
1289  *
1290  *        . the burst list is emptied
1291  *
1292  *        . Q is inserted in the burst list, as Q may be the first queue
1293  *          in a possible new burst (then the burst list contains just Q
1294  *          after this step).
1295  */
1296 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1297 {
1298 	/*
1299 	 * If bfqq is already in the burst list or is part of a large
1300 	 * burst, or finally has just been split, then there is
1301 	 * nothing else to do.
1302 	 */
1303 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1304 	    bfq_bfqq_in_large_burst(bfqq) ||
1305 	    time_is_after_eq_jiffies(bfqq->split_time +
1306 				     msecs_to_jiffies(10)))
1307 		return;
1308 
1309 	/*
1310 	 * If bfqq's creation happens late enough, or bfqq belongs to
1311 	 * a different group than the burst group, then the current
1312 	 * burst is finished, and related data structures must be
1313 	 * reset.
1314 	 *
1315 	 * In this respect, consider the special case where bfqq is
1316 	 * the very first queue created after BFQ is selected for this
1317 	 * device. In this case, last_ins_in_burst and
1318 	 * burst_parent_entity are not yet significant when we get
1319 	 * here. But it is easy to verify that, whether or not the
1320 	 * following condition is true, bfqq will end up being
1321 	 * inserted into the burst list. In particular the list will
1322 	 * happen to contain only bfqq. And this is exactly what has
1323 	 * to happen, as bfqq may be the first queue of the first
1324 	 * burst.
1325 	 */
1326 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1327 	    bfqd->bfq_burst_interval) ||
1328 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1329 		bfqd->large_burst = false;
1330 		bfq_reset_burst_list(bfqd, bfqq);
1331 		goto end;
1332 	}
1333 
1334 	/*
1335 	 * If we get here, then bfqq is being activated shortly after the
1336 	 * last queue. So, if the current burst is also large, we can mark
1337 	 * bfqq as belonging to this large burst immediately.
1338 	 */
1339 	if (bfqd->large_burst) {
1340 		bfq_mark_bfqq_in_large_burst(bfqq);
1341 		goto end;
1342 	}
1343 
1344 	/*
1345 	 * If we get here, then a large-burst state has not yet been
1346 	 * reached, but bfqq is being activated shortly after the last
1347 	 * queue. Then we add bfqq to the burst.
1348 	 */
1349 	bfq_add_to_burst(bfqd, bfqq);
1350 end:
1351 	/*
1352 	 * At this point, bfqq either has been added to the current
1353 	 * burst or has caused the current burst to terminate and a
1354 	 * possible new burst to start. In particular, in the second
1355 	 * case, bfqq has become the first queue in the possible new
1356 	 * burst.  In both cases last_ins_in_burst needs to be moved
1357 	 * forward.
1358 	 */
1359 	bfqd->last_ins_in_burst = jiffies;
1360 }
1361 
1362 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1363 {
1364 	struct bfq_entity *entity = &bfqq->entity;
1365 
1366 	return entity->budget - entity->service;
1367 }
1368 
1369 /*
1370  * If enough samples have been computed, return the current max budget
1371  * stored in bfqd, which is dynamically updated according to the
1372  * estimated disk peak rate; otherwise return the default max budget
1373  */
1374 static int bfq_max_budget(struct bfq_data *bfqd)
1375 {
1376 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1377 		return bfq_default_max_budget;
1378 	else
1379 		return bfqd->bfq_max_budget;
1380 }
1381 
1382 /*
1383  * Return min budget, which is a fraction of the current or default
1384  * max budget (trying with 1/32)
1385  */
1386 static int bfq_min_budget(struct bfq_data *bfqd)
1387 {
1388 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1389 		return bfq_default_max_budget / 32;
1390 	else
1391 		return bfqd->bfq_max_budget / 32;
1392 }
1393 
1394 /*
1395  * The next function, invoked after the input queue bfqq switches from
1396  * idle to busy, updates the budget of bfqq. The function also tells
1397  * whether the in-service queue should be expired, by returning
1398  * true. The purpose of expiring the in-service queue is to give bfqq
1399  * the chance to possibly preempt the in-service queue, and the reason
1400  * for preempting the in-service queue is to achieve one of the two
1401  * goals below.
1402  *
1403  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1404  * expired because it has remained idle. In particular, bfqq may have
1405  * expired for one of the following two reasons:
1406  *
1407  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1408  *   and did not make it to issue a new request before its last
1409  *   request was served;
1410  *
1411  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1412  *   a new request before the expiration of the idling-time.
1413  *
1414  * Even if bfqq has expired for one of the above reasons, the process
1415  * associated with the queue may be however issuing requests greedily,
1416  * and thus be sensitive to the bandwidth it receives (bfqq may have
1417  * remained idle for other reasons: CPU high load, bfqq not enjoying
1418  * idling, I/O throttling somewhere in the path from the process to
1419  * the I/O scheduler, ...). But if, after every expiration for one of
1420  * the above two reasons, bfqq has to wait for the service of at least
1421  * one full budget of another queue before being served again, then
1422  * bfqq is likely to get a much lower bandwidth or resource time than
1423  * its reserved ones. To address this issue, two countermeasures need
1424  * to be taken.
1425  *
1426  * First, the budget and the timestamps of bfqq need to be updated in
1427  * a special way on bfqq reactivation: they need to be updated as if
1428  * bfqq did not remain idle and did not expire. In fact, if they are
1429  * computed as if bfqq expired and remained idle until reactivation,
1430  * then the process associated with bfqq is treated as if, instead of
1431  * being greedy, it stopped issuing requests when bfqq remained idle,
1432  * and restarts issuing requests only on this reactivation. In other
1433  * words, the scheduler does not help the process recover the "service
1434  * hole" between bfqq expiration and reactivation. As a consequence,
1435  * the process receives a lower bandwidth than its reserved one. In
1436  * contrast, to recover this hole, the budget must be updated as if
1437  * bfqq was not expired at all before this reactivation, i.e., it must
1438  * be set to the value of the remaining budget when bfqq was
1439  * expired. Along the same line, timestamps need to be assigned the
1440  * value they had the last time bfqq was selected for service, i.e.,
1441  * before last expiration. Thus timestamps need to be back-shifted
1442  * with respect to their normal computation (see [1] for more details
1443  * on this tricky aspect).
1444  *
1445  * Secondly, to allow the process to recover the hole, the in-service
1446  * queue must be expired too, to give bfqq the chance to preempt it
1447  * immediately. In fact, if bfqq has to wait for a full budget of the
1448  * in-service queue to be completed, then it may become impossible to
1449  * let the process recover the hole, even if the back-shifted
1450  * timestamps of bfqq are lower than those of the in-service queue. If
1451  * this happens for most or all of the holes, then the process may not
1452  * receive its reserved bandwidth. In this respect, it is worth noting
1453  * that, being the service of outstanding requests unpreemptible, a
1454  * little fraction of the holes may however be unrecoverable, thereby
1455  * causing a little loss of bandwidth.
1456  *
1457  * The last important point is detecting whether bfqq does need this
1458  * bandwidth recovery. In this respect, the next function deems the
1459  * process associated with bfqq greedy, and thus allows it to recover
1460  * the hole, if: 1) the process is waiting for the arrival of a new
1461  * request (which implies that bfqq expired for one of the above two
1462  * reasons), and 2) such a request has arrived soon. The first
1463  * condition is controlled through the flag non_blocking_wait_rq,
1464  * while the second through the flag arrived_in_time. If both
1465  * conditions hold, then the function computes the budget in the
1466  * above-described special way, and signals that the in-service queue
1467  * should be expired. Timestamp back-shifting is done later in
1468  * __bfq_activate_entity.
1469  *
1470  * 2. Reduce latency. Even if timestamps are not backshifted to let
1471  * the process associated with bfqq recover a service hole, bfqq may
1472  * however happen to have, after being (re)activated, a lower finish
1473  * timestamp than the in-service queue.	 That is, the next budget of
1474  * bfqq may have to be completed before the one of the in-service
1475  * queue. If this is the case, then preempting the in-service queue
1476  * allows this goal to be achieved, apart from the unpreemptible,
1477  * outstanding requests mentioned above.
1478  *
1479  * Unfortunately, regardless of which of the above two goals one wants
1480  * to achieve, service trees need first to be updated to know whether
1481  * the in-service queue must be preempted. To have service trees
1482  * correctly updated, the in-service queue must be expired and
1483  * rescheduled, and bfqq must be scheduled too. This is one of the
1484  * most costly operations (in future versions, the scheduling
1485  * mechanism may be re-designed in such a way to make it possible to
1486  * know whether preemption is needed without needing to update service
1487  * trees). In addition, queue preemptions almost always cause random
1488  * I/O, which may in turn cause loss of throughput. Finally, there may
1489  * even be no in-service queue when the next function is invoked (so,
1490  * no queue to compare timestamps with). Because of these facts, the
1491  * next function adopts the following simple scheme to avoid costly
1492  * operations, too frequent preemptions and too many dependencies on
1493  * the state of the scheduler: it requests the expiration of the
1494  * in-service queue (unconditionally) only for queues that need to
1495  * recover a hole. Then it delegates to other parts of the code the
1496  * responsibility of handling the above case 2.
1497  */
1498 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1499 						struct bfq_queue *bfqq,
1500 						bool arrived_in_time)
1501 {
1502 	struct bfq_entity *entity = &bfqq->entity;
1503 
1504 	/*
1505 	 * In the next compound condition, we check also whether there
1506 	 * is some budget left, because otherwise there is no point in
1507 	 * trying to go on serving bfqq with this same budget: bfqq
1508 	 * would be expired immediately after being selected for
1509 	 * service. This would only cause useless overhead.
1510 	 */
1511 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1512 	    bfq_bfqq_budget_left(bfqq) > 0) {
1513 		/*
1514 		 * We do not clear the flag non_blocking_wait_rq here, as
1515 		 * the latter is used in bfq_activate_bfqq to signal
1516 		 * that timestamps need to be back-shifted (and is
1517 		 * cleared right after).
1518 		 */
1519 
1520 		/*
1521 		 * In next assignment we rely on that either
1522 		 * entity->service or entity->budget are not updated
1523 		 * on expiration if bfqq is empty (see
1524 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1525 		 * remain unchanged after such an expiration, and the
1526 		 * following statement therefore assigns to
1527 		 * entity->budget the remaining budget on such an
1528 		 * expiration.
1529 		 */
1530 		entity->budget = min_t(unsigned long,
1531 				       bfq_bfqq_budget_left(bfqq),
1532 				       bfqq->max_budget);
1533 
1534 		/*
1535 		 * At this point, we have used entity->service to get
1536 		 * the budget left (needed for updating
1537 		 * entity->budget). Thus we finally can, and have to,
1538 		 * reset entity->service. The latter must be reset
1539 		 * because bfqq would otherwise be charged again for
1540 		 * the service it has received during its previous
1541 		 * service slot(s).
1542 		 */
1543 		entity->service = 0;
1544 
1545 		return true;
1546 	}
1547 
1548 	/*
1549 	 * We can finally complete expiration, by setting service to 0.
1550 	 */
1551 	entity->service = 0;
1552 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1553 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1554 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1555 	return false;
1556 }
1557 
1558 /*
1559  * Return the farthest past time instant according to jiffies
1560  * macros.
1561  */
1562 static unsigned long bfq_smallest_from_now(void)
1563 {
1564 	return jiffies - MAX_JIFFY_OFFSET;
1565 }
1566 
1567 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1568 					     struct bfq_queue *bfqq,
1569 					     unsigned int old_wr_coeff,
1570 					     bool wr_or_deserves_wr,
1571 					     bool interactive,
1572 					     bool in_burst,
1573 					     bool soft_rt)
1574 {
1575 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1576 		/* start a weight-raising period */
1577 		if (interactive) {
1578 			bfqq->service_from_wr = 0;
1579 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1580 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1581 		} else {
1582 			/*
1583 			 * No interactive weight raising in progress
1584 			 * here: assign minus infinity to
1585 			 * wr_start_at_switch_to_srt, to make sure
1586 			 * that, at the end of the soft-real-time
1587 			 * weight raising periods that is starting
1588 			 * now, no interactive weight-raising period
1589 			 * may be wrongly considered as still in
1590 			 * progress (and thus actually started by
1591 			 * mistake).
1592 			 */
1593 			bfqq->wr_start_at_switch_to_srt =
1594 				bfq_smallest_from_now();
1595 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1596 				BFQ_SOFTRT_WEIGHT_FACTOR;
1597 			bfqq->wr_cur_max_time =
1598 				bfqd->bfq_wr_rt_max_time;
1599 		}
1600 
1601 		/*
1602 		 * If needed, further reduce budget to make sure it is
1603 		 * close to bfqq's backlog, so as to reduce the
1604 		 * scheduling-error component due to a too large
1605 		 * budget. Do not care about throughput consequences,
1606 		 * but only about latency. Finally, do not assign a
1607 		 * too small budget either, to avoid increasing
1608 		 * latency by causing too frequent expirations.
1609 		 */
1610 		bfqq->entity.budget = min_t(unsigned long,
1611 					    bfqq->entity.budget,
1612 					    2 * bfq_min_budget(bfqd));
1613 	} else if (old_wr_coeff > 1) {
1614 		if (interactive) { /* update wr coeff and duration */
1615 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1616 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1617 		} else if (in_burst)
1618 			bfqq->wr_coeff = 1;
1619 		else if (soft_rt) {
1620 			/*
1621 			 * The application is now or still meeting the
1622 			 * requirements for being deemed soft rt.  We
1623 			 * can then correctly and safely (re)charge
1624 			 * the weight-raising duration for the
1625 			 * application with the weight-raising
1626 			 * duration for soft rt applications.
1627 			 *
1628 			 * In particular, doing this recharge now, i.e.,
1629 			 * before the weight-raising period for the
1630 			 * application finishes, reduces the probability
1631 			 * of the following negative scenario:
1632 			 * 1) the weight of a soft rt application is
1633 			 *    raised at startup (as for any newly
1634 			 *    created application),
1635 			 * 2) since the application is not interactive,
1636 			 *    at a certain time weight-raising is
1637 			 *    stopped for the application,
1638 			 * 3) at that time the application happens to
1639 			 *    still have pending requests, and hence
1640 			 *    is destined to not have a chance to be
1641 			 *    deemed soft rt before these requests are
1642 			 *    completed (see the comments to the
1643 			 *    function bfq_bfqq_softrt_next_start()
1644 			 *    for details on soft rt detection),
1645 			 * 4) these pending requests experience a high
1646 			 *    latency because the application is not
1647 			 *    weight-raised while they are pending.
1648 			 */
1649 			if (bfqq->wr_cur_max_time !=
1650 				bfqd->bfq_wr_rt_max_time) {
1651 				bfqq->wr_start_at_switch_to_srt =
1652 					bfqq->last_wr_start_finish;
1653 
1654 				bfqq->wr_cur_max_time =
1655 					bfqd->bfq_wr_rt_max_time;
1656 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1657 					BFQ_SOFTRT_WEIGHT_FACTOR;
1658 			}
1659 			bfqq->last_wr_start_finish = jiffies;
1660 		}
1661 	}
1662 }
1663 
1664 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1665 					struct bfq_queue *bfqq)
1666 {
1667 	return bfqq->dispatched == 0 &&
1668 		time_is_before_jiffies(
1669 			bfqq->budget_timeout +
1670 			bfqd->bfq_wr_min_idle_time);
1671 }
1672 
1673 
1674 /*
1675  * Return true if bfqq is in a higher priority class, or has a higher
1676  * weight than the in-service queue.
1677  */
1678 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1679 					    struct bfq_queue *in_serv_bfqq)
1680 {
1681 	int bfqq_weight, in_serv_weight;
1682 
1683 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1684 		return true;
1685 
1686 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1687 		bfqq_weight = bfqq->entity.weight;
1688 		in_serv_weight = in_serv_bfqq->entity.weight;
1689 	} else {
1690 		if (bfqq->entity.parent)
1691 			bfqq_weight = bfqq->entity.parent->weight;
1692 		else
1693 			bfqq_weight = bfqq->entity.weight;
1694 		if (in_serv_bfqq->entity.parent)
1695 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1696 		else
1697 			in_serv_weight = in_serv_bfqq->entity.weight;
1698 	}
1699 
1700 	return bfqq_weight > in_serv_weight;
1701 }
1702 
1703 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1704 
1705 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1706 					     struct bfq_queue *bfqq,
1707 					     int old_wr_coeff,
1708 					     struct request *rq,
1709 					     bool *interactive)
1710 {
1711 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1712 		bfqq_wants_to_preempt,
1713 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1714 		/*
1715 		 * See the comments on
1716 		 * bfq_bfqq_update_budg_for_activation for
1717 		 * details on the usage of the next variable.
1718 		 */
1719 		arrived_in_time =  ktime_get_ns() <=
1720 			bfqq->ttime.last_end_request +
1721 			bfqd->bfq_slice_idle * 3;
1722 
1723 
1724 	/*
1725 	 * bfqq deserves to be weight-raised if:
1726 	 * - it is sync,
1727 	 * - it does not belong to a large burst,
1728 	 * - it has been idle for enough time or is soft real-time,
1729 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1730 	 * - has a default weight (otherwise we assume the user wanted
1731 	 *   to control its weight explicitly)
1732 	 */
1733 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1734 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1735 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1736 		!in_burst &&
1737 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1738 		bfqq->dispatched == 0 &&
1739 		bfqq->entity.new_weight == 40;
1740 	*interactive = !in_burst && idle_for_long_time &&
1741 		bfqq->entity.new_weight == 40;
1742 	/*
1743 	 * Merged bfq_queues are kept out of weight-raising
1744 	 * (low-latency) mechanisms. The reason is that these queues
1745 	 * are usually created for non-interactive and
1746 	 * non-soft-real-time tasks. Yet this is not the case for
1747 	 * stably-merged queues. These queues are merged just because
1748 	 * they are created shortly after each other. So they may
1749 	 * easily serve the I/O of an interactive or soft-real time
1750 	 * application, if the application happens to spawn multiple
1751 	 * processes. So let also stably-merged queued enjoy weight
1752 	 * raising.
1753 	 */
1754 	wr_or_deserves_wr = bfqd->low_latency &&
1755 		(bfqq->wr_coeff > 1 ||
1756 		 (bfq_bfqq_sync(bfqq) &&
1757 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1758 		   (*interactive || soft_rt)));
1759 
1760 	/*
1761 	 * Using the last flag, update budget and check whether bfqq
1762 	 * may want to preempt the in-service queue.
1763 	 */
1764 	bfqq_wants_to_preempt =
1765 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1766 						    arrived_in_time);
1767 
1768 	/*
1769 	 * If bfqq happened to be activated in a burst, but has been
1770 	 * idle for much more than an interactive queue, then we
1771 	 * assume that, in the overall I/O initiated in the burst, the
1772 	 * I/O associated with bfqq is finished. So bfqq does not need
1773 	 * to be treated as a queue belonging to a burst
1774 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1775 	 * if set, and remove bfqq from the burst list if it's
1776 	 * there. We do not decrement burst_size, because the fact
1777 	 * that bfqq does not need to belong to the burst list any
1778 	 * more does not invalidate the fact that bfqq was created in
1779 	 * a burst.
1780 	 */
1781 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1782 	    idle_for_long_time &&
1783 	    time_is_before_jiffies(
1784 		    bfqq->budget_timeout +
1785 		    msecs_to_jiffies(10000))) {
1786 		hlist_del_init(&bfqq->burst_list_node);
1787 		bfq_clear_bfqq_in_large_burst(bfqq);
1788 	}
1789 
1790 	bfq_clear_bfqq_just_created(bfqq);
1791 
1792 	if (bfqd->low_latency) {
1793 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1794 			/* wraparound */
1795 			bfqq->split_time =
1796 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1797 
1798 		if (time_is_before_jiffies(bfqq->split_time +
1799 					   bfqd->bfq_wr_min_idle_time)) {
1800 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1801 							 old_wr_coeff,
1802 							 wr_or_deserves_wr,
1803 							 *interactive,
1804 							 in_burst,
1805 							 soft_rt);
1806 
1807 			if (old_wr_coeff != bfqq->wr_coeff)
1808 				bfqq->entity.prio_changed = 1;
1809 		}
1810 	}
1811 
1812 	bfqq->last_idle_bklogged = jiffies;
1813 	bfqq->service_from_backlogged = 0;
1814 	bfq_clear_bfqq_softrt_update(bfqq);
1815 
1816 	bfq_add_bfqq_busy(bfqd, bfqq);
1817 
1818 	/*
1819 	 * Expire in-service queue if preemption may be needed for
1820 	 * guarantees or throughput. As for guarantees, we care
1821 	 * explicitly about two cases. The first is that bfqq has to
1822 	 * recover a service hole, as explained in the comments on
1823 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1824 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1825 	 * carry time-critical I/O, then bfqq's bandwidth is less
1826 	 * important than that of queues that carry time-critical I/O.
1827 	 * So, as a further constraint, we consider this case only if
1828 	 * bfqq is at least as weight-raised, i.e., at least as time
1829 	 * critical, as the in-service queue.
1830 	 *
1831 	 * The second case is that bfqq is in a higher priority class,
1832 	 * or has a higher weight than the in-service queue. If this
1833 	 * condition does not hold, we don't care because, even if
1834 	 * bfqq does not start to be served immediately, the resulting
1835 	 * delay for bfqq's I/O is however lower or much lower than
1836 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1837 	 *
1838 	 * In both cases, preemption is needed only if, according to
1839 	 * the timestamps of both bfqq and of the in-service queue,
1840 	 * bfqq actually is the next queue to serve. So, to reduce
1841 	 * useless preemptions, the return value of
1842 	 * next_queue_may_preempt() is considered in the next compound
1843 	 * condition too. Yet next_queue_may_preempt() just checks a
1844 	 * simple, necessary condition for bfqq to be the next queue
1845 	 * to serve. In fact, to evaluate a sufficient condition, the
1846 	 * timestamps of the in-service queue would need to be
1847 	 * updated, and this operation is quite costly (see the
1848 	 * comments on bfq_bfqq_update_budg_for_activation()).
1849 	 *
1850 	 * As for throughput, we ask bfq_better_to_idle() whether we
1851 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1852 	 * says no, then plugging is not needed any longer, either to
1853 	 * boost throughput or to perserve service guarantees. Then
1854 	 * the best option is to stop plugging I/O, as not doing so
1855 	 * would certainly lower throughput. We may end up in this
1856 	 * case if: (1) upon a dispatch attempt, we detected that it
1857 	 * was better to plug I/O dispatch, and to wait for a new
1858 	 * request to arrive for the currently in-service queue, but
1859 	 * (2) this switch of bfqq to busy changes the scenario.
1860 	 */
1861 	if (bfqd->in_service_queue &&
1862 	    ((bfqq_wants_to_preempt &&
1863 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1864 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1865 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1866 	    next_queue_may_preempt(bfqd))
1867 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1868 				false, BFQQE_PREEMPTED);
1869 }
1870 
1871 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1872 				   struct bfq_queue *bfqq)
1873 {
1874 	/* invalidate baseline total service time */
1875 	bfqq->last_serv_time_ns = 0;
1876 
1877 	/*
1878 	 * Reset pointer in case we are waiting for
1879 	 * some request completion.
1880 	 */
1881 	bfqd->waited_rq = NULL;
1882 
1883 	/*
1884 	 * If bfqq has a short think time, then start by setting the
1885 	 * inject limit to 0 prudentially, because the service time of
1886 	 * an injected I/O request may be higher than the think time
1887 	 * of bfqq, and therefore, if one request was injected when
1888 	 * bfqq remains empty, this injected request might delay the
1889 	 * service of the next I/O request for bfqq significantly. In
1890 	 * case bfqq can actually tolerate some injection, then the
1891 	 * adaptive update will however raise the limit soon. This
1892 	 * lucky circumstance holds exactly because bfqq has a short
1893 	 * think time, and thus, after remaining empty, is likely to
1894 	 * get new I/O enqueued---and then completed---before being
1895 	 * expired. This is the very pattern that gives the
1896 	 * limit-update algorithm the chance to measure the effect of
1897 	 * injection on request service times, and then to update the
1898 	 * limit accordingly.
1899 	 *
1900 	 * However, in the following special case, the inject limit is
1901 	 * left to 1 even if the think time is short: bfqq's I/O is
1902 	 * synchronized with that of some other queue, i.e., bfqq may
1903 	 * receive new I/O only after the I/O of the other queue is
1904 	 * completed. Keeping the inject limit to 1 allows the
1905 	 * blocking I/O to be served while bfqq is in service. And
1906 	 * this is very convenient both for bfqq and for overall
1907 	 * throughput, as explained in detail in the comments in
1908 	 * bfq_update_has_short_ttime().
1909 	 *
1910 	 * On the opposite end, if bfqq has a long think time, then
1911 	 * start directly by 1, because:
1912 	 * a) on the bright side, keeping at most one request in
1913 	 * service in the drive is unlikely to cause any harm to the
1914 	 * latency of bfqq's requests, as the service time of a single
1915 	 * request is likely to be lower than the think time of bfqq;
1916 	 * b) on the downside, after becoming empty, bfqq is likely to
1917 	 * expire before getting its next request. With this request
1918 	 * arrival pattern, it is very hard to sample total service
1919 	 * times and update the inject limit accordingly (see comments
1920 	 * on bfq_update_inject_limit()). So the limit is likely to be
1921 	 * never, or at least seldom, updated.  As a consequence, by
1922 	 * setting the limit to 1, we avoid that no injection ever
1923 	 * occurs with bfqq. On the downside, this proactive step
1924 	 * further reduces chances to actually compute the baseline
1925 	 * total service time. Thus it reduces chances to execute the
1926 	 * limit-update algorithm and possibly raise the limit to more
1927 	 * than 1.
1928 	 */
1929 	if (bfq_bfqq_has_short_ttime(bfqq))
1930 		bfqq->inject_limit = 0;
1931 	else
1932 		bfqq->inject_limit = 1;
1933 
1934 	bfqq->decrease_time_jif = jiffies;
1935 }
1936 
1937 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1938 {
1939 	u64 tot_io_time = now_ns - bfqq->io_start_time;
1940 
1941 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1942 		bfqq->tot_idle_time +=
1943 			now_ns - bfqq->ttime.last_end_request;
1944 
1945 	if (unlikely(bfq_bfqq_just_created(bfqq)))
1946 		return;
1947 
1948 	/*
1949 	 * Must be busy for at least about 80% of the time to be
1950 	 * considered I/O bound.
1951 	 */
1952 	if (bfqq->tot_idle_time * 5 > tot_io_time)
1953 		bfq_clear_bfqq_IO_bound(bfqq);
1954 	else
1955 		bfq_mark_bfqq_IO_bound(bfqq);
1956 
1957 	/*
1958 	 * Keep an observation window of at most 200 ms in the past
1959 	 * from now.
1960 	 */
1961 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
1962 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
1963 		bfqq->tot_idle_time >>= 1;
1964 	}
1965 }
1966 
1967 /*
1968  * Detect whether bfqq's I/O seems synchronized with that of some
1969  * other queue, i.e., whether bfqq, after remaining empty, happens to
1970  * receive new I/O only right after some I/O request of the other
1971  * queue has been completed. We call waker queue the other queue, and
1972  * we assume, for simplicity, that bfqq may have at most one waker
1973  * queue.
1974  *
1975  * A remarkable throughput boost can be reached by unconditionally
1976  * injecting the I/O of the waker queue, every time a new
1977  * bfq_dispatch_request happens to be invoked while I/O is being
1978  * plugged for bfqq.  In addition to boosting throughput, this
1979  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1980  * bfqq. Note that these same results may be achieved with the general
1981  * injection mechanism, but less effectively. For details on this
1982  * aspect, see the comments on the choice of the queue for injection
1983  * in bfq_select_queue().
1984  *
1985  * Turning back to the detection of a waker queue, a queue Q is deemed
1986  * as a waker queue for bfqq if, for three consecutive times, bfqq
1987  * happens to become non empty right after a request of Q has been
1988  * completed. In this respect, even if bfqq is empty, we do not check
1989  * for a waker if it still has some in-flight I/O. In fact, in this
1990  * case bfqq is actually still being served by the drive, and may
1991  * receive new I/O on the completion of some of the in-flight
1992  * requests. In particular, on the first time, Q is tentatively set as
1993  * a candidate waker queue, while on the third consecutive time that Q
1994  * is detected, the field waker_bfqq is set to Q, to confirm that Q is
1995  * a waker queue for bfqq. These detection steps are performed only if
1996  * bfqq has a long think time, so as to make it more likely that
1997  * bfqq's I/O is actually being blocked by a synchronization. This
1998  * last filter, plus the above three-times requirement, make false
1999  * positives less likely.
2000  *
2001  * NOTE
2002  *
2003  * The sooner a waker queue is detected, the sooner throughput can be
2004  * boosted by injecting I/O from the waker queue. Fortunately,
2005  * detection is likely to be actually fast, for the following
2006  * reasons. While blocked by synchronization, bfqq has a long think
2007  * time. This implies that bfqq's inject limit is at least equal to 1
2008  * (see the comments in bfq_update_inject_limit()). So, thanks to
2009  * injection, the waker queue is likely to be served during the very
2010  * first I/O-plugging time interval for bfqq. This triggers the first
2011  * step of the detection mechanism. Thanks again to injection, the
2012  * candidate waker queue is then likely to be confirmed no later than
2013  * during the next I/O-plugging interval for bfqq.
2014  *
2015  * ISSUE
2016  *
2017  * On queue merging all waker information is lost.
2018  */
2019 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2020 			    u64 now_ns)
2021 {
2022 	if (!bfqd->last_completed_rq_bfqq ||
2023 	    bfqd->last_completed_rq_bfqq == bfqq ||
2024 	    bfq_bfqq_has_short_ttime(bfqq) ||
2025 	    bfqq->dispatched > 0 ||
2026 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2027 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2028 		return;
2029 
2030 	if (bfqd->last_completed_rq_bfqq !=
2031 	    bfqq->tentative_waker_bfqq) {
2032 		/*
2033 		 * First synchronization detected with a
2034 		 * candidate waker queue, or with a different
2035 		 * candidate waker queue from the current one.
2036 		 */
2037 		bfqq->tentative_waker_bfqq =
2038 			bfqd->last_completed_rq_bfqq;
2039 		bfqq->num_waker_detections = 1;
2040 	} else /* Same tentative waker queue detected again */
2041 		bfqq->num_waker_detections++;
2042 
2043 	if (bfqq->num_waker_detections == 3) {
2044 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2045 		bfqq->tentative_waker_bfqq = NULL;
2046 
2047 		/*
2048 		 * If the waker queue disappears, then
2049 		 * bfqq->waker_bfqq must be reset. To
2050 		 * this goal, we maintain in each
2051 		 * waker queue a list, woken_list, of
2052 		 * all the queues that reference the
2053 		 * waker queue through their
2054 		 * waker_bfqq pointer. When the waker
2055 		 * queue exits, the waker_bfqq pointer
2056 		 * of all the queues in the woken_list
2057 		 * is reset.
2058 		 *
2059 		 * In addition, if bfqq is already in
2060 		 * the woken_list of a waker queue,
2061 		 * then, before being inserted into
2062 		 * the woken_list of a new waker
2063 		 * queue, bfqq must be removed from
2064 		 * the woken_list of the old waker
2065 		 * queue.
2066 		 */
2067 		if (!hlist_unhashed(&bfqq->woken_list_node))
2068 			hlist_del_init(&bfqq->woken_list_node);
2069 		hlist_add_head(&bfqq->woken_list_node,
2070 			       &bfqd->last_completed_rq_bfqq->woken_list);
2071 	}
2072 }
2073 
2074 static void bfq_add_request(struct request *rq)
2075 {
2076 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2077 	struct bfq_data *bfqd = bfqq->bfqd;
2078 	struct request *next_rq, *prev;
2079 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2080 	bool interactive = false;
2081 	u64 now_ns = ktime_get_ns();
2082 
2083 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2084 	bfqq->queued[rq_is_sync(rq)]++;
2085 	bfqd->queued++;
2086 
2087 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2088 		bfq_check_waker(bfqd, bfqq, now_ns);
2089 
2090 		/*
2091 		 * Periodically reset inject limit, to make sure that
2092 		 * the latter eventually drops in case workload
2093 		 * changes, see step (3) in the comments on
2094 		 * bfq_update_inject_limit().
2095 		 */
2096 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2097 					     msecs_to_jiffies(1000)))
2098 			bfq_reset_inject_limit(bfqd, bfqq);
2099 
2100 		/*
2101 		 * The following conditions must hold to setup a new
2102 		 * sampling of total service time, and then a new
2103 		 * update of the inject limit:
2104 		 * - bfqq is in service, because the total service
2105 		 *   time is evaluated only for the I/O requests of
2106 		 *   the queues in service;
2107 		 * - this is the right occasion to compute or to
2108 		 *   lower the baseline total service time, because
2109 		 *   there are actually no requests in the drive,
2110 		 *   or
2111 		 *   the baseline total service time is available, and
2112 		 *   this is the right occasion to compute the other
2113 		 *   quantity needed to update the inject limit, i.e.,
2114 		 *   the total service time caused by the amount of
2115 		 *   injection allowed by the current value of the
2116 		 *   limit. It is the right occasion because injection
2117 		 *   has actually been performed during the service
2118 		 *   hole, and there are still in-flight requests,
2119 		 *   which are very likely to be exactly the injected
2120 		 *   requests, or part of them;
2121 		 * - the minimum interval for sampling the total
2122 		 *   service time and updating the inject limit has
2123 		 *   elapsed.
2124 		 */
2125 		if (bfqq == bfqd->in_service_queue &&
2126 		    (bfqd->rq_in_driver == 0 ||
2127 		     (bfqq->last_serv_time_ns > 0 &&
2128 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2129 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2130 					      msecs_to_jiffies(10))) {
2131 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2132 			/*
2133 			 * Start the state machine for measuring the
2134 			 * total service time of rq: setting
2135 			 * wait_dispatch will cause bfqd->waited_rq to
2136 			 * be set when rq will be dispatched.
2137 			 */
2138 			bfqd->wait_dispatch = true;
2139 			/*
2140 			 * If there is no I/O in service in the drive,
2141 			 * then possible injection occurred before the
2142 			 * arrival of rq will not affect the total
2143 			 * service time of rq. So the injection limit
2144 			 * must not be updated as a function of such
2145 			 * total service time, unless new injection
2146 			 * occurs before rq is completed. To have the
2147 			 * injection limit updated only in the latter
2148 			 * case, reset rqs_injected here (rqs_injected
2149 			 * will be set in case injection is performed
2150 			 * on bfqq before rq is completed).
2151 			 */
2152 			if (bfqd->rq_in_driver == 0)
2153 				bfqd->rqs_injected = false;
2154 		}
2155 	}
2156 
2157 	if (bfq_bfqq_sync(bfqq))
2158 		bfq_update_io_intensity(bfqq, now_ns);
2159 
2160 	elv_rb_add(&bfqq->sort_list, rq);
2161 
2162 	/*
2163 	 * Check if this request is a better next-serve candidate.
2164 	 */
2165 	prev = bfqq->next_rq;
2166 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2167 	bfqq->next_rq = next_rq;
2168 
2169 	/*
2170 	 * Adjust priority tree position, if next_rq changes.
2171 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2172 	 */
2173 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2174 		bfq_pos_tree_add_move(bfqd, bfqq);
2175 
2176 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2177 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2178 						 rq, &interactive);
2179 	else {
2180 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2181 		    time_is_before_jiffies(
2182 				bfqq->last_wr_start_finish +
2183 				bfqd->bfq_wr_min_inter_arr_async)) {
2184 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2185 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2186 
2187 			bfqd->wr_busy_queues++;
2188 			bfqq->entity.prio_changed = 1;
2189 		}
2190 		if (prev != bfqq->next_rq)
2191 			bfq_updated_next_req(bfqd, bfqq);
2192 	}
2193 
2194 	/*
2195 	 * Assign jiffies to last_wr_start_finish in the following
2196 	 * cases:
2197 	 *
2198 	 * . if bfqq is not going to be weight-raised, because, for
2199 	 *   non weight-raised queues, last_wr_start_finish stores the
2200 	 *   arrival time of the last request; as of now, this piece
2201 	 *   of information is used only for deciding whether to
2202 	 *   weight-raise async queues
2203 	 *
2204 	 * . if bfqq is not weight-raised, because, if bfqq is now
2205 	 *   switching to weight-raised, then last_wr_start_finish
2206 	 *   stores the time when weight-raising starts
2207 	 *
2208 	 * . if bfqq is interactive, because, regardless of whether
2209 	 *   bfqq is currently weight-raised, the weight-raising
2210 	 *   period must start or restart (this case is considered
2211 	 *   separately because it is not detected by the above
2212 	 *   conditions, if bfqq is already weight-raised)
2213 	 *
2214 	 * last_wr_start_finish has to be updated also if bfqq is soft
2215 	 * real-time, because the weight-raising period is constantly
2216 	 * restarted on idle-to-busy transitions for these queues, but
2217 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2218 	 * needed.
2219 	 */
2220 	if (bfqd->low_latency &&
2221 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2222 		bfqq->last_wr_start_finish = jiffies;
2223 }
2224 
2225 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2226 					  struct bio *bio,
2227 					  struct request_queue *q)
2228 {
2229 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2230 
2231 
2232 	if (bfqq)
2233 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2234 
2235 	return NULL;
2236 }
2237 
2238 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2239 {
2240 	if (last_pos)
2241 		return abs(blk_rq_pos(rq) - last_pos);
2242 
2243 	return 0;
2244 }
2245 
2246 #if 0 /* Still not clear if we can do without next two functions */
2247 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2248 {
2249 	struct bfq_data *bfqd = q->elevator->elevator_data;
2250 
2251 	bfqd->rq_in_driver++;
2252 }
2253 
2254 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2255 {
2256 	struct bfq_data *bfqd = q->elevator->elevator_data;
2257 
2258 	bfqd->rq_in_driver--;
2259 }
2260 #endif
2261 
2262 static void bfq_remove_request(struct request_queue *q,
2263 			       struct request *rq)
2264 {
2265 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2266 	struct bfq_data *bfqd = bfqq->bfqd;
2267 	const int sync = rq_is_sync(rq);
2268 
2269 	if (bfqq->next_rq == rq) {
2270 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2271 		bfq_updated_next_req(bfqd, bfqq);
2272 	}
2273 
2274 	if (rq->queuelist.prev != &rq->queuelist)
2275 		list_del_init(&rq->queuelist);
2276 	bfqq->queued[sync]--;
2277 	bfqd->queued--;
2278 	elv_rb_del(&bfqq->sort_list, rq);
2279 
2280 	elv_rqhash_del(q, rq);
2281 	if (q->last_merge == rq)
2282 		q->last_merge = NULL;
2283 
2284 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2285 		bfqq->next_rq = NULL;
2286 
2287 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2288 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2289 			/*
2290 			 * bfqq emptied. In normal operation, when
2291 			 * bfqq is empty, bfqq->entity.service and
2292 			 * bfqq->entity.budget must contain,
2293 			 * respectively, the service received and the
2294 			 * budget used last time bfqq emptied. These
2295 			 * facts do not hold in this case, as at least
2296 			 * this last removal occurred while bfqq is
2297 			 * not in service. To avoid inconsistencies,
2298 			 * reset both bfqq->entity.service and
2299 			 * bfqq->entity.budget, if bfqq has still a
2300 			 * process that may issue I/O requests to it.
2301 			 */
2302 			bfqq->entity.budget = bfqq->entity.service = 0;
2303 		}
2304 
2305 		/*
2306 		 * Remove queue from request-position tree as it is empty.
2307 		 */
2308 		if (bfqq->pos_root) {
2309 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2310 			bfqq->pos_root = NULL;
2311 		}
2312 	} else {
2313 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2314 		if (unlikely(!bfqd->nonrot_with_queueing))
2315 			bfq_pos_tree_add_move(bfqd, bfqq);
2316 	}
2317 
2318 	if (rq->cmd_flags & REQ_META)
2319 		bfqq->meta_pending--;
2320 
2321 }
2322 
2323 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2324 		unsigned int nr_segs)
2325 {
2326 	struct bfq_data *bfqd = q->elevator->elevator_data;
2327 	struct request *free = NULL;
2328 	/*
2329 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2330 	 * store its return value for later use, to avoid nesting
2331 	 * queue_lock inside the bfqd->lock. We assume that the bic
2332 	 * returned by bfq_bic_lookup does not go away before
2333 	 * bfqd->lock is taken.
2334 	 */
2335 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2336 	bool ret;
2337 
2338 	spin_lock_irq(&bfqd->lock);
2339 
2340 	if (bic)
2341 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2342 	else
2343 		bfqd->bio_bfqq = NULL;
2344 	bfqd->bio_bic = bic;
2345 
2346 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2347 
2348 	spin_unlock_irq(&bfqd->lock);
2349 	if (free)
2350 		blk_mq_free_request(free);
2351 
2352 	return ret;
2353 }
2354 
2355 static int bfq_request_merge(struct request_queue *q, struct request **req,
2356 			     struct bio *bio)
2357 {
2358 	struct bfq_data *bfqd = q->elevator->elevator_data;
2359 	struct request *__rq;
2360 
2361 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2362 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2363 		*req = __rq;
2364 
2365 		if (blk_discard_mergable(__rq))
2366 			return ELEVATOR_DISCARD_MERGE;
2367 		return ELEVATOR_FRONT_MERGE;
2368 	}
2369 
2370 	return ELEVATOR_NO_MERGE;
2371 }
2372 
2373 static struct bfq_queue *bfq_init_rq(struct request *rq);
2374 
2375 static void bfq_request_merged(struct request_queue *q, struct request *req,
2376 			       enum elv_merge type)
2377 {
2378 	if (type == ELEVATOR_FRONT_MERGE &&
2379 	    rb_prev(&req->rb_node) &&
2380 	    blk_rq_pos(req) <
2381 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2382 				    struct request, rb_node))) {
2383 		struct bfq_queue *bfqq = bfq_init_rq(req);
2384 		struct bfq_data *bfqd;
2385 		struct request *prev, *next_rq;
2386 
2387 		if (!bfqq)
2388 			return;
2389 
2390 		bfqd = bfqq->bfqd;
2391 
2392 		/* Reposition request in its sort_list */
2393 		elv_rb_del(&bfqq->sort_list, req);
2394 		elv_rb_add(&bfqq->sort_list, req);
2395 
2396 		/* Choose next request to be served for bfqq */
2397 		prev = bfqq->next_rq;
2398 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2399 					 bfqd->last_position);
2400 		bfqq->next_rq = next_rq;
2401 		/*
2402 		 * If next_rq changes, update both the queue's budget to
2403 		 * fit the new request and the queue's position in its
2404 		 * rq_pos_tree.
2405 		 */
2406 		if (prev != bfqq->next_rq) {
2407 			bfq_updated_next_req(bfqd, bfqq);
2408 			/*
2409 			 * See comments on bfq_pos_tree_add_move() for
2410 			 * the unlikely().
2411 			 */
2412 			if (unlikely(!bfqd->nonrot_with_queueing))
2413 				bfq_pos_tree_add_move(bfqd, bfqq);
2414 		}
2415 	}
2416 }
2417 
2418 /*
2419  * This function is called to notify the scheduler that the requests
2420  * rq and 'next' have been merged, with 'next' going away.  BFQ
2421  * exploits this hook to address the following issue: if 'next' has a
2422  * fifo_time lower that rq, then the fifo_time of rq must be set to
2423  * the value of 'next', to not forget the greater age of 'next'.
2424  *
2425  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2426  * on that rq is picked from the hash table q->elevator->hash, which,
2427  * in its turn, is filled only with I/O requests present in
2428  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2429  * the function that fills this hash table (elv_rqhash_add) is called
2430  * only by bfq_insert_request.
2431  */
2432 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2433 				struct request *next)
2434 {
2435 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2436 		*next_bfqq = bfq_init_rq(next);
2437 
2438 	if (!bfqq)
2439 		goto remove;
2440 
2441 	/*
2442 	 * If next and rq belong to the same bfq_queue and next is older
2443 	 * than rq, then reposition rq in the fifo (by substituting next
2444 	 * with rq). Otherwise, if next and rq belong to different
2445 	 * bfq_queues, never reposition rq: in fact, we would have to
2446 	 * reposition it with respect to next's position in its own fifo,
2447 	 * which would most certainly be too expensive with respect to
2448 	 * the benefits.
2449 	 */
2450 	if (bfqq == next_bfqq &&
2451 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2452 	    next->fifo_time < rq->fifo_time) {
2453 		list_del_init(&rq->queuelist);
2454 		list_replace_init(&next->queuelist, &rq->queuelist);
2455 		rq->fifo_time = next->fifo_time;
2456 	}
2457 
2458 	if (bfqq->next_rq == next)
2459 		bfqq->next_rq = rq;
2460 
2461 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2462 remove:
2463 	/* Merged request may be in the IO scheduler. Remove it. */
2464 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2465 		bfq_remove_request(next->q, next);
2466 		if (next_bfqq)
2467 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2468 						    next->cmd_flags);
2469 	}
2470 }
2471 
2472 /* Must be called with bfqq != NULL */
2473 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2474 {
2475 	/*
2476 	 * If bfqq has been enjoying interactive weight-raising, then
2477 	 * reset soft_rt_next_start. We do it for the following
2478 	 * reason. bfqq may have been conveying the I/O needed to load
2479 	 * a soft real-time application. Such an application actually
2480 	 * exhibits a soft real-time I/O pattern after it finishes
2481 	 * loading, and finally starts doing its job. But, if bfqq has
2482 	 * been receiving a lot of bandwidth so far (likely to happen
2483 	 * on a fast device), then soft_rt_next_start now contains a
2484 	 * high value that. So, without this reset, bfqq would be
2485 	 * prevented from being possibly considered as soft_rt for a
2486 	 * very long time.
2487 	 */
2488 
2489 	if (bfqq->wr_cur_max_time !=
2490 	    bfqq->bfqd->bfq_wr_rt_max_time)
2491 		bfqq->soft_rt_next_start = jiffies;
2492 
2493 	if (bfq_bfqq_busy(bfqq))
2494 		bfqq->bfqd->wr_busy_queues--;
2495 	bfqq->wr_coeff = 1;
2496 	bfqq->wr_cur_max_time = 0;
2497 	bfqq->last_wr_start_finish = jiffies;
2498 	/*
2499 	 * Trigger a weight change on the next invocation of
2500 	 * __bfq_entity_update_weight_prio.
2501 	 */
2502 	bfqq->entity.prio_changed = 1;
2503 }
2504 
2505 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2506 			     struct bfq_group *bfqg)
2507 {
2508 	int i, j;
2509 
2510 	for (i = 0; i < 2; i++)
2511 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2512 			if (bfqg->async_bfqq[i][j])
2513 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2514 	if (bfqg->async_idle_bfqq)
2515 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2516 }
2517 
2518 static void bfq_end_wr(struct bfq_data *bfqd)
2519 {
2520 	struct bfq_queue *bfqq;
2521 
2522 	spin_lock_irq(&bfqd->lock);
2523 
2524 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2525 		bfq_bfqq_end_wr(bfqq);
2526 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2527 		bfq_bfqq_end_wr(bfqq);
2528 	bfq_end_wr_async(bfqd);
2529 
2530 	spin_unlock_irq(&bfqd->lock);
2531 }
2532 
2533 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2534 {
2535 	if (request)
2536 		return blk_rq_pos(io_struct);
2537 	else
2538 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2539 }
2540 
2541 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2542 				  sector_t sector)
2543 {
2544 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2545 	       BFQQ_CLOSE_THR;
2546 }
2547 
2548 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2549 					 struct bfq_queue *bfqq,
2550 					 sector_t sector)
2551 {
2552 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2553 	struct rb_node *parent, *node;
2554 	struct bfq_queue *__bfqq;
2555 
2556 	if (RB_EMPTY_ROOT(root))
2557 		return NULL;
2558 
2559 	/*
2560 	 * First, if we find a request starting at the end of the last
2561 	 * request, choose it.
2562 	 */
2563 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2564 	if (__bfqq)
2565 		return __bfqq;
2566 
2567 	/*
2568 	 * If the exact sector wasn't found, the parent of the NULL leaf
2569 	 * will contain the closest sector (rq_pos_tree sorted by
2570 	 * next_request position).
2571 	 */
2572 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2573 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2574 		return __bfqq;
2575 
2576 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2577 		node = rb_next(&__bfqq->pos_node);
2578 	else
2579 		node = rb_prev(&__bfqq->pos_node);
2580 	if (!node)
2581 		return NULL;
2582 
2583 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2584 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2585 		return __bfqq;
2586 
2587 	return NULL;
2588 }
2589 
2590 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2591 						   struct bfq_queue *cur_bfqq,
2592 						   sector_t sector)
2593 {
2594 	struct bfq_queue *bfqq;
2595 
2596 	/*
2597 	 * We shall notice if some of the queues are cooperating,
2598 	 * e.g., working closely on the same area of the device. In
2599 	 * that case, we can group them together and: 1) don't waste
2600 	 * time idling, and 2) serve the union of their requests in
2601 	 * the best possible order for throughput.
2602 	 */
2603 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2604 	if (!bfqq || bfqq == cur_bfqq)
2605 		return NULL;
2606 
2607 	return bfqq;
2608 }
2609 
2610 static struct bfq_queue *
2611 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2612 {
2613 	int process_refs, new_process_refs;
2614 	struct bfq_queue *__bfqq;
2615 
2616 	/*
2617 	 * If there are no process references on the new_bfqq, then it is
2618 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2619 	 * may have dropped their last reference (not just their last process
2620 	 * reference).
2621 	 */
2622 	if (!bfqq_process_refs(new_bfqq))
2623 		return NULL;
2624 
2625 	/* Avoid a circular list and skip interim queue merges. */
2626 	while ((__bfqq = new_bfqq->new_bfqq)) {
2627 		if (__bfqq == bfqq)
2628 			return NULL;
2629 		new_bfqq = __bfqq;
2630 	}
2631 
2632 	process_refs = bfqq_process_refs(bfqq);
2633 	new_process_refs = bfqq_process_refs(new_bfqq);
2634 	/*
2635 	 * If the process for the bfqq has gone away, there is no
2636 	 * sense in merging the queues.
2637 	 */
2638 	if (process_refs == 0 || new_process_refs == 0)
2639 		return NULL;
2640 
2641 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2642 		new_bfqq->pid);
2643 
2644 	/*
2645 	 * Merging is just a redirection: the requests of the process
2646 	 * owning one of the two queues are redirected to the other queue.
2647 	 * The latter queue, in its turn, is set as shared if this is the
2648 	 * first time that the requests of some process are redirected to
2649 	 * it.
2650 	 *
2651 	 * We redirect bfqq to new_bfqq and not the opposite, because
2652 	 * we are in the context of the process owning bfqq, thus we
2653 	 * have the io_cq of this process. So we can immediately
2654 	 * configure this io_cq to redirect the requests of the
2655 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2656 	 * not available any more (new_bfqq->bic == NULL).
2657 	 *
2658 	 * Anyway, even in case new_bfqq coincides with the in-service
2659 	 * queue, redirecting requests the in-service queue is the
2660 	 * best option, as we feed the in-service queue with new
2661 	 * requests close to the last request served and, by doing so,
2662 	 * are likely to increase the throughput.
2663 	 */
2664 	bfqq->new_bfqq = new_bfqq;
2665 	new_bfqq->ref += process_refs;
2666 	return new_bfqq;
2667 }
2668 
2669 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2670 					struct bfq_queue *new_bfqq)
2671 {
2672 	if (bfq_too_late_for_merging(new_bfqq))
2673 		return false;
2674 
2675 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2676 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2677 		return false;
2678 
2679 	/*
2680 	 * If either of the queues has already been detected as seeky,
2681 	 * then merging it with the other queue is unlikely to lead to
2682 	 * sequential I/O.
2683 	 */
2684 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2685 		return false;
2686 
2687 	/*
2688 	 * Interleaved I/O is known to be done by (some) applications
2689 	 * only for reads, so it does not make sense to merge async
2690 	 * queues.
2691 	 */
2692 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2693 		return false;
2694 
2695 	return true;
2696 }
2697 
2698 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2699 					     struct bfq_queue *bfqq);
2700 
2701 /*
2702  * Attempt to schedule a merge of bfqq with the currently in-service
2703  * queue or with a close queue among the scheduled queues.  Return
2704  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2705  * structure otherwise.
2706  *
2707  * The OOM queue is not allowed to participate to cooperation: in fact, since
2708  * the requests temporarily redirected to the OOM queue could be redirected
2709  * again to dedicated queues at any time, the state needed to correctly
2710  * handle merging with the OOM queue would be quite complex and expensive
2711  * to maintain. Besides, in such a critical condition as an out of memory,
2712  * the benefits of queue merging may be little relevant, or even negligible.
2713  *
2714  * WARNING: queue merging may impair fairness among non-weight raised
2715  * queues, for at least two reasons: 1) the original weight of a
2716  * merged queue may change during the merged state, 2) even being the
2717  * weight the same, a merged queue may be bloated with many more
2718  * requests than the ones produced by its originally-associated
2719  * process.
2720  */
2721 static struct bfq_queue *
2722 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2723 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2724 {
2725 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2726 
2727 	/*
2728 	 * Check delayed stable merge for rotational or non-queueing
2729 	 * devs. For this branch to be executed, bfqq must not be
2730 	 * currently merged with some other queue (i.e., bfqq->bic
2731 	 * must be non null). If we considered also merged queues,
2732 	 * then we should also check whether bfqq has already been
2733 	 * merged with bic->stable_merge_bfqq. But this would be
2734 	 * costly and complicated.
2735 	 */
2736 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2737 		/*
2738 		 * Make sure also that bfqq is sync, because
2739 		 * bic->stable_merge_bfqq may point to some queue (for
2740 		 * stable merging) also if bic is associated with a
2741 		 * sync queue, but this bfqq is async
2742 		 */
2743 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2744 		    !bfq_bfqq_just_created(bfqq) &&
2745 		    time_is_before_jiffies(bfqq->split_time +
2746 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2747 		    time_is_before_jiffies(bfqq->creation_time +
2748 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2749 			struct bfq_queue *stable_merge_bfqq =
2750 				bic->stable_merge_bfqq;
2751 			int proc_ref = min(bfqq_process_refs(bfqq),
2752 					   bfqq_process_refs(stable_merge_bfqq));
2753 
2754 			/* deschedule stable merge, because done or aborted here */
2755 			bfq_put_stable_ref(stable_merge_bfqq);
2756 
2757 			bic->stable_merge_bfqq = NULL;
2758 
2759 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2760 			    proc_ref > 0) {
2761 				/* next function will take at least one ref */
2762 				struct bfq_queue *new_bfqq =
2763 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2764 
2765 				bic->stably_merged = true;
2766 				if (new_bfqq && new_bfqq->bic)
2767 					new_bfqq->bic->stably_merged = true;
2768 				return new_bfqq;
2769 			} else
2770 				return NULL;
2771 		}
2772 	}
2773 
2774 	/*
2775 	 * Do not perform queue merging if the device is non
2776 	 * rotational and performs internal queueing. In fact, such a
2777 	 * device reaches a high speed through internal parallelism
2778 	 * and pipelining. This means that, to reach a high
2779 	 * throughput, it must have many requests enqueued at the same
2780 	 * time. But, in this configuration, the internal scheduling
2781 	 * algorithm of the device does exactly the job of queue
2782 	 * merging: it reorders requests so as to obtain as much as
2783 	 * possible a sequential I/O pattern. As a consequence, with
2784 	 * the workload generated by processes doing interleaved I/O,
2785 	 * the throughput reached by the device is likely to be the
2786 	 * same, with and without queue merging.
2787 	 *
2788 	 * Disabling merging also provides a remarkable benefit in
2789 	 * terms of throughput. Merging tends to make many workloads
2790 	 * artificially more uneven, because of shared queues
2791 	 * remaining non empty for incomparably more time than
2792 	 * non-merged queues. This may accentuate workload
2793 	 * asymmetries. For example, if one of the queues in a set of
2794 	 * merged queues has a higher weight than a normal queue, then
2795 	 * the shared queue may inherit such a high weight and, by
2796 	 * staying almost always active, may force BFQ to perform I/O
2797 	 * plugging most of the time. This evidently makes it harder
2798 	 * for BFQ to let the device reach a high throughput.
2799 	 *
2800 	 * Finally, the likely() macro below is not used because one
2801 	 * of the two branches is more likely than the other, but to
2802 	 * have the code path after the following if() executed as
2803 	 * fast as possible for the case of a non rotational device
2804 	 * with queueing. We want it because this is the fastest kind
2805 	 * of device. On the opposite end, the likely() may lengthen
2806 	 * the execution time of BFQ for the case of slower devices
2807 	 * (rotational or at least without queueing). But in this case
2808 	 * the execution time of BFQ matters very little, if not at
2809 	 * all.
2810 	 */
2811 	if (likely(bfqd->nonrot_with_queueing))
2812 		return NULL;
2813 
2814 	/*
2815 	 * Prevent bfqq from being merged if it has been created too
2816 	 * long ago. The idea is that true cooperating processes, and
2817 	 * thus their associated bfq_queues, are supposed to be
2818 	 * created shortly after each other. This is the case, e.g.,
2819 	 * for KVM/QEMU and dump I/O threads. Basing on this
2820 	 * assumption, the following filtering greatly reduces the
2821 	 * probability that two non-cooperating processes, which just
2822 	 * happen to do close I/O for some short time interval, have
2823 	 * their queues merged by mistake.
2824 	 */
2825 	if (bfq_too_late_for_merging(bfqq))
2826 		return NULL;
2827 
2828 	if (bfqq->new_bfqq)
2829 		return bfqq->new_bfqq;
2830 
2831 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2832 		return NULL;
2833 
2834 	/* If there is only one backlogged queue, don't search. */
2835 	if (bfq_tot_busy_queues(bfqd) == 1)
2836 		return NULL;
2837 
2838 	in_service_bfqq = bfqd->in_service_queue;
2839 
2840 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2841 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2842 	    bfq_rq_close_to_sector(io_struct, request,
2843 				   bfqd->in_serv_last_pos) &&
2844 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2845 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2846 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2847 		if (new_bfqq)
2848 			return new_bfqq;
2849 	}
2850 	/*
2851 	 * Check whether there is a cooperator among currently scheduled
2852 	 * queues. The only thing we need is that the bio/request is not
2853 	 * NULL, as we need it to establish whether a cooperator exists.
2854 	 */
2855 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2856 			bfq_io_struct_pos(io_struct, request));
2857 
2858 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2859 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2860 		return bfq_setup_merge(bfqq, new_bfqq);
2861 
2862 	return NULL;
2863 }
2864 
2865 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2866 {
2867 	struct bfq_io_cq *bic = bfqq->bic;
2868 
2869 	/*
2870 	 * If !bfqq->bic, the queue is already shared or its requests
2871 	 * have already been redirected to a shared queue; both idle window
2872 	 * and weight raising state have already been saved. Do nothing.
2873 	 */
2874 	if (!bic)
2875 		return;
2876 
2877 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2878 	bic->saved_inject_limit = bfqq->inject_limit;
2879 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2880 
2881 	bic->saved_weight = bfqq->entity.orig_weight;
2882 	bic->saved_ttime = bfqq->ttime;
2883 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2884 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2885 	bic->saved_io_start_time = bfqq->io_start_time;
2886 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2887 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2888 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2889 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2890 		     !bfq_bfqq_in_large_burst(bfqq) &&
2891 		     bfqq->bfqd->low_latency)) {
2892 		/*
2893 		 * bfqq being merged right after being created: bfqq
2894 		 * would have deserved interactive weight raising, but
2895 		 * did not make it to be set in a weight-raised state,
2896 		 * because of this early merge.	Store directly the
2897 		 * weight-raising state that would have been assigned
2898 		 * to bfqq, so that to avoid that bfqq unjustly fails
2899 		 * to enjoy weight raising if split soon.
2900 		 */
2901 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2902 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2903 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2904 		bic->saved_last_wr_start_finish = jiffies;
2905 	} else {
2906 		bic->saved_wr_coeff = bfqq->wr_coeff;
2907 		bic->saved_wr_start_at_switch_to_srt =
2908 			bfqq->wr_start_at_switch_to_srt;
2909 		bic->saved_service_from_wr = bfqq->service_from_wr;
2910 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2911 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2912 	}
2913 }
2914 
2915 
2916 static void
2917 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
2918 {
2919 	if (cur_bfqq->entity.parent &&
2920 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
2921 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
2922 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
2923 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
2924 }
2925 
2926 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2927 {
2928 	/*
2929 	 * To prevent bfqq's service guarantees from being violated,
2930 	 * bfqq may be left busy, i.e., queued for service, even if
2931 	 * empty (see comments in __bfq_bfqq_expire() for
2932 	 * details). But, if no process will send requests to bfqq any
2933 	 * longer, then there is no point in keeping bfqq queued for
2934 	 * service. In addition, keeping bfqq queued for service, but
2935 	 * with no process ref any longer, may have caused bfqq to be
2936 	 * freed when dequeued from service. But this is assumed to
2937 	 * never happen.
2938 	 */
2939 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2940 	    bfqq != bfqd->in_service_queue)
2941 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2942 
2943 	bfq_reassign_last_bfqq(bfqq, NULL);
2944 
2945 	bfq_put_queue(bfqq);
2946 }
2947 
2948 static void
2949 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2950 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2951 {
2952 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2953 		(unsigned long)new_bfqq->pid);
2954 	/* Save weight raising and idle window of the merged queues */
2955 	bfq_bfqq_save_state(bfqq);
2956 	bfq_bfqq_save_state(new_bfqq);
2957 	if (bfq_bfqq_IO_bound(bfqq))
2958 		bfq_mark_bfqq_IO_bound(new_bfqq);
2959 	bfq_clear_bfqq_IO_bound(bfqq);
2960 
2961 	/*
2962 	 * The processes associated with bfqq are cooperators of the
2963 	 * processes associated with new_bfqq. So, if bfqq has a
2964 	 * waker, then assume that all these processes will be happy
2965 	 * to let bfqq's waker freely inject I/O when they have no
2966 	 * I/O.
2967 	 */
2968 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
2969 	    bfqq->waker_bfqq != new_bfqq) {
2970 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
2971 		new_bfqq->tentative_waker_bfqq = NULL;
2972 
2973 		/*
2974 		 * If the waker queue disappears, then
2975 		 * new_bfqq->waker_bfqq must be reset. So insert
2976 		 * new_bfqq into the woken_list of the waker. See
2977 		 * bfq_check_waker for details.
2978 		 */
2979 		hlist_add_head(&new_bfqq->woken_list_node,
2980 			       &new_bfqq->waker_bfqq->woken_list);
2981 
2982 	}
2983 
2984 	/*
2985 	 * If bfqq is weight-raised, then let new_bfqq inherit
2986 	 * weight-raising. To reduce false positives, neglect the case
2987 	 * where bfqq has just been created, but has not yet made it
2988 	 * to be weight-raised (which may happen because EQM may merge
2989 	 * bfqq even before bfq_add_request is executed for the first
2990 	 * time for bfqq). Handling this case would however be very
2991 	 * easy, thanks to the flag just_created.
2992 	 */
2993 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2994 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2995 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2996 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2997 		new_bfqq->wr_start_at_switch_to_srt =
2998 			bfqq->wr_start_at_switch_to_srt;
2999 		if (bfq_bfqq_busy(new_bfqq))
3000 			bfqd->wr_busy_queues++;
3001 		new_bfqq->entity.prio_changed = 1;
3002 	}
3003 
3004 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3005 		bfqq->wr_coeff = 1;
3006 		bfqq->entity.prio_changed = 1;
3007 		if (bfq_bfqq_busy(bfqq))
3008 			bfqd->wr_busy_queues--;
3009 	}
3010 
3011 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3012 		     bfqd->wr_busy_queues);
3013 
3014 	/*
3015 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3016 	 */
3017 	bic_set_bfqq(bic, new_bfqq, 1);
3018 	bfq_mark_bfqq_coop(new_bfqq);
3019 	/*
3020 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3021 	 * set new_bfqq->bic to NULL. bfqq either:
3022 	 * - does not belong to any bic any more, and hence bfqq->bic must
3023 	 *   be set to NULL, or
3024 	 * - is a queue whose owning bics have already been redirected to a
3025 	 *   different queue, hence the queue is destined to not belong to
3026 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3027 	 *   assignment causes no harm).
3028 	 */
3029 	new_bfqq->bic = NULL;
3030 	/*
3031 	 * If the queue is shared, the pid is the pid of one of the associated
3032 	 * processes. Which pid depends on the exact sequence of merge events
3033 	 * the queue underwent. So printing such a pid is useless and confusing
3034 	 * because it reports a random pid between those of the associated
3035 	 * processes.
3036 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3037 	 * a pid in logging messages.
3038 	 */
3039 	new_bfqq->pid = -1;
3040 	bfqq->bic = NULL;
3041 
3042 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3043 
3044 	bfq_release_process_ref(bfqd, bfqq);
3045 }
3046 
3047 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3048 				struct bio *bio)
3049 {
3050 	struct bfq_data *bfqd = q->elevator->elevator_data;
3051 	bool is_sync = op_is_sync(bio->bi_opf);
3052 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3053 
3054 	/*
3055 	 * Disallow merge of a sync bio into an async request.
3056 	 */
3057 	if (is_sync && !rq_is_sync(rq))
3058 		return false;
3059 
3060 	/*
3061 	 * Lookup the bfqq that this bio will be queued with. Allow
3062 	 * merge only if rq is queued there.
3063 	 */
3064 	if (!bfqq)
3065 		return false;
3066 
3067 	/*
3068 	 * We take advantage of this function to perform an early merge
3069 	 * of the queues of possible cooperating processes.
3070 	 */
3071 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3072 	if (new_bfqq) {
3073 		/*
3074 		 * bic still points to bfqq, then it has not yet been
3075 		 * redirected to some other bfq_queue, and a queue
3076 		 * merge between bfqq and new_bfqq can be safely
3077 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3078 		 * and bfqq can be put.
3079 		 */
3080 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3081 				new_bfqq);
3082 		/*
3083 		 * If we get here, bio will be queued into new_queue,
3084 		 * so use new_bfqq to decide whether bio and rq can be
3085 		 * merged.
3086 		 */
3087 		bfqq = new_bfqq;
3088 
3089 		/*
3090 		 * Change also bqfd->bio_bfqq, as
3091 		 * bfqd->bio_bic now points to new_bfqq, and
3092 		 * this function may be invoked again (and then may
3093 		 * use again bqfd->bio_bfqq).
3094 		 */
3095 		bfqd->bio_bfqq = bfqq;
3096 	}
3097 
3098 	return bfqq == RQ_BFQQ(rq);
3099 }
3100 
3101 /*
3102  * Set the maximum time for the in-service queue to consume its
3103  * budget. This prevents seeky processes from lowering the throughput.
3104  * In practice, a time-slice service scheme is used with seeky
3105  * processes.
3106  */
3107 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3108 				   struct bfq_queue *bfqq)
3109 {
3110 	unsigned int timeout_coeff;
3111 
3112 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3113 		timeout_coeff = 1;
3114 	else
3115 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3116 
3117 	bfqd->last_budget_start = ktime_get();
3118 
3119 	bfqq->budget_timeout = jiffies +
3120 		bfqd->bfq_timeout * timeout_coeff;
3121 }
3122 
3123 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3124 				       struct bfq_queue *bfqq)
3125 {
3126 	if (bfqq) {
3127 		bfq_clear_bfqq_fifo_expire(bfqq);
3128 
3129 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3130 
3131 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3132 		    bfqq->wr_coeff > 1 &&
3133 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3134 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3135 			/*
3136 			 * For soft real-time queues, move the start
3137 			 * of the weight-raising period forward by the
3138 			 * time the queue has not received any
3139 			 * service. Otherwise, a relatively long
3140 			 * service delay is likely to cause the
3141 			 * weight-raising period of the queue to end,
3142 			 * because of the short duration of the
3143 			 * weight-raising period of a soft real-time
3144 			 * queue.  It is worth noting that this move
3145 			 * is not so dangerous for the other queues,
3146 			 * because soft real-time queues are not
3147 			 * greedy.
3148 			 *
3149 			 * To not add a further variable, we use the
3150 			 * overloaded field budget_timeout to
3151 			 * determine for how long the queue has not
3152 			 * received service, i.e., how much time has
3153 			 * elapsed since the queue expired. However,
3154 			 * this is a little imprecise, because
3155 			 * budget_timeout is set to jiffies if bfqq
3156 			 * not only expires, but also remains with no
3157 			 * request.
3158 			 */
3159 			if (time_after(bfqq->budget_timeout,
3160 				       bfqq->last_wr_start_finish))
3161 				bfqq->last_wr_start_finish +=
3162 					jiffies - bfqq->budget_timeout;
3163 			else
3164 				bfqq->last_wr_start_finish = jiffies;
3165 		}
3166 
3167 		bfq_set_budget_timeout(bfqd, bfqq);
3168 		bfq_log_bfqq(bfqd, bfqq,
3169 			     "set_in_service_queue, cur-budget = %d",
3170 			     bfqq->entity.budget);
3171 	}
3172 
3173 	bfqd->in_service_queue = bfqq;
3174 	bfqd->in_serv_last_pos = 0;
3175 }
3176 
3177 /*
3178  * Get and set a new queue for service.
3179  */
3180 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3181 {
3182 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3183 
3184 	__bfq_set_in_service_queue(bfqd, bfqq);
3185 	return bfqq;
3186 }
3187 
3188 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3189 {
3190 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3191 	u32 sl;
3192 
3193 	bfq_mark_bfqq_wait_request(bfqq);
3194 
3195 	/*
3196 	 * We don't want to idle for seeks, but we do want to allow
3197 	 * fair distribution of slice time for a process doing back-to-back
3198 	 * seeks. So allow a little bit of time for him to submit a new rq.
3199 	 */
3200 	sl = bfqd->bfq_slice_idle;
3201 	/*
3202 	 * Unless the queue is being weight-raised or the scenario is
3203 	 * asymmetric, grant only minimum idle time if the queue
3204 	 * is seeky. A long idling is preserved for a weight-raised
3205 	 * queue, or, more in general, in an asymmetric scenario,
3206 	 * because a long idling is needed for guaranteeing to a queue
3207 	 * its reserved share of the throughput (in particular, it is
3208 	 * needed if the queue has a higher weight than some other
3209 	 * queue).
3210 	 */
3211 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3212 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3213 		sl = min_t(u64, sl, BFQ_MIN_TT);
3214 	else if (bfqq->wr_coeff > 1)
3215 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3216 
3217 	bfqd->last_idling_start = ktime_get();
3218 	bfqd->last_idling_start_jiffies = jiffies;
3219 
3220 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3221 		      HRTIMER_MODE_REL);
3222 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3223 }
3224 
3225 /*
3226  * In autotuning mode, max_budget is dynamically recomputed as the
3227  * amount of sectors transferred in timeout at the estimated peak
3228  * rate. This enables BFQ to utilize a full timeslice with a full
3229  * budget, even if the in-service queue is served at peak rate. And
3230  * this maximises throughput with sequential workloads.
3231  */
3232 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3233 {
3234 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3235 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3236 }
3237 
3238 /*
3239  * Update parameters related to throughput and responsiveness, as a
3240  * function of the estimated peak rate. See comments on
3241  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3242  */
3243 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3244 {
3245 	if (bfqd->bfq_user_max_budget == 0) {
3246 		bfqd->bfq_max_budget =
3247 			bfq_calc_max_budget(bfqd);
3248 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3249 	}
3250 }
3251 
3252 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3253 				       struct request *rq)
3254 {
3255 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3256 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3257 		bfqd->peak_rate_samples = 1;
3258 		bfqd->sequential_samples = 0;
3259 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3260 			blk_rq_sectors(rq);
3261 	} else /* no new rq dispatched, just reset the number of samples */
3262 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3263 
3264 	bfq_log(bfqd,
3265 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3266 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3267 		bfqd->tot_sectors_dispatched);
3268 }
3269 
3270 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3271 {
3272 	u32 rate, weight, divisor;
3273 
3274 	/*
3275 	 * For the convergence property to hold (see comments on
3276 	 * bfq_update_peak_rate()) and for the assessment to be
3277 	 * reliable, a minimum number of samples must be present, and
3278 	 * a minimum amount of time must have elapsed. If not so, do
3279 	 * not compute new rate. Just reset parameters, to get ready
3280 	 * for a new evaluation attempt.
3281 	 */
3282 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3283 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3284 		goto reset_computation;
3285 
3286 	/*
3287 	 * If a new request completion has occurred after last
3288 	 * dispatch, then, to approximate the rate at which requests
3289 	 * have been served by the device, it is more precise to
3290 	 * extend the observation interval to the last completion.
3291 	 */
3292 	bfqd->delta_from_first =
3293 		max_t(u64, bfqd->delta_from_first,
3294 		      bfqd->last_completion - bfqd->first_dispatch);
3295 
3296 	/*
3297 	 * Rate computed in sects/usec, and not sects/nsec, for
3298 	 * precision issues.
3299 	 */
3300 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3301 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3302 
3303 	/*
3304 	 * Peak rate not updated if:
3305 	 * - the percentage of sequential dispatches is below 3/4 of the
3306 	 *   total, and rate is below the current estimated peak rate
3307 	 * - rate is unreasonably high (> 20M sectors/sec)
3308 	 */
3309 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3310 	     rate <= bfqd->peak_rate) ||
3311 		rate > 20<<BFQ_RATE_SHIFT)
3312 		goto reset_computation;
3313 
3314 	/*
3315 	 * We have to update the peak rate, at last! To this purpose,
3316 	 * we use a low-pass filter. We compute the smoothing constant
3317 	 * of the filter as a function of the 'weight' of the new
3318 	 * measured rate.
3319 	 *
3320 	 * As can be seen in next formulas, we define this weight as a
3321 	 * quantity proportional to how sequential the workload is,
3322 	 * and to how long the observation time interval is.
3323 	 *
3324 	 * The weight runs from 0 to 8. The maximum value of the
3325 	 * weight, 8, yields the minimum value for the smoothing
3326 	 * constant. At this minimum value for the smoothing constant,
3327 	 * the measured rate contributes for half of the next value of
3328 	 * the estimated peak rate.
3329 	 *
3330 	 * So, the first step is to compute the weight as a function
3331 	 * of how sequential the workload is. Note that the weight
3332 	 * cannot reach 9, because bfqd->sequential_samples cannot
3333 	 * become equal to bfqd->peak_rate_samples, which, in its
3334 	 * turn, holds true because bfqd->sequential_samples is not
3335 	 * incremented for the first sample.
3336 	 */
3337 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3338 
3339 	/*
3340 	 * Second step: further refine the weight as a function of the
3341 	 * duration of the observation interval.
3342 	 */
3343 	weight = min_t(u32, 8,
3344 		       div_u64(weight * bfqd->delta_from_first,
3345 			       BFQ_RATE_REF_INTERVAL));
3346 
3347 	/*
3348 	 * Divisor ranging from 10, for minimum weight, to 2, for
3349 	 * maximum weight.
3350 	 */
3351 	divisor = 10 - weight;
3352 
3353 	/*
3354 	 * Finally, update peak rate:
3355 	 *
3356 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3357 	 */
3358 	bfqd->peak_rate *= divisor-1;
3359 	bfqd->peak_rate /= divisor;
3360 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3361 
3362 	bfqd->peak_rate += rate;
3363 
3364 	/*
3365 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3366 	 * the minimum representable values reported in the comments
3367 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3368 	 * divisions by zero where bfqd->peak_rate is used as a
3369 	 * divisor.
3370 	 */
3371 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3372 
3373 	update_thr_responsiveness_params(bfqd);
3374 
3375 reset_computation:
3376 	bfq_reset_rate_computation(bfqd, rq);
3377 }
3378 
3379 /*
3380  * Update the read/write peak rate (the main quantity used for
3381  * auto-tuning, see update_thr_responsiveness_params()).
3382  *
3383  * It is not trivial to estimate the peak rate (correctly): because of
3384  * the presence of sw and hw queues between the scheduler and the
3385  * device components that finally serve I/O requests, it is hard to
3386  * say exactly when a given dispatched request is served inside the
3387  * device, and for how long. As a consequence, it is hard to know
3388  * precisely at what rate a given set of requests is actually served
3389  * by the device.
3390  *
3391  * On the opposite end, the dispatch time of any request is trivially
3392  * available, and, from this piece of information, the "dispatch rate"
3393  * of requests can be immediately computed. So, the idea in the next
3394  * function is to use what is known, namely request dispatch times
3395  * (plus, when useful, request completion times), to estimate what is
3396  * unknown, namely in-device request service rate.
3397  *
3398  * The main issue is that, because of the above facts, the rate at
3399  * which a certain set of requests is dispatched over a certain time
3400  * interval can vary greatly with respect to the rate at which the
3401  * same requests are then served. But, since the size of any
3402  * intermediate queue is limited, and the service scheme is lossless
3403  * (no request is silently dropped), the following obvious convergence
3404  * property holds: the number of requests dispatched MUST become
3405  * closer and closer to the number of requests completed as the
3406  * observation interval grows. This is the key property used in
3407  * the next function to estimate the peak service rate as a function
3408  * of the observed dispatch rate. The function assumes to be invoked
3409  * on every request dispatch.
3410  */
3411 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3412 {
3413 	u64 now_ns = ktime_get_ns();
3414 
3415 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3416 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3417 			bfqd->peak_rate_samples);
3418 		bfq_reset_rate_computation(bfqd, rq);
3419 		goto update_last_values; /* will add one sample */
3420 	}
3421 
3422 	/*
3423 	 * Device idle for very long: the observation interval lasting
3424 	 * up to this dispatch cannot be a valid observation interval
3425 	 * for computing a new peak rate (similarly to the late-
3426 	 * completion event in bfq_completed_request()). Go to
3427 	 * update_rate_and_reset to have the following three steps
3428 	 * taken:
3429 	 * - close the observation interval at the last (previous)
3430 	 *   request dispatch or completion
3431 	 * - compute rate, if possible, for that observation interval
3432 	 * - start a new observation interval with this dispatch
3433 	 */
3434 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3435 	    bfqd->rq_in_driver == 0)
3436 		goto update_rate_and_reset;
3437 
3438 	/* Update sampling information */
3439 	bfqd->peak_rate_samples++;
3440 
3441 	if ((bfqd->rq_in_driver > 0 ||
3442 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3443 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3444 		bfqd->sequential_samples++;
3445 
3446 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3447 
3448 	/* Reset max observed rq size every 32 dispatches */
3449 	if (likely(bfqd->peak_rate_samples % 32))
3450 		bfqd->last_rq_max_size =
3451 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3452 	else
3453 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3454 
3455 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3456 
3457 	/* Target observation interval not yet reached, go on sampling */
3458 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3459 		goto update_last_values;
3460 
3461 update_rate_and_reset:
3462 	bfq_update_rate_reset(bfqd, rq);
3463 update_last_values:
3464 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3465 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3466 		bfqd->in_serv_last_pos = bfqd->last_position;
3467 	bfqd->last_dispatch = now_ns;
3468 }
3469 
3470 /*
3471  * Remove request from internal lists.
3472  */
3473 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3474 {
3475 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3476 
3477 	/*
3478 	 * For consistency, the next instruction should have been
3479 	 * executed after removing the request from the queue and
3480 	 * dispatching it.  We execute instead this instruction before
3481 	 * bfq_remove_request() (and hence introduce a temporary
3482 	 * inconsistency), for efficiency.  In fact, should this
3483 	 * dispatch occur for a non in-service bfqq, this anticipated
3484 	 * increment prevents two counters related to bfqq->dispatched
3485 	 * from risking to be, first, uselessly decremented, and then
3486 	 * incremented again when the (new) value of bfqq->dispatched
3487 	 * happens to be taken into account.
3488 	 */
3489 	bfqq->dispatched++;
3490 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3491 
3492 	bfq_remove_request(q, rq);
3493 }
3494 
3495 /*
3496  * There is a case where idling does not have to be performed for
3497  * throughput concerns, but to preserve the throughput share of
3498  * the process associated with bfqq.
3499  *
3500  * To introduce this case, we can note that allowing the drive
3501  * to enqueue more than one request at a time, and hence
3502  * delegating de facto final scheduling decisions to the
3503  * drive's internal scheduler, entails loss of control on the
3504  * actual request service order. In particular, the critical
3505  * situation is when requests from different processes happen
3506  * to be present, at the same time, in the internal queue(s)
3507  * of the drive. In such a situation, the drive, by deciding
3508  * the service order of the internally-queued requests, does
3509  * determine also the actual throughput distribution among
3510  * these processes. But the drive typically has no notion or
3511  * concern about per-process throughput distribution, and
3512  * makes its decisions only on a per-request basis. Therefore,
3513  * the service distribution enforced by the drive's internal
3514  * scheduler is likely to coincide with the desired throughput
3515  * distribution only in a completely symmetric, or favorably
3516  * skewed scenario where:
3517  * (i-a) each of these processes must get the same throughput as
3518  *	 the others,
3519  * (i-b) in case (i-a) does not hold, it holds that the process
3520  *       associated with bfqq must receive a lower or equal
3521  *	 throughput than any of the other processes;
3522  * (ii)  the I/O of each process has the same properties, in
3523  *       terms of locality (sequential or random), direction
3524  *       (reads or writes), request sizes, greediness
3525  *       (from I/O-bound to sporadic), and so on;
3526 
3527  * In fact, in such a scenario, the drive tends to treat the requests
3528  * of each process in about the same way as the requests of the
3529  * others, and thus to provide each of these processes with about the
3530  * same throughput.  This is exactly the desired throughput
3531  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3532  * even more convenient distribution for (the process associated with)
3533  * bfqq.
3534  *
3535  * In contrast, in any asymmetric or unfavorable scenario, device
3536  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3537  * that bfqq receives its assigned fraction of the device throughput
3538  * (see [1] for details).
3539  *
3540  * The problem is that idling may significantly reduce throughput with
3541  * certain combinations of types of I/O and devices. An important
3542  * example is sync random I/O on flash storage with command
3543  * queueing. So, unless bfqq falls in cases where idling also boosts
3544  * throughput, it is important to check conditions (i-a), i(-b) and
3545  * (ii) accurately, so as to avoid idling when not strictly needed for
3546  * service guarantees.
3547  *
3548  * Unfortunately, it is extremely difficult to thoroughly check
3549  * condition (ii). And, in case there are active groups, it becomes
3550  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3551  * if there are active groups, then, for conditions (i-a) or (i-b) to
3552  * become false 'indirectly', it is enough that an active group
3553  * contains more active processes or sub-groups than some other active
3554  * group. More precisely, for conditions (i-a) or (i-b) to become
3555  * false because of such a group, it is not even necessary that the
3556  * group is (still) active: it is sufficient that, even if the group
3557  * has become inactive, some of its descendant processes still have
3558  * some request already dispatched but still waiting for
3559  * completion. In fact, requests have still to be guaranteed their
3560  * share of the throughput even after being dispatched. In this
3561  * respect, it is easy to show that, if a group frequently becomes
3562  * inactive while still having in-flight requests, and if, when this
3563  * happens, the group is not considered in the calculation of whether
3564  * the scenario is asymmetric, then the group may fail to be
3565  * guaranteed its fair share of the throughput (basically because
3566  * idling may not be performed for the descendant processes of the
3567  * group, but it had to be).  We address this issue with the following
3568  * bi-modal behavior, implemented in the function
3569  * bfq_asymmetric_scenario().
3570  *
3571  * If there are groups with requests waiting for completion
3572  * (as commented above, some of these groups may even be
3573  * already inactive), then the scenario is tagged as
3574  * asymmetric, conservatively, without checking any of the
3575  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3576  * This behavior matches also the fact that groups are created
3577  * exactly if controlling I/O is a primary concern (to
3578  * preserve bandwidth and latency guarantees).
3579  *
3580  * On the opposite end, if there are no groups with requests waiting
3581  * for completion, then only conditions (i-a) and (i-b) are actually
3582  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3583  * idling is not performed, regardless of whether condition (ii)
3584  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3585  * hold, then idling is allowed, and the device tends to be prevented
3586  * from queueing many requests, possibly of several processes. Since
3587  * there are no groups with requests waiting for completion, then, to
3588  * control conditions (i-a) and (i-b) it is enough to check just
3589  * whether all the queues with requests waiting for completion also
3590  * have the same weight.
3591  *
3592  * Not checking condition (ii) evidently exposes bfqq to the
3593  * risk of getting less throughput than its fair share.
3594  * However, for queues with the same weight, a further
3595  * mechanism, preemption, mitigates or even eliminates this
3596  * problem. And it does so without consequences on overall
3597  * throughput. This mechanism and its benefits are explained
3598  * in the next three paragraphs.
3599  *
3600  * Even if a queue, say Q, is expired when it remains idle, Q
3601  * can still preempt the new in-service queue if the next
3602  * request of Q arrives soon (see the comments on
3603  * bfq_bfqq_update_budg_for_activation). If all queues and
3604  * groups have the same weight, this form of preemption,
3605  * combined with the hole-recovery heuristic described in the
3606  * comments on function bfq_bfqq_update_budg_for_activation,
3607  * are enough to preserve a correct bandwidth distribution in
3608  * the mid term, even without idling. In fact, even if not
3609  * idling allows the internal queues of the device to contain
3610  * many requests, and thus to reorder requests, we can rather
3611  * safely assume that the internal scheduler still preserves a
3612  * minimum of mid-term fairness.
3613  *
3614  * More precisely, this preemption-based, idleless approach
3615  * provides fairness in terms of IOPS, and not sectors per
3616  * second. This can be seen with a simple example. Suppose
3617  * that there are two queues with the same weight, but that
3618  * the first queue receives requests of 8 sectors, while the
3619  * second queue receives requests of 1024 sectors. In
3620  * addition, suppose that each of the two queues contains at
3621  * most one request at a time, which implies that each queue
3622  * always remains idle after it is served. Finally, after
3623  * remaining idle, each queue receives very quickly a new
3624  * request. It follows that the two queues are served
3625  * alternatively, preempting each other if needed. This
3626  * implies that, although both queues have the same weight,
3627  * the queue with large requests receives a service that is
3628  * 1024/8 times as high as the service received by the other
3629  * queue.
3630  *
3631  * The motivation for using preemption instead of idling (for
3632  * queues with the same weight) is that, by not idling,
3633  * service guarantees are preserved (completely or at least in
3634  * part) without minimally sacrificing throughput. And, if
3635  * there is no active group, then the primary expectation for
3636  * this device is probably a high throughput.
3637  *
3638  * We are now left only with explaining the two sub-conditions in the
3639  * additional compound condition that is checked below for deciding
3640  * whether the scenario is asymmetric. To explain the first
3641  * sub-condition, we need to add that the function
3642  * bfq_asymmetric_scenario checks the weights of only
3643  * non-weight-raised queues, for efficiency reasons (see comments on
3644  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3645  * is checked explicitly here. More precisely, the compound condition
3646  * below takes into account also the fact that, even if bfqq is being
3647  * weight-raised, the scenario is still symmetric if all queues with
3648  * requests waiting for completion happen to be
3649  * weight-raised. Actually, we should be even more precise here, and
3650  * differentiate between interactive weight raising and soft real-time
3651  * weight raising.
3652  *
3653  * The second sub-condition checked in the compound condition is
3654  * whether there is a fair amount of already in-flight I/O not
3655  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3656  * following reason. The drive may decide to serve in-flight
3657  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3658  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3659  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3660  * basically uncontrolled amount of I/O from other queues may be
3661  * dispatched too, possibly causing the service of bfqq's I/O to be
3662  * delayed even longer in the drive. This problem gets more and more
3663  * serious as the speed and the queue depth of the drive grow,
3664  * because, as these two quantities grow, the probability to find no
3665  * queue busy but many requests in flight grows too. By contrast,
3666  * plugging I/O dispatching minimizes the delay induced by already
3667  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3668  * lose because of this delay.
3669  *
3670  * As a side note, it is worth considering that the above
3671  * device-idling countermeasures may however fail in the following
3672  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3673  * in a time period during which all symmetry sub-conditions hold, and
3674  * therefore the device is allowed to enqueue many requests, but at
3675  * some later point in time some sub-condition stops to hold, then it
3676  * may become impossible to make requests be served in the desired
3677  * order until all the requests already queued in the device have been
3678  * served. The last sub-condition commented above somewhat mitigates
3679  * this problem for weight-raised queues.
3680  *
3681  * However, as an additional mitigation for this problem, we preserve
3682  * plugging for a special symmetric case that may suddenly turn into
3683  * asymmetric: the case where only bfqq is busy. In this case, not
3684  * expiring bfqq does not cause any harm to any other queues in terms
3685  * of service guarantees. In contrast, it avoids the following unlucky
3686  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3687  * lower weight than bfqq becomes busy (or more queues), (3) the new
3688  * queue is served until a new request arrives for bfqq, (4) when bfqq
3689  * is finally served, there are so many requests of the new queue in
3690  * the drive that the pending requests for bfqq take a lot of time to
3691  * be served. In particular, event (2) may case even already
3692  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3693  * avoid this series of events, the scenario is preventively declared
3694  * as asymmetric also if bfqq is the only busy queues
3695  */
3696 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3697 						 struct bfq_queue *bfqq)
3698 {
3699 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3700 
3701 	/* No point in idling for bfqq if it won't get requests any longer */
3702 	if (unlikely(!bfqq_process_refs(bfqq)))
3703 		return false;
3704 
3705 	return (bfqq->wr_coeff > 1 &&
3706 		(bfqd->wr_busy_queues <
3707 		 tot_busy_queues ||
3708 		 bfqd->rq_in_driver >=
3709 		 bfqq->dispatched + 4)) ||
3710 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3711 		tot_busy_queues == 1;
3712 }
3713 
3714 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3715 			      enum bfqq_expiration reason)
3716 {
3717 	/*
3718 	 * If this bfqq is shared between multiple processes, check
3719 	 * to make sure that those processes are still issuing I/Os
3720 	 * within the mean seek distance. If not, it may be time to
3721 	 * break the queues apart again.
3722 	 */
3723 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3724 		bfq_mark_bfqq_split_coop(bfqq);
3725 
3726 	/*
3727 	 * Consider queues with a higher finish virtual time than
3728 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3729 	 * true, then bfqq's bandwidth would be violated if an
3730 	 * uncontrolled amount of I/O from these queues were
3731 	 * dispatched while bfqq is waiting for its new I/O to
3732 	 * arrive. This is exactly what may happen if this is a forced
3733 	 * expiration caused by a preemption attempt, and if bfqq is
3734 	 * not re-scheduled. To prevent this from happening, re-queue
3735 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3736 	 * empty. By doing so, bfqq is granted to be served before the
3737 	 * above queues (provided that bfqq is of course eligible).
3738 	 */
3739 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3740 	    !(reason == BFQQE_PREEMPTED &&
3741 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3742 		if (bfqq->dispatched == 0)
3743 			/*
3744 			 * Overloading budget_timeout field to store
3745 			 * the time at which the queue remains with no
3746 			 * backlog and no outstanding request; used by
3747 			 * the weight-raising mechanism.
3748 			 */
3749 			bfqq->budget_timeout = jiffies;
3750 
3751 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3752 	} else {
3753 		bfq_requeue_bfqq(bfqd, bfqq, true);
3754 		/*
3755 		 * Resort priority tree of potential close cooperators.
3756 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3757 		 */
3758 		if (unlikely(!bfqd->nonrot_with_queueing &&
3759 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3760 			bfq_pos_tree_add_move(bfqd, bfqq);
3761 	}
3762 
3763 	/*
3764 	 * All in-service entities must have been properly deactivated
3765 	 * or requeued before executing the next function, which
3766 	 * resets all in-service entities as no more in service. This
3767 	 * may cause bfqq to be freed. If this happens, the next
3768 	 * function returns true.
3769 	 */
3770 	return __bfq_bfqd_reset_in_service(bfqd);
3771 }
3772 
3773 /**
3774  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3775  * @bfqd: device data.
3776  * @bfqq: queue to update.
3777  * @reason: reason for expiration.
3778  *
3779  * Handle the feedback on @bfqq budget at queue expiration.
3780  * See the body for detailed comments.
3781  */
3782 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3783 				     struct bfq_queue *bfqq,
3784 				     enum bfqq_expiration reason)
3785 {
3786 	struct request *next_rq;
3787 	int budget, min_budget;
3788 
3789 	min_budget = bfq_min_budget(bfqd);
3790 
3791 	if (bfqq->wr_coeff == 1)
3792 		budget = bfqq->max_budget;
3793 	else /*
3794 	      * Use a constant, low budget for weight-raised queues,
3795 	      * to help achieve a low latency. Keep it slightly higher
3796 	      * than the minimum possible budget, to cause a little
3797 	      * bit fewer expirations.
3798 	      */
3799 		budget = 2 * min_budget;
3800 
3801 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3802 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3803 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3804 		budget, bfq_min_budget(bfqd));
3805 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3806 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3807 
3808 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3809 		switch (reason) {
3810 		/*
3811 		 * Caveat: in all the following cases we trade latency
3812 		 * for throughput.
3813 		 */
3814 		case BFQQE_TOO_IDLE:
3815 			/*
3816 			 * This is the only case where we may reduce
3817 			 * the budget: if there is no request of the
3818 			 * process still waiting for completion, then
3819 			 * we assume (tentatively) that the timer has
3820 			 * expired because the batch of requests of
3821 			 * the process could have been served with a
3822 			 * smaller budget.  Hence, betting that
3823 			 * process will behave in the same way when it
3824 			 * becomes backlogged again, we reduce its
3825 			 * next budget.  As long as we guess right,
3826 			 * this budget cut reduces the latency
3827 			 * experienced by the process.
3828 			 *
3829 			 * However, if there are still outstanding
3830 			 * requests, then the process may have not yet
3831 			 * issued its next request just because it is
3832 			 * still waiting for the completion of some of
3833 			 * the still outstanding ones.  So in this
3834 			 * subcase we do not reduce its budget, on the
3835 			 * contrary we increase it to possibly boost
3836 			 * the throughput, as discussed in the
3837 			 * comments to the BUDGET_TIMEOUT case.
3838 			 */
3839 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3840 				budget = min(budget * 2, bfqd->bfq_max_budget);
3841 			else {
3842 				if (budget > 5 * min_budget)
3843 					budget -= 4 * min_budget;
3844 				else
3845 					budget = min_budget;
3846 			}
3847 			break;
3848 		case BFQQE_BUDGET_TIMEOUT:
3849 			/*
3850 			 * We double the budget here because it gives
3851 			 * the chance to boost the throughput if this
3852 			 * is not a seeky process (and has bumped into
3853 			 * this timeout because of, e.g., ZBR).
3854 			 */
3855 			budget = min(budget * 2, bfqd->bfq_max_budget);
3856 			break;
3857 		case BFQQE_BUDGET_EXHAUSTED:
3858 			/*
3859 			 * The process still has backlog, and did not
3860 			 * let either the budget timeout or the disk
3861 			 * idling timeout expire. Hence it is not
3862 			 * seeky, has a short thinktime and may be
3863 			 * happy with a higher budget too. So
3864 			 * definitely increase the budget of this good
3865 			 * candidate to boost the disk throughput.
3866 			 */
3867 			budget = min(budget * 4, bfqd->bfq_max_budget);
3868 			break;
3869 		case BFQQE_NO_MORE_REQUESTS:
3870 			/*
3871 			 * For queues that expire for this reason, it
3872 			 * is particularly important to keep the
3873 			 * budget close to the actual service they
3874 			 * need. Doing so reduces the timestamp
3875 			 * misalignment problem described in the
3876 			 * comments in the body of
3877 			 * __bfq_activate_entity. In fact, suppose
3878 			 * that a queue systematically expires for
3879 			 * BFQQE_NO_MORE_REQUESTS and presents a
3880 			 * new request in time to enjoy timestamp
3881 			 * back-shifting. The larger the budget of the
3882 			 * queue is with respect to the service the
3883 			 * queue actually requests in each service
3884 			 * slot, the more times the queue can be
3885 			 * reactivated with the same virtual finish
3886 			 * time. It follows that, even if this finish
3887 			 * time is pushed to the system virtual time
3888 			 * to reduce the consequent timestamp
3889 			 * misalignment, the queue unjustly enjoys for
3890 			 * many re-activations a lower finish time
3891 			 * than all newly activated queues.
3892 			 *
3893 			 * The service needed by bfqq is measured
3894 			 * quite precisely by bfqq->entity.service.
3895 			 * Since bfqq does not enjoy device idling,
3896 			 * bfqq->entity.service is equal to the number
3897 			 * of sectors that the process associated with
3898 			 * bfqq requested to read/write before waiting
3899 			 * for request completions, or blocking for
3900 			 * other reasons.
3901 			 */
3902 			budget = max_t(int, bfqq->entity.service, min_budget);
3903 			break;
3904 		default:
3905 			return;
3906 		}
3907 	} else if (!bfq_bfqq_sync(bfqq)) {
3908 		/*
3909 		 * Async queues get always the maximum possible
3910 		 * budget, as for them we do not care about latency
3911 		 * (in addition, their ability to dispatch is limited
3912 		 * by the charging factor).
3913 		 */
3914 		budget = bfqd->bfq_max_budget;
3915 	}
3916 
3917 	bfqq->max_budget = budget;
3918 
3919 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3920 	    !bfqd->bfq_user_max_budget)
3921 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3922 
3923 	/*
3924 	 * If there is still backlog, then assign a new budget, making
3925 	 * sure that it is large enough for the next request.  Since
3926 	 * the finish time of bfqq must be kept in sync with the
3927 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3928 	 * update.
3929 	 *
3930 	 * If there is no backlog, then no need to update the budget;
3931 	 * it will be updated on the arrival of a new request.
3932 	 */
3933 	next_rq = bfqq->next_rq;
3934 	if (next_rq)
3935 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3936 					    bfq_serv_to_charge(next_rq, bfqq));
3937 
3938 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3939 			next_rq ? blk_rq_sectors(next_rq) : 0,
3940 			bfqq->entity.budget);
3941 }
3942 
3943 /*
3944  * Return true if the process associated with bfqq is "slow". The slow
3945  * flag is used, in addition to the budget timeout, to reduce the
3946  * amount of service provided to seeky processes, and thus reduce
3947  * their chances to lower the throughput. More details in the comments
3948  * on the function bfq_bfqq_expire().
3949  *
3950  * An important observation is in order: as discussed in the comments
3951  * on the function bfq_update_peak_rate(), with devices with internal
3952  * queues, it is hard if ever possible to know when and for how long
3953  * an I/O request is processed by the device (apart from the trivial
3954  * I/O pattern where a new request is dispatched only after the
3955  * previous one has been completed). This makes it hard to evaluate
3956  * the real rate at which the I/O requests of each bfq_queue are
3957  * served.  In fact, for an I/O scheduler like BFQ, serving a
3958  * bfq_queue means just dispatching its requests during its service
3959  * slot (i.e., until the budget of the queue is exhausted, or the
3960  * queue remains idle, or, finally, a timeout fires). But, during the
3961  * service slot of a bfq_queue, around 100 ms at most, the device may
3962  * be even still processing requests of bfq_queues served in previous
3963  * service slots. On the opposite end, the requests of the in-service
3964  * bfq_queue may be completed after the service slot of the queue
3965  * finishes.
3966  *
3967  * Anyway, unless more sophisticated solutions are used
3968  * (where possible), the sum of the sizes of the requests dispatched
3969  * during the service slot of a bfq_queue is probably the only
3970  * approximation available for the service received by the bfq_queue
3971  * during its service slot. And this sum is the quantity used in this
3972  * function to evaluate the I/O speed of a process.
3973  */
3974 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3975 				 bool compensate, enum bfqq_expiration reason,
3976 				 unsigned long *delta_ms)
3977 {
3978 	ktime_t delta_ktime;
3979 	u32 delta_usecs;
3980 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3981 
3982 	if (!bfq_bfqq_sync(bfqq))
3983 		return false;
3984 
3985 	if (compensate)
3986 		delta_ktime = bfqd->last_idling_start;
3987 	else
3988 		delta_ktime = ktime_get();
3989 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3990 	delta_usecs = ktime_to_us(delta_ktime);
3991 
3992 	/* don't use too short time intervals */
3993 	if (delta_usecs < 1000) {
3994 		if (blk_queue_nonrot(bfqd->queue))
3995 			 /*
3996 			  * give same worst-case guarantees as idling
3997 			  * for seeky
3998 			  */
3999 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4000 		else /* charge at least one seek */
4001 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4002 
4003 		return slow;
4004 	}
4005 
4006 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4007 
4008 	/*
4009 	 * Use only long (> 20ms) intervals to filter out excessive
4010 	 * spikes in service rate estimation.
4011 	 */
4012 	if (delta_usecs > 20000) {
4013 		/*
4014 		 * Caveat for rotational devices: processes doing I/O
4015 		 * in the slower disk zones tend to be slow(er) even
4016 		 * if not seeky. In this respect, the estimated peak
4017 		 * rate is likely to be an average over the disk
4018 		 * surface. Accordingly, to not be too harsh with
4019 		 * unlucky processes, a process is deemed slow only if
4020 		 * its rate has been lower than half of the estimated
4021 		 * peak rate.
4022 		 */
4023 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4024 	}
4025 
4026 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4027 
4028 	return slow;
4029 }
4030 
4031 /*
4032  * To be deemed as soft real-time, an application must meet two
4033  * requirements. First, the application must not require an average
4034  * bandwidth higher than the approximate bandwidth required to playback or
4035  * record a compressed high-definition video.
4036  * The next function is invoked on the completion of the last request of a
4037  * batch, to compute the next-start time instant, soft_rt_next_start, such
4038  * that, if the next request of the application does not arrive before
4039  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4040  *
4041  * The second requirement is that the request pattern of the application is
4042  * isochronous, i.e., that, after issuing a request or a batch of requests,
4043  * the application stops issuing new requests until all its pending requests
4044  * have been completed. After that, the application may issue a new batch,
4045  * and so on.
4046  * For this reason the next function is invoked to compute
4047  * soft_rt_next_start only for applications that meet this requirement,
4048  * whereas soft_rt_next_start is set to infinity for applications that do
4049  * not.
4050  *
4051  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4052  * happen to meet, occasionally or systematically, both the above
4053  * bandwidth and isochrony requirements. This may happen at least in
4054  * the following circumstances. First, if the CPU load is high. The
4055  * application may stop issuing requests while the CPUs are busy
4056  * serving other processes, then restart, then stop again for a while,
4057  * and so on. The other circumstances are related to the storage
4058  * device: the storage device is highly loaded or reaches a low-enough
4059  * throughput with the I/O of the application (e.g., because the I/O
4060  * is random and/or the device is slow). In all these cases, the
4061  * I/O of the application may be simply slowed down enough to meet
4062  * the bandwidth and isochrony requirements. To reduce the probability
4063  * that greedy applications are deemed as soft real-time in these
4064  * corner cases, a further rule is used in the computation of
4065  * soft_rt_next_start: the return value of this function is forced to
4066  * be higher than the maximum between the following two quantities.
4067  *
4068  * (a) Current time plus: (1) the maximum time for which the arrival
4069  *     of a request is waited for when a sync queue becomes idle,
4070  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4071  *     postpone for a moment the reason for adding a few extra
4072  *     jiffies; we get back to it after next item (b).  Lower-bounding
4073  *     the return value of this function with the current time plus
4074  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4075  *     because the latter issue their next request as soon as possible
4076  *     after the last one has been completed. In contrast, a soft
4077  *     real-time application spends some time processing data, after a
4078  *     batch of its requests has been completed.
4079  *
4080  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4081  *     above, greedy applications may happen to meet both the
4082  *     bandwidth and isochrony requirements under heavy CPU or
4083  *     storage-device load. In more detail, in these scenarios, these
4084  *     applications happen, only for limited time periods, to do I/O
4085  *     slowly enough to meet all the requirements described so far,
4086  *     including the filtering in above item (a). These slow-speed
4087  *     time intervals are usually interspersed between other time
4088  *     intervals during which these applications do I/O at a very high
4089  *     speed. Fortunately, exactly because of the high speed of the
4090  *     I/O in the high-speed intervals, the values returned by this
4091  *     function happen to be so high, near the end of any such
4092  *     high-speed interval, to be likely to fall *after* the end of
4093  *     the low-speed time interval that follows. These high values are
4094  *     stored in bfqq->soft_rt_next_start after each invocation of
4095  *     this function. As a consequence, if the last value of
4096  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4097  *     next value that this function may return, then, from the very
4098  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4099  *     likely to be constantly kept so high that any I/O request
4100  *     issued during the low-speed interval is considered as arriving
4101  *     to soon for the application to be deemed as soft
4102  *     real-time. Then, in the high-speed interval that follows, the
4103  *     application will not be deemed as soft real-time, just because
4104  *     it will do I/O at a high speed. And so on.
4105  *
4106  * Getting back to the filtering in item (a), in the following two
4107  * cases this filtering might be easily passed by a greedy
4108  * application, if the reference quantity was just
4109  * bfqd->bfq_slice_idle:
4110  * 1) HZ is so low that the duration of a jiffy is comparable to or
4111  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4112  *    devices with HZ=100. The time granularity may be so coarse
4113  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4114  *    is rather lower than the exact value.
4115  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4116  *    for a while, then suddenly 'jump' by several units to recover the lost
4117  *    increments. This seems to happen, e.g., inside virtual machines.
4118  * To address this issue, in the filtering in (a) we do not use as a
4119  * reference time interval just bfqd->bfq_slice_idle, but
4120  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4121  * minimum number of jiffies for which the filter seems to be quite
4122  * precise also in embedded systems and KVM/QEMU virtual machines.
4123  */
4124 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4125 						struct bfq_queue *bfqq)
4126 {
4127 	return max3(bfqq->soft_rt_next_start,
4128 		    bfqq->last_idle_bklogged +
4129 		    HZ * bfqq->service_from_backlogged /
4130 		    bfqd->bfq_wr_max_softrt_rate,
4131 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4132 }
4133 
4134 /**
4135  * bfq_bfqq_expire - expire a queue.
4136  * @bfqd: device owning the queue.
4137  * @bfqq: the queue to expire.
4138  * @compensate: if true, compensate for the time spent idling.
4139  * @reason: the reason causing the expiration.
4140  *
4141  * If the process associated with bfqq does slow I/O (e.g., because it
4142  * issues random requests), we charge bfqq with the time it has been
4143  * in service instead of the service it has received (see
4144  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4145  * a consequence, bfqq will typically get higher timestamps upon
4146  * reactivation, and hence it will be rescheduled as if it had
4147  * received more service than what it has actually received. In the
4148  * end, bfqq receives less service in proportion to how slowly its
4149  * associated process consumes its budgets (and hence how seriously it
4150  * tends to lower the throughput). In addition, this time-charging
4151  * strategy guarantees time fairness among slow processes. In
4152  * contrast, if the process associated with bfqq is not slow, we
4153  * charge bfqq exactly with the service it has received.
4154  *
4155  * Charging time to the first type of queues and the exact service to
4156  * the other has the effect of using the WF2Q+ policy to schedule the
4157  * former on a timeslice basis, without violating service domain
4158  * guarantees among the latter.
4159  */
4160 void bfq_bfqq_expire(struct bfq_data *bfqd,
4161 		     struct bfq_queue *bfqq,
4162 		     bool compensate,
4163 		     enum bfqq_expiration reason)
4164 {
4165 	bool slow;
4166 	unsigned long delta = 0;
4167 	struct bfq_entity *entity = &bfqq->entity;
4168 
4169 	/*
4170 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4171 	 */
4172 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4173 
4174 	/*
4175 	 * As above explained, charge slow (typically seeky) and
4176 	 * timed-out queues with the time and not the service
4177 	 * received, to favor sequential workloads.
4178 	 *
4179 	 * Processes doing I/O in the slower disk zones will tend to
4180 	 * be slow(er) even if not seeky. Therefore, since the
4181 	 * estimated peak rate is actually an average over the disk
4182 	 * surface, these processes may timeout just for bad luck. To
4183 	 * avoid punishing them, do not charge time to processes that
4184 	 * succeeded in consuming at least 2/3 of their budget. This
4185 	 * allows BFQ to preserve enough elasticity to still perform
4186 	 * bandwidth, and not time, distribution with little unlucky
4187 	 * or quasi-sequential processes.
4188 	 */
4189 	if (bfqq->wr_coeff == 1 &&
4190 	    (slow ||
4191 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4192 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4193 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4194 
4195 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4196 		bfqq->last_wr_start_finish = jiffies;
4197 
4198 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4199 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4200 		/*
4201 		 * If we get here, and there are no outstanding
4202 		 * requests, then the request pattern is isochronous
4203 		 * (see the comments on the function
4204 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4205 		 * compute soft_rt_next_start.
4206 		 *
4207 		 * If, instead, the queue still has outstanding
4208 		 * requests, then we have to wait for the completion
4209 		 * of all the outstanding requests to discover whether
4210 		 * the request pattern is actually isochronous.
4211 		 */
4212 		if (bfqq->dispatched == 0)
4213 			bfqq->soft_rt_next_start =
4214 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4215 		else if (bfqq->dispatched > 0) {
4216 			/*
4217 			 * Schedule an update of soft_rt_next_start to when
4218 			 * the task may be discovered to be isochronous.
4219 			 */
4220 			bfq_mark_bfqq_softrt_update(bfqq);
4221 		}
4222 	}
4223 
4224 	bfq_log_bfqq(bfqd, bfqq,
4225 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4226 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4227 
4228 	/*
4229 	 * bfqq expired, so no total service time needs to be computed
4230 	 * any longer: reset state machine for measuring total service
4231 	 * times.
4232 	 */
4233 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4234 	bfqd->waited_rq = NULL;
4235 
4236 	/*
4237 	 * Increase, decrease or leave budget unchanged according to
4238 	 * reason.
4239 	 */
4240 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4241 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4242 		/* bfqq is gone, no more actions on it */
4243 		return;
4244 
4245 	/* mark bfqq as waiting a request only if a bic still points to it */
4246 	if (!bfq_bfqq_busy(bfqq) &&
4247 	    reason != BFQQE_BUDGET_TIMEOUT &&
4248 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4249 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4250 		/*
4251 		 * Not setting service to 0, because, if the next rq
4252 		 * arrives in time, the queue will go on receiving
4253 		 * service with this same budget (as if it never expired)
4254 		 */
4255 	} else
4256 		entity->service = 0;
4257 
4258 	/*
4259 	 * Reset the received-service counter for every parent entity.
4260 	 * Differently from what happens with bfqq->entity.service,
4261 	 * the resetting of this counter never needs to be postponed
4262 	 * for parent entities. In fact, in case bfqq may have a
4263 	 * chance to go on being served using the last, partially
4264 	 * consumed budget, bfqq->entity.service needs to be kept,
4265 	 * because if bfqq then actually goes on being served using
4266 	 * the same budget, the last value of bfqq->entity.service is
4267 	 * needed to properly decrement bfqq->entity.budget by the
4268 	 * portion already consumed. In contrast, it is not necessary
4269 	 * to keep entity->service for parent entities too, because
4270 	 * the bubble up of the new value of bfqq->entity.budget will
4271 	 * make sure that the budgets of parent entities are correct,
4272 	 * even in case bfqq and thus parent entities go on receiving
4273 	 * service with the same budget.
4274 	 */
4275 	entity = entity->parent;
4276 	for_each_entity(entity)
4277 		entity->service = 0;
4278 }
4279 
4280 /*
4281  * Budget timeout is not implemented through a dedicated timer, but
4282  * just checked on request arrivals and completions, as well as on
4283  * idle timer expirations.
4284  */
4285 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4286 {
4287 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4288 }
4289 
4290 /*
4291  * If we expire a queue that is actively waiting (i.e., with the
4292  * device idled) for the arrival of a new request, then we may incur
4293  * the timestamp misalignment problem described in the body of the
4294  * function __bfq_activate_entity. Hence we return true only if this
4295  * condition does not hold, or if the queue is slow enough to deserve
4296  * only to be kicked off for preserving a high throughput.
4297  */
4298 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4299 {
4300 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4301 		"may_budget_timeout: wait_request %d left %d timeout %d",
4302 		bfq_bfqq_wait_request(bfqq),
4303 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4304 		bfq_bfqq_budget_timeout(bfqq));
4305 
4306 	return (!bfq_bfqq_wait_request(bfqq) ||
4307 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4308 		&&
4309 		bfq_bfqq_budget_timeout(bfqq);
4310 }
4311 
4312 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4313 					     struct bfq_queue *bfqq)
4314 {
4315 	bool rot_without_queueing =
4316 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4317 		bfqq_sequential_and_IO_bound,
4318 		idling_boosts_thr;
4319 
4320 	/* No point in idling for bfqq if it won't get requests any longer */
4321 	if (unlikely(!bfqq_process_refs(bfqq)))
4322 		return false;
4323 
4324 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4325 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4326 
4327 	/*
4328 	 * The next variable takes into account the cases where idling
4329 	 * boosts the throughput.
4330 	 *
4331 	 * The value of the variable is computed considering, first, that
4332 	 * idling is virtually always beneficial for the throughput if:
4333 	 * (a) the device is not NCQ-capable and rotational, or
4334 	 * (b) regardless of the presence of NCQ, the device is rotational and
4335 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4336 	 * (c) regardless of whether it is rotational, the device is
4337 	 *     not NCQ-capable and the request pattern for bfqq is
4338 	 *     I/O-bound and sequential.
4339 	 *
4340 	 * Secondly, and in contrast to the above item (b), idling an
4341 	 * NCQ-capable flash-based device would not boost the
4342 	 * throughput even with sequential I/O; rather it would lower
4343 	 * the throughput in proportion to how fast the device
4344 	 * is. Accordingly, the next variable is true if any of the
4345 	 * above conditions (a), (b) or (c) is true, and, in
4346 	 * particular, happens to be false if bfqd is an NCQ-capable
4347 	 * flash-based device.
4348 	 */
4349 	idling_boosts_thr = rot_without_queueing ||
4350 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4351 		 bfqq_sequential_and_IO_bound);
4352 
4353 	/*
4354 	 * The return value of this function is equal to that of
4355 	 * idling_boosts_thr, unless a special case holds. In this
4356 	 * special case, described below, idling may cause problems to
4357 	 * weight-raised queues.
4358 	 *
4359 	 * When the request pool is saturated (e.g., in the presence
4360 	 * of write hogs), if the processes associated with
4361 	 * non-weight-raised queues ask for requests at a lower rate,
4362 	 * then processes associated with weight-raised queues have a
4363 	 * higher probability to get a request from the pool
4364 	 * immediately (or at least soon) when they need one. Thus
4365 	 * they have a higher probability to actually get a fraction
4366 	 * of the device throughput proportional to their high
4367 	 * weight. This is especially true with NCQ-capable drives,
4368 	 * which enqueue several requests in advance, and further
4369 	 * reorder internally-queued requests.
4370 	 *
4371 	 * For this reason, we force to false the return value if
4372 	 * there are weight-raised busy queues. In this case, and if
4373 	 * bfqq is not weight-raised, this guarantees that the device
4374 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4375 	 * then idling will be guaranteed by another variable, see
4376 	 * below). Combined with the timestamping rules of BFQ (see
4377 	 * [1] for details), this behavior causes bfqq, and hence any
4378 	 * sync non-weight-raised queue, to get a lower number of
4379 	 * requests served, and thus to ask for a lower number of
4380 	 * requests from the request pool, before the busy
4381 	 * weight-raised queues get served again. This often mitigates
4382 	 * starvation problems in the presence of heavy write
4383 	 * workloads and NCQ, thereby guaranteeing a higher
4384 	 * application and system responsiveness in these hostile
4385 	 * scenarios.
4386 	 */
4387 	return idling_boosts_thr &&
4388 		bfqd->wr_busy_queues == 0;
4389 }
4390 
4391 /*
4392  * For a queue that becomes empty, device idling is allowed only if
4393  * this function returns true for that queue. As a consequence, since
4394  * device idling plays a critical role for both throughput boosting
4395  * and service guarantees, the return value of this function plays a
4396  * critical role as well.
4397  *
4398  * In a nutshell, this function returns true only if idling is
4399  * beneficial for throughput or, even if detrimental for throughput,
4400  * idling is however necessary to preserve service guarantees (low
4401  * latency, desired throughput distribution, ...). In particular, on
4402  * NCQ-capable devices, this function tries to return false, so as to
4403  * help keep the drives' internal queues full, whenever this helps the
4404  * device boost the throughput without causing any service-guarantee
4405  * issue.
4406  *
4407  * Most of the issues taken into account to get the return value of
4408  * this function are not trivial. We discuss these issues in the two
4409  * functions providing the main pieces of information needed by this
4410  * function.
4411  */
4412 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4413 {
4414 	struct bfq_data *bfqd = bfqq->bfqd;
4415 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4416 
4417 	/* No point in idling for bfqq if it won't get requests any longer */
4418 	if (unlikely(!bfqq_process_refs(bfqq)))
4419 		return false;
4420 
4421 	if (unlikely(bfqd->strict_guarantees))
4422 		return true;
4423 
4424 	/*
4425 	 * Idling is performed only if slice_idle > 0. In addition, we
4426 	 * do not idle if
4427 	 * (a) bfqq is async
4428 	 * (b) bfqq is in the idle io prio class: in this case we do
4429 	 * not idle because we want to minimize the bandwidth that
4430 	 * queues in this class can steal to higher-priority queues
4431 	 */
4432 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4433 	   bfq_class_idle(bfqq))
4434 		return false;
4435 
4436 	idling_boosts_thr_with_no_issue =
4437 		idling_boosts_thr_without_issues(bfqd, bfqq);
4438 
4439 	idling_needed_for_service_guar =
4440 		idling_needed_for_service_guarantees(bfqd, bfqq);
4441 
4442 	/*
4443 	 * We have now the two components we need to compute the
4444 	 * return value of the function, which is true only if idling
4445 	 * either boosts the throughput (without issues), or is
4446 	 * necessary to preserve service guarantees.
4447 	 */
4448 	return idling_boosts_thr_with_no_issue ||
4449 		idling_needed_for_service_guar;
4450 }
4451 
4452 /*
4453  * If the in-service queue is empty but the function bfq_better_to_idle
4454  * returns true, then:
4455  * 1) the queue must remain in service and cannot be expired, and
4456  * 2) the device must be idled to wait for the possible arrival of a new
4457  *    request for the queue.
4458  * See the comments on the function bfq_better_to_idle for the reasons
4459  * why performing device idling is the best choice to boost the throughput
4460  * and preserve service guarantees when bfq_better_to_idle itself
4461  * returns true.
4462  */
4463 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4464 {
4465 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4466 }
4467 
4468 /*
4469  * This function chooses the queue from which to pick the next extra
4470  * I/O request to inject, if it finds a compatible queue. See the
4471  * comments on bfq_update_inject_limit() for details on the injection
4472  * mechanism, and for the definitions of the quantities mentioned
4473  * below.
4474  */
4475 static struct bfq_queue *
4476 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4477 {
4478 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4479 	unsigned int limit = in_serv_bfqq->inject_limit;
4480 	/*
4481 	 * If
4482 	 * - bfqq is not weight-raised and therefore does not carry
4483 	 *   time-critical I/O,
4484 	 * or
4485 	 * - regardless of whether bfqq is weight-raised, bfqq has
4486 	 *   however a long think time, during which it can absorb the
4487 	 *   effect of an appropriate number of extra I/O requests
4488 	 *   from other queues (see bfq_update_inject_limit for
4489 	 *   details on the computation of this number);
4490 	 * then injection can be performed without restrictions.
4491 	 */
4492 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4493 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4494 
4495 	/*
4496 	 * If
4497 	 * - the baseline total service time could not be sampled yet,
4498 	 *   so the inject limit happens to be still 0, and
4499 	 * - a lot of time has elapsed since the plugging of I/O
4500 	 *   dispatching started, so drive speed is being wasted
4501 	 *   significantly;
4502 	 * then temporarily raise inject limit to one request.
4503 	 */
4504 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4505 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4506 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4507 				      bfqd->bfq_slice_idle)
4508 		)
4509 		limit = 1;
4510 
4511 	if (bfqd->rq_in_driver >= limit)
4512 		return NULL;
4513 
4514 	/*
4515 	 * Linear search of the source queue for injection; but, with
4516 	 * a high probability, very few steps are needed to find a
4517 	 * candidate queue, i.e., a queue with enough budget left for
4518 	 * its next request. In fact:
4519 	 * - BFQ dynamically updates the budget of every queue so as
4520 	 *   to accommodate the expected backlog of the queue;
4521 	 * - if a queue gets all its requests dispatched as injected
4522 	 *   service, then the queue is removed from the active list
4523 	 *   (and re-added only if it gets new requests, but then it
4524 	 *   is assigned again enough budget for its new backlog).
4525 	 */
4526 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4527 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4528 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4529 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4530 		    bfq_bfqq_budget_left(bfqq)) {
4531 			/*
4532 			 * Allow for only one large in-flight request
4533 			 * on non-rotational devices, for the
4534 			 * following reason. On non-rotationl drives,
4535 			 * large requests take much longer than
4536 			 * smaller requests to be served. In addition,
4537 			 * the drive prefers to serve large requests
4538 			 * w.r.t. to small ones, if it can choose. So,
4539 			 * having more than one large requests queued
4540 			 * in the drive may easily make the next first
4541 			 * request of the in-service queue wait for so
4542 			 * long to break bfqq's service guarantees. On
4543 			 * the bright side, large requests let the
4544 			 * drive reach a very high throughput, even if
4545 			 * there is only one in-flight large request
4546 			 * at a time.
4547 			 */
4548 			if (blk_queue_nonrot(bfqd->queue) &&
4549 			    blk_rq_sectors(bfqq->next_rq) >=
4550 			    BFQQ_SECT_THR_NONROT)
4551 				limit = min_t(unsigned int, 1, limit);
4552 			else
4553 				limit = in_serv_bfqq->inject_limit;
4554 
4555 			if (bfqd->rq_in_driver < limit) {
4556 				bfqd->rqs_injected = true;
4557 				return bfqq;
4558 			}
4559 		}
4560 
4561 	return NULL;
4562 }
4563 
4564 /*
4565  * Select a queue for service.  If we have a current queue in service,
4566  * check whether to continue servicing it, or retrieve and set a new one.
4567  */
4568 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4569 {
4570 	struct bfq_queue *bfqq;
4571 	struct request *next_rq;
4572 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4573 
4574 	bfqq = bfqd->in_service_queue;
4575 	if (!bfqq)
4576 		goto new_queue;
4577 
4578 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4579 
4580 	/*
4581 	 * Do not expire bfqq for budget timeout if bfqq may be about
4582 	 * to enjoy device idling. The reason why, in this case, we
4583 	 * prevent bfqq from expiring is the same as in the comments
4584 	 * on the case where bfq_bfqq_must_idle() returns true, in
4585 	 * bfq_completed_request().
4586 	 */
4587 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4588 	    !bfq_bfqq_must_idle(bfqq))
4589 		goto expire;
4590 
4591 check_queue:
4592 	/*
4593 	 * This loop is rarely executed more than once. Even when it
4594 	 * happens, it is much more convenient to re-execute this loop
4595 	 * than to return NULL and trigger a new dispatch to get a
4596 	 * request served.
4597 	 */
4598 	next_rq = bfqq->next_rq;
4599 	/*
4600 	 * If bfqq has requests queued and it has enough budget left to
4601 	 * serve them, keep the queue, otherwise expire it.
4602 	 */
4603 	if (next_rq) {
4604 		if (bfq_serv_to_charge(next_rq, bfqq) >
4605 			bfq_bfqq_budget_left(bfqq)) {
4606 			/*
4607 			 * Expire the queue for budget exhaustion,
4608 			 * which makes sure that the next budget is
4609 			 * enough to serve the next request, even if
4610 			 * it comes from the fifo expired path.
4611 			 */
4612 			reason = BFQQE_BUDGET_EXHAUSTED;
4613 			goto expire;
4614 		} else {
4615 			/*
4616 			 * The idle timer may be pending because we may
4617 			 * not disable disk idling even when a new request
4618 			 * arrives.
4619 			 */
4620 			if (bfq_bfqq_wait_request(bfqq)) {
4621 				/*
4622 				 * If we get here: 1) at least a new request
4623 				 * has arrived but we have not disabled the
4624 				 * timer because the request was too small,
4625 				 * 2) then the block layer has unplugged
4626 				 * the device, causing the dispatch to be
4627 				 * invoked.
4628 				 *
4629 				 * Since the device is unplugged, now the
4630 				 * requests are probably large enough to
4631 				 * provide a reasonable throughput.
4632 				 * So we disable idling.
4633 				 */
4634 				bfq_clear_bfqq_wait_request(bfqq);
4635 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4636 			}
4637 			goto keep_queue;
4638 		}
4639 	}
4640 
4641 	/*
4642 	 * No requests pending. However, if the in-service queue is idling
4643 	 * for a new request, or has requests waiting for a completion and
4644 	 * may idle after their completion, then keep it anyway.
4645 	 *
4646 	 * Yet, inject service from other queues if it boosts
4647 	 * throughput and is possible.
4648 	 */
4649 	if (bfq_bfqq_wait_request(bfqq) ||
4650 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4651 		struct bfq_queue *async_bfqq =
4652 			bfqq->bic && bfqq->bic->bfqq[0] &&
4653 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4654 			bfqq->bic->bfqq[0]->next_rq ?
4655 			bfqq->bic->bfqq[0] : NULL;
4656 		struct bfq_queue *blocked_bfqq =
4657 			!hlist_empty(&bfqq->woken_list) ?
4658 			container_of(bfqq->woken_list.first,
4659 				     struct bfq_queue,
4660 				     woken_list_node)
4661 			: NULL;
4662 
4663 		/*
4664 		 * The next four mutually-exclusive ifs decide
4665 		 * whether to try injection, and choose the queue to
4666 		 * pick an I/O request from.
4667 		 *
4668 		 * The first if checks whether the process associated
4669 		 * with bfqq has also async I/O pending. If so, it
4670 		 * injects such I/O unconditionally. Injecting async
4671 		 * I/O from the same process can cause no harm to the
4672 		 * process. On the contrary, it can only increase
4673 		 * bandwidth and reduce latency for the process.
4674 		 *
4675 		 * The second if checks whether there happens to be a
4676 		 * non-empty waker queue for bfqq, i.e., a queue whose
4677 		 * I/O needs to be completed for bfqq to receive new
4678 		 * I/O. This happens, e.g., if bfqq is associated with
4679 		 * a process that does some sync. A sync generates
4680 		 * extra blocking I/O, which must be completed before
4681 		 * the process associated with bfqq can go on with its
4682 		 * I/O. If the I/O of the waker queue is not served,
4683 		 * then bfqq remains empty, and no I/O is dispatched,
4684 		 * until the idle timeout fires for bfqq. This is
4685 		 * likely to result in lower bandwidth and higher
4686 		 * latencies for bfqq, and in a severe loss of total
4687 		 * throughput. The best action to take is therefore to
4688 		 * serve the waker queue as soon as possible. So do it
4689 		 * (without relying on the third alternative below for
4690 		 * eventually serving waker_bfqq's I/O; see the last
4691 		 * paragraph for further details). This systematic
4692 		 * injection of I/O from the waker queue does not
4693 		 * cause any delay to bfqq's I/O. On the contrary,
4694 		 * next bfqq's I/O is brought forward dramatically,
4695 		 * for it is not blocked for milliseconds.
4696 		 *
4697 		 * The third if checks whether there is a queue woken
4698 		 * by bfqq, and currently with pending I/O. Such a
4699 		 * woken queue does not steal bandwidth from bfqq,
4700 		 * because it remains soon without I/O if bfqq is not
4701 		 * served. So there is virtually no risk of loss of
4702 		 * bandwidth for bfqq if this woken queue has I/O
4703 		 * dispatched while bfqq is waiting for new I/O.
4704 		 *
4705 		 * The fourth if checks whether bfqq is a queue for
4706 		 * which it is better to avoid injection. It is so if
4707 		 * bfqq delivers more throughput when served without
4708 		 * any further I/O from other queues in the middle, or
4709 		 * if the service times of bfqq's I/O requests both
4710 		 * count more than overall throughput, and may be
4711 		 * easily increased by injection (this happens if bfqq
4712 		 * has a short think time). If none of these
4713 		 * conditions holds, then a candidate queue for
4714 		 * injection is looked for through
4715 		 * bfq_choose_bfqq_for_injection(). Note that the
4716 		 * latter may return NULL (for example if the inject
4717 		 * limit for bfqq is currently 0).
4718 		 *
4719 		 * NOTE: motivation for the second alternative
4720 		 *
4721 		 * Thanks to the way the inject limit is updated in
4722 		 * bfq_update_has_short_ttime(), it is rather likely
4723 		 * that, if I/O is being plugged for bfqq and the
4724 		 * waker queue has pending I/O requests that are
4725 		 * blocking bfqq's I/O, then the fourth alternative
4726 		 * above lets the waker queue get served before the
4727 		 * I/O-plugging timeout fires. So one may deem the
4728 		 * second alternative superfluous. It is not, because
4729 		 * the fourth alternative may be way less effective in
4730 		 * case of a synchronization. For two main
4731 		 * reasons. First, throughput may be low because the
4732 		 * inject limit may be too low to guarantee the same
4733 		 * amount of injected I/O, from the waker queue or
4734 		 * other queues, that the second alternative
4735 		 * guarantees (the second alternative unconditionally
4736 		 * injects a pending I/O request of the waker queue
4737 		 * for each bfq_dispatch_request()). Second, with the
4738 		 * fourth alternative, the duration of the plugging,
4739 		 * i.e., the time before bfqq finally receives new I/O,
4740 		 * may not be minimized, because the waker queue may
4741 		 * happen to be served only after other queues.
4742 		 */
4743 		if (async_bfqq &&
4744 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4745 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4746 		    bfq_bfqq_budget_left(async_bfqq))
4747 			bfqq = bfqq->bic->bfqq[0];
4748 		else if (bfqq->waker_bfqq &&
4749 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4750 			   bfqq->waker_bfqq->next_rq &&
4751 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4752 					      bfqq->waker_bfqq) <=
4753 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4754 			)
4755 			bfqq = bfqq->waker_bfqq;
4756 		else if (blocked_bfqq &&
4757 			   bfq_bfqq_busy(blocked_bfqq) &&
4758 			   blocked_bfqq->next_rq &&
4759 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4760 					      blocked_bfqq) <=
4761 			   bfq_bfqq_budget_left(blocked_bfqq)
4762 			)
4763 			bfqq = blocked_bfqq;
4764 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4765 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4766 			  !bfq_bfqq_has_short_ttime(bfqq)))
4767 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4768 		else
4769 			bfqq = NULL;
4770 
4771 		goto keep_queue;
4772 	}
4773 
4774 	reason = BFQQE_NO_MORE_REQUESTS;
4775 expire:
4776 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4777 new_queue:
4778 	bfqq = bfq_set_in_service_queue(bfqd);
4779 	if (bfqq) {
4780 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4781 		goto check_queue;
4782 	}
4783 keep_queue:
4784 	if (bfqq)
4785 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4786 	else
4787 		bfq_log(bfqd, "select_queue: no queue returned");
4788 
4789 	return bfqq;
4790 }
4791 
4792 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4793 {
4794 	struct bfq_entity *entity = &bfqq->entity;
4795 
4796 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4797 		bfq_log_bfqq(bfqd, bfqq,
4798 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4799 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4800 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4801 			bfqq->wr_coeff,
4802 			bfqq->entity.weight, bfqq->entity.orig_weight);
4803 
4804 		if (entity->prio_changed)
4805 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4806 
4807 		/*
4808 		 * If the queue was activated in a burst, or too much
4809 		 * time has elapsed from the beginning of this
4810 		 * weight-raising period, then end weight raising.
4811 		 */
4812 		if (bfq_bfqq_in_large_burst(bfqq))
4813 			bfq_bfqq_end_wr(bfqq);
4814 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4815 						bfqq->wr_cur_max_time)) {
4816 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4817 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4818 					       bfq_wr_duration(bfqd))) {
4819 				/*
4820 				 * Either in interactive weight
4821 				 * raising, or in soft_rt weight
4822 				 * raising with the
4823 				 * interactive-weight-raising period
4824 				 * elapsed (so no switch back to
4825 				 * interactive weight raising).
4826 				 */
4827 				bfq_bfqq_end_wr(bfqq);
4828 			} else { /*
4829 				  * soft_rt finishing while still in
4830 				  * interactive period, switch back to
4831 				  * interactive weight raising
4832 				  */
4833 				switch_back_to_interactive_wr(bfqq, bfqd);
4834 				bfqq->entity.prio_changed = 1;
4835 			}
4836 		}
4837 		if (bfqq->wr_coeff > 1 &&
4838 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4839 		    bfqq->service_from_wr > max_service_from_wr) {
4840 			/* see comments on max_service_from_wr */
4841 			bfq_bfqq_end_wr(bfqq);
4842 		}
4843 	}
4844 	/*
4845 	 * To improve latency (for this or other queues), immediately
4846 	 * update weight both if it must be raised and if it must be
4847 	 * lowered. Since, entity may be on some active tree here, and
4848 	 * might have a pending change of its ioprio class, invoke
4849 	 * next function with the last parameter unset (see the
4850 	 * comments on the function).
4851 	 */
4852 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4853 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4854 						entity, false);
4855 }
4856 
4857 /*
4858  * Dispatch next request from bfqq.
4859  */
4860 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4861 						 struct bfq_queue *bfqq)
4862 {
4863 	struct request *rq = bfqq->next_rq;
4864 	unsigned long service_to_charge;
4865 
4866 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4867 
4868 	bfq_bfqq_served(bfqq, service_to_charge);
4869 
4870 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4871 		bfqd->wait_dispatch = false;
4872 		bfqd->waited_rq = rq;
4873 	}
4874 
4875 	bfq_dispatch_remove(bfqd->queue, rq);
4876 
4877 	if (bfqq != bfqd->in_service_queue)
4878 		goto return_rq;
4879 
4880 	/*
4881 	 * If weight raising has to terminate for bfqq, then next
4882 	 * function causes an immediate update of bfqq's weight,
4883 	 * without waiting for next activation. As a consequence, on
4884 	 * expiration, bfqq will be timestamped as if has never been
4885 	 * weight-raised during this service slot, even if it has
4886 	 * received part or even most of the service as a
4887 	 * weight-raised queue. This inflates bfqq's timestamps, which
4888 	 * is beneficial, as bfqq is then more willing to leave the
4889 	 * device immediately to possible other weight-raised queues.
4890 	 */
4891 	bfq_update_wr_data(bfqd, bfqq);
4892 
4893 	/*
4894 	 * Expire bfqq, pretending that its budget expired, if bfqq
4895 	 * belongs to CLASS_IDLE and other queues are waiting for
4896 	 * service.
4897 	 */
4898 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4899 		goto return_rq;
4900 
4901 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4902 
4903 return_rq:
4904 	return rq;
4905 }
4906 
4907 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4908 {
4909 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4910 
4911 	/*
4912 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4913 	 * most a call to dispatch for nothing
4914 	 */
4915 	return !list_empty_careful(&bfqd->dispatch) ||
4916 		bfq_tot_busy_queues(bfqd) > 0;
4917 }
4918 
4919 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4920 {
4921 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4922 	struct request *rq = NULL;
4923 	struct bfq_queue *bfqq = NULL;
4924 
4925 	if (!list_empty(&bfqd->dispatch)) {
4926 		rq = list_first_entry(&bfqd->dispatch, struct request,
4927 				      queuelist);
4928 		list_del_init(&rq->queuelist);
4929 
4930 		bfqq = RQ_BFQQ(rq);
4931 
4932 		if (bfqq) {
4933 			/*
4934 			 * Increment counters here, because this
4935 			 * dispatch does not follow the standard
4936 			 * dispatch flow (where counters are
4937 			 * incremented)
4938 			 */
4939 			bfqq->dispatched++;
4940 
4941 			goto inc_in_driver_start_rq;
4942 		}
4943 
4944 		/*
4945 		 * We exploit the bfq_finish_requeue_request hook to
4946 		 * decrement rq_in_driver, but
4947 		 * bfq_finish_requeue_request will not be invoked on
4948 		 * this request. So, to avoid unbalance, just start
4949 		 * this request, without incrementing rq_in_driver. As
4950 		 * a negative consequence, rq_in_driver is deceptively
4951 		 * lower than it should be while this request is in
4952 		 * service. This may cause bfq_schedule_dispatch to be
4953 		 * invoked uselessly.
4954 		 *
4955 		 * As for implementing an exact solution, the
4956 		 * bfq_finish_requeue_request hook, if defined, is
4957 		 * probably invoked also on this request. So, by
4958 		 * exploiting this hook, we could 1) increment
4959 		 * rq_in_driver here, and 2) decrement it in
4960 		 * bfq_finish_requeue_request. Such a solution would
4961 		 * let the value of the counter be always accurate,
4962 		 * but it would entail using an extra interface
4963 		 * function. This cost seems higher than the benefit,
4964 		 * being the frequency of non-elevator-private
4965 		 * requests very low.
4966 		 */
4967 		goto start_rq;
4968 	}
4969 
4970 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4971 		bfq_tot_busy_queues(bfqd));
4972 
4973 	if (bfq_tot_busy_queues(bfqd) == 0)
4974 		goto exit;
4975 
4976 	/*
4977 	 * Force device to serve one request at a time if
4978 	 * strict_guarantees is true. Forcing this service scheme is
4979 	 * currently the ONLY way to guarantee that the request
4980 	 * service order enforced by the scheduler is respected by a
4981 	 * queueing device. Otherwise the device is free even to make
4982 	 * some unlucky request wait for as long as the device
4983 	 * wishes.
4984 	 *
4985 	 * Of course, serving one request at a time may cause loss of
4986 	 * throughput.
4987 	 */
4988 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4989 		goto exit;
4990 
4991 	bfqq = bfq_select_queue(bfqd);
4992 	if (!bfqq)
4993 		goto exit;
4994 
4995 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4996 
4997 	if (rq) {
4998 inc_in_driver_start_rq:
4999 		bfqd->rq_in_driver++;
5000 start_rq:
5001 		rq->rq_flags |= RQF_STARTED;
5002 	}
5003 exit:
5004 	return rq;
5005 }
5006 
5007 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5008 static void bfq_update_dispatch_stats(struct request_queue *q,
5009 				      struct request *rq,
5010 				      struct bfq_queue *in_serv_queue,
5011 				      bool idle_timer_disabled)
5012 {
5013 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5014 
5015 	if (!idle_timer_disabled && !bfqq)
5016 		return;
5017 
5018 	/*
5019 	 * rq and bfqq are guaranteed to exist until this function
5020 	 * ends, for the following reasons. First, rq can be
5021 	 * dispatched to the device, and then can be completed and
5022 	 * freed, only after this function ends. Second, rq cannot be
5023 	 * merged (and thus freed because of a merge) any longer,
5024 	 * because it has already started. Thus rq cannot be freed
5025 	 * before this function ends, and, since rq has a reference to
5026 	 * bfqq, the same guarantee holds for bfqq too.
5027 	 *
5028 	 * In addition, the following queue lock guarantees that
5029 	 * bfqq_group(bfqq) exists as well.
5030 	 */
5031 	spin_lock_irq(&q->queue_lock);
5032 	if (idle_timer_disabled)
5033 		/*
5034 		 * Since the idle timer has been disabled,
5035 		 * in_serv_queue contained some request when
5036 		 * __bfq_dispatch_request was invoked above, which
5037 		 * implies that rq was picked exactly from
5038 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5039 		 * therefore guaranteed to exist because of the above
5040 		 * arguments.
5041 		 */
5042 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5043 	if (bfqq) {
5044 		struct bfq_group *bfqg = bfqq_group(bfqq);
5045 
5046 		bfqg_stats_update_avg_queue_size(bfqg);
5047 		bfqg_stats_set_start_empty_time(bfqg);
5048 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5049 	}
5050 	spin_unlock_irq(&q->queue_lock);
5051 }
5052 #else
5053 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5054 					     struct request *rq,
5055 					     struct bfq_queue *in_serv_queue,
5056 					     bool idle_timer_disabled) {}
5057 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5058 
5059 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5060 {
5061 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5062 	struct request *rq;
5063 	struct bfq_queue *in_serv_queue;
5064 	bool waiting_rq, idle_timer_disabled;
5065 
5066 	spin_lock_irq(&bfqd->lock);
5067 
5068 	in_serv_queue = bfqd->in_service_queue;
5069 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5070 
5071 	rq = __bfq_dispatch_request(hctx);
5072 
5073 	idle_timer_disabled =
5074 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5075 
5076 	spin_unlock_irq(&bfqd->lock);
5077 
5078 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
5079 				  idle_timer_disabled);
5080 
5081 	return rq;
5082 }
5083 
5084 /*
5085  * Task holds one reference to the queue, dropped when task exits.  Each rq
5086  * in-flight on this queue also holds a reference, dropped when rq is freed.
5087  *
5088  * Scheduler lock must be held here. Recall not to use bfqq after calling
5089  * this function on it.
5090  */
5091 void bfq_put_queue(struct bfq_queue *bfqq)
5092 {
5093 	struct bfq_queue *item;
5094 	struct hlist_node *n;
5095 	struct bfq_group *bfqg = bfqq_group(bfqq);
5096 
5097 	if (bfqq->bfqd)
5098 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5099 			     bfqq, bfqq->ref);
5100 
5101 	bfqq->ref--;
5102 	if (bfqq->ref)
5103 		return;
5104 
5105 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5106 		hlist_del_init(&bfqq->burst_list_node);
5107 		/*
5108 		 * Decrement also burst size after the removal, if the
5109 		 * process associated with bfqq is exiting, and thus
5110 		 * does not contribute to the burst any longer. This
5111 		 * decrement helps filter out false positives of large
5112 		 * bursts, when some short-lived process (often due to
5113 		 * the execution of commands by some service) happens
5114 		 * to start and exit while a complex application is
5115 		 * starting, and thus spawning several processes that
5116 		 * do I/O (and that *must not* be treated as a large
5117 		 * burst, see comments on bfq_handle_burst).
5118 		 *
5119 		 * In particular, the decrement is performed only if:
5120 		 * 1) bfqq is not a merged queue, because, if it is,
5121 		 * then this free of bfqq is not triggered by the exit
5122 		 * of the process bfqq is associated with, but exactly
5123 		 * by the fact that bfqq has just been merged.
5124 		 * 2) burst_size is greater than 0, to handle
5125 		 * unbalanced decrements. Unbalanced decrements may
5126 		 * happen in te following case: bfqq is inserted into
5127 		 * the current burst list--without incrementing
5128 		 * bust_size--because of a split, but the current
5129 		 * burst list is not the burst list bfqq belonged to
5130 		 * (see comments on the case of a split in
5131 		 * bfq_set_request).
5132 		 */
5133 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5134 			bfqq->bfqd->burst_size--;
5135 	}
5136 
5137 	/*
5138 	 * bfqq does not exist any longer, so it cannot be woken by
5139 	 * any other queue, and cannot wake any other queue. Then bfqq
5140 	 * must be removed from the woken list of its possible waker
5141 	 * queue, and all queues in the woken list of bfqq must stop
5142 	 * having a waker queue. Strictly speaking, these updates
5143 	 * should be performed when bfqq remains with no I/O source
5144 	 * attached to it, which happens before bfqq gets freed. In
5145 	 * particular, this happens when the last process associated
5146 	 * with bfqq exits or gets associated with a different
5147 	 * queue. However, both events lead to bfqq being freed soon,
5148 	 * and dangling references would come out only after bfqq gets
5149 	 * freed. So these updates are done here, as a simple and safe
5150 	 * way to handle all cases.
5151 	 */
5152 	/* remove bfqq from woken list */
5153 	if (!hlist_unhashed(&bfqq->woken_list_node))
5154 		hlist_del_init(&bfqq->woken_list_node);
5155 
5156 	/* reset waker for all queues in woken list */
5157 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5158 				  woken_list_node) {
5159 		item->waker_bfqq = NULL;
5160 		hlist_del_init(&item->woken_list_node);
5161 	}
5162 
5163 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5164 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5165 
5166 	kmem_cache_free(bfq_pool, bfqq);
5167 	bfqg_and_blkg_put(bfqg);
5168 }
5169 
5170 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5171 {
5172 	bfqq->stable_ref--;
5173 	bfq_put_queue(bfqq);
5174 }
5175 
5176 static void bfq_put_cooperator(struct bfq_queue *bfqq)
5177 {
5178 	struct bfq_queue *__bfqq, *next;
5179 
5180 	/*
5181 	 * If this queue was scheduled to merge with another queue, be
5182 	 * sure to drop the reference taken on that queue (and others in
5183 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5184 	 */
5185 	__bfqq = bfqq->new_bfqq;
5186 	while (__bfqq) {
5187 		if (__bfqq == bfqq)
5188 			break;
5189 		next = __bfqq->new_bfqq;
5190 		bfq_put_queue(__bfqq);
5191 		__bfqq = next;
5192 	}
5193 }
5194 
5195 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5196 {
5197 	if (bfqq == bfqd->in_service_queue) {
5198 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5199 		bfq_schedule_dispatch(bfqd);
5200 	}
5201 
5202 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5203 
5204 	bfq_put_cooperator(bfqq);
5205 
5206 	bfq_release_process_ref(bfqd, bfqq);
5207 }
5208 
5209 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5210 {
5211 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5212 	struct bfq_data *bfqd;
5213 
5214 	if (bfqq)
5215 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5216 
5217 	if (bfqq && bfqd) {
5218 		unsigned long flags;
5219 
5220 		spin_lock_irqsave(&bfqd->lock, flags);
5221 		bfqq->bic = NULL;
5222 		bfq_exit_bfqq(bfqd, bfqq);
5223 		bic_set_bfqq(bic, NULL, is_sync);
5224 		spin_unlock_irqrestore(&bfqd->lock, flags);
5225 	}
5226 }
5227 
5228 static void bfq_exit_icq(struct io_cq *icq)
5229 {
5230 	struct bfq_io_cq *bic = icq_to_bic(icq);
5231 
5232 	if (bic->stable_merge_bfqq) {
5233 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5234 
5235 		/*
5236 		 * bfqd is NULL if scheduler already exited, and in
5237 		 * that case this is the last time bfqq is accessed.
5238 		 */
5239 		if (bfqd) {
5240 			unsigned long flags;
5241 
5242 			spin_lock_irqsave(&bfqd->lock, flags);
5243 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5244 			spin_unlock_irqrestore(&bfqd->lock, flags);
5245 		} else {
5246 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5247 		}
5248 	}
5249 
5250 	bfq_exit_icq_bfqq(bic, true);
5251 	bfq_exit_icq_bfqq(bic, false);
5252 }
5253 
5254 /*
5255  * Update the entity prio values; note that the new values will not
5256  * be used until the next (re)activation.
5257  */
5258 static void
5259 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5260 {
5261 	struct task_struct *tsk = current;
5262 	int ioprio_class;
5263 	struct bfq_data *bfqd = bfqq->bfqd;
5264 
5265 	if (!bfqd)
5266 		return;
5267 
5268 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5269 	switch (ioprio_class) {
5270 	default:
5271 		pr_err("bdi %s: bfq: bad prio class %d\n",
5272 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5273 			ioprio_class);
5274 		fallthrough;
5275 	case IOPRIO_CLASS_NONE:
5276 		/*
5277 		 * No prio set, inherit CPU scheduling settings.
5278 		 */
5279 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5280 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5281 		break;
5282 	case IOPRIO_CLASS_RT:
5283 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5284 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5285 		break;
5286 	case IOPRIO_CLASS_BE:
5287 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5288 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5289 		break;
5290 	case IOPRIO_CLASS_IDLE:
5291 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5292 		bfqq->new_ioprio = 7;
5293 		break;
5294 	}
5295 
5296 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5297 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5298 			bfqq->new_ioprio);
5299 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5300 	}
5301 
5302 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5303 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5304 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5305 	bfqq->entity.prio_changed = 1;
5306 }
5307 
5308 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5309 				       struct bio *bio, bool is_sync,
5310 				       struct bfq_io_cq *bic,
5311 				       bool respawn);
5312 
5313 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5314 {
5315 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5316 	struct bfq_queue *bfqq;
5317 	int ioprio = bic->icq.ioc->ioprio;
5318 
5319 	/*
5320 	 * This condition may trigger on a newly created bic, be sure to
5321 	 * drop the lock before returning.
5322 	 */
5323 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5324 		return;
5325 
5326 	bic->ioprio = ioprio;
5327 
5328 	bfqq = bic_to_bfqq(bic, false);
5329 	if (bfqq) {
5330 		bfq_release_process_ref(bfqd, bfqq);
5331 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic, true);
5332 		bic_set_bfqq(bic, bfqq, false);
5333 	}
5334 
5335 	bfqq = bic_to_bfqq(bic, true);
5336 	if (bfqq)
5337 		bfq_set_next_ioprio_data(bfqq, bic);
5338 }
5339 
5340 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5341 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5342 {
5343 	u64 now_ns = ktime_get_ns();
5344 
5345 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5346 	INIT_LIST_HEAD(&bfqq->fifo);
5347 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5348 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5349 	INIT_HLIST_HEAD(&bfqq->woken_list);
5350 
5351 	bfqq->ref = 0;
5352 	bfqq->bfqd = bfqd;
5353 
5354 	if (bic)
5355 		bfq_set_next_ioprio_data(bfqq, bic);
5356 
5357 	if (is_sync) {
5358 		/*
5359 		 * No need to mark as has_short_ttime if in
5360 		 * idle_class, because no device idling is performed
5361 		 * for queues in idle class
5362 		 */
5363 		if (!bfq_class_idle(bfqq))
5364 			/* tentatively mark as has_short_ttime */
5365 			bfq_mark_bfqq_has_short_ttime(bfqq);
5366 		bfq_mark_bfqq_sync(bfqq);
5367 		bfq_mark_bfqq_just_created(bfqq);
5368 	} else
5369 		bfq_clear_bfqq_sync(bfqq);
5370 
5371 	/* set end request to minus infinity from now */
5372 	bfqq->ttime.last_end_request = now_ns + 1;
5373 
5374 	bfqq->creation_time = jiffies;
5375 
5376 	bfqq->io_start_time = now_ns;
5377 
5378 	bfq_mark_bfqq_IO_bound(bfqq);
5379 
5380 	bfqq->pid = pid;
5381 
5382 	/* Tentative initial value to trade off between thr and lat */
5383 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5384 	bfqq->budget_timeout = bfq_smallest_from_now();
5385 
5386 	bfqq->wr_coeff = 1;
5387 	bfqq->last_wr_start_finish = jiffies;
5388 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5389 	bfqq->split_time = bfq_smallest_from_now();
5390 
5391 	/*
5392 	 * To not forget the possibly high bandwidth consumed by a
5393 	 * process/queue in the recent past,
5394 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5395 	 * to the current value of bfqq->soft_rt_next_start (see
5396 	 * comments on bfq_bfqq_softrt_next_start).  Set
5397 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5398 	 * no bandwidth so far.
5399 	 */
5400 	bfqq->soft_rt_next_start = jiffies;
5401 
5402 	/* first request is almost certainly seeky */
5403 	bfqq->seek_history = 1;
5404 }
5405 
5406 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5407 					       struct bfq_group *bfqg,
5408 					       int ioprio_class, int ioprio)
5409 {
5410 	switch (ioprio_class) {
5411 	case IOPRIO_CLASS_RT:
5412 		return &bfqg->async_bfqq[0][ioprio];
5413 	case IOPRIO_CLASS_NONE:
5414 		ioprio = IOPRIO_BE_NORM;
5415 		fallthrough;
5416 	case IOPRIO_CLASS_BE:
5417 		return &bfqg->async_bfqq[1][ioprio];
5418 	case IOPRIO_CLASS_IDLE:
5419 		return &bfqg->async_idle_bfqq;
5420 	default:
5421 		return NULL;
5422 	}
5423 }
5424 
5425 static struct bfq_queue *
5426 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5427 			  struct bfq_io_cq *bic,
5428 			  struct bfq_queue *last_bfqq_created)
5429 {
5430 	struct bfq_queue *new_bfqq =
5431 		bfq_setup_merge(bfqq, last_bfqq_created);
5432 
5433 	if (!new_bfqq)
5434 		return bfqq;
5435 
5436 	if (new_bfqq->bic)
5437 		new_bfqq->bic->stably_merged = true;
5438 	bic->stably_merged = true;
5439 
5440 	/*
5441 	 * Reusing merge functions. This implies that
5442 	 * bfqq->bic must be set too, for
5443 	 * bfq_merge_bfqqs to correctly save bfqq's
5444 	 * state before killing it.
5445 	 */
5446 	bfqq->bic = bic;
5447 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5448 
5449 	return new_bfqq;
5450 }
5451 
5452 /*
5453  * Many throughput-sensitive workloads are made of several parallel
5454  * I/O flows, with all flows generated by the same application, or
5455  * more generically by the same task (e.g., system boot). The most
5456  * counterproductive action with these workloads is plugging I/O
5457  * dispatch when one of the bfq_queues associated with these flows
5458  * remains temporarily empty.
5459  *
5460  * To avoid this plugging, BFQ has been using a burst-handling
5461  * mechanism for years now. This mechanism has proven effective for
5462  * throughput, and not detrimental for service guarantees. The
5463  * following function pushes this mechanism a little bit further,
5464  * basing on the following two facts.
5465  *
5466  * First, all the I/O flows of a the same application or task
5467  * contribute to the execution/completion of that common application
5468  * or task. So the performance figures that matter are total
5469  * throughput of the flows and task-wide I/O latency.  In particular,
5470  * these flows do not need to be protected from each other, in terms
5471  * of individual bandwidth or latency.
5472  *
5473  * Second, the above fact holds regardless of the number of flows.
5474  *
5475  * Putting these two facts together, this commits merges stably the
5476  * bfq_queues associated with these I/O flows, i.e., with the
5477  * processes that generate these IO/ flows, regardless of how many the
5478  * involved processes are.
5479  *
5480  * To decide whether a set of bfq_queues is actually associated with
5481  * the I/O flows of a common application or task, and to merge these
5482  * queues stably, this function operates as follows: given a bfq_queue,
5483  * say Q2, currently being created, and the last bfq_queue, say Q1,
5484  * created before Q2, Q2 is merged stably with Q1 if
5485  * - very little time has elapsed since when Q1 was created
5486  * - Q2 has the same ioprio as Q1
5487  * - Q2 belongs to the same group as Q1
5488  *
5489  * Merging bfq_queues also reduces scheduling overhead. A fio test
5490  * with ten random readers on /dev/nullb shows a throughput boost of
5491  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5492  * the total per-request processing time, the above throughput boost
5493  * implies that BFQ's overhead is reduced by more than 50%.
5494  *
5495  * This new mechanism most certainly obsoletes the current
5496  * burst-handling heuristics. We keep those heuristics for the moment.
5497  */
5498 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5499 						      struct bfq_queue *bfqq,
5500 						      struct bfq_io_cq *bic)
5501 {
5502 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5503 		&bfqq->entity.parent->last_bfqq_created :
5504 		&bfqd->last_bfqq_created;
5505 
5506 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5507 
5508 	/*
5509 	 * If last_bfqq_created has not been set yet, then init it. If
5510 	 * it has been set already, but too long ago, then move it
5511 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5512 	 * different group than last_bfqq_created, or if bfqq has a
5513 	 * different ioprio or ioprio_class. If none of these
5514 	 * conditions holds true, then try an early stable merge or
5515 	 * schedule a delayed stable merge.
5516 	 *
5517 	 * A delayed merge is scheduled (instead of performing an
5518 	 * early merge), in case bfqq might soon prove to be more
5519 	 * throughput-beneficial if not merged. Currently this is
5520 	 * possible only if bfqd is rotational with no queueing. For
5521 	 * such a drive, not merging bfqq is better for throughput if
5522 	 * bfqq happens to contain sequential I/O. So, we wait a
5523 	 * little bit for enough I/O to flow through bfqq. After that,
5524 	 * if such an I/O is sequential, then the merge is
5525 	 * canceled. Otherwise the merge is finally performed.
5526 	 */
5527 	if (!last_bfqq_created ||
5528 	    time_before(last_bfqq_created->creation_time +
5529 			msecs_to_jiffies(bfq_activation_stable_merging),
5530 			bfqq->creation_time) ||
5531 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5532 		bfqq->ioprio != last_bfqq_created->ioprio ||
5533 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5534 		*source_bfqq = bfqq;
5535 	else if (time_after_eq(last_bfqq_created->creation_time +
5536 				 bfqd->bfq_burst_interval,
5537 				 bfqq->creation_time)) {
5538 		if (likely(bfqd->nonrot_with_queueing))
5539 			/*
5540 			 * With this type of drive, leaving
5541 			 * bfqq alone may provide no
5542 			 * throughput benefits compared with
5543 			 * merging bfqq. So merge bfqq now.
5544 			 */
5545 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5546 							 bic,
5547 							 last_bfqq_created);
5548 		else { /* schedule tentative stable merge */
5549 			/*
5550 			 * get reference on last_bfqq_created,
5551 			 * to prevent it from being freed,
5552 			 * until we decide whether to merge
5553 			 */
5554 			last_bfqq_created->ref++;
5555 			/*
5556 			 * need to keep track of stable refs, to
5557 			 * compute process refs correctly
5558 			 */
5559 			last_bfqq_created->stable_ref++;
5560 			/*
5561 			 * Record the bfqq to merge to.
5562 			 */
5563 			bic->stable_merge_bfqq = last_bfqq_created;
5564 		}
5565 	}
5566 
5567 	return bfqq;
5568 }
5569 
5570 
5571 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5572 				       struct bio *bio, bool is_sync,
5573 				       struct bfq_io_cq *bic,
5574 				       bool respawn)
5575 {
5576 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5577 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5578 	struct bfq_queue **async_bfqq = NULL;
5579 	struct bfq_queue *bfqq;
5580 	struct bfq_group *bfqg;
5581 
5582 	rcu_read_lock();
5583 
5584 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5585 	if (!bfqg) {
5586 		bfqq = &bfqd->oom_bfqq;
5587 		goto out;
5588 	}
5589 
5590 	if (!is_sync) {
5591 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5592 						  ioprio);
5593 		bfqq = *async_bfqq;
5594 		if (bfqq)
5595 			goto out;
5596 	}
5597 
5598 	bfqq = kmem_cache_alloc_node(bfq_pool,
5599 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5600 				     bfqd->queue->node);
5601 
5602 	if (bfqq) {
5603 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5604 			      is_sync);
5605 		bfq_init_entity(&bfqq->entity, bfqg);
5606 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5607 	} else {
5608 		bfqq = &bfqd->oom_bfqq;
5609 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5610 		goto out;
5611 	}
5612 
5613 	/*
5614 	 * Pin the queue now that it's allocated, scheduler exit will
5615 	 * prune it.
5616 	 */
5617 	if (async_bfqq) {
5618 		bfqq->ref++; /*
5619 			      * Extra group reference, w.r.t. sync
5620 			      * queue. This extra reference is removed
5621 			      * only if bfqq->bfqg disappears, to
5622 			      * guarantee that this queue is not freed
5623 			      * until its group goes away.
5624 			      */
5625 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5626 			     bfqq, bfqq->ref);
5627 		*async_bfqq = bfqq;
5628 	}
5629 
5630 out:
5631 	bfqq->ref++; /* get a process reference to this queue */
5632 
5633 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5634 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5635 
5636 	rcu_read_unlock();
5637 	return bfqq;
5638 }
5639 
5640 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5641 				    struct bfq_queue *bfqq)
5642 {
5643 	struct bfq_ttime *ttime = &bfqq->ttime;
5644 	u64 elapsed;
5645 
5646 	/*
5647 	 * We are really interested in how long it takes for the queue to
5648 	 * become busy when there is no outstanding IO for this queue. So
5649 	 * ignore cases when the bfq queue has already IO queued.
5650 	 */
5651 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5652 		return;
5653 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5654 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5655 
5656 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5657 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5658 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5659 				     ttime->ttime_samples);
5660 }
5661 
5662 static void
5663 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5664 		       struct request *rq)
5665 {
5666 	bfqq->seek_history <<= 1;
5667 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5668 
5669 	if (bfqq->wr_coeff > 1 &&
5670 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5671 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5672 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5673 					   bfq_wr_duration(bfqd))) {
5674 			/*
5675 			 * In soft_rt weight raising with the
5676 			 * interactive-weight-raising period
5677 			 * elapsed (so no switch back to
5678 			 * interactive weight raising).
5679 			 */
5680 			bfq_bfqq_end_wr(bfqq);
5681 		} else { /*
5682 			  * stopping soft_rt weight raising
5683 			  * while still in interactive period,
5684 			  * switch back to interactive weight
5685 			  * raising
5686 			  */
5687 			switch_back_to_interactive_wr(bfqq, bfqd);
5688 			bfqq->entity.prio_changed = 1;
5689 		}
5690 	}
5691 }
5692 
5693 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5694 				       struct bfq_queue *bfqq,
5695 				       struct bfq_io_cq *bic)
5696 {
5697 	bool has_short_ttime = true, state_changed;
5698 
5699 	/*
5700 	 * No need to update has_short_ttime if bfqq is async or in
5701 	 * idle io prio class, or if bfq_slice_idle is zero, because
5702 	 * no device idling is performed for bfqq in this case.
5703 	 */
5704 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5705 	    bfqd->bfq_slice_idle == 0)
5706 		return;
5707 
5708 	/* Idle window just restored, statistics are meaningless. */
5709 	if (time_is_after_eq_jiffies(bfqq->split_time +
5710 				     bfqd->bfq_wr_min_idle_time))
5711 		return;
5712 
5713 	/* Think time is infinite if no process is linked to
5714 	 * bfqq. Otherwise check average think time to decide whether
5715 	 * to mark as has_short_ttime. To this goal, compare average
5716 	 * think time with half the I/O-plugging timeout.
5717 	 */
5718 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5719 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5720 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5721 		has_short_ttime = false;
5722 
5723 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5724 
5725 	if (has_short_ttime)
5726 		bfq_mark_bfqq_has_short_ttime(bfqq);
5727 	else
5728 		bfq_clear_bfqq_has_short_ttime(bfqq);
5729 
5730 	/*
5731 	 * Until the base value for the total service time gets
5732 	 * finally computed for bfqq, the inject limit does depend on
5733 	 * the think-time state (short|long). In particular, the limit
5734 	 * is 0 or 1 if the think time is deemed, respectively, as
5735 	 * short or long (details in the comments in
5736 	 * bfq_update_inject_limit()). Accordingly, the next
5737 	 * instructions reset the inject limit if the think-time state
5738 	 * has changed and the above base value is still to be
5739 	 * computed.
5740 	 *
5741 	 * However, the reset is performed only if more than 100 ms
5742 	 * have elapsed since the last update of the inject limit, or
5743 	 * (inclusive) if the change is from short to long think
5744 	 * time. The reason for this waiting is as follows.
5745 	 *
5746 	 * bfqq may have a long think time because of a
5747 	 * synchronization with some other queue, i.e., because the
5748 	 * I/O of some other queue may need to be completed for bfqq
5749 	 * to receive new I/O. Details in the comments on the choice
5750 	 * of the queue for injection in bfq_select_queue().
5751 	 *
5752 	 * As stressed in those comments, if such a synchronization is
5753 	 * actually in place, then, without injection on bfqq, the
5754 	 * blocking I/O cannot happen to served while bfqq is in
5755 	 * service. As a consequence, if bfqq is granted
5756 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5757 	 * is dispatched, until the idle timeout fires. This is likely
5758 	 * to result in lower bandwidth and higher latencies for bfqq,
5759 	 * and in a severe loss of total throughput.
5760 	 *
5761 	 * On the opposite end, a non-zero inject limit may allow the
5762 	 * I/O that blocks bfqq to be executed soon, and therefore
5763 	 * bfqq to receive new I/O soon.
5764 	 *
5765 	 * But, if the blocking gets actually eliminated, then the
5766 	 * next think-time sample for bfqq may be very low. This in
5767 	 * turn may cause bfqq's think time to be deemed
5768 	 * short. Without the 100 ms barrier, this new state change
5769 	 * would cause the body of the next if to be executed
5770 	 * immediately. But this would set to 0 the inject
5771 	 * limit. Without injection, the blocking I/O would cause the
5772 	 * think time of bfqq to become long again, and therefore the
5773 	 * inject limit to be raised again, and so on. The only effect
5774 	 * of such a steady oscillation between the two think-time
5775 	 * states would be to prevent effective injection on bfqq.
5776 	 *
5777 	 * In contrast, if the inject limit is not reset during such a
5778 	 * long time interval as 100 ms, then the number of short
5779 	 * think time samples can grow significantly before the reset
5780 	 * is performed. As a consequence, the think time state can
5781 	 * become stable before the reset. Therefore there will be no
5782 	 * state change when the 100 ms elapse, and no reset of the
5783 	 * inject limit. The inject limit remains steadily equal to 1
5784 	 * both during and after the 100 ms. So injection can be
5785 	 * performed at all times, and throughput gets boosted.
5786 	 *
5787 	 * An inject limit equal to 1 is however in conflict, in
5788 	 * general, with the fact that the think time of bfqq is
5789 	 * short, because injection may be likely to delay bfqq's I/O
5790 	 * (as explained in the comments in
5791 	 * bfq_update_inject_limit()). But this does not happen in
5792 	 * this special case, because bfqq's low think time is due to
5793 	 * an effective handling of a synchronization, through
5794 	 * injection. In this special case, bfqq's I/O does not get
5795 	 * delayed by injection; on the contrary, bfqq's I/O is
5796 	 * brought forward, because it is not blocked for
5797 	 * milliseconds.
5798 	 *
5799 	 * In addition, serving the blocking I/O much sooner, and much
5800 	 * more frequently than once per I/O-plugging timeout, makes
5801 	 * it much quicker to detect a waker queue (the concept of
5802 	 * waker queue is defined in the comments in
5803 	 * bfq_add_request()). This makes it possible to start sooner
5804 	 * to boost throughput more effectively, by injecting the I/O
5805 	 * of the waker queue unconditionally on every
5806 	 * bfq_dispatch_request().
5807 	 *
5808 	 * One last, important benefit of not resetting the inject
5809 	 * limit before 100 ms is that, during this time interval, the
5810 	 * base value for the total service time is likely to get
5811 	 * finally computed for bfqq, freeing the inject limit from
5812 	 * its relation with the think time.
5813 	 */
5814 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5815 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5816 				      msecs_to_jiffies(100)) ||
5817 	     !has_short_ttime))
5818 		bfq_reset_inject_limit(bfqd, bfqq);
5819 }
5820 
5821 /*
5822  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5823  * something we should do about it.
5824  */
5825 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5826 			    struct request *rq)
5827 {
5828 	if (rq->cmd_flags & REQ_META)
5829 		bfqq->meta_pending++;
5830 
5831 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5832 
5833 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5834 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5835 				 blk_rq_sectors(rq) < 32;
5836 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5837 
5838 		/*
5839 		 * There is just this request queued: if
5840 		 * - the request is small, and
5841 		 * - we are idling to boost throughput, and
5842 		 * - the queue is not to be expired,
5843 		 * then just exit.
5844 		 *
5845 		 * In this way, if the device is being idled to wait
5846 		 * for a new request from the in-service queue, we
5847 		 * avoid unplugging the device and committing the
5848 		 * device to serve just a small request. In contrast
5849 		 * we wait for the block layer to decide when to
5850 		 * unplug the device: hopefully, new requests will be
5851 		 * merged to this one quickly, then the device will be
5852 		 * unplugged and larger requests will be dispatched.
5853 		 */
5854 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5855 		    !budget_timeout)
5856 			return;
5857 
5858 		/*
5859 		 * A large enough request arrived, or idling is being
5860 		 * performed to preserve service guarantees, or
5861 		 * finally the queue is to be expired: in all these
5862 		 * cases disk idling is to be stopped, so clear
5863 		 * wait_request flag and reset timer.
5864 		 */
5865 		bfq_clear_bfqq_wait_request(bfqq);
5866 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5867 
5868 		/*
5869 		 * The queue is not empty, because a new request just
5870 		 * arrived. Hence we can safely expire the queue, in
5871 		 * case of budget timeout, without risking that the
5872 		 * timestamps of the queue are not updated correctly.
5873 		 * See [1] for more details.
5874 		 */
5875 		if (budget_timeout)
5876 			bfq_bfqq_expire(bfqd, bfqq, false,
5877 					BFQQE_BUDGET_TIMEOUT);
5878 	}
5879 }
5880 
5881 /* returns true if it causes the idle timer to be disabled */
5882 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5883 {
5884 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5885 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5886 						 RQ_BIC(rq));
5887 	bool waiting, idle_timer_disabled = false;
5888 
5889 	if (new_bfqq) {
5890 		/*
5891 		 * Release the request's reference to the old bfqq
5892 		 * and make sure one is taken to the shared queue.
5893 		 */
5894 		new_bfqq->allocated++;
5895 		bfqq->allocated--;
5896 		new_bfqq->ref++;
5897 		/*
5898 		 * If the bic associated with the process
5899 		 * issuing this request still points to bfqq
5900 		 * (and thus has not been already redirected
5901 		 * to new_bfqq or even some other bfq_queue),
5902 		 * then complete the merge and redirect it to
5903 		 * new_bfqq.
5904 		 */
5905 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5906 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5907 					bfqq, new_bfqq);
5908 
5909 		bfq_clear_bfqq_just_created(bfqq);
5910 		/*
5911 		 * rq is about to be enqueued into new_bfqq,
5912 		 * release rq reference on bfqq
5913 		 */
5914 		bfq_put_queue(bfqq);
5915 		rq->elv.priv[1] = new_bfqq;
5916 		bfqq = new_bfqq;
5917 	}
5918 
5919 	bfq_update_io_thinktime(bfqd, bfqq);
5920 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5921 	bfq_update_io_seektime(bfqd, bfqq, rq);
5922 
5923 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5924 	bfq_add_request(rq);
5925 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5926 
5927 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5928 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5929 
5930 	bfq_rq_enqueued(bfqd, bfqq, rq);
5931 
5932 	return idle_timer_disabled;
5933 }
5934 
5935 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5936 static void bfq_update_insert_stats(struct request_queue *q,
5937 				    struct bfq_queue *bfqq,
5938 				    bool idle_timer_disabled,
5939 				    unsigned int cmd_flags)
5940 {
5941 	if (!bfqq)
5942 		return;
5943 
5944 	/*
5945 	 * bfqq still exists, because it can disappear only after
5946 	 * either it is merged with another queue, or the process it
5947 	 * is associated with exits. But both actions must be taken by
5948 	 * the same process currently executing this flow of
5949 	 * instructions.
5950 	 *
5951 	 * In addition, the following queue lock guarantees that
5952 	 * bfqq_group(bfqq) exists as well.
5953 	 */
5954 	spin_lock_irq(&q->queue_lock);
5955 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5956 	if (idle_timer_disabled)
5957 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5958 	spin_unlock_irq(&q->queue_lock);
5959 }
5960 #else
5961 static inline void bfq_update_insert_stats(struct request_queue *q,
5962 					   struct bfq_queue *bfqq,
5963 					   bool idle_timer_disabled,
5964 					   unsigned int cmd_flags) {}
5965 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5966 
5967 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5968 			       bool at_head)
5969 {
5970 	struct request_queue *q = hctx->queue;
5971 	struct bfq_data *bfqd = q->elevator->elevator_data;
5972 	struct bfq_queue *bfqq;
5973 	bool idle_timer_disabled = false;
5974 	unsigned int cmd_flags;
5975 	LIST_HEAD(free);
5976 
5977 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5978 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5979 		bfqg_stats_update_legacy_io(q, rq);
5980 #endif
5981 	spin_lock_irq(&bfqd->lock);
5982 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
5983 		spin_unlock_irq(&bfqd->lock);
5984 		blk_mq_free_requests(&free);
5985 		return;
5986 	}
5987 
5988 	spin_unlock_irq(&bfqd->lock);
5989 
5990 	trace_block_rq_insert(rq);
5991 
5992 	spin_lock_irq(&bfqd->lock);
5993 	bfqq = bfq_init_rq(rq);
5994 
5995 	/*
5996 	 * Reqs with at_head or passthrough flags set are to be put
5997 	 * directly into dispatch list. Additional case for putting rq
5998 	 * directly into the dispatch queue: the only active
5999 	 * bfq_queues are bfqq and either its waker bfq_queue or one
6000 	 * of its woken bfq_queues. The rationale behind this
6001 	 * additional condition is as follows:
6002 	 * - consider a bfq_queue, say Q1, detected as a waker of
6003 	 *   another bfq_queue, say Q2
6004 	 * - by definition of a waker, Q1 blocks the I/O of Q2, i.e.,
6005 	 *   some I/O of Q1 needs to be completed for new I/O of Q2
6006 	 *   to arrive.  A notable example of waker is journald
6007 	 * - so, Q1 and Q2 are in any respect the queues of two
6008 	 *   cooperating processes (or of two cooperating sets of
6009 	 *   processes): the goal of Q1's I/O is doing what needs to
6010 	 *   be done so that new Q2's I/O can finally be
6011 	 *   issued. Therefore, if the service of Q1's I/O is delayed,
6012 	 *   then Q2's I/O is delayed too.  Conversely, if Q2's I/O is
6013 	 *   delayed, the goal of Q1's I/O is hindered.
6014 	 * - as a consequence, if some I/O of Q1/Q2 arrives while
6015 	 *   Q2/Q1 is the only queue in service, there is absolutely
6016 	 *   no point in delaying the service of such an I/O. The
6017 	 *   only possible result is a throughput loss
6018 	 * - so, when the above condition holds, the best option is to
6019 	 *   have the new I/O dispatched as soon as possible
6020 	 * - the most effective and efficient way to attain the above
6021 	 *   goal is to put the new I/O directly in the dispatch
6022 	 *   list
6023 	 * - as an additional restriction, Q1 and Q2 must be the only
6024 	 *   busy queues for this commit to put the I/O of Q2/Q1 in
6025 	 *   the dispatch list.  This is necessary, because, if also
6026 	 *   other queues are waiting for service, then putting new
6027 	 *   I/O directly in the dispatch list may evidently cause a
6028 	 *   violation of service guarantees for the other queues
6029 	 */
6030 	if (!bfqq ||
6031 	    (bfqq != bfqd->in_service_queue &&
6032 	     bfqd->in_service_queue != NULL &&
6033 	     bfq_tot_busy_queues(bfqd) == 1 + bfq_bfqq_busy(bfqq) &&
6034 	     (bfqq->waker_bfqq == bfqd->in_service_queue ||
6035 	      bfqd->in_service_queue->waker_bfqq == bfqq)) || at_head) {
6036 		if (at_head)
6037 			list_add(&rq->queuelist, &bfqd->dispatch);
6038 		else
6039 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6040 	} else {
6041 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6042 		/*
6043 		 * Update bfqq, because, if a queue merge has occurred
6044 		 * in __bfq_insert_request, then rq has been
6045 		 * redirected into a new queue.
6046 		 */
6047 		bfqq = RQ_BFQQ(rq);
6048 
6049 		if (rq_mergeable(rq)) {
6050 			elv_rqhash_add(q, rq);
6051 			if (!q->last_merge)
6052 				q->last_merge = rq;
6053 		}
6054 	}
6055 
6056 	/*
6057 	 * Cache cmd_flags before releasing scheduler lock, because rq
6058 	 * may disappear afterwards (for example, because of a request
6059 	 * merge).
6060 	 */
6061 	cmd_flags = rq->cmd_flags;
6062 
6063 	spin_unlock_irq(&bfqd->lock);
6064 
6065 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6066 				cmd_flags);
6067 }
6068 
6069 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6070 				struct list_head *list, bool at_head)
6071 {
6072 	while (!list_empty(list)) {
6073 		struct request *rq;
6074 
6075 		rq = list_first_entry(list, struct request, queuelist);
6076 		list_del_init(&rq->queuelist);
6077 		bfq_insert_request(hctx, rq, at_head);
6078 	}
6079 }
6080 
6081 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6082 {
6083 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6084 
6085 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6086 				       bfqd->rq_in_driver);
6087 
6088 	if (bfqd->hw_tag == 1)
6089 		return;
6090 
6091 	/*
6092 	 * This sample is valid if the number of outstanding requests
6093 	 * is large enough to allow a queueing behavior.  Note that the
6094 	 * sum is not exact, as it's not taking into account deactivated
6095 	 * requests.
6096 	 */
6097 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6098 		return;
6099 
6100 	/*
6101 	 * If active queue hasn't enough requests and can idle, bfq might not
6102 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6103 	 * case
6104 	 */
6105 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6106 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6107 	    BFQ_HW_QUEUE_THRESHOLD &&
6108 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6109 		return;
6110 
6111 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6112 		return;
6113 
6114 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6115 	bfqd->max_rq_in_driver = 0;
6116 	bfqd->hw_tag_samples = 0;
6117 
6118 	bfqd->nonrot_with_queueing =
6119 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6120 }
6121 
6122 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6123 {
6124 	u64 now_ns;
6125 	u32 delta_us;
6126 
6127 	bfq_update_hw_tag(bfqd);
6128 
6129 	bfqd->rq_in_driver--;
6130 	bfqq->dispatched--;
6131 
6132 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6133 		/*
6134 		 * Set budget_timeout (which we overload to store the
6135 		 * time at which the queue remains with no backlog and
6136 		 * no outstanding request; used by the weight-raising
6137 		 * mechanism).
6138 		 */
6139 		bfqq->budget_timeout = jiffies;
6140 
6141 		bfq_weights_tree_remove(bfqd, bfqq);
6142 	}
6143 
6144 	now_ns = ktime_get_ns();
6145 
6146 	bfqq->ttime.last_end_request = now_ns;
6147 
6148 	/*
6149 	 * Using us instead of ns, to get a reasonable precision in
6150 	 * computing rate in next check.
6151 	 */
6152 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6153 
6154 	/*
6155 	 * If the request took rather long to complete, and, according
6156 	 * to the maximum request size recorded, this completion latency
6157 	 * implies that the request was certainly served at a very low
6158 	 * rate (less than 1M sectors/sec), then the whole observation
6159 	 * interval that lasts up to this time instant cannot be a
6160 	 * valid time interval for computing a new peak rate.  Invoke
6161 	 * bfq_update_rate_reset to have the following three steps
6162 	 * taken:
6163 	 * - close the observation interval at the last (previous)
6164 	 *   request dispatch or completion
6165 	 * - compute rate, if possible, for that observation interval
6166 	 * - reset to zero samples, which will trigger a proper
6167 	 *   re-initialization of the observation interval on next
6168 	 *   dispatch
6169 	 */
6170 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6171 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6172 			1UL<<(BFQ_RATE_SHIFT - 10))
6173 		bfq_update_rate_reset(bfqd, NULL);
6174 	bfqd->last_completion = now_ns;
6175 	/*
6176 	 * Shared queues are likely to receive I/O at a high
6177 	 * rate. This may deceptively let them be considered as wakers
6178 	 * of other queues. But a false waker will unjustly steal
6179 	 * bandwidth to its supposedly woken queue. So considering
6180 	 * also shared queues in the waking mechanism may cause more
6181 	 * control troubles than throughput benefits. Then reset
6182 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6183 	 */
6184 	if (!bfq_bfqq_coop(bfqq))
6185 		bfqd->last_completed_rq_bfqq = bfqq;
6186 	else
6187 		bfqd->last_completed_rq_bfqq = NULL;
6188 
6189 	/*
6190 	 * If we are waiting to discover whether the request pattern
6191 	 * of the task associated with the queue is actually
6192 	 * isochronous, and both requisites for this condition to hold
6193 	 * are now satisfied, then compute soft_rt_next_start (see the
6194 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6195 	 * do not compute soft_rt_next_start if bfqq is in interactive
6196 	 * weight raising (see the comments in bfq_bfqq_expire() for
6197 	 * an explanation). We schedule this delayed update when bfqq
6198 	 * expires, if it still has in-flight requests.
6199 	 */
6200 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6201 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6202 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6203 		bfqq->soft_rt_next_start =
6204 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6205 
6206 	/*
6207 	 * If this is the in-service queue, check if it needs to be expired,
6208 	 * or if we want to idle in case it has no pending requests.
6209 	 */
6210 	if (bfqd->in_service_queue == bfqq) {
6211 		if (bfq_bfqq_must_idle(bfqq)) {
6212 			if (bfqq->dispatched == 0)
6213 				bfq_arm_slice_timer(bfqd);
6214 			/*
6215 			 * If we get here, we do not expire bfqq, even
6216 			 * if bfqq was in budget timeout or had no
6217 			 * more requests (as controlled in the next
6218 			 * conditional instructions). The reason for
6219 			 * not expiring bfqq is as follows.
6220 			 *
6221 			 * Here bfqq->dispatched > 0 holds, but
6222 			 * bfq_bfqq_must_idle() returned true. This
6223 			 * implies that, even if no request arrives
6224 			 * for bfqq before bfqq->dispatched reaches 0,
6225 			 * bfqq will, however, not be expired on the
6226 			 * completion event that causes bfqq->dispatch
6227 			 * to reach zero. In contrast, on this event,
6228 			 * bfqq will start enjoying device idling
6229 			 * (I/O-dispatch plugging).
6230 			 *
6231 			 * But, if we expired bfqq here, bfqq would
6232 			 * not have the chance to enjoy device idling
6233 			 * when bfqq->dispatched finally reaches
6234 			 * zero. This would expose bfqq to violation
6235 			 * of its reserved service guarantees.
6236 			 */
6237 			return;
6238 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6239 			bfq_bfqq_expire(bfqd, bfqq, false,
6240 					BFQQE_BUDGET_TIMEOUT);
6241 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6242 			 (bfqq->dispatched == 0 ||
6243 			  !bfq_better_to_idle(bfqq)))
6244 			bfq_bfqq_expire(bfqd, bfqq, false,
6245 					BFQQE_NO_MORE_REQUESTS);
6246 	}
6247 
6248 	if (!bfqd->rq_in_driver)
6249 		bfq_schedule_dispatch(bfqd);
6250 }
6251 
6252 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6253 {
6254 	bfqq->allocated--;
6255 
6256 	bfq_put_queue(bfqq);
6257 }
6258 
6259 /*
6260  * The processes associated with bfqq may happen to generate their
6261  * cumulative I/O at a lower rate than the rate at which the device
6262  * could serve the same I/O. This is rather probable, e.g., if only
6263  * one process is associated with bfqq and the device is an SSD. It
6264  * results in bfqq becoming often empty while in service. In this
6265  * respect, if BFQ is allowed to switch to another queue when bfqq
6266  * remains empty, then the device goes on being fed with I/O requests,
6267  * and the throughput is not affected. In contrast, if BFQ is not
6268  * allowed to switch to another queue---because bfqq is sync and
6269  * I/O-dispatch needs to be plugged while bfqq is temporarily
6270  * empty---then, during the service of bfqq, there will be frequent
6271  * "service holes", i.e., time intervals during which bfqq gets empty
6272  * and the device can only consume the I/O already queued in its
6273  * hardware queues. During service holes, the device may even get to
6274  * remaining idle. In the end, during the service of bfqq, the device
6275  * is driven at a lower speed than the one it can reach with the kind
6276  * of I/O flowing through bfqq.
6277  *
6278  * To counter this loss of throughput, BFQ implements a "request
6279  * injection mechanism", which tries to fill the above service holes
6280  * with I/O requests taken from other queues. The hard part in this
6281  * mechanism is finding the right amount of I/O to inject, so as to
6282  * both boost throughput and not break bfqq's bandwidth and latency
6283  * guarantees. In this respect, the mechanism maintains a per-queue
6284  * inject limit, computed as below. While bfqq is empty, the injection
6285  * mechanism dispatches extra I/O requests only until the total number
6286  * of I/O requests in flight---i.e., already dispatched but not yet
6287  * completed---remains lower than this limit.
6288  *
6289  * A first definition comes in handy to introduce the algorithm by
6290  * which the inject limit is computed.  We define as first request for
6291  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6292  * service, and causes bfqq to switch from empty to non-empty. The
6293  * algorithm updates the limit as a function of the effect of
6294  * injection on the service times of only the first requests of
6295  * bfqq. The reason for this restriction is that these are the
6296  * requests whose service time is affected most, because they are the
6297  * first to arrive after injection possibly occurred.
6298  *
6299  * To evaluate the effect of injection, the algorithm measures the
6300  * "total service time" of first requests. We define as total service
6301  * time of an I/O request, the time that elapses since when the
6302  * request is enqueued into bfqq, to when it is completed. This
6303  * quantity allows the whole effect of injection to be measured. It is
6304  * easy to see why. Suppose that some requests of other queues are
6305  * actually injected while bfqq is empty, and that a new request R
6306  * then arrives for bfqq. If the device does start to serve all or
6307  * part of the injected requests during the service hole, then,
6308  * because of this extra service, it may delay the next invocation of
6309  * the dispatch hook of BFQ. Then, even after R gets eventually
6310  * dispatched, the device may delay the actual service of R if it is
6311  * still busy serving the extra requests, or if it decides to serve,
6312  * before R, some extra request still present in its queues. As a
6313  * conclusion, the cumulative extra delay caused by injection can be
6314  * easily evaluated by just comparing the total service time of first
6315  * requests with and without injection.
6316  *
6317  * The limit-update algorithm works as follows. On the arrival of a
6318  * first request of bfqq, the algorithm measures the total time of the
6319  * request only if one of the three cases below holds, and, for each
6320  * case, it updates the limit as described below:
6321  *
6322  * (1) If there is no in-flight request. This gives a baseline for the
6323  *     total service time of the requests of bfqq. If the baseline has
6324  *     not been computed yet, then, after computing it, the limit is
6325  *     set to 1, to start boosting throughput, and to prepare the
6326  *     ground for the next case. If the baseline has already been
6327  *     computed, then it is updated, in case it results to be lower
6328  *     than the previous value.
6329  *
6330  * (2) If the limit is higher than 0 and there are in-flight
6331  *     requests. By comparing the total service time in this case with
6332  *     the above baseline, it is possible to know at which extent the
6333  *     current value of the limit is inflating the total service
6334  *     time. If the inflation is below a certain threshold, then bfqq
6335  *     is assumed to be suffering from no perceivable loss of its
6336  *     service guarantees, and the limit is even tentatively
6337  *     increased. If the inflation is above the threshold, then the
6338  *     limit is decreased. Due to the lack of any hysteresis, this
6339  *     logic makes the limit oscillate even in steady workload
6340  *     conditions. Yet we opted for it, because it is fast in reaching
6341  *     the best value for the limit, as a function of the current I/O
6342  *     workload. To reduce oscillations, this step is disabled for a
6343  *     short time interval after the limit happens to be decreased.
6344  *
6345  * (3) Periodically, after resetting the limit, to make sure that the
6346  *     limit eventually drops in case the workload changes. This is
6347  *     needed because, after the limit has gone safely up for a
6348  *     certain workload, it is impossible to guess whether the
6349  *     baseline total service time may have changed, without measuring
6350  *     it again without injection. A more effective version of this
6351  *     step might be to just sample the baseline, by interrupting
6352  *     injection only once, and then to reset/lower the limit only if
6353  *     the total service time with the current limit does happen to be
6354  *     too large.
6355  *
6356  * More details on each step are provided in the comments on the
6357  * pieces of code that implement these steps: the branch handling the
6358  * transition from empty to non empty in bfq_add_request(), the branch
6359  * handling injection in bfq_select_queue(), and the function
6360  * bfq_choose_bfqq_for_injection(). These comments also explain some
6361  * exceptions, made by the injection mechanism in some special cases.
6362  */
6363 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6364 				    struct bfq_queue *bfqq)
6365 {
6366 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6367 	unsigned int old_limit = bfqq->inject_limit;
6368 
6369 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6370 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6371 
6372 		if (tot_time_ns >= threshold && old_limit > 0) {
6373 			bfqq->inject_limit--;
6374 			bfqq->decrease_time_jif = jiffies;
6375 		} else if (tot_time_ns < threshold &&
6376 			   old_limit <= bfqd->max_rq_in_driver)
6377 			bfqq->inject_limit++;
6378 	}
6379 
6380 	/*
6381 	 * Either we still have to compute the base value for the
6382 	 * total service time, and there seem to be the right
6383 	 * conditions to do it, or we can lower the last base value
6384 	 * computed.
6385 	 *
6386 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6387 	 * request in flight, because this function is in the code
6388 	 * path that handles the completion of a request of bfqq, and,
6389 	 * in particular, this function is executed before
6390 	 * bfqd->rq_in_driver is decremented in such a code path.
6391 	 */
6392 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6393 	    tot_time_ns < bfqq->last_serv_time_ns) {
6394 		if (bfqq->last_serv_time_ns == 0) {
6395 			/*
6396 			 * Now we certainly have a base value: make sure we
6397 			 * start trying injection.
6398 			 */
6399 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6400 		}
6401 		bfqq->last_serv_time_ns = tot_time_ns;
6402 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6403 		/*
6404 		 * No I/O injected and no request still in service in
6405 		 * the drive: these are the exact conditions for
6406 		 * computing the base value of the total service time
6407 		 * for bfqq. So let's update this value, because it is
6408 		 * rather variable. For example, it varies if the size
6409 		 * or the spatial locality of the I/O requests in bfqq
6410 		 * change.
6411 		 */
6412 		bfqq->last_serv_time_ns = tot_time_ns;
6413 
6414 
6415 	/* update complete, not waiting for any request completion any longer */
6416 	bfqd->waited_rq = NULL;
6417 	bfqd->rqs_injected = false;
6418 }
6419 
6420 /*
6421  * Handle either a requeue or a finish for rq. The things to do are
6422  * the same in both cases: all references to rq are to be dropped. In
6423  * particular, rq is considered completed from the point of view of
6424  * the scheduler.
6425  */
6426 static void bfq_finish_requeue_request(struct request *rq)
6427 {
6428 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6429 	struct bfq_data *bfqd;
6430 	unsigned long flags;
6431 
6432 	/*
6433 	 * rq either is not associated with any icq, or is an already
6434 	 * requeued request that has not (yet) been re-inserted into
6435 	 * a bfq_queue.
6436 	 */
6437 	if (!rq->elv.icq || !bfqq)
6438 		return;
6439 
6440 	bfqd = bfqq->bfqd;
6441 
6442 	if (rq->rq_flags & RQF_STARTED)
6443 		bfqg_stats_update_completion(bfqq_group(bfqq),
6444 					     rq->start_time_ns,
6445 					     rq->io_start_time_ns,
6446 					     rq->cmd_flags);
6447 
6448 	spin_lock_irqsave(&bfqd->lock, flags);
6449 	if (likely(rq->rq_flags & RQF_STARTED)) {
6450 		if (rq == bfqd->waited_rq)
6451 			bfq_update_inject_limit(bfqd, bfqq);
6452 
6453 		bfq_completed_request(bfqq, bfqd);
6454 	}
6455 	bfq_finish_requeue_request_body(bfqq);
6456 	spin_unlock_irqrestore(&bfqd->lock, flags);
6457 
6458 	/*
6459 	 * Reset private fields. In case of a requeue, this allows
6460 	 * this function to correctly do nothing if it is spuriously
6461 	 * invoked again on this same request (see the check at the
6462 	 * beginning of the function). Probably, a better general
6463 	 * design would be to prevent blk-mq from invoking the requeue
6464 	 * or finish hooks of an elevator, for a request that is not
6465 	 * referred by that elevator.
6466 	 *
6467 	 * Resetting the following fields would break the
6468 	 * request-insertion logic if rq is re-inserted into a bfq
6469 	 * internal queue, without a re-preparation. Here we assume
6470 	 * that re-insertions of requeued requests, without
6471 	 * re-preparation, can happen only for pass_through or at_head
6472 	 * requests (which are not re-inserted into bfq internal
6473 	 * queues).
6474 	 */
6475 	rq->elv.priv[0] = NULL;
6476 	rq->elv.priv[1] = NULL;
6477 }
6478 
6479 /*
6480  * Removes the association between the current task and bfqq, assuming
6481  * that bic points to the bfq iocontext of the task.
6482  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6483  * was the last process referring to that bfqq.
6484  */
6485 static struct bfq_queue *
6486 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6487 {
6488 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6489 
6490 	if (bfqq_process_refs(bfqq) == 1) {
6491 		bfqq->pid = current->pid;
6492 		bfq_clear_bfqq_coop(bfqq);
6493 		bfq_clear_bfqq_split_coop(bfqq);
6494 		return bfqq;
6495 	}
6496 
6497 	bic_set_bfqq(bic, NULL, 1);
6498 
6499 	bfq_put_cooperator(bfqq);
6500 
6501 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6502 	return NULL;
6503 }
6504 
6505 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6506 						   struct bfq_io_cq *bic,
6507 						   struct bio *bio,
6508 						   bool split, bool is_sync,
6509 						   bool *new_queue)
6510 {
6511 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6512 
6513 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6514 		return bfqq;
6515 
6516 	if (new_queue)
6517 		*new_queue = true;
6518 
6519 	if (bfqq)
6520 		bfq_put_queue(bfqq);
6521 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6522 
6523 	bic_set_bfqq(bic, bfqq, is_sync);
6524 	if (split && is_sync) {
6525 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6526 		    bic->saved_in_large_burst)
6527 			bfq_mark_bfqq_in_large_burst(bfqq);
6528 		else {
6529 			bfq_clear_bfqq_in_large_burst(bfqq);
6530 			if (bic->was_in_burst_list)
6531 				/*
6532 				 * If bfqq was in the current
6533 				 * burst list before being
6534 				 * merged, then we have to add
6535 				 * it back. And we do not need
6536 				 * to increase burst_size, as
6537 				 * we did not decrement
6538 				 * burst_size when we removed
6539 				 * bfqq from the burst list as
6540 				 * a consequence of a merge
6541 				 * (see comments in
6542 				 * bfq_put_queue). In this
6543 				 * respect, it would be rather
6544 				 * costly to know whether the
6545 				 * current burst list is still
6546 				 * the same burst list from
6547 				 * which bfqq was removed on
6548 				 * the merge. To avoid this
6549 				 * cost, if bfqq was in a
6550 				 * burst list, then we add
6551 				 * bfqq to the current burst
6552 				 * list without any further
6553 				 * check. This can cause
6554 				 * inappropriate insertions,
6555 				 * but rarely enough to not
6556 				 * harm the detection of large
6557 				 * bursts significantly.
6558 				 */
6559 				hlist_add_head(&bfqq->burst_list_node,
6560 					       &bfqd->burst_list);
6561 		}
6562 		bfqq->split_time = jiffies;
6563 	}
6564 
6565 	return bfqq;
6566 }
6567 
6568 /*
6569  * Only reset private fields. The actual request preparation will be
6570  * performed by bfq_init_rq, when rq is either inserted or merged. See
6571  * comments on bfq_init_rq for the reason behind this delayed
6572  * preparation.
6573  */
6574 static void bfq_prepare_request(struct request *rq)
6575 {
6576 	/*
6577 	 * Regardless of whether we have an icq attached, we have to
6578 	 * clear the scheduler pointers, as they might point to
6579 	 * previously allocated bic/bfqq structs.
6580 	 */
6581 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6582 }
6583 
6584 /*
6585  * If needed, init rq, allocate bfq data structures associated with
6586  * rq, and increment reference counters in the destination bfq_queue
6587  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6588  * not associated with any bfq_queue.
6589  *
6590  * This function is invoked by the functions that perform rq insertion
6591  * or merging. One may have expected the above preparation operations
6592  * to be performed in bfq_prepare_request, and not delayed to when rq
6593  * is inserted or merged. The rationale behind this delayed
6594  * preparation is that, after the prepare_request hook is invoked for
6595  * rq, rq may still be transformed into a request with no icq, i.e., a
6596  * request not associated with any queue. No bfq hook is invoked to
6597  * signal this transformation. As a consequence, should these
6598  * preparation operations be performed when the prepare_request hook
6599  * is invoked, and should rq be transformed one moment later, bfq
6600  * would end up in an inconsistent state, because it would have
6601  * incremented some queue counters for an rq destined to
6602  * transformation, without any chance to correctly lower these
6603  * counters back. In contrast, no transformation can still happen for
6604  * rq after rq has been inserted or merged. So, it is safe to execute
6605  * these preparation operations when rq is finally inserted or merged.
6606  */
6607 static struct bfq_queue *bfq_init_rq(struct request *rq)
6608 {
6609 	struct request_queue *q = rq->q;
6610 	struct bio *bio = rq->bio;
6611 	struct bfq_data *bfqd = q->elevator->elevator_data;
6612 	struct bfq_io_cq *bic;
6613 	const int is_sync = rq_is_sync(rq);
6614 	struct bfq_queue *bfqq;
6615 	bool new_queue = false;
6616 	bool bfqq_already_existing = false, split = false;
6617 
6618 	if (unlikely(!rq->elv.icq))
6619 		return NULL;
6620 
6621 	/*
6622 	 * Assuming that elv.priv[1] is set only if everything is set
6623 	 * for this rq. This holds true, because this function is
6624 	 * invoked only for insertion or merging, and, after such
6625 	 * events, a request cannot be manipulated any longer before
6626 	 * being removed from bfq.
6627 	 */
6628 	if (rq->elv.priv[1])
6629 		return rq->elv.priv[1];
6630 
6631 	bic = icq_to_bic(rq->elv.icq);
6632 
6633 	bfq_check_ioprio_change(bic, bio);
6634 
6635 	bfq_bic_update_cgroup(bic, bio);
6636 
6637 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6638 					 &new_queue);
6639 
6640 	if (likely(!new_queue)) {
6641 		/* If the queue was seeky for too long, break it apart. */
6642 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6643 			!bic->stably_merged) {
6644 			struct bfq_queue *old_bfqq = bfqq;
6645 
6646 			/* Update bic before losing reference to bfqq */
6647 			if (bfq_bfqq_in_large_burst(bfqq))
6648 				bic->saved_in_large_burst = true;
6649 
6650 			bfqq = bfq_split_bfqq(bic, bfqq);
6651 			split = true;
6652 
6653 			if (!bfqq) {
6654 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6655 								 true, is_sync,
6656 								 NULL);
6657 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6658 				bfqq->tentative_waker_bfqq = NULL;
6659 
6660 				/*
6661 				 * If the waker queue disappears, then
6662 				 * new_bfqq->waker_bfqq must be
6663 				 * reset. So insert new_bfqq into the
6664 				 * woken_list of the waker. See
6665 				 * bfq_check_waker for details.
6666 				 */
6667 				if (bfqq->waker_bfqq)
6668 					hlist_add_head(&bfqq->woken_list_node,
6669 						       &bfqq->waker_bfqq->woken_list);
6670 			} else
6671 				bfqq_already_existing = true;
6672 		}
6673 	}
6674 
6675 	bfqq->allocated++;
6676 	bfqq->ref++;
6677 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6678 		     rq, bfqq, bfqq->ref);
6679 
6680 	rq->elv.priv[0] = bic;
6681 	rq->elv.priv[1] = bfqq;
6682 
6683 	/*
6684 	 * If a bfq_queue has only one process reference, it is owned
6685 	 * by only this bic: we can then set bfqq->bic = bic. in
6686 	 * addition, if the queue has also just been split, we have to
6687 	 * resume its state.
6688 	 */
6689 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6690 		bfqq->bic = bic;
6691 		if (split) {
6692 			/*
6693 			 * The queue has just been split from a shared
6694 			 * queue: restore the idle window and the
6695 			 * possible weight raising period.
6696 			 */
6697 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6698 					      bfqq_already_existing);
6699 		}
6700 	}
6701 
6702 	/*
6703 	 * Consider bfqq as possibly belonging to a burst of newly
6704 	 * created queues only if:
6705 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6706 	 * or
6707 	 * 2) There is no other active queue. In fact, if, in
6708 	 *    contrast, there are active queues not belonging to the
6709 	 *    possible burst bfqq may belong to, then there is no gain
6710 	 *    in considering bfqq as belonging to a burst, and
6711 	 *    therefore in not weight-raising bfqq. See comments on
6712 	 *    bfq_handle_burst().
6713 	 *
6714 	 * This filtering also helps eliminating false positives,
6715 	 * occurring when bfqq does not belong to an actual large
6716 	 * burst, but some background task (e.g., a service) happens
6717 	 * to trigger the creation of new queues very close to when
6718 	 * bfqq and its possible companion queues are created. See
6719 	 * comments on bfq_handle_burst() for further details also on
6720 	 * this issue.
6721 	 */
6722 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6723 		     (bfqd->burst_size > 0 ||
6724 		      bfq_tot_busy_queues(bfqd) == 0)))
6725 		bfq_handle_burst(bfqd, bfqq);
6726 
6727 	return bfqq;
6728 }
6729 
6730 static void
6731 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6732 {
6733 	enum bfqq_expiration reason;
6734 	unsigned long flags;
6735 
6736 	spin_lock_irqsave(&bfqd->lock, flags);
6737 
6738 	/*
6739 	 * Considering that bfqq may be in race, we should firstly check
6740 	 * whether bfqq is in service before doing something on it. If
6741 	 * the bfqq in race is not in service, it has already been expired
6742 	 * through __bfq_bfqq_expire func and its wait_request flags has
6743 	 * been cleared in __bfq_bfqd_reset_in_service func.
6744 	 */
6745 	if (bfqq != bfqd->in_service_queue) {
6746 		spin_unlock_irqrestore(&bfqd->lock, flags);
6747 		return;
6748 	}
6749 
6750 	bfq_clear_bfqq_wait_request(bfqq);
6751 
6752 	if (bfq_bfqq_budget_timeout(bfqq))
6753 		/*
6754 		 * Also here the queue can be safely expired
6755 		 * for budget timeout without wasting
6756 		 * guarantees
6757 		 */
6758 		reason = BFQQE_BUDGET_TIMEOUT;
6759 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6760 		/*
6761 		 * The queue may not be empty upon timer expiration,
6762 		 * because we may not disable the timer when the
6763 		 * first request of the in-service queue arrives
6764 		 * during disk idling.
6765 		 */
6766 		reason = BFQQE_TOO_IDLE;
6767 	else
6768 		goto schedule_dispatch;
6769 
6770 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6771 
6772 schedule_dispatch:
6773 	spin_unlock_irqrestore(&bfqd->lock, flags);
6774 	bfq_schedule_dispatch(bfqd);
6775 }
6776 
6777 /*
6778  * Handler of the expiration of the timer running if the in-service queue
6779  * is idling inside its time slice.
6780  */
6781 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6782 {
6783 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6784 					     idle_slice_timer);
6785 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6786 
6787 	/*
6788 	 * Theoretical race here: the in-service queue can be NULL or
6789 	 * different from the queue that was idling if a new request
6790 	 * arrives for the current queue and there is a full dispatch
6791 	 * cycle that changes the in-service queue.  This can hardly
6792 	 * happen, but in the worst case we just expire a queue too
6793 	 * early.
6794 	 */
6795 	if (bfqq)
6796 		bfq_idle_slice_timer_body(bfqd, bfqq);
6797 
6798 	return HRTIMER_NORESTART;
6799 }
6800 
6801 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6802 				 struct bfq_queue **bfqq_ptr)
6803 {
6804 	struct bfq_queue *bfqq = *bfqq_ptr;
6805 
6806 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6807 	if (bfqq) {
6808 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6809 
6810 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6811 			     bfqq, bfqq->ref);
6812 		bfq_put_queue(bfqq);
6813 		*bfqq_ptr = NULL;
6814 	}
6815 }
6816 
6817 /*
6818  * Release all the bfqg references to its async queues.  If we are
6819  * deallocating the group these queues may still contain requests, so
6820  * we reparent them to the root cgroup (i.e., the only one that will
6821  * exist for sure until all the requests on a device are gone).
6822  */
6823 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6824 {
6825 	int i, j;
6826 
6827 	for (i = 0; i < 2; i++)
6828 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6829 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6830 
6831 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6832 }
6833 
6834 /*
6835  * See the comments on bfq_limit_depth for the purpose of
6836  * the depths set in the function. Return minimum shallow depth we'll use.
6837  */
6838 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6839 				      struct sbitmap_queue *bt)
6840 {
6841 	unsigned int i, j, min_shallow = UINT_MAX;
6842 
6843 	/*
6844 	 * In-word depths if no bfq_queue is being weight-raised:
6845 	 * leaving 25% of tags only for sync reads.
6846 	 *
6847 	 * In next formulas, right-shift the value
6848 	 * (1U<<bt->sb.shift), instead of computing directly
6849 	 * (1U<<(bt->sb.shift - something)), to be robust against
6850 	 * any possible value of bt->sb.shift, without having to
6851 	 * limit 'something'.
6852 	 */
6853 	/* no more than 50% of tags for async I/O */
6854 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6855 	/*
6856 	 * no more than 75% of tags for sync writes (25% extra tags
6857 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6858 	 * writes)
6859 	 */
6860 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6861 
6862 	/*
6863 	 * In-word depths in case some bfq_queue is being weight-
6864 	 * raised: leaving ~63% of tags for sync reads. This is the
6865 	 * highest percentage for which, in our tests, application
6866 	 * start-up times didn't suffer from any regression due to tag
6867 	 * shortage.
6868 	 */
6869 	/* no more than ~18% of tags for async I/O */
6870 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6871 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6872 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6873 
6874 	for (i = 0; i < 2; i++)
6875 		for (j = 0; j < 2; j++)
6876 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6877 
6878 	return min_shallow;
6879 }
6880 
6881 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6882 {
6883 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6884 	struct blk_mq_tags *tags = hctx->sched_tags;
6885 	unsigned int min_shallow;
6886 
6887 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6888 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6889 }
6890 
6891 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6892 {
6893 	bfq_depth_updated(hctx);
6894 	return 0;
6895 }
6896 
6897 static void bfq_exit_queue(struct elevator_queue *e)
6898 {
6899 	struct bfq_data *bfqd = e->elevator_data;
6900 	struct bfq_queue *bfqq, *n;
6901 
6902 	hrtimer_cancel(&bfqd->idle_slice_timer);
6903 
6904 	spin_lock_irq(&bfqd->lock);
6905 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6906 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6907 	spin_unlock_irq(&bfqd->lock);
6908 
6909 	hrtimer_cancel(&bfqd->idle_slice_timer);
6910 
6911 	/* release oom-queue reference to root group */
6912 	bfqg_and_blkg_put(bfqd->root_group);
6913 
6914 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6915 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6916 #else
6917 	spin_lock_irq(&bfqd->lock);
6918 	bfq_put_async_queues(bfqd, bfqd->root_group);
6919 	kfree(bfqd->root_group);
6920 	spin_unlock_irq(&bfqd->lock);
6921 #endif
6922 
6923 	kfree(bfqd);
6924 }
6925 
6926 static void bfq_init_root_group(struct bfq_group *root_group,
6927 				struct bfq_data *bfqd)
6928 {
6929 	int i;
6930 
6931 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6932 	root_group->entity.parent = NULL;
6933 	root_group->my_entity = NULL;
6934 	root_group->bfqd = bfqd;
6935 #endif
6936 	root_group->rq_pos_tree = RB_ROOT;
6937 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6938 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6939 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6940 }
6941 
6942 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6943 {
6944 	struct bfq_data *bfqd;
6945 	struct elevator_queue *eq;
6946 
6947 	eq = elevator_alloc(q, e);
6948 	if (!eq)
6949 		return -ENOMEM;
6950 
6951 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6952 	if (!bfqd) {
6953 		kobject_put(&eq->kobj);
6954 		return -ENOMEM;
6955 	}
6956 	eq->elevator_data = bfqd;
6957 
6958 	spin_lock_irq(&q->queue_lock);
6959 	q->elevator = eq;
6960 	spin_unlock_irq(&q->queue_lock);
6961 
6962 	/*
6963 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6964 	 * Grab a permanent reference to it, so that the normal code flow
6965 	 * will not attempt to free it.
6966 	 */
6967 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6968 	bfqd->oom_bfqq.ref++;
6969 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6970 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6971 	bfqd->oom_bfqq.entity.new_weight =
6972 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6973 
6974 	/* oom_bfqq does not participate to bursts */
6975 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6976 
6977 	/*
6978 	 * Trigger weight initialization, according to ioprio, at the
6979 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6980 	 * class won't be changed any more.
6981 	 */
6982 	bfqd->oom_bfqq.entity.prio_changed = 1;
6983 
6984 	bfqd->queue = q;
6985 
6986 	INIT_LIST_HEAD(&bfqd->dispatch);
6987 
6988 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6989 		     HRTIMER_MODE_REL);
6990 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6991 
6992 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6993 	bfqd->num_groups_with_pending_reqs = 0;
6994 
6995 	INIT_LIST_HEAD(&bfqd->active_list);
6996 	INIT_LIST_HEAD(&bfqd->idle_list);
6997 	INIT_HLIST_HEAD(&bfqd->burst_list);
6998 
6999 	bfqd->hw_tag = -1;
7000 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7001 
7002 	bfqd->bfq_max_budget = bfq_default_max_budget;
7003 
7004 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7005 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7006 	bfqd->bfq_back_max = bfq_back_max;
7007 	bfqd->bfq_back_penalty = bfq_back_penalty;
7008 	bfqd->bfq_slice_idle = bfq_slice_idle;
7009 	bfqd->bfq_timeout = bfq_timeout;
7010 
7011 	bfqd->bfq_large_burst_thresh = 8;
7012 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7013 
7014 	bfqd->low_latency = true;
7015 
7016 	/*
7017 	 * Trade-off between responsiveness and fairness.
7018 	 */
7019 	bfqd->bfq_wr_coeff = 30;
7020 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7021 	bfqd->bfq_wr_max_time = 0;
7022 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7023 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7024 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7025 					      * Approximate rate required
7026 					      * to playback or record a
7027 					      * high-definition compressed
7028 					      * video.
7029 					      */
7030 	bfqd->wr_busy_queues = 0;
7031 
7032 	/*
7033 	 * Begin by assuming, optimistically, that the device peak
7034 	 * rate is equal to 2/3 of the highest reference rate.
7035 	 */
7036 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7037 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7038 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7039 
7040 	spin_lock_init(&bfqd->lock);
7041 
7042 	/*
7043 	 * The invocation of the next bfq_create_group_hierarchy
7044 	 * function is the head of a chain of function calls
7045 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7046 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7047 	 * has_work hook function. For this reason,
7048 	 * bfq_create_group_hierarchy is invoked only after all
7049 	 * scheduler data has been initialized, apart from the fields
7050 	 * that can be initialized only after invoking
7051 	 * bfq_create_group_hierarchy. This, in particular, enables
7052 	 * has_work to correctly return false. Of course, to avoid
7053 	 * other inconsistencies, the blk-mq stack must then refrain
7054 	 * from invoking further scheduler hooks before this init
7055 	 * function is finished.
7056 	 */
7057 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7058 	if (!bfqd->root_group)
7059 		goto out_free;
7060 	bfq_init_root_group(bfqd->root_group, bfqd);
7061 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7062 
7063 	wbt_disable_default(q);
7064 	return 0;
7065 
7066 out_free:
7067 	kfree(bfqd);
7068 	kobject_put(&eq->kobj);
7069 	return -ENOMEM;
7070 }
7071 
7072 static void bfq_slab_kill(void)
7073 {
7074 	kmem_cache_destroy(bfq_pool);
7075 }
7076 
7077 static int __init bfq_slab_setup(void)
7078 {
7079 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7080 	if (!bfq_pool)
7081 		return -ENOMEM;
7082 	return 0;
7083 }
7084 
7085 static ssize_t bfq_var_show(unsigned int var, char *page)
7086 {
7087 	return sprintf(page, "%u\n", var);
7088 }
7089 
7090 static int bfq_var_store(unsigned long *var, const char *page)
7091 {
7092 	unsigned long new_val;
7093 	int ret = kstrtoul(page, 10, &new_val);
7094 
7095 	if (ret)
7096 		return ret;
7097 	*var = new_val;
7098 	return 0;
7099 }
7100 
7101 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7102 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7103 {									\
7104 	struct bfq_data *bfqd = e->elevator_data;			\
7105 	u64 __data = __VAR;						\
7106 	if (__CONV == 1)						\
7107 		__data = jiffies_to_msecs(__data);			\
7108 	else if (__CONV == 2)						\
7109 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7110 	return bfq_var_show(__data, (page));				\
7111 }
7112 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7113 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7114 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7115 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7116 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7117 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7118 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7119 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7120 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7121 #undef SHOW_FUNCTION
7122 
7123 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7124 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7125 {									\
7126 	struct bfq_data *bfqd = e->elevator_data;			\
7127 	u64 __data = __VAR;						\
7128 	__data = div_u64(__data, NSEC_PER_USEC);			\
7129 	return bfq_var_show(__data, (page));				\
7130 }
7131 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7132 #undef USEC_SHOW_FUNCTION
7133 
7134 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7135 static ssize_t								\
7136 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7137 {									\
7138 	struct bfq_data *bfqd = e->elevator_data;			\
7139 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7140 	int ret;							\
7141 									\
7142 	ret = bfq_var_store(&__data, (page));				\
7143 	if (ret)							\
7144 		return ret;						\
7145 	if (__data < __min)						\
7146 		__data = __min;						\
7147 	else if (__data > __max)					\
7148 		__data = __max;						\
7149 	if (__CONV == 1)						\
7150 		*(__PTR) = msecs_to_jiffies(__data);			\
7151 	else if (__CONV == 2)						\
7152 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7153 	else								\
7154 		*(__PTR) = __data;					\
7155 	return count;							\
7156 }
7157 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7158 		INT_MAX, 2);
7159 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7160 		INT_MAX, 2);
7161 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7162 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7163 		INT_MAX, 0);
7164 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7165 #undef STORE_FUNCTION
7166 
7167 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7168 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7169 {									\
7170 	struct bfq_data *bfqd = e->elevator_data;			\
7171 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7172 	int ret;							\
7173 									\
7174 	ret = bfq_var_store(&__data, (page));				\
7175 	if (ret)							\
7176 		return ret;						\
7177 	if (__data < __min)						\
7178 		__data = __min;						\
7179 	else if (__data > __max)					\
7180 		__data = __max;						\
7181 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7182 	return count;							\
7183 }
7184 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7185 		    UINT_MAX);
7186 #undef USEC_STORE_FUNCTION
7187 
7188 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7189 				    const char *page, size_t count)
7190 {
7191 	struct bfq_data *bfqd = e->elevator_data;
7192 	unsigned long __data;
7193 	int ret;
7194 
7195 	ret = bfq_var_store(&__data, (page));
7196 	if (ret)
7197 		return ret;
7198 
7199 	if (__data == 0)
7200 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7201 	else {
7202 		if (__data > INT_MAX)
7203 			__data = INT_MAX;
7204 		bfqd->bfq_max_budget = __data;
7205 	}
7206 
7207 	bfqd->bfq_user_max_budget = __data;
7208 
7209 	return count;
7210 }
7211 
7212 /*
7213  * Leaving this name to preserve name compatibility with cfq
7214  * parameters, but this timeout is used for both sync and async.
7215  */
7216 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7217 				      const char *page, size_t count)
7218 {
7219 	struct bfq_data *bfqd = e->elevator_data;
7220 	unsigned long __data;
7221 	int ret;
7222 
7223 	ret = bfq_var_store(&__data, (page));
7224 	if (ret)
7225 		return ret;
7226 
7227 	if (__data < 1)
7228 		__data = 1;
7229 	else if (__data > INT_MAX)
7230 		__data = INT_MAX;
7231 
7232 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7233 	if (bfqd->bfq_user_max_budget == 0)
7234 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7235 
7236 	return count;
7237 }
7238 
7239 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7240 				     const char *page, size_t count)
7241 {
7242 	struct bfq_data *bfqd = e->elevator_data;
7243 	unsigned long __data;
7244 	int ret;
7245 
7246 	ret = bfq_var_store(&__data, (page));
7247 	if (ret)
7248 		return ret;
7249 
7250 	if (__data > 1)
7251 		__data = 1;
7252 	if (!bfqd->strict_guarantees && __data == 1
7253 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7254 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7255 
7256 	bfqd->strict_guarantees = __data;
7257 
7258 	return count;
7259 }
7260 
7261 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7262 				     const char *page, size_t count)
7263 {
7264 	struct bfq_data *bfqd = e->elevator_data;
7265 	unsigned long __data;
7266 	int ret;
7267 
7268 	ret = bfq_var_store(&__data, (page));
7269 	if (ret)
7270 		return ret;
7271 
7272 	if (__data > 1)
7273 		__data = 1;
7274 	if (__data == 0 && bfqd->low_latency != 0)
7275 		bfq_end_wr(bfqd);
7276 	bfqd->low_latency = __data;
7277 
7278 	return count;
7279 }
7280 
7281 #define BFQ_ATTR(name) \
7282 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7283 
7284 static struct elv_fs_entry bfq_attrs[] = {
7285 	BFQ_ATTR(fifo_expire_sync),
7286 	BFQ_ATTR(fifo_expire_async),
7287 	BFQ_ATTR(back_seek_max),
7288 	BFQ_ATTR(back_seek_penalty),
7289 	BFQ_ATTR(slice_idle),
7290 	BFQ_ATTR(slice_idle_us),
7291 	BFQ_ATTR(max_budget),
7292 	BFQ_ATTR(timeout_sync),
7293 	BFQ_ATTR(strict_guarantees),
7294 	BFQ_ATTR(low_latency),
7295 	__ATTR_NULL
7296 };
7297 
7298 static struct elevator_type iosched_bfq_mq = {
7299 	.ops = {
7300 		.limit_depth		= bfq_limit_depth,
7301 		.prepare_request	= bfq_prepare_request,
7302 		.requeue_request        = bfq_finish_requeue_request,
7303 		.finish_request		= bfq_finish_requeue_request,
7304 		.exit_icq		= bfq_exit_icq,
7305 		.insert_requests	= bfq_insert_requests,
7306 		.dispatch_request	= bfq_dispatch_request,
7307 		.next_request		= elv_rb_latter_request,
7308 		.former_request		= elv_rb_former_request,
7309 		.allow_merge		= bfq_allow_bio_merge,
7310 		.bio_merge		= bfq_bio_merge,
7311 		.request_merge		= bfq_request_merge,
7312 		.requests_merged	= bfq_requests_merged,
7313 		.request_merged		= bfq_request_merged,
7314 		.has_work		= bfq_has_work,
7315 		.depth_updated		= bfq_depth_updated,
7316 		.init_hctx		= bfq_init_hctx,
7317 		.init_sched		= bfq_init_queue,
7318 		.exit_sched		= bfq_exit_queue,
7319 	},
7320 
7321 	.icq_size =		sizeof(struct bfq_io_cq),
7322 	.icq_align =		__alignof__(struct bfq_io_cq),
7323 	.elevator_attrs =	bfq_attrs,
7324 	.elevator_name =	"bfq",
7325 	.elevator_owner =	THIS_MODULE,
7326 };
7327 MODULE_ALIAS("bfq-iosched");
7328 
7329 static int __init bfq_init(void)
7330 {
7331 	int ret;
7332 
7333 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7334 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7335 	if (ret)
7336 		return ret;
7337 #endif
7338 
7339 	ret = -ENOMEM;
7340 	if (bfq_slab_setup())
7341 		goto err_pol_unreg;
7342 
7343 	/*
7344 	 * Times to load large popular applications for the typical
7345 	 * systems installed on the reference devices (see the
7346 	 * comments before the definition of the next
7347 	 * array). Actually, we use slightly lower values, as the
7348 	 * estimated peak rate tends to be smaller than the actual
7349 	 * peak rate.  The reason for this last fact is that estimates
7350 	 * are computed over much shorter time intervals than the long
7351 	 * intervals typically used for benchmarking. Why? First, to
7352 	 * adapt more quickly to variations. Second, because an I/O
7353 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7354 	 * be run for a long time.
7355 	 */
7356 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7357 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7358 
7359 	ret = elv_register(&iosched_bfq_mq);
7360 	if (ret)
7361 		goto slab_kill;
7362 
7363 	return 0;
7364 
7365 slab_kill:
7366 	bfq_slab_kill();
7367 err_pol_unreg:
7368 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7369 	blkcg_policy_unregister(&blkcg_policy_bfq);
7370 #endif
7371 	return ret;
7372 }
7373 
7374 static void __exit bfq_exit(void)
7375 {
7376 	elv_unregister(&iosched_bfq_mq);
7377 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7378 	blkcg_policy_unregister(&blkcg_policy_bfq);
7379 #endif
7380 	bfq_slab_kill();
7381 }
7382 
7383 module_init(bfq_init);
7384 module_exit(bfq_exit);
7385 
7386 MODULE_AUTHOR("Paolo Valente");
7387 MODULE_LICENSE("GPL");
7388 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7389