xref: /openbmc/linux/block/bfq-iosched.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 
136 #include "blk.h"
137 #include "blk-mq.h"
138 #include "blk-mq-tag.h"
139 #include "blk-mq-sched.h"
140 #include "bfq-iosched.h"
141 #include "blk-wbt.h"
142 
143 #define BFQ_BFQQ_FNS(name)						\
144 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
145 {									\
146 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
147 }									\
148 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
149 {									\
150 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
151 }									\
152 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
153 {									\
154 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
155 }
156 
157 BFQ_BFQQ_FNS(just_created);
158 BFQ_BFQQ_FNS(busy);
159 BFQ_BFQQ_FNS(wait_request);
160 BFQ_BFQQ_FNS(non_blocking_wait_rq);
161 BFQ_BFQQ_FNS(fifo_expire);
162 BFQ_BFQQ_FNS(has_short_ttime);
163 BFQ_BFQQ_FNS(sync);
164 BFQ_BFQQ_FNS(IO_bound);
165 BFQ_BFQQ_FNS(in_large_burst);
166 BFQ_BFQQ_FNS(coop);
167 BFQ_BFQQ_FNS(split_coop);
168 BFQ_BFQQ_FNS(softrt_update);
169 #undef BFQ_BFQQ_FNS						\
170 
171 /* Expiration time of sync (0) and async (1) requests, in ns. */
172 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173 
174 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175 static const int bfq_back_max = 16 * 1024;
176 
177 /* Penalty of a backwards seek, in number of sectors. */
178 static const int bfq_back_penalty = 2;
179 
180 /* Idling period duration, in ns. */
181 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182 
183 /* Minimum number of assigned budgets for which stats are safe to compute. */
184 static const int bfq_stats_min_budgets = 194;
185 
186 /* Default maximum budget values, in sectors and number of requests. */
187 static const int bfq_default_max_budget = 16 * 1024;
188 
189 /*
190  * When a sync request is dispatched, the queue that contains that
191  * request, and all the ancestor entities of that queue, are charged
192  * with the number of sectors of the request. In constrast, if the
193  * request is async, then the queue and its ancestor entities are
194  * charged with the number of sectors of the request, multiplied by
195  * the factor below. This throttles the bandwidth for async I/O,
196  * w.r.t. to sync I/O, and it is done to counter the tendency of async
197  * writes to steal I/O throughput to reads.
198  *
199  * The current value of this parameter is the result of a tuning with
200  * several hardware and software configurations. We tried to find the
201  * lowest value for which writes do not cause noticeable problems to
202  * reads. In fact, the lower this parameter, the stabler I/O control,
203  * in the following respect.  The lower this parameter is, the less
204  * the bandwidth enjoyed by a group decreases
205  * - when the group does writes, w.r.t. to when it does reads;
206  * - when other groups do reads, w.r.t. to when they do writes.
207  */
208 static const int bfq_async_charge_factor = 3;
209 
210 /* Default timeout values, in jiffies, approximating CFQ defaults. */
211 const int bfq_timeout = HZ / 8;
212 
213 /*
214  * Time limit for merging (see comments in bfq_setup_cooperator). Set
215  * to the slowest value that, in our tests, proved to be effective in
216  * removing false positives, while not causing true positives to miss
217  * queue merging.
218  *
219  * As can be deduced from the low time limit below, queue merging, if
220  * successful, happens at the very beggining of the I/O of the involved
221  * cooperating processes, as a consequence of the arrival of the very
222  * first requests from each cooperator.  After that, there is very
223  * little chance to find cooperators.
224  */
225 static const unsigned long bfq_merge_time_limit = HZ/10;
226 
227 static struct kmem_cache *bfq_pool;
228 
229 /* Below this threshold (in ns), we consider thinktime immediate. */
230 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
231 
232 /* hw_tag detection: parallel requests threshold and min samples needed. */
233 #define BFQ_HW_QUEUE_THRESHOLD	4
234 #define BFQ_HW_QUEUE_SAMPLES	32
235 
236 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
237 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
238 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
239 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
240 
241 /* Min number of samples required to perform peak-rate update */
242 #define BFQ_RATE_MIN_SAMPLES	32
243 /* Min observation time interval required to perform a peak-rate update (ns) */
244 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
245 /* Target observation time interval for a peak-rate update (ns) */
246 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
247 
248 /*
249  * Shift used for peak-rate fixed precision calculations.
250  * With
251  * - the current shift: 16 positions
252  * - the current type used to store rate: u32
253  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
254  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
255  * the range of rates that can be stored is
256  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
257  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
258  * [15, 65G] sectors/sec
259  * Which, assuming a sector size of 512B, corresponds to a range of
260  * [7.5K, 33T] B/sec
261  */
262 #define BFQ_RATE_SHIFT		16
263 
264 /*
265  * When configured for computing the duration of the weight-raising
266  * for interactive queues automatically (see the comments at the
267  * beginning of this file), BFQ does it using the following formula:
268  * duration = (ref_rate / r) * ref_wr_duration,
269  * where r is the peak rate of the device, and ref_rate and
270  * ref_wr_duration are two reference parameters.  In particular,
271  * ref_rate is the peak rate of the reference storage device (see
272  * below), and ref_wr_duration is about the maximum time needed, with
273  * BFQ and while reading two files in parallel, to load typical large
274  * applications on the reference device (see the comments on
275  * max_service_from_wr below, for more details on how ref_wr_duration
276  * is obtained).  In practice, the slower/faster the device at hand
277  * is, the more/less it takes to load applications with respect to the
278  * reference device.  Accordingly, the longer/shorter BFQ grants
279  * weight raising to interactive applications.
280  *
281  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
282  * depending on whether the device is rotational or non-rotational.
283  *
284  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
285  * are the reference values for a rotational device, whereas
286  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
287  * non-rotational device. The reference rates are not the actual peak
288  * rates of the devices used as a reference, but slightly lower
289  * values. The reason for using slightly lower values is that the
290  * peak-rate estimator tends to yield slightly lower values than the
291  * actual peak rate (it can yield the actual peak rate only if there
292  * is only one process doing I/O, and the process does sequential
293  * I/O).
294  *
295  * The reference peak rates are measured in sectors/usec, left-shifted
296  * by BFQ_RATE_SHIFT.
297  */
298 static int ref_rate[2] = {14000, 33000};
299 /*
300  * To improve readability, a conversion function is used to initialize
301  * the following array, which entails that the array can be
302  * initialized only in a function.
303  */
304 static int ref_wr_duration[2];
305 
306 /*
307  * BFQ uses the above-detailed, time-based weight-raising mechanism to
308  * privilege interactive tasks. This mechanism is vulnerable to the
309  * following false positives: I/O-bound applications that will go on
310  * doing I/O for much longer than the duration of weight
311  * raising. These applications have basically no benefit from being
312  * weight-raised at the beginning of their I/O. On the opposite end,
313  * while being weight-raised, these applications
314  * a) unjustly steal throughput to applications that may actually need
315  * low latency;
316  * b) make BFQ uselessly perform device idling; device idling results
317  * in loss of device throughput with most flash-based storage, and may
318  * increase latencies when used purposelessly.
319  *
320  * BFQ tries to reduce these problems, by adopting the following
321  * countermeasure. To introduce this countermeasure, we need first to
322  * finish explaining how the duration of weight-raising for
323  * interactive tasks is computed.
324  *
325  * For a bfq_queue deemed as interactive, the duration of weight
326  * raising is dynamically adjusted, as a function of the estimated
327  * peak rate of the device, so as to be equal to the time needed to
328  * execute the 'largest' interactive task we benchmarked so far. By
329  * largest task, we mean the task for which each involved process has
330  * to do more I/O than for any of the other tasks we benchmarked. This
331  * reference interactive task is the start-up of LibreOffice Writer,
332  * and in this task each process/bfq_queue needs to have at most ~110K
333  * sectors transferred.
334  *
335  * This last piece of information enables BFQ to reduce the actual
336  * duration of weight-raising for at least one class of I/O-bound
337  * applications: those doing sequential or quasi-sequential I/O. An
338  * example is file copy. In fact, once started, the main I/O-bound
339  * processes of these applications usually consume the above 110K
340  * sectors in much less time than the processes of an application that
341  * is starting, because these I/O-bound processes will greedily devote
342  * almost all their CPU cycles only to their target,
343  * throughput-friendly I/O operations. This is even more true if BFQ
344  * happens to be underestimating the device peak rate, and thus
345  * overestimating the duration of weight raising. But, according to
346  * our measurements, once transferred 110K sectors, these processes
347  * have no right to be weight-raised any longer.
348  *
349  * Basing on the last consideration, BFQ ends weight-raising for a
350  * bfq_queue if the latter happens to have received an amount of
351  * service at least equal to the following constant. The constant is
352  * set to slightly more than 110K, to have a minimum safety margin.
353  *
354  * This early ending of weight-raising reduces the amount of time
355  * during which interactive false positives cause the two problems
356  * described at the beginning of these comments.
357  */
358 static const unsigned long max_service_from_wr = 120000;
359 
360 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
361 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
362 
363 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
364 {
365 	return bic->bfqq[is_sync];
366 }
367 
368 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
369 {
370 	bic->bfqq[is_sync] = bfqq;
371 }
372 
373 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
374 {
375 	return bic->icq.q->elevator->elevator_data;
376 }
377 
378 /**
379  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
380  * @icq: the iocontext queue.
381  */
382 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
383 {
384 	/* bic->icq is the first member, %NULL will convert to %NULL */
385 	return container_of(icq, struct bfq_io_cq, icq);
386 }
387 
388 /**
389  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
390  * @bfqd: the lookup key.
391  * @ioc: the io_context of the process doing I/O.
392  * @q: the request queue.
393  */
394 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
395 					struct io_context *ioc,
396 					struct request_queue *q)
397 {
398 	if (ioc) {
399 		unsigned long flags;
400 		struct bfq_io_cq *icq;
401 
402 		spin_lock_irqsave(q->queue_lock, flags);
403 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
404 		spin_unlock_irqrestore(q->queue_lock, flags);
405 
406 		return icq;
407 	}
408 
409 	return NULL;
410 }
411 
412 /*
413  * Scheduler run of queue, if there are requests pending and no one in the
414  * driver that will restart queueing.
415  */
416 void bfq_schedule_dispatch(struct bfq_data *bfqd)
417 {
418 	if (bfqd->queued != 0) {
419 		bfq_log(bfqd, "schedule dispatch");
420 		blk_mq_run_hw_queues(bfqd->queue, true);
421 	}
422 }
423 
424 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
425 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
426 
427 #define bfq_sample_valid(samples)	((samples) > 80)
428 
429 /*
430  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
431  * We choose the request that is closesr to the head right now.  Distance
432  * behind the head is penalized and only allowed to a certain extent.
433  */
434 static struct request *bfq_choose_req(struct bfq_data *bfqd,
435 				      struct request *rq1,
436 				      struct request *rq2,
437 				      sector_t last)
438 {
439 	sector_t s1, s2, d1 = 0, d2 = 0;
440 	unsigned long back_max;
441 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
442 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
443 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
444 
445 	if (!rq1 || rq1 == rq2)
446 		return rq2;
447 	if (!rq2)
448 		return rq1;
449 
450 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
451 		return rq1;
452 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
453 		return rq2;
454 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
455 		return rq1;
456 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
457 		return rq2;
458 
459 	s1 = blk_rq_pos(rq1);
460 	s2 = blk_rq_pos(rq2);
461 
462 	/*
463 	 * By definition, 1KiB is 2 sectors.
464 	 */
465 	back_max = bfqd->bfq_back_max * 2;
466 
467 	/*
468 	 * Strict one way elevator _except_ in the case where we allow
469 	 * short backward seeks which are biased as twice the cost of a
470 	 * similar forward seek.
471 	 */
472 	if (s1 >= last)
473 		d1 = s1 - last;
474 	else if (s1 + back_max >= last)
475 		d1 = (last - s1) * bfqd->bfq_back_penalty;
476 	else
477 		wrap |= BFQ_RQ1_WRAP;
478 
479 	if (s2 >= last)
480 		d2 = s2 - last;
481 	else if (s2 + back_max >= last)
482 		d2 = (last - s2) * bfqd->bfq_back_penalty;
483 	else
484 		wrap |= BFQ_RQ2_WRAP;
485 
486 	/* Found required data */
487 
488 	/*
489 	 * By doing switch() on the bit mask "wrap" we avoid having to
490 	 * check two variables for all permutations: --> faster!
491 	 */
492 	switch (wrap) {
493 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
494 		if (d1 < d2)
495 			return rq1;
496 		else if (d2 < d1)
497 			return rq2;
498 
499 		if (s1 >= s2)
500 			return rq1;
501 		else
502 			return rq2;
503 
504 	case BFQ_RQ2_WRAP:
505 		return rq1;
506 	case BFQ_RQ1_WRAP:
507 		return rq2;
508 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
509 	default:
510 		/*
511 		 * Since both rqs are wrapped,
512 		 * start with the one that's further behind head
513 		 * (--> only *one* back seek required),
514 		 * since back seek takes more time than forward.
515 		 */
516 		if (s1 <= s2)
517 			return rq1;
518 		else
519 			return rq2;
520 	}
521 }
522 
523 /*
524  * Async I/O can easily starve sync I/O (both sync reads and sync
525  * writes), by consuming all tags. Similarly, storms of sync writes,
526  * such as those that sync(2) may trigger, can starve sync reads.
527  * Limit depths of async I/O and sync writes so as to counter both
528  * problems.
529  */
530 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
531 {
532 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
533 
534 	if (op_is_sync(op) && !op_is_write(op))
535 		return;
536 
537 	data->shallow_depth =
538 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
539 
540 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
541 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
542 			data->shallow_depth);
543 }
544 
545 static struct bfq_queue *
546 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
547 		     sector_t sector, struct rb_node **ret_parent,
548 		     struct rb_node ***rb_link)
549 {
550 	struct rb_node **p, *parent;
551 	struct bfq_queue *bfqq = NULL;
552 
553 	parent = NULL;
554 	p = &root->rb_node;
555 	while (*p) {
556 		struct rb_node **n;
557 
558 		parent = *p;
559 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
560 
561 		/*
562 		 * Sort strictly based on sector. Smallest to the left,
563 		 * largest to the right.
564 		 */
565 		if (sector > blk_rq_pos(bfqq->next_rq))
566 			n = &(*p)->rb_right;
567 		else if (sector < blk_rq_pos(bfqq->next_rq))
568 			n = &(*p)->rb_left;
569 		else
570 			break;
571 		p = n;
572 		bfqq = NULL;
573 	}
574 
575 	*ret_parent = parent;
576 	if (rb_link)
577 		*rb_link = p;
578 
579 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
580 		(unsigned long long)sector,
581 		bfqq ? bfqq->pid : 0);
582 
583 	return bfqq;
584 }
585 
586 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
587 {
588 	return bfqq->service_from_backlogged > 0 &&
589 		time_is_before_jiffies(bfqq->first_IO_time +
590 				       bfq_merge_time_limit);
591 }
592 
593 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
594 {
595 	struct rb_node **p, *parent;
596 	struct bfq_queue *__bfqq;
597 
598 	if (bfqq->pos_root) {
599 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
600 		bfqq->pos_root = NULL;
601 	}
602 
603 	/*
604 	 * bfqq cannot be merged any longer (see comments in
605 	 * bfq_setup_cooperator): no point in adding bfqq into the
606 	 * position tree.
607 	 */
608 	if (bfq_too_late_for_merging(bfqq))
609 		return;
610 
611 	if (bfq_class_idle(bfqq))
612 		return;
613 	if (!bfqq->next_rq)
614 		return;
615 
616 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
617 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
618 			blk_rq_pos(bfqq->next_rq), &parent, &p);
619 	if (!__bfqq) {
620 		rb_link_node(&bfqq->pos_node, parent, p);
621 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
622 	} else
623 		bfqq->pos_root = NULL;
624 }
625 
626 /*
627  * Tell whether there are active queues or groups with differentiated weights.
628  */
629 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
630 {
631 	/*
632 	 * For weights to differ, at least one of the trees must contain
633 	 * at least two nodes.
634 	 */
635 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
636 		(bfqd->queue_weights_tree.rb_node->rb_left ||
637 		 bfqd->queue_weights_tree.rb_node->rb_right)
638 #ifdef CONFIG_BFQ_GROUP_IOSCHED
639 	       ) ||
640 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
641 		(bfqd->group_weights_tree.rb_node->rb_left ||
642 		 bfqd->group_weights_tree.rb_node->rb_right)
643 #endif
644 	       );
645 }
646 
647 /*
648  * The following function returns true if every queue must receive the
649  * same share of the throughput (this condition is used when deciding
650  * whether idling may be disabled, see the comments in the function
651  * bfq_better_to_idle()).
652  *
653  * Such a scenario occurs when:
654  * 1) all active queues have the same weight,
655  * 2) all active groups at the same level in the groups tree have the same
656  *    weight,
657  * 3) all active groups at the same level in the groups tree have the same
658  *    number of children.
659  *
660  * Unfortunately, keeping the necessary state for evaluating exactly the
661  * above symmetry conditions would be quite complex and time-consuming.
662  * Therefore this function evaluates, instead, the following stronger
663  * sub-conditions, for which it is much easier to maintain the needed
664  * state:
665  * 1) all active queues have the same weight,
666  * 2) all active groups have the same weight,
667  * 3) all active groups have at most one active child each.
668  * In particular, the last two conditions are always true if hierarchical
669  * support and the cgroups interface are not enabled, thus no state needs
670  * to be maintained in this case.
671  */
672 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
673 {
674 	return !bfq_differentiated_weights(bfqd);
675 }
676 
677 /*
678  * If the weight-counter tree passed as input contains no counter for
679  * the weight of the input entity, then add that counter; otherwise just
680  * increment the existing counter.
681  *
682  * Note that weight-counter trees contain few nodes in mostly symmetric
683  * scenarios. For example, if all queues have the same weight, then the
684  * weight-counter tree for the queues may contain at most one node.
685  * This holds even if low_latency is on, because weight-raised queues
686  * are not inserted in the tree.
687  * In most scenarios, the rate at which nodes are created/destroyed
688  * should be low too.
689  */
690 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
691 			  struct rb_root *root)
692 {
693 	struct rb_node **new = &(root->rb_node), *parent = NULL;
694 
695 	/*
696 	 * Do not insert if the entity is already associated with a
697 	 * counter, which happens if:
698 	 *   1) the entity is associated with a queue,
699 	 *   2) a request arrival has caused the queue to become both
700 	 *      non-weight-raised, and hence change its weight, and
701 	 *      backlogged; in this respect, each of the two events
702 	 *      causes an invocation of this function,
703 	 *   3) this is the invocation of this function caused by the
704 	 *      second event. This second invocation is actually useless,
705 	 *      and we handle this fact by exiting immediately. More
706 	 *      efficient or clearer solutions might possibly be adopted.
707 	 */
708 	if (entity->weight_counter)
709 		return;
710 
711 	while (*new) {
712 		struct bfq_weight_counter *__counter = container_of(*new,
713 						struct bfq_weight_counter,
714 						weights_node);
715 		parent = *new;
716 
717 		if (entity->weight == __counter->weight) {
718 			entity->weight_counter = __counter;
719 			goto inc_counter;
720 		}
721 		if (entity->weight < __counter->weight)
722 			new = &((*new)->rb_left);
723 		else
724 			new = &((*new)->rb_right);
725 	}
726 
727 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
728 					 GFP_ATOMIC);
729 
730 	/*
731 	 * In the unlucky event of an allocation failure, we just
732 	 * exit. This will cause the weight of entity to not be
733 	 * considered in bfq_differentiated_weights, which, in its
734 	 * turn, causes the scenario to be deemed wrongly symmetric in
735 	 * case entity's weight would have been the only weight making
736 	 * the scenario asymmetric. On the bright side, no unbalance
737 	 * will however occur when entity becomes inactive again (the
738 	 * invocation of this function is triggered by an activation
739 	 * of entity). In fact, bfq_weights_tree_remove does nothing
740 	 * if !entity->weight_counter.
741 	 */
742 	if (unlikely(!entity->weight_counter))
743 		return;
744 
745 	entity->weight_counter->weight = entity->weight;
746 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
747 	rb_insert_color(&entity->weight_counter->weights_node, root);
748 
749 inc_counter:
750 	entity->weight_counter->num_active++;
751 }
752 
753 /*
754  * Decrement the weight counter associated with the entity, and, if the
755  * counter reaches 0, remove the counter from the tree.
756  * See the comments to the function bfq_weights_tree_add() for considerations
757  * about overhead.
758  */
759 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
760 			       struct bfq_entity *entity,
761 			       struct rb_root *root)
762 {
763 	if (!entity->weight_counter)
764 		return;
765 
766 	entity->weight_counter->num_active--;
767 	if (entity->weight_counter->num_active > 0)
768 		goto reset_entity_pointer;
769 
770 	rb_erase(&entity->weight_counter->weights_node, root);
771 	kfree(entity->weight_counter);
772 
773 reset_entity_pointer:
774 	entity->weight_counter = NULL;
775 }
776 
777 /*
778  * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
779  * parent entities.
780  */
781 void bfq_weights_tree_remove(struct bfq_data *bfqd,
782 			     struct bfq_queue *bfqq)
783 {
784 	struct bfq_entity *entity = bfqq->entity.parent;
785 
786 	__bfq_weights_tree_remove(bfqd, &bfqq->entity,
787 				  &bfqd->queue_weights_tree);
788 
789 	for_each_entity(entity) {
790 		struct bfq_sched_data *sd = entity->my_sched_data;
791 
792 		if (sd->next_in_service || sd->in_service_entity) {
793 			/*
794 			 * entity is still active, because either
795 			 * next_in_service or in_service_entity is not
796 			 * NULL (see the comments on the definition of
797 			 * next_in_service for details on why
798 			 * in_service_entity must be checked too).
799 			 *
800 			 * As a consequence, the weight of entity is
801 			 * not to be removed. In addition, if entity
802 			 * is active, then its parent entities are
803 			 * active as well, and thus their weights are
804 			 * not to be removed either. In the end, this
805 			 * loop must stop here.
806 			 */
807 			break;
808 		}
809 		__bfq_weights_tree_remove(bfqd, entity,
810 					  &bfqd->group_weights_tree);
811 	}
812 }
813 
814 /*
815  * Return expired entry, or NULL to just start from scratch in rbtree.
816  */
817 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
818 				      struct request *last)
819 {
820 	struct request *rq;
821 
822 	if (bfq_bfqq_fifo_expire(bfqq))
823 		return NULL;
824 
825 	bfq_mark_bfqq_fifo_expire(bfqq);
826 
827 	rq = rq_entry_fifo(bfqq->fifo.next);
828 
829 	if (rq == last || ktime_get_ns() < rq->fifo_time)
830 		return NULL;
831 
832 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
833 	return rq;
834 }
835 
836 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
837 					struct bfq_queue *bfqq,
838 					struct request *last)
839 {
840 	struct rb_node *rbnext = rb_next(&last->rb_node);
841 	struct rb_node *rbprev = rb_prev(&last->rb_node);
842 	struct request *next, *prev = NULL;
843 
844 	/* Follow expired path, else get first next available. */
845 	next = bfq_check_fifo(bfqq, last);
846 	if (next)
847 		return next;
848 
849 	if (rbprev)
850 		prev = rb_entry_rq(rbprev);
851 
852 	if (rbnext)
853 		next = rb_entry_rq(rbnext);
854 	else {
855 		rbnext = rb_first(&bfqq->sort_list);
856 		if (rbnext && rbnext != &last->rb_node)
857 			next = rb_entry_rq(rbnext);
858 	}
859 
860 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
861 }
862 
863 /* see the definition of bfq_async_charge_factor for details */
864 static unsigned long bfq_serv_to_charge(struct request *rq,
865 					struct bfq_queue *bfqq)
866 {
867 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
868 		return blk_rq_sectors(rq);
869 
870 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
871 }
872 
873 /**
874  * bfq_updated_next_req - update the queue after a new next_rq selection.
875  * @bfqd: the device data the queue belongs to.
876  * @bfqq: the queue to update.
877  *
878  * If the first request of a queue changes we make sure that the queue
879  * has enough budget to serve at least its first request (if the
880  * request has grown).  We do this because if the queue has not enough
881  * budget for its first request, it has to go through two dispatch
882  * rounds to actually get it dispatched.
883  */
884 static void bfq_updated_next_req(struct bfq_data *bfqd,
885 				 struct bfq_queue *bfqq)
886 {
887 	struct bfq_entity *entity = &bfqq->entity;
888 	struct request *next_rq = bfqq->next_rq;
889 	unsigned long new_budget;
890 
891 	if (!next_rq)
892 		return;
893 
894 	if (bfqq == bfqd->in_service_queue)
895 		/*
896 		 * In order not to break guarantees, budgets cannot be
897 		 * changed after an entity has been selected.
898 		 */
899 		return;
900 
901 	new_budget = max_t(unsigned long, bfqq->max_budget,
902 			   bfq_serv_to_charge(next_rq, bfqq));
903 	if (entity->budget != new_budget) {
904 		entity->budget = new_budget;
905 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
906 					 new_budget);
907 		bfq_requeue_bfqq(bfqd, bfqq, false);
908 	}
909 }
910 
911 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
912 {
913 	u64 dur;
914 
915 	if (bfqd->bfq_wr_max_time > 0)
916 		return bfqd->bfq_wr_max_time;
917 
918 	dur = bfqd->rate_dur_prod;
919 	do_div(dur, bfqd->peak_rate);
920 
921 	/*
922 	 * Limit duration between 3 and 25 seconds. The upper limit
923 	 * has been conservatively set after the following worst case:
924 	 * on a QEMU/KVM virtual machine
925 	 * - running in a slow PC
926 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
927 	 * - serving a heavy I/O workload, such as the sequential reading
928 	 *   of several files
929 	 * mplayer took 23 seconds to start, if constantly weight-raised.
930 	 *
931 	 * As for higher values than that accomodating the above bad
932 	 * scenario, tests show that higher values would often yield
933 	 * the opposite of the desired result, i.e., would worsen
934 	 * responsiveness by allowing non-interactive applications to
935 	 * preserve weight raising for too long.
936 	 *
937 	 * On the other end, lower values than 3 seconds make it
938 	 * difficult for most interactive tasks to complete their jobs
939 	 * before weight-raising finishes.
940 	 */
941 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
942 }
943 
944 /* switch back from soft real-time to interactive weight raising */
945 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
946 					  struct bfq_data *bfqd)
947 {
948 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
949 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
950 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
951 }
952 
953 static void
954 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
955 		      struct bfq_io_cq *bic, bool bfq_already_existing)
956 {
957 	unsigned int old_wr_coeff = bfqq->wr_coeff;
958 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
959 
960 	if (bic->saved_has_short_ttime)
961 		bfq_mark_bfqq_has_short_ttime(bfqq);
962 	else
963 		bfq_clear_bfqq_has_short_ttime(bfqq);
964 
965 	if (bic->saved_IO_bound)
966 		bfq_mark_bfqq_IO_bound(bfqq);
967 	else
968 		bfq_clear_bfqq_IO_bound(bfqq);
969 
970 	bfqq->ttime = bic->saved_ttime;
971 	bfqq->wr_coeff = bic->saved_wr_coeff;
972 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
973 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
974 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
975 
976 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
977 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
978 				   bfqq->wr_cur_max_time))) {
979 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
980 		    !bfq_bfqq_in_large_burst(bfqq) &&
981 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
982 					     bfq_wr_duration(bfqd))) {
983 			switch_back_to_interactive_wr(bfqq, bfqd);
984 		} else {
985 			bfqq->wr_coeff = 1;
986 			bfq_log_bfqq(bfqq->bfqd, bfqq,
987 				     "resume state: switching off wr");
988 		}
989 	}
990 
991 	/* make sure weight will be updated, however we got here */
992 	bfqq->entity.prio_changed = 1;
993 
994 	if (likely(!busy))
995 		return;
996 
997 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
998 		bfqd->wr_busy_queues++;
999 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1000 		bfqd->wr_busy_queues--;
1001 }
1002 
1003 static int bfqq_process_refs(struct bfq_queue *bfqq)
1004 {
1005 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
1006 }
1007 
1008 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1009 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1010 {
1011 	struct bfq_queue *item;
1012 	struct hlist_node *n;
1013 
1014 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1015 		hlist_del_init(&item->burst_list_node);
1016 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1017 	bfqd->burst_size = 1;
1018 	bfqd->burst_parent_entity = bfqq->entity.parent;
1019 }
1020 
1021 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1022 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1023 {
1024 	/* Increment burst size to take into account also bfqq */
1025 	bfqd->burst_size++;
1026 
1027 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1028 		struct bfq_queue *pos, *bfqq_item;
1029 		struct hlist_node *n;
1030 
1031 		/*
1032 		 * Enough queues have been activated shortly after each
1033 		 * other to consider this burst as large.
1034 		 */
1035 		bfqd->large_burst = true;
1036 
1037 		/*
1038 		 * We can now mark all queues in the burst list as
1039 		 * belonging to a large burst.
1040 		 */
1041 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1042 				     burst_list_node)
1043 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1044 		bfq_mark_bfqq_in_large_burst(bfqq);
1045 
1046 		/*
1047 		 * From now on, and until the current burst finishes, any
1048 		 * new queue being activated shortly after the last queue
1049 		 * was inserted in the burst can be immediately marked as
1050 		 * belonging to a large burst. So the burst list is not
1051 		 * needed any more. Remove it.
1052 		 */
1053 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1054 					  burst_list_node)
1055 			hlist_del_init(&pos->burst_list_node);
1056 	} else /*
1057 		* Burst not yet large: add bfqq to the burst list. Do
1058 		* not increment the ref counter for bfqq, because bfqq
1059 		* is removed from the burst list before freeing bfqq
1060 		* in put_queue.
1061 		*/
1062 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1063 }
1064 
1065 /*
1066  * If many queues belonging to the same group happen to be created
1067  * shortly after each other, then the processes associated with these
1068  * queues have typically a common goal. In particular, bursts of queue
1069  * creations are usually caused by services or applications that spawn
1070  * many parallel threads/processes. Examples are systemd during boot,
1071  * or git grep. To help these processes get their job done as soon as
1072  * possible, it is usually better to not grant either weight-raising
1073  * or device idling to their queues.
1074  *
1075  * In this comment we describe, firstly, the reasons why this fact
1076  * holds, and, secondly, the next function, which implements the main
1077  * steps needed to properly mark these queues so that they can then be
1078  * treated in a different way.
1079  *
1080  * The above services or applications benefit mostly from a high
1081  * throughput: the quicker the requests of the activated queues are
1082  * cumulatively served, the sooner the target job of these queues gets
1083  * completed. As a consequence, weight-raising any of these queues,
1084  * which also implies idling the device for it, is almost always
1085  * counterproductive. In most cases it just lowers throughput.
1086  *
1087  * On the other hand, a burst of queue creations may be caused also by
1088  * the start of an application that does not consist of a lot of
1089  * parallel I/O-bound threads. In fact, with a complex application,
1090  * several short processes may need to be executed to start-up the
1091  * application. In this respect, to start an application as quickly as
1092  * possible, the best thing to do is in any case to privilege the I/O
1093  * related to the application with respect to all other
1094  * I/O. Therefore, the best strategy to start as quickly as possible
1095  * an application that causes a burst of queue creations is to
1096  * weight-raise all the queues created during the burst. This is the
1097  * exact opposite of the best strategy for the other type of bursts.
1098  *
1099  * In the end, to take the best action for each of the two cases, the
1100  * two types of bursts need to be distinguished. Fortunately, this
1101  * seems relatively easy, by looking at the sizes of the bursts. In
1102  * particular, we found a threshold such that only bursts with a
1103  * larger size than that threshold are apparently caused by
1104  * services or commands such as systemd or git grep. For brevity,
1105  * hereafter we call just 'large' these bursts. BFQ *does not*
1106  * weight-raise queues whose creation occurs in a large burst. In
1107  * addition, for each of these queues BFQ performs or does not perform
1108  * idling depending on which choice boosts the throughput more. The
1109  * exact choice depends on the device and request pattern at
1110  * hand.
1111  *
1112  * Unfortunately, false positives may occur while an interactive task
1113  * is starting (e.g., an application is being started). The
1114  * consequence is that the queues associated with the task do not
1115  * enjoy weight raising as expected. Fortunately these false positives
1116  * are very rare. They typically occur if some service happens to
1117  * start doing I/O exactly when the interactive task starts.
1118  *
1119  * Turning back to the next function, it implements all the steps
1120  * needed to detect the occurrence of a large burst and to properly
1121  * mark all the queues belonging to it (so that they can then be
1122  * treated in a different way). This goal is achieved by maintaining a
1123  * "burst list" that holds, temporarily, the queues that belong to the
1124  * burst in progress. The list is then used to mark these queues as
1125  * belonging to a large burst if the burst does become large. The main
1126  * steps are the following.
1127  *
1128  * . when the very first queue is created, the queue is inserted into the
1129  *   list (as it could be the first queue in a possible burst)
1130  *
1131  * . if the current burst has not yet become large, and a queue Q that does
1132  *   not yet belong to the burst is activated shortly after the last time
1133  *   at which a new queue entered the burst list, then the function appends
1134  *   Q to the burst list
1135  *
1136  * . if, as a consequence of the previous step, the burst size reaches
1137  *   the large-burst threshold, then
1138  *
1139  *     . all the queues in the burst list are marked as belonging to a
1140  *       large burst
1141  *
1142  *     . the burst list is deleted; in fact, the burst list already served
1143  *       its purpose (keeping temporarily track of the queues in a burst,
1144  *       so as to be able to mark them as belonging to a large burst in the
1145  *       previous sub-step), and now is not needed any more
1146  *
1147  *     . the device enters a large-burst mode
1148  *
1149  * . if a queue Q that does not belong to the burst is created while
1150  *   the device is in large-burst mode and shortly after the last time
1151  *   at which a queue either entered the burst list or was marked as
1152  *   belonging to the current large burst, then Q is immediately marked
1153  *   as belonging to a large burst.
1154  *
1155  * . if a queue Q that does not belong to the burst is created a while
1156  *   later, i.e., not shortly after, than the last time at which a queue
1157  *   either entered the burst list or was marked as belonging to the
1158  *   current large burst, then the current burst is deemed as finished and:
1159  *
1160  *        . the large-burst mode is reset if set
1161  *
1162  *        . the burst list is emptied
1163  *
1164  *        . Q is inserted in the burst list, as Q may be the first queue
1165  *          in a possible new burst (then the burst list contains just Q
1166  *          after this step).
1167  */
1168 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1169 {
1170 	/*
1171 	 * If bfqq is already in the burst list or is part of a large
1172 	 * burst, or finally has just been split, then there is
1173 	 * nothing else to do.
1174 	 */
1175 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1176 	    bfq_bfqq_in_large_burst(bfqq) ||
1177 	    time_is_after_eq_jiffies(bfqq->split_time +
1178 				     msecs_to_jiffies(10)))
1179 		return;
1180 
1181 	/*
1182 	 * If bfqq's creation happens late enough, or bfqq belongs to
1183 	 * a different group than the burst group, then the current
1184 	 * burst is finished, and related data structures must be
1185 	 * reset.
1186 	 *
1187 	 * In this respect, consider the special case where bfqq is
1188 	 * the very first queue created after BFQ is selected for this
1189 	 * device. In this case, last_ins_in_burst and
1190 	 * burst_parent_entity are not yet significant when we get
1191 	 * here. But it is easy to verify that, whether or not the
1192 	 * following condition is true, bfqq will end up being
1193 	 * inserted into the burst list. In particular the list will
1194 	 * happen to contain only bfqq. And this is exactly what has
1195 	 * to happen, as bfqq may be the first queue of the first
1196 	 * burst.
1197 	 */
1198 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1199 	    bfqd->bfq_burst_interval) ||
1200 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1201 		bfqd->large_burst = false;
1202 		bfq_reset_burst_list(bfqd, bfqq);
1203 		goto end;
1204 	}
1205 
1206 	/*
1207 	 * If we get here, then bfqq is being activated shortly after the
1208 	 * last queue. So, if the current burst is also large, we can mark
1209 	 * bfqq as belonging to this large burst immediately.
1210 	 */
1211 	if (bfqd->large_burst) {
1212 		bfq_mark_bfqq_in_large_burst(bfqq);
1213 		goto end;
1214 	}
1215 
1216 	/*
1217 	 * If we get here, then a large-burst state has not yet been
1218 	 * reached, but bfqq is being activated shortly after the last
1219 	 * queue. Then we add bfqq to the burst.
1220 	 */
1221 	bfq_add_to_burst(bfqd, bfqq);
1222 end:
1223 	/*
1224 	 * At this point, bfqq either has been added to the current
1225 	 * burst or has caused the current burst to terminate and a
1226 	 * possible new burst to start. In particular, in the second
1227 	 * case, bfqq has become the first queue in the possible new
1228 	 * burst.  In both cases last_ins_in_burst needs to be moved
1229 	 * forward.
1230 	 */
1231 	bfqd->last_ins_in_burst = jiffies;
1232 }
1233 
1234 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1235 {
1236 	struct bfq_entity *entity = &bfqq->entity;
1237 
1238 	return entity->budget - entity->service;
1239 }
1240 
1241 /*
1242  * If enough samples have been computed, return the current max budget
1243  * stored in bfqd, which is dynamically updated according to the
1244  * estimated disk peak rate; otherwise return the default max budget
1245  */
1246 static int bfq_max_budget(struct bfq_data *bfqd)
1247 {
1248 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1249 		return bfq_default_max_budget;
1250 	else
1251 		return bfqd->bfq_max_budget;
1252 }
1253 
1254 /*
1255  * Return min budget, which is a fraction of the current or default
1256  * max budget (trying with 1/32)
1257  */
1258 static int bfq_min_budget(struct bfq_data *bfqd)
1259 {
1260 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1261 		return bfq_default_max_budget / 32;
1262 	else
1263 		return bfqd->bfq_max_budget / 32;
1264 }
1265 
1266 /*
1267  * The next function, invoked after the input queue bfqq switches from
1268  * idle to busy, updates the budget of bfqq. The function also tells
1269  * whether the in-service queue should be expired, by returning
1270  * true. The purpose of expiring the in-service queue is to give bfqq
1271  * the chance to possibly preempt the in-service queue, and the reason
1272  * for preempting the in-service queue is to achieve one of the two
1273  * goals below.
1274  *
1275  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1276  * expired because it has remained idle. In particular, bfqq may have
1277  * expired for one of the following two reasons:
1278  *
1279  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1280  *   and did not make it to issue a new request before its last
1281  *   request was served;
1282  *
1283  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1284  *   a new request before the expiration of the idling-time.
1285  *
1286  * Even if bfqq has expired for one of the above reasons, the process
1287  * associated with the queue may be however issuing requests greedily,
1288  * and thus be sensitive to the bandwidth it receives (bfqq may have
1289  * remained idle for other reasons: CPU high load, bfqq not enjoying
1290  * idling, I/O throttling somewhere in the path from the process to
1291  * the I/O scheduler, ...). But if, after every expiration for one of
1292  * the above two reasons, bfqq has to wait for the service of at least
1293  * one full budget of another queue before being served again, then
1294  * bfqq is likely to get a much lower bandwidth or resource time than
1295  * its reserved ones. To address this issue, two countermeasures need
1296  * to be taken.
1297  *
1298  * First, the budget and the timestamps of bfqq need to be updated in
1299  * a special way on bfqq reactivation: they need to be updated as if
1300  * bfqq did not remain idle and did not expire. In fact, if they are
1301  * computed as if bfqq expired and remained idle until reactivation,
1302  * then the process associated with bfqq is treated as if, instead of
1303  * being greedy, it stopped issuing requests when bfqq remained idle,
1304  * and restarts issuing requests only on this reactivation. In other
1305  * words, the scheduler does not help the process recover the "service
1306  * hole" between bfqq expiration and reactivation. As a consequence,
1307  * the process receives a lower bandwidth than its reserved one. In
1308  * contrast, to recover this hole, the budget must be updated as if
1309  * bfqq was not expired at all before this reactivation, i.e., it must
1310  * be set to the value of the remaining budget when bfqq was
1311  * expired. Along the same line, timestamps need to be assigned the
1312  * value they had the last time bfqq was selected for service, i.e.,
1313  * before last expiration. Thus timestamps need to be back-shifted
1314  * with respect to their normal computation (see [1] for more details
1315  * on this tricky aspect).
1316  *
1317  * Secondly, to allow the process to recover the hole, the in-service
1318  * queue must be expired too, to give bfqq the chance to preempt it
1319  * immediately. In fact, if bfqq has to wait for a full budget of the
1320  * in-service queue to be completed, then it may become impossible to
1321  * let the process recover the hole, even if the back-shifted
1322  * timestamps of bfqq are lower than those of the in-service queue. If
1323  * this happens for most or all of the holes, then the process may not
1324  * receive its reserved bandwidth. In this respect, it is worth noting
1325  * that, being the service of outstanding requests unpreemptible, a
1326  * little fraction of the holes may however be unrecoverable, thereby
1327  * causing a little loss of bandwidth.
1328  *
1329  * The last important point is detecting whether bfqq does need this
1330  * bandwidth recovery. In this respect, the next function deems the
1331  * process associated with bfqq greedy, and thus allows it to recover
1332  * the hole, if: 1) the process is waiting for the arrival of a new
1333  * request (which implies that bfqq expired for one of the above two
1334  * reasons), and 2) such a request has arrived soon. The first
1335  * condition is controlled through the flag non_blocking_wait_rq,
1336  * while the second through the flag arrived_in_time. If both
1337  * conditions hold, then the function computes the budget in the
1338  * above-described special way, and signals that the in-service queue
1339  * should be expired. Timestamp back-shifting is done later in
1340  * __bfq_activate_entity.
1341  *
1342  * 2. Reduce latency. Even if timestamps are not backshifted to let
1343  * the process associated with bfqq recover a service hole, bfqq may
1344  * however happen to have, after being (re)activated, a lower finish
1345  * timestamp than the in-service queue.	 That is, the next budget of
1346  * bfqq may have to be completed before the one of the in-service
1347  * queue. If this is the case, then preempting the in-service queue
1348  * allows this goal to be achieved, apart from the unpreemptible,
1349  * outstanding requests mentioned above.
1350  *
1351  * Unfortunately, regardless of which of the above two goals one wants
1352  * to achieve, service trees need first to be updated to know whether
1353  * the in-service queue must be preempted. To have service trees
1354  * correctly updated, the in-service queue must be expired and
1355  * rescheduled, and bfqq must be scheduled too. This is one of the
1356  * most costly operations (in future versions, the scheduling
1357  * mechanism may be re-designed in such a way to make it possible to
1358  * know whether preemption is needed without needing to update service
1359  * trees). In addition, queue preemptions almost always cause random
1360  * I/O, and thus loss of throughput. Because of these facts, the next
1361  * function adopts the following simple scheme to avoid both costly
1362  * operations and too frequent preemptions: it requests the expiration
1363  * of the in-service queue (unconditionally) only for queues that need
1364  * to recover a hole, or that either are weight-raised or deserve to
1365  * be weight-raised.
1366  */
1367 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1368 						struct bfq_queue *bfqq,
1369 						bool arrived_in_time,
1370 						bool wr_or_deserves_wr)
1371 {
1372 	struct bfq_entity *entity = &bfqq->entity;
1373 
1374 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1375 		/*
1376 		 * We do not clear the flag non_blocking_wait_rq here, as
1377 		 * the latter is used in bfq_activate_bfqq to signal
1378 		 * that timestamps need to be back-shifted (and is
1379 		 * cleared right after).
1380 		 */
1381 
1382 		/*
1383 		 * In next assignment we rely on that either
1384 		 * entity->service or entity->budget are not updated
1385 		 * on expiration if bfqq is empty (see
1386 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1387 		 * remain unchanged after such an expiration, and the
1388 		 * following statement therefore assigns to
1389 		 * entity->budget the remaining budget on such an
1390 		 * expiration.
1391 		 */
1392 		entity->budget = min_t(unsigned long,
1393 				       bfq_bfqq_budget_left(bfqq),
1394 				       bfqq->max_budget);
1395 
1396 		/*
1397 		 * At this point, we have used entity->service to get
1398 		 * the budget left (needed for updating
1399 		 * entity->budget). Thus we finally can, and have to,
1400 		 * reset entity->service. The latter must be reset
1401 		 * because bfqq would otherwise be charged again for
1402 		 * the service it has received during its previous
1403 		 * service slot(s).
1404 		 */
1405 		entity->service = 0;
1406 
1407 		return true;
1408 	}
1409 
1410 	/*
1411 	 * We can finally complete expiration, by setting service to 0.
1412 	 */
1413 	entity->service = 0;
1414 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1415 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1416 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1417 	return wr_or_deserves_wr;
1418 }
1419 
1420 /*
1421  * Return the farthest past time instant according to jiffies
1422  * macros.
1423  */
1424 static unsigned long bfq_smallest_from_now(void)
1425 {
1426 	return jiffies - MAX_JIFFY_OFFSET;
1427 }
1428 
1429 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1430 					     struct bfq_queue *bfqq,
1431 					     unsigned int old_wr_coeff,
1432 					     bool wr_or_deserves_wr,
1433 					     bool interactive,
1434 					     bool in_burst,
1435 					     bool soft_rt)
1436 {
1437 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1438 		/* start a weight-raising period */
1439 		if (interactive) {
1440 			bfqq->service_from_wr = 0;
1441 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1442 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1443 		} else {
1444 			/*
1445 			 * No interactive weight raising in progress
1446 			 * here: assign minus infinity to
1447 			 * wr_start_at_switch_to_srt, to make sure
1448 			 * that, at the end of the soft-real-time
1449 			 * weight raising periods that is starting
1450 			 * now, no interactive weight-raising period
1451 			 * may be wrongly considered as still in
1452 			 * progress (and thus actually started by
1453 			 * mistake).
1454 			 */
1455 			bfqq->wr_start_at_switch_to_srt =
1456 				bfq_smallest_from_now();
1457 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1458 				BFQ_SOFTRT_WEIGHT_FACTOR;
1459 			bfqq->wr_cur_max_time =
1460 				bfqd->bfq_wr_rt_max_time;
1461 		}
1462 
1463 		/*
1464 		 * If needed, further reduce budget to make sure it is
1465 		 * close to bfqq's backlog, so as to reduce the
1466 		 * scheduling-error component due to a too large
1467 		 * budget. Do not care about throughput consequences,
1468 		 * but only about latency. Finally, do not assign a
1469 		 * too small budget either, to avoid increasing
1470 		 * latency by causing too frequent expirations.
1471 		 */
1472 		bfqq->entity.budget = min_t(unsigned long,
1473 					    bfqq->entity.budget,
1474 					    2 * bfq_min_budget(bfqd));
1475 	} else if (old_wr_coeff > 1) {
1476 		if (interactive) { /* update wr coeff and duration */
1477 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1478 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1479 		} else if (in_burst)
1480 			bfqq->wr_coeff = 1;
1481 		else if (soft_rt) {
1482 			/*
1483 			 * The application is now or still meeting the
1484 			 * requirements for being deemed soft rt.  We
1485 			 * can then correctly and safely (re)charge
1486 			 * the weight-raising duration for the
1487 			 * application with the weight-raising
1488 			 * duration for soft rt applications.
1489 			 *
1490 			 * In particular, doing this recharge now, i.e.,
1491 			 * before the weight-raising period for the
1492 			 * application finishes, reduces the probability
1493 			 * of the following negative scenario:
1494 			 * 1) the weight of a soft rt application is
1495 			 *    raised at startup (as for any newly
1496 			 *    created application),
1497 			 * 2) since the application is not interactive,
1498 			 *    at a certain time weight-raising is
1499 			 *    stopped for the application,
1500 			 * 3) at that time the application happens to
1501 			 *    still have pending requests, and hence
1502 			 *    is destined to not have a chance to be
1503 			 *    deemed soft rt before these requests are
1504 			 *    completed (see the comments to the
1505 			 *    function bfq_bfqq_softrt_next_start()
1506 			 *    for details on soft rt detection),
1507 			 * 4) these pending requests experience a high
1508 			 *    latency because the application is not
1509 			 *    weight-raised while they are pending.
1510 			 */
1511 			if (bfqq->wr_cur_max_time !=
1512 				bfqd->bfq_wr_rt_max_time) {
1513 				bfqq->wr_start_at_switch_to_srt =
1514 					bfqq->last_wr_start_finish;
1515 
1516 				bfqq->wr_cur_max_time =
1517 					bfqd->bfq_wr_rt_max_time;
1518 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1519 					BFQ_SOFTRT_WEIGHT_FACTOR;
1520 			}
1521 			bfqq->last_wr_start_finish = jiffies;
1522 		}
1523 	}
1524 }
1525 
1526 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1527 					struct bfq_queue *bfqq)
1528 {
1529 	return bfqq->dispatched == 0 &&
1530 		time_is_before_jiffies(
1531 			bfqq->budget_timeout +
1532 			bfqd->bfq_wr_min_idle_time);
1533 }
1534 
1535 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1536 					     struct bfq_queue *bfqq,
1537 					     int old_wr_coeff,
1538 					     struct request *rq,
1539 					     bool *interactive)
1540 {
1541 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1542 		bfqq_wants_to_preempt,
1543 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1544 		/*
1545 		 * See the comments on
1546 		 * bfq_bfqq_update_budg_for_activation for
1547 		 * details on the usage of the next variable.
1548 		 */
1549 		arrived_in_time =  ktime_get_ns() <=
1550 			bfqq->ttime.last_end_request +
1551 			bfqd->bfq_slice_idle * 3;
1552 
1553 
1554 	/*
1555 	 * bfqq deserves to be weight-raised if:
1556 	 * - it is sync,
1557 	 * - it does not belong to a large burst,
1558 	 * - it has been idle for enough time or is soft real-time,
1559 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1560 	 */
1561 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1562 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1563 		!in_burst &&
1564 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1565 		bfqq->dispatched == 0;
1566 	*interactive = !in_burst && idle_for_long_time;
1567 	wr_or_deserves_wr = bfqd->low_latency &&
1568 		(bfqq->wr_coeff > 1 ||
1569 		 (bfq_bfqq_sync(bfqq) &&
1570 		  bfqq->bic && (*interactive || soft_rt)));
1571 
1572 	/*
1573 	 * Using the last flag, update budget and check whether bfqq
1574 	 * may want to preempt the in-service queue.
1575 	 */
1576 	bfqq_wants_to_preempt =
1577 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1578 						    arrived_in_time,
1579 						    wr_or_deserves_wr);
1580 
1581 	/*
1582 	 * If bfqq happened to be activated in a burst, but has been
1583 	 * idle for much more than an interactive queue, then we
1584 	 * assume that, in the overall I/O initiated in the burst, the
1585 	 * I/O associated with bfqq is finished. So bfqq does not need
1586 	 * to be treated as a queue belonging to a burst
1587 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1588 	 * if set, and remove bfqq from the burst list if it's
1589 	 * there. We do not decrement burst_size, because the fact
1590 	 * that bfqq does not need to belong to the burst list any
1591 	 * more does not invalidate the fact that bfqq was created in
1592 	 * a burst.
1593 	 */
1594 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1595 	    idle_for_long_time &&
1596 	    time_is_before_jiffies(
1597 		    bfqq->budget_timeout +
1598 		    msecs_to_jiffies(10000))) {
1599 		hlist_del_init(&bfqq->burst_list_node);
1600 		bfq_clear_bfqq_in_large_burst(bfqq);
1601 	}
1602 
1603 	bfq_clear_bfqq_just_created(bfqq);
1604 
1605 
1606 	if (!bfq_bfqq_IO_bound(bfqq)) {
1607 		if (arrived_in_time) {
1608 			bfqq->requests_within_timer++;
1609 			if (bfqq->requests_within_timer >=
1610 			    bfqd->bfq_requests_within_timer)
1611 				bfq_mark_bfqq_IO_bound(bfqq);
1612 		} else
1613 			bfqq->requests_within_timer = 0;
1614 	}
1615 
1616 	if (bfqd->low_latency) {
1617 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1618 			/* wraparound */
1619 			bfqq->split_time =
1620 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1621 
1622 		if (time_is_before_jiffies(bfqq->split_time +
1623 					   bfqd->bfq_wr_min_idle_time)) {
1624 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1625 							 old_wr_coeff,
1626 							 wr_or_deserves_wr,
1627 							 *interactive,
1628 							 in_burst,
1629 							 soft_rt);
1630 
1631 			if (old_wr_coeff != bfqq->wr_coeff)
1632 				bfqq->entity.prio_changed = 1;
1633 		}
1634 	}
1635 
1636 	bfqq->last_idle_bklogged = jiffies;
1637 	bfqq->service_from_backlogged = 0;
1638 	bfq_clear_bfqq_softrt_update(bfqq);
1639 
1640 	bfq_add_bfqq_busy(bfqd, bfqq);
1641 
1642 	/*
1643 	 * Expire in-service queue only if preemption may be needed
1644 	 * for guarantees. In this respect, the function
1645 	 * next_queue_may_preempt just checks a simple, necessary
1646 	 * condition, and not a sufficient condition based on
1647 	 * timestamps. In fact, for the latter condition to be
1648 	 * evaluated, timestamps would need first to be updated, and
1649 	 * this operation is quite costly (see the comments on the
1650 	 * function bfq_bfqq_update_budg_for_activation).
1651 	 */
1652 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1653 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1654 	    next_queue_may_preempt(bfqd))
1655 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1656 				false, BFQQE_PREEMPTED);
1657 }
1658 
1659 static void bfq_add_request(struct request *rq)
1660 {
1661 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1662 	struct bfq_data *bfqd = bfqq->bfqd;
1663 	struct request *next_rq, *prev;
1664 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1665 	bool interactive = false;
1666 
1667 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1668 	bfqq->queued[rq_is_sync(rq)]++;
1669 	bfqd->queued++;
1670 
1671 	elv_rb_add(&bfqq->sort_list, rq);
1672 
1673 	/*
1674 	 * Check if this request is a better next-serve candidate.
1675 	 */
1676 	prev = bfqq->next_rq;
1677 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1678 	bfqq->next_rq = next_rq;
1679 
1680 	/*
1681 	 * Adjust priority tree position, if next_rq changes.
1682 	 */
1683 	if (prev != bfqq->next_rq)
1684 		bfq_pos_tree_add_move(bfqd, bfqq);
1685 
1686 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1687 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1688 						 rq, &interactive);
1689 	else {
1690 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1691 		    time_is_before_jiffies(
1692 				bfqq->last_wr_start_finish +
1693 				bfqd->bfq_wr_min_inter_arr_async)) {
1694 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1695 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1696 
1697 			bfqd->wr_busy_queues++;
1698 			bfqq->entity.prio_changed = 1;
1699 		}
1700 		if (prev != bfqq->next_rq)
1701 			bfq_updated_next_req(bfqd, bfqq);
1702 	}
1703 
1704 	/*
1705 	 * Assign jiffies to last_wr_start_finish in the following
1706 	 * cases:
1707 	 *
1708 	 * . if bfqq is not going to be weight-raised, because, for
1709 	 *   non weight-raised queues, last_wr_start_finish stores the
1710 	 *   arrival time of the last request; as of now, this piece
1711 	 *   of information is used only for deciding whether to
1712 	 *   weight-raise async queues
1713 	 *
1714 	 * . if bfqq is not weight-raised, because, if bfqq is now
1715 	 *   switching to weight-raised, then last_wr_start_finish
1716 	 *   stores the time when weight-raising starts
1717 	 *
1718 	 * . if bfqq is interactive, because, regardless of whether
1719 	 *   bfqq is currently weight-raised, the weight-raising
1720 	 *   period must start or restart (this case is considered
1721 	 *   separately because it is not detected by the above
1722 	 *   conditions, if bfqq is already weight-raised)
1723 	 *
1724 	 * last_wr_start_finish has to be updated also if bfqq is soft
1725 	 * real-time, because the weight-raising period is constantly
1726 	 * restarted on idle-to-busy transitions for these queues, but
1727 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1728 	 * needed.
1729 	 */
1730 	if (bfqd->low_latency &&
1731 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1732 		bfqq->last_wr_start_finish = jiffies;
1733 }
1734 
1735 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1736 					  struct bio *bio,
1737 					  struct request_queue *q)
1738 {
1739 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1740 
1741 
1742 	if (bfqq)
1743 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1744 
1745 	return NULL;
1746 }
1747 
1748 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1749 {
1750 	if (last_pos)
1751 		return abs(blk_rq_pos(rq) - last_pos);
1752 
1753 	return 0;
1754 }
1755 
1756 #if 0 /* Still not clear if we can do without next two functions */
1757 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1758 {
1759 	struct bfq_data *bfqd = q->elevator->elevator_data;
1760 
1761 	bfqd->rq_in_driver++;
1762 }
1763 
1764 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1765 {
1766 	struct bfq_data *bfqd = q->elevator->elevator_data;
1767 
1768 	bfqd->rq_in_driver--;
1769 }
1770 #endif
1771 
1772 static void bfq_remove_request(struct request_queue *q,
1773 			       struct request *rq)
1774 {
1775 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1776 	struct bfq_data *bfqd = bfqq->bfqd;
1777 	const int sync = rq_is_sync(rq);
1778 
1779 	if (bfqq->next_rq == rq) {
1780 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1781 		bfq_updated_next_req(bfqd, bfqq);
1782 	}
1783 
1784 	if (rq->queuelist.prev != &rq->queuelist)
1785 		list_del_init(&rq->queuelist);
1786 	bfqq->queued[sync]--;
1787 	bfqd->queued--;
1788 	elv_rb_del(&bfqq->sort_list, rq);
1789 
1790 	elv_rqhash_del(q, rq);
1791 	if (q->last_merge == rq)
1792 		q->last_merge = NULL;
1793 
1794 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1795 		bfqq->next_rq = NULL;
1796 
1797 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1798 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1799 			/*
1800 			 * bfqq emptied. In normal operation, when
1801 			 * bfqq is empty, bfqq->entity.service and
1802 			 * bfqq->entity.budget must contain,
1803 			 * respectively, the service received and the
1804 			 * budget used last time bfqq emptied. These
1805 			 * facts do not hold in this case, as at least
1806 			 * this last removal occurred while bfqq is
1807 			 * not in service. To avoid inconsistencies,
1808 			 * reset both bfqq->entity.service and
1809 			 * bfqq->entity.budget, if bfqq has still a
1810 			 * process that may issue I/O requests to it.
1811 			 */
1812 			bfqq->entity.budget = bfqq->entity.service = 0;
1813 		}
1814 
1815 		/*
1816 		 * Remove queue from request-position tree as it is empty.
1817 		 */
1818 		if (bfqq->pos_root) {
1819 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1820 			bfqq->pos_root = NULL;
1821 		}
1822 	} else {
1823 		bfq_pos_tree_add_move(bfqd, bfqq);
1824 	}
1825 
1826 	if (rq->cmd_flags & REQ_META)
1827 		bfqq->meta_pending--;
1828 
1829 }
1830 
1831 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1832 {
1833 	struct request_queue *q = hctx->queue;
1834 	struct bfq_data *bfqd = q->elevator->elevator_data;
1835 	struct request *free = NULL;
1836 	/*
1837 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1838 	 * store its return value for later use, to avoid nesting
1839 	 * queue_lock inside the bfqd->lock. We assume that the bic
1840 	 * returned by bfq_bic_lookup does not go away before
1841 	 * bfqd->lock is taken.
1842 	 */
1843 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1844 	bool ret;
1845 
1846 	spin_lock_irq(&bfqd->lock);
1847 
1848 	if (bic)
1849 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1850 	else
1851 		bfqd->bio_bfqq = NULL;
1852 	bfqd->bio_bic = bic;
1853 
1854 	ret = blk_mq_sched_try_merge(q, bio, &free);
1855 
1856 	if (free)
1857 		blk_mq_free_request(free);
1858 	spin_unlock_irq(&bfqd->lock);
1859 
1860 	return ret;
1861 }
1862 
1863 static int bfq_request_merge(struct request_queue *q, struct request **req,
1864 			     struct bio *bio)
1865 {
1866 	struct bfq_data *bfqd = q->elevator->elevator_data;
1867 	struct request *__rq;
1868 
1869 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1870 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1871 		*req = __rq;
1872 		return ELEVATOR_FRONT_MERGE;
1873 	}
1874 
1875 	return ELEVATOR_NO_MERGE;
1876 }
1877 
1878 static struct bfq_queue *bfq_init_rq(struct request *rq);
1879 
1880 static void bfq_request_merged(struct request_queue *q, struct request *req,
1881 			       enum elv_merge type)
1882 {
1883 	if (type == ELEVATOR_FRONT_MERGE &&
1884 	    rb_prev(&req->rb_node) &&
1885 	    blk_rq_pos(req) <
1886 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1887 				    struct request, rb_node))) {
1888 		struct bfq_queue *bfqq = bfq_init_rq(req);
1889 		struct bfq_data *bfqd = bfqq->bfqd;
1890 		struct request *prev, *next_rq;
1891 
1892 		/* Reposition request in its sort_list */
1893 		elv_rb_del(&bfqq->sort_list, req);
1894 		elv_rb_add(&bfqq->sort_list, req);
1895 
1896 		/* Choose next request to be served for bfqq */
1897 		prev = bfqq->next_rq;
1898 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1899 					 bfqd->last_position);
1900 		bfqq->next_rq = next_rq;
1901 		/*
1902 		 * If next_rq changes, update both the queue's budget to
1903 		 * fit the new request and the queue's position in its
1904 		 * rq_pos_tree.
1905 		 */
1906 		if (prev != bfqq->next_rq) {
1907 			bfq_updated_next_req(bfqd, bfqq);
1908 			bfq_pos_tree_add_move(bfqd, bfqq);
1909 		}
1910 	}
1911 }
1912 
1913 /*
1914  * This function is called to notify the scheduler that the requests
1915  * rq and 'next' have been merged, with 'next' going away.  BFQ
1916  * exploits this hook to address the following issue: if 'next' has a
1917  * fifo_time lower that rq, then the fifo_time of rq must be set to
1918  * the value of 'next', to not forget the greater age of 'next'.
1919  *
1920  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1921  * on that rq is picked from the hash table q->elevator->hash, which,
1922  * in its turn, is filled only with I/O requests present in
1923  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1924  * the function that fills this hash table (elv_rqhash_add) is called
1925  * only by bfq_insert_request.
1926  */
1927 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1928 				struct request *next)
1929 {
1930 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1931 		*next_bfqq = bfq_init_rq(next);
1932 
1933 	/*
1934 	 * If next and rq belong to the same bfq_queue and next is older
1935 	 * than rq, then reposition rq in the fifo (by substituting next
1936 	 * with rq). Otherwise, if next and rq belong to different
1937 	 * bfq_queues, never reposition rq: in fact, we would have to
1938 	 * reposition it with respect to next's position in its own fifo,
1939 	 * which would most certainly be too expensive with respect to
1940 	 * the benefits.
1941 	 */
1942 	if (bfqq == next_bfqq &&
1943 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1944 	    next->fifo_time < rq->fifo_time) {
1945 		list_del_init(&rq->queuelist);
1946 		list_replace_init(&next->queuelist, &rq->queuelist);
1947 		rq->fifo_time = next->fifo_time;
1948 	}
1949 
1950 	if (bfqq->next_rq == next)
1951 		bfqq->next_rq = rq;
1952 
1953 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1954 }
1955 
1956 /* Must be called with bfqq != NULL */
1957 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1958 {
1959 	if (bfq_bfqq_busy(bfqq))
1960 		bfqq->bfqd->wr_busy_queues--;
1961 	bfqq->wr_coeff = 1;
1962 	bfqq->wr_cur_max_time = 0;
1963 	bfqq->last_wr_start_finish = jiffies;
1964 	/*
1965 	 * Trigger a weight change on the next invocation of
1966 	 * __bfq_entity_update_weight_prio.
1967 	 */
1968 	bfqq->entity.prio_changed = 1;
1969 }
1970 
1971 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1972 			     struct bfq_group *bfqg)
1973 {
1974 	int i, j;
1975 
1976 	for (i = 0; i < 2; i++)
1977 		for (j = 0; j < IOPRIO_BE_NR; j++)
1978 			if (bfqg->async_bfqq[i][j])
1979 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1980 	if (bfqg->async_idle_bfqq)
1981 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1982 }
1983 
1984 static void bfq_end_wr(struct bfq_data *bfqd)
1985 {
1986 	struct bfq_queue *bfqq;
1987 
1988 	spin_lock_irq(&bfqd->lock);
1989 
1990 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1991 		bfq_bfqq_end_wr(bfqq);
1992 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1993 		bfq_bfqq_end_wr(bfqq);
1994 	bfq_end_wr_async(bfqd);
1995 
1996 	spin_unlock_irq(&bfqd->lock);
1997 }
1998 
1999 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2000 {
2001 	if (request)
2002 		return blk_rq_pos(io_struct);
2003 	else
2004 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2005 }
2006 
2007 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2008 				  sector_t sector)
2009 {
2010 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2011 	       BFQQ_CLOSE_THR;
2012 }
2013 
2014 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2015 					 struct bfq_queue *bfqq,
2016 					 sector_t sector)
2017 {
2018 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2019 	struct rb_node *parent, *node;
2020 	struct bfq_queue *__bfqq;
2021 
2022 	if (RB_EMPTY_ROOT(root))
2023 		return NULL;
2024 
2025 	/*
2026 	 * First, if we find a request starting at the end of the last
2027 	 * request, choose it.
2028 	 */
2029 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2030 	if (__bfqq)
2031 		return __bfqq;
2032 
2033 	/*
2034 	 * If the exact sector wasn't found, the parent of the NULL leaf
2035 	 * will contain the closest sector (rq_pos_tree sorted by
2036 	 * next_request position).
2037 	 */
2038 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2039 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2040 		return __bfqq;
2041 
2042 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2043 		node = rb_next(&__bfqq->pos_node);
2044 	else
2045 		node = rb_prev(&__bfqq->pos_node);
2046 	if (!node)
2047 		return NULL;
2048 
2049 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2050 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2051 		return __bfqq;
2052 
2053 	return NULL;
2054 }
2055 
2056 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2057 						   struct bfq_queue *cur_bfqq,
2058 						   sector_t sector)
2059 {
2060 	struct bfq_queue *bfqq;
2061 
2062 	/*
2063 	 * We shall notice if some of the queues are cooperating,
2064 	 * e.g., working closely on the same area of the device. In
2065 	 * that case, we can group them together and: 1) don't waste
2066 	 * time idling, and 2) serve the union of their requests in
2067 	 * the best possible order for throughput.
2068 	 */
2069 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2070 	if (!bfqq || bfqq == cur_bfqq)
2071 		return NULL;
2072 
2073 	return bfqq;
2074 }
2075 
2076 static struct bfq_queue *
2077 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2078 {
2079 	int process_refs, new_process_refs;
2080 	struct bfq_queue *__bfqq;
2081 
2082 	/*
2083 	 * If there are no process references on the new_bfqq, then it is
2084 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2085 	 * may have dropped their last reference (not just their last process
2086 	 * reference).
2087 	 */
2088 	if (!bfqq_process_refs(new_bfqq))
2089 		return NULL;
2090 
2091 	/* Avoid a circular list and skip interim queue merges. */
2092 	while ((__bfqq = new_bfqq->new_bfqq)) {
2093 		if (__bfqq == bfqq)
2094 			return NULL;
2095 		new_bfqq = __bfqq;
2096 	}
2097 
2098 	process_refs = bfqq_process_refs(bfqq);
2099 	new_process_refs = bfqq_process_refs(new_bfqq);
2100 	/*
2101 	 * If the process for the bfqq has gone away, there is no
2102 	 * sense in merging the queues.
2103 	 */
2104 	if (process_refs == 0 || new_process_refs == 0)
2105 		return NULL;
2106 
2107 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2108 		new_bfqq->pid);
2109 
2110 	/*
2111 	 * Merging is just a redirection: the requests of the process
2112 	 * owning one of the two queues are redirected to the other queue.
2113 	 * The latter queue, in its turn, is set as shared if this is the
2114 	 * first time that the requests of some process are redirected to
2115 	 * it.
2116 	 *
2117 	 * We redirect bfqq to new_bfqq and not the opposite, because
2118 	 * we are in the context of the process owning bfqq, thus we
2119 	 * have the io_cq of this process. So we can immediately
2120 	 * configure this io_cq to redirect the requests of the
2121 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2122 	 * not available any more (new_bfqq->bic == NULL).
2123 	 *
2124 	 * Anyway, even in case new_bfqq coincides with the in-service
2125 	 * queue, redirecting requests the in-service queue is the
2126 	 * best option, as we feed the in-service queue with new
2127 	 * requests close to the last request served and, by doing so,
2128 	 * are likely to increase the throughput.
2129 	 */
2130 	bfqq->new_bfqq = new_bfqq;
2131 	new_bfqq->ref += process_refs;
2132 	return new_bfqq;
2133 }
2134 
2135 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2136 					struct bfq_queue *new_bfqq)
2137 {
2138 	if (bfq_too_late_for_merging(new_bfqq))
2139 		return false;
2140 
2141 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2142 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2143 		return false;
2144 
2145 	/*
2146 	 * If either of the queues has already been detected as seeky,
2147 	 * then merging it with the other queue is unlikely to lead to
2148 	 * sequential I/O.
2149 	 */
2150 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2151 		return false;
2152 
2153 	/*
2154 	 * Interleaved I/O is known to be done by (some) applications
2155 	 * only for reads, so it does not make sense to merge async
2156 	 * queues.
2157 	 */
2158 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2159 		return false;
2160 
2161 	return true;
2162 }
2163 
2164 /*
2165  * Attempt to schedule a merge of bfqq with the currently in-service
2166  * queue or with a close queue among the scheduled queues.  Return
2167  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2168  * structure otherwise.
2169  *
2170  * The OOM queue is not allowed to participate to cooperation: in fact, since
2171  * the requests temporarily redirected to the OOM queue could be redirected
2172  * again to dedicated queues at any time, the state needed to correctly
2173  * handle merging with the OOM queue would be quite complex and expensive
2174  * to maintain. Besides, in such a critical condition as an out of memory,
2175  * the benefits of queue merging may be little relevant, or even negligible.
2176  *
2177  * WARNING: queue merging may impair fairness among non-weight raised
2178  * queues, for at least two reasons: 1) the original weight of a
2179  * merged queue may change during the merged state, 2) even being the
2180  * weight the same, a merged queue may be bloated with many more
2181  * requests than the ones produced by its originally-associated
2182  * process.
2183  */
2184 static struct bfq_queue *
2185 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2186 		     void *io_struct, bool request)
2187 {
2188 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2189 
2190 	/*
2191 	 * Prevent bfqq from being merged if it has been created too
2192 	 * long ago. The idea is that true cooperating processes, and
2193 	 * thus their associated bfq_queues, are supposed to be
2194 	 * created shortly after each other. This is the case, e.g.,
2195 	 * for KVM/QEMU and dump I/O threads. Basing on this
2196 	 * assumption, the following filtering greatly reduces the
2197 	 * probability that two non-cooperating processes, which just
2198 	 * happen to do close I/O for some short time interval, have
2199 	 * their queues merged by mistake.
2200 	 */
2201 	if (bfq_too_late_for_merging(bfqq))
2202 		return NULL;
2203 
2204 	if (bfqq->new_bfqq)
2205 		return bfqq->new_bfqq;
2206 
2207 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2208 		return NULL;
2209 
2210 	/* If there is only one backlogged queue, don't search. */
2211 	if (bfqd->busy_queues == 1)
2212 		return NULL;
2213 
2214 	in_service_bfqq = bfqd->in_service_queue;
2215 
2216 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2217 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2218 	    bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2219 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2220 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2221 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2222 		if (new_bfqq)
2223 			return new_bfqq;
2224 	}
2225 	/*
2226 	 * Check whether there is a cooperator among currently scheduled
2227 	 * queues. The only thing we need is that the bio/request is not
2228 	 * NULL, as we need it to establish whether a cooperator exists.
2229 	 */
2230 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2231 			bfq_io_struct_pos(io_struct, request));
2232 
2233 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2234 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2235 		return bfq_setup_merge(bfqq, new_bfqq);
2236 
2237 	return NULL;
2238 }
2239 
2240 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2241 {
2242 	struct bfq_io_cq *bic = bfqq->bic;
2243 
2244 	/*
2245 	 * If !bfqq->bic, the queue is already shared or its requests
2246 	 * have already been redirected to a shared queue; both idle window
2247 	 * and weight raising state have already been saved. Do nothing.
2248 	 */
2249 	if (!bic)
2250 		return;
2251 
2252 	bic->saved_ttime = bfqq->ttime;
2253 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2254 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2255 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2256 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2257 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2258 		     !bfq_bfqq_in_large_burst(bfqq) &&
2259 		     bfqq->bfqd->low_latency)) {
2260 		/*
2261 		 * bfqq being merged right after being created: bfqq
2262 		 * would have deserved interactive weight raising, but
2263 		 * did not make it to be set in a weight-raised state,
2264 		 * because of this early merge.	Store directly the
2265 		 * weight-raising state that would have been assigned
2266 		 * to bfqq, so that to avoid that bfqq unjustly fails
2267 		 * to enjoy weight raising if split soon.
2268 		 */
2269 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2270 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2271 		bic->saved_last_wr_start_finish = jiffies;
2272 	} else {
2273 		bic->saved_wr_coeff = bfqq->wr_coeff;
2274 		bic->saved_wr_start_at_switch_to_srt =
2275 			bfqq->wr_start_at_switch_to_srt;
2276 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2277 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2278 	}
2279 }
2280 
2281 static void
2282 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2283 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2284 {
2285 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2286 		(unsigned long)new_bfqq->pid);
2287 	/* Save weight raising and idle window of the merged queues */
2288 	bfq_bfqq_save_state(bfqq);
2289 	bfq_bfqq_save_state(new_bfqq);
2290 	if (bfq_bfqq_IO_bound(bfqq))
2291 		bfq_mark_bfqq_IO_bound(new_bfqq);
2292 	bfq_clear_bfqq_IO_bound(bfqq);
2293 
2294 	/*
2295 	 * If bfqq is weight-raised, then let new_bfqq inherit
2296 	 * weight-raising. To reduce false positives, neglect the case
2297 	 * where bfqq has just been created, but has not yet made it
2298 	 * to be weight-raised (which may happen because EQM may merge
2299 	 * bfqq even before bfq_add_request is executed for the first
2300 	 * time for bfqq). Handling this case would however be very
2301 	 * easy, thanks to the flag just_created.
2302 	 */
2303 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2304 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2305 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2306 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2307 		new_bfqq->wr_start_at_switch_to_srt =
2308 			bfqq->wr_start_at_switch_to_srt;
2309 		if (bfq_bfqq_busy(new_bfqq))
2310 			bfqd->wr_busy_queues++;
2311 		new_bfqq->entity.prio_changed = 1;
2312 	}
2313 
2314 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2315 		bfqq->wr_coeff = 1;
2316 		bfqq->entity.prio_changed = 1;
2317 		if (bfq_bfqq_busy(bfqq))
2318 			bfqd->wr_busy_queues--;
2319 	}
2320 
2321 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2322 		     bfqd->wr_busy_queues);
2323 
2324 	/*
2325 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2326 	 */
2327 	bic_set_bfqq(bic, new_bfqq, 1);
2328 	bfq_mark_bfqq_coop(new_bfqq);
2329 	/*
2330 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2331 	 * set new_bfqq->bic to NULL. bfqq either:
2332 	 * - does not belong to any bic any more, and hence bfqq->bic must
2333 	 *   be set to NULL, or
2334 	 * - is a queue whose owning bics have already been redirected to a
2335 	 *   different queue, hence the queue is destined to not belong to
2336 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2337 	 *   assignment causes no harm).
2338 	 */
2339 	new_bfqq->bic = NULL;
2340 	bfqq->bic = NULL;
2341 	/* release process reference to bfqq */
2342 	bfq_put_queue(bfqq);
2343 }
2344 
2345 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2346 				struct bio *bio)
2347 {
2348 	struct bfq_data *bfqd = q->elevator->elevator_data;
2349 	bool is_sync = op_is_sync(bio->bi_opf);
2350 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2351 
2352 	/*
2353 	 * Disallow merge of a sync bio into an async request.
2354 	 */
2355 	if (is_sync && !rq_is_sync(rq))
2356 		return false;
2357 
2358 	/*
2359 	 * Lookup the bfqq that this bio will be queued with. Allow
2360 	 * merge only if rq is queued there.
2361 	 */
2362 	if (!bfqq)
2363 		return false;
2364 
2365 	/*
2366 	 * We take advantage of this function to perform an early merge
2367 	 * of the queues of possible cooperating processes.
2368 	 */
2369 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2370 	if (new_bfqq) {
2371 		/*
2372 		 * bic still points to bfqq, then it has not yet been
2373 		 * redirected to some other bfq_queue, and a queue
2374 		 * merge beween bfqq and new_bfqq can be safely
2375 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2376 		 * and bfqq can be put.
2377 		 */
2378 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2379 				new_bfqq);
2380 		/*
2381 		 * If we get here, bio will be queued into new_queue,
2382 		 * so use new_bfqq to decide whether bio and rq can be
2383 		 * merged.
2384 		 */
2385 		bfqq = new_bfqq;
2386 
2387 		/*
2388 		 * Change also bqfd->bio_bfqq, as
2389 		 * bfqd->bio_bic now points to new_bfqq, and
2390 		 * this function may be invoked again (and then may
2391 		 * use again bqfd->bio_bfqq).
2392 		 */
2393 		bfqd->bio_bfqq = bfqq;
2394 	}
2395 
2396 	return bfqq == RQ_BFQQ(rq);
2397 }
2398 
2399 /*
2400  * Set the maximum time for the in-service queue to consume its
2401  * budget. This prevents seeky processes from lowering the throughput.
2402  * In practice, a time-slice service scheme is used with seeky
2403  * processes.
2404  */
2405 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2406 				   struct bfq_queue *bfqq)
2407 {
2408 	unsigned int timeout_coeff;
2409 
2410 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2411 		timeout_coeff = 1;
2412 	else
2413 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2414 
2415 	bfqd->last_budget_start = ktime_get();
2416 
2417 	bfqq->budget_timeout = jiffies +
2418 		bfqd->bfq_timeout * timeout_coeff;
2419 }
2420 
2421 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2422 				       struct bfq_queue *bfqq)
2423 {
2424 	if (bfqq) {
2425 		bfq_clear_bfqq_fifo_expire(bfqq);
2426 
2427 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2428 
2429 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2430 		    bfqq->wr_coeff > 1 &&
2431 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2432 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2433 			/*
2434 			 * For soft real-time queues, move the start
2435 			 * of the weight-raising period forward by the
2436 			 * time the queue has not received any
2437 			 * service. Otherwise, a relatively long
2438 			 * service delay is likely to cause the
2439 			 * weight-raising period of the queue to end,
2440 			 * because of the short duration of the
2441 			 * weight-raising period of a soft real-time
2442 			 * queue.  It is worth noting that this move
2443 			 * is not so dangerous for the other queues,
2444 			 * because soft real-time queues are not
2445 			 * greedy.
2446 			 *
2447 			 * To not add a further variable, we use the
2448 			 * overloaded field budget_timeout to
2449 			 * determine for how long the queue has not
2450 			 * received service, i.e., how much time has
2451 			 * elapsed since the queue expired. However,
2452 			 * this is a little imprecise, because
2453 			 * budget_timeout is set to jiffies if bfqq
2454 			 * not only expires, but also remains with no
2455 			 * request.
2456 			 */
2457 			if (time_after(bfqq->budget_timeout,
2458 				       bfqq->last_wr_start_finish))
2459 				bfqq->last_wr_start_finish +=
2460 					jiffies - bfqq->budget_timeout;
2461 			else
2462 				bfqq->last_wr_start_finish = jiffies;
2463 		}
2464 
2465 		bfq_set_budget_timeout(bfqd, bfqq);
2466 		bfq_log_bfqq(bfqd, bfqq,
2467 			     "set_in_service_queue, cur-budget = %d",
2468 			     bfqq->entity.budget);
2469 	}
2470 
2471 	bfqd->in_service_queue = bfqq;
2472 }
2473 
2474 /*
2475  * Get and set a new queue for service.
2476  */
2477 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2478 {
2479 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2480 
2481 	__bfq_set_in_service_queue(bfqd, bfqq);
2482 	return bfqq;
2483 }
2484 
2485 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2486 {
2487 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2488 	u32 sl;
2489 
2490 	bfq_mark_bfqq_wait_request(bfqq);
2491 
2492 	/*
2493 	 * We don't want to idle for seeks, but we do want to allow
2494 	 * fair distribution of slice time for a process doing back-to-back
2495 	 * seeks. So allow a little bit of time for him to submit a new rq.
2496 	 */
2497 	sl = bfqd->bfq_slice_idle;
2498 	/*
2499 	 * Unless the queue is being weight-raised or the scenario is
2500 	 * asymmetric, grant only minimum idle time if the queue
2501 	 * is seeky. A long idling is preserved for a weight-raised
2502 	 * queue, or, more in general, in an asymmetric scenario,
2503 	 * because a long idling is needed for guaranteeing to a queue
2504 	 * its reserved share of the throughput (in particular, it is
2505 	 * needed if the queue has a higher weight than some other
2506 	 * queue).
2507 	 */
2508 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2509 	    bfq_symmetric_scenario(bfqd))
2510 		sl = min_t(u64, sl, BFQ_MIN_TT);
2511 
2512 	bfqd->last_idling_start = ktime_get();
2513 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2514 		      HRTIMER_MODE_REL);
2515 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2516 }
2517 
2518 /*
2519  * In autotuning mode, max_budget is dynamically recomputed as the
2520  * amount of sectors transferred in timeout at the estimated peak
2521  * rate. This enables BFQ to utilize a full timeslice with a full
2522  * budget, even if the in-service queue is served at peak rate. And
2523  * this maximises throughput with sequential workloads.
2524  */
2525 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2526 {
2527 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2528 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2529 }
2530 
2531 /*
2532  * Update parameters related to throughput and responsiveness, as a
2533  * function of the estimated peak rate. See comments on
2534  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2535  */
2536 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2537 {
2538 	if (bfqd->bfq_user_max_budget == 0) {
2539 		bfqd->bfq_max_budget =
2540 			bfq_calc_max_budget(bfqd);
2541 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2542 	}
2543 }
2544 
2545 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2546 				       struct request *rq)
2547 {
2548 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2549 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2550 		bfqd->peak_rate_samples = 1;
2551 		bfqd->sequential_samples = 0;
2552 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2553 			blk_rq_sectors(rq);
2554 	} else /* no new rq dispatched, just reset the number of samples */
2555 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2556 
2557 	bfq_log(bfqd,
2558 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2559 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2560 		bfqd->tot_sectors_dispatched);
2561 }
2562 
2563 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2564 {
2565 	u32 rate, weight, divisor;
2566 
2567 	/*
2568 	 * For the convergence property to hold (see comments on
2569 	 * bfq_update_peak_rate()) and for the assessment to be
2570 	 * reliable, a minimum number of samples must be present, and
2571 	 * a minimum amount of time must have elapsed. If not so, do
2572 	 * not compute new rate. Just reset parameters, to get ready
2573 	 * for a new evaluation attempt.
2574 	 */
2575 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2576 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2577 		goto reset_computation;
2578 
2579 	/*
2580 	 * If a new request completion has occurred after last
2581 	 * dispatch, then, to approximate the rate at which requests
2582 	 * have been served by the device, it is more precise to
2583 	 * extend the observation interval to the last completion.
2584 	 */
2585 	bfqd->delta_from_first =
2586 		max_t(u64, bfqd->delta_from_first,
2587 		      bfqd->last_completion - bfqd->first_dispatch);
2588 
2589 	/*
2590 	 * Rate computed in sects/usec, and not sects/nsec, for
2591 	 * precision issues.
2592 	 */
2593 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2594 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2595 
2596 	/*
2597 	 * Peak rate not updated if:
2598 	 * - the percentage of sequential dispatches is below 3/4 of the
2599 	 *   total, and rate is below the current estimated peak rate
2600 	 * - rate is unreasonably high (> 20M sectors/sec)
2601 	 */
2602 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2603 	     rate <= bfqd->peak_rate) ||
2604 		rate > 20<<BFQ_RATE_SHIFT)
2605 		goto reset_computation;
2606 
2607 	/*
2608 	 * We have to update the peak rate, at last! To this purpose,
2609 	 * we use a low-pass filter. We compute the smoothing constant
2610 	 * of the filter as a function of the 'weight' of the new
2611 	 * measured rate.
2612 	 *
2613 	 * As can be seen in next formulas, we define this weight as a
2614 	 * quantity proportional to how sequential the workload is,
2615 	 * and to how long the observation time interval is.
2616 	 *
2617 	 * The weight runs from 0 to 8. The maximum value of the
2618 	 * weight, 8, yields the minimum value for the smoothing
2619 	 * constant. At this minimum value for the smoothing constant,
2620 	 * the measured rate contributes for half of the next value of
2621 	 * the estimated peak rate.
2622 	 *
2623 	 * So, the first step is to compute the weight as a function
2624 	 * of how sequential the workload is. Note that the weight
2625 	 * cannot reach 9, because bfqd->sequential_samples cannot
2626 	 * become equal to bfqd->peak_rate_samples, which, in its
2627 	 * turn, holds true because bfqd->sequential_samples is not
2628 	 * incremented for the first sample.
2629 	 */
2630 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2631 
2632 	/*
2633 	 * Second step: further refine the weight as a function of the
2634 	 * duration of the observation interval.
2635 	 */
2636 	weight = min_t(u32, 8,
2637 		       div_u64(weight * bfqd->delta_from_first,
2638 			       BFQ_RATE_REF_INTERVAL));
2639 
2640 	/*
2641 	 * Divisor ranging from 10, for minimum weight, to 2, for
2642 	 * maximum weight.
2643 	 */
2644 	divisor = 10 - weight;
2645 
2646 	/*
2647 	 * Finally, update peak rate:
2648 	 *
2649 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2650 	 */
2651 	bfqd->peak_rate *= divisor-1;
2652 	bfqd->peak_rate /= divisor;
2653 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2654 
2655 	bfqd->peak_rate += rate;
2656 
2657 	/*
2658 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2659 	 * the minimum representable values reported in the comments
2660 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2661 	 * divisions by zero where bfqd->peak_rate is used as a
2662 	 * divisor.
2663 	 */
2664 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2665 
2666 	update_thr_responsiveness_params(bfqd);
2667 
2668 reset_computation:
2669 	bfq_reset_rate_computation(bfqd, rq);
2670 }
2671 
2672 /*
2673  * Update the read/write peak rate (the main quantity used for
2674  * auto-tuning, see update_thr_responsiveness_params()).
2675  *
2676  * It is not trivial to estimate the peak rate (correctly): because of
2677  * the presence of sw and hw queues between the scheduler and the
2678  * device components that finally serve I/O requests, it is hard to
2679  * say exactly when a given dispatched request is served inside the
2680  * device, and for how long. As a consequence, it is hard to know
2681  * precisely at what rate a given set of requests is actually served
2682  * by the device.
2683  *
2684  * On the opposite end, the dispatch time of any request is trivially
2685  * available, and, from this piece of information, the "dispatch rate"
2686  * of requests can be immediately computed. So, the idea in the next
2687  * function is to use what is known, namely request dispatch times
2688  * (plus, when useful, request completion times), to estimate what is
2689  * unknown, namely in-device request service rate.
2690  *
2691  * The main issue is that, because of the above facts, the rate at
2692  * which a certain set of requests is dispatched over a certain time
2693  * interval can vary greatly with respect to the rate at which the
2694  * same requests are then served. But, since the size of any
2695  * intermediate queue is limited, and the service scheme is lossless
2696  * (no request is silently dropped), the following obvious convergence
2697  * property holds: the number of requests dispatched MUST become
2698  * closer and closer to the number of requests completed as the
2699  * observation interval grows. This is the key property used in
2700  * the next function to estimate the peak service rate as a function
2701  * of the observed dispatch rate. The function assumes to be invoked
2702  * on every request dispatch.
2703  */
2704 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2705 {
2706 	u64 now_ns = ktime_get_ns();
2707 
2708 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2709 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2710 			bfqd->peak_rate_samples);
2711 		bfq_reset_rate_computation(bfqd, rq);
2712 		goto update_last_values; /* will add one sample */
2713 	}
2714 
2715 	/*
2716 	 * Device idle for very long: the observation interval lasting
2717 	 * up to this dispatch cannot be a valid observation interval
2718 	 * for computing a new peak rate (similarly to the late-
2719 	 * completion event in bfq_completed_request()). Go to
2720 	 * update_rate_and_reset to have the following three steps
2721 	 * taken:
2722 	 * - close the observation interval at the last (previous)
2723 	 *   request dispatch or completion
2724 	 * - compute rate, if possible, for that observation interval
2725 	 * - start a new observation interval with this dispatch
2726 	 */
2727 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2728 	    bfqd->rq_in_driver == 0)
2729 		goto update_rate_and_reset;
2730 
2731 	/* Update sampling information */
2732 	bfqd->peak_rate_samples++;
2733 
2734 	if ((bfqd->rq_in_driver > 0 ||
2735 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2736 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2737 		bfqd->sequential_samples++;
2738 
2739 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2740 
2741 	/* Reset max observed rq size every 32 dispatches */
2742 	if (likely(bfqd->peak_rate_samples % 32))
2743 		bfqd->last_rq_max_size =
2744 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2745 	else
2746 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2747 
2748 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2749 
2750 	/* Target observation interval not yet reached, go on sampling */
2751 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2752 		goto update_last_values;
2753 
2754 update_rate_and_reset:
2755 	bfq_update_rate_reset(bfqd, rq);
2756 update_last_values:
2757 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2758 	bfqd->last_dispatch = now_ns;
2759 }
2760 
2761 /*
2762  * Remove request from internal lists.
2763  */
2764 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2765 {
2766 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2767 
2768 	/*
2769 	 * For consistency, the next instruction should have been
2770 	 * executed after removing the request from the queue and
2771 	 * dispatching it.  We execute instead this instruction before
2772 	 * bfq_remove_request() (and hence introduce a temporary
2773 	 * inconsistency), for efficiency.  In fact, should this
2774 	 * dispatch occur for a non in-service bfqq, this anticipated
2775 	 * increment prevents two counters related to bfqq->dispatched
2776 	 * from risking to be, first, uselessly decremented, and then
2777 	 * incremented again when the (new) value of bfqq->dispatched
2778 	 * happens to be taken into account.
2779 	 */
2780 	bfqq->dispatched++;
2781 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2782 
2783 	bfq_remove_request(q, rq);
2784 }
2785 
2786 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2787 {
2788 	/*
2789 	 * If this bfqq is shared between multiple processes, check
2790 	 * to make sure that those processes are still issuing I/Os
2791 	 * within the mean seek distance. If not, it may be time to
2792 	 * break the queues apart again.
2793 	 */
2794 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2795 		bfq_mark_bfqq_split_coop(bfqq);
2796 
2797 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2798 		if (bfqq->dispatched == 0)
2799 			/*
2800 			 * Overloading budget_timeout field to store
2801 			 * the time at which the queue remains with no
2802 			 * backlog and no outstanding request; used by
2803 			 * the weight-raising mechanism.
2804 			 */
2805 			bfqq->budget_timeout = jiffies;
2806 
2807 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2808 	} else {
2809 		bfq_requeue_bfqq(bfqd, bfqq, true);
2810 		/*
2811 		 * Resort priority tree of potential close cooperators.
2812 		 */
2813 		bfq_pos_tree_add_move(bfqd, bfqq);
2814 	}
2815 
2816 	/*
2817 	 * All in-service entities must have been properly deactivated
2818 	 * or requeued before executing the next function, which
2819 	 * resets all in-service entites as no more in service.
2820 	 */
2821 	__bfq_bfqd_reset_in_service(bfqd);
2822 }
2823 
2824 /**
2825  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2826  * @bfqd: device data.
2827  * @bfqq: queue to update.
2828  * @reason: reason for expiration.
2829  *
2830  * Handle the feedback on @bfqq budget at queue expiration.
2831  * See the body for detailed comments.
2832  */
2833 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2834 				     struct bfq_queue *bfqq,
2835 				     enum bfqq_expiration reason)
2836 {
2837 	struct request *next_rq;
2838 	int budget, min_budget;
2839 
2840 	min_budget = bfq_min_budget(bfqd);
2841 
2842 	if (bfqq->wr_coeff == 1)
2843 		budget = bfqq->max_budget;
2844 	else /*
2845 	      * Use a constant, low budget for weight-raised queues,
2846 	      * to help achieve a low latency. Keep it slightly higher
2847 	      * than the minimum possible budget, to cause a little
2848 	      * bit fewer expirations.
2849 	      */
2850 		budget = 2 * min_budget;
2851 
2852 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2853 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2854 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2855 		budget, bfq_min_budget(bfqd));
2856 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2857 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2858 
2859 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2860 		switch (reason) {
2861 		/*
2862 		 * Caveat: in all the following cases we trade latency
2863 		 * for throughput.
2864 		 */
2865 		case BFQQE_TOO_IDLE:
2866 			/*
2867 			 * This is the only case where we may reduce
2868 			 * the budget: if there is no request of the
2869 			 * process still waiting for completion, then
2870 			 * we assume (tentatively) that the timer has
2871 			 * expired because the batch of requests of
2872 			 * the process could have been served with a
2873 			 * smaller budget.  Hence, betting that
2874 			 * process will behave in the same way when it
2875 			 * becomes backlogged again, we reduce its
2876 			 * next budget.  As long as we guess right,
2877 			 * this budget cut reduces the latency
2878 			 * experienced by the process.
2879 			 *
2880 			 * However, if there are still outstanding
2881 			 * requests, then the process may have not yet
2882 			 * issued its next request just because it is
2883 			 * still waiting for the completion of some of
2884 			 * the still outstanding ones.  So in this
2885 			 * subcase we do not reduce its budget, on the
2886 			 * contrary we increase it to possibly boost
2887 			 * the throughput, as discussed in the
2888 			 * comments to the BUDGET_TIMEOUT case.
2889 			 */
2890 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2891 				budget = min(budget * 2, bfqd->bfq_max_budget);
2892 			else {
2893 				if (budget > 5 * min_budget)
2894 					budget -= 4 * min_budget;
2895 				else
2896 					budget = min_budget;
2897 			}
2898 			break;
2899 		case BFQQE_BUDGET_TIMEOUT:
2900 			/*
2901 			 * We double the budget here because it gives
2902 			 * the chance to boost the throughput if this
2903 			 * is not a seeky process (and has bumped into
2904 			 * this timeout because of, e.g., ZBR).
2905 			 */
2906 			budget = min(budget * 2, bfqd->bfq_max_budget);
2907 			break;
2908 		case BFQQE_BUDGET_EXHAUSTED:
2909 			/*
2910 			 * The process still has backlog, and did not
2911 			 * let either the budget timeout or the disk
2912 			 * idling timeout expire. Hence it is not
2913 			 * seeky, has a short thinktime and may be
2914 			 * happy with a higher budget too. So
2915 			 * definitely increase the budget of this good
2916 			 * candidate to boost the disk throughput.
2917 			 */
2918 			budget = min(budget * 4, bfqd->bfq_max_budget);
2919 			break;
2920 		case BFQQE_NO_MORE_REQUESTS:
2921 			/*
2922 			 * For queues that expire for this reason, it
2923 			 * is particularly important to keep the
2924 			 * budget close to the actual service they
2925 			 * need. Doing so reduces the timestamp
2926 			 * misalignment problem described in the
2927 			 * comments in the body of
2928 			 * __bfq_activate_entity. In fact, suppose
2929 			 * that a queue systematically expires for
2930 			 * BFQQE_NO_MORE_REQUESTS and presents a
2931 			 * new request in time to enjoy timestamp
2932 			 * back-shifting. The larger the budget of the
2933 			 * queue is with respect to the service the
2934 			 * queue actually requests in each service
2935 			 * slot, the more times the queue can be
2936 			 * reactivated with the same virtual finish
2937 			 * time. It follows that, even if this finish
2938 			 * time is pushed to the system virtual time
2939 			 * to reduce the consequent timestamp
2940 			 * misalignment, the queue unjustly enjoys for
2941 			 * many re-activations a lower finish time
2942 			 * than all newly activated queues.
2943 			 *
2944 			 * The service needed by bfqq is measured
2945 			 * quite precisely by bfqq->entity.service.
2946 			 * Since bfqq does not enjoy device idling,
2947 			 * bfqq->entity.service is equal to the number
2948 			 * of sectors that the process associated with
2949 			 * bfqq requested to read/write before waiting
2950 			 * for request completions, or blocking for
2951 			 * other reasons.
2952 			 */
2953 			budget = max_t(int, bfqq->entity.service, min_budget);
2954 			break;
2955 		default:
2956 			return;
2957 		}
2958 	} else if (!bfq_bfqq_sync(bfqq)) {
2959 		/*
2960 		 * Async queues get always the maximum possible
2961 		 * budget, as for them we do not care about latency
2962 		 * (in addition, their ability to dispatch is limited
2963 		 * by the charging factor).
2964 		 */
2965 		budget = bfqd->bfq_max_budget;
2966 	}
2967 
2968 	bfqq->max_budget = budget;
2969 
2970 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2971 	    !bfqd->bfq_user_max_budget)
2972 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2973 
2974 	/*
2975 	 * If there is still backlog, then assign a new budget, making
2976 	 * sure that it is large enough for the next request.  Since
2977 	 * the finish time of bfqq must be kept in sync with the
2978 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2979 	 * update.
2980 	 *
2981 	 * If there is no backlog, then no need to update the budget;
2982 	 * it will be updated on the arrival of a new request.
2983 	 */
2984 	next_rq = bfqq->next_rq;
2985 	if (next_rq)
2986 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2987 					    bfq_serv_to_charge(next_rq, bfqq));
2988 
2989 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2990 			next_rq ? blk_rq_sectors(next_rq) : 0,
2991 			bfqq->entity.budget);
2992 }
2993 
2994 /*
2995  * Return true if the process associated with bfqq is "slow". The slow
2996  * flag is used, in addition to the budget timeout, to reduce the
2997  * amount of service provided to seeky processes, and thus reduce
2998  * their chances to lower the throughput. More details in the comments
2999  * on the function bfq_bfqq_expire().
3000  *
3001  * An important observation is in order: as discussed in the comments
3002  * on the function bfq_update_peak_rate(), with devices with internal
3003  * queues, it is hard if ever possible to know when and for how long
3004  * an I/O request is processed by the device (apart from the trivial
3005  * I/O pattern where a new request is dispatched only after the
3006  * previous one has been completed). This makes it hard to evaluate
3007  * the real rate at which the I/O requests of each bfq_queue are
3008  * served.  In fact, for an I/O scheduler like BFQ, serving a
3009  * bfq_queue means just dispatching its requests during its service
3010  * slot (i.e., until the budget of the queue is exhausted, or the
3011  * queue remains idle, or, finally, a timeout fires). But, during the
3012  * service slot of a bfq_queue, around 100 ms at most, the device may
3013  * be even still processing requests of bfq_queues served in previous
3014  * service slots. On the opposite end, the requests of the in-service
3015  * bfq_queue may be completed after the service slot of the queue
3016  * finishes.
3017  *
3018  * Anyway, unless more sophisticated solutions are used
3019  * (where possible), the sum of the sizes of the requests dispatched
3020  * during the service slot of a bfq_queue is probably the only
3021  * approximation available for the service received by the bfq_queue
3022  * during its service slot. And this sum is the quantity used in this
3023  * function to evaluate the I/O speed of a process.
3024  */
3025 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3026 				 bool compensate, enum bfqq_expiration reason,
3027 				 unsigned long *delta_ms)
3028 {
3029 	ktime_t delta_ktime;
3030 	u32 delta_usecs;
3031 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3032 
3033 	if (!bfq_bfqq_sync(bfqq))
3034 		return false;
3035 
3036 	if (compensate)
3037 		delta_ktime = bfqd->last_idling_start;
3038 	else
3039 		delta_ktime = ktime_get();
3040 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3041 	delta_usecs = ktime_to_us(delta_ktime);
3042 
3043 	/* don't use too short time intervals */
3044 	if (delta_usecs < 1000) {
3045 		if (blk_queue_nonrot(bfqd->queue))
3046 			 /*
3047 			  * give same worst-case guarantees as idling
3048 			  * for seeky
3049 			  */
3050 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3051 		else /* charge at least one seek */
3052 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3053 
3054 		return slow;
3055 	}
3056 
3057 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3058 
3059 	/*
3060 	 * Use only long (> 20ms) intervals to filter out excessive
3061 	 * spikes in service rate estimation.
3062 	 */
3063 	if (delta_usecs > 20000) {
3064 		/*
3065 		 * Caveat for rotational devices: processes doing I/O
3066 		 * in the slower disk zones tend to be slow(er) even
3067 		 * if not seeky. In this respect, the estimated peak
3068 		 * rate is likely to be an average over the disk
3069 		 * surface. Accordingly, to not be too harsh with
3070 		 * unlucky processes, a process is deemed slow only if
3071 		 * its rate has been lower than half of the estimated
3072 		 * peak rate.
3073 		 */
3074 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3075 	}
3076 
3077 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3078 
3079 	return slow;
3080 }
3081 
3082 /*
3083  * To be deemed as soft real-time, an application must meet two
3084  * requirements. First, the application must not require an average
3085  * bandwidth higher than the approximate bandwidth required to playback or
3086  * record a compressed high-definition video.
3087  * The next function is invoked on the completion of the last request of a
3088  * batch, to compute the next-start time instant, soft_rt_next_start, such
3089  * that, if the next request of the application does not arrive before
3090  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3091  *
3092  * The second requirement is that the request pattern of the application is
3093  * isochronous, i.e., that, after issuing a request or a batch of requests,
3094  * the application stops issuing new requests until all its pending requests
3095  * have been completed. After that, the application may issue a new batch,
3096  * and so on.
3097  * For this reason the next function is invoked to compute
3098  * soft_rt_next_start only for applications that meet this requirement,
3099  * whereas soft_rt_next_start is set to infinity for applications that do
3100  * not.
3101  *
3102  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3103  * happen to meet, occasionally or systematically, both the above
3104  * bandwidth and isochrony requirements. This may happen at least in
3105  * the following circumstances. First, if the CPU load is high. The
3106  * application may stop issuing requests while the CPUs are busy
3107  * serving other processes, then restart, then stop again for a while,
3108  * and so on. The other circumstances are related to the storage
3109  * device: the storage device is highly loaded or reaches a low-enough
3110  * throughput with the I/O of the application (e.g., because the I/O
3111  * is random and/or the device is slow). In all these cases, the
3112  * I/O of the application may be simply slowed down enough to meet
3113  * the bandwidth and isochrony requirements. To reduce the probability
3114  * that greedy applications are deemed as soft real-time in these
3115  * corner cases, a further rule is used in the computation of
3116  * soft_rt_next_start: the return value of this function is forced to
3117  * be higher than the maximum between the following two quantities.
3118  *
3119  * (a) Current time plus: (1) the maximum time for which the arrival
3120  *     of a request is waited for when a sync queue becomes idle,
3121  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3122  *     postpone for a moment the reason for adding a few extra
3123  *     jiffies; we get back to it after next item (b).  Lower-bounding
3124  *     the return value of this function with the current time plus
3125  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3126  *     because the latter issue their next request as soon as possible
3127  *     after the last one has been completed. In contrast, a soft
3128  *     real-time application spends some time processing data, after a
3129  *     batch of its requests has been completed.
3130  *
3131  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3132  *     above, greedy applications may happen to meet both the
3133  *     bandwidth and isochrony requirements under heavy CPU or
3134  *     storage-device load. In more detail, in these scenarios, these
3135  *     applications happen, only for limited time periods, to do I/O
3136  *     slowly enough to meet all the requirements described so far,
3137  *     including the filtering in above item (a). These slow-speed
3138  *     time intervals are usually interspersed between other time
3139  *     intervals during which these applications do I/O at a very high
3140  *     speed. Fortunately, exactly because of the high speed of the
3141  *     I/O in the high-speed intervals, the values returned by this
3142  *     function happen to be so high, near the end of any such
3143  *     high-speed interval, to be likely to fall *after* the end of
3144  *     the low-speed time interval that follows. These high values are
3145  *     stored in bfqq->soft_rt_next_start after each invocation of
3146  *     this function. As a consequence, if the last value of
3147  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3148  *     next value that this function may return, then, from the very
3149  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3150  *     likely to be constantly kept so high that any I/O request
3151  *     issued during the low-speed interval is considered as arriving
3152  *     to soon for the application to be deemed as soft
3153  *     real-time. Then, in the high-speed interval that follows, the
3154  *     application will not be deemed as soft real-time, just because
3155  *     it will do I/O at a high speed. And so on.
3156  *
3157  * Getting back to the filtering in item (a), in the following two
3158  * cases this filtering might be easily passed by a greedy
3159  * application, if the reference quantity was just
3160  * bfqd->bfq_slice_idle:
3161  * 1) HZ is so low that the duration of a jiffy is comparable to or
3162  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3163  *    devices with HZ=100. The time granularity may be so coarse
3164  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3165  *    is rather lower than the exact value.
3166  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3167  *    for a while, then suddenly 'jump' by several units to recover the lost
3168  *    increments. This seems to happen, e.g., inside virtual machines.
3169  * To address this issue, in the filtering in (a) we do not use as a
3170  * reference time interval just bfqd->bfq_slice_idle, but
3171  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3172  * minimum number of jiffies for which the filter seems to be quite
3173  * precise also in embedded systems and KVM/QEMU virtual machines.
3174  */
3175 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3176 						struct bfq_queue *bfqq)
3177 {
3178 	return max3(bfqq->soft_rt_next_start,
3179 		    bfqq->last_idle_bklogged +
3180 		    HZ * bfqq->service_from_backlogged /
3181 		    bfqd->bfq_wr_max_softrt_rate,
3182 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3183 }
3184 
3185 /**
3186  * bfq_bfqq_expire - expire a queue.
3187  * @bfqd: device owning the queue.
3188  * @bfqq: the queue to expire.
3189  * @compensate: if true, compensate for the time spent idling.
3190  * @reason: the reason causing the expiration.
3191  *
3192  * If the process associated with bfqq does slow I/O (e.g., because it
3193  * issues random requests), we charge bfqq with the time it has been
3194  * in service instead of the service it has received (see
3195  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3196  * a consequence, bfqq will typically get higher timestamps upon
3197  * reactivation, and hence it will be rescheduled as if it had
3198  * received more service than what it has actually received. In the
3199  * end, bfqq receives less service in proportion to how slowly its
3200  * associated process consumes its budgets (and hence how seriously it
3201  * tends to lower the throughput). In addition, this time-charging
3202  * strategy guarantees time fairness among slow processes. In
3203  * contrast, if the process associated with bfqq is not slow, we
3204  * charge bfqq exactly with the service it has received.
3205  *
3206  * Charging time to the first type of queues and the exact service to
3207  * the other has the effect of using the WF2Q+ policy to schedule the
3208  * former on a timeslice basis, without violating service domain
3209  * guarantees among the latter.
3210  */
3211 void bfq_bfqq_expire(struct bfq_data *bfqd,
3212 		     struct bfq_queue *bfqq,
3213 		     bool compensate,
3214 		     enum bfqq_expiration reason)
3215 {
3216 	bool slow;
3217 	unsigned long delta = 0;
3218 	struct bfq_entity *entity = &bfqq->entity;
3219 	int ref;
3220 
3221 	/*
3222 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3223 	 */
3224 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3225 
3226 	/*
3227 	 * As above explained, charge slow (typically seeky) and
3228 	 * timed-out queues with the time and not the service
3229 	 * received, to favor sequential workloads.
3230 	 *
3231 	 * Processes doing I/O in the slower disk zones will tend to
3232 	 * be slow(er) even if not seeky. Therefore, since the
3233 	 * estimated peak rate is actually an average over the disk
3234 	 * surface, these processes may timeout just for bad luck. To
3235 	 * avoid punishing them, do not charge time to processes that
3236 	 * succeeded in consuming at least 2/3 of their budget. This
3237 	 * allows BFQ to preserve enough elasticity to still perform
3238 	 * bandwidth, and not time, distribution with little unlucky
3239 	 * or quasi-sequential processes.
3240 	 */
3241 	if (bfqq->wr_coeff == 1 &&
3242 	    (slow ||
3243 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3244 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3245 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3246 
3247 	if (reason == BFQQE_TOO_IDLE &&
3248 	    entity->service <= 2 * entity->budget / 10)
3249 		bfq_clear_bfqq_IO_bound(bfqq);
3250 
3251 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3252 		bfqq->last_wr_start_finish = jiffies;
3253 
3254 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3255 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3256 		/*
3257 		 * If we get here, and there are no outstanding
3258 		 * requests, then the request pattern is isochronous
3259 		 * (see the comments on the function
3260 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3261 		 * soft_rt_next_start. If, instead, the queue still
3262 		 * has outstanding requests, then we have to wait for
3263 		 * the completion of all the outstanding requests to
3264 		 * discover whether the request pattern is actually
3265 		 * isochronous.
3266 		 */
3267 		if (bfqq->dispatched == 0)
3268 			bfqq->soft_rt_next_start =
3269 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3270 		else {
3271 			/*
3272 			 * Schedule an update of soft_rt_next_start to when
3273 			 * the task may be discovered to be isochronous.
3274 			 */
3275 			bfq_mark_bfqq_softrt_update(bfqq);
3276 		}
3277 	}
3278 
3279 	bfq_log_bfqq(bfqd, bfqq,
3280 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3281 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3282 
3283 	/*
3284 	 * Increase, decrease or leave budget unchanged according to
3285 	 * reason.
3286 	 */
3287 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3288 	ref = bfqq->ref;
3289 	__bfq_bfqq_expire(bfqd, bfqq);
3290 
3291 	if (ref == 1) /* bfqq is gone, no more actions on it */
3292 		return;
3293 
3294 	/* mark bfqq as waiting a request only if a bic still points to it */
3295 	if (!bfq_bfqq_busy(bfqq) &&
3296 	    reason != BFQQE_BUDGET_TIMEOUT &&
3297 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3298 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3299 		/*
3300 		 * Not setting service to 0, because, if the next rq
3301 		 * arrives in time, the queue will go on receiving
3302 		 * service with this same budget (as if it never expired)
3303 		 */
3304 	} else
3305 		entity->service = 0;
3306 
3307 	/*
3308 	 * Reset the received-service counter for every parent entity.
3309 	 * Differently from what happens with bfqq->entity.service,
3310 	 * the resetting of this counter never needs to be postponed
3311 	 * for parent entities. In fact, in case bfqq may have a
3312 	 * chance to go on being served using the last, partially
3313 	 * consumed budget, bfqq->entity.service needs to be kept,
3314 	 * because if bfqq then actually goes on being served using
3315 	 * the same budget, the last value of bfqq->entity.service is
3316 	 * needed to properly decrement bfqq->entity.budget by the
3317 	 * portion already consumed. In contrast, it is not necessary
3318 	 * to keep entity->service for parent entities too, because
3319 	 * the bubble up of the new value of bfqq->entity.budget will
3320 	 * make sure that the budgets of parent entities are correct,
3321 	 * even in case bfqq and thus parent entities go on receiving
3322 	 * service with the same budget.
3323 	 */
3324 	entity = entity->parent;
3325 	for_each_entity(entity)
3326 		entity->service = 0;
3327 }
3328 
3329 /*
3330  * Budget timeout is not implemented through a dedicated timer, but
3331  * just checked on request arrivals and completions, as well as on
3332  * idle timer expirations.
3333  */
3334 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3335 {
3336 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3337 }
3338 
3339 /*
3340  * If we expire a queue that is actively waiting (i.e., with the
3341  * device idled) for the arrival of a new request, then we may incur
3342  * the timestamp misalignment problem described in the body of the
3343  * function __bfq_activate_entity. Hence we return true only if this
3344  * condition does not hold, or if the queue is slow enough to deserve
3345  * only to be kicked off for preserving a high throughput.
3346  */
3347 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3348 {
3349 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3350 		"may_budget_timeout: wait_request %d left %d timeout %d",
3351 		bfq_bfqq_wait_request(bfqq),
3352 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3353 		bfq_bfqq_budget_timeout(bfqq));
3354 
3355 	return (!bfq_bfqq_wait_request(bfqq) ||
3356 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3357 		&&
3358 		bfq_bfqq_budget_timeout(bfqq);
3359 }
3360 
3361 /*
3362  * For a queue that becomes empty, device idling is allowed only if
3363  * this function returns true for the queue. As a consequence, since
3364  * device idling plays a critical role in both throughput boosting and
3365  * service guarantees, the return value of this function plays a
3366  * critical role in both these aspects as well.
3367  *
3368  * In a nutshell, this function returns true only if idling is
3369  * beneficial for throughput or, even if detrimental for throughput,
3370  * idling is however necessary to preserve service guarantees (low
3371  * latency, desired throughput distribution, ...). In particular, on
3372  * NCQ-capable devices, this function tries to return false, so as to
3373  * help keep the drives' internal queues full, whenever this helps the
3374  * device boost the throughput without causing any service-guarantee
3375  * issue.
3376  *
3377  * In more detail, the return value of this function is obtained by,
3378  * first, computing a number of boolean variables that take into
3379  * account throughput and service-guarantee issues, and, then,
3380  * combining these variables in a logical expression. Most of the
3381  * issues taken into account are not trivial. We discuss these issues
3382  * individually while introducing the variables.
3383  */
3384 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3385 {
3386 	struct bfq_data *bfqd = bfqq->bfqd;
3387 	bool rot_without_queueing =
3388 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3389 		bfqq_sequential_and_IO_bound,
3390 		idling_boosts_thr, idling_boosts_thr_without_issues,
3391 		idling_needed_for_service_guarantees,
3392 		asymmetric_scenario;
3393 
3394 	if (bfqd->strict_guarantees)
3395 		return true;
3396 
3397 	/*
3398 	 * Idling is performed only if slice_idle > 0. In addition, we
3399 	 * do not idle if
3400 	 * (a) bfqq is async
3401 	 * (b) bfqq is in the idle io prio class: in this case we do
3402 	 * not idle because we want to minimize the bandwidth that
3403 	 * queues in this class can steal to higher-priority queues
3404 	 */
3405 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3406 	    bfq_class_idle(bfqq))
3407 		return false;
3408 
3409 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3410 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3411 
3412 	/*
3413 	 * The next variable takes into account the cases where idling
3414 	 * boosts the throughput.
3415 	 *
3416 	 * The value of the variable is computed considering, first, that
3417 	 * idling is virtually always beneficial for the throughput if:
3418 	 * (a) the device is not NCQ-capable and rotational, or
3419 	 * (b) regardless of the presence of NCQ, the device is rotational and
3420 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3421 	 * (c) regardless of whether it is rotational, the device is
3422 	 *     not NCQ-capable and the request pattern for bfqq is
3423 	 *     I/O-bound and sequential.
3424 	 *
3425 	 * Secondly, and in contrast to the above item (b), idling an
3426 	 * NCQ-capable flash-based device would not boost the
3427 	 * throughput even with sequential I/O; rather it would lower
3428 	 * the throughput in proportion to how fast the device
3429 	 * is. Accordingly, the next variable is true if any of the
3430 	 * above conditions (a), (b) or (c) is true, and, in
3431 	 * particular, happens to be false if bfqd is an NCQ-capable
3432 	 * flash-based device.
3433 	 */
3434 	idling_boosts_thr = rot_without_queueing ||
3435 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3436 		 bfqq_sequential_and_IO_bound);
3437 
3438 	/*
3439 	 * The value of the next variable,
3440 	 * idling_boosts_thr_without_issues, is equal to that of
3441 	 * idling_boosts_thr, unless a special case holds. In this
3442 	 * special case, described below, idling may cause problems to
3443 	 * weight-raised queues.
3444 	 *
3445 	 * When the request pool is saturated (e.g., in the presence
3446 	 * of write hogs), if the processes associated with
3447 	 * non-weight-raised queues ask for requests at a lower rate,
3448 	 * then processes associated with weight-raised queues have a
3449 	 * higher probability to get a request from the pool
3450 	 * immediately (or at least soon) when they need one. Thus
3451 	 * they have a higher probability to actually get a fraction
3452 	 * of the device throughput proportional to their high
3453 	 * weight. This is especially true with NCQ-capable drives,
3454 	 * which enqueue several requests in advance, and further
3455 	 * reorder internally-queued requests.
3456 	 *
3457 	 * For this reason, we force to false the value of
3458 	 * idling_boosts_thr_without_issues if there are weight-raised
3459 	 * busy queues. In this case, and if bfqq is not weight-raised,
3460 	 * this guarantees that the device is not idled for bfqq (if,
3461 	 * instead, bfqq is weight-raised, then idling will be
3462 	 * guaranteed by another variable, see below). Combined with
3463 	 * the timestamping rules of BFQ (see [1] for details), this
3464 	 * behavior causes bfqq, and hence any sync non-weight-raised
3465 	 * queue, to get a lower number of requests served, and thus
3466 	 * to ask for a lower number of requests from the request
3467 	 * pool, before the busy weight-raised queues get served
3468 	 * again. This often mitigates starvation problems in the
3469 	 * presence of heavy write workloads and NCQ, thereby
3470 	 * guaranteeing a higher application and system responsiveness
3471 	 * in these hostile scenarios.
3472 	 */
3473 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3474 		bfqd->wr_busy_queues == 0;
3475 
3476 	/*
3477 	 * There is then a case where idling must be performed not
3478 	 * for throughput concerns, but to preserve service
3479 	 * guarantees.
3480 	 *
3481 	 * To introduce this case, we can note that allowing the drive
3482 	 * to enqueue more than one request at a time, and hence
3483 	 * delegating de facto final scheduling decisions to the
3484 	 * drive's internal scheduler, entails loss of control on the
3485 	 * actual request service order. In particular, the critical
3486 	 * situation is when requests from different processes happen
3487 	 * to be present, at the same time, in the internal queue(s)
3488 	 * of the drive. In such a situation, the drive, by deciding
3489 	 * the service order of the internally-queued requests, does
3490 	 * determine also the actual throughput distribution among
3491 	 * these processes. But the drive typically has no notion or
3492 	 * concern about per-process throughput distribution, and
3493 	 * makes its decisions only on a per-request basis. Therefore,
3494 	 * the service distribution enforced by the drive's internal
3495 	 * scheduler is likely to coincide with the desired
3496 	 * device-throughput distribution only in a completely
3497 	 * symmetric scenario where:
3498 	 * (i)  each of these processes must get the same throughput as
3499 	 *      the others;
3500 	 * (ii) all these processes have the same I/O pattern
3501 		(either sequential or random).
3502 	 * In fact, in such a scenario, the drive will tend to treat
3503 	 * the requests of each of these processes in about the same
3504 	 * way as the requests of the others, and thus to provide
3505 	 * each of these processes with about the same throughput
3506 	 * (which is exactly the desired throughput distribution). In
3507 	 * contrast, in any asymmetric scenario, device idling is
3508 	 * certainly needed to guarantee that bfqq receives its
3509 	 * assigned fraction of the device throughput (see [1] for
3510 	 * details).
3511 	 *
3512 	 * We address this issue by controlling, actually, only the
3513 	 * symmetry sub-condition (i), i.e., provided that
3514 	 * sub-condition (i) holds, idling is not performed,
3515 	 * regardless of whether sub-condition (ii) holds. In other
3516 	 * words, only if sub-condition (i) holds, then idling is
3517 	 * allowed, and the device tends to be prevented from queueing
3518 	 * many requests, possibly of several processes. The reason
3519 	 * for not controlling also sub-condition (ii) is that we
3520 	 * exploit preemption to preserve guarantees in case of
3521 	 * symmetric scenarios, even if (ii) does not hold, as
3522 	 * explained in the next two paragraphs.
3523 	 *
3524 	 * Even if a queue, say Q, is expired when it remains idle, Q
3525 	 * can still preempt the new in-service queue if the next
3526 	 * request of Q arrives soon (see the comments on
3527 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3528 	 * groups have the same weight, this form of preemption,
3529 	 * combined with the hole-recovery heuristic described in the
3530 	 * comments on function bfq_bfqq_update_budg_for_activation,
3531 	 * are enough to preserve a correct bandwidth distribution in
3532 	 * the mid term, even without idling. In fact, even if not
3533 	 * idling allows the internal queues of the device to contain
3534 	 * many requests, and thus to reorder requests, we can rather
3535 	 * safely assume that the internal scheduler still preserves a
3536 	 * minimum of mid-term fairness. The motivation for using
3537 	 * preemption instead of idling is that, by not idling,
3538 	 * service guarantees are preserved without minimally
3539 	 * sacrificing throughput. In other words, both a high
3540 	 * throughput and its desired distribution are obtained.
3541 	 *
3542 	 * More precisely, this preemption-based, idleless approach
3543 	 * provides fairness in terms of IOPS, and not sectors per
3544 	 * second. This can be seen with a simple example. Suppose
3545 	 * that there are two queues with the same weight, but that
3546 	 * the first queue receives requests of 8 sectors, while the
3547 	 * second queue receives requests of 1024 sectors. In
3548 	 * addition, suppose that each of the two queues contains at
3549 	 * most one request at a time, which implies that each queue
3550 	 * always remains idle after it is served. Finally, after
3551 	 * remaining idle, each queue receives very quickly a new
3552 	 * request. It follows that the two queues are served
3553 	 * alternatively, preempting each other if needed. This
3554 	 * implies that, although both queues have the same weight,
3555 	 * the queue with large requests receives a service that is
3556 	 * 1024/8 times as high as the service received by the other
3557 	 * queue.
3558 	 *
3559 	 * On the other hand, device idling is performed, and thus
3560 	 * pure sector-domain guarantees are provided, for the
3561 	 * following queues, which are likely to need stronger
3562 	 * throughput guarantees: weight-raised queues, and queues
3563 	 * with a higher weight than other queues. When such queues
3564 	 * are active, sub-condition (i) is false, which triggers
3565 	 * device idling.
3566 	 *
3567 	 * According to the above considerations, the next variable is
3568 	 * true (only) if sub-condition (i) holds. To compute the
3569 	 * value of this variable, we not only use the return value of
3570 	 * the function bfq_symmetric_scenario(), but also check
3571 	 * whether bfqq is being weight-raised, because
3572 	 * bfq_symmetric_scenario() does not take into account also
3573 	 * weight-raised queues (see comments on
3574 	 * bfq_weights_tree_add()).
3575 	 *
3576 	 * As a side note, it is worth considering that the above
3577 	 * device-idling countermeasures may however fail in the
3578 	 * following unlucky scenario: if idling is (correctly)
3579 	 * disabled in a time period during which all symmetry
3580 	 * sub-conditions hold, and hence the device is allowed to
3581 	 * enqueue many requests, but at some later point in time some
3582 	 * sub-condition stops to hold, then it may become impossible
3583 	 * to let requests be served in the desired order until all
3584 	 * the requests already queued in the device have been served.
3585 	 */
3586 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3587 		!bfq_symmetric_scenario(bfqd);
3588 
3589 	/*
3590 	 * Finally, there is a case where maximizing throughput is the
3591 	 * best choice even if it may cause unfairness toward
3592 	 * bfqq. Such a case is when bfqq became active in a burst of
3593 	 * queue activations. Queues that became active during a large
3594 	 * burst benefit only from throughput, as discussed in the
3595 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3596 	 * in a burst and not idling the device maximizes throughput,
3597 	 * then the device must no be idled, because not idling the
3598 	 * device provides bfqq and all other queues in the burst with
3599 	 * maximum benefit. Combining this and the above case, we can
3600 	 * now establish when idling is actually needed to preserve
3601 	 * service guarantees.
3602 	 */
3603 	idling_needed_for_service_guarantees =
3604 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3605 
3606 	/*
3607 	 * We have now all the components we need to compute the
3608 	 * return value of the function, which is true only if idling
3609 	 * either boosts the throughput (without issues), or is
3610 	 * necessary to preserve service guarantees.
3611 	 */
3612 	return idling_boosts_thr_without_issues ||
3613 		idling_needed_for_service_guarantees;
3614 }
3615 
3616 /*
3617  * If the in-service queue is empty but the function bfq_better_to_idle
3618  * returns true, then:
3619  * 1) the queue must remain in service and cannot be expired, and
3620  * 2) the device must be idled to wait for the possible arrival of a new
3621  *    request for the queue.
3622  * See the comments on the function bfq_better_to_idle for the reasons
3623  * why performing device idling is the best choice to boost the throughput
3624  * and preserve service guarantees when bfq_better_to_idle itself
3625  * returns true.
3626  */
3627 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3628 {
3629 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3630 }
3631 
3632 /*
3633  * Select a queue for service.  If we have a current queue in service,
3634  * check whether to continue servicing it, or retrieve and set a new one.
3635  */
3636 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3637 {
3638 	struct bfq_queue *bfqq;
3639 	struct request *next_rq;
3640 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3641 
3642 	bfqq = bfqd->in_service_queue;
3643 	if (!bfqq)
3644 		goto new_queue;
3645 
3646 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3647 
3648 	/*
3649 	 * Do not expire bfqq for budget timeout if bfqq may be about
3650 	 * to enjoy device idling. The reason why, in this case, we
3651 	 * prevent bfqq from expiring is the same as in the comments
3652 	 * on the case where bfq_bfqq_must_idle() returns true, in
3653 	 * bfq_completed_request().
3654 	 */
3655 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3656 	    !bfq_bfqq_must_idle(bfqq))
3657 		goto expire;
3658 
3659 check_queue:
3660 	/*
3661 	 * This loop is rarely executed more than once. Even when it
3662 	 * happens, it is much more convenient to re-execute this loop
3663 	 * than to return NULL and trigger a new dispatch to get a
3664 	 * request served.
3665 	 */
3666 	next_rq = bfqq->next_rq;
3667 	/*
3668 	 * If bfqq has requests queued and it has enough budget left to
3669 	 * serve them, keep the queue, otherwise expire it.
3670 	 */
3671 	if (next_rq) {
3672 		if (bfq_serv_to_charge(next_rq, bfqq) >
3673 			bfq_bfqq_budget_left(bfqq)) {
3674 			/*
3675 			 * Expire the queue for budget exhaustion,
3676 			 * which makes sure that the next budget is
3677 			 * enough to serve the next request, even if
3678 			 * it comes from the fifo expired path.
3679 			 */
3680 			reason = BFQQE_BUDGET_EXHAUSTED;
3681 			goto expire;
3682 		} else {
3683 			/*
3684 			 * The idle timer may be pending because we may
3685 			 * not disable disk idling even when a new request
3686 			 * arrives.
3687 			 */
3688 			if (bfq_bfqq_wait_request(bfqq)) {
3689 				/*
3690 				 * If we get here: 1) at least a new request
3691 				 * has arrived but we have not disabled the
3692 				 * timer because the request was too small,
3693 				 * 2) then the block layer has unplugged
3694 				 * the device, causing the dispatch to be
3695 				 * invoked.
3696 				 *
3697 				 * Since the device is unplugged, now the
3698 				 * requests are probably large enough to
3699 				 * provide a reasonable throughput.
3700 				 * So we disable idling.
3701 				 */
3702 				bfq_clear_bfqq_wait_request(bfqq);
3703 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3704 			}
3705 			goto keep_queue;
3706 		}
3707 	}
3708 
3709 	/*
3710 	 * No requests pending. However, if the in-service queue is idling
3711 	 * for a new request, or has requests waiting for a completion and
3712 	 * may idle after their completion, then keep it anyway.
3713 	 */
3714 	if (bfq_bfqq_wait_request(bfqq) ||
3715 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3716 		bfqq = NULL;
3717 		goto keep_queue;
3718 	}
3719 
3720 	reason = BFQQE_NO_MORE_REQUESTS;
3721 expire:
3722 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3723 new_queue:
3724 	bfqq = bfq_set_in_service_queue(bfqd);
3725 	if (bfqq) {
3726 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3727 		goto check_queue;
3728 	}
3729 keep_queue:
3730 	if (bfqq)
3731 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3732 	else
3733 		bfq_log(bfqd, "select_queue: no queue returned");
3734 
3735 	return bfqq;
3736 }
3737 
3738 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3739 {
3740 	struct bfq_entity *entity = &bfqq->entity;
3741 
3742 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3743 		bfq_log_bfqq(bfqd, bfqq,
3744 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3745 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3746 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3747 			bfqq->wr_coeff,
3748 			bfqq->entity.weight, bfqq->entity.orig_weight);
3749 
3750 		if (entity->prio_changed)
3751 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3752 
3753 		/*
3754 		 * If the queue was activated in a burst, or too much
3755 		 * time has elapsed from the beginning of this
3756 		 * weight-raising period, then end weight raising.
3757 		 */
3758 		if (bfq_bfqq_in_large_burst(bfqq))
3759 			bfq_bfqq_end_wr(bfqq);
3760 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3761 						bfqq->wr_cur_max_time)) {
3762 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3763 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3764 					       bfq_wr_duration(bfqd)))
3765 				bfq_bfqq_end_wr(bfqq);
3766 			else {
3767 				switch_back_to_interactive_wr(bfqq, bfqd);
3768 				bfqq->entity.prio_changed = 1;
3769 			}
3770 		}
3771 		if (bfqq->wr_coeff > 1 &&
3772 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3773 		    bfqq->service_from_wr > max_service_from_wr) {
3774 			/* see comments on max_service_from_wr */
3775 			bfq_bfqq_end_wr(bfqq);
3776 		}
3777 	}
3778 	/*
3779 	 * To improve latency (for this or other queues), immediately
3780 	 * update weight both if it must be raised and if it must be
3781 	 * lowered. Since, entity may be on some active tree here, and
3782 	 * might have a pending change of its ioprio class, invoke
3783 	 * next function with the last parameter unset (see the
3784 	 * comments on the function).
3785 	 */
3786 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3787 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3788 						entity, false);
3789 }
3790 
3791 /*
3792  * Dispatch next request from bfqq.
3793  */
3794 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3795 						 struct bfq_queue *bfqq)
3796 {
3797 	struct request *rq = bfqq->next_rq;
3798 	unsigned long service_to_charge;
3799 
3800 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3801 
3802 	bfq_bfqq_served(bfqq, service_to_charge);
3803 
3804 	bfq_dispatch_remove(bfqd->queue, rq);
3805 
3806 	/*
3807 	 * If weight raising has to terminate for bfqq, then next
3808 	 * function causes an immediate update of bfqq's weight,
3809 	 * without waiting for next activation. As a consequence, on
3810 	 * expiration, bfqq will be timestamped as if has never been
3811 	 * weight-raised during this service slot, even if it has
3812 	 * received part or even most of the service as a
3813 	 * weight-raised queue. This inflates bfqq's timestamps, which
3814 	 * is beneficial, as bfqq is then more willing to leave the
3815 	 * device immediately to possible other weight-raised queues.
3816 	 */
3817 	bfq_update_wr_data(bfqd, bfqq);
3818 
3819 	/*
3820 	 * Expire bfqq, pretending that its budget expired, if bfqq
3821 	 * belongs to CLASS_IDLE and other queues are waiting for
3822 	 * service.
3823 	 */
3824 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3825 		goto expire;
3826 
3827 	return rq;
3828 
3829 expire:
3830 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3831 	return rq;
3832 }
3833 
3834 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3835 {
3836 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3837 
3838 	/*
3839 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3840 	 * most a call to dispatch for nothing
3841 	 */
3842 	return !list_empty_careful(&bfqd->dispatch) ||
3843 		bfqd->busy_queues > 0;
3844 }
3845 
3846 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3847 {
3848 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3849 	struct request *rq = NULL;
3850 	struct bfq_queue *bfqq = NULL;
3851 
3852 	if (!list_empty(&bfqd->dispatch)) {
3853 		rq = list_first_entry(&bfqd->dispatch, struct request,
3854 				      queuelist);
3855 		list_del_init(&rq->queuelist);
3856 
3857 		bfqq = RQ_BFQQ(rq);
3858 
3859 		if (bfqq) {
3860 			/*
3861 			 * Increment counters here, because this
3862 			 * dispatch does not follow the standard
3863 			 * dispatch flow (where counters are
3864 			 * incremented)
3865 			 */
3866 			bfqq->dispatched++;
3867 
3868 			goto inc_in_driver_start_rq;
3869 		}
3870 
3871 		/*
3872 		 * We exploit the bfq_finish_requeue_request hook to
3873 		 * decrement rq_in_driver, but
3874 		 * bfq_finish_requeue_request will not be invoked on
3875 		 * this request. So, to avoid unbalance, just start
3876 		 * this request, without incrementing rq_in_driver. As
3877 		 * a negative consequence, rq_in_driver is deceptively
3878 		 * lower than it should be while this request is in
3879 		 * service. This may cause bfq_schedule_dispatch to be
3880 		 * invoked uselessly.
3881 		 *
3882 		 * As for implementing an exact solution, the
3883 		 * bfq_finish_requeue_request hook, if defined, is
3884 		 * probably invoked also on this request. So, by
3885 		 * exploiting this hook, we could 1) increment
3886 		 * rq_in_driver here, and 2) decrement it in
3887 		 * bfq_finish_requeue_request. Such a solution would
3888 		 * let the value of the counter be always accurate,
3889 		 * but it would entail using an extra interface
3890 		 * function. This cost seems higher than the benefit,
3891 		 * being the frequency of non-elevator-private
3892 		 * requests very low.
3893 		 */
3894 		goto start_rq;
3895 	}
3896 
3897 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3898 
3899 	if (bfqd->busy_queues == 0)
3900 		goto exit;
3901 
3902 	/*
3903 	 * Force device to serve one request at a time if
3904 	 * strict_guarantees is true. Forcing this service scheme is
3905 	 * currently the ONLY way to guarantee that the request
3906 	 * service order enforced by the scheduler is respected by a
3907 	 * queueing device. Otherwise the device is free even to make
3908 	 * some unlucky request wait for as long as the device
3909 	 * wishes.
3910 	 *
3911 	 * Of course, serving one request at at time may cause loss of
3912 	 * throughput.
3913 	 */
3914 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3915 		goto exit;
3916 
3917 	bfqq = bfq_select_queue(bfqd);
3918 	if (!bfqq)
3919 		goto exit;
3920 
3921 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3922 
3923 	if (rq) {
3924 inc_in_driver_start_rq:
3925 		bfqd->rq_in_driver++;
3926 start_rq:
3927 		rq->rq_flags |= RQF_STARTED;
3928 	}
3929 exit:
3930 	return rq;
3931 }
3932 
3933 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3934 static void bfq_update_dispatch_stats(struct request_queue *q,
3935 				      struct request *rq,
3936 				      struct bfq_queue *in_serv_queue,
3937 				      bool idle_timer_disabled)
3938 {
3939 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
3940 
3941 	if (!idle_timer_disabled && !bfqq)
3942 		return;
3943 
3944 	/*
3945 	 * rq and bfqq are guaranteed to exist until this function
3946 	 * ends, for the following reasons. First, rq can be
3947 	 * dispatched to the device, and then can be completed and
3948 	 * freed, only after this function ends. Second, rq cannot be
3949 	 * merged (and thus freed because of a merge) any longer,
3950 	 * because it has already started. Thus rq cannot be freed
3951 	 * before this function ends, and, since rq has a reference to
3952 	 * bfqq, the same guarantee holds for bfqq too.
3953 	 *
3954 	 * In addition, the following queue lock guarantees that
3955 	 * bfqq_group(bfqq) exists as well.
3956 	 */
3957 	spin_lock_irq(q->queue_lock);
3958 	if (idle_timer_disabled)
3959 		/*
3960 		 * Since the idle timer has been disabled,
3961 		 * in_serv_queue contained some request when
3962 		 * __bfq_dispatch_request was invoked above, which
3963 		 * implies that rq was picked exactly from
3964 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3965 		 * therefore guaranteed to exist because of the above
3966 		 * arguments.
3967 		 */
3968 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3969 	if (bfqq) {
3970 		struct bfq_group *bfqg = bfqq_group(bfqq);
3971 
3972 		bfqg_stats_update_avg_queue_size(bfqg);
3973 		bfqg_stats_set_start_empty_time(bfqg);
3974 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3975 	}
3976 	spin_unlock_irq(q->queue_lock);
3977 }
3978 #else
3979 static inline void bfq_update_dispatch_stats(struct request_queue *q,
3980 					     struct request *rq,
3981 					     struct bfq_queue *in_serv_queue,
3982 					     bool idle_timer_disabled) {}
3983 #endif
3984 
3985 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3986 {
3987 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3988 	struct request *rq;
3989 	struct bfq_queue *in_serv_queue;
3990 	bool waiting_rq, idle_timer_disabled;
3991 
3992 	spin_lock_irq(&bfqd->lock);
3993 
3994 	in_serv_queue = bfqd->in_service_queue;
3995 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3996 
3997 	rq = __bfq_dispatch_request(hctx);
3998 
3999 	idle_timer_disabled =
4000 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4001 
4002 	spin_unlock_irq(&bfqd->lock);
4003 
4004 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4005 				  idle_timer_disabled);
4006 
4007 	return rq;
4008 }
4009 
4010 /*
4011  * Task holds one reference to the queue, dropped when task exits.  Each rq
4012  * in-flight on this queue also holds a reference, dropped when rq is freed.
4013  *
4014  * Scheduler lock must be held here. Recall not to use bfqq after calling
4015  * this function on it.
4016  */
4017 void bfq_put_queue(struct bfq_queue *bfqq)
4018 {
4019 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4020 	struct bfq_group *bfqg = bfqq_group(bfqq);
4021 #endif
4022 
4023 	if (bfqq->bfqd)
4024 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4025 			     bfqq, bfqq->ref);
4026 
4027 	bfqq->ref--;
4028 	if (bfqq->ref)
4029 		return;
4030 
4031 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4032 		hlist_del_init(&bfqq->burst_list_node);
4033 		/*
4034 		 * Decrement also burst size after the removal, if the
4035 		 * process associated with bfqq is exiting, and thus
4036 		 * does not contribute to the burst any longer. This
4037 		 * decrement helps filter out false positives of large
4038 		 * bursts, when some short-lived process (often due to
4039 		 * the execution of commands by some service) happens
4040 		 * to start and exit while a complex application is
4041 		 * starting, and thus spawning several processes that
4042 		 * do I/O (and that *must not* be treated as a large
4043 		 * burst, see comments on bfq_handle_burst).
4044 		 *
4045 		 * In particular, the decrement is performed only if:
4046 		 * 1) bfqq is not a merged queue, because, if it is,
4047 		 * then this free of bfqq is not triggered by the exit
4048 		 * of the process bfqq is associated with, but exactly
4049 		 * by the fact that bfqq has just been merged.
4050 		 * 2) burst_size is greater than 0, to handle
4051 		 * unbalanced decrements. Unbalanced decrements may
4052 		 * happen in te following case: bfqq is inserted into
4053 		 * the current burst list--without incrementing
4054 		 * bust_size--because of a split, but the current
4055 		 * burst list is not the burst list bfqq belonged to
4056 		 * (see comments on the case of a split in
4057 		 * bfq_set_request).
4058 		 */
4059 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4060 			bfqq->bfqd->burst_size--;
4061 	}
4062 
4063 	kmem_cache_free(bfq_pool, bfqq);
4064 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4065 	bfqg_and_blkg_put(bfqg);
4066 #endif
4067 }
4068 
4069 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4070 {
4071 	struct bfq_queue *__bfqq, *next;
4072 
4073 	/*
4074 	 * If this queue was scheduled to merge with another queue, be
4075 	 * sure to drop the reference taken on that queue (and others in
4076 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4077 	 */
4078 	__bfqq = bfqq->new_bfqq;
4079 	while (__bfqq) {
4080 		if (__bfqq == bfqq)
4081 			break;
4082 		next = __bfqq->new_bfqq;
4083 		bfq_put_queue(__bfqq);
4084 		__bfqq = next;
4085 	}
4086 }
4087 
4088 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4089 {
4090 	if (bfqq == bfqd->in_service_queue) {
4091 		__bfq_bfqq_expire(bfqd, bfqq);
4092 		bfq_schedule_dispatch(bfqd);
4093 	}
4094 
4095 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4096 
4097 	bfq_put_cooperator(bfqq);
4098 
4099 	bfq_put_queue(bfqq); /* release process reference */
4100 }
4101 
4102 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4103 {
4104 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4105 	struct bfq_data *bfqd;
4106 
4107 	if (bfqq)
4108 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4109 
4110 	if (bfqq && bfqd) {
4111 		unsigned long flags;
4112 
4113 		spin_lock_irqsave(&bfqd->lock, flags);
4114 		bfq_exit_bfqq(bfqd, bfqq);
4115 		bic_set_bfqq(bic, NULL, is_sync);
4116 		spin_unlock_irqrestore(&bfqd->lock, flags);
4117 	}
4118 }
4119 
4120 static void bfq_exit_icq(struct io_cq *icq)
4121 {
4122 	struct bfq_io_cq *bic = icq_to_bic(icq);
4123 
4124 	bfq_exit_icq_bfqq(bic, true);
4125 	bfq_exit_icq_bfqq(bic, false);
4126 }
4127 
4128 /*
4129  * Update the entity prio values; note that the new values will not
4130  * be used until the next (re)activation.
4131  */
4132 static void
4133 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4134 {
4135 	struct task_struct *tsk = current;
4136 	int ioprio_class;
4137 	struct bfq_data *bfqd = bfqq->bfqd;
4138 
4139 	if (!bfqd)
4140 		return;
4141 
4142 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4143 	switch (ioprio_class) {
4144 	default:
4145 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4146 			"bfq: bad prio class %d\n", ioprio_class);
4147 		/* fall through */
4148 	case IOPRIO_CLASS_NONE:
4149 		/*
4150 		 * No prio set, inherit CPU scheduling settings.
4151 		 */
4152 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4153 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4154 		break;
4155 	case IOPRIO_CLASS_RT:
4156 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4157 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4158 		break;
4159 	case IOPRIO_CLASS_BE:
4160 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4161 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4162 		break;
4163 	case IOPRIO_CLASS_IDLE:
4164 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4165 		bfqq->new_ioprio = 7;
4166 		break;
4167 	}
4168 
4169 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4170 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4171 			bfqq->new_ioprio);
4172 		bfqq->new_ioprio = IOPRIO_BE_NR;
4173 	}
4174 
4175 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4176 	bfqq->entity.prio_changed = 1;
4177 }
4178 
4179 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4180 				       struct bio *bio, bool is_sync,
4181 				       struct bfq_io_cq *bic);
4182 
4183 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4184 {
4185 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4186 	struct bfq_queue *bfqq;
4187 	int ioprio = bic->icq.ioc->ioprio;
4188 
4189 	/*
4190 	 * This condition may trigger on a newly created bic, be sure to
4191 	 * drop the lock before returning.
4192 	 */
4193 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4194 		return;
4195 
4196 	bic->ioprio = ioprio;
4197 
4198 	bfqq = bic_to_bfqq(bic, false);
4199 	if (bfqq) {
4200 		/* release process reference on this queue */
4201 		bfq_put_queue(bfqq);
4202 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4203 		bic_set_bfqq(bic, bfqq, false);
4204 	}
4205 
4206 	bfqq = bic_to_bfqq(bic, true);
4207 	if (bfqq)
4208 		bfq_set_next_ioprio_data(bfqq, bic);
4209 }
4210 
4211 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4212 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4213 {
4214 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4215 	INIT_LIST_HEAD(&bfqq->fifo);
4216 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4217 
4218 	bfqq->ref = 0;
4219 	bfqq->bfqd = bfqd;
4220 
4221 	if (bic)
4222 		bfq_set_next_ioprio_data(bfqq, bic);
4223 
4224 	if (is_sync) {
4225 		/*
4226 		 * No need to mark as has_short_ttime if in
4227 		 * idle_class, because no device idling is performed
4228 		 * for queues in idle class
4229 		 */
4230 		if (!bfq_class_idle(bfqq))
4231 			/* tentatively mark as has_short_ttime */
4232 			bfq_mark_bfqq_has_short_ttime(bfqq);
4233 		bfq_mark_bfqq_sync(bfqq);
4234 		bfq_mark_bfqq_just_created(bfqq);
4235 	} else
4236 		bfq_clear_bfqq_sync(bfqq);
4237 
4238 	/* set end request to minus infinity from now */
4239 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4240 
4241 	bfq_mark_bfqq_IO_bound(bfqq);
4242 
4243 	bfqq->pid = pid;
4244 
4245 	/* Tentative initial value to trade off between thr and lat */
4246 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4247 	bfqq->budget_timeout = bfq_smallest_from_now();
4248 
4249 	bfqq->wr_coeff = 1;
4250 	bfqq->last_wr_start_finish = jiffies;
4251 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4252 	bfqq->split_time = bfq_smallest_from_now();
4253 
4254 	/*
4255 	 * To not forget the possibly high bandwidth consumed by a
4256 	 * process/queue in the recent past,
4257 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4258 	 * to the current value of bfqq->soft_rt_next_start (see
4259 	 * comments on bfq_bfqq_softrt_next_start).  Set
4260 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4261 	 * no bandwidth so far.
4262 	 */
4263 	bfqq->soft_rt_next_start = jiffies;
4264 
4265 	/* first request is almost certainly seeky */
4266 	bfqq->seek_history = 1;
4267 }
4268 
4269 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4270 					       struct bfq_group *bfqg,
4271 					       int ioprio_class, int ioprio)
4272 {
4273 	switch (ioprio_class) {
4274 	case IOPRIO_CLASS_RT:
4275 		return &bfqg->async_bfqq[0][ioprio];
4276 	case IOPRIO_CLASS_NONE:
4277 		ioprio = IOPRIO_NORM;
4278 		/* fall through */
4279 	case IOPRIO_CLASS_BE:
4280 		return &bfqg->async_bfqq[1][ioprio];
4281 	case IOPRIO_CLASS_IDLE:
4282 		return &bfqg->async_idle_bfqq;
4283 	default:
4284 		return NULL;
4285 	}
4286 }
4287 
4288 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4289 				       struct bio *bio, bool is_sync,
4290 				       struct bfq_io_cq *bic)
4291 {
4292 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4293 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4294 	struct bfq_queue **async_bfqq = NULL;
4295 	struct bfq_queue *bfqq;
4296 	struct bfq_group *bfqg;
4297 
4298 	rcu_read_lock();
4299 
4300 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4301 	if (!bfqg) {
4302 		bfqq = &bfqd->oom_bfqq;
4303 		goto out;
4304 	}
4305 
4306 	if (!is_sync) {
4307 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4308 						  ioprio);
4309 		bfqq = *async_bfqq;
4310 		if (bfqq)
4311 			goto out;
4312 	}
4313 
4314 	bfqq = kmem_cache_alloc_node(bfq_pool,
4315 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4316 				     bfqd->queue->node);
4317 
4318 	if (bfqq) {
4319 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4320 			      is_sync);
4321 		bfq_init_entity(&bfqq->entity, bfqg);
4322 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4323 	} else {
4324 		bfqq = &bfqd->oom_bfqq;
4325 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4326 		goto out;
4327 	}
4328 
4329 	/*
4330 	 * Pin the queue now that it's allocated, scheduler exit will
4331 	 * prune it.
4332 	 */
4333 	if (async_bfqq) {
4334 		bfqq->ref++; /*
4335 			      * Extra group reference, w.r.t. sync
4336 			      * queue. This extra reference is removed
4337 			      * only if bfqq->bfqg disappears, to
4338 			      * guarantee that this queue is not freed
4339 			      * until its group goes away.
4340 			      */
4341 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4342 			     bfqq, bfqq->ref);
4343 		*async_bfqq = bfqq;
4344 	}
4345 
4346 out:
4347 	bfqq->ref++; /* get a process reference to this queue */
4348 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4349 	rcu_read_unlock();
4350 	return bfqq;
4351 }
4352 
4353 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4354 				    struct bfq_queue *bfqq)
4355 {
4356 	struct bfq_ttime *ttime = &bfqq->ttime;
4357 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4358 
4359 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4360 
4361 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4362 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4363 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4364 				     ttime->ttime_samples);
4365 }
4366 
4367 static void
4368 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4369 		       struct request *rq)
4370 {
4371 	bfqq->seek_history <<= 1;
4372 	bfqq->seek_history |=
4373 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4374 		(!blk_queue_nonrot(bfqd->queue) ||
4375 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4376 }
4377 
4378 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4379 				       struct bfq_queue *bfqq,
4380 				       struct bfq_io_cq *bic)
4381 {
4382 	bool has_short_ttime = true;
4383 
4384 	/*
4385 	 * No need to update has_short_ttime if bfqq is async or in
4386 	 * idle io prio class, or if bfq_slice_idle is zero, because
4387 	 * no device idling is performed for bfqq in this case.
4388 	 */
4389 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4390 	    bfqd->bfq_slice_idle == 0)
4391 		return;
4392 
4393 	/* Idle window just restored, statistics are meaningless. */
4394 	if (time_is_after_eq_jiffies(bfqq->split_time +
4395 				     bfqd->bfq_wr_min_idle_time))
4396 		return;
4397 
4398 	/* Think time is infinite if no process is linked to
4399 	 * bfqq. Otherwise check average think time to
4400 	 * decide whether to mark as has_short_ttime
4401 	 */
4402 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4403 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4404 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4405 		has_short_ttime = false;
4406 
4407 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4408 		     has_short_ttime);
4409 
4410 	if (has_short_ttime)
4411 		bfq_mark_bfqq_has_short_ttime(bfqq);
4412 	else
4413 		bfq_clear_bfqq_has_short_ttime(bfqq);
4414 }
4415 
4416 /*
4417  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4418  * something we should do about it.
4419  */
4420 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4421 			    struct request *rq)
4422 {
4423 	struct bfq_io_cq *bic = RQ_BIC(rq);
4424 
4425 	if (rq->cmd_flags & REQ_META)
4426 		bfqq->meta_pending++;
4427 
4428 	bfq_update_io_thinktime(bfqd, bfqq);
4429 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4430 	bfq_update_io_seektime(bfqd, bfqq, rq);
4431 
4432 	bfq_log_bfqq(bfqd, bfqq,
4433 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4434 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4435 
4436 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4437 
4438 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4439 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4440 				 blk_rq_sectors(rq) < 32;
4441 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4442 
4443 		/*
4444 		 * There is just this request queued: if the request
4445 		 * is small and the queue is not to be expired, then
4446 		 * just exit.
4447 		 *
4448 		 * In this way, if the device is being idled to wait
4449 		 * for a new request from the in-service queue, we
4450 		 * avoid unplugging the device and committing the
4451 		 * device to serve just a small request. On the
4452 		 * contrary, we wait for the block layer to decide
4453 		 * when to unplug the device: hopefully, new requests
4454 		 * will be merged to this one quickly, then the device
4455 		 * will be unplugged and larger requests will be
4456 		 * dispatched.
4457 		 */
4458 		if (small_req && !budget_timeout)
4459 			return;
4460 
4461 		/*
4462 		 * A large enough request arrived, or the queue is to
4463 		 * be expired: in both cases disk idling is to be
4464 		 * stopped, so clear wait_request flag and reset
4465 		 * timer.
4466 		 */
4467 		bfq_clear_bfqq_wait_request(bfqq);
4468 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4469 
4470 		/*
4471 		 * The queue is not empty, because a new request just
4472 		 * arrived. Hence we can safely expire the queue, in
4473 		 * case of budget timeout, without risking that the
4474 		 * timestamps of the queue are not updated correctly.
4475 		 * See [1] for more details.
4476 		 */
4477 		if (budget_timeout)
4478 			bfq_bfqq_expire(bfqd, bfqq, false,
4479 					BFQQE_BUDGET_TIMEOUT);
4480 	}
4481 }
4482 
4483 /* returns true if it causes the idle timer to be disabled */
4484 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4485 {
4486 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4487 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4488 	bool waiting, idle_timer_disabled = false;
4489 
4490 	if (new_bfqq) {
4491 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4492 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4493 		/*
4494 		 * Release the request's reference to the old bfqq
4495 		 * and make sure one is taken to the shared queue.
4496 		 */
4497 		new_bfqq->allocated++;
4498 		bfqq->allocated--;
4499 		new_bfqq->ref++;
4500 		/*
4501 		 * If the bic associated with the process
4502 		 * issuing this request still points to bfqq
4503 		 * (and thus has not been already redirected
4504 		 * to new_bfqq or even some other bfq_queue),
4505 		 * then complete the merge and redirect it to
4506 		 * new_bfqq.
4507 		 */
4508 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4509 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4510 					bfqq, new_bfqq);
4511 
4512 		bfq_clear_bfqq_just_created(bfqq);
4513 		/*
4514 		 * rq is about to be enqueued into new_bfqq,
4515 		 * release rq reference on bfqq
4516 		 */
4517 		bfq_put_queue(bfqq);
4518 		rq->elv.priv[1] = new_bfqq;
4519 		bfqq = new_bfqq;
4520 	}
4521 
4522 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4523 	bfq_add_request(rq);
4524 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4525 
4526 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4527 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4528 
4529 	bfq_rq_enqueued(bfqd, bfqq, rq);
4530 
4531 	return idle_timer_disabled;
4532 }
4533 
4534 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4535 static void bfq_update_insert_stats(struct request_queue *q,
4536 				    struct bfq_queue *bfqq,
4537 				    bool idle_timer_disabled,
4538 				    unsigned int cmd_flags)
4539 {
4540 	if (!bfqq)
4541 		return;
4542 
4543 	/*
4544 	 * bfqq still exists, because it can disappear only after
4545 	 * either it is merged with another queue, or the process it
4546 	 * is associated with exits. But both actions must be taken by
4547 	 * the same process currently executing this flow of
4548 	 * instructions.
4549 	 *
4550 	 * In addition, the following queue lock guarantees that
4551 	 * bfqq_group(bfqq) exists as well.
4552 	 */
4553 	spin_lock_irq(q->queue_lock);
4554 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4555 	if (idle_timer_disabled)
4556 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4557 	spin_unlock_irq(q->queue_lock);
4558 }
4559 #else
4560 static inline void bfq_update_insert_stats(struct request_queue *q,
4561 					   struct bfq_queue *bfqq,
4562 					   bool idle_timer_disabled,
4563 					   unsigned int cmd_flags) {}
4564 #endif
4565 
4566 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4567 			       bool at_head)
4568 {
4569 	struct request_queue *q = hctx->queue;
4570 	struct bfq_data *bfqd = q->elevator->elevator_data;
4571 	struct bfq_queue *bfqq;
4572 	bool idle_timer_disabled = false;
4573 	unsigned int cmd_flags;
4574 
4575 	spin_lock_irq(&bfqd->lock);
4576 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4577 		spin_unlock_irq(&bfqd->lock);
4578 		return;
4579 	}
4580 
4581 	spin_unlock_irq(&bfqd->lock);
4582 
4583 	blk_mq_sched_request_inserted(rq);
4584 
4585 	spin_lock_irq(&bfqd->lock);
4586 	bfqq = bfq_init_rq(rq);
4587 	if (at_head || blk_rq_is_passthrough(rq)) {
4588 		if (at_head)
4589 			list_add(&rq->queuelist, &bfqd->dispatch);
4590 		else
4591 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4592 	} else { /* bfqq is assumed to be non null here */
4593 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4594 		/*
4595 		 * Update bfqq, because, if a queue merge has occurred
4596 		 * in __bfq_insert_request, then rq has been
4597 		 * redirected into a new queue.
4598 		 */
4599 		bfqq = RQ_BFQQ(rq);
4600 
4601 		if (rq_mergeable(rq)) {
4602 			elv_rqhash_add(q, rq);
4603 			if (!q->last_merge)
4604 				q->last_merge = rq;
4605 		}
4606 	}
4607 
4608 	/*
4609 	 * Cache cmd_flags before releasing scheduler lock, because rq
4610 	 * may disappear afterwards (for example, because of a request
4611 	 * merge).
4612 	 */
4613 	cmd_flags = rq->cmd_flags;
4614 
4615 	spin_unlock_irq(&bfqd->lock);
4616 
4617 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4618 				cmd_flags);
4619 }
4620 
4621 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4622 				struct list_head *list, bool at_head)
4623 {
4624 	while (!list_empty(list)) {
4625 		struct request *rq;
4626 
4627 		rq = list_first_entry(list, struct request, queuelist);
4628 		list_del_init(&rq->queuelist);
4629 		bfq_insert_request(hctx, rq, at_head);
4630 	}
4631 }
4632 
4633 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4634 {
4635 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4636 				       bfqd->rq_in_driver);
4637 
4638 	if (bfqd->hw_tag == 1)
4639 		return;
4640 
4641 	/*
4642 	 * This sample is valid if the number of outstanding requests
4643 	 * is large enough to allow a queueing behavior.  Note that the
4644 	 * sum is not exact, as it's not taking into account deactivated
4645 	 * requests.
4646 	 */
4647 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4648 		return;
4649 
4650 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4651 		return;
4652 
4653 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4654 	bfqd->max_rq_in_driver = 0;
4655 	bfqd->hw_tag_samples = 0;
4656 }
4657 
4658 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4659 {
4660 	u64 now_ns;
4661 	u32 delta_us;
4662 
4663 	bfq_update_hw_tag(bfqd);
4664 
4665 	bfqd->rq_in_driver--;
4666 	bfqq->dispatched--;
4667 
4668 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4669 		/*
4670 		 * Set budget_timeout (which we overload to store the
4671 		 * time at which the queue remains with no backlog and
4672 		 * no outstanding request; used by the weight-raising
4673 		 * mechanism).
4674 		 */
4675 		bfqq->budget_timeout = jiffies;
4676 
4677 		bfq_weights_tree_remove(bfqd, bfqq);
4678 	}
4679 
4680 	now_ns = ktime_get_ns();
4681 
4682 	bfqq->ttime.last_end_request = now_ns;
4683 
4684 	/*
4685 	 * Using us instead of ns, to get a reasonable precision in
4686 	 * computing rate in next check.
4687 	 */
4688 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4689 
4690 	/*
4691 	 * If the request took rather long to complete, and, according
4692 	 * to the maximum request size recorded, this completion latency
4693 	 * implies that the request was certainly served at a very low
4694 	 * rate (less than 1M sectors/sec), then the whole observation
4695 	 * interval that lasts up to this time instant cannot be a
4696 	 * valid time interval for computing a new peak rate.  Invoke
4697 	 * bfq_update_rate_reset to have the following three steps
4698 	 * taken:
4699 	 * - close the observation interval at the last (previous)
4700 	 *   request dispatch or completion
4701 	 * - compute rate, if possible, for that observation interval
4702 	 * - reset to zero samples, which will trigger a proper
4703 	 *   re-initialization of the observation interval on next
4704 	 *   dispatch
4705 	 */
4706 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4707 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4708 			1UL<<(BFQ_RATE_SHIFT - 10))
4709 		bfq_update_rate_reset(bfqd, NULL);
4710 	bfqd->last_completion = now_ns;
4711 
4712 	/*
4713 	 * If we are waiting to discover whether the request pattern
4714 	 * of the task associated with the queue is actually
4715 	 * isochronous, and both requisites for this condition to hold
4716 	 * are now satisfied, then compute soft_rt_next_start (see the
4717 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4718 	 * schedule this delayed check when bfqq expires, if it still
4719 	 * has in-flight requests.
4720 	 */
4721 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4722 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4723 		bfqq->soft_rt_next_start =
4724 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4725 
4726 	/*
4727 	 * If this is the in-service queue, check if it needs to be expired,
4728 	 * or if we want to idle in case it has no pending requests.
4729 	 */
4730 	if (bfqd->in_service_queue == bfqq) {
4731 		if (bfq_bfqq_must_idle(bfqq)) {
4732 			if (bfqq->dispatched == 0)
4733 				bfq_arm_slice_timer(bfqd);
4734 			/*
4735 			 * If we get here, we do not expire bfqq, even
4736 			 * if bfqq was in budget timeout or had no
4737 			 * more requests (as controlled in the next
4738 			 * conditional instructions). The reason for
4739 			 * not expiring bfqq is as follows.
4740 			 *
4741 			 * Here bfqq->dispatched > 0 holds, but
4742 			 * bfq_bfqq_must_idle() returned true. This
4743 			 * implies that, even if no request arrives
4744 			 * for bfqq before bfqq->dispatched reaches 0,
4745 			 * bfqq will, however, not be expired on the
4746 			 * completion event that causes bfqq->dispatch
4747 			 * to reach zero. In contrast, on this event,
4748 			 * bfqq will start enjoying device idling
4749 			 * (I/O-dispatch plugging).
4750 			 *
4751 			 * But, if we expired bfqq here, bfqq would
4752 			 * not have the chance to enjoy device idling
4753 			 * when bfqq->dispatched finally reaches
4754 			 * zero. This would expose bfqq to violation
4755 			 * of its reserved service guarantees.
4756 			 */
4757 			return;
4758 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4759 			bfq_bfqq_expire(bfqd, bfqq, false,
4760 					BFQQE_BUDGET_TIMEOUT);
4761 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4762 			 (bfqq->dispatched == 0 ||
4763 			  !bfq_better_to_idle(bfqq)))
4764 			bfq_bfqq_expire(bfqd, bfqq, false,
4765 					BFQQE_NO_MORE_REQUESTS);
4766 	}
4767 
4768 	if (!bfqd->rq_in_driver)
4769 		bfq_schedule_dispatch(bfqd);
4770 }
4771 
4772 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4773 {
4774 	bfqq->allocated--;
4775 
4776 	bfq_put_queue(bfqq);
4777 }
4778 
4779 /*
4780  * Handle either a requeue or a finish for rq. The things to do are
4781  * the same in both cases: all references to rq are to be dropped. In
4782  * particular, rq is considered completed from the point of view of
4783  * the scheduler.
4784  */
4785 static void bfq_finish_requeue_request(struct request *rq)
4786 {
4787 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4788 	struct bfq_data *bfqd;
4789 
4790 	/*
4791 	 * Requeue and finish hooks are invoked in blk-mq without
4792 	 * checking whether the involved request is actually still
4793 	 * referenced in the scheduler. To handle this fact, the
4794 	 * following two checks make this function exit in case of
4795 	 * spurious invocations, for which there is nothing to do.
4796 	 *
4797 	 * First, check whether rq has nothing to do with an elevator.
4798 	 */
4799 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4800 		return;
4801 
4802 	/*
4803 	 * rq either is not associated with any icq, or is an already
4804 	 * requeued request that has not (yet) been re-inserted into
4805 	 * a bfq_queue.
4806 	 */
4807 	if (!rq->elv.icq || !bfqq)
4808 		return;
4809 
4810 	bfqd = bfqq->bfqd;
4811 
4812 	if (rq->rq_flags & RQF_STARTED)
4813 		bfqg_stats_update_completion(bfqq_group(bfqq),
4814 					     rq->start_time_ns,
4815 					     rq->io_start_time_ns,
4816 					     rq->cmd_flags);
4817 
4818 	if (likely(rq->rq_flags & RQF_STARTED)) {
4819 		unsigned long flags;
4820 
4821 		spin_lock_irqsave(&bfqd->lock, flags);
4822 
4823 		bfq_completed_request(bfqq, bfqd);
4824 		bfq_finish_requeue_request_body(bfqq);
4825 
4826 		spin_unlock_irqrestore(&bfqd->lock, flags);
4827 	} else {
4828 		/*
4829 		 * Request rq may be still/already in the scheduler,
4830 		 * in which case we need to remove it (this should
4831 		 * never happen in case of requeue). And we cannot
4832 		 * defer such a check and removal, to avoid
4833 		 * inconsistencies in the time interval from the end
4834 		 * of this function to the start of the deferred work.
4835 		 * This situation seems to occur only in process
4836 		 * context, as a consequence of a merge. In the
4837 		 * current version of the code, this implies that the
4838 		 * lock is held.
4839 		 */
4840 
4841 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4842 			bfq_remove_request(rq->q, rq);
4843 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
4844 						    rq->cmd_flags);
4845 		}
4846 		bfq_finish_requeue_request_body(bfqq);
4847 	}
4848 
4849 	/*
4850 	 * Reset private fields. In case of a requeue, this allows
4851 	 * this function to correctly do nothing if it is spuriously
4852 	 * invoked again on this same request (see the check at the
4853 	 * beginning of the function). Probably, a better general
4854 	 * design would be to prevent blk-mq from invoking the requeue
4855 	 * or finish hooks of an elevator, for a request that is not
4856 	 * referred by that elevator.
4857 	 *
4858 	 * Resetting the following fields would break the
4859 	 * request-insertion logic if rq is re-inserted into a bfq
4860 	 * internal queue, without a re-preparation. Here we assume
4861 	 * that re-insertions of requeued requests, without
4862 	 * re-preparation, can happen only for pass_through or at_head
4863 	 * requests (which are not re-inserted into bfq internal
4864 	 * queues).
4865 	 */
4866 	rq->elv.priv[0] = NULL;
4867 	rq->elv.priv[1] = NULL;
4868 }
4869 
4870 /*
4871  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4872  * was the last process referring to that bfqq.
4873  */
4874 static struct bfq_queue *
4875 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4876 {
4877 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4878 
4879 	if (bfqq_process_refs(bfqq) == 1) {
4880 		bfqq->pid = current->pid;
4881 		bfq_clear_bfqq_coop(bfqq);
4882 		bfq_clear_bfqq_split_coop(bfqq);
4883 		return bfqq;
4884 	}
4885 
4886 	bic_set_bfqq(bic, NULL, 1);
4887 
4888 	bfq_put_cooperator(bfqq);
4889 
4890 	bfq_put_queue(bfqq);
4891 	return NULL;
4892 }
4893 
4894 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4895 						   struct bfq_io_cq *bic,
4896 						   struct bio *bio,
4897 						   bool split, bool is_sync,
4898 						   bool *new_queue)
4899 {
4900 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4901 
4902 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4903 		return bfqq;
4904 
4905 	if (new_queue)
4906 		*new_queue = true;
4907 
4908 	if (bfqq)
4909 		bfq_put_queue(bfqq);
4910 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4911 
4912 	bic_set_bfqq(bic, bfqq, is_sync);
4913 	if (split && is_sync) {
4914 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4915 		    bic->saved_in_large_burst)
4916 			bfq_mark_bfqq_in_large_burst(bfqq);
4917 		else {
4918 			bfq_clear_bfqq_in_large_burst(bfqq);
4919 			if (bic->was_in_burst_list)
4920 				/*
4921 				 * If bfqq was in the current
4922 				 * burst list before being
4923 				 * merged, then we have to add
4924 				 * it back. And we do not need
4925 				 * to increase burst_size, as
4926 				 * we did not decrement
4927 				 * burst_size when we removed
4928 				 * bfqq from the burst list as
4929 				 * a consequence of a merge
4930 				 * (see comments in
4931 				 * bfq_put_queue). In this
4932 				 * respect, it would be rather
4933 				 * costly to know whether the
4934 				 * current burst list is still
4935 				 * the same burst list from
4936 				 * which bfqq was removed on
4937 				 * the merge. To avoid this
4938 				 * cost, if bfqq was in a
4939 				 * burst list, then we add
4940 				 * bfqq to the current burst
4941 				 * list without any further
4942 				 * check. This can cause
4943 				 * inappropriate insertions,
4944 				 * but rarely enough to not
4945 				 * harm the detection of large
4946 				 * bursts significantly.
4947 				 */
4948 				hlist_add_head(&bfqq->burst_list_node,
4949 					       &bfqd->burst_list);
4950 		}
4951 		bfqq->split_time = jiffies;
4952 	}
4953 
4954 	return bfqq;
4955 }
4956 
4957 /*
4958  * Only reset private fields. The actual request preparation will be
4959  * performed by bfq_init_rq, when rq is either inserted or merged. See
4960  * comments on bfq_init_rq for the reason behind this delayed
4961  * preparation.
4962  */
4963 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4964 {
4965 	/*
4966 	 * Regardless of whether we have an icq attached, we have to
4967 	 * clear the scheduler pointers, as they might point to
4968 	 * previously allocated bic/bfqq structs.
4969 	 */
4970 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4971 }
4972 
4973 /*
4974  * If needed, init rq, allocate bfq data structures associated with
4975  * rq, and increment reference counters in the destination bfq_queue
4976  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4977  * not associated with any bfq_queue.
4978  *
4979  * This function is invoked by the functions that perform rq insertion
4980  * or merging. One may have expected the above preparation operations
4981  * to be performed in bfq_prepare_request, and not delayed to when rq
4982  * is inserted or merged. The rationale behind this delayed
4983  * preparation is that, after the prepare_request hook is invoked for
4984  * rq, rq may still be transformed into a request with no icq, i.e., a
4985  * request not associated with any queue. No bfq hook is invoked to
4986  * signal this tranformation. As a consequence, should these
4987  * preparation operations be performed when the prepare_request hook
4988  * is invoked, and should rq be transformed one moment later, bfq
4989  * would end up in an inconsistent state, because it would have
4990  * incremented some queue counters for an rq destined to
4991  * transformation, without any chance to correctly lower these
4992  * counters back. In contrast, no transformation can still happen for
4993  * rq after rq has been inserted or merged. So, it is safe to execute
4994  * these preparation operations when rq is finally inserted or merged.
4995  */
4996 static struct bfq_queue *bfq_init_rq(struct request *rq)
4997 {
4998 	struct request_queue *q = rq->q;
4999 	struct bio *bio = rq->bio;
5000 	struct bfq_data *bfqd = q->elevator->elevator_data;
5001 	struct bfq_io_cq *bic;
5002 	const int is_sync = rq_is_sync(rq);
5003 	struct bfq_queue *bfqq;
5004 	bool new_queue = false;
5005 	bool bfqq_already_existing = false, split = false;
5006 
5007 	if (unlikely(!rq->elv.icq))
5008 		return NULL;
5009 
5010 	/*
5011 	 * Assuming that elv.priv[1] is set only if everything is set
5012 	 * for this rq. This holds true, because this function is
5013 	 * invoked only for insertion or merging, and, after such
5014 	 * events, a request cannot be manipulated any longer before
5015 	 * being removed from bfq.
5016 	 */
5017 	if (rq->elv.priv[1])
5018 		return rq->elv.priv[1];
5019 
5020 	bic = icq_to_bic(rq->elv.icq);
5021 
5022 	bfq_check_ioprio_change(bic, bio);
5023 
5024 	bfq_bic_update_cgroup(bic, bio);
5025 
5026 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5027 					 &new_queue);
5028 
5029 	if (likely(!new_queue)) {
5030 		/* If the queue was seeky for too long, break it apart. */
5031 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5032 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5033 
5034 			/* Update bic before losing reference to bfqq */
5035 			if (bfq_bfqq_in_large_burst(bfqq))
5036 				bic->saved_in_large_burst = true;
5037 
5038 			bfqq = bfq_split_bfqq(bic, bfqq);
5039 			split = true;
5040 
5041 			if (!bfqq)
5042 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5043 								 true, is_sync,
5044 								 NULL);
5045 			else
5046 				bfqq_already_existing = true;
5047 		}
5048 	}
5049 
5050 	bfqq->allocated++;
5051 	bfqq->ref++;
5052 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5053 		     rq, bfqq, bfqq->ref);
5054 
5055 	rq->elv.priv[0] = bic;
5056 	rq->elv.priv[1] = bfqq;
5057 
5058 	/*
5059 	 * If a bfq_queue has only one process reference, it is owned
5060 	 * by only this bic: we can then set bfqq->bic = bic. in
5061 	 * addition, if the queue has also just been split, we have to
5062 	 * resume its state.
5063 	 */
5064 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5065 		bfqq->bic = bic;
5066 		if (split) {
5067 			/*
5068 			 * The queue has just been split from a shared
5069 			 * queue: restore the idle window and the
5070 			 * possible weight raising period.
5071 			 */
5072 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5073 					      bfqq_already_existing);
5074 		}
5075 	}
5076 
5077 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5078 		bfq_handle_burst(bfqd, bfqq);
5079 
5080 	return bfqq;
5081 }
5082 
5083 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5084 {
5085 	struct bfq_data *bfqd = bfqq->bfqd;
5086 	enum bfqq_expiration reason;
5087 	unsigned long flags;
5088 
5089 	spin_lock_irqsave(&bfqd->lock, flags);
5090 	bfq_clear_bfqq_wait_request(bfqq);
5091 
5092 	if (bfqq != bfqd->in_service_queue) {
5093 		spin_unlock_irqrestore(&bfqd->lock, flags);
5094 		return;
5095 	}
5096 
5097 	if (bfq_bfqq_budget_timeout(bfqq))
5098 		/*
5099 		 * Also here the queue can be safely expired
5100 		 * for budget timeout without wasting
5101 		 * guarantees
5102 		 */
5103 		reason = BFQQE_BUDGET_TIMEOUT;
5104 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5105 		/*
5106 		 * The queue may not be empty upon timer expiration,
5107 		 * because we may not disable the timer when the
5108 		 * first request of the in-service queue arrives
5109 		 * during disk idling.
5110 		 */
5111 		reason = BFQQE_TOO_IDLE;
5112 	else
5113 		goto schedule_dispatch;
5114 
5115 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5116 
5117 schedule_dispatch:
5118 	spin_unlock_irqrestore(&bfqd->lock, flags);
5119 	bfq_schedule_dispatch(bfqd);
5120 }
5121 
5122 /*
5123  * Handler of the expiration of the timer running if the in-service queue
5124  * is idling inside its time slice.
5125  */
5126 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5127 {
5128 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5129 					     idle_slice_timer);
5130 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5131 
5132 	/*
5133 	 * Theoretical race here: the in-service queue can be NULL or
5134 	 * different from the queue that was idling if a new request
5135 	 * arrives for the current queue and there is a full dispatch
5136 	 * cycle that changes the in-service queue.  This can hardly
5137 	 * happen, but in the worst case we just expire a queue too
5138 	 * early.
5139 	 */
5140 	if (bfqq)
5141 		bfq_idle_slice_timer_body(bfqq);
5142 
5143 	return HRTIMER_NORESTART;
5144 }
5145 
5146 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5147 				 struct bfq_queue **bfqq_ptr)
5148 {
5149 	struct bfq_queue *bfqq = *bfqq_ptr;
5150 
5151 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5152 	if (bfqq) {
5153 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5154 
5155 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5156 			     bfqq, bfqq->ref);
5157 		bfq_put_queue(bfqq);
5158 		*bfqq_ptr = NULL;
5159 	}
5160 }
5161 
5162 /*
5163  * Release all the bfqg references to its async queues.  If we are
5164  * deallocating the group these queues may still contain requests, so
5165  * we reparent them to the root cgroup (i.e., the only one that will
5166  * exist for sure until all the requests on a device are gone).
5167  */
5168 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5169 {
5170 	int i, j;
5171 
5172 	for (i = 0; i < 2; i++)
5173 		for (j = 0; j < IOPRIO_BE_NR; j++)
5174 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5175 
5176 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5177 }
5178 
5179 /*
5180  * See the comments on bfq_limit_depth for the purpose of
5181  * the depths set in the function. Return minimum shallow depth we'll use.
5182  */
5183 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5184 				      struct sbitmap_queue *bt)
5185 {
5186 	unsigned int i, j, min_shallow = UINT_MAX;
5187 
5188 	/*
5189 	 * In-word depths if no bfq_queue is being weight-raised:
5190 	 * leaving 25% of tags only for sync reads.
5191 	 *
5192 	 * In next formulas, right-shift the value
5193 	 * (1U<<bt->sb.shift), instead of computing directly
5194 	 * (1U<<(bt->sb.shift - something)), to be robust against
5195 	 * any possible value of bt->sb.shift, without having to
5196 	 * limit 'something'.
5197 	 */
5198 	/* no more than 50% of tags for async I/O */
5199 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5200 	/*
5201 	 * no more than 75% of tags for sync writes (25% extra tags
5202 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5203 	 * writes)
5204 	 */
5205 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5206 
5207 	/*
5208 	 * In-word depths in case some bfq_queue is being weight-
5209 	 * raised: leaving ~63% of tags for sync reads. This is the
5210 	 * highest percentage for which, in our tests, application
5211 	 * start-up times didn't suffer from any regression due to tag
5212 	 * shortage.
5213 	 */
5214 	/* no more than ~18% of tags for async I/O */
5215 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5216 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5217 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5218 
5219 	for (i = 0; i < 2; i++)
5220 		for (j = 0; j < 2; j++)
5221 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5222 
5223 	return min_shallow;
5224 }
5225 
5226 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5227 {
5228 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5229 	struct blk_mq_tags *tags = hctx->sched_tags;
5230 	unsigned int min_shallow;
5231 
5232 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5233 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5234 	return 0;
5235 }
5236 
5237 static void bfq_exit_queue(struct elevator_queue *e)
5238 {
5239 	struct bfq_data *bfqd = e->elevator_data;
5240 	struct bfq_queue *bfqq, *n;
5241 
5242 	hrtimer_cancel(&bfqd->idle_slice_timer);
5243 
5244 	spin_lock_irq(&bfqd->lock);
5245 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5246 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5247 	spin_unlock_irq(&bfqd->lock);
5248 
5249 	hrtimer_cancel(&bfqd->idle_slice_timer);
5250 
5251 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5252 	/* release oom-queue reference to root group */
5253 	bfqg_and_blkg_put(bfqd->root_group);
5254 
5255 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5256 #else
5257 	spin_lock_irq(&bfqd->lock);
5258 	bfq_put_async_queues(bfqd, bfqd->root_group);
5259 	kfree(bfqd->root_group);
5260 	spin_unlock_irq(&bfqd->lock);
5261 #endif
5262 
5263 	kfree(bfqd);
5264 }
5265 
5266 static void bfq_init_root_group(struct bfq_group *root_group,
5267 				struct bfq_data *bfqd)
5268 {
5269 	int i;
5270 
5271 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5272 	root_group->entity.parent = NULL;
5273 	root_group->my_entity = NULL;
5274 	root_group->bfqd = bfqd;
5275 #endif
5276 	root_group->rq_pos_tree = RB_ROOT;
5277 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5278 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5279 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5280 }
5281 
5282 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5283 {
5284 	struct bfq_data *bfqd;
5285 	struct elevator_queue *eq;
5286 
5287 	eq = elevator_alloc(q, e);
5288 	if (!eq)
5289 		return -ENOMEM;
5290 
5291 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5292 	if (!bfqd) {
5293 		kobject_put(&eq->kobj);
5294 		return -ENOMEM;
5295 	}
5296 	eq->elevator_data = bfqd;
5297 
5298 	spin_lock_irq(q->queue_lock);
5299 	q->elevator = eq;
5300 	spin_unlock_irq(q->queue_lock);
5301 
5302 	/*
5303 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5304 	 * Grab a permanent reference to it, so that the normal code flow
5305 	 * will not attempt to free it.
5306 	 */
5307 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5308 	bfqd->oom_bfqq.ref++;
5309 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5310 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5311 	bfqd->oom_bfqq.entity.new_weight =
5312 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5313 
5314 	/* oom_bfqq does not participate to bursts */
5315 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5316 
5317 	/*
5318 	 * Trigger weight initialization, according to ioprio, at the
5319 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5320 	 * class won't be changed any more.
5321 	 */
5322 	bfqd->oom_bfqq.entity.prio_changed = 1;
5323 
5324 	bfqd->queue = q;
5325 
5326 	INIT_LIST_HEAD(&bfqd->dispatch);
5327 
5328 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5329 		     HRTIMER_MODE_REL);
5330 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5331 
5332 	bfqd->queue_weights_tree = RB_ROOT;
5333 	bfqd->group_weights_tree = RB_ROOT;
5334 
5335 	INIT_LIST_HEAD(&bfqd->active_list);
5336 	INIT_LIST_HEAD(&bfqd->idle_list);
5337 	INIT_HLIST_HEAD(&bfqd->burst_list);
5338 
5339 	bfqd->hw_tag = -1;
5340 
5341 	bfqd->bfq_max_budget = bfq_default_max_budget;
5342 
5343 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5344 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5345 	bfqd->bfq_back_max = bfq_back_max;
5346 	bfqd->bfq_back_penalty = bfq_back_penalty;
5347 	bfqd->bfq_slice_idle = bfq_slice_idle;
5348 	bfqd->bfq_timeout = bfq_timeout;
5349 
5350 	bfqd->bfq_requests_within_timer = 120;
5351 
5352 	bfqd->bfq_large_burst_thresh = 8;
5353 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5354 
5355 	bfqd->low_latency = true;
5356 
5357 	/*
5358 	 * Trade-off between responsiveness and fairness.
5359 	 */
5360 	bfqd->bfq_wr_coeff = 30;
5361 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5362 	bfqd->bfq_wr_max_time = 0;
5363 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5364 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5365 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5366 					      * Approximate rate required
5367 					      * to playback or record a
5368 					      * high-definition compressed
5369 					      * video.
5370 					      */
5371 	bfqd->wr_busy_queues = 0;
5372 
5373 	/*
5374 	 * Begin by assuming, optimistically, that the device peak
5375 	 * rate is equal to 2/3 of the highest reference rate.
5376 	 */
5377 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5378 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5379 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5380 
5381 	spin_lock_init(&bfqd->lock);
5382 
5383 	/*
5384 	 * The invocation of the next bfq_create_group_hierarchy
5385 	 * function is the head of a chain of function calls
5386 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5387 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5388 	 * has_work hook function. For this reason,
5389 	 * bfq_create_group_hierarchy is invoked only after all
5390 	 * scheduler data has been initialized, apart from the fields
5391 	 * that can be initialized only after invoking
5392 	 * bfq_create_group_hierarchy. This, in particular, enables
5393 	 * has_work to correctly return false. Of course, to avoid
5394 	 * other inconsistencies, the blk-mq stack must then refrain
5395 	 * from invoking further scheduler hooks before this init
5396 	 * function is finished.
5397 	 */
5398 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5399 	if (!bfqd->root_group)
5400 		goto out_free;
5401 	bfq_init_root_group(bfqd->root_group, bfqd);
5402 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5403 
5404 	wbt_disable_default(q);
5405 	return 0;
5406 
5407 out_free:
5408 	kfree(bfqd);
5409 	kobject_put(&eq->kobj);
5410 	return -ENOMEM;
5411 }
5412 
5413 static void bfq_slab_kill(void)
5414 {
5415 	kmem_cache_destroy(bfq_pool);
5416 }
5417 
5418 static int __init bfq_slab_setup(void)
5419 {
5420 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5421 	if (!bfq_pool)
5422 		return -ENOMEM;
5423 	return 0;
5424 }
5425 
5426 static ssize_t bfq_var_show(unsigned int var, char *page)
5427 {
5428 	return sprintf(page, "%u\n", var);
5429 }
5430 
5431 static int bfq_var_store(unsigned long *var, const char *page)
5432 {
5433 	unsigned long new_val;
5434 	int ret = kstrtoul(page, 10, &new_val);
5435 
5436 	if (ret)
5437 		return ret;
5438 	*var = new_val;
5439 	return 0;
5440 }
5441 
5442 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5443 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5444 {									\
5445 	struct bfq_data *bfqd = e->elevator_data;			\
5446 	u64 __data = __VAR;						\
5447 	if (__CONV == 1)						\
5448 		__data = jiffies_to_msecs(__data);			\
5449 	else if (__CONV == 2)						\
5450 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5451 	return bfq_var_show(__data, (page));				\
5452 }
5453 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5454 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5455 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5456 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5457 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5458 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5459 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5460 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5461 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5462 #undef SHOW_FUNCTION
5463 
5464 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5465 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5466 {									\
5467 	struct bfq_data *bfqd = e->elevator_data;			\
5468 	u64 __data = __VAR;						\
5469 	__data = div_u64(__data, NSEC_PER_USEC);			\
5470 	return bfq_var_show(__data, (page));				\
5471 }
5472 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5473 #undef USEC_SHOW_FUNCTION
5474 
5475 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5476 static ssize_t								\
5477 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5478 {									\
5479 	struct bfq_data *bfqd = e->elevator_data;			\
5480 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5481 	int ret;							\
5482 									\
5483 	ret = bfq_var_store(&__data, (page));				\
5484 	if (ret)							\
5485 		return ret;						\
5486 	if (__data < __min)						\
5487 		__data = __min;						\
5488 	else if (__data > __max)					\
5489 		__data = __max;						\
5490 	if (__CONV == 1)						\
5491 		*(__PTR) = msecs_to_jiffies(__data);			\
5492 	else if (__CONV == 2)						\
5493 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5494 	else								\
5495 		*(__PTR) = __data;					\
5496 	return count;							\
5497 }
5498 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5499 		INT_MAX, 2);
5500 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5501 		INT_MAX, 2);
5502 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5503 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5504 		INT_MAX, 0);
5505 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5506 #undef STORE_FUNCTION
5507 
5508 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5509 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5510 {									\
5511 	struct bfq_data *bfqd = e->elevator_data;			\
5512 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5513 	int ret;							\
5514 									\
5515 	ret = bfq_var_store(&__data, (page));				\
5516 	if (ret)							\
5517 		return ret;						\
5518 	if (__data < __min)						\
5519 		__data = __min;						\
5520 	else if (__data > __max)					\
5521 		__data = __max;						\
5522 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5523 	return count;							\
5524 }
5525 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5526 		    UINT_MAX);
5527 #undef USEC_STORE_FUNCTION
5528 
5529 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5530 				    const char *page, size_t count)
5531 {
5532 	struct bfq_data *bfqd = e->elevator_data;
5533 	unsigned long __data;
5534 	int ret;
5535 
5536 	ret = bfq_var_store(&__data, (page));
5537 	if (ret)
5538 		return ret;
5539 
5540 	if (__data == 0)
5541 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5542 	else {
5543 		if (__data > INT_MAX)
5544 			__data = INT_MAX;
5545 		bfqd->bfq_max_budget = __data;
5546 	}
5547 
5548 	bfqd->bfq_user_max_budget = __data;
5549 
5550 	return count;
5551 }
5552 
5553 /*
5554  * Leaving this name to preserve name compatibility with cfq
5555  * parameters, but this timeout is used for both sync and async.
5556  */
5557 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5558 				      const char *page, size_t count)
5559 {
5560 	struct bfq_data *bfqd = e->elevator_data;
5561 	unsigned long __data;
5562 	int ret;
5563 
5564 	ret = bfq_var_store(&__data, (page));
5565 	if (ret)
5566 		return ret;
5567 
5568 	if (__data < 1)
5569 		__data = 1;
5570 	else if (__data > INT_MAX)
5571 		__data = INT_MAX;
5572 
5573 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5574 	if (bfqd->bfq_user_max_budget == 0)
5575 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5576 
5577 	return count;
5578 }
5579 
5580 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5581 				     const char *page, size_t count)
5582 {
5583 	struct bfq_data *bfqd = e->elevator_data;
5584 	unsigned long __data;
5585 	int ret;
5586 
5587 	ret = bfq_var_store(&__data, (page));
5588 	if (ret)
5589 		return ret;
5590 
5591 	if (__data > 1)
5592 		__data = 1;
5593 	if (!bfqd->strict_guarantees && __data == 1
5594 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5595 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5596 
5597 	bfqd->strict_guarantees = __data;
5598 
5599 	return count;
5600 }
5601 
5602 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5603 				     const char *page, size_t count)
5604 {
5605 	struct bfq_data *bfqd = e->elevator_data;
5606 	unsigned long __data;
5607 	int ret;
5608 
5609 	ret = bfq_var_store(&__data, (page));
5610 	if (ret)
5611 		return ret;
5612 
5613 	if (__data > 1)
5614 		__data = 1;
5615 	if (__data == 0 && bfqd->low_latency != 0)
5616 		bfq_end_wr(bfqd);
5617 	bfqd->low_latency = __data;
5618 
5619 	return count;
5620 }
5621 
5622 #define BFQ_ATTR(name) \
5623 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5624 
5625 static struct elv_fs_entry bfq_attrs[] = {
5626 	BFQ_ATTR(fifo_expire_sync),
5627 	BFQ_ATTR(fifo_expire_async),
5628 	BFQ_ATTR(back_seek_max),
5629 	BFQ_ATTR(back_seek_penalty),
5630 	BFQ_ATTR(slice_idle),
5631 	BFQ_ATTR(slice_idle_us),
5632 	BFQ_ATTR(max_budget),
5633 	BFQ_ATTR(timeout_sync),
5634 	BFQ_ATTR(strict_guarantees),
5635 	BFQ_ATTR(low_latency),
5636 	__ATTR_NULL
5637 };
5638 
5639 static struct elevator_type iosched_bfq_mq = {
5640 	.ops.mq = {
5641 		.limit_depth		= bfq_limit_depth,
5642 		.prepare_request	= bfq_prepare_request,
5643 		.requeue_request        = bfq_finish_requeue_request,
5644 		.finish_request		= bfq_finish_requeue_request,
5645 		.exit_icq		= bfq_exit_icq,
5646 		.insert_requests	= bfq_insert_requests,
5647 		.dispatch_request	= bfq_dispatch_request,
5648 		.next_request		= elv_rb_latter_request,
5649 		.former_request		= elv_rb_former_request,
5650 		.allow_merge		= bfq_allow_bio_merge,
5651 		.bio_merge		= bfq_bio_merge,
5652 		.request_merge		= bfq_request_merge,
5653 		.requests_merged	= bfq_requests_merged,
5654 		.request_merged		= bfq_request_merged,
5655 		.has_work		= bfq_has_work,
5656 		.init_hctx		= bfq_init_hctx,
5657 		.init_sched		= bfq_init_queue,
5658 		.exit_sched		= bfq_exit_queue,
5659 	},
5660 
5661 	.uses_mq =		true,
5662 	.icq_size =		sizeof(struct bfq_io_cq),
5663 	.icq_align =		__alignof__(struct bfq_io_cq),
5664 	.elevator_attrs =	bfq_attrs,
5665 	.elevator_name =	"bfq",
5666 	.elevator_owner =	THIS_MODULE,
5667 };
5668 MODULE_ALIAS("bfq-iosched");
5669 
5670 static int __init bfq_init(void)
5671 {
5672 	int ret;
5673 
5674 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5675 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5676 	if (ret)
5677 		return ret;
5678 #endif
5679 
5680 	ret = -ENOMEM;
5681 	if (bfq_slab_setup())
5682 		goto err_pol_unreg;
5683 
5684 	/*
5685 	 * Times to load large popular applications for the typical
5686 	 * systems installed on the reference devices (see the
5687 	 * comments before the definition of the next
5688 	 * array). Actually, we use slightly lower values, as the
5689 	 * estimated peak rate tends to be smaller than the actual
5690 	 * peak rate.  The reason for this last fact is that estimates
5691 	 * are computed over much shorter time intervals than the long
5692 	 * intervals typically used for benchmarking. Why? First, to
5693 	 * adapt more quickly to variations. Second, because an I/O
5694 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5695 	 * be run for a long time.
5696 	 */
5697 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5698 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5699 
5700 	ret = elv_register(&iosched_bfq_mq);
5701 	if (ret)
5702 		goto slab_kill;
5703 
5704 	return 0;
5705 
5706 slab_kill:
5707 	bfq_slab_kill();
5708 err_pol_unreg:
5709 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5710 	blkcg_policy_unregister(&blkcg_policy_bfq);
5711 #endif
5712 	return ret;
5713 }
5714 
5715 static void __exit bfq_exit(void)
5716 {
5717 	elv_unregister(&iosched_bfq_mq);
5718 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5719 	blkcg_policy_unregister(&blkcg_policy_bfq);
5720 #endif
5721 	bfq_slab_kill();
5722 }
5723 
5724 module_init(bfq_init);
5725 module_exit(bfq_exit);
5726 
5727 MODULE_AUTHOR("Paolo Valente");
5728 MODULE_LICENSE("GPL");
5729 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5730