xref: /openbmc/linux/block/bfq-iosched.c (revision 2d99a7ec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync,
381 			      unsigned int actuator_idx)
382 {
383 	if (is_sync)
384 		return bic->bfqq[1][actuator_idx];
385 
386 	return bic->bfqq[0][actuator_idx];
387 }
388 
389 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
390 
391 void bic_set_bfqq(struct bfq_io_cq *bic,
392 		  struct bfq_queue *bfqq,
393 		  bool is_sync,
394 		  unsigned int actuator_idx)
395 {
396 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync][actuator_idx];
397 
398 	/*
399 	 * If bfqq != NULL, then a non-stable queue merge between
400 	 * bic->bfqq and bfqq is happening here. This causes troubles
401 	 * in the following case: bic->bfqq has also been scheduled
402 	 * for a possible stable merge with bic->stable_merge_bfqq,
403 	 * and bic->stable_merge_bfqq == bfqq happens to
404 	 * hold. Troubles occur because bfqq may then undergo a split,
405 	 * thereby becoming eligible for a stable merge. Yet, if
406 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
407 	 * would be stably merged with itself. To avoid this anomaly,
408 	 * we cancel the stable merge if
409 	 * bic->stable_merge_bfqq == bfqq.
410 	 */
411 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[actuator_idx];
412 
413 	/* Clear bic pointer if bfqq is detached from this bic */
414 	if (old_bfqq && old_bfqq->bic == bic)
415 		old_bfqq->bic = NULL;
416 
417 	if (is_sync)
418 		bic->bfqq[1][actuator_idx] = bfqq;
419 	else
420 		bic->bfqq[0][actuator_idx] = bfqq;
421 
422 	if (bfqq && bfqq_data->stable_merge_bfqq == bfqq) {
423 		/*
424 		 * Actually, these same instructions are executed also
425 		 * in bfq_setup_cooperator, in case of abort or actual
426 		 * execution of a stable merge. We could avoid
427 		 * repeating these instructions there too, but if we
428 		 * did so, we would nest even more complexity in this
429 		 * function.
430 		 */
431 		bfq_put_stable_ref(bfqq_data->stable_merge_bfqq);
432 
433 		bfqq_data->stable_merge_bfqq = NULL;
434 	}
435 }
436 
437 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
438 {
439 	return bic->icq.q->elevator->elevator_data;
440 }
441 
442 /**
443  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
444  * @icq: the iocontext queue.
445  */
446 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
447 {
448 	/* bic->icq is the first member, %NULL will convert to %NULL */
449 	return container_of(icq, struct bfq_io_cq, icq);
450 }
451 
452 /**
453  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
454  * @q: the request queue.
455  */
456 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
457 {
458 	struct bfq_io_cq *icq;
459 	unsigned long flags;
460 
461 	if (!current->io_context)
462 		return NULL;
463 
464 	spin_lock_irqsave(&q->queue_lock, flags);
465 	icq = icq_to_bic(ioc_lookup_icq(q));
466 	spin_unlock_irqrestore(&q->queue_lock, flags);
467 
468 	return icq;
469 }
470 
471 /*
472  * Scheduler run of queue, if there are requests pending and no one in the
473  * driver that will restart queueing.
474  */
475 void bfq_schedule_dispatch(struct bfq_data *bfqd)
476 {
477 	lockdep_assert_held(&bfqd->lock);
478 
479 	if (bfqd->queued != 0) {
480 		bfq_log(bfqd, "schedule dispatch");
481 		blk_mq_run_hw_queues(bfqd->queue, true);
482 	}
483 }
484 
485 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
486 
487 #define bfq_sample_valid(samples)	((samples) > 80)
488 
489 /*
490  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
491  * We choose the request that is closer to the head right now.  Distance
492  * behind the head is penalized and only allowed to a certain extent.
493  */
494 static struct request *bfq_choose_req(struct bfq_data *bfqd,
495 				      struct request *rq1,
496 				      struct request *rq2,
497 				      sector_t last)
498 {
499 	sector_t s1, s2, d1 = 0, d2 = 0;
500 	unsigned long back_max;
501 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
502 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
503 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
504 
505 	if (!rq1 || rq1 == rq2)
506 		return rq2;
507 	if (!rq2)
508 		return rq1;
509 
510 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
511 		return rq1;
512 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
513 		return rq2;
514 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
515 		return rq1;
516 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
517 		return rq2;
518 
519 	s1 = blk_rq_pos(rq1);
520 	s2 = blk_rq_pos(rq2);
521 
522 	/*
523 	 * By definition, 1KiB is 2 sectors.
524 	 */
525 	back_max = bfqd->bfq_back_max * 2;
526 
527 	/*
528 	 * Strict one way elevator _except_ in the case where we allow
529 	 * short backward seeks which are biased as twice the cost of a
530 	 * similar forward seek.
531 	 */
532 	if (s1 >= last)
533 		d1 = s1 - last;
534 	else if (s1 + back_max >= last)
535 		d1 = (last - s1) * bfqd->bfq_back_penalty;
536 	else
537 		wrap |= BFQ_RQ1_WRAP;
538 
539 	if (s2 >= last)
540 		d2 = s2 - last;
541 	else if (s2 + back_max >= last)
542 		d2 = (last - s2) * bfqd->bfq_back_penalty;
543 	else
544 		wrap |= BFQ_RQ2_WRAP;
545 
546 	/* Found required data */
547 
548 	/*
549 	 * By doing switch() on the bit mask "wrap" we avoid having to
550 	 * check two variables for all permutations: --> faster!
551 	 */
552 	switch (wrap) {
553 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
554 		if (d1 < d2)
555 			return rq1;
556 		else if (d2 < d1)
557 			return rq2;
558 
559 		if (s1 >= s2)
560 			return rq1;
561 		else
562 			return rq2;
563 
564 	case BFQ_RQ2_WRAP:
565 		return rq1;
566 	case BFQ_RQ1_WRAP:
567 		return rq2;
568 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
569 	default:
570 		/*
571 		 * Since both rqs are wrapped,
572 		 * start with the one that's further behind head
573 		 * (--> only *one* back seek required),
574 		 * since back seek takes more time than forward.
575 		 */
576 		if (s1 <= s2)
577 			return rq1;
578 		else
579 			return rq2;
580 	}
581 }
582 
583 #define BFQ_LIMIT_INLINE_DEPTH 16
584 
585 #ifdef CONFIG_BFQ_GROUP_IOSCHED
586 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
587 {
588 	struct bfq_data *bfqd = bfqq->bfqd;
589 	struct bfq_entity *entity = &bfqq->entity;
590 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
591 	struct bfq_entity **entities = inline_entities;
592 	int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
593 	int class_idx = bfqq->ioprio_class - 1;
594 	struct bfq_sched_data *sched_data;
595 	unsigned long wsum;
596 	bool ret = false;
597 
598 	if (!entity->on_st_or_in_serv)
599 		return false;
600 
601 retry:
602 	spin_lock_irq(&bfqd->lock);
603 	/* +1 for bfqq entity, root cgroup not included */
604 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
605 	if (depth > alloc_depth) {
606 		spin_unlock_irq(&bfqd->lock);
607 		if (entities != inline_entities)
608 			kfree(entities);
609 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
610 		if (!entities)
611 			return false;
612 		alloc_depth = depth;
613 		goto retry;
614 	}
615 
616 	sched_data = entity->sched_data;
617 	/* Gather our ancestors as we need to traverse them in reverse order */
618 	level = 0;
619 	for_each_entity(entity) {
620 		/*
621 		 * If at some level entity is not even active, allow request
622 		 * queueing so that BFQ knows there's work to do and activate
623 		 * entities.
624 		 */
625 		if (!entity->on_st_or_in_serv)
626 			goto out;
627 		/* Uh, more parents than cgroup subsystem thinks? */
628 		if (WARN_ON_ONCE(level >= depth))
629 			break;
630 		entities[level++] = entity;
631 	}
632 	WARN_ON_ONCE(level != depth);
633 	for (level--; level >= 0; level--) {
634 		entity = entities[level];
635 		if (level > 0) {
636 			wsum = bfq_entity_service_tree(entity)->wsum;
637 		} else {
638 			int i;
639 			/*
640 			 * For bfqq itself we take into account service trees
641 			 * of all higher priority classes and multiply their
642 			 * weights so that low prio queue from higher class
643 			 * gets more requests than high prio queue from lower
644 			 * class.
645 			 */
646 			wsum = 0;
647 			for (i = 0; i <= class_idx; i++) {
648 				wsum = wsum * IOPRIO_BE_NR +
649 					sched_data->service_tree[i].wsum;
650 			}
651 		}
652 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
653 		if (entity->allocated >= limit) {
654 			bfq_log_bfqq(bfqq->bfqd, bfqq,
655 				"too many requests: allocated %d limit %d level %d",
656 				entity->allocated, limit, level);
657 			ret = true;
658 			break;
659 		}
660 	}
661 out:
662 	spin_unlock_irq(&bfqd->lock);
663 	if (entities != inline_entities)
664 		kfree(entities);
665 	return ret;
666 }
667 #else
668 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
669 {
670 	return false;
671 }
672 #endif
673 
674 /*
675  * Async I/O can easily starve sync I/O (both sync reads and sync
676  * writes), by consuming all tags. Similarly, storms of sync writes,
677  * such as those that sync(2) may trigger, can starve sync reads.
678  * Limit depths of async I/O and sync writes so as to counter both
679  * problems.
680  *
681  * Also if a bfq queue or its parent cgroup consume more tags than would be
682  * appropriate for their weight, we trim the available tag depth to 1. This
683  * avoids a situation where one cgroup can starve another cgroup from tags and
684  * thus block service differentiation among cgroups. Note that because the
685  * queue / cgroup already has many requests allocated and queued, this does not
686  * significantly affect service guarantees coming from the BFQ scheduling
687  * algorithm.
688  */
689 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
690 {
691 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
692 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
693 	int depth;
694 	unsigned limit = data->q->nr_requests;
695 	unsigned int act_idx;
696 
697 	/* Sync reads have full depth available */
698 	if (op_is_sync(opf) && !op_is_write(opf)) {
699 		depth = 0;
700 	} else {
701 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
702 		limit = (limit * depth) >> bfqd->full_depth_shift;
703 	}
704 
705 	for (act_idx = 0; bic && act_idx < bfqd->num_actuators; act_idx++) {
706 		struct bfq_queue *bfqq =
707 			bic_to_bfqq(bic, op_is_sync(opf), act_idx);
708 
709 		/*
710 		 * Does queue (or any parent entity) exceed number of
711 		 * requests that should be available to it? Heavily
712 		 * limit depth so that it cannot consume more
713 		 * available requests and thus starve other entities.
714 		 */
715 		if (bfqq && bfqq_request_over_limit(bfqq, limit)) {
716 			depth = 1;
717 			break;
718 		}
719 	}
720 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
721 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), depth);
722 	if (depth)
723 		data->shallow_depth = depth;
724 }
725 
726 static struct bfq_queue *
727 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
728 		     sector_t sector, struct rb_node **ret_parent,
729 		     struct rb_node ***rb_link)
730 {
731 	struct rb_node **p, *parent;
732 	struct bfq_queue *bfqq = NULL;
733 
734 	parent = NULL;
735 	p = &root->rb_node;
736 	while (*p) {
737 		struct rb_node **n;
738 
739 		parent = *p;
740 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
741 
742 		/*
743 		 * Sort strictly based on sector. Smallest to the left,
744 		 * largest to the right.
745 		 */
746 		if (sector > blk_rq_pos(bfqq->next_rq))
747 			n = &(*p)->rb_right;
748 		else if (sector < blk_rq_pos(bfqq->next_rq))
749 			n = &(*p)->rb_left;
750 		else
751 			break;
752 		p = n;
753 		bfqq = NULL;
754 	}
755 
756 	*ret_parent = parent;
757 	if (rb_link)
758 		*rb_link = p;
759 
760 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
761 		(unsigned long long)sector,
762 		bfqq ? bfqq->pid : 0);
763 
764 	return bfqq;
765 }
766 
767 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
768 {
769 	return bfqq->service_from_backlogged > 0 &&
770 		time_is_before_jiffies(bfqq->first_IO_time +
771 				       bfq_merge_time_limit);
772 }
773 
774 /*
775  * The following function is not marked as __cold because it is
776  * actually cold, but for the same performance goal described in the
777  * comments on the likely() at the beginning of
778  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
779  * execution time for the case where this function is not invoked, we
780  * had to add an unlikely() in each involved if().
781  */
782 void __cold
783 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
784 {
785 	struct rb_node **p, *parent;
786 	struct bfq_queue *__bfqq;
787 
788 	if (bfqq->pos_root) {
789 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
790 		bfqq->pos_root = NULL;
791 	}
792 
793 	/* oom_bfqq does not participate in queue merging */
794 	if (bfqq == &bfqd->oom_bfqq)
795 		return;
796 
797 	/*
798 	 * bfqq cannot be merged any longer (see comments in
799 	 * bfq_setup_cooperator): no point in adding bfqq into the
800 	 * position tree.
801 	 */
802 	if (bfq_too_late_for_merging(bfqq))
803 		return;
804 
805 	if (bfq_class_idle(bfqq))
806 		return;
807 	if (!bfqq->next_rq)
808 		return;
809 
810 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
811 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
812 			blk_rq_pos(bfqq->next_rq), &parent, &p);
813 	if (!__bfqq) {
814 		rb_link_node(&bfqq->pos_node, parent, p);
815 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
816 	} else
817 		bfqq->pos_root = NULL;
818 }
819 
820 /*
821  * The following function returns false either if every active queue
822  * must receive the same share of the throughput (symmetric scenario),
823  * or, as a special case, if bfqq must receive a share of the
824  * throughput lower than or equal to the share that every other active
825  * queue must receive.  If bfqq does sync I/O, then these are the only
826  * two cases where bfqq happens to be guaranteed its share of the
827  * throughput even if I/O dispatching is not plugged when bfqq remains
828  * temporarily empty (for more details, see the comments in the
829  * function bfq_better_to_idle()). For this reason, the return value
830  * of this function is used to check whether I/O-dispatch plugging can
831  * be avoided.
832  *
833  * The above first case (symmetric scenario) occurs when:
834  * 1) all active queues have the same weight,
835  * 2) all active queues belong to the same I/O-priority class,
836  * 3) all active groups at the same level in the groups tree have the same
837  *    weight,
838  * 4) all active groups at the same level in the groups tree have the same
839  *    number of children.
840  *
841  * Unfortunately, keeping the necessary state for evaluating exactly
842  * the last two symmetry sub-conditions above would be quite complex
843  * and time consuming. Therefore this function evaluates, instead,
844  * only the following stronger three sub-conditions, for which it is
845  * much easier to maintain the needed state:
846  * 1) all active queues have the same weight,
847  * 2) all active queues belong to the same I/O-priority class,
848  * 3) there is at most one active group.
849  * In particular, the last condition is always true if hierarchical
850  * support or the cgroups interface are not enabled, thus no state
851  * needs to be maintained in this case.
852  */
853 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
854 				   struct bfq_queue *bfqq)
855 {
856 	bool smallest_weight = bfqq &&
857 		bfqq->weight_counter &&
858 		bfqq->weight_counter ==
859 		container_of(
860 			rb_first_cached(&bfqd->queue_weights_tree),
861 			struct bfq_weight_counter,
862 			weights_node);
863 
864 	/*
865 	 * For queue weights to differ, queue_weights_tree must contain
866 	 * at least two nodes.
867 	 */
868 	bool varied_queue_weights = !smallest_weight &&
869 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
870 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
871 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
872 
873 	bool multiple_classes_busy =
874 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
875 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
876 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
877 
878 	return varied_queue_weights || multiple_classes_busy
879 #ifdef CONFIG_BFQ_GROUP_IOSCHED
880 	       || bfqd->num_groups_with_pending_reqs > 1
881 #endif
882 		;
883 }
884 
885 /*
886  * If the weight-counter tree passed as input contains no counter for
887  * the weight of the input queue, then add that counter; otherwise just
888  * increment the existing counter.
889  *
890  * Note that weight-counter trees contain few nodes in mostly symmetric
891  * scenarios. For example, if all queues have the same weight, then the
892  * weight-counter tree for the queues may contain at most one node.
893  * This holds even if low_latency is on, because weight-raised queues
894  * are not inserted in the tree.
895  * In most scenarios, the rate at which nodes are created/destroyed
896  * should be low too.
897  */
898 void bfq_weights_tree_add(struct bfq_queue *bfqq)
899 {
900 	struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree;
901 	struct bfq_entity *entity = &bfqq->entity;
902 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
903 	bool leftmost = true;
904 
905 	/*
906 	 * Do not insert if the queue is already associated with a
907 	 * counter, which happens if:
908 	 *   1) a request arrival has caused the queue to become both
909 	 *      non-weight-raised, and hence change its weight, and
910 	 *      backlogged; in this respect, each of the two events
911 	 *      causes an invocation of this function,
912 	 *   2) this is the invocation of this function caused by the
913 	 *      second event. This second invocation is actually useless,
914 	 *      and we handle this fact by exiting immediately. More
915 	 *      efficient or clearer solutions might possibly be adopted.
916 	 */
917 	if (bfqq->weight_counter)
918 		return;
919 
920 	while (*new) {
921 		struct bfq_weight_counter *__counter = container_of(*new,
922 						struct bfq_weight_counter,
923 						weights_node);
924 		parent = *new;
925 
926 		if (entity->weight == __counter->weight) {
927 			bfqq->weight_counter = __counter;
928 			goto inc_counter;
929 		}
930 		if (entity->weight < __counter->weight)
931 			new = &((*new)->rb_left);
932 		else {
933 			new = &((*new)->rb_right);
934 			leftmost = false;
935 		}
936 	}
937 
938 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
939 				       GFP_ATOMIC);
940 
941 	/*
942 	 * In the unlucky event of an allocation failure, we just
943 	 * exit. This will cause the weight of queue to not be
944 	 * considered in bfq_asymmetric_scenario, which, in its turn,
945 	 * causes the scenario to be deemed wrongly symmetric in case
946 	 * bfqq's weight would have been the only weight making the
947 	 * scenario asymmetric.  On the bright side, no unbalance will
948 	 * however occur when bfqq becomes inactive again (the
949 	 * invocation of this function is triggered by an activation
950 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
951 	 * if !bfqq->weight_counter.
952 	 */
953 	if (unlikely(!bfqq->weight_counter))
954 		return;
955 
956 	bfqq->weight_counter->weight = entity->weight;
957 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
958 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
959 				leftmost);
960 
961 inc_counter:
962 	bfqq->weight_counter->num_active++;
963 	bfqq->ref++;
964 }
965 
966 /*
967  * Decrement the weight counter associated with the queue, and, if the
968  * counter reaches 0, remove the counter from the tree.
969  * See the comments to the function bfq_weights_tree_add() for considerations
970  * about overhead.
971  */
972 void bfq_weights_tree_remove(struct bfq_queue *bfqq)
973 {
974 	struct rb_root_cached *root;
975 
976 	if (!bfqq->weight_counter)
977 		return;
978 
979 	root = &bfqq->bfqd->queue_weights_tree;
980 	bfqq->weight_counter->num_active--;
981 	if (bfqq->weight_counter->num_active > 0)
982 		goto reset_entity_pointer;
983 
984 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
985 	kfree(bfqq->weight_counter);
986 
987 reset_entity_pointer:
988 	bfqq->weight_counter = NULL;
989 	bfq_put_queue(bfqq);
990 }
991 
992 /*
993  * Return expired entry, or NULL to just start from scratch in rbtree.
994  */
995 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
996 				      struct request *last)
997 {
998 	struct request *rq;
999 
1000 	if (bfq_bfqq_fifo_expire(bfqq))
1001 		return NULL;
1002 
1003 	bfq_mark_bfqq_fifo_expire(bfqq);
1004 
1005 	rq = rq_entry_fifo(bfqq->fifo.next);
1006 
1007 	if (rq == last || ktime_get_ns() < rq->fifo_time)
1008 		return NULL;
1009 
1010 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1011 	return rq;
1012 }
1013 
1014 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1015 					struct bfq_queue *bfqq,
1016 					struct request *last)
1017 {
1018 	struct rb_node *rbnext = rb_next(&last->rb_node);
1019 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1020 	struct request *next, *prev = NULL;
1021 
1022 	/* Follow expired path, else get first next available. */
1023 	next = bfq_check_fifo(bfqq, last);
1024 	if (next)
1025 		return next;
1026 
1027 	if (rbprev)
1028 		prev = rb_entry_rq(rbprev);
1029 
1030 	if (rbnext)
1031 		next = rb_entry_rq(rbnext);
1032 	else {
1033 		rbnext = rb_first(&bfqq->sort_list);
1034 		if (rbnext && rbnext != &last->rb_node)
1035 			next = rb_entry_rq(rbnext);
1036 	}
1037 
1038 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1039 }
1040 
1041 /* see the definition of bfq_async_charge_factor for details */
1042 static unsigned long bfq_serv_to_charge(struct request *rq,
1043 					struct bfq_queue *bfqq)
1044 {
1045 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1046 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1047 		return blk_rq_sectors(rq);
1048 
1049 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1050 }
1051 
1052 /**
1053  * bfq_updated_next_req - update the queue after a new next_rq selection.
1054  * @bfqd: the device data the queue belongs to.
1055  * @bfqq: the queue to update.
1056  *
1057  * If the first request of a queue changes we make sure that the queue
1058  * has enough budget to serve at least its first request (if the
1059  * request has grown).  We do this because if the queue has not enough
1060  * budget for its first request, it has to go through two dispatch
1061  * rounds to actually get it dispatched.
1062  */
1063 static void bfq_updated_next_req(struct bfq_data *bfqd,
1064 				 struct bfq_queue *bfqq)
1065 {
1066 	struct bfq_entity *entity = &bfqq->entity;
1067 	struct request *next_rq = bfqq->next_rq;
1068 	unsigned long new_budget;
1069 
1070 	if (!next_rq)
1071 		return;
1072 
1073 	if (bfqq == bfqd->in_service_queue)
1074 		/*
1075 		 * In order not to break guarantees, budgets cannot be
1076 		 * changed after an entity has been selected.
1077 		 */
1078 		return;
1079 
1080 	new_budget = max_t(unsigned long,
1081 			   max_t(unsigned long, bfqq->max_budget,
1082 				 bfq_serv_to_charge(next_rq, bfqq)),
1083 			   entity->service);
1084 	if (entity->budget != new_budget) {
1085 		entity->budget = new_budget;
1086 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1087 					 new_budget);
1088 		bfq_requeue_bfqq(bfqd, bfqq, false);
1089 	}
1090 }
1091 
1092 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1093 {
1094 	u64 dur;
1095 
1096 	dur = bfqd->rate_dur_prod;
1097 	do_div(dur, bfqd->peak_rate);
1098 
1099 	/*
1100 	 * Limit duration between 3 and 25 seconds. The upper limit
1101 	 * has been conservatively set after the following worst case:
1102 	 * on a QEMU/KVM virtual machine
1103 	 * - running in a slow PC
1104 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1105 	 * - serving a heavy I/O workload, such as the sequential reading
1106 	 *   of several files
1107 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1108 	 *
1109 	 * As for higher values than that accommodating the above bad
1110 	 * scenario, tests show that higher values would often yield
1111 	 * the opposite of the desired result, i.e., would worsen
1112 	 * responsiveness by allowing non-interactive applications to
1113 	 * preserve weight raising for too long.
1114 	 *
1115 	 * On the other end, lower values than 3 seconds make it
1116 	 * difficult for most interactive tasks to complete their jobs
1117 	 * before weight-raising finishes.
1118 	 */
1119 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1120 }
1121 
1122 /* switch back from soft real-time to interactive weight raising */
1123 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1124 					  struct bfq_data *bfqd)
1125 {
1126 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1127 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1128 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1129 }
1130 
1131 static void
1132 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1133 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1134 {
1135 	unsigned int old_wr_coeff = 1;
1136 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1137 	unsigned int a_idx = bfqq->actuator_idx;
1138 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
1139 
1140 	if (bfqq_data->saved_has_short_ttime)
1141 		bfq_mark_bfqq_has_short_ttime(bfqq);
1142 	else
1143 		bfq_clear_bfqq_has_short_ttime(bfqq);
1144 
1145 	if (bfqq_data->saved_IO_bound)
1146 		bfq_mark_bfqq_IO_bound(bfqq);
1147 	else
1148 		bfq_clear_bfqq_IO_bound(bfqq);
1149 
1150 	bfqq->last_serv_time_ns = bfqq_data->saved_last_serv_time_ns;
1151 	bfqq->inject_limit = bfqq_data->saved_inject_limit;
1152 	bfqq->decrease_time_jif = bfqq_data->saved_decrease_time_jif;
1153 
1154 	bfqq->entity.new_weight = bfqq_data->saved_weight;
1155 	bfqq->ttime = bfqq_data->saved_ttime;
1156 	bfqq->io_start_time = bfqq_data->saved_io_start_time;
1157 	bfqq->tot_idle_time = bfqq_data->saved_tot_idle_time;
1158 	/*
1159 	 * Restore weight coefficient only if low_latency is on
1160 	 */
1161 	if (bfqd->low_latency) {
1162 		old_wr_coeff = bfqq->wr_coeff;
1163 		bfqq->wr_coeff = bfqq_data->saved_wr_coeff;
1164 	}
1165 	bfqq->service_from_wr = bfqq_data->saved_service_from_wr;
1166 	bfqq->wr_start_at_switch_to_srt =
1167 		bfqq_data->saved_wr_start_at_switch_to_srt;
1168 	bfqq->last_wr_start_finish = bfqq_data->saved_last_wr_start_finish;
1169 	bfqq->wr_cur_max_time = bfqq_data->saved_wr_cur_max_time;
1170 
1171 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1172 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1173 				   bfqq->wr_cur_max_time))) {
1174 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1175 		    !bfq_bfqq_in_large_burst(bfqq) &&
1176 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1177 					     bfq_wr_duration(bfqd))) {
1178 			switch_back_to_interactive_wr(bfqq, bfqd);
1179 		} else {
1180 			bfqq->wr_coeff = 1;
1181 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1182 				     "resume state: switching off wr");
1183 		}
1184 	}
1185 
1186 	/* make sure weight will be updated, however we got here */
1187 	bfqq->entity.prio_changed = 1;
1188 
1189 	if (likely(!busy))
1190 		return;
1191 
1192 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1193 		bfqd->wr_busy_queues++;
1194 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1195 		bfqd->wr_busy_queues--;
1196 }
1197 
1198 static int bfqq_process_refs(struct bfq_queue *bfqq)
1199 {
1200 	return bfqq->ref - bfqq->entity.allocated -
1201 		bfqq->entity.on_st_or_in_serv -
1202 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1203 }
1204 
1205 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1206 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1207 {
1208 	struct bfq_queue *item;
1209 	struct hlist_node *n;
1210 
1211 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1212 		hlist_del_init(&item->burst_list_node);
1213 
1214 	/*
1215 	 * Start the creation of a new burst list only if there is no
1216 	 * active queue. See comments on the conditional invocation of
1217 	 * bfq_handle_burst().
1218 	 */
1219 	if (bfq_tot_busy_queues(bfqd) == 0) {
1220 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1221 		bfqd->burst_size = 1;
1222 	} else
1223 		bfqd->burst_size = 0;
1224 
1225 	bfqd->burst_parent_entity = bfqq->entity.parent;
1226 }
1227 
1228 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1229 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1230 {
1231 	/* Increment burst size to take into account also bfqq */
1232 	bfqd->burst_size++;
1233 
1234 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1235 		struct bfq_queue *pos, *bfqq_item;
1236 		struct hlist_node *n;
1237 
1238 		/*
1239 		 * Enough queues have been activated shortly after each
1240 		 * other to consider this burst as large.
1241 		 */
1242 		bfqd->large_burst = true;
1243 
1244 		/*
1245 		 * We can now mark all queues in the burst list as
1246 		 * belonging to a large burst.
1247 		 */
1248 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1249 				     burst_list_node)
1250 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1251 		bfq_mark_bfqq_in_large_burst(bfqq);
1252 
1253 		/*
1254 		 * From now on, and until the current burst finishes, any
1255 		 * new queue being activated shortly after the last queue
1256 		 * was inserted in the burst can be immediately marked as
1257 		 * belonging to a large burst. So the burst list is not
1258 		 * needed any more. Remove it.
1259 		 */
1260 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1261 					  burst_list_node)
1262 			hlist_del_init(&pos->burst_list_node);
1263 	} else /*
1264 		* Burst not yet large: add bfqq to the burst list. Do
1265 		* not increment the ref counter for bfqq, because bfqq
1266 		* is removed from the burst list before freeing bfqq
1267 		* in put_queue.
1268 		*/
1269 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1270 }
1271 
1272 /*
1273  * If many queues belonging to the same group happen to be created
1274  * shortly after each other, then the processes associated with these
1275  * queues have typically a common goal. In particular, bursts of queue
1276  * creations are usually caused by services or applications that spawn
1277  * many parallel threads/processes. Examples are systemd during boot,
1278  * or git grep. To help these processes get their job done as soon as
1279  * possible, it is usually better to not grant either weight-raising
1280  * or device idling to their queues, unless these queues must be
1281  * protected from the I/O flowing through other active queues.
1282  *
1283  * In this comment we describe, firstly, the reasons why this fact
1284  * holds, and, secondly, the next function, which implements the main
1285  * steps needed to properly mark these queues so that they can then be
1286  * treated in a different way.
1287  *
1288  * The above services or applications benefit mostly from a high
1289  * throughput: the quicker the requests of the activated queues are
1290  * cumulatively served, the sooner the target job of these queues gets
1291  * completed. As a consequence, weight-raising any of these queues,
1292  * which also implies idling the device for it, is almost always
1293  * counterproductive, unless there are other active queues to isolate
1294  * these new queues from. If there no other active queues, then
1295  * weight-raising these new queues just lowers throughput in most
1296  * cases.
1297  *
1298  * On the other hand, a burst of queue creations may be caused also by
1299  * the start of an application that does not consist of a lot of
1300  * parallel I/O-bound threads. In fact, with a complex application,
1301  * several short processes may need to be executed to start-up the
1302  * application. In this respect, to start an application as quickly as
1303  * possible, the best thing to do is in any case to privilege the I/O
1304  * related to the application with respect to all other
1305  * I/O. Therefore, the best strategy to start as quickly as possible
1306  * an application that causes a burst of queue creations is to
1307  * weight-raise all the queues created during the burst. This is the
1308  * exact opposite of the best strategy for the other type of bursts.
1309  *
1310  * In the end, to take the best action for each of the two cases, the
1311  * two types of bursts need to be distinguished. Fortunately, this
1312  * seems relatively easy, by looking at the sizes of the bursts. In
1313  * particular, we found a threshold such that only bursts with a
1314  * larger size than that threshold are apparently caused by
1315  * services or commands such as systemd or git grep. For brevity,
1316  * hereafter we call just 'large' these bursts. BFQ *does not*
1317  * weight-raise queues whose creation occurs in a large burst. In
1318  * addition, for each of these queues BFQ performs or does not perform
1319  * idling depending on which choice boosts the throughput more. The
1320  * exact choice depends on the device and request pattern at
1321  * hand.
1322  *
1323  * Unfortunately, false positives may occur while an interactive task
1324  * is starting (e.g., an application is being started). The
1325  * consequence is that the queues associated with the task do not
1326  * enjoy weight raising as expected. Fortunately these false positives
1327  * are very rare. They typically occur if some service happens to
1328  * start doing I/O exactly when the interactive task starts.
1329  *
1330  * Turning back to the next function, it is invoked only if there are
1331  * no active queues (apart from active queues that would belong to the
1332  * same, possible burst bfqq would belong to), and it implements all
1333  * the steps needed to detect the occurrence of a large burst and to
1334  * properly mark all the queues belonging to it (so that they can then
1335  * be treated in a different way). This goal is achieved by
1336  * maintaining a "burst list" that holds, temporarily, the queues that
1337  * belong to the burst in progress. The list is then used to mark
1338  * these queues as belonging to a large burst if the burst does become
1339  * large. The main steps are the following.
1340  *
1341  * . when the very first queue is created, the queue is inserted into the
1342  *   list (as it could be the first queue in a possible burst)
1343  *
1344  * . if the current burst has not yet become large, and a queue Q that does
1345  *   not yet belong to the burst is activated shortly after the last time
1346  *   at which a new queue entered the burst list, then the function appends
1347  *   Q to the burst list
1348  *
1349  * . if, as a consequence of the previous step, the burst size reaches
1350  *   the large-burst threshold, then
1351  *
1352  *     . all the queues in the burst list are marked as belonging to a
1353  *       large burst
1354  *
1355  *     . the burst list is deleted; in fact, the burst list already served
1356  *       its purpose (keeping temporarily track of the queues in a burst,
1357  *       so as to be able to mark them as belonging to a large burst in the
1358  *       previous sub-step), and now is not needed any more
1359  *
1360  *     . the device enters a large-burst mode
1361  *
1362  * . if a queue Q that does not belong to the burst is created while
1363  *   the device is in large-burst mode and shortly after the last time
1364  *   at which a queue either entered the burst list or was marked as
1365  *   belonging to the current large burst, then Q is immediately marked
1366  *   as belonging to a large burst.
1367  *
1368  * . if a queue Q that does not belong to the burst is created a while
1369  *   later, i.e., not shortly after, than the last time at which a queue
1370  *   either entered the burst list or was marked as belonging to the
1371  *   current large burst, then the current burst is deemed as finished and:
1372  *
1373  *        . the large-burst mode is reset if set
1374  *
1375  *        . the burst list is emptied
1376  *
1377  *        . Q is inserted in the burst list, as Q may be the first queue
1378  *          in a possible new burst (then the burst list contains just Q
1379  *          after this step).
1380  */
1381 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1382 {
1383 	/*
1384 	 * If bfqq is already in the burst list or is part of a large
1385 	 * burst, or finally has just been split, then there is
1386 	 * nothing else to do.
1387 	 */
1388 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1389 	    bfq_bfqq_in_large_burst(bfqq) ||
1390 	    time_is_after_eq_jiffies(bfqq->split_time +
1391 				     msecs_to_jiffies(10)))
1392 		return;
1393 
1394 	/*
1395 	 * If bfqq's creation happens late enough, or bfqq belongs to
1396 	 * a different group than the burst group, then the current
1397 	 * burst is finished, and related data structures must be
1398 	 * reset.
1399 	 *
1400 	 * In this respect, consider the special case where bfqq is
1401 	 * the very first queue created after BFQ is selected for this
1402 	 * device. In this case, last_ins_in_burst and
1403 	 * burst_parent_entity are not yet significant when we get
1404 	 * here. But it is easy to verify that, whether or not the
1405 	 * following condition is true, bfqq will end up being
1406 	 * inserted into the burst list. In particular the list will
1407 	 * happen to contain only bfqq. And this is exactly what has
1408 	 * to happen, as bfqq may be the first queue of the first
1409 	 * burst.
1410 	 */
1411 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1412 	    bfqd->bfq_burst_interval) ||
1413 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1414 		bfqd->large_burst = false;
1415 		bfq_reset_burst_list(bfqd, bfqq);
1416 		goto end;
1417 	}
1418 
1419 	/*
1420 	 * If we get here, then bfqq is being activated shortly after the
1421 	 * last queue. So, if the current burst is also large, we can mark
1422 	 * bfqq as belonging to this large burst immediately.
1423 	 */
1424 	if (bfqd->large_burst) {
1425 		bfq_mark_bfqq_in_large_burst(bfqq);
1426 		goto end;
1427 	}
1428 
1429 	/*
1430 	 * If we get here, then a large-burst state has not yet been
1431 	 * reached, but bfqq is being activated shortly after the last
1432 	 * queue. Then we add bfqq to the burst.
1433 	 */
1434 	bfq_add_to_burst(bfqd, bfqq);
1435 end:
1436 	/*
1437 	 * At this point, bfqq either has been added to the current
1438 	 * burst or has caused the current burst to terminate and a
1439 	 * possible new burst to start. In particular, in the second
1440 	 * case, bfqq has become the first queue in the possible new
1441 	 * burst.  In both cases last_ins_in_burst needs to be moved
1442 	 * forward.
1443 	 */
1444 	bfqd->last_ins_in_burst = jiffies;
1445 }
1446 
1447 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1448 {
1449 	struct bfq_entity *entity = &bfqq->entity;
1450 
1451 	return entity->budget - entity->service;
1452 }
1453 
1454 /*
1455  * If enough samples have been computed, return the current max budget
1456  * stored in bfqd, which is dynamically updated according to the
1457  * estimated disk peak rate; otherwise return the default max budget
1458  */
1459 static int bfq_max_budget(struct bfq_data *bfqd)
1460 {
1461 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1462 		return bfq_default_max_budget;
1463 	else
1464 		return bfqd->bfq_max_budget;
1465 }
1466 
1467 /*
1468  * Return min budget, which is a fraction of the current or default
1469  * max budget (trying with 1/32)
1470  */
1471 static int bfq_min_budget(struct bfq_data *bfqd)
1472 {
1473 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1474 		return bfq_default_max_budget / 32;
1475 	else
1476 		return bfqd->bfq_max_budget / 32;
1477 }
1478 
1479 /*
1480  * The next function, invoked after the input queue bfqq switches from
1481  * idle to busy, updates the budget of bfqq. The function also tells
1482  * whether the in-service queue should be expired, by returning
1483  * true. The purpose of expiring the in-service queue is to give bfqq
1484  * the chance to possibly preempt the in-service queue, and the reason
1485  * for preempting the in-service queue is to achieve one of the two
1486  * goals below.
1487  *
1488  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1489  * expired because it has remained idle. In particular, bfqq may have
1490  * expired for one of the following two reasons:
1491  *
1492  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1493  *   and did not make it to issue a new request before its last
1494  *   request was served;
1495  *
1496  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1497  *   a new request before the expiration of the idling-time.
1498  *
1499  * Even if bfqq has expired for one of the above reasons, the process
1500  * associated with the queue may be however issuing requests greedily,
1501  * and thus be sensitive to the bandwidth it receives (bfqq may have
1502  * remained idle for other reasons: CPU high load, bfqq not enjoying
1503  * idling, I/O throttling somewhere in the path from the process to
1504  * the I/O scheduler, ...). But if, after every expiration for one of
1505  * the above two reasons, bfqq has to wait for the service of at least
1506  * one full budget of another queue before being served again, then
1507  * bfqq is likely to get a much lower bandwidth or resource time than
1508  * its reserved ones. To address this issue, two countermeasures need
1509  * to be taken.
1510  *
1511  * First, the budget and the timestamps of bfqq need to be updated in
1512  * a special way on bfqq reactivation: they need to be updated as if
1513  * bfqq did not remain idle and did not expire. In fact, if they are
1514  * computed as if bfqq expired and remained idle until reactivation,
1515  * then the process associated with bfqq is treated as if, instead of
1516  * being greedy, it stopped issuing requests when bfqq remained idle,
1517  * and restarts issuing requests only on this reactivation. In other
1518  * words, the scheduler does not help the process recover the "service
1519  * hole" between bfqq expiration and reactivation. As a consequence,
1520  * the process receives a lower bandwidth than its reserved one. In
1521  * contrast, to recover this hole, the budget must be updated as if
1522  * bfqq was not expired at all before this reactivation, i.e., it must
1523  * be set to the value of the remaining budget when bfqq was
1524  * expired. Along the same line, timestamps need to be assigned the
1525  * value they had the last time bfqq was selected for service, i.e.,
1526  * before last expiration. Thus timestamps need to be back-shifted
1527  * with respect to their normal computation (see [1] for more details
1528  * on this tricky aspect).
1529  *
1530  * Secondly, to allow the process to recover the hole, the in-service
1531  * queue must be expired too, to give bfqq the chance to preempt it
1532  * immediately. In fact, if bfqq has to wait for a full budget of the
1533  * in-service queue to be completed, then it may become impossible to
1534  * let the process recover the hole, even if the back-shifted
1535  * timestamps of bfqq are lower than those of the in-service queue. If
1536  * this happens for most or all of the holes, then the process may not
1537  * receive its reserved bandwidth. In this respect, it is worth noting
1538  * that, being the service of outstanding requests unpreemptible, a
1539  * little fraction of the holes may however be unrecoverable, thereby
1540  * causing a little loss of bandwidth.
1541  *
1542  * The last important point is detecting whether bfqq does need this
1543  * bandwidth recovery. In this respect, the next function deems the
1544  * process associated with bfqq greedy, and thus allows it to recover
1545  * the hole, if: 1) the process is waiting for the arrival of a new
1546  * request (which implies that bfqq expired for one of the above two
1547  * reasons), and 2) such a request has arrived soon. The first
1548  * condition is controlled through the flag non_blocking_wait_rq,
1549  * while the second through the flag arrived_in_time. If both
1550  * conditions hold, then the function computes the budget in the
1551  * above-described special way, and signals that the in-service queue
1552  * should be expired. Timestamp back-shifting is done later in
1553  * __bfq_activate_entity.
1554  *
1555  * 2. Reduce latency. Even if timestamps are not backshifted to let
1556  * the process associated with bfqq recover a service hole, bfqq may
1557  * however happen to have, after being (re)activated, a lower finish
1558  * timestamp than the in-service queue.	 That is, the next budget of
1559  * bfqq may have to be completed before the one of the in-service
1560  * queue. If this is the case, then preempting the in-service queue
1561  * allows this goal to be achieved, apart from the unpreemptible,
1562  * outstanding requests mentioned above.
1563  *
1564  * Unfortunately, regardless of which of the above two goals one wants
1565  * to achieve, service trees need first to be updated to know whether
1566  * the in-service queue must be preempted. To have service trees
1567  * correctly updated, the in-service queue must be expired and
1568  * rescheduled, and bfqq must be scheduled too. This is one of the
1569  * most costly operations (in future versions, the scheduling
1570  * mechanism may be re-designed in such a way to make it possible to
1571  * know whether preemption is needed without needing to update service
1572  * trees). In addition, queue preemptions almost always cause random
1573  * I/O, which may in turn cause loss of throughput. Finally, there may
1574  * even be no in-service queue when the next function is invoked (so,
1575  * no queue to compare timestamps with). Because of these facts, the
1576  * next function adopts the following simple scheme to avoid costly
1577  * operations, too frequent preemptions and too many dependencies on
1578  * the state of the scheduler: it requests the expiration of the
1579  * in-service queue (unconditionally) only for queues that need to
1580  * recover a hole. Then it delegates to other parts of the code the
1581  * responsibility of handling the above case 2.
1582  */
1583 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1584 						struct bfq_queue *bfqq,
1585 						bool arrived_in_time)
1586 {
1587 	struct bfq_entity *entity = &bfqq->entity;
1588 
1589 	/*
1590 	 * In the next compound condition, we check also whether there
1591 	 * is some budget left, because otherwise there is no point in
1592 	 * trying to go on serving bfqq with this same budget: bfqq
1593 	 * would be expired immediately after being selected for
1594 	 * service. This would only cause useless overhead.
1595 	 */
1596 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1597 	    bfq_bfqq_budget_left(bfqq) > 0) {
1598 		/*
1599 		 * We do not clear the flag non_blocking_wait_rq here, as
1600 		 * the latter is used in bfq_activate_bfqq to signal
1601 		 * that timestamps need to be back-shifted (and is
1602 		 * cleared right after).
1603 		 */
1604 
1605 		/*
1606 		 * In next assignment we rely on that either
1607 		 * entity->service or entity->budget are not updated
1608 		 * on expiration if bfqq is empty (see
1609 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1610 		 * remain unchanged after such an expiration, and the
1611 		 * following statement therefore assigns to
1612 		 * entity->budget the remaining budget on such an
1613 		 * expiration.
1614 		 */
1615 		entity->budget = min_t(unsigned long,
1616 				       bfq_bfqq_budget_left(bfqq),
1617 				       bfqq->max_budget);
1618 
1619 		/*
1620 		 * At this point, we have used entity->service to get
1621 		 * the budget left (needed for updating
1622 		 * entity->budget). Thus we finally can, and have to,
1623 		 * reset entity->service. The latter must be reset
1624 		 * because bfqq would otherwise be charged again for
1625 		 * the service it has received during its previous
1626 		 * service slot(s).
1627 		 */
1628 		entity->service = 0;
1629 
1630 		return true;
1631 	}
1632 
1633 	/*
1634 	 * We can finally complete expiration, by setting service to 0.
1635 	 */
1636 	entity->service = 0;
1637 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1638 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1639 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1640 	return false;
1641 }
1642 
1643 /*
1644  * Return the farthest past time instant according to jiffies
1645  * macros.
1646  */
1647 static unsigned long bfq_smallest_from_now(void)
1648 {
1649 	return jiffies - MAX_JIFFY_OFFSET;
1650 }
1651 
1652 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1653 					     struct bfq_queue *bfqq,
1654 					     unsigned int old_wr_coeff,
1655 					     bool wr_or_deserves_wr,
1656 					     bool interactive,
1657 					     bool in_burst,
1658 					     bool soft_rt)
1659 {
1660 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1661 		/* start a weight-raising period */
1662 		if (interactive) {
1663 			bfqq->service_from_wr = 0;
1664 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1665 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1666 		} else {
1667 			/*
1668 			 * No interactive weight raising in progress
1669 			 * here: assign minus infinity to
1670 			 * wr_start_at_switch_to_srt, to make sure
1671 			 * that, at the end of the soft-real-time
1672 			 * weight raising periods that is starting
1673 			 * now, no interactive weight-raising period
1674 			 * may be wrongly considered as still in
1675 			 * progress (and thus actually started by
1676 			 * mistake).
1677 			 */
1678 			bfqq->wr_start_at_switch_to_srt =
1679 				bfq_smallest_from_now();
1680 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1681 				BFQ_SOFTRT_WEIGHT_FACTOR;
1682 			bfqq->wr_cur_max_time =
1683 				bfqd->bfq_wr_rt_max_time;
1684 		}
1685 
1686 		/*
1687 		 * If needed, further reduce budget to make sure it is
1688 		 * close to bfqq's backlog, so as to reduce the
1689 		 * scheduling-error component due to a too large
1690 		 * budget. Do not care about throughput consequences,
1691 		 * but only about latency. Finally, do not assign a
1692 		 * too small budget either, to avoid increasing
1693 		 * latency by causing too frequent expirations.
1694 		 */
1695 		bfqq->entity.budget = min_t(unsigned long,
1696 					    bfqq->entity.budget,
1697 					    2 * bfq_min_budget(bfqd));
1698 	} else if (old_wr_coeff > 1) {
1699 		if (interactive) { /* update wr coeff and duration */
1700 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1701 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1702 		} else if (in_burst)
1703 			bfqq->wr_coeff = 1;
1704 		else if (soft_rt) {
1705 			/*
1706 			 * The application is now or still meeting the
1707 			 * requirements for being deemed soft rt.  We
1708 			 * can then correctly and safely (re)charge
1709 			 * the weight-raising duration for the
1710 			 * application with the weight-raising
1711 			 * duration for soft rt applications.
1712 			 *
1713 			 * In particular, doing this recharge now, i.e.,
1714 			 * before the weight-raising period for the
1715 			 * application finishes, reduces the probability
1716 			 * of the following negative scenario:
1717 			 * 1) the weight of a soft rt application is
1718 			 *    raised at startup (as for any newly
1719 			 *    created application),
1720 			 * 2) since the application is not interactive,
1721 			 *    at a certain time weight-raising is
1722 			 *    stopped for the application,
1723 			 * 3) at that time the application happens to
1724 			 *    still have pending requests, and hence
1725 			 *    is destined to not have a chance to be
1726 			 *    deemed soft rt before these requests are
1727 			 *    completed (see the comments to the
1728 			 *    function bfq_bfqq_softrt_next_start()
1729 			 *    for details on soft rt detection),
1730 			 * 4) these pending requests experience a high
1731 			 *    latency because the application is not
1732 			 *    weight-raised while they are pending.
1733 			 */
1734 			if (bfqq->wr_cur_max_time !=
1735 				bfqd->bfq_wr_rt_max_time) {
1736 				bfqq->wr_start_at_switch_to_srt =
1737 					bfqq->last_wr_start_finish;
1738 
1739 				bfqq->wr_cur_max_time =
1740 					bfqd->bfq_wr_rt_max_time;
1741 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1742 					BFQ_SOFTRT_WEIGHT_FACTOR;
1743 			}
1744 			bfqq->last_wr_start_finish = jiffies;
1745 		}
1746 	}
1747 }
1748 
1749 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1750 					struct bfq_queue *bfqq)
1751 {
1752 	return bfqq->dispatched == 0 &&
1753 		time_is_before_jiffies(
1754 			bfqq->budget_timeout +
1755 			bfqd->bfq_wr_min_idle_time);
1756 }
1757 
1758 
1759 /*
1760  * Return true if bfqq is in a higher priority class, or has a higher
1761  * weight than the in-service queue.
1762  */
1763 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1764 					    struct bfq_queue *in_serv_bfqq)
1765 {
1766 	int bfqq_weight, in_serv_weight;
1767 
1768 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1769 		return true;
1770 
1771 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1772 		bfqq_weight = bfqq->entity.weight;
1773 		in_serv_weight = in_serv_bfqq->entity.weight;
1774 	} else {
1775 		if (bfqq->entity.parent)
1776 			bfqq_weight = bfqq->entity.parent->weight;
1777 		else
1778 			bfqq_weight = bfqq->entity.weight;
1779 		if (in_serv_bfqq->entity.parent)
1780 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1781 		else
1782 			in_serv_weight = in_serv_bfqq->entity.weight;
1783 	}
1784 
1785 	return bfqq_weight > in_serv_weight;
1786 }
1787 
1788 /*
1789  * Get the index of the actuator that will serve bio.
1790  */
1791 static unsigned int bfq_actuator_index(struct bfq_data *bfqd, struct bio *bio)
1792 {
1793 	unsigned int i;
1794 	sector_t end;
1795 
1796 	/* no search needed if one or zero ranges present */
1797 	if (bfqd->num_actuators == 1)
1798 		return 0;
1799 
1800 	/* bio_end_sector(bio) gives the sector after the last one */
1801 	end = bio_end_sector(bio) - 1;
1802 
1803 	for (i = 0; i < bfqd->num_actuators; i++) {
1804 		if (end >= bfqd->sector[i] &&
1805 		    end < bfqd->sector[i] + bfqd->nr_sectors[i])
1806 			return i;
1807 	}
1808 
1809 	WARN_ONCE(true,
1810 		  "bfq_actuator_index: bio sector out of ranges: end=%llu\n",
1811 		  end);
1812 	return 0;
1813 }
1814 
1815 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1816 
1817 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1818 					     struct bfq_queue *bfqq,
1819 					     int old_wr_coeff,
1820 					     struct request *rq,
1821 					     bool *interactive)
1822 {
1823 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1824 		bfqq_wants_to_preempt,
1825 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1826 		/*
1827 		 * See the comments on
1828 		 * bfq_bfqq_update_budg_for_activation for
1829 		 * details on the usage of the next variable.
1830 		 */
1831 		arrived_in_time =  ktime_get_ns() <=
1832 			bfqq->ttime.last_end_request +
1833 			bfqd->bfq_slice_idle * 3;
1834 	unsigned int act_idx = bfq_actuator_index(bfqd, rq->bio);
1835 	bool bfqq_non_merged_or_stably_merged =
1836 		bfqq->bic || RQ_BIC(rq)->bfqq_data[act_idx].stably_merged;
1837 
1838 	/*
1839 	 * bfqq deserves to be weight-raised if:
1840 	 * - it is sync,
1841 	 * - it does not belong to a large burst,
1842 	 * - it has been idle for enough time or is soft real-time,
1843 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1844 	 * - has a default weight (otherwise we assume the user wanted
1845 	 *   to control its weight explicitly)
1846 	 */
1847 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1848 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1849 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1850 		!in_burst &&
1851 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1852 		bfqq->dispatched == 0 &&
1853 		bfqq->entity.new_weight == 40;
1854 	*interactive = !in_burst && idle_for_long_time &&
1855 		bfqq->entity.new_weight == 40;
1856 	/*
1857 	 * Merged bfq_queues are kept out of weight-raising
1858 	 * (low-latency) mechanisms. The reason is that these queues
1859 	 * are usually created for non-interactive and
1860 	 * non-soft-real-time tasks. Yet this is not the case for
1861 	 * stably-merged queues. These queues are merged just because
1862 	 * they are created shortly after each other. So they may
1863 	 * easily serve the I/O of an interactive or soft-real time
1864 	 * application, if the application happens to spawn multiple
1865 	 * processes. So let also stably-merged queued enjoy weight
1866 	 * raising.
1867 	 */
1868 	wr_or_deserves_wr = bfqd->low_latency &&
1869 		(bfqq->wr_coeff > 1 ||
1870 		 (bfq_bfqq_sync(bfqq) && bfqq_non_merged_or_stably_merged &&
1871 		  (*interactive || soft_rt)));
1872 
1873 	/*
1874 	 * Using the last flag, update budget and check whether bfqq
1875 	 * may want to preempt the in-service queue.
1876 	 */
1877 	bfqq_wants_to_preempt =
1878 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1879 						    arrived_in_time);
1880 
1881 	/*
1882 	 * If bfqq happened to be activated in a burst, but has been
1883 	 * idle for much more than an interactive queue, then we
1884 	 * assume that, in the overall I/O initiated in the burst, the
1885 	 * I/O associated with bfqq is finished. So bfqq does not need
1886 	 * to be treated as a queue belonging to a burst
1887 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1888 	 * if set, and remove bfqq from the burst list if it's
1889 	 * there. We do not decrement burst_size, because the fact
1890 	 * that bfqq does not need to belong to the burst list any
1891 	 * more does not invalidate the fact that bfqq was created in
1892 	 * a burst.
1893 	 */
1894 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1895 	    idle_for_long_time &&
1896 	    time_is_before_jiffies(
1897 		    bfqq->budget_timeout +
1898 		    msecs_to_jiffies(10000))) {
1899 		hlist_del_init(&bfqq->burst_list_node);
1900 		bfq_clear_bfqq_in_large_burst(bfqq);
1901 	}
1902 
1903 	bfq_clear_bfqq_just_created(bfqq);
1904 
1905 	if (bfqd->low_latency) {
1906 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1907 			/* wraparound */
1908 			bfqq->split_time =
1909 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1910 
1911 		if (time_is_before_jiffies(bfqq->split_time +
1912 					   bfqd->bfq_wr_min_idle_time)) {
1913 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1914 							 old_wr_coeff,
1915 							 wr_or_deserves_wr,
1916 							 *interactive,
1917 							 in_burst,
1918 							 soft_rt);
1919 
1920 			if (old_wr_coeff != bfqq->wr_coeff)
1921 				bfqq->entity.prio_changed = 1;
1922 		}
1923 	}
1924 
1925 	bfqq->last_idle_bklogged = jiffies;
1926 	bfqq->service_from_backlogged = 0;
1927 	bfq_clear_bfqq_softrt_update(bfqq);
1928 
1929 	bfq_add_bfqq_busy(bfqq);
1930 
1931 	/*
1932 	 * Expire in-service queue if preemption may be needed for
1933 	 * guarantees or throughput. As for guarantees, we care
1934 	 * explicitly about two cases. The first is that bfqq has to
1935 	 * recover a service hole, as explained in the comments on
1936 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1937 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1938 	 * carry time-critical I/O, then bfqq's bandwidth is less
1939 	 * important than that of queues that carry time-critical I/O.
1940 	 * So, as a further constraint, we consider this case only if
1941 	 * bfqq is at least as weight-raised, i.e., at least as time
1942 	 * critical, as the in-service queue.
1943 	 *
1944 	 * The second case is that bfqq is in a higher priority class,
1945 	 * or has a higher weight than the in-service queue. If this
1946 	 * condition does not hold, we don't care because, even if
1947 	 * bfqq does not start to be served immediately, the resulting
1948 	 * delay for bfqq's I/O is however lower or much lower than
1949 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1950 	 *
1951 	 * In both cases, preemption is needed only if, according to
1952 	 * the timestamps of both bfqq and of the in-service queue,
1953 	 * bfqq actually is the next queue to serve. So, to reduce
1954 	 * useless preemptions, the return value of
1955 	 * next_queue_may_preempt() is considered in the next compound
1956 	 * condition too. Yet next_queue_may_preempt() just checks a
1957 	 * simple, necessary condition for bfqq to be the next queue
1958 	 * to serve. In fact, to evaluate a sufficient condition, the
1959 	 * timestamps of the in-service queue would need to be
1960 	 * updated, and this operation is quite costly (see the
1961 	 * comments on bfq_bfqq_update_budg_for_activation()).
1962 	 *
1963 	 * As for throughput, we ask bfq_better_to_idle() whether we
1964 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1965 	 * says no, then plugging is not needed any longer, either to
1966 	 * boost throughput or to perserve service guarantees. Then
1967 	 * the best option is to stop plugging I/O, as not doing so
1968 	 * would certainly lower throughput. We may end up in this
1969 	 * case if: (1) upon a dispatch attempt, we detected that it
1970 	 * was better to plug I/O dispatch, and to wait for a new
1971 	 * request to arrive for the currently in-service queue, but
1972 	 * (2) this switch of bfqq to busy changes the scenario.
1973 	 */
1974 	if (bfqd->in_service_queue &&
1975 	    ((bfqq_wants_to_preempt &&
1976 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1977 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1978 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1979 	    next_queue_may_preempt(bfqd))
1980 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1981 				false, BFQQE_PREEMPTED);
1982 }
1983 
1984 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1985 				   struct bfq_queue *bfqq)
1986 {
1987 	/* invalidate baseline total service time */
1988 	bfqq->last_serv_time_ns = 0;
1989 
1990 	/*
1991 	 * Reset pointer in case we are waiting for
1992 	 * some request completion.
1993 	 */
1994 	bfqd->waited_rq = NULL;
1995 
1996 	/*
1997 	 * If bfqq has a short think time, then start by setting the
1998 	 * inject limit to 0 prudentially, because the service time of
1999 	 * an injected I/O request may be higher than the think time
2000 	 * of bfqq, and therefore, if one request was injected when
2001 	 * bfqq remains empty, this injected request might delay the
2002 	 * service of the next I/O request for bfqq significantly. In
2003 	 * case bfqq can actually tolerate some injection, then the
2004 	 * adaptive update will however raise the limit soon. This
2005 	 * lucky circumstance holds exactly because bfqq has a short
2006 	 * think time, and thus, after remaining empty, is likely to
2007 	 * get new I/O enqueued---and then completed---before being
2008 	 * expired. This is the very pattern that gives the
2009 	 * limit-update algorithm the chance to measure the effect of
2010 	 * injection on request service times, and then to update the
2011 	 * limit accordingly.
2012 	 *
2013 	 * However, in the following special case, the inject limit is
2014 	 * left to 1 even if the think time is short: bfqq's I/O is
2015 	 * synchronized with that of some other queue, i.e., bfqq may
2016 	 * receive new I/O only after the I/O of the other queue is
2017 	 * completed. Keeping the inject limit to 1 allows the
2018 	 * blocking I/O to be served while bfqq is in service. And
2019 	 * this is very convenient both for bfqq and for overall
2020 	 * throughput, as explained in detail in the comments in
2021 	 * bfq_update_has_short_ttime().
2022 	 *
2023 	 * On the opposite end, if bfqq has a long think time, then
2024 	 * start directly by 1, because:
2025 	 * a) on the bright side, keeping at most one request in
2026 	 * service in the drive is unlikely to cause any harm to the
2027 	 * latency of bfqq's requests, as the service time of a single
2028 	 * request is likely to be lower than the think time of bfqq;
2029 	 * b) on the downside, after becoming empty, bfqq is likely to
2030 	 * expire before getting its next request. With this request
2031 	 * arrival pattern, it is very hard to sample total service
2032 	 * times and update the inject limit accordingly (see comments
2033 	 * on bfq_update_inject_limit()). So the limit is likely to be
2034 	 * never, or at least seldom, updated.  As a consequence, by
2035 	 * setting the limit to 1, we avoid that no injection ever
2036 	 * occurs with bfqq. On the downside, this proactive step
2037 	 * further reduces chances to actually compute the baseline
2038 	 * total service time. Thus it reduces chances to execute the
2039 	 * limit-update algorithm and possibly raise the limit to more
2040 	 * than 1.
2041 	 */
2042 	if (bfq_bfqq_has_short_ttime(bfqq))
2043 		bfqq->inject_limit = 0;
2044 	else
2045 		bfqq->inject_limit = 1;
2046 
2047 	bfqq->decrease_time_jif = jiffies;
2048 }
2049 
2050 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2051 {
2052 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2053 
2054 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2055 		bfqq->tot_idle_time +=
2056 			now_ns - bfqq->ttime.last_end_request;
2057 
2058 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2059 		return;
2060 
2061 	/*
2062 	 * Must be busy for at least about 80% of the time to be
2063 	 * considered I/O bound.
2064 	 */
2065 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2066 		bfq_clear_bfqq_IO_bound(bfqq);
2067 	else
2068 		bfq_mark_bfqq_IO_bound(bfqq);
2069 
2070 	/*
2071 	 * Keep an observation window of at most 200 ms in the past
2072 	 * from now.
2073 	 */
2074 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2075 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2076 		bfqq->tot_idle_time >>= 1;
2077 	}
2078 }
2079 
2080 /*
2081  * Detect whether bfqq's I/O seems synchronized with that of some
2082  * other queue, i.e., whether bfqq, after remaining empty, happens to
2083  * receive new I/O only right after some I/O request of the other
2084  * queue has been completed. We call waker queue the other queue, and
2085  * we assume, for simplicity, that bfqq may have at most one waker
2086  * queue.
2087  *
2088  * A remarkable throughput boost can be reached by unconditionally
2089  * injecting the I/O of the waker queue, every time a new
2090  * bfq_dispatch_request happens to be invoked while I/O is being
2091  * plugged for bfqq.  In addition to boosting throughput, this
2092  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2093  * bfqq. Note that these same results may be achieved with the general
2094  * injection mechanism, but less effectively. For details on this
2095  * aspect, see the comments on the choice of the queue for injection
2096  * in bfq_select_queue().
2097  *
2098  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2099  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2100  * non empty right after a request of Q has been completed within given
2101  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2102  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2103  * still being served by the drive, and may receive new I/O on the completion
2104  * of some of the in-flight requests. In particular, on the first time, Q is
2105  * tentatively set as a candidate waker queue, while on the third consecutive
2106  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2107  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2108  * has a long think time, so as to make it more likely that bfqq's I/O is
2109  * actually being blocked by a synchronization. This last filter, plus the
2110  * above three-times requirement and time limit for detection, make false
2111  * positives less likely.
2112  *
2113  * NOTE
2114  *
2115  * The sooner a waker queue is detected, the sooner throughput can be
2116  * boosted by injecting I/O from the waker queue. Fortunately,
2117  * detection is likely to be actually fast, for the following
2118  * reasons. While blocked by synchronization, bfqq has a long think
2119  * time. This implies that bfqq's inject limit is at least equal to 1
2120  * (see the comments in bfq_update_inject_limit()). So, thanks to
2121  * injection, the waker queue is likely to be served during the very
2122  * first I/O-plugging time interval for bfqq. This triggers the first
2123  * step of the detection mechanism. Thanks again to injection, the
2124  * candidate waker queue is then likely to be confirmed no later than
2125  * during the next I/O-plugging interval for bfqq.
2126  *
2127  * ISSUE
2128  *
2129  * On queue merging all waker information is lost.
2130  */
2131 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2132 			    u64 now_ns)
2133 {
2134 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2135 
2136 	if (!bfqd->last_completed_rq_bfqq ||
2137 	    bfqd->last_completed_rq_bfqq == bfqq ||
2138 	    bfq_bfqq_has_short_ttime(bfqq) ||
2139 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2140 	    bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq ||
2141 	    bfqq == &bfqd->oom_bfqq)
2142 		return;
2143 
2144 	/*
2145 	 * We reset waker detection logic also if too much time has passed
2146  	 * since the first detection. If wakeups are rare, pointless idling
2147 	 * doesn't hurt throughput that much. The condition below makes sure
2148 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2149 	 */
2150 	if (bfqd->last_completed_rq_bfqq !=
2151 	    bfqq->tentative_waker_bfqq ||
2152 	    now_ns > bfqq->waker_detection_started +
2153 					128 * (u64)bfqd->bfq_slice_idle) {
2154 		/*
2155 		 * First synchronization detected with a
2156 		 * candidate waker queue, or with a different
2157 		 * candidate waker queue from the current one.
2158 		 */
2159 		bfqq->tentative_waker_bfqq =
2160 			bfqd->last_completed_rq_bfqq;
2161 		bfqq->num_waker_detections = 1;
2162 		bfqq->waker_detection_started = now_ns;
2163 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2164 			      MAX_BFQQ_NAME_LENGTH);
2165 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2166 	} else /* Same tentative waker queue detected again */
2167 		bfqq->num_waker_detections++;
2168 
2169 	if (bfqq->num_waker_detections == 3) {
2170 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2171 		bfqq->tentative_waker_bfqq = NULL;
2172 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2173 			      MAX_BFQQ_NAME_LENGTH);
2174 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2175 
2176 		/*
2177 		 * If the waker queue disappears, then
2178 		 * bfqq->waker_bfqq must be reset. To
2179 		 * this goal, we maintain in each
2180 		 * waker queue a list, woken_list, of
2181 		 * all the queues that reference the
2182 		 * waker queue through their
2183 		 * waker_bfqq pointer. When the waker
2184 		 * queue exits, the waker_bfqq pointer
2185 		 * of all the queues in the woken_list
2186 		 * is reset.
2187 		 *
2188 		 * In addition, if bfqq is already in
2189 		 * the woken_list of a waker queue,
2190 		 * then, before being inserted into
2191 		 * the woken_list of a new waker
2192 		 * queue, bfqq must be removed from
2193 		 * the woken_list of the old waker
2194 		 * queue.
2195 		 */
2196 		if (!hlist_unhashed(&bfqq->woken_list_node))
2197 			hlist_del_init(&bfqq->woken_list_node);
2198 		hlist_add_head(&bfqq->woken_list_node,
2199 			       &bfqd->last_completed_rq_bfqq->woken_list);
2200 	}
2201 }
2202 
2203 static void bfq_add_request(struct request *rq)
2204 {
2205 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2206 	struct bfq_data *bfqd = bfqq->bfqd;
2207 	struct request *next_rq, *prev;
2208 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2209 	bool interactive = false;
2210 	u64 now_ns = ktime_get_ns();
2211 
2212 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2213 	bfqq->queued[rq_is_sync(rq)]++;
2214 	/*
2215 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2216 	 * may be read without holding the lock in bfq_has_work().
2217 	 */
2218 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2219 
2220 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2221 		bfq_check_waker(bfqd, bfqq, now_ns);
2222 
2223 		/*
2224 		 * Periodically reset inject limit, to make sure that
2225 		 * the latter eventually drops in case workload
2226 		 * changes, see step (3) in the comments on
2227 		 * bfq_update_inject_limit().
2228 		 */
2229 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2230 					     msecs_to_jiffies(1000)))
2231 			bfq_reset_inject_limit(bfqd, bfqq);
2232 
2233 		/*
2234 		 * The following conditions must hold to setup a new
2235 		 * sampling of total service time, and then a new
2236 		 * update of the inject limit:
2237 		 * - bfqq is in service, because the total service
2238 		 *   time is evaluated only for the I/O requests of
2239 		 *   the queues in service;
2240 		 * - this is the right occasion to compute or to
2241 		 *   lower the baseline total service time, because
2242 		 *   there are actually no requests in the drive,
2243 		 *   or
2244 		 *   the baseline total service time is available, and
2245 		 *   this is the right occasion to compute the other
2246 		 *   quantity needed to update the inject limit, i.e.,
2247 		 *   the total service time caused by the amount of
2248 		 *   injection allowed by the current value of the
2249 		 *   limit. It is the right occasion because injection
2250 		 *   has actually been performed during the service
2251 		 *   hole, and there are still in-flight requests,
2252 		 *   which are very likely to be exactly the injected
2253 		 *   requests, or part of them;
2254 		 * - the minimum interval for sampling the total
2255 		 *   service time and updating the inject limit has
2256 		 *   elapsed.
2257 		 */
2258 		if (bfqq == bfqd->in_service_queue &&
2259 		    (bfqd->tot_rq_in_driver == 0 ||
2260 		     (bfqq->last_serv_time_ns > 0 &&
2261 		      bfqd->rqs_injected && bfqd->tot_rq_in_driver > 0)) &&
2262 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2263 					      msecs_to_jiffies(10))) {
2264 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2265 			/*
2266 			 * Start the state machine for measuring the
2267 			 * total service time of rq: setting
2268 			 * wait_dispatch will cause bfqd->waited_rq to
2269 			 * be set when rq will be dispatched.
2270 			 */
2271 			bfqd->wait_dispatch = true;
2272 			/*
2273 			 * If there is no I/O in service in the drive,
2274 			 * then possible injection occurred before the
2275 			 * arrival of rq will not affect the total
2276 			 * service time of rq. So the injection limit
2277 			 * must not be updated as a function of such
2278 			 * total service time, unless new injection
2279 			 * occurs before rq is completed. To have the
2280 			 * injection limit updated only in the latter
2281 			 * case, reset rqs_injected here (rqs_injected
2282 			 * will be set in case injection is performed
2283 			 * on bfqq before rq is completed).
2284 			 */
2285 			if (bfqd->tot_rq_in_driver == 0)
2286 				bfqd->rqs_injected = false;
2287 		}
2288 	}
2289 
2290 	if (bfq_bfqq_sync(bfqq))
2291 		bfq_update_io_intensity(bfqq, now_ns);
2292 
2293 	elv_rb_add(&bfqq->sort_list, rq);
2294 
2295 	/*
2296 	 * Check if this request is a better next-serve candidate.
2297 	 */
2298 	prev = bfqq->next_rq;
2299 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2300 	bfqq->next_rq = next_rq;
2301 
2302 	/*
2303 	 * Adjust priority tree position, if next_rq changes.
2304 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2305 	 */
2306 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2307 		bfq_pos_tree_add_move(bfqd, bfqq);
2308 
2309 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2310 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2311 						 rq, &interactive);
2312 	else {
2313 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2314 		    time_is_before_jiffies(
2315 				bfqq->last_wr_start_finish +
2316 				bfqd->bfq_wr_min_inter_arr_async)) {
2317 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2318 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2319 
2320 			bfqd->wr_busy_queues++;
2321 			bfqq->entity.prio_changed = 1;
2322 		}
2323 		if (prev != bfqq->next_rq)
2324 			bfq_updated_next_req(bfqd, bfqq);
2325 	}
2326 
2327 	/*
2328 	 * Assign jiffies to last_wr_start_finish in the following
2329 	 * cases:
2330 	 *
2331 	 * . if bfqq is not going to be weight-raised, because, for
2332 	 *   non weight-raised queues, last_wr_start_finish stores the
2333 	 *   arrival time of the last request; as of now, this piece
2334 	 *   of information is used only for deciding whether to
2335 	 *   weight-raise async queues
2336 	 *
2337 	 * . if bfqq is not weight-raised, because, if bfqq is now
2338 	 *   switching to weight-raised, then last_wr_start_finish
2339 	 *   stores the time when weight-raising starts
2340 	 *
2341 	 * . if bfqq is interactive, because, regardless of whether
2342 	 *   bfqq is currently weight-raised, the weight-raising
2343 	 *   period must start or restart (this case is considered
2344 	 *   separately because it is not detected by the above
2345 	 *   conditions, if bfqq is already weight-raised)
2346 	 *
2347 	 * last_wr_start_finish has to be updated also if bfqq is soft
2348 	 * real-time, because the weight-raising period is constantly
2349 	 * restarted on idle-to-busy transitions for these queues, but
2350 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2351 	 * needed.
2352 	 */
2353 	if (bfqd->low_latency &&
2354 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2355 		bfqq->last_wr_start_finish = jiffies;
2356 }
2357 
2358 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2359 					  struct bio *bio,
2360 					  struct request_queue *q)
2361 {
2362 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2363 
2364 
2365 	if (bfqq)
2366 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2367 
2368 	return NULL;
2369 }
2370 
2371 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2372 {
2373 	if (last_pos)
2374 		return abs(blk_rq_pos(rq) - last_pos);
2375 
2376 	return 0;
2377 }
2378 
2379 static void bfq_remove_request(struct request_queue *q,
2380 			       struct request *rq)
2381 {
2382 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2383 	struct bfq_data *bfqd = bfqq->bfqd;
2384 	const int sync = rq_is_sync(rq);
2385 
2386 	if (bfqq->next_rq == rq) {
2387 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2388 		bfq_updated_next_req(bfqd, bfqq);
2389 	}
2390 
2391 	if (rq->queuelist.prev != &rq->queuelist)
2392 		list_del_init(&rq->queuelist);
2393 	bfqq->queued[sync]--;
2394 	/*
2395 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2396 	 * may be read without holding the lock in bfq_has_work().
2397 	 */
2398 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2399 	elv_rb_del(&bfqq->sort_list, rq);
2400 
2401 	elv_rqhash_del(q, rq);
2402 	if (q->last_merge == rq)
2403 		q->last_merge = NULL;
2404 
2405 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2406 		bfqq->next_rq = NULL;
2407 
2408 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2409 			bfq_del_bfqq_busy(bfqq, false);
2410 			/*
2411 			 * bfqq emptied. In normal operation, when
2412 			 * bfqq is empty, bfqq->entity.service and
2413 			 * bfqq->entity.budget must contain,
2414 			 * respectively, the service received and the
2415 			 * budget used last time bfqq emptied. These
2416 			 * facts do not hold in this case, as at least
2417 			 * this last removal occurred while bfqq is
2418 			 * not in service. To avoid inconsistencies,
2419 			 * reset both bfqq->entity.service and
2420 			 * bfqq->entity.budget, if bfqq has still a
2421 			 * process that may issue I/O requests to it.
2422 			 */
2423 			bfqq->entity.budget = bfqq->entity.service = 0;
2424 		}
2425 
2426 		/*
2427 		 * Remove queue from request-position tree as it is empty.
2428 		 */
2429 		if (bfqq->pos_root) {
2430 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2431 			bfqq->pos_root = NULL;
2432 		}
2433 	} else {
2434 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2435 		if (unlikely(!bfqd->nonrot_with_queueing))
2436 			bfq_pos_tree_add_move(bfqd, bfqq);
2437 	}
2438 
2439 	if (rq->cmd_flags & REQ_META)
2440 		bfqq->meta_pending--;
2441 
2442 }
2443 
2444 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2445 		unsigned int nr_segs)
2446 {
2447 	struct bfq_data *bfqd = q->elevator->elevator_data;
2448 	struct request *free = NULL;
2449 	/*
2450 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2451 	 * store its return value for later use, to avoid nesting
2452 	 * queue_lock inside the bfqd->lock. We assume that the bic
2453 	 * returned by bfq_bic_lookup does not go away before
2454 	 * bfqd->lock is taken.
2455 	 */
2456 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2457 	bool ret;
2458 
2459 	spin_lock_irq(&bfqd->lock);
2460 
2461 	if (bic) {
2462 		/*
2463 		 * Make sure cgroup info is uptodate for current process before
2464 		 * considering the merge.
2465 		 */
2466 		bfq_bic_update_cgroup(bic, bio);
2467 
2468 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf),
2469 					     bfq_actuator_index(bfqd, bio));
2470 	} else {
2471 		bfqd->bio_bfqq = NULL;
2472 	}
2473 	bfqd->bio_bic = bic;
2474 
2475 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2476 
2477 	spin_unlock_irq(&bfqd->lock);
2478 	if (free)
2479 		blk_mq_free_request(free);
2480 
2481 	return ret;
2482 }
2483 
2484 static int bfq_request_merge(struct request_queue *q, struct request **req,
2485 			     struct bio *bio)
2486 {
2487 	struct bfq_data *bfqd = q->elevator->elevator_data;
2488 	struct request *__rq;
2489 
2490 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2491 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2492 		*req = __rq;
2493 
2494 		if (blk_discard_mergable(__rq))
2495 			return ELEVATOR_DISCARD_MERGE;
2496 		return ELEVATOR_FRONT_MERGE;
2497 	}
2498 
2499 	return ELEVATOR_NO_MERGE;
2500 }
2501 
2502 static void bfq_request_merged(struct request_queue *q, struct request *req,
2503 			       enum elv_merge type)
2504 {
2505 	if (type == ELEVATOR_FRONT_MERGE &&
2506 	    rb_prev(&req->rb_node) &&
2507 	    blk_rq_pos(req) <
2508 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2509 				    struct request, rb_node))) {
2510 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2511 		struct bfq_data *bfqd;
2512 		struct request *prev, *next_rq;
2513 
2514 		if (!bfqq)
2515 			return;
2516 
2517 		bfqd = bfqq->bfqd;
2518 
2519 		/* Reposition request in its sort_list */
2520 		elv_rb_del(&bfqq->sort_list, req);
2521 		elv_rb_add(&bfqq->sort_list, req);
2522 
2523 		/* Choose next request to be served for bfqq */
2524 		prev = bfqq->next_rq;
2525 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2526 					 bfqd->last_position);
2527 		bfqq->next_rq = next_rq;
2528 		/*
2529 		 * If next_rq changes, update both the queue's budget to
2530 		 * fit the new request and the queue's position in its
2531 		 * rq_pos_tree.
2532 		 */
2533 		if (prev != bfqq->next_rq) {
2534 			bfq_updated_next_req(bfqd, bfqq);
2535 			/*
2536 			 * See comments on bfq_pos_tree_add_move() for
2537 			 * the unlikely().
2538 			 */
2539 			if (unlikely(!bfqd->nonrot_with_queueing))
2540 				bfq_pos_tree_add_move(bfqd, bfqq);
2541 		}
2542 	}
2543 }
2544 
2545 /*
2546  * This function is called to notify the scheduler that the requests
2547  * rq and 'next' have been merged, with 'next' going away.  BFQ
2548  * exploits this hook to address the following issue: if 'next' has a
2549  * fifo_time lower that rq, then the fifo_time of rq must be set to
2550  * the value of 'next', to not forget the greater age of 'next'.
2551  *
2552  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2553  * on that rq is picked from the hash table q->elevator->hash, which,
2554  * in its turn, is filled only with I/O requests present in
2555  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2556  * the function that fills this hash table (elv_rqhash_add) is called
2557  * only by bfq_insert_request.
2558  */
2559 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2560 				struct request *next)
2561 {
2562 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2563 		*next_bfqq = RQ_BFQQ(next);
2564 
2565 	if (!bfqq)
2566 		goto remove;
2567 
2568 	/*
2569 	 * If next and rq belong to the same bfq_queue and next is older
2570 	 * than rq, then reposition rq in the fifo (by substituting next
2571 	 * with rq). Otherwise, if next and rq belong to different
2572 	 * bfq_queues, never reposition rq: in fact, we would have to
2573 	 * reposition it with respect to next's position in its own fifo,
2574 	 * which would most certainly be too expensive with respect to
2575 	 * the benefits.
2576 	 */
2577 	if (bfqq == next_bfqq &&
2578 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2579 	    next->fifo_time < rq->fifo_time) {
2580 		list_del_init(&rq->queuelist);
2581 		list_replace_init(&next->queuelist, &rq->queuelist);
2582 		rq->fifo_time = next->fifo_time;
2583 	}
2584 
2585 	if (bfqq->next_rq == next)
2586 		bfqq->next_rq = rq;
2587 
2588 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2589 remove:
2590 	/* Merged request may be in the IO scheduler. Remove it. */
2591 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2592 		bfq_remove_request(next->q, next);
2593 		if (next_bfqq)
2594 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2595 						    next->cmd_flags);
2596 	}
2597 }
2598 
2599 /* Must be called with bfqq != NULL */
2600 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2601 {
2602 	/*
2603 	 * If bfqq has been enjoying interactive weight-raising, then
2604 	 * reset soft_rt_next_start. We do it for the following
2605 	 * reason. bfqq may have been conveying the I/O needed to load
2606 	 * a soft real-time application. Such an application actually
2607 	 * exhibits a soft real-time I/O pattern after it finishes
2608 	 * loading, and finally starts doing its job. But, if bfqq has
2609 	 * been receiving a lot of bandwidth so far (likely to happen
2610 	 * on a fast device), then soft_rt_next_start now contains a
2611 	 * high value that. So, without this reset, bfqq would be
2612 	 * prevented from being possibly considered as soft_rt for a
2613 	 * very long time.
2614 	 */
2615 
2616 	if (bfqq->wr_cur_max_time !=
2617 	    bfqq->bfqd->bfq_wr_rt_max_time)
2618 		bfqq->soft_rt_next_start = jiffies;
2619 
2620 	if (bfq_bfqq_busy(bfqq))
2621 		bfqq->bfqd->wr_busy_queues--;
2622 	bfqq->wr_coeff = 1;
2623 	bfqq->wr_cur_max_time = 0;
2624 	bfqq->last_wr_start_finish = jiffies;
2625 	/*
2626 	 * Trigger a weight change on the next invocation of
2627 	 * __bfq_entity_update_weight_prio.
2628 	 */
2629 	bfqq->entity.prio_changed = 1;
2630 }
2631 
2632 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2633 			     struct bfq_group *bfqg)
2634 {
2635 	int i, j, k;
2636 
2637 	for (k = 0; k < bfqd->num_actuators; k++) {
2638 		for (i = 0; i < 2; i++)
2639 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2640 				if (bfqg->async_bfqq[i][j][k])
2641 					bfq_bfqq_end_wr(bfqg->async_bfqq[i][j][k]);
2642 		if (bfqg->async_idle_bfqq[k])
2643 			bfq_bfqq_end_wr(bfqg->async_idle_bfqq[k]);
2644 	}
2645 }
2646 
2647 static void bfq_end_wr(struct bfq_data *bfqd)
2648 {
2649 	struct bfq_queue *bfqq;
2650 	int i;
2651 
2652 	spin_lock_irq(&bfqd->lock);
2653 
2654 	for (i = 0; i < bfqd->num_actuators; i++) {
2655 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
2656 			bfq_bfqq_end_wr(bfqq);
2657 	}
2658 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2659 		bfq_bfqq_end_wr(bfqq);
2660 	bfq_end_wr_async(bfqd);
2661 
2662 	spin_unlock_irq(&bfqd->lock);
2663 }
2664 
2665 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2666 {
2667 	if (request)
2668 		return blk_rq_pos(io_struct);
2669 	else
2670 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2671 }
2672 
2673 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2674 				  sector_t sector)
2675 {
2676 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2677 	       BFQQ_CLOSE_THR;
2678 }
2679 
2680 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2681 					 struct bfq_queue *bfqq,
2682 					 sector_t sector)
2683 {
2684 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2685 	struct rb_node *parent, *node;
2686 	struct bfq_queue *__bfqq;
2687 
2688 	if (RB_EMPTY_ROOT(root))
2689 		return NULL;
2690 
2691 	/*
2692 	 * First, if we find a request starting at the end of the last
2693 	 * request, choose it.
2694 	 */
2695 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2696 	if (__bfqq)
2697 		return __bfqq;
2698 
2699 	/*
2700 	 * If the exact sector wasn't found, the parent of the NULL leaf
2701 	 * will contain the closest sector (rq_pos_tree sorted by
2702 	 * next_request position).
2703 	 */
2704 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2705 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2706 		return __bfqq;
2707 
2708 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2709 		node = rb_next(&__bfqq->pos_node);
2710 	else
2711 		node = rb_prev(&__bfqq->pos_node);
2712 	if (!node)
2713 		return NULL;
2714 
2715 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2716 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2717 		return __bfqq;
2718 
2719 	return NULL;
2720 }
2721 
2722 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2723 						   struct bfq_queue *cur_bfqq,
2724 						   sector_t sector)
2725 {
2726 	struct bfq_queue *bfqq;
2727 
2728 	/*
2729 	 * We shall notice if some of the queues are cooperating,
2730 	 * e.g., working closely on the same area of the device. In
2731 	 * that case, we can group them together and: 1) don't waste
2732 	 * time idling, and 2) serve the union of their requests in
2733 	 * the best possible order for throughput.
2734 	 */
2735 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2736 	if (!bfqq || bfqq == cur_bfqq)
2737 		return NULL;
2738 
2739 	return bfqq;
2740 }
2741 
2742 static struct bfq_queue *
2743 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2744 {
2745 	int process_refs, new_process_refs;
2746 	struct bfq_queue *__bfqq;
2747 
2748 	/*
2749 	 * If there are no process references on the new_bfqq, then it is
2750 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2751 	 * may have dropped their last reference (not just their last process
2752 	 * reference).
2753 	 */
2754 	if (!bfqq_process_refs(new_bfqq))
2755 		return NULL;
2756 
2757 	/* Avoid a circular list and skip interim queue merges. */
2758 	while ((__bfqq = new_bfqq->new_bfqq)) {
2759 		if (__bfqq == bfqq)
2760 			return NULL;
2761 		new_bfqq = __bfqq;
2762 	}
2763 
2764 	process_refs = bfqq_process_refs(bfqq);
2765 	new_process_refs = bfqq_process_refs(new_bfqq);
2766 	/*
2767 	 * If the process for the bfqq has gone away, there is no
2768 	 * sense in merging the queues.
2769 	 */
2770 	if (process_refs == 0 || new_process_refs == 0)
2771 		return NULL;
2772 
2773 	/*
2774 	 * Make sure merged queues belong to the same parent. Parents could
2775 	 * have changed since the time we decided the two queues are suitable
2776 	 * for merging.
2777 	 */
2778 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2779 		return NULL;
2780 
2781 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2782 		new_bfqq->pid);
2783 
2784 	/*
2785 	 * Merging is just a redirection: the requests of the process
2786 	 * owning one of the two queues are redirected to the other queue.
2787 	 * The latter queue, in its turn, is set as shared if this is the
2788 	 * first time that the requests of some process are redirected to
2789 	 * it.
2790 	 *
2791 	 * We redirect bfqq to new_bfqq and not the opposite, because
2792 	 * we are in the context of the process owning bfqq, thus we
2793 	 * have the io_cq of this process. So we can immediately
2794 	 * configure this io_cq to redirect the requests of the
2795 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2796 	 * not available any more (new_bfqq->bic == NULL).
2797 	 *
2798 	 * Anyway, even in case new_bfqq coincides with the in-service
2799 	 * queue, redirecting requests the in-service queue is the
2800 	 * best option, as we feed the in-service queue with new
2801 	 * requests close to the last request served and, by doing so,
2802 	 * are likely to increase the throughput.
2803 	 */
2804 	bfqq->new_bfqq = new_bfqq;
2805 	/*
2806 	 * The above assignment schedules the following redirections:
2807 	 * each time some I/O for bfqq arrives, the process that
2808 	 * generated that I/O is disassociated from bfqq and
2809 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2810 	 * in advance, adding the number of processes that are
2811 	 * expected to be associated with new_bfqq as they happen to
2812 	 * issue I/O.
2813 	 */
2814 	new_bfqq->ref += process_refs;
2815 	return new_bfqq;
2816 }
2817 
2818 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2819 					struct bfq_queue *new_bfqq)
2820 {
2821 	if (bfq_too_late_for_merging(new_bfqq))
2822 		return false;
2823 
2824 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2825 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2826 		return false;
2827 
2828 	/*
2829 	 * If either of the queues has already been detected as seeky,
2830 	 * then merging it with the other queue is unlikely to lead to
2831 	 * sequential I/O.
2832 	 */
2833 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2834 		return false;
2835 
2836 	/*
2837 	 * Interleaved I/O is known to be done by (some) applications
2838 	 * only for reads, so it does not make sense to merge async
2839 	 * queues.
2840 	 */
2841 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2842 		return false;
2843 
2844 	return true;
2845 }
2846 
2847 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2848 					     struct bfq_queue *bfqq);
2849 
2850 static struct bfq_queue *
2851 bfq_setup_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2852 		       struct bfq_queue *stable_merge_bfqq,
2853 		       struct bfq_iocq_bfqq_data *bfqq_data)
2854 {
2855 	int proc_ref = min(bfqq_process_refs(bfqq),
2856 			   bfqq_process_refs(stable_merge_bfqq));
2857 	struct bfq_queue *new_bfqq;
2858 
2859 	if (idling_boosts_thr_without_issues(bfqd, bfqq) ||
2860 	    proc_ref == 0)
2861 		return NULL;
2862 
2863 	/* next function will take at least one ref */
2864 	new_bfqq = bfq_setup_merge(bfqq, stable_merge_bfqq);
2865 
2866 	if (new_bfqq) {
2867 		bfqq_data->stably_merged = true;
2868 		if (new_bfqq->bic) {
2869 			unsigned int new_a_idx = new_bfqq->actuator_idx;
2870 			struct bfq_iocq_bfqq_data *new_bfqq_data =
2871 				&new_bfqq->bic->bfqq_data[new_a_idx];
2872 
2873 			new_bfqq_data->stably_merged = true;
2874 		}
2875 	}
2876 	return new_bfqq;
2877 }
2878 
2879 /*
2880  * Attempt to schedule a merge of bfqq with the currently in-service
2881  * queue or with a close queue among the scheduled queues.  Return
2882  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2883  * structure otherwise.
2884  *
2885  * The OOM queue is not allowed to participate to cooperation: in fact, since
2886  * the requests temporarily redirected to the OOM queue could be redirected
2887  * again to dedicated queues at any time, the state needed to correctly
2888  * handle merging with the OOM queue would be quite complex and expensive
2889  * to maintain. Besides, in such a critical condition as an out of memory,
2890  * the benefits of queue merging may be little relevant, or even negligible.
2891  *
2892  * WARNING: queue merging may impair fairness among non-weight raised
2893  * queues, for at least two reasons: 1) the original weight of a
2894  * merged queue may change during the merged state, 2) even being the
2895  * weight the same, a merged queue may be bloated with many more
2896  * requests than the ones produced by its originally-associated
2897  * process.
2898  */
2899 static struct bfq_queue *
2900 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2901 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2902 {
2903 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2904 	unsigned int a_idx = bfqq->actuator_idx;
2905 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
2906 
2907 	/* if a merge has already been setup, then proceed with that first */
2908 	if (bfqq->new_bfqq)
2909 		return bfqq->new_bfqq;
2910 
2911 	/*
2912 	 * Check delayed stable merge for rotational or non-queueing
2913 	 * devs. For this branch to be executed, bfqq must not be
2914 	 * currently merged with some other queue (i.e., bfqq->bic
2915 	 * must be non null). If we considered also merged queues,
2916 	 * then we should also check whether bfqq has already been
2917 	 * merged with bic->stable_merge_bfqq. But this would be
2918 	 * costly and complicated.
2919 	 */
2920 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2921 		/*
2922 		 * Make sure also that bfqq is sync, because
2923 		 * bic->stable_merge_bfqq may point to some queue (for
2924 		 * stable merging) also if bic is associated with a
2925 		 * sync queue, but this bfqq is async
2926 		 */
2927 		if (bfq_bfqq_sync(bfqq) && bfqq_data->stable_merge_bfqq &&
2928 		    !bfq_bfqq_just_created(bfqq) &&
2929 		    time_is_before_jiffies(bfqq->split_time +
2930 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2931 		    time_is_before_jiffies(bfqq->creation_time +
2932 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2933 			struct bfq_queue *stable_merge_bfqq =
2934 				bfqq_data->stable_merge_bfqq;
2935 
2936 			/* deschedule stable merge, because done or aborted here */
2937 			bfq_put_stable_ref(stable_merge_bfqq);
2938 
2939 			bfqq_data->stable_merge_bfqq = NULL;
2940 
2941 			return bfq_setup_stable_merge(bfqd, bfqq,
2942 						      stable_merge_bfqq,
2943 						      bfqq_data);
2944 		}
2945 	}
2946 
2947 	/*
2948 	 * Do not perform queue merging if the device is non
2949 	 * rotational and performs internal queueing. In fact, such a
2950 	 * device reaches a high speed through internal parallelism
2951 	 * and pipelining. This means that, to reach a high
2952 	 * throughput, it must have many requests enqueued at the same
2953 	 * time. But, in this configuration, the internal scheduling
2954 	 * algorithm of the device does exactly the job of queue
2955 	 * merging: it reorders requests so as to obtain as much as
2956 	 * possible a sequential I/O pattern. As a consequence, with
2957 	 * the workload generated by processes doing interleaved I/O,
2958 	 * the throughput reached by the device is likely to be the
2959 	 * same, with and without queue merging.
2960 	 *
2961 	 * Disabling merging also provides a remarkable benefit in
2962 	 * terms of throughput. Merging tends to make many workloads
2963 	 * artificially more uneven, because of shared queues
2964 	 * remaining non empty for incomparably more time than
2965 	 * non-merged queues. This may accentuate workload
2966 	 * asymmetries. For example, if one of the queues in a set of
2967 	 * merged queues has a higher weight than a normal queue, then
2968 	 * the shared queue may inherit such a high weight and, by
2969 	 * staying almost always active, may force BFQ to perform I/O
2970 	 * plugging most of the time. This evidently makes it harder
2971 	 * for BFQ to let the device reach a high throughput.
2972 	 *
2973 	 * Finally, the likely() macro below is not used because one
2974 	 * of the two branches is more likely than the other, but to
2975 	 * have the code path after the following if() executed as
2976 	 * fast as possible for the case of a non rotational device
2977 	 * with queueing. We want it because this is the fastest kind
2978 	 * of device. On the opposite end, the likely() may lengthen
2979 	 * the execution time of BFQ for the case of slower devices
2980 	 * (rotational or at least without queueing). But in this case
2981 	 * the execution time of BFQ matters very little, if not at
2982 	 * all.
2983 	 */
2984 	if (likely(bfqd->nonrot_with_queueing))
2985 		return NULL;
2986 
2987 	/*
2988 	 * Prevent bfqq from being merged if it has been created too
2989 	 * long ago. The idea is that true cooperating processes, and
2990 	 * thus their associated bfq_queues, are supposed to be
2991 	 * created shortly after each other. This is the case, e.g.,
2992 	 * for KVM/QEMU and dump I/O threads. Basing on this
2993 	 * assumption, the following filtering greatly reduces the
2994 	 * probability that two non-cooperating processes, which just
2995 	 * happen to do close I/O for some short time interval, have
2996 	 * their queues merged by mistake.
2997 	 */
2998 	if (bfq_too_late_for_merging(bfqq))
2999 		return NULL;
3000 
3001 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
3002 		return NULL;
3003 
3004 	/* If there is only one backlogged queue, don't search. */
3005 	if (bfq_tot_busy_queues(bfqd) == 1)
3006 		return NULL;
3007 
3008 	in_service_bfqq = bfqd->in_service_queue;
3009 
3010 	if (in_service_bfqq && in_service_bfqq != bfqq &&
3011 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
3012 	    bfq_rq_close_to_sector(io_struct, request,
3013 				   bfqd->in_serv_last_pos) &&
3014 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
3015 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
3016 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
3017 		if (new_bfqq)
3018 			return new_bfqq;
3019 	}
3020 	/*
3021 	 * Check whether there is a cooperator among currently scheduled
3022 	 * queues. The only thing we need is that the bio/request is not
3023 	 * NULL, as we need it to establish whether a cooperator exists.
3024 	 */
3025 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
3026 			bfq_io_struct_pos(io_struct, request));
3027 
3028 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
3029 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
3030 		return bfq_setup_merge(bfqq, new_bfqq);
3031 
3032 	return NULL;
3033 }
3034 
3035 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
3036 {
3037 	struct bfq_io_cq *bic = bfqq->bic;
3038 	unsigned int a_idx = bfqq->actuator_idx;
3039 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
3040 
3041 	/*
3042 	 * If !bfqq->bic, the queue is already shared or its requests
3043 	 * have already been redirected to a shared queue; both idle window
3044 	 * and weight raising state have already been saved. Do nothing.
3045 	 */
3046 	if (!bic)
3047 		return;
3048 
3049 	bfqq_data->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3050 	bfqq_data->saved_inject_limit =	bfqq->inject_limit;
3051 	bfqq_data->saved_decrease_time_jif = bfqq->decrease_time_jif;
3052 
3053 	bfqq_data->saved_weight = bfqq->entity.orig_weight;
3054 	bfqq_data->saved_ttime = bfqq->ttime;
3055 	bfqq_data->saved_has_short_ttime =
3056 		bfq_bfqq_has_short_ttime(bfqq);
3057 	bfqq_data->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3058 	bfqq_data->saved_io_start_time = bfqq->io_start_time;
3059 	bfqq_data->saved_tot_idle_time = bfqq->tot_idle_time;
3060 	bfqq_data->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3061 	bfqq_data->was_in_burst_list =
3062 		!hlist_unhashed(&bfqq->burst_list_node);
3063 
3064 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3065 		     !bfq_bfqq_in_large_burst(bfqq) &&
3066 		     bfqq->bfqd->low_latency)) {
3067 		/*
3068 		 * bfqq being merged right after being created: bfqq
3069 		 * would have deserved interactive weight raising, but
3070 		 * did not make it to be set in a weight-raised state,
3071 		 * because of this early merge.	Store directly the
3072 		 * weight-raising state that would have been assigned
3073 		 * to bfqq, so that to avoid that bfqq unjustly fails
3074 		 * to enjoy weight raising if split soon.
3075 		 */
3076 		bfqq_data->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3077 		bfqq_data->saved_wr_start_at_switch_to_srt =
3078 			bfq_smallest_from_now();
3079 		bfqq_data->saved_wr_cur_max_time =
3080 			bfq_wr_duration(bfqq->bfqd);
3081 		bfqq_data->saved_last_wr_start_finish = jiffies;
3082 	} else {
3083 		bfqq_data->saved_wr_coeff = bfqq->wr_coeff;
3084 		bfqq_data->saved_wr_start_at_switch_to_srt =
3085 			bfqq->wr_start_at_switch_to_srt;
3086 		bfqq_data->saved_service_from_wr =
3087 			bfqq->service_from_wr;
3088 		bfqq_data->saved_last_wr_start_finish =
3089 			bfqq->last_wr_start_finish;
3090 		bfqq_data->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3091 	}
3092 }
3093 
3094 
3095 static void
3096 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3097 {
3098 	if (cur_bfqq->entity.parent &&
3099 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3100 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3101 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3102 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3103 }
3104 
3105 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3106 {
3107 	/*
3108 	 * To prevent bfqq's service guarantees from being violated,
3109 	 * bfqq may be left busy, i.e., queued for service, even if
3110 	 * empty (see comments in __bfq_bfqq_expire() for
3111 	 * details). But, if no process will send requests to bfqq any
3112 	 * longer, then there is no point in keeping bfqq queued for
3113 	 * service. In addition, keeping bfqq queued for service, but
3114 	 * with no process ref any longer, may have caused bfqq to be
3115 	 * freed when dequeued from service. But this is assumed to
3116 	 * never happen.
3117 	 */
3118 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3119 	    bfqq != bfqd->in_service_queue)
3120 		bfq_del_bfqq_busy(bfqq, false);
3121 
3122 	bfq_reassign_last_bfqq(bfqq, NULL);
3123 
3124 	bfq_put_queue(bfqq);
3125 }
3126 
3127 static void
3128 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3129 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3130 {
3131 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3132 		(unsigned long)new_bfqq->pid);
3133 	/* Save weight raising and idle window of the merged queues */
3134 	bfq_bfqq_save_state(bfqq);
3135 	bfq_bfqq_save_state(new_bfqq);
3136 	if (bfq_bfqq_IO_bound(bfqq))
3137 		bfq_mark_bfqq_IO_bound(new_bfqq);
3138 	bfq_clear_bfqq_IO_bound(bfqq);
3139 
3140 	/*
3141 	 * The processes associated with bfqq are cooperators of the
3142 	 * processes associated with new_bfqq. So, if bfqq has a
3143 	 * waker, then assume that all these processes will be happy
3144 	 * to let bfqq's waker freely inject I/O when they have no
3145 	 * I/O.
3146 	 */
3147 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3148 	    bfqq->waker_bfqq != new_bfqq) {
3149 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3150 		new_bfqq->tentative_waker_bfqq = NULL;
3151 
3152 		/*
3153 		 * If the waker queue disappears, then
3154 		 * new_bfqq->waker_bfqq must be reset. So insert
3155 		 * new_bfqq into the woken_list of the waker. See
3156 		 * bfq_check_waker for details.
3157 		 */
3158 		hlist_add_head(&new_bfqq->woken_list_node,
3159 			       &new_bfqq->waker_bfqq->woken_list);
3160 
3161 	}
3162 
3163 	/*
3164 	 * If bfqq is weight-raised, then let new_bfqq inherit
3165 	 * weight-raising. To reduce false positives, neglect the case
3166 	 * where bfqq has just been created, but has not yet made it
3167 	 * to be weight-raised (which may happen because EQM may merge
3168 	 * bfqq even before bfq_add_request is executed for the first
3169 	 * time for bfqq). Handling this case would however be very
3170 	 * easy, thanks to the flag just_created.
3171 	 */
3172 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3173 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3174 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3175 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3176 		new_bfqq->wr_start_at_switch_to_srt =
3177 			bfqq->wr_start_at_switch_to_srt;
3178 		if (bfq_bfqq_busy(new_bfqq))
3179 			bfqd->wr_busy_queues++;
3180 		new_bfqq->entity.prio_changed = 1;
3181 	}
3182 
3183 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3184 		bfqq->wr_coeff = 1;
3185 		bfqq->entity.prio_changed = 1;
3186 		if (bfq_bfqq_busy(bfqq))
3187 			bfqd->wr_busy_queues--;
3188 	}
3189 
3190 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3191 		     bfqd->wr_busy_queues);
3192 
3193 	/*
3194 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3195 	 */
3196 	bic_set_bfqq(bic, new_bfqq, true, bfqq->actuator_idx);
3197 	bfq_mark_bfqq_coop(new_bfqq);
3198 	/*
3199 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3200 	 * set new_bfqq->bic to NULL. bfqq either:
3201 	 * - does not belong to any bic any more, and hence bfqq->bic must
3202 	 *   be set to NULL, or
3203 	 * - is a queue whose owning bics have already been redirected to a
3204 	 *   different queue, hence the queue is destined to not belong to
3205 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3206 	 *   assignment causes no harm).
3207 	 */
3208 	new_bfqq->bic = NULL;
3209 	/*
3210 	 * If the queue is shared, the pid is the pid of one of the associated
3211 	 * processes. Which pid depends on the exact sequence of merge events
3212 	 * the queue underwent. So printing such a pid is useless and confusing
3213 	 * because it reports a random pid between those of the associated
3214 	 * processes.
3215 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3216 	 * a pid in logging messages.
3217 	 */
3218 	new_bfqq->pid = -1;
3219 	bfqq->bic = NULL;
3220 
3221 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3222 
3223 	bfq_release_process_ref(bfqd, bfqq);
3224 }
3225 
3226 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3227 				struct bio *bio)
3228 {
3229 	struct bfq_data *bfqd = q->elevator->elevator_data;
3230 	bool is_sync = op_is_sync(bio->bi_opf);
3231 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3232 
3233 	/*
3234 	 * Disallow merge of a sync bio into an async request.
3235 	 */
3236 	if (is_sync && !rq_is_sync(rq))
3237 		return false;
3238 
3239 	/*
3240 	 * Lookup the bfqq that this bio will be queued with. Allow
3241 	 * merge only if rq is queued there.
3242 	 */
3243 	if (!bfqq)
3244 		return false;
3245 
3246 	/*
3247 	 * We take advantage of this function to perform an early merge
3248 	 * of the queues of possible cooperating processes.
3249 	 */
3250 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3251 	if (new_bfqq) {
3252 		/*
3253 		 * bic still points to bfqq, then it has not yet been
3254 		 * redirected to some other bfq_queue, and a queue
3255 		 * merge between bfqq and new_bfqq can be safely
3256 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3257 		 * and bfqq can be put.
3258 		 */
3259 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3260 				new_bfqq);
3261 		/*
3262 		 * If we get here, bio will be queued into new_queue,
3263 		 * so use new_bfqq to decide whether bio and rq can be
3264 		 * merged.
3265 		 */
3266 		bfqq = new_bfqq;
3267 
3268 		/*
3269 		 * Change also bqfd->bio_bfqq, as
3270 		 * bfqd->bio_bic now points to new_bfqq, and
3271 		 * this function may be invoked again (and then may
3272 		 * use again bqfd->bio_bfqq).
3273 		 */
3274 		bfqd->bio_bfqq = bfqq;
3275 	}
3276 
3277 	return bfqq == RQ_BFQQ(rq);
3278 }
3279 
3280 /*
3281  * Set the maximum time for the in-service queue to consume its
3282  * budget. This prevents seeky processes from lowering the throughput.
3283  * In practice, a time-slice service scheme is used with seeky
3284  * processes.
3285  */
3286 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3287 				   struct bfq_queue *bfqq)
3288 {
3289 	unsigned int timeout_coeff;
3290 
3291 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3292 		timeout_coeff = 1;
3293 	else
3294 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3295 
3296 	bfqd->last_budget_start = ktime_get();
3297 
3298 	bfqq->budget_timeout = jiffies +
3299 		bfqd->bfq_timeout * timeout_coeff;
3300 }
3301 
3302 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3303 				       struct bfq_queue *bfqq)
3304 {
3305 	if (bfqq) {
3306 		bfq_clear_bfqq_fifo_expire(bfqq);
3307 
3308 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3309 
3310 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3311 		    bfqq->wr_coeff > 1 &&
3312 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3313 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3314 			/*
3315 			 * For soft real-time queues, move the start
3316 			 * of the weight-raising period forward by the
3317 			 * time the queue has not received any
3318 			 * service. Otherwise, a relatively long
3319 			 * service delay is likely to cause the
3320 			 * weight-raising period of the queue to end,
3321 			 * because of the short duration of the
3322 			 * weight-raising period of a soft real-time
3323 			 * queue.  It is worth noting that this move
3324 			 * is not so dangerous for the other queues,
3325 			 * because soft real-time queues are not
3326 			 * greedy.
3327 			 *
3328 			 * To not add a further variable, we use the
3329 			 * overloaded field budget_timeout to
3330 			 * determine for how long the queue has not
3331 			 * received service, i.e., how much time has
3332 			 * elapsed since the queue expired. However,
3333 			 * this is a little imprecise, because
3334 			 * budget_timeout is set to jiffies if bfqq
3335 			 * not only expires, but also remains with no
3336 			 * request.
3337 			 */
3338 			if (time_after(bfqq->budget_timeout,
3339 				       bfqq->last_wr_start_finish))
3340 				bfqq->last_wr_start_finish +=
3341 					jiffies - bfqq->budget_timeout;
3342 			else
3343 				bfqq->last_wr_start_finish = jiffies;
3344 		}
3345 
3346 		bfq_set_budget_timeout(bfqd, bfqq);
3347 		bfq_log_bfqq(bfqd, bfqq,
3348 			     "set_in_service_queue, cur-budget = %d",
3349 			     bfqq->entity.budget);
3350 	}
3351 
3352 	bfqd->in_service_queue = bfqq;
3353 	bfqd->in_serv_last_pos = 0;
3354 }
3355 
3356 /*
3357  * Get and set a new queue for service.
3358  */
3359 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3360 {
3361 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3362 
3363 	__bfq_set_in_service_queue(bfqd, bfqq);
3364 	return bfqq;
3365 }
3366 
3367 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3368 {
3369 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3370 	u32 sl;
3371 
3372 	bfq_mark_bfqq_wait_request(bfqq);
3373 
3374 	/*
3375 	 * We don't want to idle for seeks, but we do want to allow
3376 	 * fair distribution of slice time for a process doing back-to-back
3377 	 * seeks. So allow a little bit of time for him to submit a new rq.
3378 	 */
3379 	sl = bfqd->bfq_slice_idle;
3380 	/*
3381 	 * Unless the queue is being weight-raised or the scenario is
3382 	 * asymmetric, grant only minimum idle time if the queue
3383 	 * is seeky. A long idling is preserved for a weight-raised
3384 	 * queue, or, more in general, in an asymmetric scenario,
3385 	 * because a long idling is needed for guaranteeing to a queue
3386 	 * its reserved share of the throughput (in particular, it is
3387 	 * needed if the queue has a higher weight than some other
3388 	 * queue).
3389 	 */
3390 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3391 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3392 		sl = min_t(u64, sl, BFQ_MIN_TT);
3393 	else if (bfqq->wr_coeff > 1)
3394 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3395 
3396 	bfqd->last_idling_start = ktime_get();
3397 	bfqd->last_idling_start_jiffies = jiffies;
3398 
3399 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3400 		      HRTIMER_MODE_REL);
3401 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3402 }
3403 
3404 /*
3405  * In autotuning mode, max_budget is dynamically recomputed as the
3406  * amount of sectors transferred in timeout at the estimated peak
3407  * rate. This enables BFQ to utilize a full timeslice with a full
3408  * budget, even if the in-service queue is served at peak rate. And
3409  * this maximises throughput with sequential workloads.
3410  */
3411 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3412 {
3413 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3414 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3415 }
3416 
3417 /*
3418  * Update parameters related to throughput and responsiveness, as a
3419  * function of the estimated peak rate. See comments on
3420  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3421  */
3422 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3423 {
3424 	if (bfqd->bfq_user_max_budget == 0) {
3425 		bfqd->bfq_max_budget =
3426 			bfq_calc_max_budget(bfqd);
3427 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3428 	}
3429 }
3430 
3431 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3432 				       struct request *rq)
3433 {
3434 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3435 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3436 		bfqd->peak_rate_samples = 1;
3437 		bfqd->sequential_samples = 0;
3438 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3439 			blk_rq_sectors(rq);
3440 	} else /* no new rq dispatched, just reset the number of samples */
3441 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3442 
3443 	bfq_log(bfqd,
3444 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3445 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3446 		bfqd->tot_sectors_dispatched);
3447 }
3448 
3449 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3450 {
3451 	u32 rate, weight, divisor;
3452 
3453 	/*
3454 	 * For the convergence property to hold (see comments on
3455 	 * bfq_update_peak_rate()) and for the assessment to be
3456 	 * reliable, a minimum number of samples must be present, and
3457 	 * a minimum amount of time must have elapsed. If not so, do
3458 	 * not compute new rate. Just reset parameters, to get ready
3459 	 * for a new evaluation attempt.
3460 	 */
3461 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3462 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3463 		goto reset_computation;
3464 
3465 	/*
3466 	 * If a new request completion has occurred after last
3467 	 * dispatch, then, to approximate the rate at which requests
3468 	 * have been served by the device, it is more precise to
3469 	 * extend the observation interval to the last completion.
3470 	 */
3471 	bfqd->delta_from_first =
3472 		max_t(u64, bfqd->delta_from_first,
3473 		      bfqd->last_completion - bfqd->first_dispatch);
3474 
3475 	/*
3476 	 * Rate computed in sects/usec, and not sects/nsec, for
3477 	 * precision issues.
3478 	 */
3479 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3480 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3481 
3482 	/*
3483 	 * Peak rate not updated if:
3484 	 * - the percentage of sequential dispatches is below 3/4 of the
3485 	 *   total, and rate is below the current estimated peak rate
3486 	 * - rate is unreasonably high (> 20M sectors/sec)
3487 	 */
3488 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3489 	     rate <= bfqd->peak_rate) ||
3490 		rate > 20<<BFQ_RATE_SHIFT)
3491 		goto reset_computation;
3492 
3493 	/*
3494 	 * We have to update the peak rate, at last! To this purpose,
3495 	 * we use a low-pass filter. We compute the smoothing constant
3496 	 * of the filter as a function of the 'weight' of the new
3497 	 * measured rate.
3498 	 *
3499 	 * As can be seen in next formulas, we define this weight as a
3500 	 * quantity proportional to how sequential the workload is,
3501 	 * and to how long the observation time interval is.
3502 	 *
3503 	 * The weight runs from 0 to 8. The maximum value of the
3504 	 * weight, 8, yields the minimum value for the smoothing
3505 	 * constant. At this minimum value for the smoothing constant,
3506 	 * the measured rate contributes for half of the next value of
3507 	 * the estimated peak rate.
3508 	 *
3509 	 * So, the first step is to compute the weight as a function
3510 	 * of how sequential the workload is. Note that the weight
3511 	 * cannot reach 9, because bfqd->sequential_samples cannot
3512 	 * become equal to bfqd->peak_rate_samples, which, in its
3513 	 * turn, holds true because bfqd->sequential_samples is not
3514 	 * incremented for the first sample.
3515 	 */
3516 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3517 
3518 	/*
3519 	 * Second step: further refine the weight as a function of the
3520 	 * duration of the observation interval.
3521 	 */
3522 	weight = min_t(u32, 8,
3523 		       div_u64(weight * bfqd->delta_from_first,
3524 			       BFQ_RATE_REF_INTERVAL));
3525 
3526 	/*
3527 	 * Divisor ranging from 10, for minimum weight, to 2, for
3528 	 * maximum weight.
3529 	 */
3530 	divisor = 10 - weight;
3531 
3532 	/*
3533 	 * Finally, update peak rate:
3534 	 *
3535 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3536 	 */
3537 	bfqd->peak_rate *= divisor-1;
3538 	bfqd->peak_rate /= divisor;
3539 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3540 
3541 	bfqd->peak_rate += rate;
3542 
3543 	/*
3544 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3545 	 * the minimum representable values reported in the comments
3546 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3547 	 * divisions by zero where bfqd->peak_rate is used as a
3548 	 * divisor.
3549 	 */
3550 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3551 
3552 	update_thr_responsiveness_params(bfqd);
3553 
3554 reset_computation:
3555 	bfq_reset_rate_computation(bfqd, rq);
3556 }
3557 
3558 /*
3559  * Update the read/write peak rate (the main quantity used for
3560  * auto-tuning, see update_thr_responsiveness_params()).
3561  *
3562  * It is not trivial to estimate the peak rate (correctly): because of
3563  * the presence of sw and hw queues between the scheduler and the
3564  * device components that finally serve I/O requests, it is hard to
3565  * say exactly when a given dispatched request is served inside the
3566  * device, and for how long. As a consequence, it is hard to know
3567  * precisely at what rate a given set of requests is actually served
3568  * by the device.
3569  *
3570  * On the opposite end, the dispatch time of any request is trivially
3571  * available, and, from this piece of information, the "dispatch rate"
3572  * of requests can be immediately computed. So, the idea in the next
3573  * function is to use what is known, namely request dispatch times
3574  * (plus, when useful, request completion times), to estimate what is
3575  * unknown, namely in-device request service rate.
3576  *
3577  * The main issue is that, because of the above facts, the rate at
3578  * which a certain set of requests is dispatched over a certain time
3579  * interval can vary greatly with respect to the rate at which the
3580  * same requests are then served. But, since the size of any
3581  * intermediate queue is limited, and the service scheme is lossless
3582  * (no request is silently dropped), the following obvious convergence
3583  * property holds: the number of requests dispatched MUST become
3584  * closer and closer to the number of requests completed as the
3585  * observation interval grows. This is the key property used in
3586  * the next function to estimate the peak service rate as a function
3587  * of the observed dispatch rate. The function assumes to be invoked
3588  * on every request dispatch.
3589  */
3590 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3591 {
3592 	u64 now_ns = ktime_get_ns();
3593 
3594 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3595 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3596 			bfqd->peak_rate_samples);
3597 		bfq_reset_rate_computation(bfqd, rq);
3598 		goto update_last_values; /* will add one sample */
3599 	}
3600 
3601 	/*
3602 	 * Device idle for very long: the observation interval lasting
3603 	 * up to this dispatch cannot be a valid observation interval
3604 	 * for computing a new peak rate (similarly to the late-
3605 	 * completion event in bfq_completed_request()). Go to
3606 	 * update_rate_and_reset to have the following three steps
3607 	 * taken:
3608 	 * - close the observation interval at the last (previous)
3609 	 *   request dispatch or completion
3610 	 * - compute rate, if possible, for that observation interval
3611 	 * - start a new observation interval with this dispatch
3612 	 */
3613 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3614 	    bfqd->tot_rq_in_driver == 0)
3615 		goto update_rate_and_reset;
3616 
3617 	/* Update sampling information */
3618 	bfqd->peak_rate_samples++;
3619 
3620 	if ((bfqd->tot_rq_in_driver > 0 ||
3621 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3622 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3623 		bfqd->sequential_samples++;
3624 
3625 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3626 
3627 	/* Reset max observed rq size every 32 dispatches */
3628 	if (likely(bfqd->peak_rate_samples % 32))
3629 		bfqd->last_rq_max_size =
3630 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3631 	else
3632 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3633 
3634 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3635 
3636 	/* Target observation interval not yet reached, go on sampling */
3637 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3638 		goto update_last_values;
3639 
3640 update_rate_and_reset:
3641 	bfq_update_rate_reset(bfqd, rq);
3642 update_last_values:
3643 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3644 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3645 		bfqd->in_serv_last_pos = bfqd->last_position;
3646 	bfqd->last_dispatch = now_ns;
3647 }
3648 
3649 /*
3650  * Remove request from internal lists.
3651  */
3652 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3653 {
3654 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3655 
3656 	/*
3657 	 * For consistency, the next instruction should have been
3658 	 * executed after removing the request from the queue and
3659 	 * dispatching it.  We execute instead this instruction before
3660 	 * bfq_remove_request() (and hence introduce a temporary
3661 	 * inconsistency), for efficiency.  In fact, should this
3662 	 * dispatch occur for a non in-service bfqq, this anticipated
3663 	 * increment prevents two counters related to bfqq->dispatched
3664 	 * from risking to be, first, uselessly decremented, and then
3665 	 * incremented again when the (new) value of bfqq->dispatched
3666 	 * happens to be taken into account.
3667 	 */
3668 	bfqq->dispatched++;
3669 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3670 
3671 	bfq_remove_request(q, rq);
3672 }
3673 
3674 /*
3675  * There is a case where idling does not have to be performed for
3676  * throughput concerns, but to preserve the throughput share of
3677  * the process associated with bfqq.
3678  *
3679  * To introduce this case, we can note that allowing the drive
3680  * to enqueue more than one request at a time, and hence
3681  * delegating de facto final scheduling decisions to the
3682  * drive's internal scheduler, entails loss of control on the
3683  * actual request service order. In particular, the critical
3684  * situation is when requests from different processes happen
3685  * to be present, at the same time, in the internal queue(s)
3686  * of the drive. In such a situation, the drive, by deciding
3687  * the service order of the internally-queued requests, does
3688  * determine also the actual throughput distribution among
3689  * these processes. But the drive typically has no notion or
3690  * concern about per-process throughput distribution, and
3691  * makes its decisions only on a per-request basis. Therefore,
3692  * the service distribution enforced by the drive's internal
3693  * scheduler is likely to coincide with the desired throughput
3694  * distribution only in a completely symmetric, or favorably
3695  * skewed scenario where:
3696  * (i-a) each of these processes must get the same throughput as
3697  *	 the others,
3698  * (i-b) in case (i-a) does not hold, it holds that the process
3699  *       associated with bfqq must receive a lower or equal
3700  *	 throughput than any of the other processes;
3701  * (ii)  the I/O of each process has the same properties, in
3702  *       terms of locality (sequential or random), direction
3703  *       (reads or writes), request sizes, greediness
3704  *       (from I/O-bound to sporadic), and so on;
3705 
3706  * In fact, in such a scenario, the drive tends to treat the requests
3707  * of each process in about the same way as the requests of the
3708  * others, and thus to provide each of these processes with about the
3709  * same throughput.  This is exactly the desired throughput
3710  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3711  * even more convenient distribution for (the process associated with)
3712  * bfqq.
3713  *
3714  * In contrast, in any asymmetric or unfavorable scenario, device
3715  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3716  * that bfqq receives its assigned fraction of the device throughput
3717  * (see [1] for details).
3718  *
3719  * The problem is that idling may significantly reduce throughput with
3720  * certain combinations of types of I/O and devices. An important
3721  * example is sync random I/O on flash storage with command
3722  * queueing. So, unless bfqq falls in cases where idling also boosts
3723  * throughput, it is important to check conditions (i-a), i(-b) and
3724  * (ii) accurately, so as to avoid idling when not strictly needed for
3725  * service guarantees.
3726  *
3727  * Unfortunately, it is extremely difficult to thoroughly check
3728  * condition (ii). And, in case there are active groups, it becomes
3729  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3730  * if there are active groups, then, for conditions (i-a) or (i-b) to
3731  * become false 'indirectly', it is enough that an active group
3732  * contains more active processes or sub-groups than some other active
3733  * group. More precisely, for conditions (i-a) or (i-b) to become
3734  * false because of such a group, it is not even necessary that the
3735  * group is (still) active: it is sufficient that, even if the group
3736  * has become inactive, some of its descendant processes still have
3737  * some request already dispatched but still waiting for
3738  * completion. In fact, requests have still to be guaranteed their
3739  * share of the throughput even after being dispatched. In this
3740  * respect, it is easy to show that, if a group frequently becomes
3741  * inactive while still having in-flight requests, and if, when this
3742  * happens, the group is not considered in the calculation of whether
3743  * the scenario is asymmetric, then the group may fail to be
3744  * guaranteed its fair share of the throughput (basically because
3745  * idling may not be performed for the descendant processes of the
3746  * group, but it had to be).  We address this issue with the following
3747  * bi-modal behavior, implemented in the function
3748  * bfq_asymmetric_scenario().
3749  *
3750  * If there are groups with requests waiting for completion
3751  * (as commented above, some of these groups may even be
3752  * already inactive), then the scenario is tagged as
3753  * asymmetric, conservatively, without checking any of the
3754  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3755  * This behavior matches also the fact that groups are created
3756  * exactly if controlling I/O is a primary concern (to
3757  * preserve bandwidth and latency guarantees).
3758  *
3759  * On the opposite end, if there are no groups with requests waiting
3760  * for completion, then only conditions (i-a) and (i-b) are actually
3761  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3762  * idling is not performed, regardless of whether condition (ii)
3763  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3764  * hold, then idling is allowed, and the device tends to be prevented
3765  * from queueing many requests, possibly of several processes. Since
3766  * there are no groups with requests waiting for completion, then, to
3767  * control conditions (i-a) and (i-b) it is enough to check just
3768  * whether all the queues with requests waiting for completion also
3769  * have the same weight.
3770  *
3771  * Not checking condition (ii) evidently exposes bfqq to the
3772  * risk of getting less throughput than its fair share.
3773  * However, for queues with the same weight, a further
3774  * mechanism, preemption, mitigates or even eliminates this
3775  * problem. And it does so without consequences on overall
3776  * throughput. This mechanism and its benefits are explained
3777  * in the next three paragraphs.
3778  *
3779  * Even if a queue, say Q, is expired when it remains idle, Q
3780  * can still preempt the new in-service queue if the next
3781  * request of Q arrives soon (see the comments on
3782  * bfq_bfqq_update_budg_for_activation). If all queues and
3783  * groups have the same weight, this form of preemption,
3784  * combined with the hole-recovery heuristic described in the
3785  * comments on function bfq_bfqq_update_budg_for_activation,
3786  * are enough to preserve a correct bandwidth distribution in
3787  * the mid term, even without idling. In fact, even if not
3788  * idling allows the internal queues of the device to contain
3789  * many requests, and thus to reorder requests, we can rather
3790  * safely assume that the internal scheduler still preserves a
3791  * minimum of mid-term fairness.
3792  *
3793  * More precisely, this preemption-based, idleless approach
3794  * provides fairness in terms of IOPS, and not sectors per
3795  * second. This can be seen with a simple example. Suppose
3796  * that there are two queues with the same weight, but that
3797  * the first queue receives requests of 8 sectors, while the
3798  * second queue receives requests of 1024 sectors. In
3799  * addition, suppose that each of the two queues contains at
3800  * most one request at a time, which implies that each queue
3801  * always remains idle after it is served. Finally, after
3802  * remaining idle, each queue receives very quickly a new
3803  * request. It follows that the two queues are served
3804  * alternatively, preempting each other if needed. This
3805  * implies that, although both queues have the same weight,
3806  * the queue with large requests receives a service that is
3807  * 1024/8 times as high as the service received by the other
3808  * queue.
3809  *
3810  * The motivation for using preemption instead of idling (for
3811  * queues with the same weight) is that, by not idling,
3812  * service guarantees are preserved (completely or at least in
3813  * part) without minimally sacrificing throughput. And, if
3814  * there is no active group, then the primary expectation for
3815  * this device is probably a high throughput.
3816  *
3817  * We are now left only with explaining the two sub-conditions in the
3818  * additional compound condition that is checked below for deciding
3819  * whether the scenario is asymmetric. To explain the first
3820  * sub-condition, we need to add that the function
3821  * bfq_asymmetric_scenario checks the weights of only
3822  * non-weight-raised queues, for efficiency reasons (see comments on
3823  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3824  * is checked explicitly here. More precisely, the compound condition
3825  * below takes into account also the fact that, even if bfqq is being
3826  * weight-raised, the scenario is still symmetric if all queues with
3827  * requests waiting for completion happen to be
3828  * weight-raised. Actually, we should be even more precise here, and
3829  * differentiate between interactive weight raising and soft real-time
3830  * weight raising.
3831  *
3832  * The second sub-condition checked in the compound condition is
3833  * whether there is a fair amount of already in-flight I/O not
3834  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3835  * following reason. The drive may decide to serve in-flight
3836  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3837  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3838  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3839  * basically uncontrolled amount of I/O from other queues may be
3840  * dispatched too, possibly causing the service of bfqq's I/O to be
3841  * delayed even longer in the drive. This problem gets more and more
3842  * serious as the speed and the queue depth of the drive grow,
3843  * because, as these two quantities grow, the probability to find no
3844  * queue busy but many requests in flight grows too. By contrast,
3845  * plugging I/O dispatching minimizes the delay induced by already
3846  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3847  * lose because of this delay.
3848  *
3849  * As a side note, it is worth considering that the above
3850  * device-idling countermeasures may however fail in the following
3851  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3852  * in a time period during which all symmetry sub-conditions hold, and
3853  * therefore the device is allowed to enqueue many requests, but at
3854  * some later point in time some sub-condition stops to hold, then it
3855  * may become impossible to make requests be served in the desired
3856  * order until all the requests already queued in the device have been
3857  * served. The last sub-condition commented above somewhat mitigates
3858  * this problem for weight-raised queues.
3859  *
3860  * However, as an additional mitigation for this problem, we preserve
3861  * plugging for a special symmetric case that may suddenly turn into
3862  * asymmetric: the case where only bfqq is busy. In this case, not
3863  * expiring bfqq does not cause any harm to any other queues in terms
3864  * of service guarantees. In contrast, it avoids the following unlucky
3865  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3866  * lower weight than bfqq becomes busy (or more queues), (3) the new
3867  * queue is served until a new request arrives for bfqq, (4) when bfqq
3868  * is finally served, there are so many requests of the new queue in
3869  * the drive that the pending requests for bfqq take a lot of time to
3870  * be served. In particular, event (2) may case even already
3871  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3872  * avoid this series of events, the scenario is preventively declared
3873  * as asymmetric also if bfqq is the only busy queues
3874  */
3875 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3876 						 struct bfq_queue *bfqq)
3877 {
3878 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3879 
3880 	/* No point in idling for bfqq if it won't get requests any longer */
3881 	if (unlikely(!bfqq_process_refs(bfqq)))
3882 		return false;
3883 
3884 	return (bfqq->wr_coeff > 1 &&
3885 		(bfqd->wr_busy_queues < tot_busy_queues ||
3886 		 bfqd->tot_rq_in_driver >= bfqq->dispatched + 4)) ||
3887 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3888 		tot_busy_queues == 1;
3889 }
3890 
3891 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3892 			      enum bfqq_expiration reason)
3893 {
3894 	/*
3895 	 * If this bfqq is shared between multiple processes, check
3896 	 * to make sure that those processes are still issuing I/Os
3897 	 * within the mean seek distance. If not, it may be time to
3898 	 * break the queues apart again.
3899 	 */
3900 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3901 		bfq_mark_bfqq_split_coop(bfqq);
3902 
3903 	/*
3904 	 * Consider queues with a higher finish virtual time than
3905 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3906 	 * true, then bfqq's bandwidth would be violated if an
3907 	 * uncontrolled amount of I/O from these queues were
3908 	 * dispatched while bfqq is waiting for its new I/O to
3909 	 * arrive. This is exactly what may happen if this is a forced
3910 	 * expiration caused by a preemption attempt, and if bfqq is
3911 	 * not re-scheduled. To prevent this from happening, re-queue
3912 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3913 	 * empty. By doing so, bfqq is granted to be served before the
3914 	 * above queues (provided that bfqq is of course eligible).
3915 	 */
3916 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3917 	    !(reason == BFQQE_PREEMPTED &&
3918 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3919 		if (bfqq->dispatched == 0)
3920 			/*
3921 			 * Overloading budget_timeout field to store
3922 			 * the time at which the queue remains with no
3923 			 * backlog and no outstanding request; used by
3924 			 * the weight-raising mechanism.
3925 			 */
3926 			bfqq->budget_timeout = jiffies;
3927 
3928 		bfq_del_bfqq_busy(bfqq, true);
3929 	} else {
3930 		bfq_requeue_bfqq(bfqd, bfqq, true);
3931 		/*
3932 		 * Resort priority tree of potential close cooperators.
3933 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3934 		 */
3935 		if (unlikely(!bfqd->nonrot_with_queueing &&
3936 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3937 			bfq_pos_tree_add_move(bfqd, bfqq);
3938 	}
3939 
3940 	/*
3941 	 * All in-service entities must have been properly deactivated
3942 	 * or requeued before executing the next function, which
3943 	 * resets all in-service entities as no more in service. This
3944 	 * may cause bfqq to be freed. If this happens, the next
3945 	 * function returns true.
3946 	 */
3947 	return __bfq_bfqd_reset_in_service(bfqd);
3948 }
3949 
3950 /**
3951  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3952  * @bfqd: device data.
3953  * @bfqq: queue to update.
3954  * @reason: reason for expiration.
3955  *
3956  * Handle the feedback on @bfqq budget at queue expiration.
3957  * See the body for detailed comments.
3958  */
3959 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3960 				     struct bfq_queue *bfqq,
3961 				     enum bfqq_expiration reason)
3962 {
3963 	struct request *next_rq;
3964 	int budget, min_budget;
3965 
3966 	min_budget = bfq_min_budget(bfqd);
3967 
3968 	if (bfqq->wr_coeff == 1)
3969 		budget = bfqq->max_budget;
3970 	else /*
3971 	      * Use a constant, low budget for weight-raised queues,
3972 	      * to help achieve a low latency. Keep it slightly higher
3973 	      * than the minimum possible budget, to cause a little
3974 	      * bit fewer expirations.
3975 	      */
3976 		budget = 2 * min_budget;
3977 
3978 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3979 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3980 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3981 		budget, bfq_min_budget(bfqd));
3982 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3983 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3984 
3985 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3986 		switch (reason) {
3987 		/*
3988 		 * Caveat: in all the following cases we trade latency
3989 		 * for throughput.
3990 		 */
3991 		case BFQQE_TOO_IDLE:
3992 			/*
3993 			 * This is the only case where we may reduce
3994 			 * the budget: if there is no request of the
3995 			 * process still waiting for completion, then
3996 			 * we assume (tentatively) that the timer has
3997 			 * expired because the batch of requests of
3998 			 * the process could have been served with a
3999 			 * smaller budget.  Hence, betting that
4000 			 * process will behave in the same way when it
4001 			 * becomes backlogged again, we reduce its
4002 			 * next budget.  As long as we guess right,
4003 			 * this budget cut reduces the latency
4004 			 * experienced by the process.
4005 			 *
4006 			 * However, if there are still outstanding
4007 			 * requests, then the process may have not yet
4008 			 * issued its next request just because it is
4009 			 * still waiting for the completion of some of
4010 			 * the still outstanding ones.  So in this
4011 			 * subcase we do not reduce its budget, on the
4012 			 * contrary we increase it to possibly boost
4013 			 * the throughput, as discussed in the
4014 			 * comments to the BUDGET_TIMEOUT case.
4015 			 */
4016 			if (bfqq->dispatched > 0) /* still outstanding reqs */
4017 				budget = min(budget * 2, bfqd->bfq_max_budget);
4018 			else {
4019 				if (budget > 5 * min_budget)
4020 					budget -= 4 * min_budget;
4021 				else
4022 					budget = min_budget;
4023 			}
4024 			break;
4025 		case BFQQE_BUDGET_TIMEOUT:
4026 			/*
4027 			 * We double the budget here because it gives
4028 			 * the chance to boost the throughput if this
4029 			 * is not a seeky process (and has bumped into
4030 			 * this timeout because of, e.g., ZBR).
4031 			 */
4032 			budget = min(budget * 2, bfqd->bfq_max_budget);
4033 			break;
4034 		case BFQQE_BUDGET_EXHAUSTED:
4035 			/*
4036 			 * The process still has backlog, and did not
4037 			 * let either the budget timeout or the disk
4038 			 * idling timeout expire. Hence it is not
4039 			 * seeky, has a short thinktime and may be
4040 			 * happy with a higher budget too. So
4041 			 * definitely increase the budget of this good
4042 			 * candidate to boost the disk throughput.
4043 			 */
4044 			budget = min(budget * 4, bfqd->bfq_max_budget);
4045 			break;
4046 		case BFQQE_NO_MORE_REQUESTS:
4047 			/*
4048 			 * For queues that expire for this reason, it
4049 			 * is particularly important to keep the
4050 			 * budget close to the actual service they
4051 			 * need. Doing so reduces the timestamp
4052 			 * misalignment problem described in the
4053 			 * comments in the body of
4054 			 * __bfq_activate_entity. In fact, suppose
4055 			 * that a queue systematically expires for
4056 			 * BFQQE_NO_MORE_REQUESTS and presents a
4057 			 * new request in time to enjoy timestamp
4058 			 * back-shifting. The larger the budget of the
4059 			 * queue is with respect to the service the
4060 			 * queue actually requests in each service
4061 			 * slot, the more times the queue can be
4062 			 * reactivated with the same virtual finish
4063 			 * time. It follows that, even if this finish
4064 			 * time is pushed to the system virtual time
4065 			 * to reduce the consequent timestamp
4066 			 * misalignment, the queue unjustly enjoys for
4067 			 * many re-activations a lower finish time
4068 			 * than all newly activated queues.
4069 			 *
4070 			 * The service needed by bfqq is measured
4071 			 * quite precisely by bfqq->entity.service.
4072 			 * Since bfqq does not enjoy device idling,
4073 			 * bfqq->entity.service is equal to the number
4074 			 * of sectors that the process associated with
4075 			 * bfqq requested to read/write before waiting
4076 			 * for request completions, or blocking for
4077 			 * other reasons.
4078 			 */
4079 			budget = max_t(int, bfqq->entity.service, min_budget);
4080 			break;
4081 		default:
4082 			return;
4083 		}
4084 	} else if (!bfq_bfqq_sync(bfqq)) {
4085 		/*
4086 		 * Async queues get always the maximum possible
4087 		 * budget, as for them we do not care about latency
4088 		 * (in addition, their ability to dispatch is limited
4089 		 * by the charging factor).
4090 		 */
4091 		budget = bfqd->bfq_max_budget;
4092 	}
4093 
4094 	bfqq->max_budget = budget;
4095 
4096 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4097 	    !bfqd->bfq_user_max_budget)
4098 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4099 
4100 	/*
4101 	 * If there is still backlog, then assign a new budget, making
4102 	 * sure that it is large enough for the next request.  Since
4103 	 * the finish time of bfqq must be kept in sync with the
4104 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4105 	 * update.
4106 	 *
4107 	 * If there is no backlog, then no need to update the budget;
4108 	 * it will be updated on the arrival of a new request.
4109 	 */
4110 	next_rq = bfqq->next_rq;
4111 	if (next_rq)
4112 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4113 					    bfq_serv_to_charge(next_rq, bfqq));
4114 
4115 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4116 			next_rq ? blk_rq_sectors(next_rq) : 0,
4117 			bfqq->entity.budget);
4118 }
4119 
4120 /*
4121  * Return true if the process associated with bfqq is "slow". The slow
4122  * flag is used, in addition to the budget timeout, to reduce the
4123  * amount of service provided to seeky processes, and thus reduce
4124  * their chances to lower the throughput. More details in the comments
4125  * on the function bfq_bfqq_expire().
4126  *
4127  * An important observation is in order: as discussed in the comments
4128  * on the function bfq_update_peak_rate(), with devices with internal
4129  * queues, it is hard if ever possible to know when and for how long
4130  * an I/O request is processed by the device (apart from the trivial
4131  * I/O pattern where a new request is dispatched only after the
4132  * previous one has been completed). This makes it hard to evaluate
4133  * the real rate at which the I/O requests of each bfq_queue are
4134  * served.  In fact, for an I/O scheduler like BFQ, serving a
4135  * bfq_queue means just dispatching its requests during its service
4136  * slot (i.e., until the budget of the queue is exhausted, or the
4137  * queue remains idle, or, finally, a timeout fires). But, during the
4138  * service slot of a bfq_queue, around 100 ms at most, the device may
4139  * be even still processing requests of bfq_queues served in previous
4140  * service slots. On the opposite end, the requests of the in-service
4141  * bfq_queue may be completed after the service slot of the queue
4142  * finishes.
4143  *
4144  * Anyway, unless more sophisticated solutions are used
4145  * (where possible), the sum of the sizes of the requests dispatched
4146  * during the service slot of a bfq_queue is probably the only
4147  * approximation available for the service received by the bfq_queue
4148  * during its service slot. And this sum is the quantity used in this
4149  * function to evaluate the I/O speed of a process.
4150  */
4151 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4152 				 bool compensate, unsigned long *delta_ms)
4153 {
4154 	ktime_t delta_ktime;
4155 	u32 delta_usecs;
4156 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4157 
4158 	if (!bfq_bfqq_sync(bfqq))
4159 		return false;
4160 
4161 	if (compensate)
4162 		delta_ktime = bfqd->last_idling_start;
4163 	else
4164 		delta_ktime = ktime_get();
4165 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4166 	delta_usecs = ktime_to_us(delta_ktime);
4167 
4168 	/* don't use too short time intervals */
4169 	if (delta_usecs < 1000) {
4170 		if (blk_queue_nonrot(bfqd->queue))
4171 			 /*
4172 			  * give same worst-case guarantees as idling
4173 			  * for seeky
4174 			  */
4175 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4176 		else /* charge at least one seek */
4177 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4178 
4179 		return slow;
4180 	}
4181 
4182 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4183 
4184 	/*
4185 	 * Use only long (> 20ms) intervals to filter out excessive
4186 	 * spikes in service rate estimation.
4187 	 */
4188 	if (delta_usecs > 20000) {
4189 		/*
4190 		 * Caveat for rotational devices: processes doing I/O
4191 		 * in the slower disk zones tend to be slow(er) even
4192 		 * if not seeky. In this respect, the estimated peak
4193 		 * rate is likely to be an average over the disk
4194 		 * surface. Accordingly, to not be too harsh with
4195 		 * unlucky processes, a process is deemed slow only if
4196 		 * its rate has been lower than half of the estimated
4197 		 * peak rate.
4198 		 */
4199 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4200 	}
4201 
4202 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4203 
4204 	return slow;
4205 }
4206 
4207 /*
4208  * To be deemed as soft real-time, an application must meet two
4209  * requirements. First, the application must not require an average
4210  * bandwidth higher than the approximate bandwidth required to playback or
4211  * record a compressed high-definition video.
4212  * The next function is invoked on the completion of the last request of a
4213  * batch, to compute the next-start time instant, soft_rt_next_start, such
4214  * that, if the next request of the application does not arrive before
4215  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4216  *
4217  * The second requirement is that the request pattern of the application is
4218  * isochronous, i.e., that, after issuing a request or a batch of requests,
4219  * the application stops issuing new requests until all its pending requests
4220  * have been completed. After that, the application may issue a new batch,
4221  * and so on.
4222  * For this reason the next function is invoked to compute
4223  * soft_rt_next_start only for applications that meet this requirement,
4224  * whereas soft_rt_next_start is set to infinity for applications that do
4225  * not.
4226  *
4227  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4228  * happen to meet, occasionally or systematically, both the above
4229  * bandwidth and isochrony requirements. This may happen at least in
4230  * the following circumstances. First, if the CPU load is high. The
4231  * application may stop issuing requests while the CPUs are busy
4232  * serving other processes, then restart, then stop again for a while,
4233  * and so on. The other circumstances are related to the storage
4234  * device: the storage device is highly loaded or reaches a low-enough
4235  * throughput with the I/O of the application (e.g., because the I/O
4236  * is random and/or the device is slow). In all these cases, the
4237  * I/O of the application may be simply slowed down enough to meet
4238  * the bandwidth and isochrony requirements. To reduce the probability
4239  * that greedy applications are deemed as soft real-time in these
4240  * corner cases, a further rule is used in the computation of
4241  * soft_rt_next_start: the return value of this function is forced to
4242  * be higher than the maximum between the following two quantities.
4243  *
4244  * (a) Current time plus: (1) the maximum time for which the arrival
4245  *     of a request is waited for when a sync queue becomes idle,
4246  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4247  *     postpone for a moment the reason for adding a few extra
4248  *     jiffies; we get back to it after next item (b).  Lower-bounding
4249  *     the return value of this function with the current time plus
4250  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4251  *     because the latter issue their next request as soon as possible
4252  *     after the last one has been completed. In contrast, a soft
4253  *     real-time application spends some time processing data, after a
4254  *     batch of its requests has been completed.
4255  *
4256  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4257  *     above, greedy applications may happen to meet both the
4258  *     bandwidth and isochrony requirements under heavy CPU or
4259  *     storage-device load. In more detail, in these scenarios, these
4260  *     applications happen, only for limited time periods, to do I/O
4261  *     slowly enough to meet all the requirements described so far,
4262  *     including the filtering in above item (a). These slow-speed
4263  *     time intervals are usually interspersed between other time
4264  *     intervals during which these applications do I/O at a very high
4265  *     speed. Fortunately, exactly because of the high speed of the
4266  *     I/O in the high-speed intervals, the values returned by this
4267  *     function happen to be so high, near the end of any such
4268  *     high-speed interval, to be likely to fall *after* the end of
4269  *     the low-speed time interval that follows. These high values are
4270  *     stored in bfqq->soft_rt_next_start after each invocation of
4271  *     this function. As a consequence, if the last value of
4272  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4273  *     next value that this function may return, then, from the very
4274  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4275  *     likely to be constantly kept so high that any I/O request
4276  *     issued during the low-speed interval is considered as arriving
4277  *     to soon for the application to be deemed as soft
4278  *     real-time. Then, in the high-speed interval that follows, the
4279  *     application will not be deemed as soft real-time, just because
4280  *     it will do I/O at a high speed. And so on.
4281  *
4282  * Getting back to the filtering in item (a), in the following two
4283  * cases this filtering might be easily passed by a greedy
4284  * application, if the reference quantity was just
4285  * bfqd->bfq_slice_idle:
4286  * 1) HZ is so low that the duration of a jiffy is comparable to or
4287  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4288  *    devices with HZ=100. The time granularity may be so coarse
4289  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4290  *    is rather lower than the exact value.
4291  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4292  *    for a while, then suddenly 'jump' by several units to recover the lost
4293  *    increments. This seems to happen, e.g., inside virtual machines.
4294  * To address this issue, in the filtering in (a) we do not use as a
4295  * reference time interval just bfqd->bfq_slice_idle, but
4296  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4297  * minimum number of jiffies for which the filter seems to be quite
4298  * precise also in embedded systems and KVM/QEMU virtual machines.
4299  */
4300 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4301 						struct bfq_queue *bfqq)
4302 {
4303 	return max3(bfqq->soft_rt_next_start,
4304 		    bfqq->last_idle_bklogged +
4305 		    HZ * bfqq->service_from_backlogged /
4306 		    bfqd->bfq_wr_max_softrt_rate,
4307 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4308 }
4309 
4310 /**
4311  * bfq_bfqq_expire - expire a queue.
4312  * @bfqd: device owning the queue.
4313  * @bfqq: the queue to expire.
4314  * @compensate: if true, compensate for the time spent idling.
4315  * @reason: the reason causing the expiration.
4316  *
4317  * If the process associated with bfqq does slow I/O (e.g., because it
4318  * issues random requests), we charge bfqq with the time it has been
4319  * in service instead of the service it has received (see
4320  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4321  * a consequence, bfqq will typically get higher timestamps upon
4322  * reactivation, and hence it will be rescheduled as if it had
4323  * received more service than what it has actually received. In the
4324  * end, bfqq receives less service in proportion to how slowly its
4325  * associated process consumes its budgets (and hence how seriously it
4326  * tends to lower the throughput). In addition, this time-charging
4327  * strategy guarantees time fairness among slow processes. In
4328  * contrast, if the process associated with bfqq is not slow, we
4329  * charge bfqq exactly with the service it has received.
4330  *
4331  * Charging time to the first type of queues and the exact service to
4332  * the other has the effect of using the WF2Q+ policy to schedule the
4333  * former on a timeslice basis, without violating service domain
4334  * guarantees among the latter.
4335  */
4336 void bfq_bfqq_expire(struct bfq_data *bfqd,
4337 		     struct bfq_queue *bfqq,
4338 		     bool compensate,
4339 		     enum bfqq_expiration reason)
4340 {
4341 	bool slow;
4342 	unsigned long delta = 0;
4343 	struct bfq_entity *entity = &bfqq->entity;
4344 
4345 	/*
4346 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4347 	 */
4348 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, &delta);
4349 
4350 	/*
4351 	 * As above explained, charge slow (typically seeky) and
4352 	 * timed-out queues with the time and not the service
4353 	 * received, to favor sequential workloads.
4354 	 *
4355 	 * Processes doing I/O in the slower disk zones will tend to
4356 	 * be slow(er) even if not seeky. Therefore, since the
4357 	 * estimated peak rate is actually an average over the disk
4358 	 * surface, these processes may timeout just for bad luck. To
4359 	 * avoid punishing them, do not charge time to processes that
4360 	 * succeeded in consuming at least 2/3 of their budget. This
4361 	 * allows BFQ to preserve enough elasticity to still perform
4362 	 * bandwidth, and not time, distribution with little unlucky
4363 	 * or quasi-sequential processes.
4364 	 */
4365 	if (bfqq->wr_coeff == 1 &&
4366 	    (slow ||
4367 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4368 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4369 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4370 
4371 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4372 		bfqq->last_wr_start_finish = jiffies;
4373 
4374 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4375 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4376 		/*
4377 		 * If we get here, and there are no outstanding
4378 		 * requests, then the request pattern is isochronous
4379 		 * (see the comments on the function
4380 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4381 		 * compute soft_rt_next_start.
4382 		 *
4383 		 * If, instead, the queue still has outstanding
4384 		 * requests, then we have to wait for the completion
4385 		 * of all the outstanding requests to discover whether
4386 		 * the request pattern is actually isochronous.
4387 		 */
4388 		if (bfqq->dispatched == 0)
4389 			bfqq->soft_rt_next_start =
4390 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4391 		else if (bfqq->dispatched > 0) {
4392 			/*
4393 			 * Schedule an update of soft_rt_next_start to when
4394 			 * the task may be discovered to be isochronous.
4395 			 */
4396 			bfq_mark_bfqq_softrt_update(bfqq);
4397 		}
4398 	}
4399 
4400 	bfq_log_bfqq(bfqd, bfqq,
4401 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4402 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4403 
4404 	/*
4405 	 * bfqq expired, so no total service time needs to be computed
4406 	 * any longer: reset state machine for measuring total service
4407 	 * times.
4408 	 */
4409 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4410 	bfqd->waited_rq = NULL;
4411 
4412 	/*
4413 	 * Increase, decrease or leave budget unchanged according to
4414 	 * reason.
4415 	 */
4416 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4417 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4418 		/* bfqq is gone, no more actions on it */
4419 		return;
4420 
4421 	/* mark bfqq as waiting a request only if a bic still points to it */
4422 	if (!bfq_bfqq_busy(bfqq) &&
4423 	    reason != BFQQE_BUDGET_TIMEOUT &&
4424 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4425 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4426 		/*
4427 		 * Not setting service to 0, because, if the next rq
4428 		 * arrives in time, the queue will go on receiving
4429 		 * service with this same budget (as if it never expired)
4430 		 */
4431 	} else
4432 		entity->service = 0;
4433 
4434 	/*
4435 	 * Reset the received-service counter for every parent entity.
4436 	 * Differently from what happens with bfqq->entity.service,
4437 	 * the resetting of this counter never needs to be postponed
4438 	 * for parent entities. In fact, in case bfqq may have a
4439 	 * chance to go on being served using the last, partially
4440 	 * consumed budget, bfqq->entity.service needs to be kept,
4441 	 * because if bfqq then actually goes on being served using
4442 	 * the same budget, the last value of bfqq->entity.service is
4443 	 * needed to properly decrement bfqq->entity.budget by the
4444 	 * portion already consumed. In contrast, it is not necessary
4445 	 * to keep entity->service for parent entities too, because
4446 	 * the bubble up of the new value of bfqq->entity.budget will
4447 	 * make sure that the budgets of parent entities are correct,
4448 	 * even in case bfqq and thus parent entities go on receiving
4449 	 * service with the same budget.
4450 	 */
4451 	entity = entity->parent;
4452 	for_each_entity(entity)
4453 		entity->service = 0;
4454 }
4455 
4456 /*
4457  * Budget timeout is not implemented through a dedicated timer, but
4458  * just checked on request arrivals and completions, as well as on
4459  * idle timer expirations.
4460  */
4461 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4462 {
4463 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4464 }
4465 
4466 /*
4467  * If we expire a queue that is actively waiting (i.e., with the
4468  * device idled) for the arrival of a new request, then we may incur
4469  * the timestamp misalignment problem described in the body of the
4470  * function __bfq_activate_entity. Hence we return true only if this
4471  * condition does not hold, or if the queue is slow enough to deserve
4472  * only to be kicked off for preserving a high throughput.
4473  */
4474 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4475 {
4476 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4477 		"may_budget_timeout: wait_request %d left %d timeout %d",
4478 		bfq_bfqq_wait_request(bfqq),
4479 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4480 		bfq_bfqq_budget_timeout(bfqq));
4481 
4482 	return (!bfq_bfqq_wait_request(bfqq) ||
4483 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4484 		&&
4485 		bfq_bfqq_budget_timeout(bfqq);
4486 }
4487 
4488 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4489 					     struct bfq_queue *bfqq)
4490 {
4491 	bool rot_without_queueing =
4492 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4493 		bfqq_sequential_and_IO_bound,
4494 		idling_boosts_thr;
4495 
4496 	/* No point in idling for bfqq if it won't get requests any longer */
4497 	if (unlikely(!bfqq_process_refs(bfqq)))
4498 		return false;
4499 
4500 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4501 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4502 
4503 	/*
4504 	 * The next variable takes into account the cases where idling
4505 	 * boosts the throughput.
4506 	 *
4507 	 * The value of the variable is computed considering, first, that
4508 	 * idling is virtually always beneficial for the throughput if:
4509 	 * (a) the device is not NCQ-capable and rotational, or
4510 	 * (b) regardless of the presence of NCQ, the device is rotational and
4511 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4512 	 * (c) regardless of whether it is rotational, the device is
4513 	 *     not NCQ-capable and the request pattern for bfqq is
4514 	 *     I/O-bound and sequential.
4515 	 *
4516 	 * Secondly, and in contrast to the above item (b), idling an
4517 	 * NCQ-capable flash-based device would not boost the
4518 	 * throughput even with sequential I/O; rather it would lower
4519 	 * the throughput in proportion to how fast the device
4520 	 * is. Accordingly, the next variable is true if any of the
4521 	 * above conditions (a), (b) or (c) is true, and, in
4522 	 * particular, happens to be false if bfqd is an NCQ-capable
4523 	 * flash-based device.
4524 	 */
4525 	idling_boosts_thr = rot_without_queueing ||
4526 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4527 		 bfqq_sequential_and_IO_bound);
4528 
4529 	/*
4530 	 * The return value of this function is equal to that of
4531 	 * idling_boosts_thr, unless a special case holds. In this
4532 	 * special case, described below, idling may cause problems to
4533 	 * weight-raised queues.
4534 	 *
4535 	 * When the request pool is saturated (e.g., in the presence
4536 	 * of write hogs), if the processes associated with
4537 	 * non-weight-raised queues ask for requests at a lower rate,
4538 	 * then processes associated with weight-raised queues have a
4539 	 * higher probability to get a request from the pool
4540 	 * immediately (or at least soon) when they need one. Thus
4541 	 * they have a higher probability to actually get a fraction
4542 	 * of the device throughput proportional to their high
4543 	 * weight. This is especially true with NCQ-capable drives,
4544 	 * which enqueue several requests in advance, and further
4545 	 * reorder internally-queued requests.
4546 	 *
4547 	 * For this reason, we force to false the return value if
4548 	 * there are weight-raised busy queues. In this case, and if
4549 	 * bfqq is not weight-raised, this guarantees that the device
4550 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4551 	 * then idling will be guaranteed by another variable, see
4552 	 * below). Combined with the timestamping rules of BFQ (see
4553 	 * [1] for details), this behavior causes bfqq, and hence any
4554 	 * sync non-weight-raised queue, to get a lower number of
4555 	 * requests served, and thus to ask for a lower number of
4556 	 * requests from the request pool, before the busy
4557 	 * weight-raised queues get served again. This often mitigates
4558 	 * starvation problems in the presence of heavy write
4559 	 * workloads and NCQ, thereby guaranteeing a higher
4560 	 * application and system responsiveness in these hostile
4561 	 * scenarios.
4562 	 */
4563 	return idling_boosts_thr &&
4564 		bfqd->wr_busy_queues == 0;
4565 }
4566 
4567 /*
4568  * For a queue that becomes empty, device idling is allowed only if
4569  * this function returns true for that queue. As a consequence, since
4570  * device idling plays a critical role for both throughput boosting
4571  * and service guarantees, the return value of this function plays a
4572  * critical role as well.
4573  *
4574  * In a nutshell, this function returns true only if idling is
4575  * beneficial for throughput or, even if detrimental for throughput,
4576  * idling is however necessary to preserve service guarantees (low
4577  * latency, desired throughput distribution, ...). In particular, on
4578  * NCQ-capable devices, this function tries to return false, so as to
4579  * help keep the drives' internal queues full, whenever this helps the
4580  * device boost the throughput without causing any service-guarantee
4581  * issue.
4582  *
4583  * Most of the issues taken into account to get the return value of
4584  * this function are not trivial. We discuss these issues in the two
4585  * functions providing the main pieces of information needed by this
4586  * function.
4587  */
4588 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4589 {
4590 	struct bfq_data *bfqd = bfqq->bfqd;
4591 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4592 
4593 	/* No point in idling for bfqq if it won't get requests any longer */
4594 	if (unlikely(!bfqq_process_refs(bfqq)))
4595 		return false;
4596 
4597 	if (unlikely(bfqd->strict_guarantees))
4598 		return true;
4599 
4600 	/*
4601 	 * Idling is performed only if slice_idle > 0. In addition, we
4602 	 * do not idle if
4603 	 * (a) bfqq is async
4604 	 * (b) bfqq is in the idle io prio class: in this case we do
4605 	 * not idle because we want to minimize the bandwidth that
4606 	 * queues in this class can steal to higher-priority queues
4607 	 */
4608 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4609 	   bfq_class_idle(bfqq))
4610 		return false;
4611 
4612 	idling_boosts_thr_with_no_issue =
4613 		idling_boosts_thr_without_issues(bfqd, bfqq);
4614 
4615 	idling_needed_for_service_guar =
4616 		idling_needed_for_service_guarantees(bfqd, bfqq);
4617 
4618 	/*
4619 	 * We have now the two components we need to compute the
4620 	 * return value of the function, which is true only if idling
4621 	 * either boosts the throughput (without issues), or is
4622 	 * necessary to preserve service guarantees.
4623 	 */
4624 	return idling_boosts_thr_with_no_issue ||
4625 		idling_needed_for_service_guar;
4626 }
4627 
4628 /*
4629  * If the in-service queue is empty but the function bfq_better_to_idle
4630  * returns true, then:
4631  * 1) the queue must remain in service and cannot be expired, and
4632  * 2) the device must be idled to wait for the possible arrival of a new
4633  *    request for the queue.
4634  * See the comments on the function bfq_better_to_idle for the reasons
4635  * why performing device idling is the best choice to boost the throughput
4636  * and preserve service guarantees when bfq_better_to_idle itself
4637  * returns true.
4638  */
4639 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4640 {
4641 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4642 }
4643 
4644 /*
4645  * This function chooses the queue from which to pick the next extra
4646  * I/O request to inject, if it finds a compatible queue. See the
4647  * comments on bfq_update_inject_limit() for details on the injection
4648  * mechanism, and for the definitions of the quantities mentioned
4649  * below.
4650  */
4651 static struct bfq_queue *
4652 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4653 {
4654 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4655 	unsigned int limit = in_serv_bfqq->inject_limit;
4656 	int i;
4657 
4658 	/*
4659 	 * If
4660 	 * - bfqq is not weight-raised and therefore does not carry
4661 	 *   time-critical I/O,
4662 	 * or
4663 	 * - regardless of whether bfqq is weight-raised, bfqq has
4664 	 *   however a long think time, during which it can absorb the
4665 	 *   effect of an appropriate number of extra I/O requests
4666 	 *   from other queues (see bfq_update_inject_limit for
4667 	 *   details on the computation of this number);
4668 	 * then injection can be performed without restrictions.
4669 	 */
4670 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4671 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4672 
4673 	/*
4674 	 * If
4675 	 * - the baseline total service time could not be sampled yet,
4676 	 *   so the inject limit happens to be still 0, and
4677 	 * - a lot of time has elapsed since the plugging of I/O
4678 	 *   dispatching started, so drive speed is being wasted
4679 	 *   significantly;
4680 	 * then temporarily raise inject limit to one request.
4681 	 */
4682 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4683 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4684 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4685 				      bfqd->bfq_slice_idle)
4686 		)
4687 		limit = 1;
4688 
4689 	if (bfqd->tot_rq_in_driver >= limit)
4690 		return NULL;
4691 
4692 	/*
4693 	 * Linear search of the source queue for injection; but, with
4694 	 * a high probability, very few steps are needed to find a
4695 	 * candidate queue, i.e., a queue with enough budget left for
4696 	 * its next request. In fact:
4697 	 * - BFQ dynamically updates the budget of every queue so as
4698 	 *   to accommodate the expected backlog of the queue;
4699 	 * - if a queue gets all its requests dispatched as injected
4700 	 *   service, then the queue is removed from the active list
4701 	 *   (and re-added only if it gets new requests, but then it
4702 	 *   is assigned again enough budget for its new backlog).
4703 	 */
4704 	for (i = 0; i < bfqd->num_actuators; i++) {
4705 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
4706 			if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4707 				(in_serv_always_inject || bfqq->wr_coeff > 1) &&
4708 				bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4709 				bfq_bfqq_budget_left(bfqq)) {
4710 			/*
4711 			 * Allow for only one large in-flight request
4712 			 * on non-rotational devices, for the
4713 			 * following reason. On non-rotationl drives,
4714 			 * large requests take much longer than
4715 			 * smaller requests to be served. In addition,
4716 			 * the drive prefers to serve large requests
4717 			 * w.r.t. to small ones, if it can choose. So,
4718 			 * having more than one large requests queued
4719 			 * in the drive may easily make the next first
4720 			 * request of the in-service queue wait for so
4721 			 * long to break bfqq's service guarantees. On
4722 			 * the bright side, large requests let the
4723 			 * drive reach a very high throughput, even if
4724 			 * there is only one in-flight large request
4725 			 * at a time.
4726 			 */
4727 			if (blk_queue_nonrot(bfqd->queue) &&
4728 			    blk_rq_sectors(bfqq->next_rq) >=
4729 			    BFQQ_SECT_THR_NONROT &&
4730 			    bfqd->tot_rq_in_driver >= 1)
4731 				continue;
4732 			else {
4733 				bfqd->rqs_injected = true;
4734 				return bfqq;
4735 			}
4736 		}
4737 	}
4738 
4739 	return NULL;
4740 }
4741 
4742 static struct bfq_queue *
4743 bfq_find_active_bfqq_for_actuator(struct bfq_data *bfqd, int idx)
4744 {
4745 	struct bfq_queue *bfqq;
4746 
4747 	if (bfqd->in_service_queue &&
4748 	    bfqd->in_service_queue->actuator_idx == idx)
4749 		return bfqd->in_service_queue;
4750 
4751 	list_for_each_entry(bfqq, &bfqd->active_list[idx], bfqq_list) {
4752 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4753 			bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4754 				bfq_bfqq_budget_left(bfqq)) {
4755 			return bfqq;
4756 		}
4757 	}
4758 
4759 	return NULL;
4760 }
4761 
4762 /*
4763  * Perform a linear scan of each actuator, until an actuator is found
4764  * for which the following three conditions hold: the load of the
4765  * actuator is below the threshold (see comments on
4766  * actuator_load_threshold for details) and lower than that of the
4767  * next actuator (comments on this extra condition below), and there
4768  * is a queue that contains I/O for that actuator. On success, return
4769  * that queue.
4770  *
4771  * Performing a plain linear scan entails a prioritization among
4772  * actuators. The extra condition above breaks this prioritization and
4773  * tends to distribute injection uniformly across actuators.
4774  */
4775 static struct bfq_queue *
4776 bfq_find_bfqq_for_underused_actuator(struct bfq_data *bfqd)
4777 {
4778 	int i;
4779 
4780 	for (i = 0 ; i < bfqd->num_actuators; i++) {
4781 		if (bfqd->rq_in_driver[i] < bfqd->actuator_load_threshold &&
4782 		    (i == bfqd->num_actuators - 1 ||
4783 		     bfqd->rq_in_driver[i] < bfqd->rq_in_driver[i+1])) {
4784 			struct bfq_queue *bfqq =
4785 				bfq_find_active_bfqq_for_actuator(bfqd, i);
4786 
4787 			if (bfqq)
4788 				return bfqq;
4789 		}
4790 	}
4791 
4792 	return NULL;
4793 }
4794 
4795 
4796 /*
4797  * Select a queue for service.  If we have a current queue in service,
4798  * check whether to continue servicing it, or retrieve and set a new one.
4799  */
4800 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4801 {
4802 	struct bfq_queue *bfqq, *inject_bfqq;
4803 	struct request *next_rq;
4804 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4805 
4806 	bfqq = bfqd->in_service_queue;
4807 	if (!bfqq)
4808 		goto new_queue;
4809 
4810 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4811 
4812 	/*
4813 	 * Do not expire bfqq for budget timeout if bfqq may be about
4814 	 * to enjoy device idling. The reason why, in this case, we
4815 	 * prevent bfqq from expiring is the same as in the comments
4816 	 * on the case where bfq_bfqq_must_idle() returns true, in
4817 	 * bfq_completed_request().
4818 	 */
4819 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4820 	    !bfq_bfqq_must_idle(bfqq))
4821 		goto expire;
4822 
4823 check_queue:
4824 	/*
4825 	 *  If some actuator is underutilized, but the in-service
4826 	 *  queue does not contain I/O for that actuator, then try to
4827 	 *  inject I/O for that actuator.
4828 	 */
4829 	inject_bfqq = bfq_find_bfqq_for_underused_actuator(bfqd);
4830 	if (inject_bfqq && inject_bfqq != bfqq)
4831 		return inject_bfqq;
4832 
4833 	/*
4834 	 * This loop is rarely executed more than once. Even when it
4835 	 * happens, it is much more convenient to re-execute this loop
4836 	 * than to return NULL and trigger a new dispatch to get a
4837 	 * request served.
4838 	 */
4839 	next_rq = bfqq->next_rq;
4840 	/*
4841 	 * If bfqq has requests queued and it has enough budget left to
4842 	 * serve them, keep the queue, otherwise expire it.
4843 	 */
4844 	if (next_rq) {
4845 		if (bfq_serv_to_charge(next_rq, bfqq) >
4846 			bfq_bfqq_budget_left(bfqq)) {
4847 			/*
4848 			 * Expire the queue for budget exhaustion,
4849 			 * which makes sure that the next budget is
4850 			 * enough to serve the next request, even if
4851 			 * it comes from the fifo expired path.
4852 			 */
4853 			reason = BFQQE_BUDGET_EXHAUSTED;
4854 			goto expire;
4855 		} else {
4856 			/*
4857 			 * The idle timer may be pending because we may
4858 			 * not disable disk idling even when a new request
4859 			 * arrives.
4860 			 */
4861 			if (bfq_bfqq_wait_request(bfqq)) {
4862 				/*
4863 				 * If we get here: 1) at least a new request
4864 				 * has arrived but we have not disabled the
4865 				 * timer because the request was too small,
4866 				 * 2) then the block layer has unplugged
4867 				 * the device, causing the dispatch to be
4868 				 * invoked.
4869 				 *
4870 				 * Since the device is unplugged, now the
4871 				 * requests are probably large enough to
4872 				 * provide a reasonable throughput.
4873 				 * So we disable idling.
4874 				 */
4875 				bfq_clear_bfqq_wait_request(bfqq);
4876 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4877 			}
4878 			goto keep_queue;
4879 		}
4880 	}
4881 
4882 	/*
4883 	 * No requests pending. However, if the in-service queue is idling
4884 	 * for a new request, or has requests waiting for a completion and
4885 	 * may idle after their completion, then keep it anyway.
4886 	 *
4887 	 * Yet, inject service from other queues if it boosts
4888 	 * throughput and is possible.
4889 	 */
4890 	if (bfq_bfqq_wait_request(bfqq) ||
4891 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4892 		unsigned int act_idx = bfqq->actuator_idx;
4893 		struct bfq_queue *async_bfqq = NULL;
4894 		struct bfq_queue *blocked_bfqq =
4895 			!hlist_empty(&bfqq->woken_list) ?
4896 			container_of(bfqq->woken_list.first,
4897 				     struct bfq_queue,
4898 				     woken_list_node)
4899 			: NULL;
4900 
4901 		if (bfqq->bic && bfqq->bic->bfqq[0][act_idx] &&
4902 		    bfq_bfqq_busy(bfqq->bic->bfqq[0][act_idx]) &&
4903 		    bfqq->bic->bfqq[0][act_idx]->next_rq)
4904 			async_bfqq = bfqq->bic->bfqq[0][act_idx];
4905 		/*
4906 		 * The next four mutually-exclusive ifs decide
4907 		 * whether to try injection, and choose the queue to
4908 		 * pick an I/O request from.
4909 		 *
4910 		 * The first if checks whether the process associated
4911 		 * with bfqq has also async I/O pending. If so, it
4912 		 * injects such I/O unconditionally. Injecting async
4913 		 * I/O from the same process can cause no harm to the
4914 		 * process. On the contrary, it can only increase
4915 		 * bandwidth and reduce latency for the process.
4916 		 *
4917 		 * The second if checks whether there happens to be a
4918 		 * non-empty waker queue for bfqq, i.e., a queue whose
4919 		 * I/O needs to be completed for bfqq to receive new
4920 		 * I/O. This happens, e.g., if bfqq is associated with
4921 		 * a process that does some sync. A sync generates
4922 		 * extra blocking I/O, which must be completed before
4923 		 * the process associated with bfqq can go on with its
4924 		 * I/O. If the I/O of the waker queue is not served,
4925 		 * then bfqq remains empty, and no I/O is dispatched,
4926 		 * until the idle timeout fires for bfqq. This is
4927 		 * likely to result in lower bandwidth and higher
4928 		 * latencies for bfqq, and in a severe loss of total
4929 		 * throughput. The best action to take is therefore to
4930 		 * serve the waker queue as soon as possible. So do it
4931 		 * (without relying on the third alternative below for
4932 		 * eventually serving waker_bfqq's I/O; see the last
4933 		 * paragraph for further details). This systematic
4934 		 * injection of I/O from the waker queue does not
4935 		 * cause any delay to bfqq's I/O. On the contrary,
4936 		 * next bfqq's I/O is brought forward dramatically,
4937 		 * for it is not blocked for milliseconds.
4938 		 *
4939 		 * The third if checks whether there is a queue woken
4940 		 * by bfqq, and currently with pending I/O. Such a
4941 		 * woken queue does not steal bandwidth from bfqq,
4942 		 * because it remains soon without I/O if bfqq is not
4943 		 * served. So there is virtually no risk of loss of
4944 		 * bandwidth for bfqq if this woken queue has I/O
4945 		 * dispatched while bfqq is waiting for new I/O.
4946 		 *
4947 		 * The fourth if checks whether bfqq is a queue for
4948 		 * which it is better to avoid injection. It is so if
4949 		 * bfqq delivers more throughput when served without
4950 		 * any further I/O from other queues in the middle, or
4951 		 * if the service times of bfqq's I/O requests both
4952 		 * count more than overall throughput, and may be
4953 		 * easily increased by injection (this happens if bfqq
4954 		 * has a short think time). If none of these
4955 		 * conditions holds, then a candidate queue for
4956 		 * injection is looked for through
4957 		 * bfq_choose_bfqq_for_injection(). Note that the
4958 		 * latter may return NULL (for example if the inject
4959 		 * limit for bfqq is currently 0).
4960 		 *
4961 		 * NOTE: motivation for the second alternative
4962 		 *
4963 		 * Thanks to the way the inject limit is updated in
4964 		 * bfq_update_has_short_ttime(), it is rather likely
4965 		 * that, if I/O is being plugged for bfqq and the
4966 		 * waker queue has pending I/O requests that are
4967 		 * blocking bfqq's I/O, then the fourth alternative
4968 		 * above lets the waker queue get served before the
4969 		 * I/O-plugging timeout fires. So one may deem the
4970 		 * second alternative superfluous. It is not, because
4971 		 * the fourth alternative may be way less effective in
4972 		 * case of a synchronization. For two main
4973 		 * reasons. First, throughput may be low because the
4974 		 * inject limit may be too low to guarantee the same
4975 		 * amount of injected I/O, from the waker queue or
4976 		 * other queues, that the second alternative
4977 		 * guarantees (the second alternative unconditionally
4978 		 * injects a pending I/O request of the waker queue
4979 		 * for each bfq_dispatch_request()). Second, with the
4980 		 * fourth alternative, the duration of the plugging,
4981 		 * i.e., the time before bfqq finally receives new I/O,
4982 		 * may not be minimized, because the waker queue may
4983 		 * happen to be served only after other queues.
4984 		 */
4985 		if (async_bfqq &&
4986 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4987 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4988 		    bfq_bfqq_budget_left(async_bfqq))
4989 			bfqq = async_bfqq;
4990 		else if (bfqq->waker_bfqq &&
4991 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4992 			   bfqq->waker_bfqq->next_rq &&
4993 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4994 					      bfqq->waker_bfqq) <=
4995 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4996 			)
4997 			bfqq = bfqq->waker_bfqq;
4998 		else if (blocked_bfqq &&
4999 			   bfq_bfqq_busy(blocked_bfqq) &&
5000 			   blocked_bfqq->next_rq &&
5001 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
5002 					      blocked_bfqq) <=
5003 			   bfq_bfqq_budget_left(blocked_bfqq)
5004 			)
5005 			bfqq = blocked_bfqq;
5006 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
5007 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
5008 			  !bfq_bfqq_has_short_ttime(bfqq)))
5009 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
5010 		else
5011 			bfqq = NULL;
5012 
5013 		goto keep_queue;
5014 	}
5015 
5016 	reason = BFQQE_NO_MORE_REQUESTS;
5017 expire:
5018 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
5019 new_queue:
5020 	bfqq = bfq_set_in_service_queue(bfqd);
5021 	if (bfqq) {
5022 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
5023 		goto check_queue;
5024 	}
5025 keep_queue:
5026 	if (bfqq)
5027 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
5028 	else
5029 		bfq_log(bfqd, "select_queue: no queue returned");
5030 
5031 	return bfqq;
5032 }
5033 
5034 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5035 {
5036 	struct bfq_entity *entity = &bfqq->entity;
5037 
5038 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
5039 		bfq_log_bfqq(bfqd, bfqq,
5040 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
5041 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
5042 			jiffies_to_msecs(bfqq->wr_cur_max_time),
5043 			bfqq->wr_coeff,
5044 			bfqq->entity.weight, bfqq->entity.orig_weight);
5045 
5046 		if (entity->prio_changed)
5047 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
5048 
5049 		/*
5050 		 * If the queue was activated in a burst, or too much
5051 		 * time has elapsed from the beginning of this
5052 		 * weight-raising period, then end weight raising.
5053 		 */
5054 		if (bfq_bfqq_in_large_burst(bfqq))
5055 			bfq_bfqq_end_wr(bfqq);
5056 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
5057 						bfqq->wr_cur_max_time)) {
5058 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
5059 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5060 					       bfq_wr_duration(bfqd))) {
5061 				/*
5062 				 * Either in interactive weight
5063 				 * raising, or in soft_rt weight
5064 				 * raising with the
5065 				 * interactive-weight-raising period
5066 				 * elapsed (so no switch back to
5067 				 * interactive weight raising).
5068 				 */
5069 				bfq_bfqq_end_wr(bfqq);
5070 			} else { /*
5071 				  * soft_rt finishing while still in
5072 				  * interactive period, switch back to
5073 				  * interactive weight raising
5074 				  */
5075 				switch_back_to_interactive_wr(bfqq, bfqd);
5076 				bfqq->entity.prio_changed = 1;
5077 			}
5078 		}
5079 		if (bfqq->wr_coeff > 1 &&
5080 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
5081 		    bfqq->service_from_wr > max_service_from_wr) {
5082 			/* see comments on max_service_from_wr */
5083 			bfq_bfqq_end_wr(bfqq);
5084 		}
5085 	}
5086 	/*
5087 	 * To improve latency (for this or other queues), immediately
5088 	 * update weight both if it must be raised and if it must be
5089 	 * lowered. Since, entity may be on some active tree here, and
5090 	 * might have a pending change of its ioprio class, invoke
5091 	 * next function with the last parameter unset (see the
5092 	 * comments on the function).
5093 	 */
5094 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
5095 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
5096 						entity, false);
5097 }
5098 
5099 /*
5100  * Dispatch next request from bfqq.
5101  */
5102 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
5103 						 struct bfq_queue *bfqq)
5104 {
5105 	struct request *rq = bfqq->next_rq;
5106 	unsigned long service_to_charge;
5107 
5108 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
5109 
5110 	bfq_bfqq_served(bfqq, service_to_charge);
5111 
5112 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5113 		bfqd->wait_dispatch = false;
5114 		bfqd->waited_rq = rq;
5115 	}
5116 
5117 	bfq_dispatch_remove(bfqd->queue, rq);
5118 
5119 	if (bfqq != bfqd->in_service_queue)
5120 		return rq;
5121 
5122 	/*
5123 	 * If weight raising has to terminate for bfqq, then next
5124 	 * function causes an immediate update of bfqq's weight,
5125 	 * without waiting for next activation. As a consequence, on
5126 	 * expiration, bfqq will be timestamped as if has never been
5127 	 * weight-raised during this service slot, even if it has
5128 	 * received part or even most of the service as a
5129 	 * weight-raised queue. This inflates bfqq's timestamps, which
5130 	 * is beneficial, as bfqq is then more willing to leave the
5131 	 * device immediately to possible other weight-raised queues.
5132 	 */
5133 	bfq_update_wr_data(bfqd, bfqq);
5134 
5135 	/*
5136 	 * Expire bfqq, pretending that its budget expired, if bfqq
5137 	 * belongs to CLASS_IDLE and other queues are waiting for
5138 	 * service.
5139 	 */
5140 	if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq))
5141 		bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5142 
5143 	return rq;
5144 }
5145 
5146 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5147 {
5148 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5149 
5150 	/*
5151 	 * Avoiding lock: a race on bfqd->queued should cause at
5152 	 * most a call to dispatch for nothing
5153 	 */
5154 	return !list_empty_careful(&bfqd->dispatch) ||
5155 		READ_ONCE(bfqd->queued);
5156 }
5157 
5158 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5159 {
5160 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5161 	struct request *rq = NULL;
5162 	struct bfq_queue *bfqq = NULL;
5163 
5164 	if (!list_empty(&bfqd->dispatch)) {
5165 		rq = list_first_entry(&bfqd->dispatch, struct request,
5166 				      queuelist);
5167 		list_del_init(&rq->queuelist);
5168 
5169 		bfqq = RQ_BFQQ(rq);
5170 
5171 		if (bfqq) {
5172 			/*
5173 			 * Increment counters here, because this
5174 			 * dispatch does not follow the standard
5175 			 * dispatch flow (where counters are
5176 			 * incremented)
5177 			 */
5178 			bfqq->dispatched++;
5179 
5180 			goto inc_in_driver_start_rq;
5181 		}
5182 
5183 		/*
5184 		 * We exploit the bfq_finish_requeue_request hook to
5185 		 * decrement tot_rq_in_driver, but
5186 		 * bfq_finish_requeue_request will not be invoked on
5187 		 * this request. So, to avoid unbalance, just start
5188 		 * this request, without incrementing tot_rq_in_driver. As
5189 		 * a negative consequence, tot_rq_in_driver is deceptively
5190 		 * lower than it should be while this request is in
5191 		 * service. This may cause bfq_schedule_dispatch to be
5192 		 * invoked uselessly.
5193 		 *
5194 		 * As for implementing an exact solution, the
5195 		 * bfq_finish_requeue_request hook, if defined, is
5196 		 * probably invoked also on this request. So, by
5197 		 * exploiting this hook, we could 1) increment
5198 		 * tot_rq_in_driver here, and 2) decrement it in
5199 		 * bfq_finish_requeue_request. Such a solution would
5200 		 * let the value of the counter be always accurate,
5201 		 * but it would entail using an extra interface
5202 		 * function. This cost seems higher than the benefit,
5203 		 * being the frequency of non-elevator-private
5204 		 * requests very low.
5205 		 */
5206 		goto start_rq;
5207 	}
5208 
5209 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5210 		bfq_tot_busy_queues(bfqd));
5211 
5212 	if (bfq_tot_busy_queues(bfqd) == 0)
5213 		goto exit;
5214 
5215 	/*
5216 	 * Force device to serve one request at a time if
5217 	 * strict_guarantees is true. Forcing this service scheme is
5218 	 * currently the ONLY way to guarantee that the request
5219 	 * service order enforced by the scheduler is respected by a
5220 	 * queueing device. Otherwise the device is free even to make
5221 	 * some unlucky request wait for as long as the device
5222 	 * wishes.
5223 	 *
5224 	 * Of course, serving one request at a time may cause loss of
5225 	 * throughput.
5226 	 */
5227 	if (bfqd->strict_guarantees && bfqd->tot_rq_in_driver > 0)
5228 		goto exit;
5229 
5230 	bfqq = bfq_select_queue(bfqd);
5231 	if (!bfqq)
5232 		goto exit;
5233 
5234 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5235 
5236 	if (rq) {
5237 inc_in_driver_start_rq:
5238 		bfqd->rq_in_driver[bfqq->actuator_idx]++;
5239 		bfqd->tot_rq_in_driver++;
5240 start_rq:
5241 		rq->rq_flags |= RQF_STARTED;
5242 	}
5243 exit:
5244 	return rq;
5245 }
5246 
5247 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5248 static void bfq_update_dispatch_stats(struct request_queue *q,
5249 				      struct request *rq,
5250 				      struct bfq_queue *in_serv_queue,
5251 				      bool idle_timer_disabled)
5252 {
5253 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5254 
5255 	if (!idle_timer_disabled && !bfqq)
5256 		return;
5257 
5258 	/*
5259 	 * rq and bfqq are guaranteed to exist until this function
5260 	 * ends, for the following reasons. First, rq can be
5261 	 * dispatched to the device, and then can be completed and
5262 	 * freed, only after this function ends. Second, rq cannot be
5263 	 * merged (and thus freed because of a merge) any longer,
5264 	 * because it has already started. Thus rq cannot be freed
5265 	 * before this function ends, and, since rq has a reference to
5266 	 * bfqq, the same guarantee holds for bfqq too.
5267 	 *
5268 	 * In addition, the following queue lock guarantees that
5269 	 * bfqq_group(bfqq) exists as well.
5270 	 */
5271 	spin_lock_irq(&q->queue_lock);
5272 	if (idle_timer_disabled)
5273 		/*
5274 		 * Since the idle timer has been disabled,
5275 		 * in_serv_queue contained some request when
5276 		 * __bfq_dispatch_request was invoked above, which
5277 		 * implies that rq was picked exactly from
5278 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5279 		 * therefore guaranteed to exist because of the above
5280 		 * arguments.
5281 		 */
5282 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5283 	if (bfqq) {
5284 		struct bfq_group *bfqg = bfqq_group(bfqq);
5285 
5286 		bfqg_stats_update_avg_queue_size(bfqg);
5287 		bfqg_stats_set_start_empty_time(bfqg);
5288 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5289 	}
5290 	spin_unlock_irq(&q->queue_lock);
5291 }
5292 #else
5293 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5294 					     struct request *rq,
5295 					     struct bfq_queue *in_serv_queue,
5296 					     bool idle_timer_disabled) {}
5297 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5298 
5299 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5300 {
5301 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5302 	struct request *rq;
5303 	struct bfq_queue *in_serv_queue;
5304 	bool waiting_rq, idle_timer_disabled = false;
5305 
5306 	spin_lock_irq(&bfqd->lock);
5307 
5308 	in_serv_queue = bfqd->in_service_queue;
5309 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5310 
5311 	rq = __bfq_dispatch_request(hctx);
5312 	if (in_serv_queue == bfqd->in_service_queue) {
5313 		idle_timer_disabled =
5314 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5315 	}
5316 
5317 	spin_unlock_irq(&bfqd->lock);
5318 	bfq_update_dispatch_stats(hctx->queue, rq,
5319 			idle_timer_disabled ? in_serv_queue : NULL,
5320 				idle_timer_disabled);
5321 
5322 	return rq;
5323 }
5324 
5325 /*
5326  * Task holds one reference to the queue, dropped when task exits.  Each rq
5327  * in-flight on this queue also holds a reference, dropped when rq is freed.
5328  *
5329  * Scheduler lock must be held here. Recall not to use bfqq after calling
5330  * this function on it.
5331  */
5332 void bfq_put_queue(struct bfq_queue *bfqq)
5333 {
5334 	struct bfq_queue *item;
5335 	struct hlist_node *n;
5336 	struct bfq_group *bfqg = bfqq_group(bfqq);
5337 
5338 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5339 
5340 	bfqq->ref--;
5341 	if (bfqq->ref)
5342 		return;
5343 
5344 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5345 		hlist_del_init(&bfqq->burst_list_node);
5346 		/*
5347 		 * Decrement also burst size after the removal, if the
5348 		 * process associated with bfqq is exiting, and thus
5349 		 * does not contribute to the burst any longer. This
5350 		 * decrement helps filter out false positives of large
5351 		 * bursts, when some short-lived process (often due to
5352 		 * the execution of commands by some service) happens
5353 		 * to start and exit while a complex application is
5354 		 * starting, and thus spawning several processes that
5355 		 * do I/O (and that *must not* be treated as a large
5356 		 * burst, see comments on bfq_handle_burst).
5357 		 *
5358 		 * In particular, the decrement is performed only if:
5359 		 * 1) bfqq is not a merged queue, because, if it is,
5360 		 * then this free of bfqq is not triggered by the exit
5361 		 * of the process bfqq is associated with, but exactly
5362 		 * by the fact that bfqq has just been merged.
5363 		 * 2) burst_size is greater than 0, to handle
5364 		 * unbalanced decrements. Unbalanced decrements may
5365 		 * happen in te following case: bfqq is inserted into
5366 		 * the current burst list--without incrementing
5367 		 * bust_size--because of a split, but the current
5368 		 * burst list is not the burst list bfqq belonged to
5369 		 * (see comments on the case of a split in
5370 		 * bfq_set_request).
5371 		 */
5372 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5373 			bfqq->bfqd->burst_size--;
5374 	}
5375 
5376 	/*
5377 	 * bfqq does not exist any longer, so it cannot be woken by
5378 	 * any other queue, and cannot wake any other queue. Then bfqq
5379 	 * must be removed from the woken list of its possible waker
5380 	 * queue, and all queues in the woken list of bfqq must stop
5381 	 * having a waker queue. Strictly speaking, these updates
5382 	 * should be performed when bfqq remains with no I/O source
5383 	 * attached to it, which happens before bfqq gets freed. In
5384 	 * particular, this happens when the last process associated
5385 	 * with bfqq exits or gets associated with a different
5386 	 * queue. However, both events lead to bfqq being freed soon,
5387 	 * and dangling references would come out only after bfqq gets
5388 	 * freed. So these updates are done here, as a simple and safe
5389 	 * way to handle all cases.
5390 	 */
5391 	/* remove bfqq from woken list */
5392 	if (!hlist_unhashed(&bfqq->woken_list_node))
5393 		hlist_del_init(&bfqq->woken_list_node);
5394 
5395 	/* reset waker for all queues in woken list */
5396 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5397 				  woken_list_node) {
5398 		item->waker_bfqq = NULL;
5399 		hlist_del_init(&item->woken_list_node);
5400 	}
5401 
5402 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5403 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5404 
5405 	kmem_cache_free(bfq_pool, bfqq);
5406 	bfqg_and_blkg_put(bfqg);
5407 }
5408 
5409 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5410 {
5411 	bfqq->stable_ref--;
5412 	bfq_put_queue(bfqq);
5413 }
5414 
5415 void bfq_put_cooperator(struct bfq_queue *bfqq)
5416 {
5417 	struct bfq_queue *__bfqq, *next;
5418 
5419 	/*
5420 	 * If this queue was scheduled to merge with another queue, be
5421 	 * sure to drop the reference taken on that queue (and others in
5422 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5423 	 */
5424 	__bfqq = bfqq->new_bfqq;
5425 	while (__bfqq) {
5426 		next = __bfqq->new_bfqq;
5427 		bfq_put_queue(__bfqq);
5428 		__bfqq = next;
5429 	}
5430 }
5431 
5432 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5433 {
5434 	if (bfqq == bfqd->in_service_queue) {
5435 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5436 		bfq_schedule_dispatch(bfqd);
5437 	}
5438 
5439 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5440 
5441 	bfq_put_cooperator(bfqq);
5442 
5443 	bfq_release_process_ref(bfqd, bfqq);
5444 }
5445 
5446 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync,
5447 			      unsigned int actuator_idx)
5448 {
5449 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, actuator_idx);
5450 	struct bfq_data *bfqd;
5451 
5452 	if (bfqq)
5453 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5454 
5455 	if (bfqq && bfqd) {
5456 		bic_set_bfqq(bic, NULL, is_sync, actuator_idx);
5457 		bfq_exit_bfqq(bfqd, bfqq);
5458 	}
5459 }
5460 
5461 static void bfq_exit_icq(struct io_cq *icq)
5462 {
5463 	struct bfq_io_cq *bic = icq_to_bic(icq);
5464 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5465 	unsigned long flags;
5466 	unsigned int act_idx;
5467 	/*
5468 	 * If bfqd and thus bfqd->num_actuators is not available any
5469 	 * longer, then cycle over all possible per-actuator bfqqs in
5470 	 * next loop. We rely on bic being zeroed on creation, and
5471 	 * therefore on its unused per-actuator fields being NULL.
5472 	 */
5473 	unsigned int num_actuators = BFQ_MAX_ACTUATORS;
5474 	struct bfq_iocq_bfqq_data *bfqq_data = bic->bfqq_data;
5475 
5476 	/*
5477 	 * bfqd is NULL if scheduler already exited, and in that case
5478 	 * this is the last time these queues are accessed.
5479 	 */
5480 	if (bfqd) {
5481 		spin_lock_irqsave(&bfqd->lock, flags);
5482 		num_actuators = bfqd->num_actuators;
5483 	}
5484 
5485 	for (act_idx = 0; act_idx < num_actuators; act_idx++) {
5486 		if (bfqq_data[act_idx].stable_merge_bfqq)
5487 			bfq_put_stable_ref(bfqq_data[act_idx].stable_merge_bfqq);
5488 
5489 		bfq_exit_icq_bfqq(bic, true, act_idx);
5490 		bfq_exit_icq_bfqq(bic, false, act_idx);
5491 	}
5492 
5493 	if (bfqd)
5494 		spin_unlock_irqrestore(&bfqd->lock, flags);
5495 }
5496 
5497 /*
5498  * Update the entity prio values; note that the new values will not
5499  * be used until the next (re)activation.
5500  */
5501 static void
5502 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5503 {
5504 	struct task_struct *tsk = current;
5505 	int ioprio_class;
5506 	struct bfq_data *bfqd = bfqq->bfqd;
5507 
5508 	if (!bfqd)
5509 		return;
5510 
5511 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5512 	switch (ioprio_class) {
5513 	default:
5514 		pr_err("bdi %s: bfq: bad prio class %d\n",
5515 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5516 			ioprio_class);
5517 		fallthrough;
5518 	case IOPRIO_CLASS_NONE:
5519 		/*
5520 		 * No prio set, inherit CPU scheduling settings.
5521 		 */
5522 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5523 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5524 		break;
5525 	case IOPRIO_CLASS_RT:
5526 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5527 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5528 		break;
5529 	case IOPRIO_CLASS_BE:
5530 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5531 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5532 		break;
5533 	case IOPRIO_CLASS_IDLE:
5534 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5535 		bfqq->new_ioprio = 7;
5536 		break;
5537 	}
5538 
5539 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5540 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5541 			bfqq->new_ioprio);
5542 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5543 	}
5544 
5545 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5546 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5547 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5548 	bfqq->entity.prio_changed = 1;
5549 }
5550 
5551 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5552 				       struct bio *bio, bool is_sync,
5553 				       struct bfq_io_cq *bic,
5554 				       bool respawn);
5555 
5556 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5557 {
5558 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5559 	struct bfq_queue *bfqq;
5560 	int ioprio = bic->icq.ioc->ioprio;
5561 
5562 	/*
5563 	 * This condition may trigger on a newly created bic, be sure to
5564 	 * drop the lock before returning.
5565 	 */
5566 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5567 		return;
5568 
5569 	bic->ioprio = ioprio;
5570 
5571 	bfqq = bic_to_bfqq(bic, false, bfq_actuator_index(bfqd, bio));
5572 	if (bfqq) {
5573 		struct bfq_queue *old_bfqq = bfqq;
5574 
5575 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5576 		bic_set_bfqq(bic, bfqq, false, bfq_actuator_index(bfqd, bio));
5577 		bfq_release_process_ref(bfqd, old_bfqq);
5578 	}
5579 
5580 	bfqq = bic_to_bfqq(bic, true, bfq_actuator_index(bfqd, bio));
5581 	if (bfqq)
5582 		bfq_set_next_ioprio_data(bfqq, bic);
5583 }
5584 
5585 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5586 			  struct bfq_io_cq *bic, pid_t pid, int is_sync,
5587 			  unsigned int act_idx)
5588 {
5589 	u64 now_ns = ktime_get_ns();
5590 
5591 	bfqq->actuator_idx = act_idx;
5592 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5593 	INIT_LIST_HEAD(&bfqq->fifo);
5594 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5595 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5596 	INIT_HLIST_HEAD(&bfqq->woken_list);
5597 
5598 	bfqq->ref = 0;
5599 	bfqq->bfqd = bfqd;
5600 
5601 	if (bic)
5602 		bfq_set_next_ioprio_data(bfqq, bic);
5603 
5604 	if (is_sync) {
5605 		/*
5606 		 * No need to mark as has_short_ttime if in
5607 		 * idle_class, because no device idling is performed
5608 		 * for queues in idle class
5609 		 */
5610 		if (!bfq_class_idle(bfqq))
5611 			/* tentatively mark as has_short_ttime */
5612 			bfq_mark_bfqq_has_short_ttime(bfqq);
5613 		bfq_mark_bfqq_sync(bfqq);
5614 		bfq_mark_bfqq_just_created(bfqq);
5615 	} else
5616 		bfq_clear_bfqq_sync(bfqq);
5617 
5618 	/* set end request to minus infinity from now */
5619 	bfqq->ttime.last_end_request = now_ns + 1;
5620 
5621 	bfqq->creation_time = jiffies;
5622 
5623 	bfqq->io_start_time = now_ns;
5624 
5625 	bfq_mark_bfqq_IO_bound(bfqq);
5626 
5627 	bfqq->pid = pid;
5628 
5629 	/* Tentative initial value to trade off between thr and lat */
5630 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5631 	bfqq->budget_timeout = bfq_smallest_from_now();
5632 
5633 	bfqq->wr_coeff = 1;
5634 	bfqq->last_wr_start_finish = jiffies;
5635 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5636 	bfqq->split_time = bfq_smallest_from_now();
5637 
5638 	/*
5639 	 * To not forget the possibly high bandwidth consumed by a
5640 	 * process/queue in the recent past,
5641 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5642 	 * to the current value of bfqq->soft_rt_next_start (see
5643 	 * comments on bfq_bfqq_softrt_next_start).  Set
5644 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5645 	 * no bandwidth so far.
5646 	 */
5647 	bfqq->soft_rt_next_start = jiffies;
5648 
5649 	/* first request is almost certainly seeky */
5650 	bfqq->seek_history = 1;
5651 
5652 	bfqq->decrease_time_jif = jiffies;
5653 }
5654 
5655 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5656 					       struct bfq_group *bfqg,
5657 					       int ioprio_class, int ioprio, int act_idx)
5658 {
5659 	switch (ioprio_class) {
5660 	case IOPRIO_CLASS_RT:
5661 		return &bfqg->async_bfqq[0][ioprio][act_idx];
5662 	case IOPRIO_CLASS_NONE:
5663 		ioprio = IOPRIO_BE_NORM;
5664 		fallthrough;
5665 	case IOPRIO_CLASS_BE:
5666 		return &bfqg->async_bfqq[1][ioprio][act_idx];
5667 	case IOPRIO_CLASS_IDLE:
5668 		return &bfqg->async_idle_bfqq[act_idx];
5669 	default:
5670 		return NULL;
5671 	}
5672 }
5673 
5674 static struct bfq_queue *
5675 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5676 			  struct bfq_io_cq *bic,
5677 			  struct bfq_queue *last_bfqq_created)
5678 {
5679 	unsigned int a_idx = last_bfqq_created->actuator_idx;
5680 	struct bfq_queue *new_bfqq =
5681 		bfq_setup_merge(bfqq, last_bfqq_created);
5682 
5683 	if (!new_bfqq)
5684 		return bfqq;
5685 
5686 	if (new_bfqq->bic)
5687 		new_bfqq->bic->bfqq_data[a_idx].stably_merged = true;
5688 	bic->bfqq_data[a_idx].stably_merged = true;
5689 
5690 	/*
5691 	 * Reusing merge functions. This implies that
5692 	 * bfqq->bic must be set too, for
5693 	 * bfq_merge_bfqqs to correctly save bfqq's
5694 	 * state before killing it.
5695 	 */
5696 	bfqq->bic = bic;
5697 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5698 
5699 	return new_bfqq;
5700 }
5701 
5702 /*
5703  * Many throughput-sensitive workloads are made of several parallel
5704  * I/O flows, with all flows generated by the same application, or
5705  * more generically by the same task (e.g., system boot). The most
5706  * counterproductive action with these workloads is plugging I/O
5707  * dispatch when one of the bfq_queues associated with these flows
5708  * remains temporarily empty.
5709  *
5710  * To avoid this plugging, BFQ has been using a burst-handling
5711  * mechanism for years now. This mechanism has proven effective for
5712  * throughput, and not detrimental for service guarantees. The
5713  * following function pushes this mechanism a little bit further,
5714  * basing on the following two facts.
5715  *
5716  * First, all the I/O flows of a the same application or task
5717  * contribute to the execution/completion of that common application
5718  * or task. So the performance figures that matter are total
5719  * throughput of the flows and task-wide I/O latency.  In particular,
5720  * these flows do not need to be protected from each other, in terms
5721  * of individual bandwidth or latency.
5722  *
5723  * Second, the above fact holds regardless of the number of flows.
5724  *
5725  * Putting these two facts together, this commits merges stably the
5726  * bfq_queues associated with these I/O flows, i.e., with the
5727  * processes that generate these IO/ flows, regardless of how many the
5728  * involved processes are.
5729  *
5730  * To decide whether a set of bfq_queues is actually associated with
5731  * the I/O flows of a common application or task, and to merge these
5732  * queues stably, this function operates as follows: given a bfq_queue,
5733  * say Q2, currently being created, and the last bfq_queue, say Q1,
5734  * created before Q2, Q2 is merged stably with Q1 if
5735  * - very little time has elapsed since when Q1 was created
5736  * - Q2 has the same ioprio as Q1
5737  * - Q2 belongs to the same group as Q1
5738  *
5739  * Merging bfq_queues also reduces scheduling overhead. A fio test
5740  * with ten random readers on /dev/nullb shows a throughput boost of
5741  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5742  * the total per-request processing time, the above throughput boost
5743  * implies that BFQ's overhead is reduced by more than 50%.
5744  *
5745  * This new mechanism most certainly obsoletes the current
5746  * burst-handling heuristics. We keep those heuristics for the moment.
5747  */
5748 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5749 						      struct bfq_queue *bfqq,
5750 						      struct bfq_io_cq *bic)
5751 {
5752 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5753 		&bfqq->entity.parent->last_bfqq_created :
5754 		&bfqd->last_bfqq_created;
5755 
5756 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5757 
5758 	/*
5759 	 * If last_bfqq_created has not been set yet, then init it. If
5760 	 * it has been set already, but too long ago, then move it
5761 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5762 	 * different group than last_bfqq_created, or if bfqq has a
5763 	 * different ioprio, ioprio_class or actuator_idx. If none of
5764 	 * these conditions holds true, then try an early stable merge
5765 	 * or schedule a delayed stable merge. As for the condition on
5766 	 * actuator_idx, the reason is that, if queues associated with
5767 	 * different actuators are merged, then control is lost on
5768 	 * each actuator. Therefore some actuator may be
5769 	 * underutilized, and throughput may decrease.
5770 	 *
5771 	 * A delayed merge is scheduled (instead of performing an
5772 	 * early merge), in case bfqq might soon prove to be more
5773 	 * throughput-beneficial if not merged. Currently this is
5774 	 * possible only if bfqd is rotational with no queueing. For
5775 	 * such a drive, not merging bfqq is better for throughput if
5776 	 * bfqq happens to contain sequential I/O. So, we wait a
5777 	 * little bit for enough I/O to flow through bfqq. After that,
5778 	 * if such an I/O is sequential, then the merge is
5779 	 * canceled. Otherwise the merge is finally performed.
5780 	 */
5781 	if (!last_bfqq_created ||
5782 	    time_before(last_bfqq_created->creation_time +
5783 			msecs_to_jiffies(bfq_activation_stable_merging),
5784 			bfqq->creation_time) ||
5785 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5786 		bfqq->ioprio != last_bfqq_created->ioprio ||
5787 		bfqq->ioprio_class != last_bfqq_created->ioprio_class ||
5788 		bfqq->actuator_idx != last_bfqq_created->actuator_idx)
5789 		*source_bfqq = bfqq;
5790 	else if (time_after_eq(last_bfqq_created->creation_time +
5791 				 bfqd->bfq_burst_interval,
5792 				 bfqq->creation_time)) {
5793 		if (likely(bfqd->nonrot_with_queueing))
5794 			/*
5795 			 * With this type of drive, leaving
5796 			 * bfqq alone may provide no
5797 			 * throughput benefits compared with
5798 			 * merging bfqq. So merge bfqq now.
5799 			 */
5800 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5801 							 bic,
5802 							 last_bfqq_created);
5803 		else { /* schedule tentative stable merge */
5804 			/*
5805 			 * get reference on last_bfqq_created,
5806 			 * to prevent it from being freed,
5807 			 * until we decide whether to merge
5808 			 */
5809 			last_bfqq_created->ref++;
5810 			/*
5811 			 * need to keep track of stable refs, to
5812 			 * compute process refs correctly
5813 			 */
5814 			last_bfqq_created->stable_ref++;
5815 			/*
5816 			 * Record the bfqq to merge to.
5817 			 */
5818 			bic->bfqq_data[last_bfqq_created->actuator_idx].stable_merge_bfqq =
5819 				last_bfqq_created;
5820 		}
5821 	}
5822 
5823 	return bfqq;
5824 }
5825 
5826 
5827 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5828 				       struct bio *bio, bool is_sync,
5829 				       struct bfq_io_cq *bic,
5830 				       bool respawn)
5831 {
5832 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5833 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5834 	struct bfq_queue **async_bfqq = NULL;
5835 	struct bfq_queue *bfqq;
5836 	struct bfq_group *bfqg;
5837 
5838 	bfqg = bfq_bio_bfqg(bfqd, bio);
5839 	if (!is_sync) {
5840 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5841 						  ioprio,
5842 						  bfq_actuator_index(bfqd, bio));
5843 		bfqq = *async_bfqq;
5844 		if (bfqq)
5845 			goto out;
5846 	}
5847 
5848 	bfqq = kmem_cache_alloc_node(bfq_pool,
5849 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5850 				     bfqd->queue->node);
5851 
5852 	if (bfqq) {
5853 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5854 			      is_sync, bfq_actuator_index(bfqd, bio));
5855 		bfq_init_entity(&bfqq->entity, bfqg);
5856 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5857 	} else {
5858 		bfqq = &bfqd->oom_bfqq;
5859 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5860 		goto out;
5861 	}
5862 
5863 	/*
5864 	 * Pin the queue now that it's allocated, scheduler exit will
5865 	 * prune it.
5866 	 */
5867 	if (async_bfqq) {
5868 		bfqq->ref++; /*
5869 			      * Extra group reference, w.r.t. sync
5870 			      * queue. This extra reference is removed
5871 			      * only if bfqq->bfqg disappears, to
5872 			      * guarantee that this queue is not freed
5873 			      * until its group goes away.
5874 			      */
5875 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5876 			     bfqq, bfqq->ref);
5877 		*async_bfqq = bfqq;
5878 	}
5879 
5880 out:
5881 	bfqq->ref++; /* get a process reference to this queue */
5882 
5883 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5884 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5885 	return bfqq;
5886 }
5887 
5888 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5889 				    struct bfq_queue *bfqq)
5890 {
5891 	struct bfq_ttime *ttime = &bfqq->ttime;
5892 	u64 elapsed;
5893 
5894 	/*
5895 	 * We are really interested in how long it takes for the queue to
5896 	 * become busy when there is no outstanding IO for this queue. So
5897 	 * ignore cases when the bfq queue has already IO queued.
5898 	 */
5899 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5900 		return;
5901 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5902 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5903 
5904 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5905 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5906 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5907 				     ttime->ttime_samples);
5908 }
5909 
5910 static void
5911 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5912 		       struct request *rq)
5913 {
5914 	bfqq->seek_history <<= 1;
5915 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5916 
5917 	if (bfqq->wr_coeff > 1 &&
5918 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5919 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5920 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5921 					   bfq_wr_duration(bfqd))) {
5922 			/*
5923 			 * In soft_rt weight raising with the
5924 			 * interactive-weight-raising period
5925 			 * elapsed (so no switch back to
5926 			 * interactive weight raising).
5927 			 */
5928 			bfq_bfqq_end_wr(bfqq);
5929 		} else { /*
5930 			  * stopping soft_rt weight raising
5931 			  * while still in interactive period,
5932 			  * switch back to interactive weight
5933 			  * raising
5934 			  */
5935 			switch_back_to_interactive_wr(bfqq, bfqd);
5936 			bfqq->entity.prio_changed = 1;
5937 		}
5938 	}
5939 }
5940 
5941 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5942 				       struct bfq_queue *bfqq,
5943 				       struct bfq_io_cq *bic)
5944 {
5945 	bool has_short_ttime = true, state_changed;
5946 
5947 	/*
5948 	 * No need to update has_short_ttime if bfqq is async or in
5949 	 * idle io prio class, or if bfq_slice_idle is zero, because
5950 	 * no device idling is performed for bfqq in this case.
5951 	 */
5952 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5953 	    bfqd->bfq_slice_idle == 0)
5954 		return;
5955 
5956 	/* Idle window just restored, statistics are meaningless. */
5957 	if (time_is_after_eq_jiffies(bfqq->split_time +
5958 				     bfqd->bfq_wr_min_idle_time))
5959 		return;
5960 
5961 	/* Think time is infinite if no process is linked to
5962 	 * bfqq. Otherwise check average think time to decide whether
5963 	 * to mark as has_short_ttime. To this goal, compare average
5964 	 * think time with half the I/O-plugging timeout.
5965 	 */
5966 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5967 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5968 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5969 		has_short_ttime = false;
5970 
5971 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5972 
5973 	if (has_short_ttime)
5974 		bfq_mark_bfqq_has_short_ttime(bfqq);
5975 	else
5976 		bfq_clear_bfqq_has_short_ttime(bfqq);
5977 
5978 	/*
5979 	 * Until the base value for the total service time gets
5980 	 * finally computed for bfqq, the inject limit does depend on
5981 	 * the think-time state (short|long). In particular, the limit
5982 	 * is 0 or 1 if the think time is deemed, respectively, as
5983 	 * short or long (details in the comments in
5984 	 * bfq_update_inject_limit()). Accordingly, the next
5985 	 * instructions reset the inject limit if the think-time state
5986 	 * has changed and the above base value is still to be
5987 	 * computed.
5988 	 *
5989 	 * However, the reset is performed only if more than 100 ms
5990 	 * have elapsed since the last update of the inject limit, or
5991 	 * (inclusive) if the change is from short to long think
5992 	 * time. The reason for this waiting is as follows.
5993 	 *
5994 	 * bfqq may have a long think time because of a
5995 	 * synchronization with some other queue, i.e., because the
5996 	 * I/O of some other queue may need to be completed for bfqq
5997 	 * to receive new I/O. Details in the comments on the choice
5998 	 * of the queue for injection in bfq_select_queue().
5999 	 *
6000 	 * As stressed in those comments, if such a synchronization is
6001 	 * actually in place, then, without injection on bfqq, the
6002 	 * blocking I/O cannot happen to served while bfqq is in
6003 	 * service. As a consequence, if bfqq is granted
6004 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
6005 	 * is dispatched, until the idle timeout fires. This is likely
6006 	 * to result in lower bandwidth and higher latencies for bfqq,
6007 	 * and in a severe loss of total throughput.
6008 	 *
6009 	 * On the opposite end, a non-zero inject limit may allow the
6010 	 * I/O that blocks bfqq to be executed soon, and therefore
6011 	 * bfqq to receive new I/O soon.
6012 	 *
6013 	 * But, if the blocking gets actually eliminated, then the
6014 	 * next think-time sample for bfqq may be very low. This in
6015 	 * turn may cause bfqq's think time to be deemed
6016 	 * short. Without the 100 ms barrier, this new state change
6017 	 * would cause the body of the next if to be executed
6018 	 * immediately. But this would set to 0 the inject
6019 	 * limit. Without injection, the blocking I/O would cause the
6020 	 * think time of bfqq to become long again, and therefore the
6021 	 * inject limit to be raised again, and so on. The only effect
6022 	 * of such a steady oscillation between the two think-time
6023 	 * states would be to prevent effective injection on bfqq.
6024 	 *
6025 	 * In contrast, if the inject limit is not reset during such a
6026 	 * long time interval as 100 ms, then the number of short
6027 	 * think time samples can grow significantly before the reset
6028 	 * is performed. As a consequence, the think time state can
6029 	 * become stable before the reset. Therefore there will be no
6030 	 * state change when the 100 ms elapse, and no reset of the
6031 	 * inject limit. The inject limit remains steadily equal to 1
6032 	 * both during and after the 100 ms. So injection can be
6033 	 * performed at all times, and throughput gets boosted.
6034 	 *
6035 	 * An inject limit equal to 1 is however in conflict, in
6036 	 * general, with the fact that the think time of bfqq is
6037 	 * short, because injection may be likely to delay bfqq's I/O
6038 	 * (as explained in the comments in
6039 	 * bfq_update_inject_limit()). But this does not happen in
6040 	 * this special case, because bfqq's low think time is due to
6041 	 * an effective handling of a synchronization, through
6042 	 * injection. In this special case, bfqq's I/O does not get
6043 	 * delayed by injection; on the contrary, bfqq's I/O is
6044 	 * brought forward, because it is not blocked for
6045 	 * milliseconds.
6046 	 *
6047 	 * In addition, serving the blocking I/O much sooner, and much
6048 	 * more frequently than once per I/O-plugging timeout, makes
6049 	 * it much quicker to detect a waker queue (the concept of
6050 	 * waker queue is defined in the comments in
6051 	 * bfq_add_request()). This makes it possible to start sooner
6052 	 * to boost throughput more effectively, by injecting the I/O
6053 	 * of the waker queue unconditionally on every
6054 	 * bfq_dispatch_request().
6055 	 *
6056 	 * One last, important benefit of not resetting the inject
6057 	 * limit before 100 ms is that, during this time interval, the
6058 	 * base value for the total service time is likely to get
6059 	 * finally computed for bfqq, freeing the inject limit from
6060 	 * its relation with the think time.
6061 	 */
6062 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
6063 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
6064 				      msecs_to_jiffies(100)) ||
6065 	     !has_short_ttime))
6066 		bfq_reset_inject_limit(bfqd, bfqq);
6067 }
6068 
6069 /*
6070  * Called when a new fs request (rq) is added to bfqq.  Check if there's
6071  * something we should do about it.
6072  */
6073 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6074 			    struct request *rq)
6075 {
6076 	if (rq->cmd_flags & REQ_META)
6077 		bfqq->meta_pending++;
6078 
6079 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
6080 
6081 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
6082 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
6083 				 blk_rq_sectors(rq) < 32;
6084 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
6085 
6086 		/*
6087 		 * There is just this request queued: if
6088 		 * - the request is small, and
6089 		 * - we are idling to boost throughput, and
6090 		 * - the queue is not to be expired,
6091 		 * then just exit.
6092 		 *
6093 		 * In this way, if the device is being idled to wait
6094 		 * for a new request from the in-service queue, we
6095 		 * avoid unplugging the device and committing the
6096 		 * device to serve just a small request. In contrast
6097 		 * we wait for the block layer to decide when to
6098 		 * unplug the device: hopefully, new requests will be
6099 		 * merged to this one quickly, then the device will be
6100 		 * unplugged and larger requests will be dispatched.
6101 		 */
6102 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
6103 		    !budget_timeout)
6104 			return;
6105 
6106 		/*
6107 		 * A large enough request arrived, or idling is being
6108 		 * performed to preserve service guarantees, or
6109 		 * finally the queue is to be expired: in all these
6110 		 * cases disk idling is to be stopped, so clear
6111 		 * wait_request flag and reset timer.
6112 		 */
6113 		bfq_clear_bfqq_wait_request(bfqq);
6114 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
6115 
6116 		/*
6117 		 * The queue is not empty, because a new request just
6118 		 * arrived. Hence we can safely expire the queue, in
6119 		 * case of budget timeout, without risking that the
6120 		 * timestamps of the queue are not updated correctly.
6121 		 * See [1] for more details.
6122 		 */
6123 		if (budget_timeout)
6124 			bfq_bfqq_expire(bfqd, bfqq, false,
6125 					BFQQE_BUDGET_TIMEOUT);
6126 	}
6127 }
6128 
6129 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6130 {
6131 	struct bfq_entity *entity = &bfqq->entity;
6132 
6133 	for_each_entity(entity)
6134 		entity->allocated++;
6135 }
6136 
6137 static void bfqq_request_freed(struct bfq_queue *bfqq)
6138 {
6139 	struct bfq_entity *entity = &bfqq->entity;
6140 
6141 	for_each_entity(entity)
6142 		entity->allocated--;
6143 }
6144 
6145 /* returns true if it causes the idle timer to be disabled */
6146 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6147 {
6148 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6149 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6150 						 RQ_BIC(rq));
6151 	bool waiting, idle_timer_disabled = false;
6152 
6153 	if (new_bfqq) {
6154 		/*
6155 		 * Release the request's reference to the old bfqq
6156 		 * and make sure one is taken to the shared queue.
6157 		 */
6158 		bfqq_request_allocated(new_bfqq);
6159 		bfqq_request_freed(bfqq);
6160 		new_bfqq->ref++;
6161 		/*
6162 		 * If the bic associated with the process
6163 		 * issuing this request still points to bfqq
6164 		 * (and thus has not been already redirected
6165 		 * to new_bfqq or even some other bfq_queue),
6166 		 * then complete the merge and redirect it to
6167 		 * new_bfqq.
6168 		 */
6169 		if (bic_to_bfqq(RQ_BIC(rq), true,
6170 				bfq_actuator_index(bfqd, rq->bio)) == bfqq)
6171 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6172 					bfqq, new_bfqq);
6173 
6174 		bfq_clear_bfqq_just_created(bfqq);
6175 		/*
6176 		 * rq is about to be enqueued into new_bfqq,
6177 		 * release rq reference on bfqq
6178 		 */
6179 		bfq_put_queue(bfqq);
6180 		rq->elv.priv[1] = new_bfqq;
6181 		bfqq = new_bfqq;
6182 	}
6183 
6184 	bfq_update_io_thinktime(bfqd, bfqq);
6185 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6186 	bfq_update_io_seektime(bfqd, bfqq, rq);
6187 
6188 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6189 	bfq_add_request(rq);
6190 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6191 
6192 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6193 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6194 
6195 	bfq_rq_enqueued(bfqd, bfqq, rq);
6196 
6197 	return idle_timer_disabled;
6198 }
6199 
6200 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6201 static void bfq_update_insert_stats(struct request_queue *q,
6202 				    struct bfq_queue *bfqq,
6203 				    bool idle_timer_disabled,
6204 				    blk_opf_t cmd_flags)
6205 {
6206 	if (!bfqq)
6207 		return;
6208 
6209 	/*
6210 	 * bfqq still exists, because it can disappear only after
6211 	 * either it is merged with another queue, or the process it
6212 	 * is associated with exits. But both actions must be taken by
6213 	 * the same process currently executing this flow of
6214 	 * instructions.
6215 	 *
6216 	 * In addition, the following queue lock guarantees that
6217 	 * bfqq_group(bfqq) exists as well.
6218 	 */
6219 	spin_lock_irq(&q->queue_lock);
6220 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6221 	if (idle_timer_disabled)
6222 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6223 	spin_unlock_irq(&q->queue_lock);
6224 }
6225 #else
6226 static inline void bfq_update_insert_stats(struct request_queue *q,
6227 					   struct bfq_queue *bfqq,
6228 					   bool idle_timer_disabled,
6229 					   blk_opf_t cmd_flags) {}
6230 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6231 
6232 static struct bfq_queue *bfq_init_rq(struct request *rq);
6233 
6234 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6235 			       bool at_head)
6236 {
6237 	struct request_queue *q = hctx->queue;
6238 	struct bfq_data *bfqd = q->elevator->elevator_data;
6239 	struct bfq_queue *bfqq;
6240 	bool idle_timer_disabled = false;
6241 	blk_opf_t cmd_flags;
6242 	LIST_HEAD(free);
6243 
6244 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6245 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6246 		bfqg_stats_update_legacy_io(q, rq);
6247 #endif
6248 	spin_lock_irq(&bfqd->lock);
6249 	bfqq = bfq_init_rq(rq);
6250 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6251 		spin_unlock_irq(&bfqd->lock);
6252 		blk_mq_free_requests(&free);
6253 		return;
6254 	}
6255 
6256 	trace_block_rq_insert(rq);
6257 
6258 	if (!bfqq || at_head) {
6259 		if (at_head)
6260 			list_add(&rq->queuelist, &bfqd->dispatch);
6261 		else
6262 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6263 	} else {
6264 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6265 		/*
6266 		 * Update bfqq, because, if a queue merge has occurred
6267 		 * in __bfq_insert_request, then rq has been
6268 		 * redirected into a new queue.
6269 		 */
6270 		bfqq = RQ_BFQQ(rq);
6271 
6272 		if (rq_mergeable(rq)) {
6273 			elv_rqhash_add(q, rq);
6274 			if (!q->last_merge)
6275 				q->last_merge = rq;
6276 		}
6277 	}
6278 
6279 	/*
6280 	 * Cache cmd_flags before releasing scheduler lock, because rq
6281 	 * may disappear afterwards (for example, because of a request
6282 	 * merge).
6283 	 */
6284 	cmd_flags = rq->cmd_flags;
6285 	spin_unlock_irq(&bfqd->lock);
6286 
6287 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6288 				cmd_flags);
6289 }
6290 
6291 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6292 				struct list_head *list, bool at_head)
6293 {
6294 	while (!list_empty(list)) {
6295 		struct request *rq;
6296 
6297 		rq = list_first_entry(list, struct request, queuelist);
6298 		list_del_init(&rq->queuelist);
6299 		bfq_insert_request(hctx, rq, at_head);
6300 	}
6301 }
6302 
6303 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6304 {
6305 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6306 
6307 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6308 				       bfqd->tot_rq_in_driver);
6309 
6310 	if (bfqd->hw_tag == 1)
6311 		return;
6312 
6313 	/*
6314 	 * This sample is valid if the number of outstanding requests
6315 	 * is large enough to allow a queueing behavior.  Note that the
6316 	 * sum is not exact, as it's not taking into account deactivated
6317 	 * requests.
6318 	 */
6319 	if (bfqd->tot_rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6320 		return;
6321 
6322 	/*
6323 	 * If active queue hasn't enough requests and can idle, bfq might not
6324 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6325 	 * case
6326 	 */
6327 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6328 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6329 	    BFQ_HW_QUEUE_THRESHOLD &&
6330 	    bfqd->tot_rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6331 		return;
6332 
6333 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6334 		return;
6335 
6336 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6337 	bfqd->max_rq_in_driver = 0;
6338 	bfqd->hw_tag_samples = 0;
6339 
6340 	bfqd->nonrot_with_queueing =
6341 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6342 }
6343 
6344 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6345 {
6346 	u64 now_ns;
6347 	u32 delta_us;
6348 
6349 	bfq_update_hw_tag(bfqd);
6350 
6351 	bfqd->rq_in_driver[bfqq->actuator_idx]--;
6352 	bfqd->tot_rq_in_driver--;
6353 	bfqq->dispatched--;
6354 
6355 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6356 		/*
6357 		 * Set budget_timeout (which we overload to store the
6358 		 * time at which the queue remains with no backlog and
6359 		 * no outstanding request; used by the weight-raising
6360 		 * mechanism).
6361 		 */
6362 		bfqq->budget_timeout = jiffies;
6363 
6364 		bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
6365 		bfq_weights_tree_remove(bfqq);
6366 	}
6367 
6368 	now_ns = ktime_get_ns();
6369 
6370 	bfqq->ttime.last_end_request = now_ns;
6371 
6372 	/*
6373 	 * Using us instead of ns, to get a reasonable precision in
6374 	 * computing rate in next check.
6375 	 */
6376 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6377 
6378 	/*
6379 	 * If the request took rather long to complete, and, according
6380 	 * to the maximum request size recorded, this completion latency
6381 	 * implies that the request was certainly served at a very low
6382 	 * rate (less than 1M sectors/sec), then the whole observation
6383 	 * interval that lasts up to this time instant cannot be a
6384 	 * valid time interval for computing a new peak rate.  Invoke
6385 	 * bfq_update_rate_reset to have the following three steps
6386 	 * taken:
6387 	 * - close the observation interval at the last (previous)
6388 	 *   request dispatch or completion
6389 	 * - compute rate, if possible, for that observation interval
6390 	 * - reset to zero samples, which will trigger a proper
6391 	 *   re-initialization of the observation interval on next
6392 	 *   dispatch
6393 	 */
6394 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6395 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6396 			1UL<<(BFQ_RATE_SHIFT - 10))
6397 		bfq_update_rate_reset(bfqd, NULL);
6398 	bfqd->last_completion = now_ns;
6399 	/*
6400 	 * Shared queues are likely to receive I/O at a high
6401 	 * rate. This may deceptively let them be considered as wakers
6402 	 * of other queues. But a false waker will unjustly steal
6403 	 * bandwidth to its supposedly woken queue. So considering
6404 	 * also shared queues in the waking mechanism may cause more
6405 	 * control troubles than throughput benefits. Then reset
6406 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6407 	 */
6408 	if (!bfq_bfqq_coop(bfqq))
6409 		bfqd->last_completed_rq_bfqq = bfqq;
6410 	else
6411 		bfqd->last_completed_rq_bfqq = NULL;
6412 
6413 	/*
6414 	 * If we are waiting to discover whether the request pattern
6415 	 * of the task associated with the queue is actually
6416 	 * isochronous, and both requisites for this condition to hold
6417 	 * are now satisfied, then compute soft_rt_next_start (see the
6418 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6419 	 * do not compute soft_rt_next_start if bfqq is in interactive
6420 	 * weight raising (see the comments in bfq_bfqq_expire() for
6421 	 * an explanation). We schedule this delayed update when bfqq
6422 	 * expires, if it still has in-flight requests.
6423 	 */
6424 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6425 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6426 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6427 		bfqq->soft_rt_next_start =
6428 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6429 
6430 	/*
6431 	 * If this is the in-service queue, check if it needs to be expired,
6432 	 * or if we want to idle in case it has no pending requests.
6433 	 */
6434 	if (bfqd->in_service_queue == bfqq) {
6435 		if (bfq_bfqq_must_idle(bfqq)) {
6436 			if (bfqq->dispatched == 0)
6437 				bfq_arm_slice_timer(bfqd);
6438 			/*
6439 			 * If we get here, we do not expire bfqq, even
6440 			 * if bfqq was in budget timeout or had no
6441 			 * more requests (as controlled in the next
6442 			 * conditional instructions). The reason for
6443 			 * not expiring bfqq is as follows.
6444 			 *
6445 			 * Here bfqq->dispatched > 0 holds, but
6446 			 * bfq_bfqq_must_idle() returned true. This
6447 			 * implies that, even if no request arrives
6448 			 * for bfqq before bfqq->dispatched reaches 0,
6449 			 * bfqq will, however, not be expired on the
6450 			 * completion event that causes bfqq->dispatch
6451 			 * to reach zero. In contrast, on this event,
6452 			 * bfqq will start enjoying device idling
6453 			 * (I/O-dispatch plugging).
6454 			 *
6455 			 * But, if we expired bfqq here, bfqq would
6456 			 * not have the chance to enjoy device idling
6457 			 * when bfqq->dispatched finally reaches
6458 			 * zero. This would expose bfqq to violation
6459 			 * of its reserved service guarantees.
6460 			 */
6461 			return;
6462 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6463 			bfq_bfqq_expire(bfqd, bfqq, false,
6464 					BFQQE_BUDGET_TIMEOUT);
6465 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6466 			 (bfqq->dispatched == 0 ||
6467 			  !bfq_better_to_idle(bfqq)))
6468 			bfq_bfqq_expire(bfqd, bfqq, false,
6469 					BFQQE_NO_MORE_REQUESTS);
6470 	}
6471 
6472 	if (!bfqd->tot_rq_in_driver)
6473 		bfq_schedule_dispatch(bfqd);
6474 }
6475 
6476 /*
6477  * The processes associated with bfqq may happen to generate their
6478  * cumulative I/O at a lower rate than the rate at which the device
6479  * could serve the same I/O. This is rather probable, e.g., if only
6480  * one process is associated with bfqq and the device is an SSD. It
6481  * results in bfqq becoming often empty while in service. In this
6482  * respect, if BFQ is allowed to switch to another queue when bfqq
6483  * remains empty, then the device goes on being fed with I/O requests,
6484  * and the throughput is not affected. In contrast, if BFQ is not
6485  * allowed to switch to another queue---because bfqq is sync and
6486  * I/O-dispatch needs to be plugged while bfqq is temporarily
6487  * empty---then, during the service of bfqq, there will be frequent
6488  * "service holes", i.e., time intervals during which bfqq gets empty
6489  * and the device can only consume the I/O already queued in its
6490  * hardware queues. During service holes, the device may even get to
6491  * remaining idle. In the end, during the service of bfqq, the device
6492  * is driven at a lower speed than the one it can reach with the kind
6493  * of I/O flowing through bfqq.
6494  *
6495  * To counter this loss of throughput, BFQ implements a "request
6496  * injection mechanism", which tries to fill the above service holes
6497  * with I/O requests taken from other queues. The hard part in this
6498  * mechanism is finding the right amount of I/O to inject, so as to
6499  * both boost throughput and not break bfqq's bandwidth and latency
6500  * guarantees. In this respect, the mechanism maintains a per-queue
6501  * inject limit, computed as below. While bfqq is empty, the injection
6502  * mechanism dispatches extra I/O requests only until the total number
6503  * of I/O requests in flight---i.e., already dispatched but not yet
6504  * completed---remains lower than this limit.
6505  *
6506  * A first definition comes in handy to introduce the algorithm by
6507  * which the inject limit is computed.  We define as first request for
6508  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6509  * service, and causes bfqq to switch from empty to non-empty. The
6510  * algorithm updates the limit as a function of the effect of
6511  * injection on the service times of only the first requests of
6512  * bfqq. The reason for this restriction is that these are the
6513  * requests whose service time is affected most, because they are the
6514  * first to arrive after injection possibly occurred.
6515  *
6516  * To evaluate the effect of injection, the algorithm measures the
6517  * "total service time" of first requests. We define as total service
6518  * time of an I/O request, the time that elapses since when the
6519  * request is enqueued into bfqq, to when it is completed. This
6520  * quantity allows the whole effect of injection to be measured. It is
6521  * easy to see why. Suppose that some requests of other queues are
6522  * actually injected while bfqq is empty, and that a new request R
6523  * then arrives for bfqq. If the device does start to serve all or
6524  * part of the injected requests during the service hole, then,
6525  * because of this extra service, it may delay the next invocation of
6526  * the dispatch hook of BFQ. Then, even after R gets eventually
6527  * dispatched, the device may delay the actual service of R if it is
6528  * still busy serving the extra requests, or if it decides to serve,
6529  * before R, some extra request still present in its queues. As a
6530  * conclusion, the cumulative extra delay caused by injection can be
6531  * easily evaluated by just comparing the total service time of first
6532  * requests with and without injection.
6533  *
6534  * The limit-update algorithm works as follows. On the arrival of a
6535  * first request of bfqq, the algorithm measures the total time of the
6536  * request only if one of the three cases below holds, and, for each
6537  * case, it updates the limit as described below:
6538  *
6539  * (1) If there is no in-flight request. This gives a baseline for the
6540  *     total service time of the requests of bfqq. If the baseline has
6541  *     not been computed yet, then, after computing it, the limit is
6542  *     set to 1, to start boosting throughput, and to prepare the
6543  *     ground for the next case. If the baseline has already been
6544  *     computed, then it is updated, in case it results to be lower
6545  *     than the previous value.
6546  *
6547  * (2) If the limit is higher than 0 and there are in-flight
6548  *     requests. By comparing the total service time in this case with
6549  *     the above baseline, it is possible to know at which extent the
6550  *     current value of the limit is inflating the total service
6551  *     time. If the inflation is below a certain threshold, then bfqq
6552  *     is assumed to be suffering from no perceivable loss of its
6553  *     service guarantees, and the limit is even tentatively
6554  *     increased. If the inflation is above the threshold, then the
6555  *     limit is decreased. Due to the lack of any hysteresis, this
6556  *     logic makes the limit oscillate even in steady workload
6557  *     conditions. Yet we opted for it, because it is fast in reaching
6558  *     the best value for the limit, as a function of the current I/O
6559  *     workload. To reduce oscillations, this step is disabled for a
6560  *     short time interval after the limit happens to be decreased.
6561  *
6562  * (3) Periodically, after resetting the limit, to make sure that the
6563  *     limit eventually drops in case the workload changes. This is
6564  *     needed because, after the limit has gone safely up for a
6565  *     certain workload, it is impossible to guess whether the
6566  *     baseline total service time may have changed, without measuring
6567  *     it again without injection. A more effective version of this
6568  *     step might be to just sample the baseline, by interrupting
6569  *     injection only once, and then to reset/lower the limit only if
6570  *     the total service time with the current limit does happen to be
6571  *     too large.
6572  *
6573  * More details on each step are provided in the comments on the
6574  * pieces of code that implement these steps: the branch handling the
6575  * transition from empty to non empty in bfq_add_request(), the branch
6576  * handling injection in bfq_select_queue(), and the function
6577  * bfq_choose_bfqq_for_injection(). These comments also explain some
6578  * exceptions, made by the injection mechanism in some special cases.
6579  */
6580 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6581 				    struct bfq_queue *bfqq)
6582 {
6583 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6584 	unsigned int old_limit = bfqq->inject_limit;
6585 
6586 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6587 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6588 
6589 		if (tot_time_ns >= threshold && old_limit > 0) {
6590 			bfqq->inject_limit--;
6591 			bfqq->decrease_time_jif = jiffies;
6592 		} else if (tot_time_ns < threshold &&
6593 			   old_limit <= bfqd->max_rq_in_driver)
6594 			bfqq->inject_limit++;
6595 	}
6596 
6597 	/*
6598 	 * Either we still have to compute the base value for the
6599 	 * total service time, and there seem to be the right
6600 	 * conditions to do it, or we can lower the last base value
6601 	 * computed.
6602 	 *
6603 	 * NOTE: (bfqd->tot_rq_in_driver == 1) means that there is no I/O
6604 	 * request in flight, because this function is in the code
6605 	 * path that handles the completion of a request of bfqq, and,
6606 	 * in particular, this function is executed before
6607 	 * bfqd->tot_rq_in_driver is decremented in such a code path.
6608 	 */
6609 	if ((bfqq->last_serv_time_ns == 0 && bfqd->tot_rq_in_driver == 1) ||
6610 	    tot_time_ns < bfqq->last_serv_time_ns) {
6611 		if (bfqq->last_serv_time_ns == 0) {
6612 			/*
6613 			 * Now we certainly have a base value: make sure we
6614 			 * start trying injection.
6615 			 */
6616 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6617 		}
6618 		bfqq->last_serv_time_ns = tot_time_ns;
6619 	} else if (!bfqd->rqs_injected && bfqd->tot_rq_in_driver == 1)
6620 		/*
6621 		 * No I/O injected and no request still in service in
6622 		 * the drive: these are the exact conditions for
6623 		 * computing the base value of the total service time
6624 		 * for bfqq. So let's update this value, because it is
6625 		 * rather variable. For example, it varies if the size
6626 		 * or the spatial locality of the I/O requests in bfqq
6627 		 * change.
6628 		 */
6629 		bfqq->last_serv_time_ns = tot_time_ns;
6630 
6631 
6632 	/* update complete, not waiting for any request completion any longer */
6633 	bfqd->waited_rq = NULL;
6634 	bfqd->rqs_injected = false;
6635 }
6636 
6637 /*
6638  * Handle either a requeue or a finish for rq. The things to do are
6639  * the same in both cases: all references to rq are to be dropped. In
6640  * particular, rq is considered completed from the point of view of
6641  * the scheduler.
6642  */
6643 static void bfq_finish_requeue_request(struct request *rq)
6644 {
6645 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6646 	struct bfq_data *bfqd;
6647 	unsigned long flags;
6648 
6649 	/*
6650 	 * rq either is not associated with any icq, or is an already
6651 	 * requeued request that has not (yet) been re-inserted into
6652 	 * a bfq_queue.
6653 	 */
6654 	if (!rq->elv.icq || !bfqq)
6655 		return;
6656 
6657 	bfqd = bfqq->bfqd;
6658 
6659 	if (rq->rq_flags & RQF_STARTED)
6660 		bfqg_stats_update_completion(bfqq_group(bfqq),
6661 					     rq->start_time_ns,
6662 					     rq->io_start_time_ns,
6663 					     rq->cmd_flags);
6664 
6665 	spin_lock_irqsave(&bfqd->lock, flags);
6666 	if (likely(rq->rq_flags & RQF_STARTED)) {
6667 		if (rq == bfqd->waited_rq)
6668 			bfq_update_inject_limit(bfqd, bfqq);
6669 
6670 		bfq_completed_request(bfqq, bfqd);
6671 	}
6672 	bfqq_request_freed(bfqq);
6673 	bfq_put_queue(bfqq);
6674 	RQ_BIC(rq)->requests--;
6675 	spin_unlock_irqrestore(&bfqd->lock, flags);
6676 
6677 	/*
6678 	 * Reset private fields. In case of a requeue, this allows
6679 	 * this function to correctly do nothing if it is spuriously
6680 	 * invoked again on this same request (see the check at the
6681 	 * beginning of the function). Probably, a better general
6682 	 * design would be to prevent blk-mq from invoking the requeue
6683 	 * or finish hooks of an elevator, for a request that is not
6684 	 * referred by that elevator.
6685 	 *
6686 	 * Resetting the following fields would break the
6687 	 * request-insertion logic if rq is re-inserted into a bfq
6688 	 * internal queue, without a re-preparation. Here we assume
6689 	 * that re-insertions of requeued requests, without
6690 	 * re-preparation, can happen only for pass_through or at_head
6691 	 * requests (which are not re-inserted into bfq internal
6692 	 * queues).
6693 	 */
6694 	rq->elv.priv[0] = NULL;
6695 	rq->elv.priv[1] = NULL;
6696 }
6697 
6698 static void bfq_finish_request(struct request *rq)
6699 {
6700 	bfq_finish_requeue_request(rq);
6701 
6702 	if (rq->elv.icq) {
6703 		put_io_context(rq->elv.icq->ioc);
6704 		rq->elv.icq = NULL;
6705 	}
6706 }
6707 
6708 /*
6709  * Removes the association between the current task and bfqq, assuming
6710  * that bic points to the bfq iocontext of the task.
6711  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6712  * was the last process referring to that bfqq.
6713  */
6714 static struct bfq_queue *
6715 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6716 {
6717 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6718 
6719 	if (bfqq_process_refs(bfqq) == 1) {
6720 		bfqq->pid = current->pid;
6721 		bfq_clear_bfqq_coop(bfqq);
6722 		bfq_clear_bfqq_split_coop(bfqq);
6723 		return bfqq;
6724 	}
6725 
6726 	bic_set_bfqq(bic, NULL, true, bfqq->actuator_idx);
6727 
6728 	bfq_put_cooperator(bfqq);
6729 
6730 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6731 	return NULL;
6732 }
6733 
6734 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6735 						   struct bfq_io_cq *bic,
6736 						   struct bio *bio,
6737 						   bool split, bool is_sync,
6738 						   bool *new_queue)
6739 {
6740 	unsigned int act_idx = bfq_actuator_index(bfqd, bio);
6741 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, act_idx);
6742 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[act_idx];
6743 
6744 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6745 		return bfqq;
6746 
6747 	if (new_queue)
6748 		*new_queue = true;
6749 
6750 	if (bfqq)
6751 		bfq_put_queue(bfqq);
6752 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6753 
6754 	bic_set_bfqq(bic, bfqq, is_sync, act_idx);
6755 	if (split && is_sync) {
6756 		if ((bfqq_data->was_in_burst_list && bfqd->large_burst) ||
6757 		    bfqq_data->saved_in_large_burst)
6758 			bfq_mark_bfqq_in_large_burst(bfqq);
6759 		else {
6760 			bfq_clear_bfqq_in_large_burst(bfqq);
6761 			if (bfqq_data->was_in_burst_list)
6762 				/*
6763 				 * If bfqq was in the current
6764 				 * burst list before being
6765 				 * merged, then we have to add
6766 				 * it back. And we do not need
6767 				 * to increase burst_size, as
6768 				 * we did not decrement
6769 				 * burst_size when we removed
6770 				 * bfqq from the burst list as
6771 				 * a consequence of a merge
6772 				 * (see comments in
6773 				 * bfq_put_queue). In this
6774 				 * respect, it would be rather
6775 				 * costly to know whether the
6776 				 * current burst list is still
6777 				 * the same burst list from
6778 				 * which bfqq was removed on
6779 				 * the merge. To avoid this
6780 				 * cost, if bfqq was in a
6781 				 * burst list, then we add
6782 				 * bfqq to the current burst
6783 				 * list without any further
6784 				 * check. This can cause
6785 				 * inappropriate insertions,
6786 				 * but rarely enough to not
6787 				 * harm the detection of large
6788 				 * bursts significantly.
6789 				 */
6790 				hlist_add_head(&bfqq->burst_list_node,
6791 					       &bfqd->burst_list);
6792 		}
6793 		bfqq->split_time = jiffies;
6794 	}
6795 
6796 	return bfqq;
6797 }
6798 
6799 /*
6800  * Only reset private fields. The actual request preparation will be
6801  * performed by bfq_init_rq, when rq is either inserted or merged. See
6802  * comments on bfq_init_rq for the reason behind this delayed
6803  * preparation.
6804  */
6805 static void bfq_prepare_request(struct request *rq)
6806 {
6807 	rq->elv.icq = ioc_find_get_icq(rq->q);
6808 
6809 	/*
6810 	 * Regardless of whether we have an icq attached, we have to
6811 	 * clear the scheduler pointers, as they might point to
6812 	 * previously allocated bic/bfqq structs.
6813 	 */
6814 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6815 }
6816 
6817 /*
6818  * If needed, init rq, allocate bfq data structures associated with
6819  * rq, and increment reference counters in the destination bfq_queue
6820  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6821  * not associated with any bfq_queue.
6822  *
6823  * This function is invoked by the functions that perform rq insertion
6824  * or merging. One may have expected the above preparation operations
6825  * to be performed in bfq_prepare_request, and not delayed to when rq
6826  * is inserted or merged. The rationale behind this delayed
6827  * preparation is that, after the prepare_request hook is invoked for
6828  * rq, rq may still be transformed into a request with no icq, i.e., a
6829  * request not associated with any queue. No bfq hook is invoked to
6830  * signal this transformation. As a consequence, should these
6831  * preparation operations be performed when the prepare_request hook
6832  * is invoked, and should rq be transformed one moment later, bfq
6833  * would end up in an inconsistent state, because it would have
6834  * incremented some queue counters for an rq destined to
6835  * transformation, without any chance to correctly lower these
6836  * counters back. In contrast, no transformation can still happen for
6837  * rq after rq has been inserted or merged. So, it is safe to execute
6838  * these preparation operations when rq is finally inserted or merged.
6839  */
6840 static struct bfq_queue *bfq_init_rq(struct request *rq)
6841 {
6842 	struct request_queue *q = rq->q;
6843 	struct bio *bio = rq->bio;
6844 	struct bfq_data *bfqd = q->elevator->elevator_data;
6845 	struct bfq_io_cq *bic;
6846 	const int is_sync = rq_is_sync(rq);
6847 	struct bfq_queue *bfqq;
6848 	bool new_queue = false;
6849 	bool bfqq_already_existing = false, split = false;
6850 	unsigned int a_idx = bfq_actuator_index(bfqd, bio);
6851 
6852 	if (unlikely(!rq->elv.icq))
6853 		return NULL;
6854 
6855 	/*
6856 	 * Assuming that RQ_BFQQ(rq) is set only if everything is set
6857 	 * for this rq. This holds true, because this function is
6858 	 * invoked only for insertion or merging, and, after such
6859 	 * events, a request cannot be manipulated any longer before
6860 	 * being removed from bfq.
6861 	 */
6862 	if (RQ_BFQQ(rq))
6863 		return RQ_BFQQ(rq);
6864 
6865 	bic = icq_to_bic(rq->elv.icq);
6866 
6867 	bfq_check_ioprio_change(bic, bio);
6868 
6869 	bfq_bic_update_cgroup(bic, bio);
6870 
6871 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6872 					 &new_queue);
6873 
6874 	if (likely(!new_queue)) {
6875 		/* If the queue was seeky for too long, break it apart. */
6876 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6877 			!bic->bfqq_data[a_idx].stably_merged) {
6878 			struct bfq_queue *old_bfqq = bfqq;
6879 
6880 			/* Update bic before losing reference to bfqq */
6881 			if (bfq_bfqq_in_large_burst(bfqq))
6882 				bic->bfqq_data[a_idx].saved_in_large_burst =
6883 					true;
6884 
6885 			bfqq = bfq_split_bfqq(bic, bfqq);
6886 			split = true;
6887 
6888 			if (!bfqq) {
6889 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6890 								 true, is_sync,
6891 								 NULL);
6892 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6893 					bfqq_already_existing = true;
6894 			} else
6895 				bfqq_already_existing = true;
6896 
6897 			if (!bfqq_already_existing) {
6898 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6899 				bfqq->tentative_waker_bfqq = NULL;
6900 
6901 				/*
6902 				 * If the waker queue disappears, then
6903 				 * new_bfqq->waker_bfqq must be
6904 				 * reset. So insert new_bfqq into the
6905 				 * woken_list of the waker. See
6906 				 * bfq_check_waker for details.
6907 				 */
6908 				if (bfqq->waker_bfqq)
6909 					hlist_add_head(&bfqq->woken_list_node,
6910 						       &bfqq->waker_bfqq->woken_list);
6911 			}
6912 		}
6913 	}
6914 
6915 	bfqq_request_allocated(bfqq);
6916 	bfqq->ref++;
6917 	bic->requests++;
6918 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6919 		     rq, bfqq, bfqq->ref);
6920 
6921 	rq->elv.priv[0] = bic;
6922 	rq->elv.priv[1] = bfqq;
6923 
6924 	/*
6925 	 * If a bfq_queue has only one process reference, it is owned
6926 	 * by only this bic: we can then set bfqq->bic = bic. in
6927 	 * addition, if the queue has also just been split, we have to
6928 	 * resume its state.
6929 	 */
6930 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6931 		bfqq->bic = bic;
6932 		if (split) {
6933 			/*
6934 			 * The queue has just been split from a shared
6935 			 * queue: restore the idle window and the
6936 			 * possible weight raising period.
6937 			 */
6938 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6939 					      bfqq_already_existing);
6940 		}
6941 	}
6942 
6943 	/*
6944 	 * Consider bfqq as possibly belonging to a burst of newly
6945 	 * created queues only if:
6946 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6947 	 * or
6948 	 * 2) There is no other active queue. In fact, if, in
6949 	 *    contrast, there are active queues not belonging to the
6950 	 *    possible burst bfqq may belong to, then there is no gain
6951 	 *    in considering bfqq as belonging to a burst, and
6952 	 *    therefore in not weight-raising bfqq. See comments on
6953 	 *    bfq_handle_burst().
6954 	 *
6955 	 * This filtering also helps eliminating false positives,
6956 	 * occurring when bfqq does not belong to an actual large
6957 	 * burst, but some background task (e.g., a service) happens
6958 	 * to trigger the creation of new queues very close to when
6959 	 * bfqq and its possible companion queues are created. See
6960 	 * comments on bfq_handle_burst() for further details also on
6961 	 * this issue.
6962 	 */
6963 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6964 		     (bfqd->burst_size > 0 ||
6965 		      bfq_tot_busy_queues(bfqd) == 0)))
6966 		bfq_handle_burst(bfqd, bfqq);
6967 
6968 	return bfqq;
6969 }
6970 
6971 static void
6972 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6973 {
6974 	enum bfqq_expiration reason;
6975 	unsigned long flags;
6976 
6977 	spin_lock_irqsave(&bfqd->lock, flags);
6978 
6979 	/*
6980 	 * Considering that bfqq may be in race, we should firstly check
6981 	 * whether bfqq is in service before doing something on it. If
6982 	 * the bfqq in race is not in service, it has already been expired
6983 	 * through __bfq_bfqq_expire func and its wait_request flags has
6984 	 * been cleared in __bfq_bfqd_reset_in_service func.
6985 	 */
6986 	if (bfqq != bfqd->in_service_queue) {
6987 		spin_unlock_irqrestore(&bfqd->lock, flags);
6988 		return;
6989 	}
6990 
6991 	bfq_clear_bfqq_wait_request(bfqq);
6992 
6993 	if (bfq_bfqq_budget_timeout(bfqq))
6994 		/*
6995 		 * Also here the queue can be safely expired
6996 		 * for budget timeout without wasting
6997 		 * guarantees
6998 		 */
6999 		reason = BFQQE_BUDGET_TIMEOUT;
7000 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
7001 		/*
7002 		 * The queue may not be empty upon timer expiration,
7003 		 * because we may not disable the timer when the
7004 		 * first request of the in-service queue arrives
7005 		 * during disk idling.
7006 		 */
7007 		reason = BFQQE_TOO_IDLE;
7008 	else
7009 		goto schedule_dispatch;
7010 
7011 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
7012 
7013 schedule_dispatch:
7014 	bfq_schedule_dispatch(bfqd);
7015 	spin_unlock_irqrestore(&bfqd->lock, flags);
7016 }
7017 
7018 /*
7019  * Handler of the expiration of the timer running if the in-service queue
7020  * is idling inside its time slice.
7021  */
7022 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
7023 {
7024 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
7025 					     idle_slice_timer);
7026 	struct bfq_queue *bfqq = bfqd->in_service_queue;
7027 
7028 	/*
7029 	 * Theoretical race here: the in-service queue can be NULL or
7030 	 * different from the queue that was idling if a new request
7031 	 * arrives for the current queue and there is a full dispatch
7032 	 * cycle that changes the in-service queue.  This can hardly
7033 	 * happen, but in the worst case we just expire a queue too
7034 	 * early.
7035 	 */
7036 	if (bfqq)
7037 		bfq_idle_slice_timer_body(bfqd, bfqq);
7038 
7039 	return HRTIMER_NORESTART;
7040 }
7041 
7042 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
7043 				 struct bfq_queue **bfqq_ptr)
7044 {
7045 	struct bfq_queue *bfqq = *bfqq_ptr;
7046 
7047 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
7048 	if (bfqq) {
7049 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
7050 
7051 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
7052 			     bfqq, bfqq->ref);
7053 		bfq_put_queue(bfqq);
7054 		*bfqq_ptr = NULL;
7055 	}
7056 }
7057 
7058 /*
7059  * Release all the bfqg references to its async queues.  If we are
7060  * deallocating the group these queues may still contain requests, so
7061  * we reparent them to the root cgroup (i.e., the only one that will
7062  * exist for sure until all the requests on a device are gone).
7063  */
7064 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
7065 {
7066 	int i, j, k;
7067 
7068 	for (k = 0; k < bfqd->num_actuators; k++) {
7069 		for (i = 0; i < 2; i++)
7070 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
7071 				__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j][k]);
7072 
7073 		__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq[k]);
7074 	}
7075 }
7076 
7077 /*
7078  * See the comments on bfq_limit_depth for the purpose of
7079  * the depths set in the function. Return minimum shallow depth we'll use.
7080  */
7081 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
7082 {
7083 	unsigned int depth = 1U << bt->sb.shift;
7084 
7085 	bfqd->full_depth_shift = bt->sb.shift;
7086 	/*
7087 	 * In-word depths if no bfq_queue is being weight-raised:
7088 	 * leaving 25% of tags only for sync reads.
7089 	 *
7090 	 * In next formulas, right-shift the value
7091 	 * (1U<<bt->sb.shift), instead of computing directly
7092 	 * (1U<<(bt->sb.shift - something)), to be robust against
7093 	 * any possible value of bt->sb.shift, without having to
7094 	 * limit 'something'.
7095 	 */
7096 	/* no more than 50% of tags for async I/O */
7097 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
7098 	/*
7099 	 * no more than 75% of tags for sync writes (25% extra tags
7100 	 * w.r.t. async I/O, to prevent async I/O from starving sync
7101 	 * writes)
7102 	 */
7103 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
7104 
7105 	/*
7106 	 * In-word depths in case some bfq_queue is being weight-
7107 	 * raised: leaving ~63% of tags for sync reads. This is the
7108 	 * highest percentage for which, in our tests, application
7109 	 * start-up times didn't suffer from any regression due to tag
7110 	 * shortage.
7111 	 */
7112 	/* no more than ~18% of tags for async I/O */
7113 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
7114 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
7115 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
7116 }
7117 
7118 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
7119 {
7120 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7121 	struct blk_mq_tags *tags = hctx->sched_tags;
7122 
7123 	bfq_update_depths(bfqd, &tags->bitmap_tags);
7124 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
7125 }
7126 
7127 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7128 {
7129 	bfq_depth_updated(hctx);
7130 	return 0;
7131 }
7132 
7133 static void bfq_exit_queue(struct elevator_queue *e)
7134 {
7135 	struct bfq_data *bfqd = e->elevator_data;
7136 	struct bfq_queue *bfqq, *n;
7137 
7138 	hrtimer_cancel(&bfqd->idle_slice_timer);
7139 
7140 	spin_lock_irq(&bfqd->lock);
7141 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7142 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7143 	spin_unlock_irq(&bfqd->lock);
7144 
7145 	hrtimer_cancel(&bfqd->idle_slice_timer);
7146 
7147 	/* release oom-queue reference to root group */
7148 	bfqg_and_blkg_put(bfqd->root_group);
7149 
7150 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7151 	blkcg_deactivate_policy(bfqd->queue->disk, &blkcg_policy_bfq);
7152 #else
7153 	spin_lock_irq(&bfqd->lock);
7154 	bfq_put_async_queues(bfqd, bfqd->root_group);
7155 	kfree(bfqd->root_group);
7156 	spin_unlock_irq(&bfqd->lock);
7157 #endif
7158 
7159 	blk_stat_disable_accounting(bfqd->queue);
7160 	clear_bit(ELEVATOR_FLAG_DISABLE_WBT, &e->flags);
7161 	wbt_enable_default(bfqd->queue->disk);
7162 
7163 	kfree(bfqd);
7164 }
7165 
7166 static void bfq_init_root_group(struct bfq_group *root_group,
7167 				struct bfq_data *bfqd)
7168 {
7169 	int i;
7170 
7171 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7172 	root_group->entity.parent = NULL;
7173 	root_group->my_entity = NULL;
7174 	root_group->bfqd = bfqd;
7175 #endif
7176 	root_group->rq_pos_tree = RB_ROOT;
7177 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7178 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7179 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7180 }
7181 
7182 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7183 {
7184 	struct bfq_data *bfqd;
7185 	struct elevator_queue *eq;
7186 	unsigned int i;
7187 	struct blk_independent_access_ranges *ia_ranges = q->disk->ia_ranges;
7188 
7189 	eq = elevator_alloc(q, e);
7190 	if (!eq)
7191 		return -ENOMEM;
7192 
7193 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7194 	if (!bfqd) {
7195 		kobject_put(&eq->kobj);
7196 		return -ENOMEM;
7197 	}
7198 	eq->elevator_data = bfqd;
7199 
7200 	spin_lock_irq(&q->queue_lock);
7201 	q->elevator = eq;
7202 	spin_unlock_irq(&q->queue_lock);
7203 
7204 	/*
7205 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7206 	 * Grab a permanent reference to it, so that the normal code flow
7207 	 * will not attempt to free it.
7208 	 * Set zero as actuator index: we will pretend that
7209 	 * all I/O requests are for the same actuator.
7210 	 */
7211 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0, 0);
7212 	bfqd->oom_bfqq.ref++;
7213 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7214 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7215 	bfqd->oom_bfqq.entity.new_weight =
7216 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7217 
7218 	/* oom_bfqq does not participate to bursts */
7219 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7220 
7221 	/*
7222 	 * Trigger weight initialization, according to ioprio, at the
7223 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7224 	 * class won't be changed any more.
7225 	 */
7226 	bfqd->oom_bfqq.entity.prio_changed = 1;
7227 
7228 	bfqd->queue = q;
7229 
7230 	bfqd->num_actuators = 1;
7231 	/*
7232 	 * If the disk supports multiple actuators, copy independent
7233 	 * access ranges from the request queue structure.
7234 	 */
7235 	spin_lock_irq(&q->queue_lock);
7236 	if (ia_ranges) {
7237 		/*
7238 		 * Check if the disk ia_ranges size exceeds the current bfq
7239 		 * actuator limit.
7240 		 */
7241 		if (ia_ranges->nr_ia_ranges > BFQ_MAX_ACTUATORS) {
7242 			pr_crit("nr_ia_ranges higher than act limit: iars=%d, max=%d.\n",
7243 				ia_ranges->nr_ia_ranges, BFQ_MAX_ACTUATORS);
7244 			pr_crit("Falling back to single actuator mode.\n");
7245 		} else {
7246 			bfqd->num_actuators = ia_ranges->nr_ia_ranges;
7247 
7248 			for (i = 0; i < bfqd->num_actuators; i++) {
7249 				bfqd->sector[i] = ia_ranges->ia_range[i].sector;
7250 				bfqd->nr_sectors[i] =
7251 					ia_ranges->ia_range[i].nr_sectors;
7252 			}
7253 		}
7254 	}
7255 
7256 	/* Otherwise use single-actuator dev info */
7257 	if (bfqd->num_actuators == 1) {
7258 		bfqd->sector[0] = 0;
7259 		bfqd->nr_sectors[0] = get_capacity(q->disk);
7260 	}
7261 	spin_unlock_irq(&q->queue_lock);
7262 
7263 	INIT_LIST_HEAD(&bfqd->dispatch);
7264 
7265 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7266 		     HRTIMER_MODE_REL);
7267 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7268 
7269 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7270 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7271 	bfqd->num_groups_with_pending_reqs = 0;
7272 #endif
7273 
7274 	INIT_LIST_HEAD(&bfqd->active_list[0]);
7275 	INIT_LIST_HEAD(&bfqd->active_list[1]);
7276 	INIT_LIST_HEAD(&bfqd->idle_list);
7277 	INIT_HLIST_HEAD(&bfqd->burst_list);
7278 
7279 	bfqd->hw_tag = -1;
7280 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7281 
7282 	bfqd->bfq_max_budget = bfq_default_max_budget;
7283 
7284 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7285 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7286 	bfqd->bfq_back_max = bfq_back_max;
7287 	bfqd->bfq_back_penalty = bfq_back_penalty;
7288 	bfqd->bfq_slice_idle = bfq_slice_idle;
7289 	bfqd->bfq_timeout = bfq_timeout;
7290 
7291 	bfqd->bfq_large_burst_thresh = 8;
7292 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7293 
7294 	bfqd->low_latency = true;
7295 
7296 	/*
7297 	 * Trade-off between responsiveness and fairness.
7298 	 */
7299 	bfqd->bfq_wr_coeff = 30;
7300 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7301 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7302 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7303 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7304 					      * Approximate rate required
7305 					      * to playback or record a
7306 					      * high-definition compressed
7307 					      * video.
7308 					      */
7309 	bfqd->wr_busy_queues = 0;
7310 
7311 	/*
7312 	 * Begin by assuming, optimistically, that the device peak
7313 	 * rate is equal to 2/3 of the highest reference rate.
7314 	 */
7315 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7316 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7317 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7318 
7319 	/* see comments on the definition of next field inside bfq_data */
7320 	bfqd->actuator_load_threshold = 4;
7321 
7322 	spin_lock_init(&bfqd->lock);
7323 
7324 	/*
7325 	 * The invocation of the next bfq_create_group_hierarchy
7326 	 * function is the head of a chain of function calls
7327 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7328 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7329 	 * has_work hook function. For this reason,
7330 	 * bfq_create_group_hierarchy is invoked only after all
7331 	 * scheduler data has been initialized, apart from the fields
7332 	 * that can be initialized only after invoking
7333 	 * bfq_create_group_hierarchy. This, in particular, enables
7334 	 * has_work to correctly return false. Of course, to avoid
7335 	 * other inconsistencies, the blk-mq stack must then refrain
7336 	 * from invoking further scheduler hooks before this init
7337 	 * function is finished.
7338 	 */
7339 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7340 	if (!bfqd->root_group)
7341 		goto out_free;
7342 	bfq_init_root_group(bfqd->root_group, bfqd);
7343 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7344 
7345 	/* We dispatch from request queue wide instead of hw queue */
7346 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7347 
7348 	set_bit(ELEVATOR_FLAG_DISABLE_WBT, &eq->flags);
7349 	wbt_disable_default(q->disk);
7350 	blk_stat_enable_accounting(q);
7351 
7352 	return 0;
7353 
7354 out_free:
7355 	kfree(bfqd);
7356 	kobject_put(&eq->kobj);
7357 	return -ENOMEM;
7358 }
7359 
7360 static void bfq_slab_kill(void)
7361 {
7362 	kmem_cache_destroy(bfq_pool);
7363 }
7364 
7365 static int __init bfq_slab_setup(void)
7366 {
7367 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7368 	if (!bfq_pool)
7369 		return -ENOMEM;
7370 	return 0;
7371 }
7372 
7373 static ssize_t bfq_var_show(unsigned int var, char *page)
7374 {
7375 	return sprintf(page, "%u\n", var);
7376 }
7377 
7378 static int bfq_var_store(unsigned long *var, const char *page)
7379 {
7380 	unsigned long new_val;
7381 	int ret = kstrtoul(page, 10, &new_val);
7382 
7383 	if (ret)
7384 		return ret;
7385 	*var = new_val;
7386 	return 0;
7387 }
7388 
7389 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7390 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7391 {									\
7392 	struct bfq_data *bfqd = e->elevator_data;			\
7393 	u64 __data = __VAR;						\
7394 	if (__CONV == 1)						\
7395 		__data = jiffies_to_msecs(__data);			\
7396 	else if (__CONV == 2)						\
7397 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7398 	return bfq_var_show(__data, (page));				\
7399 }
7400 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7401 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7402 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7403 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7404 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7405 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7406 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7407 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7408 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7409 #undef SHOW_FUNCTION
7410 
7411 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7412 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7413 {									\
7414 	struct bfq_data *bfqd = e->elevator_data;			\
7415 	u64 __data = __VAR;						\
7416 	__data = div_u64(__data, NSEC_PER_USEC);			\
7417 	return bfq_var_show(__data, (page));				\
7418 }
7419 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7420 #undef USEC_SHOW_FUNCTION
7421 
7422 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7423 static ssize_t								\
7424 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7425 {									\
7426 	struct bfq_data *bfqd = e->elevator_data;			\
7427 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7428 	int ret;							\
7429 									\
7430 	ret = bfq_var_store(&__data, (page));				\
7431 	if (ret)							\
7432 		return ret;						\
7433 	if (__data < __min)						\
7434 		__data = __min;						\
7435 	else if (__data > __max)					\
7436 		__data = __max;						\
7437 	if (__CONV == 1)						\
7438 		*(__PTR) = msecs_to_jiffies(__data);			\
7439 	else if (__CONV == 2)						\
7440 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7441 	else								\
7442 		*(__PTR) = __data;					\
7443 	return count;							\
7444 }
7445 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7446 		INT_MAX, 2);
7447 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7448 		INT_MAX, 2);
7449 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7450 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7451 		INT_MAX, 0);
7452 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7453 #undef STORE_FUNCTION
7454 
7455 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7456 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7457 {									\
7458 	struct bfq_data *bfqd = e->elevator_data;			\
7459 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7460 	int ret;							\
7461 									\
7462 	ret = bfq_var_store(&__data, (page));				\
7463 	if (ret)							\
7464 		return ret;						\
7465 	if (__data < __min)						\
7466 		__data = __min;						\
7467 	else if (__data > __max)					\
7468 		__data = __max;						\
7469 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7470 	return count;							\
7471 }
7472 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7473 		    UINT_MAX);
7474 #undef USEC_STORE_FUNCTION
7475 
7476 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7477 				    const char *page, size_t count)
7478 {
7479 	struct bfq_data *bfqd = e->elevator_data;
7480 	unsigned long __data;
7481 	int ret;
7482 
7483 	ret = bfq_var_store(&__data, (page));
7484 	if (ret)
7485 		return ret;
7486 
7487 	if (__data == 0)
7488 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7489 	else {
7490 		if (__data > INT_MAX)
7491 			__data = INT_MAX;
7492 		bfqd->bfq_max_budget = __data;
7493 	}
7494 
7495 	bfqd->bfq_user_max_budget = __data;
7496 
7497 	return count;
7498 }
7499 
7500 /*
7501  * Leaving this name to preserve name compatibility with cfq
7502  * parameters, but this timeout is used for both sync and async.
7503  */
7504 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7505 				      const char *page, size_t count)
7506 {
7507 	struct bfq_data *bfqd = e->elevator_data;
7508 	unsigned long __data;
7509 	int ret;
7510 
7511 	ret = bfq_var_store(&__data, (page));
7512 	if (ret)
7513 		return ret;
7514 
7515 	if (__data < 1)
7516 		__data = 1;
7517 	else if (__data > INT_MAX)
7518 		__data = INT_MAX;
7519 
7520 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7521 	if (bfqd->bfq_user_max_budget == 0)
7522 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7523 
7524 	return count;
7525 }
7526 
7527 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7528 				     const char *page, size_t count)
7529 {
7530 	struct bfq_data *bfqd = e->elevator_data;
7531 	unsigned long __data;
7532 	int ret;
7533 
7534 	ret = bfq_var_store(&__data, (page));
7535 	if (ret)
7536 		return ret;
7537 
7538 	if (__data > 1)
7539 		__data = 1;
7540 	if (!bfqd->strict_guarantees && __data == 1
7541 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7542 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7543 
7544 	bfqd->strict_guarantees = __data;
7545 
7546 	return count;
7547 }
7548 
7549 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7550 				     const char *page, size_t count)
7551 {
7552 	struct bfq_data *bfqd = e->elevator_data;
7553 	unsigned long __data;
7554 	int ret;
7555 
7556 	ret = bfq_var_store(&__data, (page));
7557 	if (ret)
7558 		return ret;
7559 
7560 	if (__data > 1)
7561 		__data = 1;
7562 	if (__data == 0 && bfqd->low_latency != 0)
7563 		bfq_end_wr(bfqd);
7564 	bfqd->low_latency = __data;
7565 
7566 	return count;
7567 }
7568 
7569 #define BFQ_ATTR(name) \
7570 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7571 
7572 static struct elv_fs_entry bfq_attrs[] = {
7573 	BFQ_ATTR(fifo_expire_sync),
7574 	BFQ_ATTR(fifo_expire_async),
7575 	BFQ_ATTR(back_seek_max),
7576 	BFQ_ATTR(back_seek_penalty),
7577 	BFQ_ATTR(slice_idle),
7578 	BFQ_ATTR(slice_idle_us),
7579 	BFQ_ATTR(max_budget),
7580 	BFQ_ATTR(timeout_sync),
7581 	BFQ_ATTR(strict_guarantees),
7582 	BFQ_ATTR(low_latency),
7583 	__ATTR_NULL
7584 };
7585 
7586 static struct elevator_type iosched_bfq_mq = {
7587 	.ops = {
7588 		.limit_depth		= bfq_limit_depth,
7589 		.prepare_request	= bfq_prepare_request,
7590 		.requeue_request        = bfq_finish_requeue_request,
7591 		.finish_request		= bfq_finish_request,
7592 		.exit_icq		= bfq_exit_icq,
7593 		.insert_requests	= bfq_insert_requests,
7594 		.dispatch_request	= bfq_dispatch_request,
7595 		.next_request		= elv_rb_latter_request,
7596 		.former_request		= elv_rb_former_request,
7597 		.allow_merge		= bfq_allow_bio_merge,
7598 		.bio_merge		= bfq_bio_merge,
7599 		.request_merge		= bfq_request_merge,
7600 		.requests_merged	= bfq_requests_merged,
7601 		.request_merged		= bfq_request_merged,
7602 		.has_work		= bfq_has_work,
7603 		.depth_updated		= bfq_depth_updated,
7604 		.init_hctx		= bfq_init_hctx,
7605 		.init_sched		= bfq_init_queue,
7606 		.exit_sched		= bfq_exit_queue,
7607 	},
7608 
7609 	.icq_size =		sizeof(struct bfq_io_cq),
7610 	.icq_align =		__alignof__(struct bfq_io_cq),
7611 	.elevator_attrs =	bfq_attrs,
7612 	.elevator_name =	"bfq",
7613 	.elevator_owner =	THIS_MODULE,
7614 };
7615 MODULE_ALIAS("bfq-iosched");
7616 
7617 static int __init bfq_init(void)
7618 {
7619 	int ret;
7620 
7621 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7622 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7623 	if (ret)
7624 		return ret;
7625 #endif
7626 
7627 	ret = -ENOMEM;
7628 	if (bfq_slab_setup())
7629 		goto err_pol_unreg;
7630 
7631 	/*
7632 	 * Times to load large popular applications for the typical
7633 	 * systems installed on the reference devices (see the
7634 	 * comments before the definition of the next
7635 	 * array). Actually, we use slightly lower values, as the
7636 	 * estimated peak rate tends to be smaller than the actual
7637 	 * peak rate.  The reason for this last fact is that estimates
7638 	 * are computed over much shorter time intervals than the long
7639 	 * intervals typically used for benchmarking. Why? First, to
7640 	 * adapt more quickly to variations. Second, because an I/O
7641 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7642 	 * be run for a long time.
7643 	 */
7644 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7645 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7646 
7647 	ret = elv_register(&iosched_bfq_mq);
7648 	if (ret)
7649 		goto slab_kill;
7650 
7651 	return 0;
7652 
7653 slab_kill:
7654 	bfq_slab_kill();
7655 err_pol_unreg:
7656 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7657 	blkcg_policy_unregister(&blkcg_policy_bfq);
7658 #endif
7659 	return ret;
7660 }
7661 
7662 static void __exit bfq_exit(void)
7663 {
7664 	elv_unregister(&iosched_bfq_mq);
7665 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7666 	blkcg_policy_unregister(&blkcg_policy_bfq);
7667 #endif
7668 	bfq_slab_kill();
7669 }
7670 
7671 module_init(bfq_init);
7672 module_exit(bfq_exit);
7673 
7674 MODULE_AUTHOR("Paolo Valente");
7675 MODULE_LICENSE("GPL");
7676 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7677