1 /* 2 * Budget Fair Queueing (BFQ) I/O scheduler. 3 * 4 * Based on ideas and code from CFQ: 5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 6 * 7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 8 * Paolo Valente <paolo.valente@unimore.it> 9 * 10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 11 * Arianna Avanzini <avanzini@google.com> 12 * 13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License as 17 * published by the Free Software Foundation; either version 2 of the 18 * License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * BFQ is a proportional-share I/O scheduler, with some extra 26 * low-latency capabilities. BFQ also supports full hierarchical 27 * scheduling through cgroups. Next paragraphs provide an introduction 28 * on BFQ inner workings. Details on BFQ benefits, usage and 29 * limitations can be found in Documentation/block/bfq-iosched.txt. 30 * 31 * BFQ is a proportional-share storage-I/O scheduling algorithm based 32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns 33 * budgets, measured in number of sectors, to processes instead of 34 * time slices. The device is not granted to the in-service process 35 * for a given time slice, but until it has exhausted its assigned 36 * budget. This change from the time to the service domain enables BFQ 37 * to distribute the device throughput among processes as desired, 38 * without any distortion due to throughput fluctuations, or to device 39 * internal queueing. BFQ uses an ad hoc internal scheduler, called 40 * B-WF2Q+, to schedule processes according to their budgets. More 41 * precisely, BFQ schedules queues associated with processes. Each 42 * process/queue is assigned a user-configurable weight, and B-WF2Q+ 43 * guarantees that each queue receives a fraction of the throughput 44 * proportional to its weight. Thanks to the accurate policy of 45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 46 * processes issuing sequential requests (to boost the throughput), 47 * and yet guarantee a low latency to interactive and soft real-time 48 * applications. 49 * 50 * In particular, to provide these low-latency guarantees, BFQ 51 * explicitly privileges the I/O of two classes of time-sensitive 52 * applications: interactive and soft real-time. This feature enables 53 * BFQ to provide applications in these classes with a very low 54 * latency. Finally, BFQ also features additional heuristics for 55 * preserving both a low latency and a high throughput on NCQ-capable, 56 * rotational or flash-based devices, and to get the job done quickly 57 * for applications consisting in many I/O-bound processes. 58 * 59 * BFQ is described in [1], where also a reference to the initial, more 60 * theoretical paper on BFQ can be found. The interested reader can find 61 * in the latter paper full details on the main algorithm, as well as 62 * formulas of the guarantees and formal proofs of all the properties. 63 * With respect to the version of BFQ presented in these papers, this 64 * implementation adds a few more heuristics, such as the one that 65 * guarantees a low latency to soft real-time applications, and a 66 * hierarchical extension based on H-WF2Q+. 67 * 68 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 69 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 70 * with O(log N) complexity derives from the one introduced with EEVDF 71 * in [3]. 72 * 73 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 74 * Scheduler", Proceedings of the First Workshop on Mobile System 75 * Technologies (MST-2015), May 2015. 76 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 77 * 78 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 79 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 80 * Oct 1997. 81 * 82 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 83 * 84 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 85 * First: A Flexible and Accurate Mechanism for Proportional Share 86 * Resource Allocation", technical report. 87 * 88 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 89 */ 90 #include <linux/module.h> 91 #include <linux/slab.h> 92 #include <linux/blkdev.h> 93 #include <linux/cgroup.h> 94 #include <linux/elevator.h> 95 #include <linux/ktime.h> 96 #include <linux/rbtree.h> 97 #include <linux/ioprio.h> 98 #include <linux/sbitmap.h> 99 #include <linux/delay.h> 100 101 #include "blk.h" 102 #include "blk-mq.h" 103 #include "blk-mq-tag.h" 104 #include "blk-mq-sched.h" 105 #include "bfq-iosched.h" 106 107 #define BFQ_BFQQ_FNS(name) \ 108 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 109 { \ 110 __set_bit(BFQQF_##name, &(bfqq)->flags); \ 111 } \ 112 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 113 { \ 114 __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 115 } \ 116 int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 117 { \ 118 return test_bit(BFQQF_##name, &(bfqq)->flags); \ 119 } 120 121 BFQ_BFQQ_FNS(just_created); 122 BFQ_BFQQ_FNS(busy); 123 BFQ_BFQQ_FNS(wait_request); 124 BFQ_BFQQ_FNS(non_blocking_wait_rq); 125 BFQ_BFQQ_FNS(fifo_expire); 126 BFQ_BFQQ_FNS(idle_window); 127 BFQ_BFQQ_FNS(sync); 128 BFQ_BFQQ_FNS(IO_bound); 129 BFQ_BFQQ_FNS(in_large_burst); 130 BFQ_BFQQ_FNS(coop); 131 BFQ_BFQQ_FNS(split_coop); 132 BFQ_BFQQ_FNS(softrt_update); 133 #undef BFQ_BFQQ_FNS \ 134 135 /* Expiration time of sync (0) and async (1) requests, in ns. */ 136 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 137 138 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 139 static const int bfq_back_max = 16 * 1024; 140 141 /* Penalty of a backwards seek, in number of sectors. */ 142 static const int bfq_back_penalty = 2; 143 144 /* Idling period duration, in ns. */ 145 static u64 bfq_slice_idle = NSEC_PER_SEC / 125; 146 147 /* Minimum number of assigned budgets for which stats are safe to compute. */ 148 static const int bfq_stats_min_budgets = 194; 149 150 /* Default maximum budget values, in sectors and number of requests. */ 151 static const int bfq_default_max_budget = 16 * 1024; 152 153 /* 154 * Async to sync throughput distribution is controlled as follows: 155 * when an async request is served, the entity is charged the number 156 * of sectors of the request, multiplied by the factor below 157 */ 158 static const int bfq_async_charge_factor = 10; 159 160 /* Default timeout values, in jiffies, approximating CFQ defaults. */ 161 const int bfq_timeout = HZ / 8; 162 163 static struct kmem_cache *bfq_pool; 164 165 /* Below this threshold (in ns), we consider thinktime immediate. */ 166 #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 167 168 /* hw_tag detection: parallel requests threshold and min samples needed. */ 169 #define BFQ_HW_QUEUE_THRESHOLD 4 170 #define BFQ_HW_QUEUE_SAMPLES 32 171 172 #define BFQQ_SEEK_THR (sector_t)(8 * 100) 173 #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 174 #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 175 #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) 176 177 /* Min number of samples required to perform peak-rate update */ 178 #define BFQ_RATE_MIN_SAMPLES 32 179 /* Min observation time interval required to perform a peak-rate update (ns) */ 180 #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 181 /* Target observation time interval for a peak-rate update (ns) */ 182 #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 183 184 /* Shift used for peak rate fixed precision calculations. */ 185 #define BFQ_RATE_SHIFT 16 186 187 /* 188 * By default, BFQ computes the duration of the weight raising for 189 * interactive applications automatically, using the following formula: 190 * duration = (R / r) * T, where r is the peak rate of the device, and 191 * R and T are two reference parameters. 192 * In particular, R is the peak rate of the reference device (see below), 193 * and T is a reference time: given the systems that are likely to be 194 * installed on the reference device according to its speed class, T is 195 * about the maximum time needed, under BFQ and while reading two files in 196 * parallel, to load typical large applications on these systems. 197 * In practice, the slower/faster the device at hand is, the more/less it 198 * takes to load applications with respect to the reference device. 199 * Accordingly, the longer/shorter BFQ grants weight raising to interactive 200 * applications. 201 * 202 * BFQ uses four different reference pairs (R, T), depending on: 203 * . whether the device is rotational or non-rotational; 204 * . whether the device is slow, such as old or portable HDDs, as well as 205 * SD cards, or fast, such as newer HDDs and SSDs. 206 * 207 * The device's speed class is dynamically (re)detected in 208 * bfq_update_peak_rate() every time the estimated peak rate is updated. 209 * 210 * In the following definitions, R_slow[0]/R_fast[0] and 211 * T_slow[0]/T_fast[0] are the reference values for a slow/fast 212 * rotational device, whereas R_slow[1]/R_fast[1] and 213 * T_slow[1]/T_fast[1] are the reference values for a slow/fast 214 * non-rotational device. Finally, device_speed_thresh are the 215 * thresholds used to switch between speed classes. The reference 216 * rates are not the actual peak rates of the devices used as a 217 * reference, but slightly lower values. The reason for using these 218 * slightly lower values is that the peak-rate estimator tends to 219 * yield slightly lower values than the actual peak rate (it can yield 220 * the actual peak rate only if there is only one process doing I/O, 221 * and the process does sequential I/O). 222 * 223 * Both the reference peak rates and the thresholds are measured in 224 * sectors/usec, left-shifted by BFQ_RATE_SHIFT. 225 */ 226 static int R_slow[2] = {1000, 10700}; 227 static int R_fast[2] = {14000, 33000}; 228 /* 229 * To improve readability, a conversion function is used to initialize the 230 * following arrays, which entails that they can be initialized only in a 231 * function. 232 */ 233 static int T_slow[2]; 234 static int T_fast[2]; 235 static int device_speed_thresh[2]; 236 237 #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) 238 #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 239 240 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) 241 { 242 return bic->bfqq[is_sync]; 243 } 244 245 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync) 246 { 247 bic->bfqq[is_sync] = bfqq; 248 } 249 250 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 251 { 252 return bic->icq.q->elevator->elevator_data; 253 } 254 255 /** 256 * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 257 * @icq: the iocontext queue. 258 */ 259 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 260 { 261 /* bic->icq is the first member, %NULL will convert to %NULL */ 262 return container_of(icq, struct bfq_io_cq, icq); 263 } 264 265 /** 266 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 267 * @bfqd: the lookup key. 268 * @ioc: the io_context of the process doing I/O. 269 * @q: the request queue. 270 */ 271 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, 272 struct io_context *ioc, 273 struct request_queue *q) 274 { 275 if (ioc) { 276 unsigned long flags; 277 struct bfq_io_cq *icq; 278 279 spin_lock_irqsave(q->queue_lock, flags); 280 icq = icq_to_bic(ioc_lookup_icq(ioc, q)); 281 spin_unlock_irqrestore(q->queue_lock, flags); 282 283 return icq; 284 } 285 286 return NULL; 287 } 288 289 /* 290 * Scheduler run of queue, if there are requests pending and no one in the 291 * driver that will restart queueing. 292 */ 293 void bfq_schedule_dispatch(struct bfq_data *bfqd) 294 { 295 if (bfqd->queued != 0) { 296 bfq_log(bfqd, "schedule dispatch"); 297 blk_mq_run_hw_queues(bfqd->queue, true); 298 } 299 } 300 301 #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 302 #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) 303 304 #define bfq_sample_valid(samples) ((samples) > 80) 305 306 /* 307 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 308 * We choose the request that is closesr to the head right now. Distance 309 * behind the head is penalized and only allowed to a certain extent. 310 */ 311 static struct request *bfq_choose_req(struct bfq_data *bfqd, 312 struct request *rq1, 313 struct request *rq2, 314 sector_t last) 315 { 316 sector_t s1, s2, d1 = 0, d2 = 0; 317 unsigned long back_max; 318 #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 319 #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 320 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 321 322 if (!rq1 || rq1 == rq2) 323 return rq2; 324 if (!rq2) 325 return rq1; 326 327 if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 328 return rq1; 329 else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 330 return rq2; 331 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 332 return rq1; 333 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 334 return rq2; 335 336 s1 = blk_rq_pos(rq1); 337 s2 = blk_rq_pos(rq2); 338 339 /* 340 * By definition, 1KiB is 2 sectors. 341 */ 342 back_max = bfqd->bfq_back_max * 2; 343 344 /* 345 * Strict one way elevator _except_ in the case where we allow 346 * short backward seeks which are biased as twice the cost of a 347 * similar forward seek. 348 */ 349 if (s1 >= last) 350 d1 = s1 - last; 351 else if (s1 + back_max >= last) 352 d1 = (last - s1) * bfqd->bfq_back_penalty; 353 else 354 wrap |= BFQ_RQ1_WRAP; 355 356 if (s2 >= last) 357 d2 = s2 - last; 358 else if (s2 + back_max >= last) 359 d2 = (last - s2) * bfqd->bfq_back_penalty; 360 else 361 wrap |= BFQ_RQ2_WRAP; 362 363 /* Found required data */ 364 365 /* 366 * By doing switch() on the bit mask "wrap" we avoid having to 367 * check two variables for all permutations: --> faster! 368 */ 369 switch (wrap) { 370 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 371 if (d1 < d2) 372 return rq1; 373 else if (d2 < d1) 374 return rq2; 375 376 if (s1 >= s2) 377 return rq1; 378 else 379 return rq2; 380 381 case BFQ_RQ2_WRAP: 382 return rq1; 383 case BFQ_RQ1_WRAP: 384 return rq2; 385 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 386 default: 387 /* 388 * Since both rqs are wrapped, 389 * start with the one that's further behind head 390 * (--> only *one* back seek required), 391 * since back seek takes more time than forward. 392 */ 393 if (s1 <= s2) 394 return rq1; 395 else 396 return rq2; 397 } 398 } 399 400 static struct bfq_queue * 401 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 402 sector_t sector, struct rb_node **ret_parent, 403 struct rb_node ***rb_link) 404 { 405 struct rb_node **p, *parent; 406 struct bfq_queue *bfqq = NULL; 407 408 parent = NULL; 409 p = &root->rb_node; 410 while (*p) { 411 struct rb_node **n; 412 413 parent = *p; 414 bfqq = rb_entry(parent, struct bfq_queue, pos_node); 415 416 /* 417 * Sort strictly based on sector. Smallest to the left, 418 * largest to the right. 419 */ 420 if (sector > blk_rq_pos(bfqq->next_rq)) 421 n = &(*p)->rb_right; 422 else if (sector < blk_rq_pos(bfqq->next_rq)) 423 n = &(*p)->rb_left; 424 else 425 break; 426 p = n; 427 bfqq = NULL; 428 } 429 430 *ret_parent = parent; 431 if (rb_link) 432 *rb_link = p; 433 434 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 435 (unsigned long long)sector, 436 bfqq ? bfqq->pid : 0); 437 438 return bfqq; 439 } 440 441 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 442 { 443 struct rb_node **p, *parent; 444 struct bfq_queue *__bfqq; 445 446 if (bfqq->pos_root) { 447 rb_erase(&bfqq->pos_node, bfqq->pos_root); 448 bfqq->pos_root = NULL; 449 } 450 451 if (bfq_class_idle(bfqq)) 452 return; 453 if (!bfqq->next_rq) 454 return; 455 456 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 457 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 458 blk_rq_pos(bfqq->next_rq), &parent, &p); 459 if (!__bfqq) { 460 rb_link_node(&bfqq->pos_node, parent, p); 461 rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 462 } else 463 bfqq->pos_root = NULL; 464 } 465 466 /* 467 * Tell whether there are active queues or groups with differentiated weights. 468 */ 469 static bool bfq_differentiated_weights(struct bfq_data *bfqd) 470 { 471 /* 472 * For weights to differ, at least one of the trees must contain 473 * at least two nodes. 474 */ 475 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) && 476 (bfqd->queue_weights_tree.rb_node->rb_left || 477 bfqd->queue_weights_tree.rb_node->rb_right) 478 #ifdef CONFIG_BFQ_GROUP_IOSCHED 479 ) || 480 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) && 481 (bfqd->group_weights_tree.rb_node->rb_left || 482 bfqd->group_weights_tree.rb_node->rb_right) 483 #endif 484 ); 485 } 486 487 /* 488 * The following function returns true if every queue must receive the 489 * same share of the throughput (this condition is used when deciding 490 * whether idling may be disabled, see the comments in the function 491 * bfq_bfqq_may_idle()). 492 * 493 * Such a scenario occurs when: 494 * 1) all active queues have the same weight, 495 * 2) all active groups at the same level in the groups tree have the same 496 * weight, 497 * 3) all active groups at the same level in the groups tree have the same 498 * number of children. 499 * 500 * Unfortunately, keeping the necessary state for evaluating exactly the 501 * above symmetry conditions would be quite complex and time-consuming. 502 * Therefore this function evaluates, instead, the following stronger 503 * sub-conditions, for which it is much easier to maintain the needed 504 * state: 505 * 1) all active queues have the same weight, 506 * 2) all active groups have the same weight, 507 * 3) all active groups have at most one active child each. 508 * In particular, the last two conditions are always true if hierarchical 509 * support and the cgroups interface are not enabled, thus no state needs 510 * to be maintained in this case. 511 */ 512 static bool bfq_symmetric_scenario(struct bfq_data *bfqd) 513 { 514 return !bfq_differentiated_weights(bfqd); 515 } 516 517 /* 518 * If the weight-counter tree passed as input contains no counter for 519 * the weight of the input entity, then add that counter; otherwise just 520 * increment the existing counter. 521 * 522 * Note that weight-counter trees contain few nodes in mostly symmetric 523 * scenarios. For example, if all queues have the same weight, then the 524 * weight-counter tree for the queues may contain at most one node. 525 * This holds even if low_latency is on, because weight-raised queues 526 * are not inserted in the tree. 527 * In most scenarios, the rate at which nodes are created/destroyed 528 * should be low too. 529 */ 530 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, 531 struct rb_root *root) 532 { 533 struct rb_node **new = &(root->rb_node), *parent = NULL; 534 535 /* 536 * Do not insert if the entity is already associated with a 537 * counter, which happens if: 538 * 1) the entity is associated with a queue, 539 * 2) a request arrival has caused the queue to become both 540 * non-weight-raised, and hence change its weight, and 541 * backlogged; in this respect, each of the two events 542 * causes an invocation of this function, 543 * 3) this is the invocation of this function caused by the 544 * second event. This second invocation is actually useless, 545 * and we handle this fact by exiting immediately. More 546 * efficient or clearer solutions might possibly be adopted. 547 */ 548 if (entity->weight_counter) 549 return; 550 551 while (*new) { 552 struct bfq_weight_counter *__counter = container_of(*new, 553 struct bfq_weight_counter, 554 weights_node); 555 parent = *new; 556 557 if (entity->weight == __counter->weight) { 558 entity->weight_counter = __counter; 559 goto inc_counter; 560 } 561 if (entity->weight < __counter->weight) 562 new = &((*new)->rb_left); 563 else 564 new = &((*new)->rb_right); 565 } 566 567 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 568 GFP_ATOMIC); 569 570 /* 571 * In the unlucky event of an allocation failure, we just 572 * exit. This will cause the weight of entity to not be 573 * considered in bfq_differentiated_weights, which, in its 574 * turn, causes the scenario to be deemed wrongly symmetric in 575 * case entity's weight would have been the only weight making 576 * the scenario asymmetric. On the bright side, no unbalance 577 * will however occur when entity becomes inactive again (the 578 * invocation of this function is triggered by an activation 579 * of entity). In fact, bfq_weights_tree_remove does nothing 580 * if !entity->weight_counter. 581 */ 582 if (unlikely(!entity->weight_counter)) 583 return; 584 585 entity->weight_counter->weight = entity->weight; 586 rb_link_node(&entity->weight_counter->weights_node, parent, new); 587 rb_insert_color(&entity->weight_counter->weights_node, root); 588 589 inc_counter: 590 entity->weight_counter->num_active++; 591 } 592 593 /* 594 * Decrement the weight counter associated with the entity, and, if the 595 * counter reaches 0, remove the counter from the tree. 596 * See the comments to the function bfq_weights_tree_add() for considerations 597 * about overhead. 598 */ 599 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, 600 struct rb_root *root) 601 { 602 if (!entity->weight_counter) 603 return; 604 605 entity->weight_counter->num_active--; 606 if (entity->weight_counter->num_active > 0) 607 goto reset_entity_pointer; 608 609 rb_erase(&entity->weight_counter->weights_node, root); 610 kfree(entity->weight_counter); 611 612 reset_entity_pointer: 613 entity->weight_counter = NULL; 614 } 615 616 /* 617 * Return expired entry, or NULL to just start from scratch in rbtree. 618 */ 619 static struct request *bfq_check_fifo(struct bfq_queue *bfqq, 620 struct request *last) 621 { 622 struct request *rq; 623 624 if (bfq_bfqq_fifo_expire(bfqq)) 625 return NULL; 626 627 bfq_mark_bfqq_fifo_expire(bfqq); 628 629 rq = rq_entry_fifo(bfqq->fifo.next); 630 631 if (rq == last || ktime_get_ns() < rq->fifo_time) 632 return NULL; 633 634 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 635 return rq; 636 } 637 638 static struct request *bfq_find_next_rq(struct bfq_data *bfqd, 639 struct bfq_queue *bfqq, 640 struct request *last) 641 { 642 struct rb_node *rbnext = rb_next(&last->rb_node); 643 struct rb_node *rbprev = rb_prev(&last->rb_node); 644 struct request *next, *prev = NULL; 645 646 /* Follow expired path, else get first next available. */ 647 next = bfq_check_fifo(bfqq, last); 648 if (next) 649 return next; 650 651 if (rbprev) 652 prev = rb_entry_rq(rbprev); 653 654 if (rbnext) 655 next = rb_entry_rq(rbnext); 656 else { 657 rbnext = rb_first(&bfqq->sort_list); 658 if (rbnext && rbnext != &last->rb_node) 659 next = rb_entry_rq(rbnext); 660 } 661 662 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 663 } 664 665 /* see the definition of bfq_async_charge_factor for details */ 666 static unsigned long bfq_serv_to_charge(struct request *rq, 667 struct bfq_queue *bfqq) 668 { 669 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) 670 return blk_rq_sectors(rq); 671 672 /* 673 * If there are no weight-raised queues, then amplify service 674 * by just the async charge factor; otherwise amplify service 675 * by twice the async charge factor, to further reduce latency 676 * for weight-raised queues. 677 */ 678 if (bfqq->bfqd->wr_busy_queues == 0) 679 return blk_rq_sectors(rq) * bfq_async_charge_factor; 680 681 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor; 682 } 683 684 /** 685 * bfq_updated_next_req - update the queue after a new next_rq selection. 686 * @bfqd: the device data the queue belongs to. 687 * @bfqq: the queue to update. 688 * 689 * If the first request of a queue changes we make sure that the queue 690 * has enough budget to serve at least its first request (if the 691 * request has grown). We do this because if the queue has not enough 692 * budget for its first request, it has to go through two dispatch 693 * rounds to actually get it dispatched. 694 */ 695 static void bfq_updated_next_req(struct bfq_data *bfqd, 696 struct bfq_queue *bfqq) 697 { 698 struct bfq_entity *entity = &bfqq->entity; 699 struct request *next_rq = bfqq->next_rq; 700 unsigned long new_budget; 701 702 if (!next_rq) 703 return; 704 705 if (bfqq == bfqd->in_service_queue) 706 /* 707 * In order not to break guarantees, budgets cannot be 708 * changed after an entity has been selected. 709 */ 710 return; 711 712 new_budget = max_t(unsigned long, bfqq->max_budget, 713 bfq_serv_to_charge(next_rq, bfqq)); 714 if (entity->budget != new_budget) { 715 entity->budget = new_budget; 716 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 717 new_budget); 718 bfq_requeue_bfqq(bfqd, bfqq); 719 } 720 } 721 722 static void 723 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 724 { 725 if (bic->saved_idle_window) 726 bfq_mark_bfqq_idle_window(bfqq); 727 else 728 bfq_clear_bfqq_idle_window(bfqq); 729 730 if (bic->saved_IO_bound) 731 bfq_mark_bfqq_IO_bound(bfqq); 732 else 733 bfq_clear_bfqq_IO_bound(bfqq); 734 735 bfqq->ttime = bic->saved_ttime; 736 bfqq->wr_coeff = bic->saved_wr_coeff; 737 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt; 738 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish; 739 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time; 740 741 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 742 time_is_before_jiffies(bfqq->last_wr_start_finish + 743 bfqq->wr_cur_max_time))) { 744 bfq_log_bfqq(bfqq->bfqd, bfqq, 745 "resume state: switching off wr"); 746 747 bfqq->wr_coeff = 1; 748 } 749 750 /* make sure weight will be updated, however we got here */ 751 bfqq->entity.prio_changed = 1; 752 } 753 754 static int bfqq_process_refs(struct bfq_queue *bfqq) 755 { 756 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st; 757 } 758 759 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 760 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 761 { 762 struct bfq_queue *item; 763 struct hlist_node *n; 764 765 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 766 hlist_del_init(&item->burst_list_node); 767 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 768 bfqd->burst_size = 1; 769 bfqd->burst_parent_entity = bfqq->entity.parent; 770 } 771 772 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 773 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 774 { 775 /* Increment burst size to take into account also bfqq */ 776 bfqd->burst_size++; 777 778 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 779 struct bfq_queue *pos, *bfqq_item; 780 struct hlist_node *n; 781 782 /* 783 * Enough queues have been activated shortly after each 784 * other to consider this burst as large. 785 */ 786 bfqd->large_burst = true; 787 788 /* 789 * We can now mark all queues in the burst list as 790 * belonging to a large burst. 791 */ 792 hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 793 burst_list_node) 794 bfq_mark_bfqq_in_large_burst(bfqq_item); 795 bfq_mark_bfqq_in_large_burst(bfqq); 796 797 /* 798 * From now on, and until the current burst finishes, any 799 * new queue being activated shortly after the last queue 800 * was inserted in the burst can be immediately marked as 801 * belonging to a large burst. So the burst list is not 802 * needed any more. Remove it. 803 */ 804 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 805 burst_list_node) 806 hlist_del_init(&pos->burst_list_node); 807 } else /* 808 * Burst not yet large: add bfqq to the burst list. Do 809 * not increment the ref counter for bfqq, because bfqq 810 * is removed from the burst list before freeing bfqq 811 * in put_queue. 812 */ 813 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 814 } 815 816 /* 817 * If many queues belonging to the same group happen to be created 818 * shortly after each other, then the processes associated with these 819 * queues have typically a common goal. In particular, bursts of queue 820 * creations are usually caused by services or applications that spawn 821 * many parallel threads/processes. Examples are systemd during boot, 822 * or git grep. To help these processes get their job done as soon as 823 * possible, it is usually better to not grant either weight-raising 824 * or device idling to their queues. 825 * 826 * In this comment we describe, firstly, the reasons why this fact 827 * holds, and, secondly, the next function, which implements the main 828 * steps needed to properly mark these queues so that they can then be 829 * treated in a different way. 830 * 831 * The above services or applications benefit mostly from a high 832 * throughput: the quicker the requests of the activated queues are 833 * cumulatively served, the sooner the target job of these queues gets 834 * completed. As a consequence, weight-raising any of these queues, 835 * which also implies idling the device for it, is almost always 836 * counterproductive. In most cases it just lowers throughput. 837 * 838 * On the other hand, a burst of queue creations may be caused also by 839 * the start of an application that does not consist of a lot of 840 * parallel I/O-bound threads. In fact, with a complex application, 841 * several short processes may need to be executed to start-up the 842 * application. In this respect, to start an application as quickly as 843 * possible, the best thing to do is in any case to privilege the I/O 844 * related to the application with respect to all other 845 * I/O. Therefore, the best strategy to start as quickly as possible 846 * an application that causes a burst of queue creations is to 847 * weight-raise all the queues created during the burst. This is the 848 * exact opposite of the best strategy for the other type of bursts. 849 * 850 * In the end, to take the best action for each of the two cases, the 851 * two types of bursts need to be distinguished. Fortunately, this 852 * seems relatively easy, by looking at the sizes of the bursts. In 853 * particular, we found a threshold such that only bursts with a 854 * larger size than that threshold are apparently caused by 855 * services or commands such as systemd or git grep. For brevity, 856 * hereafter we call just 'large' these bursts. BFQ *does not* 857 * weight-raise queues whose creation occurs in a large burst. In 858 * addition, for each of these queues BFQ performs or does not perform 859 * idling depending on which choice boosts the throughput more. The 860 * exact choice depends on the device and request pattern at 861 * hand. 862 * 863 * Unfortunately, false positives may occur while an interactive task 864 * is starting (e.g., an application is being started). The 865 * consequence is that the queues associated with the task do not 866 * enjoy weight raising as expected. Fortunately these false positives 867 * are very rare. They typically occur if some service happens to 868 * start doing I/O exactly when the interactive task starts. 869 * 870 * Turning back to the next function, it implements all the steps 871 * needed to detect the occurrence of a large burst and to properly 872 * mark all the queues belonging to it (so that they can then be 873 * treated in a different way). This goal is achieved by maintaining a 874 * "burst list" that holds, temporarily, the queues that belong to the 875 * burst in progress. The list is then used to mark these queues as 876 * belonging to a large burst if the burst does become large. The main 877 * steps are the following. 878 * 879 * . when the very first queue is created, the queue is inserted into the 880 * list (as it could be the first queue in a possible burst) 881 * 882 * . if the current burst has not yet become large, and a queue Q that does 883 * not yet belong to the burst is activated shortly after the last time 884 * at which a new queue entered the burst list, then the function appends 885 * Q to the burst list 886 * 887 * . if, as a consequence of the previous step, the burst size reaches 888 * the large-burst threshold, then 889 * 890 * . all the queues in the burst list are marked as belonging to a 891 * large burst 892 * 893 * . the burst list is deleted; in fact, the burst list already served 894 * its purpose (keeping temporarily track of the queues in a burst, 895 * so as to be able to mark them as belonging to a large burst in the 896 * previous sub-step), and now is not needed any more 897 * 898 * . the device enters a large-burst mode 899 * 900 * . if a queue Q that does not belong to the burst is created while 901 * the device is in large-burst mode and shortly after the last time 902 * at which a queue either entered the burst list or was marked as 903 * belonging to the current large burst, then Q is immediately marked 904 * as belonging to a large burst. 905 * 906 * . if a queue Q that does not belong to the burst is created a while 907 * later, i.e., not shortly after, than the last time at which a queue 908 * either entered the burst list or was marked as belonging to the 909 * current large burst, then the current burst is deemed as finished and: 910 * 911 * . the large-burst mode is reset if set 912 * 913 * . the burst list is emptied 914 * 915 * . Q is inserted in the burst list, as Q may be the first queue 916 * in a possible new burst (then the burst list contains just Q 917 * after this step). 918 */ 919 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 920 { 921 /* 922 * If bfqq is already in the burst list or is part of a large 923 * burst, or finally has just been split, then there is 924 * nothing else to do. 925 */ 926 if (!hlist_unhashed(&bfqq->burst_list_node) || 927 bfq_bfqq_in_large_burst(bfqq) || 928 time_is_after_eq_jiffies(bfqq->split_time + 929 msecs_to_jiffies(10))) 930 return; 931 932 /* 933 * If bfqq's creation happens late enough, or bfqq belongs to 934 * a different group than the burst group, then the current 935 * burst is finished, and related data structures must be 936 * reset. 937 * 938 * In this respect, consider the special case where bfqq is 939 * the very first queue created after BFQ is selected for this 940 * device. In this case, last_ins_in_burst and 941 * burst_parent_entity are not yet significant when we get 942 * here. But it is easy to verify that, whether or not the 943 * following condition is true, bfqq will end up being 944 * inserted into the burst list. In particular the list will 945 * happen to contain only bfqq. And this is exactly what has 946 * to happen, as bfqq may be the first queue of the first 947 * burst. 948 */ 949 if (time_is_before_jiffies(bfqd->last_ins_in_burst + 950 bfqd->bfq_burst_interval) || 951 bfqq->entity.parent != bfqd->burst_parent_entity) { 952 bfqd->large_burst = false; 953 bfq_reset_burst_list(bfqd, bfqq); 954 goto end; 955 } 956 957 /* 958 * If we get here, then bfqq is being activated shortly after the 959 * last queue. So, if the current burst is also large, we can mark 960 * bfqq as belonging to this large burst immediately. 961 */ 962 if (bfqd->large_burst) { 963 bfq_mark_bfqq_in_large_burst(bfqq); 964 goto end; 965 } 966 967 /* 968 * If we get here, then a large-burst state has not yet been 969 * reached, but bfqq is being activated shortly after the last 970 * queue. Then we add bfqq to the burst. 971 */ 972 bfq_add_to_burst(bfqd, bfqq); 973 end: 974 /* 975 * At this point, bfqq either has been added to the current 976 * burst or has caused the current burst to terminate and a 977 * possible new burst to start. In particular, in the second 978 * case, bfqq has become the first queue in the possible new 979 * burst. In both cases last_ins_in_burst needs to be moved 980 * forward. 981 */ 982 bfqd->last_ins_in_burst = jiffies; 983 } 984 985 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 986 { 987 struct bfq_entity *entity = &bfqq->entity; 988 989 return entity->budget - entity->service; 990 } 991 992 /* 993 * If enough samples have been computed, return the current max budget 994 * stored in bfqd, which is dynamically updated according to the 995 * estimated disk peak rate; otherwise return the default max budget 996 */ 997 static int bfq_max_budget(struct bfq_data *bfqd) 998 { 999 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1000 return bfq_default_max_budget; 1001 else 1002 return bfqd->bfq_max_budget; 1003 } 1004 1005 /* 1006 * Return min budget, which is a fraction of the current or default 1007 * max budget (trying with 1/32) 1008 */ 1009 static int bfq_min_budget(struct bfq_data *bfqd) 1010 { 1011 if (bfqd->budgets_assigned < bfq_stats_min_budgets) 1012 return bfq_default_max_budget / 32; 1013 else 1014 return bfqd->bfq_max_budget / 32; 1015 } 1016 1017 /* 1018 * The next function, invoked after the input queue bfqq switches from 1019 * idle to busy, updates the budget of bfqq. The function also tells 1020 * whether the in-service queue should be expired, by returning 1021 * true. The purpose of expiring the in-service queue is to give bfqq 1022 * the chance to possibly preempt the in-service queue, and the reason 1023 * for preempting the in-service queue is to achieve one of the two 1024 * goals below. 1025 * 1026 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 1027 * expired because it has remained idle. In particular, bfqq may have 1028 * expired for one of the following two reasons: 1029 * 1030 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 1031 * and did not make it to issue a new request before its last 1032 * request was served; 1033 * 1034 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 1035 * a new request before the expiration of the idling-time. 1036 * 1037 * Even if bfqq has expired for one of the above reasons, the process 1038 * associated with the queue may be however issuing requests greedily, 1039 * and thus be sensitive to the bandwidth it receives (bfqq may have 1040 * remained idle for other reasons: CPU high load, bfqq not enjoying 1041 * idling, I/O throttling somewhere in the path from the process to 1042 * the I/O scheduler, ...). But if, after every expiration for one of 1043 * the above two reasons, bfqq has to wait for the service of at least 1044 * one full budget of another queue before being served again, then 1045 * bfqq is likely to get a much lower bandwidth or resource time than 1046 * its reserved ones. To address this issue, two countermeasures need 1047 * to be taken. 1048 * 1049 * First, the budget and the timestamps of bfqq need to be updated in 1050 * a special way on bfqq reactivation: they need to be updated as if 1051 * bfqq did not remain idle and did not expire. In fact, if they are 1052 * computed as if bfqq expired and remained idle until reactivation, 1053 * then the process associated with bfqq is treated as if, instead of 1054 * being greedy, it stopped issuing requests when bfqq remained idle, 1055 * and restarts issuing requests only on this reactivation. In other 1056 * words, the scheduler does not help the process recover the "service 1057 * hole" between bfqq expiration and reactivation. As a consequence, 1058 * the process receives a lower bandwidth than its reserved one. In 1059 * contrast, to recover this hole, the budget must be updated as if 1060 * bfqq was not expired at all before this reactivation, i.e., it must 1061 * be set to the value of the remaining budget when bfqq was 1062 * expired. Along the same line, timestamps need to be assigned the 1063 * value they had the last time bfqq was selected for service, i.e., 1064 * before last expiration. Thus timestamps need to be back-shifted 1065 * with respect to their normal computation (see [1] for more details 1066 * on this tricky aspect). 1067 * 1068 * Secondly, to allow the process to recover the hole, the in-service 1069 * queue must be expired too, to give bfqq the chance to preempt it 1070 * immediately. In fact, if bfqq has to wait for a full budget of the 1071 * in-service queue to be completed, then it may become impossible to 1072 * let the process recover the hole, even if the back-shifted 1073 * timestamps of bfqq are lower than those of the in-service queue. If 1074 * this happens for most or all of the holes, then the process may not 1075 * receive its reserved bandwidth. In this respect, it is worth noting 1076 * that, being the service of outstanding requests unpreemptible, a 1077 * little fraction of the holes may however be unrecoverable, thereby 1078 * causing a little loss of bandwidth. 1079 * 1080 * The last important point is detecting whether bfqq does need this 1081 * bandwidth recovery. In this respect, the next function deems the 1082 * process associated with bfqq greedy, and thus allows it to recover 1083 * the hole, if: 1) the process is waiting for the arrival of a new 1084 * request (which implies that bfqq expired for one of the above two 1085 * reasons), and 2) such a request has arrived soon. The first 1086 * condition is controlled through the flag non_blocking_wait_rq, 1087 * while the second through the flag arrived_in_time. If both 1088 * conditions hold, then the function computes the budget in the 1089 * above-described special way, and signals that the in-service queue 1090 * should be expired. Timestamp back-shifting is done later in 1091 * __bfq_activate_entity. 1092 * 1093 * 2. Reduce latency. Even if timestamps are not backshifted to let 1094 * the process associated with bfqq recover a service hole, bfqq may 1095 * however happen to have, after being (re)activated, a lower finish 1096 * timestamp than the in-service queue. That is, the next budget of 1097 * bfqq may have to be completed before the one of the in-service 1098 * queue. If this is the case, then preempting the in-service queue 1099 * allows this goal to be achieved, apart from the unpreemptible, 1100 * outstanding requests mentioned above. 1101 * 1102 * Unfortunately, regardless of which of the above two goals one wants 1103 * to achieve, service trees need first to be updated to know whether 1104 * the in-service queue must be preempted. To have service trees 1105 * correctly updated, the in-service queue must be expired and 1106 * rescheduled, and bfqq must be scheduled too. This is one of the 1107 * most costly operations (in future versions, the scheduling 1108 * mechanism may be re-designed in such a way to make it possible to 1109 * know whether preemption is needed without needing to update service 1110 * trees). In addition, queue preemptions almost always cause random 1111 * I/O, and thus loss of throughput. Because of these facts, the next 1112 * function adopts the following simple scheme to avoid both costly 1113 * operations and too frequent preemptions: it requests the expiration 1114 * of the in-service queue (unconditionally) only for queues that need 1115 * to recover a hole, or that either are weight-raised or deserve to 1116 * be weight-raised. 1117 */ 1118 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 1119 struct bfq_queue *bfqq, 1120 bool arrived_in_time, 1121 bool wr_or_deserves_wr) 1122 { 1123 struct bfq_entity *entity = &bfqq->entity; 1124 1125 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { 1126 /* 1127 * We do not clear the flag non_blocking_wait_rq here, as 1128 * the latter is used in bfq_activate_bfqq to signal 1129 * that timestamps need to be back-shifted (and is 1130 * cleared right after). 1131 */ 1132 1133 /* 1134 * In next assignment we rely on that either 1135 * entity->service or entity->budget are not updated 1136 * on expiration if bfqq is empty (see 1137 * __bfq_bfqq_recalc_budget). Thus both quantities 1138 * remain unchanged after such an expiration, and the 1139 * following statement therefore assigns to 1140 * entity->budget the remaining budget on such an 1141 * expiration. For clarity, entity->service is not 1142 * updated on expiration in any case, and, in normal 1143 * operation, is reset only when bfqq is selected for 1144 * service (see bfq_get_next_queue). 1145 */ 1146 entity->budget = min_t(unsigned long, 1147 bfq_bfqq_budget_left(bfqq), 1148 bfqq->max_budget); 1149 1150 return true; 1151 } 1152 1153 entity->budget = max_t(unsigned long, bfqq->max_budget, 1154 bfq_serv_to_charge(bfqq->next_rq, bfqq)); 1155 bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 1156 return wr_or_deserves_wr; 1157 } 1158 1159 static unsigned int bfq_wr_duration(struct bfq_data *bfqd) 1160 { 1161 u64 dur; 1162 1163 if (bfqd->bfq_wr_max_time > 0) 1164 return bfqd->bfq_wr_max_time; 1165 1166 dur = bfqd->RT_prod; 1167 do_div(dur, bfqd->peak_rate); 1168 1169 /* 1170 * Limit duration between 3 and 13 seconds. Tests show that 1171 * higher values than 13 seconds often yield the opposite of 1172 * the desired result, i.e., worsen responsiveness by letting 1173 * non-interactive and non-soft-real-time applications 1174 * preserve weight raising for a too long time interval. 1175 * 1176 * On the other end, lower values than 3 seconds make it 1177 * difficult for most interactive tasks to complete their jobs 1178 * before weight-raising finishes. 1179 */ 1180 if (dur > msecs_to_jiffies(13000)) 1181 dur = msecs_to_jiffies(13000); 1182 else if (dur < msecs_to_jiffies(3000)) 1183 dur = msecs_to_jiffies(3000); 1184 1185 return dur; 1186 } 1187 1188 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 1189 struct bfq_queue *bfqq, 1190 unsigned int old_wr_coeff, 1191 bool wr_or_deserves_wr, 1192 bool interactive, 1193 bool in_burst, 1194 bool soft_rt) 1195 { 1196 if (old_wr_coeff == 1 && wr_or_deserves_wr) { 1197 /* start a weight-raising period */ 1198 if (interactive) { 1199 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1200 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1201 } else { 1202 bfqq->wr_start_at_switch_to_srt = jiffies; 1203 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1204 BFQ_SOFTRT_WEIGHT_FACTOR; 1205 bfqq->wr_cur_max_time = 1206 bfqd->bfq_wr_rt_max_time; 1207 } 1208 1209 /* 1210 * If needed, further reduce budget to make sure it is 1211 * close to bfqq's backlog, so as to reduce the 1212 * scheduling-error component due to a too large 1213 * budget. Do not care about throughput consequences, 1214 * but only about latency. Finally, do not assign a 1215 * too small budget either, to avoid increasing 1216 * latency by causing too frequent expirations. 1217 */ 1218 bfqq->entity.budget = min_t(unsigned long, 1219 bfqq->entity.budget, 1220 2 * bfq_min_budget(bfqd)); 1221 } else if (old_wr_coeff > 1) { 1222 if (interactive) { /* update wr coeff and duration */ 1223 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1224 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1225 } else if (in_burst) 1226 bfqq->wr_coeff = 1; 1227 else if (soft_rt) { 1228 /* 1229 * The application is now or still meeting the 1230 * requirements for being deemed soft rt. We 1231 * can then correctly and safely (re)charge 1232 * the weight-raising duration for the 1233 * application with the weight-raising 1234 * duration for soft rt applications. 1235 * 1236 * In particular, doing this recharge now, i.e., 1237 * before the weight-raising period for the 1238 * application finishes, reduces the probability 1239 * of the following negative scenario: 1240 * 1) the weight of a soft rt application is 1241 * raised at startup (as for any newly 1242 * created application), 1243 * 2) since the application is not interactive, 1244 * at a certain time weight-raising is 1245 * stopped for the application, 1246 * 3) at that time the application happens to 1247 * still have pending requests, and hence 1248 * is destined to not have a chance to be 1249 * deemed soft rt before these requests are 1250 * completed (see the comments to the 1251 * function bfq_bfqq_softrt_next_start() 1252 * for details on soft rt detection), 1253 * 4) these pending requests experience a high 1254 * latency because the application is not 1255 * weight-raised while they are pending. 1256 */ 1257 if (bfqq->wr_cur_max_time != 1258 bfqd->bfq_wr_rt_max_time) { 1259 bfqq->wr_start_at_switch_to_srt = 1260 bfqq->last_wr_start_finish; 1261 1262 bfqq->wr_cur_max_time = 1263 bfqd->bfq_wr_rt_max_time; 1264 bfqq->wr_coeff = bfqd->bfq_wr_coeff * 1265 BFQ_SOFTRT_WEIGHT_FACTOR; 1266 } 1267 bfqq->last_wr_start_finish = jiffies; 1268 } 1269 } 1270 } 1271 1272 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 1273 struct bfq_queue *bfqq) 1274 { 1275 return bfqq->dispatched == 0 && 1276 time_is_before_jiffies( 1277 bfqq->budget_timeout + 1278 bfqd->bfq_wr_min_idle_time); 1279 } 1280 1281 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 1282 struct bfq_queue *bfqq, 1283 int old_wr_coeff, 1284 struct request *rq, 1285 bool *interactive) 1286 { 1287 bool soft_rt, in_burst, wr_or_deserves_wr, 1288 bfqq_wants_to_preempt, 1289 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 1290 /* 1291 * See the comments on 1292 * bfq_bfqq_update_budg_for_activation for 1293 * details on the usage of the next variable. 1294 */ 1295 arrived_in_time = ktime_get_ns() <= 1296 bfqq->ttime.last_end_request + 1297 bfqd->bfq_slice_idle * 3; 1298 1299 bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); 1300 1301 /* 1302 * bfqq deserves to be weight-raised if: 1303 * - it is sync, 1304 * - it does not belong to a large burst, 1305 * - it has been idle for enough time or is soft real-time, 1306 * - is linked to a bfq_io_cq (it is not shared in any sense). 1307 */ 1308 in_burst = bfq_bfqq_in_large_burst(bfqq); 1309 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 1310 !in_burst && 1311 time_is_before_jiffies(bfqq->soft_rt_next_start); 1312 *interactive = !in_burst && idle_for_long_time; 1313 wr_or_deserves_wr = bfqd->low_latency && 1314 (bfqq->wr_coeff > 1 || 1315 (bfq_bfqq_sync(bfqq) && 1316 bfqq->bic && (*interactive || soft_rt))); 1317 1318 /* 1319 * Using the last flag, update budget and check whether bfqq 1320 * may want to preempt the in-service queue. 1321 */ 1322 bfqq_wants_to_preempt = 1323 bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 1324 arrived_in_time, 1325 wr_or_deserves_wr); 1326 1327 /* 1328 * If bfqq happened to be activated in a burst, but has been 1329 * idle for much more than an interactive queue, then we 1330 * assume that, in the overall I/O initiated in the burst, the 1331 * I/O associated with bfqq is finished. So bfqq does not need 1332 * to be treated as a queue belonging to a burst 1333 * anymore. Accordingly, we reset bfqq's in_large_burst flag 1334 * if set, and remove bfqq from the burst list if it's 1335 * there. We do not decrement burst_size, because the fact 1336 * that bfqq does not need to belong to the burst list any 1337 * more does not invalidate the fact that bfqq was created in 1338 * a burst. 1339 */ 1340 if (likely(!bfq_bfqq_just_created(bfqq)) && 1341 idle_for_long_time && 1342 time_is_before_jiffies( 1343 bfqq->budget_timeout + 1344 msecs_to_jiffies(10000))) { 1345 hlist_del_init(&bfqq->burst_list_node); 1346 bfq_clear_bfqq_in_large_burst(bfqq); 1347 } 1348 1349 bfq_clear_bfqq_just_created(bfqq); 1350 1351 1352 if (!bfq_bfqq_IO_bound(bfqq)) { 1353 if (arrived_in_time) { 1354 bfqq->requests_within_timer++; 1355 if (bfqq->requests_within_timer >= 1356 bfqd->bfq_requests_within_timer) 1357 bfq_mark_bfqq_IO_bound(bfqq); 1358 } else 1359 bfqq->requests_within_timer = 0; 1360 } 1361 1362 if (bfqd->low_latency) { 1363 if (unlikely(time_is_after_jiffies(bfqq->split_time))) 1364 /* wraparound */ 1365 bfqq->split_time = 1366 jiffies - bfqd->bfq_wr_min_idle_time - 1; 1367 1368 if (time_is_before_jiffies(bfqq->split_time + 1369 bfqd->bfq_wr_min_idle_time)) { 1370 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 1371 old_wr_coeff, 1372 wr_or_deserves_wr, 1373 *interactive, 1374 in_burst, 1375 soft_rt); 1376 1377 if (old_wr_coeff != bfqq->wr_coeff) 1378 bfqq->entity.prio_changed = 1; 1379 } 1380 } 1381 1382 bfqq->last_idle_bklogged = jiffies; 1383 bfqq->service_from_backlogged = 0; 1384 bfq_clear_bfqq_softrt_update(bfqq); 1385 1386 bfq_add_bfqq_busy(bfqd, bfqq); 1387 1388 /* 1389 * Expire in-service queue only if preemption may be needed 1390 * for guarantees. In this respect, the function 1391 * next_queue_may_preempt just checks a simple, necessary 1392 * condition, and not a sufficient condition based on 1393 * timestamps. In fact, for the latter condition to be 1394 * evaluated, timestamps would need first to be updated, and 1395 * this operation is quite costly (see the comments on the 1396 * function bfq_bfqq_update_budg_for_activation). 1397 */ 1398 if (bfqd->in_service_queue && bfqq_wants_to_preempt && 1399 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && 1400 next_queue_may_preempt(bfqd)) 1401 bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 1402 false, BFQQE_PREEMPTED); 1403 } 1404 1405 static void bfq_add_request(struct request *rq) 1406 { 1407 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1408 struct bfq_data *bfqd = bfqq->bfqd; 1409 struct request *next_rq, *prev; 1410 unsigned int old_wr_coeff = bfqq->wr_coeff; 1411 bool interactive = false; 1412 1413 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 1414 bfqq->queued[rq_is_sync(rq)]++; 1415 bfqd->queued++; 1416 1417 elv_rb_add(&bfqq->sort_list, rq); 1418 1419 /* 1420 * Check if this request is a better next-serve candidate. 1421 */ 1422 prev = bfqq->next_rq; 1423 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 1424 bfqq->next_rq = next_rq; 1425 1426 /* 1427 * Adjust priority tree position, if next_rq changes. 1428 */ 1429 if (prev != bfqq->next_rq) 1430 bfq_pos_tree_add_move(bfqd, bfqq); 1431 1432 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 1433 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 1434 rq, &interactive); 1435 else { 1436 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 1437 time_is_before_jiffies( 1438 bfqq->last_wr_start_finish + 1439 bfqd->bfq_wr_min_inter_arr_async)) { 1440 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 1441 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 1442 1443 bfqd->wr_busy_queues++; 1444 bfqq->entity.prio_changed = 1; 1445 } 1446 if (prev != bfqq->next_rq) 1447 bfq_updated_next_req(bfqd, bfqq); 1448 } 1449 1450 /* 1451 * Assign jiffies to last_wr_start_finish in the following 1452 * cases: 1453 * 1454 * . if bfqq is not going to be weight-raised, because, for 1455 * non weight-raised queues, last_wr_start_finish stores the 1456 * arrival time of the last request; as of now, this piece 1457 * of information is used only for deciding whether to 1458 * weight-raise async queues 1459 * 1460 * . if bfqq is not weight-raised, because, if bfqq is now 1461 * switching to weight-raised, then last_wr_start_finish 1462 * stores the time when weight-raising starts 1463 * 1464 * . if bfqq is interactive, because, regardless of whether 1465 * bfqq is currently weight-raised, the weight-raising 1466 * period must start or restart (this case is considered 1467 * separately because it is not detected by the above 1468 * conditions, if bfqq is already weight-raised) 1469 * 1470 * last_wr_start_finish has to be updated also if bfqq is soft 1471 * real-time, because the weight-raising period is constantly 1472 * restarted on idle-to-busy transitions for these queues, but 1473 * this is already done in bfq_bfqq_handle_idle_busy_switch if 1474 * needed. 1475 */ 1476 if (bfqd->low_latency && 1477 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 1478 bfqq->last_wr_start_finish = jiffies; 1479 } 1480 1481 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 1482 struct bio *bio, 1483 struct request_queue *q) 1484 { 1485 struct bfq_queue *bfqq = bfqd->bio_bfqq; 1486 1487 1488 if (bfqq) 1489 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 1490 1491 return NULL; 1492 } 1493 1494 static sector_t get_sdist(sector_t last_pos, struct request *rq) 1495 { 1496 if (last_pos) 1497 return abs(blk_rq_pos(rq) - last_pos); 1498 1499 return 0; 1500 } 1501 1502 #if 0 /* Still not clear if we can do without next two functions */ 1503 static void bfq_activate_request(struct request_queue *q, struct request *rq) 1504 { 1505 struct bfq_data *bfqd = q->elevator->elevator_data; 1506 1507 bfqd->rq_in_driver++; 1508 } 1509 1510 static void bfq_deactivate_request(struct request_queue *q, struct request *rq) 1511 { 1512 struct bfq_data *bfqd = q->elevator->elevator_data; 1513 1514 bfqd->rq_in_driver--; 1515 } 1516 #endif 1517 1518 static void bfq_remove_request(struct request_queue *q, 1519 struct request *rq) 1520 { 1521 struct bfq_queue *bfqq = RQ_BFQQ(rq); 1522 struct bfq_data *bfqd = bfqq->bfqd; 1523 const int sync = rq_is_sync(rq); 1524 1525 if (bfqq->next_rq == rq) { 1526 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 1527 bfq_updated_next_req(bfqd, bfqq); 1528 } 1529 1530 if (rq->queuelist.prev != &rq->queuelist) 1531 list_del_init(&rq->queuelist); 1532 bfqq->queued[sync]--; 1533 bfqd->queued--; 1534 elv_rb_del(&bfqq->sort_list, rq); 1535 1536 elv_rqhash_del(q, rq); 1537 if (q->last_merge == rq) 1538 q->last_merge = NULL; 1539 1540 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 1541 bfqq->next_rq = NULL; 1542 1543 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 1544 bfq_del_bfqq_busy(bfqd, bfqq, false); 1545 /* 1546 * bfqq emptied. In normal operation, when 1547 * bfqq is empty, bfqq->entity.service and 1548 * bfqq->entity.budget must contain, 1549 * respectively, the service received and the 1550 * budget used last time bfqq emptied. These 1551 * facts do not hold in this case, as at least 1552 * this last removal occurred while bfqq is 1553 * not in service. To avoid inconsistencies, 1554 * reset both bfqq->entity.service and 1555 * bfqq->entity.budget, if bfqq has still a 1556 * process that may issue I/O requests to it. 1557 */ 1558 bfqq->entity.budget = bfqq->entity.service = 0; 1559 } 1560 1561 /* 1562 * Remove queue from request-position tree as it is empty. 1563 */ 1564 if (bfqq->pos_root) { 1565 rb_erase(&bfqq->pos_node, bfqq->pos_root); 1566 bfqq->pos_root = NULL; 1567 } 1568 } 1569 1570 if (rq->cmd_flags & REQ_META) 1571 bfqq->meta_pending--; 1572 1573 bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); 1574 } 1575 1576 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) 1577 { 1578 struct request_queue *q = hctx->queue; 1579 struct bfq_data *bfqd = q->elevator->elevator_data; 1580 struct request *free = NULL; 1581 /* 1582 * bfq_bic_lookup grabs the queue_lock: invoke it now and 1583 * store its return value for later use, to avoid nesting 1584 * queue_lock inside the bfqd->lock. We assume that the bic 1585 * returned by bfq_bic_lookup does not go away before 1586 * bfqd->lock is taken. 1587 */ 1588 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); 1589 bool ret; 1590 1591 spin_lock_irq(&bfqd->lock); 1592 1593 if (bic) 1594 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); 1595 else 1596 bfqd->bio_bfqq = NULL; 1597 bfqd->bio_bic = bic; 1598 1599 ret = blk_mq_sched_try_merge(q, bio, &free); 1600 1601 if (free) 1602 blk_mq_free_request(free); 1603 spin_unlock_irq(&bfqd->lock); 1604 1605 return ret; 1606 } 1607 1608 static int bfq_request_merge(struct request_queue *q, struct request **req, 1609 struct bio *bio) 1610 { 1611 struct bfq_data *bfqd = q->elevator->elevator_data; 1612 struct request *__rq; 1613 1614 __rq = bfq_find_rq_fmerge(bfqd, bio, q); 1615 if (__rq && elv_bio_merge_ok(__rq, bio)) { 1616 *req = __rq; 1617 return ELEVATOR_FRONT_MERGE; 1618 } 1619 1620 return ELEVATOR_NO_MERGE; 1621 } 1622 1623 static void bfq_request_merged(struct request_queue *q, struct request *req, 1624 enum elv_merge type) 1625 { 1626 if (type == ELEVATOR_FRONT_MERGE && 1627 rb_prev(&req->rb_node) && 1628 blk_rq_pos(req) < 1629 blk_rq_pos(container_of(rb_prev(&req->rb_node), 1630 struct request, rb_node))) { 1631 struct bfq_queue *bfqq = RQ_BFQQ(req); 1632 struct bfq_data *bfqd = bfqq->bfqd; 1633 struct request *prev, *next_rq; 1634 1635 /* Reposition request in its sort_list */ 1636 elv_rb_del(&bfqq->sort_list, req); 1637 elv_rb_add(&bfqq->sort_list, req); 1638 1639 /* Choose next request to be served for bfqq */ 1640 prev = bfqq->next_rq; 1641 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 1642 bfqd->last_position); 1643 bfqq->next_rq = next_rq; 1644 /* 1645 * If next_rq changes, update both the queue's budget to 1646 * fit the new request and the queue's position in its 1647 * rq_pos_tree. 1648 */ 1649 if (prev != bfqq->next_rq) { 1650 bfq_updated_next_req(bfqd, bfqq); 1651 bfq_pos_tree_add_move(bfqd, bfqq); 1652 } 1653 } 1654 } 1655 1656 static void bfq_requests_merged(struct request_queue *q, struct request *rq, 1657 struct request *next) 1658 { 1659 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); 1660 1661 if (!RB_EMPTY_NODE(&rq->rb_node)) 1662 goto end; 1663 spin_lock_irq(&bfqq->bfqd->lock); 1664 1665 /* 1666 * If next and rq belong to the same bfq_queue and next is older 1667 * than rq, then reposition rq in the fifo (by substituting next 1668 * with rq). Otherwise, if next and rq belong to different 1669 * bfq_queues, never reposition rq: in fact, we would have to 1670 * reposition it with respect to next's position in its own fifo, 1671 * which would most certainly be too expensive with respect to 1672 * the benefits. 1673 */ 1674 if (bfqq == next_bfqq && 1675 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 1676 next->fifo_time < rq->fifo_time) { 1677 list_del_init(&rq->queuelist); 1678 list_replace_init(&next->queuelist, &rq->queuelist); 1679 rq->fifo_time = next->fifo_time; 1680 } 1681 1682 if (bfqq->next_rq == next) 1683 bfqq->next_rq = rq; 1684 1685 bfq_remove_request(q, next); 1686 1687 spin_unlock_irq(&bfqq->bfqd->lock); 1688 end: 1689 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 1690 } 1691 1692 /* Must be called with bfqq != NULL */ 1693 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 1694 { 1695 if (bfq_bfqq_busy(bfqq)) 1696 bfqq->bfqd->wr_busy_queues--; 1697 bfqq->wr_coeff = 1; 1698 bfqq->wr_cur_max_time = 0; 1699 bfqq->last_wr_start_finish = jiffies; 1700 /* 1701 * Trigger a weight change on the next invocation of 1702 * __bfq_entity_update_weight_prio. 1703 */ 1704 bfqq->entity.prio_changed = 1; 1705 } 1706 1707 void bfq_end_wr_async_queues(struct bfq_data *bfqd, 1708 struct bfq_group *bfqg) 1709 { 1710 int i, j; 1711 1712 for (i = 0; i < 2; i++) 1713 for (j = 0; j < IOPRIO_BE_NR; j++) 1714 if (bfqg->async_bfqq[i][j]) 1715 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); 1716 if (bfqg->async_idle_bfqq) 1717 bfq_bfqq_end_wr(bfqg->async_idle_bfqq); 1718 } 1719 1720 static void bfq_end_wr(struct bfq_data *bfqd) 1721 { 1722 struct bfq_queue *bfqq; 1723 1724 spin_lock_irq(&bfqd->lock); 1725 1726 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) 1727 bfq_bfqq_end_wr(bfqq); 1728 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 1729 bfq_bfqq_end_wr(bfqq); 1730 bfq_end_wr_async(bfqd); 1731 1732 spin_unlock_irq(&bfqd->lock); 1733 } 1734 1735 static sector_t bfq_io_struct_pos(void *io_struct, bool request) 1736 { 1737 if (request) 1738 return blk_rq_pos(io_struct); 1739 else 1740 return ((struct bio *)io_struct)->bi_iter.bi_sector; 1741 } 1742 1743 static int bfq_rq_close_to_sector(void *io_struct, bool request, 1744 sector_t sector) 1745 { 1746 return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 1747 BFQQ_CLOSE_THR; 1748 } 1749 1750 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 1751 struct bfq_queue *bfqq, 1752 sector_t sector) 1753 { 1754 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree; 1755 struct rb_node *parent, *node; 1756 struct bfq_queue *__bfqq; 1757 1758 if (RB_EMPTY_ROOT(root)) 1759 return NULL; 1760 1761 /* 1762 * First, if we find a request starting at the end of the last 1763 * request, choose it. 1764 */ 1765 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 1766 if (__bfqq) 1767 return __bfqq; 1768 1769 /* 1770 * If the exact sector wasn't found, the parent of the NULL leaf 1771 * will contain the closest sector (rq_pos_tree sorted by 1772 * next_request position). 1773 */ 1774 __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 1775 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1776 return __bfqq; 1777 1778 if (blk_rq_pos(__bfqq->next_rq) < sector) 1779 node = rb_next(&__bfqq->pos_node); 1780 else 1781 node = rb_prev(&__bfqq->pos_node); 1782 if (!node) 1783 return NULL; 1784 1785 __bfqq = rb_entry(node, struct bfq_queue, pos_node); 1786 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 1787 return __bfqq; 1788 1789 return NULL; 1790 } 1791 1792 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 1793 struct bfq_queue *cur_bfqq, 1794 sector_t sector) 1795 { 1796 struct bfq_queue *bfqq; 1797 1798 /* 1799 * We shall notice if some of the queues are cooperating, 1800 * e.g., working closely on the same area of the device. In 1801 * that case, we can group them together and: 1) don't waste 1802 * time idling, and 2) serve the union of their requests in 1803 * the best possible order for throughput. 1804 */ 1805 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 1806 if (!bfqq || bfqq == cur_bfqq) 1807 return NULL; 1808 1809 return bfqq; 1810 } 1811 1812 static struct bfq_queue * 1813 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 1814 { 1815 int process_refs, new_process_refs; 1816 struct bfq_queue *__bfqq; 1817 1818 /* 1819 * If there are no process references on the new_bfqq, then it is 1820 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 1821 * may have dropped their last reference (not just their last process 1822 * reference). 1823 */ 1824 if (!bfqq_process_refs(new_bfqq)) 1825 return NULL; 1826 1827 /* Avoid a circular list and skip interim queue merges. */ 1828 while ((__bfqq = new_bfqq->new_bfqq)) { 1829 if (__bfqq == bfqq) 1830 return NULL; 1831 new_bfqq = __bfqq; 1832 } 1833 1834 process_refs = bfqq_process_refs(bfqq); 1835 new_process_refs = bfqq_process_refs(new_bfqq); 1836 /* 1837 * If the process for the bfqq has gone away, there is no 1838 * sense in merging the queues. 1839 */ 1840 if (process_refs == 0 || new_process_refs == 0) 1841 return NULL; 1842 1843 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 1844 new_bfqq->pid); 1845 1846 /* 1847 * Merging is just a redirection: the requests of the process 1848 * owning one of the two queues are redirected to the other queue. 1849 * The latter queue, in its turn, is set as shared if this is the 1850 * first time that the requests of some process are redirected to 1851 * it. 1852 * 1853 * We redirect bfqq to new_bfqq and not the opposite, because 1854 * we are in the context of the process owning bfqq, thus we 1855 * have the io_cq of this process. So we can immediately 1856 * configure this io_cq to redirect the requests of the 1857 * process to new_bfqq. In contrast, the io_cq of new_bfqq is 1858 * not available any more (new_bfqq->bic == NULL). 1859 * 1860 * Anyway, even in case new_bfqq coincides with the in-service 1861 * queue, redirecting requests the in-service queue is the 1862 * best option, as we feed the in-service queue with new 1863 * requests close to the last request served and, by doing so, 1864 * are likely to increase the throughput. 1865 */ 1866 bfqq->new_bfqq = new_bfqq; 1867 new_bfqq->ref += process_refs; 1868 return new_bfqq; 1869 } 1870 1871 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 1872 struct bfq_queue *new_bfqq) 1873 { 1874 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 1875 (bfqq->ioprio_class != new_bfqq->ioprio_class)) 1876 return false; 1877 1878 /* 1879 * If either of the queues has already been detected as seeky, 1880 * then merging it with the other queue is unlikely to lead to 1881 * sequential I/O. 1882 */ 1883 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 1884 return false; 1885 1886 /* 1887 * Interleaved I/O is known to be done by (some) applications 1888 * only for reads, so it does not make sense to merge async 1889 * queues. 1890 */ 1891 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 1892 return false; 1893 1894 return true; 1895 } 1896 1897 /* 1898 * If this function returns true, then bfqq cannot be merged. The idea 1899 * is that true cooperation happens very early after processes start 1900 * to do I/O. Usually, late cooperations are just accidental false 1901 * positives. In case bfqq is weight-raised, such false positives 1902 * would evidently degrade latency guarantees for bfqq. 1903 */ 1904 static bool wr_from_too_long(struct bfq_queue *bfqq) 1905 { 1906 return bfqq->wr_coeff > 1 && 1907 time_is_before_jiffies(bfqq->last_wr_start_finish + 1908 msecs_to_jiffies(100)); 1909 } 1910 1911 /* 1912 * Attempt to schedule a merge of bfqq with the currently in-service 1913 * queue or with a close queue among the scheduled queues. Return 1914 * NULL if no merge was scheduled, a pointer to the shared bfq_queue 1915 * structure otherwise. 1916 * 1917 * The OOM queue is not allowed to participate to cooperation: in fact, since 1918 * the requests temporarily redirected to the OOM queue could be redirected 1919 * again to dedicated queues at any time, the state needed to correctly 1920 * handle merging with the OOM queue would be quite complex and expensive 1921 * to maintain. Besides, in such a critical condition as an out of memory, 1922 * the benefits of queue merging may be little relevant, or even negligible. 1923 * 1924 * Weight-raised queues can be merged only if their weight-raising 1925 * period has just started. In fact cooperating processes are usually 1926 * started together. Thus, with this filter we avoid false positives 1927 * that would jeopardize low-latency guarantees. 1928 * 1929 * WARNING: queue merging may impair fairness among non-weight raised 1930 * queues, for at least two reasons: 1) the original weight of a 1931 * merged queue may change during the merged state, 2) even being the 1932 * weight the same, a merged queue may be bloated with many more 1933 * requests than the ones produced by its originally-associated 1934 * process. 1935 */ 1936 static struct bfq_queue * 1937 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 1938 void *io_struct, bool request) 1939 { 1940 struct bfq_queue *in_service_bfqq, *new_bfqq; 1941 1942 if (bfqq->new_bfqq) 1943 return bfqq->new_bfqq; 1944 1945 if (!io_struct || 1946 wr_from_too_long(bfqq) || 1947 unlikely(bfqq == &bfqd->oom_bfqq)) 1948 return NULL; 1949 1950 /* If there is only one backlogged queue, don't search. */ 1951 if (bfqd->busy_queues == 1) 1952 return NULL; 1953 1954 in_service_bfqq = bfqd->in_service_queue; 1955 1956 if (!in_service_bfqq || in_service_bfqq == bfqq 1957 || wr_from_too_long(in_service_bfqq) || 1958 unlikely(in_service_bfqq == &bfqd->oom_bfqq)) 1959 goto check_scheduled; 1960 1961 if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) && 1962 bfqq->entity.parent == in_service_bfqq->entity.parent && 1963 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 1964 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 1965 if (new_bfqq) 1966 return new_bfqq; 1967 } 1968 /* 1969 * Check whether there is a cooperator among currently scheduled 1970 * queues. The only thing we need is that the bio/request is not 1971 * NULL, as we need it to establish whether a cooperator exists. 1972 */ 1973 check_scheduled: 1974 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 1975 bfq_io_struct_pos(io_struct, request)); 1976 1977 if (new_bfqq && !wr_from_too_long(new_bfqq) && 1978 likely(new_bfqq != &bfqd->oom_bfqq) && 1979 bfq_may_be_close_cooperator(bfqq, new_bfqq)) 1980 return bfq_setup_merge(bfqq, new_bfqq); 1981 1982 return NULL; 1983 } 1984 1985 static void bfq_bfqq_save_state(struct bfq_queue *bfqq) 1986 { 1987 struct bfq_io_cq *bic = bfqq->bic; 1988 1989 /* 1990 * If !bfqq->bic, the queue is already shared or its requests 1991 * have already been redirected to a shared queue; both idle window 1992 * and weight raising state have already been saved. Do nothing. 1993 */ 1994 if (!bic) 1995 return; 1996 1997 bic->saved_ttime = bfqq->ttime; 1998 bic->saved_idle_window = bfq_bfqq_idle_window(bfqq); 1999 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 2000 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 2001 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node); 2002 bic->saved_wr_coeff = bfqq->wr_coeff; 2003 bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt; 2004 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish; 2005 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 2006 } 2007 2008 static void 2009 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 2010 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 2011 { 2012 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 2013 (unsigned long)new_bfqq->pid); 2014 /* Save weight raising and idle window of the merged queues */ 2015 bfq_bfqq_save_state(bfqq); 2016 bfq_bfqq_save_state(new_bfqq); 2017 if (bfq_bfqq_IO_bound(bfqq)) 2018 bfq_mark_bfqq_IO_bound(new_bfqq); 2019 bfq_clear_bfqq_IO_bound(bfqq); 2020 2021 /* 2022 * If bfqq is weight-raised, then let new_bfqq inherit 2023 * weight-raising. To reduce false positives, neglect the case 2024 * where bfqq has just been created, but has not yet made it 2025 * to be weight-raised (which may happen because EQM may merge 2026 * bfqq even before bfq_add_request is executed for the first 2027 * time for bfqq). Handling this case would however be very 2028 * easy, thanks to the flag just_created. 2029 */ 2030 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 2031 new_bfqq->wr_coeff = bfqq->wr_coeff; 2032 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 2033 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 2034 new_bfqq->wr_start_at_switch_to_srt = 2035 bfqq->wr_start_at_switch_to_srt; 2036 if (bfq_bfqq_busy(new_bfqq)) 2037 bfqd->wr_busy_queues++; 2038 new_bfqq->entity.prio_changed = 1; 2039 } 2040 2041 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 2042 bfqq->wr_coeff = 1; 2043 bfqq->entity.prio_changed = 1; 2044 if (bfq_bfqq_busy(bfqq)) 2045 bfqd->wr_busy_queues--; 2046 } 2047 2048 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 2049 bfqd->wr_busy_queues); 2050 2051 /* 2052 * Merge queues (that is, let bic redirect its requests to new_bfqq) 2053 */ 2054 bic_set_bfqq(bic, new_bfqq, 1); 2055 bfq_mark_bfqq_coop(new_bfqq); 2056 /* 2057 * new_bfqq now belongs to at least two bics (it is a shared queue): 2058 * set new_bfqq->bic to NULL. bfqq either: 2059 * - does not belong to any bic any more, and hence bfqq->bic must 2060 * be set to NULL, or 2061 * - is a queue whose owning bics have already been redirected to a 2062 * different queue, hence the queue is destined to not belong to 2063 * any bic soon and bfqq->bic is already NULL (therefore the next 2064 * assignment causes no harm). 2065 */ 2066 new_bfqq->bic = NULL; 2067 bfqq->bic = NULL; 2068 /* release process reference to bfqq */ 2069 bfq_put_queue(bfqq); 2070 } 2071 2072 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2073 struct bio *bio) 2074 { 2075 struct bfq_data *bfqd = q->elevator->elevator_data; 2076 bool is_sync = op_is_sync(bio->bi_opf); 2077 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 2078 2079 /* 2080 * Disallow merge of a sync bio into an async request. 2081 */ 2082 if (is_sync && !rq_is_sync(rq)) 2083 return false; 2084 2085 /* 2086 * Lookup the bfqq that this bio will be queued with. Allow 2087 * merge only if rq is queued there. 2088 */ 2089 if (!bfqq) 2090 return false; 2091 2092 /* 2093 * We take advantage of this function to perform an early merge 2094 * of the queues of possible cooperating processes. 2095 */ 2096 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false); 2097 if (new_bfqq) { 2098 /* 2099 * bic still points to bfqq, then it has not yet been 2100 * redirected to some other bfq_queue, and a queue 2101 * merge beween bfqq and new_bfqq can be safely 2102 * fulfillled, i.e., bic can be redirected to new_bfqq 2103 * and bfqq can be put. 2104 */ 2105 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 2106 new_bfqq); 2107 /* 2108 * If we get here, bio will be queued into new_queue, 2109 * so use new_bfqq to decide whether bio and rq can be 2110 * merged. 2111 */ 2112 bfqq = new_bfqq; 2113 2114 /* 2115 * Change also bqfd->bio_bfqq, as 2116 * bfqd->bio_bic now points to new_bfqq, and 2117 * this function may be invoked again (and then may 2118 * use again bqfd->bio_bfqq). 2119 */ 2120 bfqd->bio_bfqq = bfqq; 2121 } 2122 2123 return bfqq == RQ_BFQQ(rq); 2124 } 2125 2126 /* 2127 * Set the maximum time for the in-service queue to consume its 2128 * budget. This prevents seeky processes from lowering the throughput. 2129 * In practice, a time-slice service scheme is used with seeky 2130 * processes. 2131 */ 2132 static void bfq_set_budget_timeout(struct bfq_data *bfqd, 2133 struct bfq_queue *bfqq) 2134 { 2135 unsigned int timeout_coeff; 2136 2137 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 2138 timeout_coeff = 1; 2139 else 2140 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 2141 2142 bfqd->last_budget_start = ktime_get(); 2143 2144 bfqq->budget_timeout = jiffies + 2145 bfqd->bfq_timeout * timeout_coeff; 2146 } 2147 2148 static void __bfq_set_in_service_queue(struct bfq_data *bfqd, 2149 struct bfq_queue *bfqq) 2150 { 2151 if (bfqq) { 2152 bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); 2153 bfq_clear_bfqq_fifo_expire(bfqq); 2154 2155 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 2156 2157 if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 2158 bfqq->wr_coeff > 1 && 2159 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 2160 time_is_before_jiffies(bfqq->budget_timeout)) { 2161 /* 2162 * For soft real-time queues, move the start 2163 * of the weight-raising period forward by the 2164 * time the queue has not received any 2165 * service. Otherwise, a relatively long 2166 * service delay is likely to cause the 2167 * weight-raising period of the queue to end, 2168 * because of the short duration of the 2169 * weight-raising period of a soft real-time 2170 * queue. It is worth noting that this move 2171 * is not so dangerous for the other queues, 2172 * because soft real-time queues are not 2173 * greedy. 2174 * 2175 * To not add a further variable, we use the 2176 * overloaded field budget_timeout to 2177 * determine for how long the queue has not 2178 * received service, i.e., how much time has 2179 * elapsed since the queue expired. However, 2180 * this is a little imprecise, because 2181 * budget_timeout is set to jiffies if bfqq 2182 * not only expires, but also remains with no 2183 * request. 2184 */ 2185 if (time_after(bfqq->budget_timeout, 2186 bfqq->last_wr_start_finish)) 2187 bfqq->last_wr_start_finish += 2188 jiffies - bfqq->budget_timeout; 2189 else 2190 bfqq->last_wr_start_finish = jiffies; 2191 } 2192 2193 bfq_set_budget_timeout(bfqd, bfqq); 2194 bfq_log_bfqq(bfqd, bfqq, 2195 "set_in_service_queue, cur-budget = %d", 2196 bfqq->entity.budget); 2197 } 2198 2199 bfqd->in_service_queue = bfqq; 2200 } 2201 2202 /* 2203 * Get and set a new queue for service. 2204 */ 2205 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 2206 { 2207 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 2208 2209 __bfq_set_in_service_queue(bfqd, bfqq); 2210 return bfqq; 2211 } 2212 2213 static void bfq_arm_slice_timer(struct bfq_data *bfqd) 2214 { 2215 struct bfq_queue *bfqq = bfqd->in_service_queue; 2216 u32 sl; 2217 2218 bfq_mark_bfqq_wait_request(bfqq); 2219 2220 /* 2221 * We don't want to idle for seeks, but we do want to allow 2222 * fair distribution of slice time for a process doing back-to-back 2223 * seeks. So allow a little bit of time for him to submit a new rq. 2224 */ 2225 sl = bfqd->bfq_slice_idle; 2226 /* 2227 * Unless the queue is being weight-raised or the scenario is 2228 * asymmetric, grant only minimum idle time if the queue 2229 * is seeky. A long idling is preserved for a weight-raised 2230 * queue, or, more in general, in an asymmetric scenario, 2231 * because a long idling is needed for guaranteeing to a queue 2232 * its reserved share of the throughput (in particular, it is 2233 * needed if the queue has a higher weight than some other 2234 * queue). 2235 */ 2236 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 2237 bfq_symmetric_scenario(bfqd)) 2238 sl = min_t(u64, sl, BFQ_MIN_TT); 2239 2240 bfqd->last_idling_start = ktime_get(); 2241 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 2242 HRTIMER_MODE_REL); 2243 bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 2244 } 2245 2246 /* 2247 * In autotuning mode, max_budget is dynamically recomputed as the 2248 * amount of sectors transferred in timeout at the estimated peak 2249 * rate. This enables BFQ to utilize a full timeslice with a full 2250 * budget, even if the in-service queue is served at peak rate. And 2251 * this maximises throughput with sequential workloads. 2252 */ 2253 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 2254 { 2255 return (u64)bfqd->peak_rate * USEC_PER_MSEC * 2256 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 2257 } 2258 2259 /* 2260 * Update parameters related to throughput and responsiveness, as a 2261 * function of the estimated peak rate. See comments on 2262 * bfq_calc_max_budget(), and on T_slow and T_fast arrays. 2263 */ 2264 static void update_thr_responsiveness_params(struct bfq_data *bfqd) 2265 { 2266 int dev_type = blk_queue_nonrot(bfqd->queue); 2267 2268 if (bfqd->bfq_user_max_budget == 0) 2269 bfqd->bfq_max_budget = 2270 bfq_calc_max_budget(bfqd); 2271 2272 if (bfqd->device_speed == BFQ_BFQD_FAST && 2273 bfqd->peak_rate < device_speed_thresh[dev_type]) { 2274 bfqd->device_speed = BFQ_BFQD_SLOW; 2275 bfqd->RT_prod = R_slow[dev_type] * 2276 T_slow[dev_type]; 2277 } else if (bfqd->device_speed == BFQ_BFQD_SLOW && 2278 bfqd->peak_rate > device_speed_thresh[dev_type]) { 2279 bfqd->device_speed = BFQ_BFQD_FAST; 2280 bfqd->RT_prod = R_fast[dev_type] * 2281 T_fast[dev_type]; 2282 } 2283 2284 bfq_log(bfqd, 2285 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", 2286 dev_type == 0 ? "ROT" : "NONROT", 2287 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", 2288 bfqd->device_speed == BFQ_BFQD_FAST ? 2289 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : 2290 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, 2291 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> 2292 BFQ_RATE_SHIFT); 2293 } 2294 2295 static void bfq_reset_rate_computation(struct bfq_data *bfqd, 2296 struct request *rq) 2297 { 2298 if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 2299 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 2300 bfqd->peak_rate_samples = 1; 2301 bfqd->sequential_samples = 0; 2302 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 2303 blk_rq_sectors(rq); 2304 } else /* no new rq dispatched, just reset the number of samples */ 2305 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 2306 2307 bfq_log(bfqd, 2308 "reset_rate_computation at end, sample %u/%u tot_sects %llu", 2309 bfqd->peak_rate_samples, bfqd->sequential_samples, 2310 bfqd->tot_sectors_dispatched); 2311 } 2312 2313 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 2314 { 2315 u32 rate, weight, divisor; 2316 2317 /* 2318 * For the convergence property to hold (see comments on 2319 * bfq_update_peak_rate()) and for the assessment to be 2320 * reliable, a minimum number of samples must be present, and 2321 * a minimum amount of time must have elapsed. If not so, do 2322 * not compute new rate. Just reset parameters, to get ready 2323 * for a new evaluation attempt. 2324 */ 2325 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 2326 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 2327 goto reset_computation; 2328 2329 /* 2330 * If a new request completion has occurred after last 2331 * dispatch, then, to approximate the rate at which requests 2332 * have been served by the device, it is more precise to 2333 * extend the observation interval to the last completion. 2334 */ 2335 bfqd->delta_from_first = 2336 max_t(u64, bfqd->delta_from_first, 2337 bfqd->last_completion - bfqd->first_dispatch); 2338 2339 /* 2340 * Rate computed in sects/usec, and not sects/nsec, for 2341 * precision issues. 2342 */ 2343 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 2344 div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 2345 2346 /* 2347 * Peak rate not updated if: 2348 * - the percentage of sequential dispatches is below 3/4 of the 2349 * total, and rate is below the current estimated peak rate 2350 * - rate is unreasonably high (> 20M sectors/sec) 2351 */ 2352 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 2353 rate <= bfqd->peak_rate) || 2354 rate > 20<<BFQ_RATE_SHIFT) 2355 goto reset_computation; 2356 2357 /* 2358 * We have to update the peak rate, at last! To this purpose, 2359 * we use a low-pass filter. We compute the smoothing constant 2360 * of the filter as a function of the 'weight' of the new 2361 * measured rate. 2362 * 2363 * As can be seen in next formulas, we define this weight as a 2364 * quantity proportional to how sequential the workload is, 2365 * and to how long the observation time interval is. 2366 * 2367 * The weight runs from 0 to 8. The maximum value of the 2368 * weight, 8, yields the minimum value for the smoothing 2369 * constant. At this minimum value for the smoothing constant, 2370 * the measured rate contributes for half of the next value of 2371 * the estimated peak rate. 2372 * 2373 * So, the first step is to compute the weight as a function 2374 * of how sequential the workload is. Note that the weight 2375 * cannot reach 9, because bfqd->sequential_samples cannot 2376 * become equal to bfqd->peak_rate_samples, which, in its 2377 * turn, holds true because bfqd->sequential_samples is not 2378 * incremented for the first sample. 2379 */ 2380 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 2381 2382 /* 2383 * Second step: further refine the weight as a function of the 2384 * duration of the observation interval. 2385 */ 2386 weight = min_t(u32, 8, 2387 div_u64(weight * bfqd->delta_from_first, 2388 BFQ_RATE_REF_INTERVAL)); 2389 2390 /* 2391 * Divisor ranging from 10, for minimum weight, to 2, for 2392 * maximum weight. 2393 */ 2394 divisor = 10 - weight; 2395 2396 /* 2397 * Finally, update peak rate: 2398 * 2399 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 2400 */ 2401 bfqd->peak_rate *= divisor-1; 2402 bfqd->peak_rate /= divisor; 2403 rate /= divisor; /* smoothing constant alpha = 1/divisor */ 2404 2405 bfqd->peak_rate += rate; 2406 update_thr_responsiveness_params(bfqd); 2407 2408 reset_computation: 2409 bfq_reset_rate_computation(bfqd, rq); 2410 } 2411 2412 /* 2413 * Update the read/write peak rate (the main quantity used for 2414 * auto-tuning, see update_thr_responsiveness_params()). 2415 * 2416 * It is not trivial to estimate the peak rate (correctly): because of 2417 * the presence of sw and hw queues between the scheduler and the 2418 * device components that finally serve I/O requests, it is hard to 2419 * say exactly when a given dispatched request is served inside the 2420 * device, and for how long. As a consequence, it is hard to know 2421 * precisely at what rate a given set of requests is actually served 2422 * by the device. 2423 * 2424 * On the opposite end, the dispatch time of any request is trivially 2425 * available, and, from this piece of information, the "dispatch rate" 2426 * of requests can be immediately computed. So, the idea in the next 2427 * function is to use what is known, namely request dispatch times 2428 * (plus, when useful, request completion times), to estimate what is 2429 * unknown, namely in-device request service rate. 2430 * 2431 * The main issue is that, because of the above facts, the rate at 2432 * which a certain set of requests is dispatched over a certain time 2433 * interval can vary greatly with respect to the rate at which the 2434 * same requests are then served. But, since the size of any 2435 * intermediate queue is limited, and the service scheme is lossless 2436 * (no request is silently dropped), the following obvious convergence 2437 * property holds: the number of requests dispatched MUST become 2438 * closer and closer to the number of requests completed as the 2439 * observation interval grows. This is the key property used in 2440 * the next function to estimate the peak service rate as a function 2441 * of the observed dispatch rate. The function assumes to be invoked 2442 * on every request dispatch. 2443 */ 2444 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 2445 { 2446 u64 now_ns = ktime_get_ns(); 2447 2448 if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 2449 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 2450 bfqd->peak_rate_samples); 2451 bfq_reset_rate_computation(bfqd, rq); 2452 goto update_last_values; /* will add one sample */ 2453 } 2454 2455 /* 2456 * Device idle for very long: the observation interval lasting 2457 * up to this dispatch cannot be a valid observation interval 2458 * for computing a new peak rate (similarly to the late- 2459 * completion event in bfq_completed_request()). Go to 2460 * update_rate_and_reset to have the following three steps 2461 * taken: 2462 * - close the observation interval at the last (previous) 2463 * request dispatch or completion 2464 * - compute rate, if possible, for that observation interval 2465 * - start a new observation interval with this dispatch 2466 */ 2467 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 2468 bfqd->rq_in_driver == 0) 2469 goto update_rate_and_reset; 2470 2471 /* Update sampling information */ 2472 bfqd->peak_rate_samples++; 2473 2474 if ((bfqd->rq_in_driver > 0 || 2475 now_ns - bfqd->last_completion < BFQ_MIN_TT) 2476 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) 2477 bfqd->sequential_samples++; 2478 2479 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 2480 2481 /* Reset max observed rq size every 32 dispatches */ 2482 if (likely(bfqd->peak_rate_samples % 32)) 2483 bfqd->last_rq_max_size = 2484 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 2485 else 2486 bfqd->last_rq_max_size = blk_rq_sectors(rq); 2487 2488 bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 2489 2490 /* Target observation interval not yet reached, go on sampling */ 2491 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 2492 goto update_last_values; 2493 2494 update_rate_and_reset: 2495 bfq_update_rate_reset(bfqd, rq); 2496 update_last_values: 2497 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2498 bfqd->last_dispatch = now_ns; 2499 } 2500 2501 /* 2502 * Remove request from internal lists. 2503 */ 2504 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 2505 { 2506 struct bfq_queue *bfqq = RQ_BFQQ(rq); 2507 2508 /* 2509 * For consistency, the next instruction should have been 2510 * executed after removing the request from the queue and 2511 * dispatching it. We execute instead this instruction before 2512 * bfq_remove_request() (and hence introduce a temporary 2513 * inconsistency), for efficiency. In fact, should this 2514 * dispatch occur for a non in-service bfqq, this anticipated 2515 * increment prevents two counters related to bfqq->dispatched 2516 * from risking to be, first, uselessly decremented, and then 2517 * incremented again when the (new) value of bfqq->dispatched 2518 * happens to be taken into account. 2519 */ 2520 bfqq->dispatched++; 2521 bfq_update_peak_rate(q->elevator->elevator_data, rq); 2522 2523 bfq_remove_request(q, rq); 2524 } 2525 2526 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) 2527 { 2528 /* 2529 * If this bfqq is shared between multiple processes, check 2530 * to make sure that those processes are still issuing I/Os 2531 * within the mean seek distance. If not, it may be time to 2532 * break the queues apart again. 2533 */ 2534 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 2535 bfq_mark_bfqq_split_coop(bfqq); 2536 2537 if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 2538 if (bfqq->dispatched == 0) 2539 /* 2540 * Overloading budget_timeout field to store 2541 * the time at which the queue remains with no 2542 * backlog and no outstanding request; used by 2543 * the weight-raising mechanism. 2544 */ 2545 bfqq->budget_timeout = jiffies; 2546 2547 bfq_del_bfqq_busy(bfqd, bfqq, true); 2548 } else { 2549 bfq_requeue_bfqq(bfqd, bfqq); 2550 /* 2551 * Resort priority tree of potential close cooperators. 2552 */ 2553 bfq_pos_tree_add_move(bfqd, bfqq); 2554 } 2555 2556 /* 2557 * All in-service entities must have been properly deactivated 2558 * or requeued before executing the next function, which 2559 * resets all in-service entites as no more in service. 2560 */ 2561 __bfq_bfqd_reset_in_service(bfqd); 2562 } 2563 2564 /** 2565 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 2566 * @bfqd: device data. 2567 * @bfqq: queue to update. 2568 * @reason: reason for expiration. 2569 * 2570 * Handle the feedback on @bfqq budget at queue expiration. 2571 * See the body for detailed comments. 2572 */ 2573 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 2574 struct bfq_queue *bfqq, 2575 enum bfqq_expiration reason) 2576 { 2577 struct request *next_rq; 2578 int budget, min_budget; 2579 2580 min_budget = bfq_min_budget(bfqd); 2581 2582 if (bfqq->wr_coeff == 1) 2583 budget = bfqq->max_budget; 2584 else /* 2585 * Use a constant, low budget for weight-raised queues, 2586 * to help achieve a low latency. Keep it slightly higher 2587 * than the minimum possible budget, to cause a little 2588 * bit fewer expirations. 2589 */ 2590 budget = 2 * min_budget; 2591 2592 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 2593 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 2594 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 2595 budget, bfq_min_budget(bfqd)); 2596 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 2597 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 2598 2599 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 2600 switch (reason) { 2601 /* 2602 * Caveat: in all the following cases we trade latency 2603 * for throughput. 2604 */ 2605 case BFQQE_TOO_IDLE: 2606 /* 2607 * This is the only case where we may reduce 2608 * the budget: if there is no request of the 2609 * process still waiting for completion, then 2610 * we assume (tentatively) that the timer has 2611 * expired because the batch of requests of 2612 * the process could have been served with a 2613 * smaller budget. Hence, betting that 2614 * process will behave in the same way when it 2615 * becomes backlogged again, we reduce its 2616 * next budget. As long as we guess right, 2617 * this budget cut reduces the latency 2618 * experienced by the process. 2619 * 2620 * However, if there are still outstanding 2621 * requests, then the process may have not yet 2622 * issued its next request just because it is 2623 * still waiting for the completion of some of 2624 * the still outstanding ones. So in this 2625 * subcase we do not reduce its budget, on the 2626 * contrary we increase it to possibly boost 2627 * the throughput, as discussed in the 2628 * comments to the BUDGET_TIMEOUT case. 2629 */ 2630 if (bfqq->dispatched > 0) /* still outstanding reqs */ 2631 budget = min(budget * 2, bfqd->bfq_max_budget); 2632 else { 2633 if (budget > 5 * min_budget) 2634 budget -= 4 * min_budget; 2635 else 2636 budget = min_budget; 2637 } 2638 break; 2639 case BFQQE_BUDGET_TIMEOUT: 2640 /* 2641 * We double the budget here because it gives 2642 * the chance to boost the throughput if this 2643 * is not a seeky process (and has bumped into 2644 * this timeout because of, e.g., ZBR). 2645 */ 2646 budget = min(budget * 2, bfqd->bfq_max_budget); 2647 break; 2648 case BFQQE_BUDGET_EXHAUSTED: 2649 /* 2650 * The process still has backlog, and did not 2651 * let either the budget timeout or the disk 2652 * idling timeout expire. Hence it is not 2653 * seeky, has a short thinktime and may be 2654 * happy with a higher budget too. So 2655 * definitely increase the budget of this good 2656 * candidate to boost the disk throughput. 2657 */ 2658 budget = min(budget * 4, bfqd->bfq_max_budget); 2659 break; 2660 case BFQQE_NO_MORE_REQUESTS: 2661 /* 2662 * For queues that expire for this reason, it 2663 * is particularly important to keep the 2664 * budget close to the actual service they 2665 * need. Doing so reduces the timestamp 2666 * misalignment problem described in the 2667 * comments in the body of 2668 * __bfq_activate_entity. In fact, suppose 2669 * that a queue systematically expires for 2670 * BFQQE_NO_MORE_REQUESTS and presents a 2671 * new request in time to enjoy timestamp 2672 * back-shifting. The larger the budget of the 2673 * queue is with respect to the service the 2674 * queue actually requests in each service 2675 * slot, the more times the queue can be 2676 * reactivated with the same virtual finish 2677 * time. It follows that, even if this finish 2678 * time is pushed to the system virtual time 2679 * to reduce the consequent timestamp 2680 * misalignment, the queue unjustly enjoys for 2681 * many re-activations a lower finish time 2682 * than all newly activated queues. 2683 * 2684 * The service needed by bfqq is measured 2685 * quite precisely by bfqq->entity.service. 2686 * Since bfqq does not enjoy device idling, 2687 * bfqq->entity.service is equal to the number 2688 * of sectors that the process associated with 2689 * bfqq requested to read/write before waiting 2690 * for request completions, or blocking for 2691 * other reasons. 2692 */ 2693 budget = max_t(int, bfqq->entity.service, min_budget); 2694 break; 2695 default: 2696 return; 2697 } 2698 } else if (!bfq_bfqq_sync(bfqq)) { 2699 /* 2700 * Async queues get always the maximum possible 2701 * budget, as for them we do not care about latency 2702 * (in addition, their ability to dispatch is limited 2703 * by the charging factor). 2704 */ 2705 budget = bfqd->bfq_max_budget; 2706 } 2707 2708 bfqq->max_budget = budget; 2709 2710 if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 2711 !bfqd->bfq_user_max_budget) 2712 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 2713 2714 /* 2715 * If there is still backlog, then assign a new budget, making 2716 * sure that it is large enough for the next request. Since 2717 * the finish time of bfqq must be kept in sync with the 2718 * budget, be sure to call __bfq_bfqq_expire() *after* this 2719 * update. 2720 * 2721 * If there is no backlog, then no need to update the budget; 2722 * it will be updated on the arrival of a new request. 2723 */ 2724 next_rq = bfqq->next_rq; 2725 if (next_rq) 2726 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 2727 bfq_serv_to_charge(next_rq, bfqq)); 2728 2729 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 2730 next_rq ? blk_rq_sectors(next_rq) : 0, 2731 bfqq->entity.budget); 2732 } 2733 2734 /* 2735 * Return true if the process associated with bfqq is "slow". The slow 2736 * flag is used, in addition to the budget timeout, to reduce the 2737 * amount of service provided to seeky processes, and thus reduce 2738 * their chances to lower the throughput. More details in the comments 2739 * on the function bfq_bfqq_expire(). 2740 * 2741 * An important observation is in order: as discussed in the comments 2742 * on the function bfq_update_peak_rate(), with devices with internal 2743 * queues, it is hard if ever possible to know when and for how long 2744 * an I/O request is processed by the device (apart from the trivial 2745 * I/O pattern where a new request is dispatched only after the 2746 * previous one has been completed). This makes it hard to evaluate 2747 * the real rate at which the I/O requests of each bfq_queue are 2748 * served. In fact, for an I/O scheduler like BFQ, serving a 2749 * bfq_queue means just dispatching its requests during its service 2750 * slot (i.e., until the budget of the queue is exhausted, or the 2751 * queue remains idle, or, finally, a timeout fires). But, during the 2752 * service slot of a bfq_queue, around 100 ms at most, the device may 2753 * be even still processing requests of bfq_queues served in previous 2754 * service slots. On the opposite end, the requests of the in-service 2755 * bfq_queue may be completed after the service slot of the queue 2756 * finishes. 2757 * 2758 * Anyway, unless more sophisticated solutions are used 2759 * (where possible), the sum of the sizes of the requests dispatched 2760 * during the service slot of a bfq_queue is probably the only 2761 * approximation available for the service received by the bfq_queue 2762 * during its service slot. And this sum is the quantity used in this 2763 * function to evaluate the I/O speed of a process. 2764 */ 2765 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 2766 bool compensate, enum bfqq_expiration reason, 2767 unsigned long *delta_ms) 2768 { 2769 ktime_t delta_ktime; 2770 u32 delta_usecs; 2771 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 2772 2773 if (!bfq_bfqq_sync(bfqq)) 2774 return false; 2775 2776 if (compensate) 2777 delta_ktime = bfqd->last_idling_start; 2778 else 2779 delta_ktime = ktime_get(); 2780 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 2781 delta_usecs = ktime_to_us(delta_ktime); 2782 2783 /* don't use too short time intervals */ 2784 if (delta_usecs < 1000) { 2785 if (blk_queue_nonrot(bfqd->queue)) 2786 /* 2787 * give same worst-case guarantees as idling 2788 * for seeky 2789 */ 2790 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 2791 else /* charge at least one seek */ 2792 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 2793 2794 return slow; 2795 } 2796 2797 *delta_ms = delta_usecs / USEC_PER_MSEC; 2798 2799 /* 2800 * Use only long (> 20ms) intervals to filter out excessive 2801 * spikes in service rate estimation. 2802 */ 2803 if (delta_usecs > 20000) { 2804 /* 2805 * Caveat for rotational devices: processes doing I/O 2806 * in the slower disk zones tend to be slow(er) even 2807 * if not seeky. In this respect, the estimated peak 2808 * rate is likely to be an average over the disk 2809 * surface. Accordingly, to not be too harsh with 2810 * unlucky processes, a process is deemed slow only if 2811 * its rate has been lower than half of the estimated 2812 * peak rate. 2813 */ 2814 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 2815 } 2816 2817 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 2818 2819 return slow; 2820 } 2821 2822 /* 2823 * To be deemed as soft real-time, an application must meet two 2824 * requirements. First, the application must not require an average 2825 * bandwidth higher than the approximate bandwidth required to playback or 2826 * record a compressed high-definition video. 2827 * The next function is invoked on the completion of the last request of a 2828 * batch, to compute the next-start time instant, soft_rt_next_start, such 2829 * that, if the next request of the application does not arrive before 2830 * soft_rt_next_start, then the above requirement on the bandwidth is met. 2831 * 2832 * The second requirement is that the request pattern of the application is 2833 * isochronous, i.e., that, after issuing a request or a batch of requests, 2834 * the application stops issuing new requests until all its pending requests 2835 * have been completed. After that, the application may issue a new batch, 2836 * and so on. 2837 * For this reason the next function is invoked to compute 2838 * soft_rt_next_start only for applications that meet this requirement, 2839 * whereas soft_rt_next_start is set to infinity for applications that do 2840 * not. 2841 * 2842 * Unfortunately, even a greedy application may happen to behave in an 2843 * isochronous way if the CPU load is high. In fact, the application may 2844 * stop issuing requests while the CPUs are busy serving other processes, 2845 * then restart, then stop again for a while, and so on. In addition, if 2846 * the disk achieves a low enough throughput with the request pattern 2847 * issued by the application (e.g., because the request pattern is random 2848 * and/or the device is slow), then the application may meet the above 2849 * bandwidth requirement too. To prevent such a greedy application to be 2850 * deemed as soft real-time, a further rule is used in the computation of 2851 * soft_rt_next_start: soft_rt_next_start must be higher than the current 2852 * time plus the maximum time for which the arrival of a request is waited 2853 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. 2854 * This filters out greedy applications, as the latter issue instead their 2855 * next request as soon as possible after the last one has been completed 2856 * (in contrast, when a batch of requests is completed, a soft real-time 2857 * application spends some time processing data). 2858 * 2859 * Unfortunately, the last filter may easily generate false positives if 2860 * only bfqd->bfq_slice_idle is used as a reference time interval and one 2861 * or both the following cases occur: 2862 * 1) HZ is so low that the duration of a jiffy is comparable to or higher 2863 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with 2864 * HZ=100. 2865 * 2) jiffies, instead of increasing at a constant rate, may stop increasing 2866 * for a while, then suddenly 'jump' by several units to recover the lost 2867 * increments. This seems to happen, e.g., inside virtual machines. 2868 * To address this issue, we do not use as a reference time interval just 2869 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In 2870 * particular we add the minimum number of jiffies for which the filter 2871 * seems to be quite precise also in embedded systems and KVM/QEMU virtual 2872 * machines. 2873 */ 2874 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 2875 struct bfq_queue *bfqq) 2876 { 2877 return max(bfqq->last_idle_bklogged + 2878 HZ * bfqq->service_from_backlogged / 2879 bfqd->bfq_wr_max_softrt_rate, 2880 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 2881 } 2882 2883 /* 2884 * Return the farthest future time instant according to jiffies 2885 * macros. 2886 */ 2887 static unsigned long bfq_greatest_from_now(void) 2888 { 2889 return jiffies + MAX_JIFFY_OFFSET; 2890 } 2891 2892 /* 2893 * Return the farthest past time instant according to jiffies 2894 * macros. 2895 */ 2896 static unsigned long bfq_smallest_from_now(void) 2897 { 2898 return jiffies - MAX_JIFFY_OFFSET; 2899 } 2900 2901 /** 2902 * bfq_bfqq_expire - expire a queue. 2903 * @bfqd: device owning the queue. 2904 * @bfqq: the queue to expire. 2905 * @compensate: if true, compensate for the time spent idling. 2906 * @reason: the reason causing the expiration. 2907 * 2908 * If the process associated with bfqq does slow I/O (e.g., because it 2909 * issues random requests), we charge bfqq with the time it has been 2910 * in service instead of the service it has received (see 2911 * bfq_bfqq_charge_time for details on how this goal is achieved). As 2912 * a consequence, bfqq will typically get higher timestamps upon 2913 * reactivation, and hence it will be rescheduled as if it had 2914 * received more service than what it has actually received. In the 2915 * end, bfqq receives less service in proportion to how slowly its 2916 * associated process consumes its budgets (and hence how seriously it 2917 * tends to lower the throughput). In addition, this time-charging 2918 * strategy guarantees time fairness among slow processes. In 2919 * contrast, if the process associated with bfqq is not slow, we 2920 * charge bfqq exactly with the service it has received. 2921 * 2922 * Charging time to the first type of queues and the exact service to 2923 * the other has the effect of using the WF2Q+ policy to schedule the 2924 * former on a timeslice basis, without violating service domain 2925 * guarantees among the latter. 2926 */ 2927 void bfq_bfqq_expire(struct bfq_data *bfqd, 2928 struct bfq_queue *bfqq, 2929 bool compensate, 2930 enum bfqq_expiration reason) 2931 { 2932 bool slow; 2933 unsigned long delta = 0; 2934 struct bfq_entity *entity = &bfqq->entity; 2935 int ref; 2936 2937 /* 2938 * Check whether the process is slow (see bfq_bfqq_is_slow). 2939 */ 2940 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); 2941 2942 /* 2943 * Increase service_from_backlogged before next statement, 2944 * because the possible next invocation of 2945 * bfq_bfqq_charge_time would likely inflate 2946 * entity->service. In contrast, service_from_backlogged must 2947 * contain real service, to enable the soft real-time 2948 * heuristic to correctly compute the bandwidth consumed by 2949 * bfqq. 2950 */ 2951 bfqq->service_from_backlogged += entity->service; 2952 2953 /* 2954 * As above explained, charge slow (typically seeky) and 2955 * timed-out queues with the time and not the service 2956 * received, to favor sequential workloads. 2957 * 2958 * Processes doing I/O in the slower disk zones will tend to 2959 * be slow(er) even if not seeky. Therefore, since the 2960 * estimated peak rate is actually an average over the disk 2961 * surface, these processes may timeout just for bad luck. To 2962 * avoid punishing them, do not charge time to processes that 2963 * succeeded in consuming at least 2/3 of their budget. This 2964 * allows BFQ to preserve enough elasticity to still perform 2965 * bandwidth, and not time, distribution with little unlucky 2966 * or quasi-sequential processes. 2967 */ 2968 if (bfqq->wr_coeff == 1 && 2969 (slow || 2970 (reason == BFQQE_BUDGET_TIMEOUT && 2971 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 2972 bfq_bfqq_charge_time(bfqd, bfqq, delta); 2973 2974 if (reason == BFQQE_TOO_IDLE && 2975 entity->service <= 2 * entity->budget / 10) 2976 bfq_clear_bfqq_IO_bound(bfqq); 2977 2978 if (bfqd->low_latency && bfqq->wr_coeff == 1) 2979 bfqq->last_wr_start_finish = jiffies; 2980 2981 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 2982 RB_EMPTY_ROOT(&bfqq->sort_list)) { 2983 /* 2984 * If we get here, and there are no outstanding 2985 * requests, then the request pattern is isochronous 2986 * (see the comments on the function 2987 * bfq_bfqq_softrt_next_start()). Thus we can compute 2988 * soft_rt_next_start. If, instead, the queue still 2989 * has outstanding requests, then we have to wait for 2990 * the completion of all the outstanding requests to 2991 * discover whether the request pattern is actually 2992 * isochronous. 2993 */ 2994 if (bfqq->dispatched == 0) 2995 bfqq->soft_rt_next_start = 2996 bfq_bfqq_softrt_next_start(bfqd, bfqq); 2997 else { 2998 /* 2999 * The application is still waiting for the 3000 * completion of one or more requests: 3001 * prevent it from possibly being incorrectly 3002 * deemed as soft real-time by setting its 3003 * soft_rt_next_start to infinity. In fact, 3004 * without this assignment, the application 3005 * would be incorrectly deemed as soft 3006 * real-time if: 3007 * 1) it issued a new request before the 3008 * completion of all its in-flight 3009 * requests, and 3010 * 2) at that time, its soft_rt_next_start 3011 * happened to be in the past. 3012 */ 3013 bfqq->soft_rt_next_start = 3014 bfq_greatest_from_now(); 3015 /* 3016 * Schedule an update of soft_rt_next_start to when 3017 * the task may be discovered to be isochronous. 3018 */ 3019 bfq_mark_bfqq_softrt_update(bfqq); 3020 } 3021 } 3022 3023 bfq_log_bfqq(bfqd, bfqq, 3024 "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, 3025 slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); 3026 3027 /* 3028 * Increase, decrease or leave budget unchanged according to 3029 * reason. 3030 */ 3031 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 3032 ref = bfqq->ref; 3033 __bfq_bfqq_expire(bfqd, bfqq); 3034 3035 /* mark bfqq as waiting a request only if a bic still points to it */ 3036 if (ref > 1 && !bfq_bfqq_busy(bfqq) && 3037 reason != BFQQE_BUDGET_TIMEOUT && 3038 reason != BFQQE_BUDGET_EXHAUSTED) 3039 bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 3040 } 3041 3042 /* 3043 * Budget timeout is not implemented through a dedicated timer, but 3044 * just checked on request arrivals and completions, as well as on 3045 * idle timer expirations. 3046 */ 3047 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 3048 { 3049 return time_is_before_eq_jiffies(bfqq->budget_timeout); 3050 } 3051 3052 /* 3053 * If we expire a queue that is actively waiting (i.e., with the 3054 * device idled) for the arrival of a new request, then we may incur 3055 * the timestamp misalignment problem described in the body of the 3056 * function __bfq_activate_entity. Hence we return true only if this 3057 * condition does not hold, or if the queue is slow enough to deserve 3058 * only to be kicked off for preserving a high throughput. 3059 */ 3060 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 3061 { 3062 bfq_log_bfqq(bfqq->bfqd, bfqq, 3063 "may_budget_timeout: wait_request %d left %d timeout %d", 3064 bfq_bfqq_wait_request(bfqq), 3065 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 3066 bfq_bfqq_budget_timeout(bfqq)); 3067 3068 return (!bfq_bfqq_wait_request(bfqq) || 3069 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 3070 && 3071 bfq_bfqq_budget_timeout(bfqq); 3072 } 3073 3074 /* 3075 * For a queue that becomes empty, device idling is allowed only if 3076 * this function returns true for the queue. As a consequence, since 3077 * device idling plays a critical role in both throughput boosting and 3078 * service guarantees, the return value of this function plays a 3079 * critical role in both these aspects as well. 3080 * 3081 * In a nutshell, this function returns true only if idling is 3082 * beneficial for throughput or, even if detrimental for throughput, 3083 * idling is however necessary to preserve service guarantees (low 3084 * latency, desired throughput distribution, ...). In particular, on 3085 * NCQ-capable devices, this function tries to return false, so as to 3086 * help keep the drives' internal queues full, whenever this helps the 3087 * device boost the throughput without causing any service-guarantee 3088 * issue. 3089 * 3090 * In more detail, the return value of this function is obtained by, 3091 * first, computing a number of boolean variables that take into 3092 * account throughput and service-guarantee issues, and, then, 3093 * combining these variables in a logical expression. Most of the 3094 * issues taken into account are not trivial. We discuss these issues 3095 * individually while introducing the variables. 3096 */ 3097 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) 3098 { 3099 struct bfq_data *bfqd = bfqq->bfqd; 3100 bool idling_boosts_thr, idling_boosts_thr_without_issues, 3101 idling_needed_for_service_guarantees, 3102 asymmetric_scenario; 3103 3104 if (bfqd->strict_guarantees) 3105 return true; 3106 3107 /* 3108 * The next variable takes into account the cases where idling 3109 * boosts the throughput. 3110 * 3111 * The value of the variable is computed considering, first, that 3112 * idling is virtually always beneficial for the throughput if: 3113 * (a) the device is not NCQ-capable, or 3114 * (b) regardless of the presence of NCQ, the device is rotational 3115 * and the request pattern for bfqq is I/O-bound and sequential. 3116 * 3117 * Secondly, and in contrast to the above item (b), idling an 3118 * NCQ-capable flash-based device would not boost the 3119 * throughput even with sequential I/O; rather it would lower 3120 * the throughput in proportion to how fast the device 3121 * is. Accordingly, the next variable is true if any of the 3122 * above conditions (a) and (b) is true, and, in particular, 3123 * happens to be false if bfqd is an NCQ-capable flash-based 3124 * device. 3125 */ 3126 idling_boosts_thr = !bfqd->hw_tag || 3127 (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) && 3128 bfq_bfqq_idle_window(bfqq)); 3129 3130 /* 3131 * The value of the next variable, 3132 * idling_boosts_thr_without_issues, is equal to that of 3133 * idling_boosts_thr, unless a special case holds. In this 3134 * special case, described below, idling may cause problems to 3135 * weight-raised queues. 3136 * 3137 * When the request pool is saturated (e.g., in the presence 3138 * of write hogs), if the processes associated with 3139 * non-weight-raised queues ask for requests at a lower rate, 3140 * then processes associated with weight-raised queues have a 3141 * higher probability to get a request from the pool 3142 * immediately (or at least soon) when they need one. Thus 3143 * they have a higher probability to actually get a fraction 3144 * of the device throughput proportional to their high 3145 * weight. This is especially true with NCQ-capable drives, 3146 * which enqueue several requests in advance, and further 3147 * reorder internally-queued requests. 3148 * 3149 * For this reason, we force to false the value of 3150 * idling_boosts_thr_without_issues if there are weight-raised 3151 * busy queues. In this case, and if bfqq is not weight-raised, 3152 * this guarantees that the device is not idled for bfqq (if, 3153 * instead, bfqq is weight-raised, then idling will be 3154 * guaranteed by another variable, see below). Combined with 3155 * the timestamping rules of BFQ (see [1] for details), this 3156 * behavior causes bfqq, and hence any sync non-weight-raised 3157 * queue, to get a lower number of requests served, and thus 3158 * to ask for a lower number of requests from the request 3159 * pool, before the busy weight-raised queues get served 3160 * again. This often mitigates starvation problems in the 3161 * presence of heavy write workloads and NCQ, thereby 3162 * guaranteeing a higher application and system responsiveness 3163 * in these hostile scenarios. 3164 */ 3165 idling_boosts_thr_without_issues = idling_boosts_thr && 3166 bfqd->wr_busy_queues == 0; 3167 3168 /* 3169 * There is then a case where idling must be performed not 3170 * for throughput concerns, but to preserve service 3171 * guarantees. 3172 * 3173 * To introduce this case, we can note that allowing the drive 3174 * to enqueue more than one request at a time, and hence 3175 * delegating de facto final scheduling decisions to the 3176 * drive's internal scheduler, entails loss of control on the 3177 * actual request service order. In particular, the critical 3178 * situation is when requests from different processes happen 3179 * to be present, at the same time, in the internal queue(s) 3180 * of the drive. In such a situation, the drive, by deciding 3181 * the service order of the internally-queued requests, does 3182 * determine also the actual throughput distribution among 3183 * these processes. But the drive typically has no notion or 3184 * concern about per-process throughput distribution, and 3185 * makes its decisions only on a per-request basis. Therefore, 3186 * the service distribution enforced by the drive's internal 3187 * scheduler is likely to coincide with the desired 3188 * device-throughput distribution only in a completely 3189 * symmetric scenario where: 3190 * (i) each of these processes must get the same throughput as 3191 * the others; 3192 * (ii) all these processes have the same I/O pattern 3193 (either sequential or random). 3194 * In fact, in such a scenario, the drive will tend to treat 3195 * the requests of each of these processes in about the same 3196 * way as the requests of the others, and thus to provide 3197 * each of these processes with about the same throughput 3198 * (which is exactly the desired throughput distribution). In 3199 * contrast, in any asymmetric scenario, device idling is 3200 * certainly needed to guarantee that bfqq receives its 3201 * assigned fraction of the device throughput (see [1] for 3202 * details). 3203 * 3204 * We address this issue by controlling, actually, only the 3205 * symmetry sub-condition (i), i.e., provided that 3206 * sub-condition (i) holds, idling is not performed, 3207 * regardless of whether sub-condition (ii) holds. In other 3208 * words, only if sub-condition (i) holds, then idling is 3209 * allowed, and the device tends to be prevented from queueing 3210 * many requests, possibly of several processes. The reason 3211 * for not controlling also sub-condition (ii) is that we 3212 * exploit preemption to preserve guarantees in case of 3213 * symmetric scenarios, even if (ii) does not hold, as 3214 * explained in the next two paragraphs. 3215 * 3216 * Even if a queue, say Q, is expired when it remains idle, Q 3217 * can still preempt the new in-service queue if the next 3218 * request of Q arrives soon (see the comments on 3219 * bfq_bfqq_update_budg_for_activation). If all queues and 3220 * groups have the same weight, this form of preemption, 3221 * combined with the hole-recovery heuristic described in the 3222 * comments on function bfq_bfqq_update_budg_for_activation, 3223 * are enough to preserve a correct bandwidth distribution in 3224 * the mid term, even without idling. In fact, even if not 3225 * idling allows the internal queues of the device to contain 3226 * many requests, and thus to reorder requests, we can rather 3227 * safely assume that the internal scheduler still preserves a 3228 * minimum of mid-term fairness. The motivation for using 3229 * preemption instead of idling is that, by not idling, 3230 * service guarantees are preserved without minimally 3231 * sacrificing throughput. In other words, both a high 3232 * throughput and its desired distribution are obtained. 3233 * 3234 * More precisely, this preemption-based, idleless approach 3235 * provides fairness in terms of IOPS, and not sectors per 3236 * second. This can be seen with a simple example. Suppose 3237 * that there are two queues with the same weight, but that 3238 * the first queue receives requests of 8 sectors, while the 3239 * second queue receives requests of 1024 sectors. In 3240 * addition, suppose that each of the two queues contains at 3241 * most one request at a time, which implies that each queue 3242 * always remains idle after it is served. Finally, after 3243 * remaining idle, each queue receives very quickly a new 3244 * request. It follows that the two queues are served 3245 * alternatively, preempting each other if needed. This 3246 * implies that, although both queues have the same weight, 3247 * the queue with large requests receives a service that is 3248 * 1024/8 times as high as the service received by the other 3249 * queue. 3250 * 3251 * On the other hand, device idling is performed, and thus 3252 * pure sector-domain guarantees are provided, for the 3253 * following queues, which are likely to need stronger 3254 * throughput guarantees: weight-raised queues, and queues 3255 * with a higher weight than other queues. When such queues 3256 * are active, sub-condition (i) is false, which triggers 3257 * device idling. 3258 * 3259 * According to the above considerations, the next variable is 3260 * true (only) if sub-condition (i) holds. To compute the 3261 * value of this variable, we not only use the return value of 3262 * the function bfq_symmetric_scenario(), but also check 3263 * whether bfqq is being weight-raised, because 3264 * bfq_symmetric_scenario() does not take into account also 3265 * weight-raised queues (see comments on 3266 * bfq_weights_tree_add()). 3267 * 3268 * As a side note, it is worth considering that the above 3269 * device-idling countermeasures may however fail in the 3270 * following unlucky scenario: if idling is (correctly) 3271 * disabled in a time period during which all symmetry 3272 * sub-conditions hold, and hence the device is allowed to 3273 * enqueue many requests, but at some later point in time some 3274 * sub-condition stops to hold, then it may become impossible 3275 * to let requests be served in the desired order until all 3276 * the requests already queued in the device have been served. 3277 */ 3278 asymmetric_scenario = bfqq->wr_coeff > 1 || 3279 !bfq_symmetric_scenario(bfqd); 3280 3281 /* 3282 * Finally, there is a case where maximizing throughput is the 3283 * best choice even if it may cause unfairness toward 3284 * bfqq. Such a case is when bfqq became active in a burst of 3285 * queue activations. Queues that became active during a large 3286 * burst benefit only from throughput, as discussed in the 3287 * comments on bfq_handle_burst. Thus, if bfqq became active 3288 * in a burst and not idling the device maximizes throughput, 3289 * then the device must no be idled, because not idling the 3290 * device provides bfqq and all other queues in the burst with 3291 * maximum benefit. Combining this and the above case, we can 3292 * now establish when idling is actually needed to preserve 3293 * service guarantees. 3294 */ 3295 idling_needed_for_service_guarantees = 3296 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq); 3297 3298 /* 3299 * We have now all the components we need to compute the return 3300 * value of the function, which is true only if both the following 3301 * conditions hold: 3302 * 1) bfqq is sync, because idling make sense only for sync queues; 3303 * 2) idling either boosts the throughput (without issues), or 3304 * is necessary to preserve service guarantees. 3305 */ 3306 return bfq_bfqq_sync(bfqq) && 3307 (idling_boosts_thr_without_issues || 3308 idling_needed_for_service_guarantees); 3309 } 3310 3311 /* 3312 * If the in-service queue is empty but the function bfq_bfqq_may_idle 3313 * returns true, then: 3314 * 1) the queue must remain in service and cannot be expired, and 3315 * 2) the device must be idled to wait for the possible arrival of a new 3316 * request for the queue. 3317 * See the comments on the function bfq_bfqq_may_idle for the reasons 3318 * why performing device idling is the best choice to boost the throughput 3319 * and preserve service guarantees when bfq_bfqq_may_idle itself 3320 * returns true. 3321 */ 3322 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 3323 { 3324 struct bfq_data *bfqd = bfqq->bfqd; 3325 3326 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && 3327 bfq_bfqq_may_idle(bfqq); 3328 } 3329 3330 /* 3331 * Select a queue for service. If we have a current queue in service, 3332 * check whether to continue servicing it, or retrieve and set a new one. 3333 */ 3334 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 3335 { 3336 struct bfq_queue *bfqq; 3337 struct request *next_rq; 3338 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 3339 3340 bfqq = bfqd->in_service_queue; 3341 if (!bfqq) 3342 goto new_queue; 3343 3344 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 3345 3346 if (bfq_may_expire_for_budg_timeout(bfqq) && 3347 !bfq_bfqq_wait_request(bfqq) && 3348 !bfq_bfqq_must_idle(bfqq)) 3349 goto expire; 3350 3351 check_queue: 3352 /* 3353 * This loop is rarely executed more than once. Even when it 3354 * happens, it is much more convenient to re-execute this loop 3355 * than to return NULL and trigger a new dispatch to get a 3356 * request served. 3357 */ 3358 next_rq = bfqq->next_rq; 3359 /* 3360 * If bfqq has requests queued and it has enough budget left to 3361 * serve them, keep the queue, otherwise expire it. 3362 */ 3363 if (next_rq) { 3364 if (bfq_serv_to_charge(next_rq, bfqq) > 3365 bfq_bfqq_budget_left(bfqq)) { 3366 /* 3367 * Expire the queue for budget exhaustion, 3368 * which makes sure that the next budget is 3369 * enough to serve the next request, even if 3370 * it comes from the fifo expired path. 3371 */ 3372 reason = BFQQE_BUDGET_EXHAUSTED; 3373 goto expire; 3374 } else { 3375 /* 3376 * The idle timer may be pending because we may 3377 * not disable disk idling even when a new request 3378 * arrives. 3379 */ 3380 if (bfq_bfqq_wait_request(bfqq)) { 3381 /* 3382 * If we get here: 1) at least a new request 3383 * has arrived but we have not disabled the 3384 * timer because the request was too small, 3385 * 2) then the block layer has unplugged 3386 * the device, causing the dispatch to be 3387 * invoked. 3388 * 3389 * Since the device is unplugged, now the 3390 * requests are probably large enough to 3391 * provide a reasonable throughput. 3392 * So we disable idling. 3393 */ 3394 bfq_clear_bfqq_wait_request(bfqq); 3395 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 3396 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 3397 } 3398 goto keep_queue; 3399 } 3400 } 3401 3402 /* 3403 * No requests pending. However, if the in-service queue is idling 3404 * for a new request, or has requests waiting for a completion and 3405 * may idle after their completion, then keep it anyway. 3406 */ 3407 if (bfq_bfqq_wait_request(bfqq) || 3408 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { 3409 bfqq = NULL; 3410 goto keep_queue; 3411 } 3412 3413 reason = BFQQE_NO_MORE_REQUESTS; 3414 expire: 3415 bfq_bfqq_expire(bfqd, bfqq, false, reason); 3416 new_queue: 3417 bfqq = bfq_set_in_service_queue(bfqd); 3418 if (bfqq) { 3419 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 3420 goto check_queue; 3421 } 3422 keep_queue: 3423 if (bfqq) 3424 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 3425 else 3426 bfq_log(bfqd, "select_queue: no queue returned"); 3427 3428 return bfqq; 3429 } 3430 3431 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3432 { 3433 struct bfq_entity *entity = &bfqq->entity; 3434 3435 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 3436 bfq_log_bfqq(bfqd, bfqq, 3437 "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 3438 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 3439 jiffies_to_msecs(bfqq->wr_cur_max_time), 3440 bfqq->wr_coeff, 3441 bfqq->entity.weight, bfqq->entity.orig_weight); 3442 3443 if (entity->prio_changed) 3444 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 3445 3446 /* 3447 * If the queue was activated in a burst, or too much 3448 * time has elapsed from the beginning of this 3449 * weight-raising period, then end weight raising. 3450 */ 3451 if (bfq_bfqq_in_large_burst(bfqq)) 3452 bfq_bfqq_end_wr(bfqq); 3453 else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 3454 bfqq->wr_cur_max_time)) { 3455 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 3456 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 3457 bfq_wr_duration(bfqd))) 3458 bfq_bfqq_end_wr(bfqq); 3459 else { 3460 /* switch back to interactive wr */ 3461 bfqq->wr_coeff = bfqd->bfq_wr_coeff; 3462 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 3463 bfqq->last_wr_start_finish = 3464 bfqq->wr_start_at_switch_to_srt; 3465 bfqq->entity.prio_changed = 1; 3466 } 3467 } 3468 } 3469 /* Update weight both if it must be raised and if it must be lowered */ 3470 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 3471 __bfq_entity_update_weight_prio( 3472 bfq_entity_service_tree(entity), 3473 entity); 3474 } 3475 3476 /* 3477 * Dispatch next request from bfqq. 3478 */ 3479 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 3480 struct bfq_queue *bfqq) 3481 { 3482 struct request *rq = bfqq->next_rq; 3483 unsigned long service_to_charge; 3484 3485 service_to_charge = bfq_serv_to_charge(rq, bfqq); 3486 3487 bfq_bfqq_served(bfqq, service_to_charge); 3488 3489 bfq_dispatch_remove(bfqd->queue, rq); 3490 3491 /* 3492 * If weight raising has to terminate for bfqq, then next 3493 * function causes an immediate update of bfqq's weight, 3494 * without waiting for next activation. As a consequence, on 3495 * expiration, bfqq will be timestamped as if has never been 3496 * weight-raised during this service slot, even if it has 3497 * received part or even most of the service as a 3498 * weight-raised queue. This inflates bfqq's timestamps, which 3499 * is beneficial, as bfqq is then more willing to leave the 3500 * device immediately to possible other weight-raised queues. 3501 */ 3502 bfq_update_wr_data(bfqd, bfqq); 3503 3504 /* 3505 * Expire bfqq, pretending that its budget expired, if bfqq 3506 * belongs to CLASS_IDLE and other queues are waiting for 3507 * service. 3508 */ 3509 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) 3510 goto expire; 3511 3512 return rq; 3513 3514 expire: 3515 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 3516 return rq; 3517 } 3518 3519 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 3520 { 3521 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3522 3523 /* 3524 * Avoiding lock: a race on bfqd->busy_queues should cause at 3525 * most a call to dispatch for nothing 3526 */ 3527 return !list_empty_careful(&bfqd->dispatch) || 3528 bfqd->busy_queues > 0; 3529 } 3530 3531 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3532 { 3533 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3534 struct request *rq = NULL; 3535 struct bfq_queue *bfqq = NULL; 3536 3537 if (!list_empty(&bfqd->dispatch)) { 3538 rq = list_first_entry(&bfqd->dispatch, struct request, 3539 queuelist); 3540 list_del_init(&rq->queuelist); 3541 3542 bfqq = RQ_BFQQ(rq); 3543 3544 if (bfqq) { 3545 /* 3546 * Increment counters here, because this 3547 * dispatch does not follow the standard 3548 * dispatch flow (where counters are 3549 * incremented) 3550 */ 3551 bfqq->dispatched++; 3552 3553 goto inc_in_driver_start_rq; 3554 } 3555 3556 /* 3557 * We exploit the put_rq_private hook to decrement 3558 * rq_in_driver, but put_rq_private will not be 3559 * invoked on this request. So, to avoid unbalance, 3560 * just start this request, without incrementing 3561 * rq_in_driver. As a negative consequence, 3562 * rq_in_driver is deceptively lower than it should be 3563 * while this request is in service. This may cause 3564 * bfq_schedule_dispatch to be invoked uselessly. 3565 * 3566 * As for implementing an exact solution, the 3567 * put_request hook, if defined, is probably invoked 3568 * also on this request. So, by exploiting this hook, 3569 * we could 1) increment rq_in_driver here, and 2) 3570 * decrement it in put_request. Such a solution would 3571 * let the value of the counter be always accurate, 3572 * but it would entail using an extra interface 3573 * function. This cost seems higher than the benefit, 3574 * being the frequency of non-elevator-private 3575 * requests very low. 3576 */ 3577 goto start_rq; 3578 } 3579 3580 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); 3581 3582 if (bfqd->busy_queues == 0) 3583 goto exit; 3584 3585 /* 3586 * Force device to serve one request at a time if 3587 * strict_guarantees is true. Forcing this service scheme is 3588 * currently the ONLY way to guarantee that the request 3589 * service order enforced by the scheduler is respected by a 3590 * queueing device. Otherwise the device is free even to make 3591 * some unlucky request wait for as long as the device 3592 * wishes. 3593 * 3594 * Of course, serving one request at at time may cause loss of 3595 * throughput. 3596 */ 3597 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) 3598 goto exit; 3599 3600 bfqq = bfq_select_queue(bfqd); 3601 if (!bfqq) 3602 goto exit; 3603 3604 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 3605 3606 if (rq) { 3607 inc_in_driver_start_rq: 3608 bfqd->rq_in_driver++; 3609 start_rq: 3610 rq->rq_flags |= RQF_STARTED; 3611 } 3612 exit: 3613 return rq; 3614 } 3615 3616 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 3617 { 3618 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 3619 struct request *rq; 3620 3621 spin_lock_irq(&bfqd->lock); 3622 3623 rq = __bfq_dispatch_request(hctx); 3624 spin_unlock_irq(&bfqd->lock); 3625 3626 return rq; 3627 } 3628 3629 /* 3630 * Task holds one reference to the queue, dropped when task exits. Each rq 3631 * in-flight on this queue also holds a reference, dropped when rq is freed. 3632 * 3633 * Scheduler lock must be held here. Recall not to use bfqq after calling 3634 * this function on it. 3635 */ 3636 void bfq_put_queue(struct bfq_queue *bfqq) 3637 { 3638 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3639 struct bfq_group *bfqg = bfqq_group(bfqq); 3640 #endif 3641 3642 if (bfqq->bfqd) 3643 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", 3644 bfqq, bfqq->ref); 3645 3646 bfqq->ref--; 3647 if (bfqq->ref) 3648 return; 3649 3650 if (bfq_bfqq_sync(bfqq)) 3651 /* 3652 * The fact that this queue is being destroyed does not 3653 * invalidate the fact that this queue may have been 3654 * activated during the current burst. As a consequence, 3655 * although the queue does not exist anymore, and hence 3656 * needs to be removed from the burst list if there, 3657 * the burst size has not to be decremented. 3658 */ 3659 hlist_del_init(&bfqq->burst_list_node); 3660 3661 kmem_cache_free(bfq_pool, bfqq); 3662 #ifdef CONFIG_BFQ_GROUP_IOSCHED 3663 bfqg_put(bfqg); 3664 #endif 3665 } 3666 3667 static void bfq_put_cooperator(struct bfq_queue *bfqq) 3668 { 3669 struct bfq_queue *__bfqq, *next; 3670 3671 /* 3672 * If this queue was scheduled to merge with another queue, be 3673 * sure to drop the reference taken on that queue (and others in 3674 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 3675 */ 3676 __bfqq = bfqq->new_bfqq; 3677 while (__bfqq) { 3678 if (__bfqq == bfqq) 3679 break; 3680 next = __bfqq->new_bfqq; 3681 bfq_put_queue(__bfqq); 3682 __bfqq = next; 3683 } 3684 } 3685 3686 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 3687 { 3688 if (bfqq == bfqd->in_service_queue) { 3689 __bfq_bfqq_expire(bfqd, bfqq); 3690 bfq_schedule_dispatch(bfqd); 3691 } 3692 3693 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 3694 3695 bfq_put_cooperator(bfqq); 3696 3697 bfq_put_queue(bfqq); /* release process reference */ 3698 } 3699 3700 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) 3701 { 3702 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 3703 struct bfq_data *bfqd; 3704 3705 if (bfqq) 3706 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 3707 3708 if (bfqq && bfqd) { 3709 unsigned long flags; 3710 3711 spin_lock_irqsave(&bfqd->lock, flags); 3712 bfq_exit_bfqq(bfqd, bfqq); 3713 bic_set_bfqq(bic, NULL, is_sync); 3714 spin_unlock_irqrestore(&bfqd->lock, flags); 3715 } 3716 } 3717 3718 static void bfq_exit_icq(struct io_cq *icq) 3719 { 3720 struct bfq_io_cq *bic = icq_to_bic(icq); 3721 3722 bfq_exit_icq_bfqq(bic, true); 3723 bfq_exit_icq_bfqq(bic, false); 3724 } 3725 3726 /* 3727 * Update the entity prio values; note that the new values will not 3728 * be used until the next (re)activation. 3729 */ 3730 static void 3731 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 3732 { 3733 struct task_struct *tsk = current; 3734 int ioprio_class; 3735 struct bfq_data *bfqd = bfqq->bfqd; 3736 3737 if (!bfqd) 3738 return; 3739 3740 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3741 switch (ioprio_class) { 3742 default: 3743 dev_err(bfqq->bfqd->queue->backing_dev_info->dev, 3744 "bfq: bad prio class %d\n", ioprio_class); 3745 case IOPRIO_CLASS_NONE: 3746 /* 3747 * No prio set, inherit CPU scheduling settings. 3748 */ 3749 bfqq->new_ioprio = task_nice_ioprio(tsk); 3750 bfqq->new_ioprio_class = task_nice_ioclass(tsk); 3751 break; 3752 case IOPRIO_CLASS_RT: 3753 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3754 bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 3755 break; 3756 case IOPRIO_CLASS_BE: 3757 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3758 bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 3759 break; 3760 case IOPRIO_CLASS_IDLE: 3761 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 3762 bfqq->new_ioprio = 7; 3763 bfq_clear_bfqq_idle_window(bfqq); 3764 break; 3765 } 3766 3767 if (bfqq->new_ioprio >= IOPRIO_BE_NR) { 3768 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 3769 bfqq->new_ioprio); 3770 bfqq->new_ioprio = IOPRIO_BE_NR; 3771 } 3772 3773 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 3774 bfqq->entity.prio_changed = 1; 3775 } 3776 3777 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3778 struct bio *bio, bool is_sync, 3779 struct bfq_io_cq *bic); 3780 3781 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 3782 { 3783 struct bfq_data *bfqd = bic_to_bfqd(bic); 3784 struct bfq_queue *bfqq; 3785 int ioprio = bic->icq.ioc->ioprio; 3786 3787 /* 3788 * This condition may trigger on a newly created bic, be sure to 3789 * drop the lock before returning. 3790 */ 3791 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 3792 return; 3793 3794 bic->ioprio = ioprio; 3795 3796 bfqq = bic_to_bfqq(bic, false); 3797 if (bfqq) { 3798 /* release process reference on this queue */ 3799 bfq_put_queue(bfqq); 3800 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); 3801 bic_set_bfqq(bic, bfqq, false); 3802 } 3803 3804 bfqq = bic_to_bfqq(bic, true); 3805 if (bfqq) 3806 bfq_set_next_ioprio_data(bfqq, bic); 3807 } 3808 3809 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3810 struct bfq_io_cq *bic, pid_t pid, int is_sync) 3811 { 3812 RB_CLEAR_NODE(&bfqq->entity.rb_node); 3813 INIT_LIST_HEAD(&bfqq->fifo); 3814 INIT_HLIST_NODE(&bfqq->burst_list_node); 3815 3816 bfqq->ref = 0; 3817 bfqq->bfqd = bfqd; 3818 3819 if (bic) 3820 bfq_set_next_ioprio_data(bfqq, bic); 3821 3822 if (is_sync) { 3823 if (!bfq_class_idle(bfqq)) 3824 bfq_mark_bfqq_idle_window(bfqq); 3825 bfq_mark_bfqq_sync(bfqq); 3826 bfq_mark_bfqq_just_created(bfqq); 3827 } else 3828 bfq_clear_bfqq_sync(bfqq); 3829 3830 /* set end request to minus infinity from now */ 3831 bfqq->ttime.last_end_request = ktime_get_ns() + 1; 3832 3833 bfq_mark_bfqq_IO_bound(bfqq); 3834 3835 bfqq->pid = pid; 3836 3837 /* Tentative initial value to trade off between thr and lat */ 3838 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 3839 bfqq->budget_timeout = bfq_smallest_from_now(); 3840 3841 bfqq->wr_coeff = 1; 3842 bfqq->last_wr_start_finish = jiffies; 3843 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 3844 bfqq->split_time = bfq_smallest_from_now(); 3845 3846 /* 3847 * Set to the value for which bfqq will not be deemed as 3848 * soft rt when it becomes backlogged. 3849 */ 3850 bfqq->soft_rt_next_start = bfq_greatest_from_now(); 3851 3852 /* first request is almost certainly seeky */ 3853 bfqq->seek_history = 1; 3854 } 3855 3856 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 3857 struct bfq_group *bfqg, 3858 int ioprio_class, int ioprio) 3859 { 3860 switch (ioprio_class) { 3861 case IOPRIO_CLASS_RT: 3862 return &bfqg->async_bfqq[0][ioprio]; 3863 case IOPRIO_CLASS_NONE: 3864 ioprio = IOPRIO_NORM; 3865 /* fall through */ 3866 case IOPRIO_CLASS_BE: 3867 return &bfqg->async_bfqq[1][ioprio]; 3868 case IOPRIO_CLASS_IDLE: 3869 return &bfqg->async_idle_bfqq; 3870 default: 3871 return NULL; 3872 } 3873 } 3874 3875 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 3876 struct bio *bio, bool is_sync, 3877 struct bfq_io_cq *bic) 3878 { 3879 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); 3880 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 3881 struct bfq_queue **async_bfqq = NULL; 3882 struct bfq_queue *bfqq; 3883 struct bfq_group *bfqg; 3884 3885 rcu_read_lock(); 3886 3887 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); 3888 if (!bfqg) { 3889 bfqq = &bfqd->oom_bfqq; 3890 goto out; 3891 } 3892 3893 if (!is_sync) { 3894 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 3895 ioprio); 3896 bfqq = *async_bfqq; 3897 if (bfqq) 3898 goto out; 3899 } 3900 3901 bfqq = kmem_cache_alloc_node(bfq_pool, 3902 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3903 bfqd->queue->node); 3904 3905 if (bfqq) { 3906 bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 3907 is_sync); 3908 bfq_init_entity(&bfqq->entity, bfqg); 3909 bfq_log_bfqq(bfqd, bfqq, "allocated"); 3910 } else { 3911 bfqq = &bfqd->oom_bfqq; 3912 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 3913 goto out; 3914 } 3915 3916 /* 3917 * Pin the queue now that it's allocated, scheduler exit will 3918 * prune it. 3919 */ 3920 if (async_bfqq) { 3921 bfqq->ref++; /* 3922 * Extra group reference, w.r.t. sync 3923 * queue. This extra reference is removed 3924 * only if bfqq->bfqg disappears, to 3925 * guarantee that this queue is not freed 3926 * until its group goes away. 3927 */ 3928 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 3929 bfqq, bfqq->ref); 3930 *async_bfqq = bfqq; 3931 } 3932 3933 out: 3934 bfqq->ref++; /* get a process reference to this queue */ 3935 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); 3936 rcu_read_unlock(); 3937 return bfqq; 3938 } 3939 3940 static void bfq_update_io_thinktime(struct bfq_data *bfqd, 3941 struct bfq_queue *bfqq) 3942 { 3943 struct bfq_ttime *ttime = &bfqq->ttime; 3944 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 3945 3946 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 3947 3948 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; 3949 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3950 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3951 ttime->ttime_samples); 3952 } 3953 3954 static void 3955 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 3956 struct request *rq) 3957 { 3958 bfqq->seek_history <<= 1; 3959 bfqq->seek_history |= 3960 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && 3961 (!blk_queue_nonrot(bfqd->queue) || 3962 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); 3963 } 3964 3965 /* 3966 * Disable idle window if the process thinks too long or seeks so much that 3967 * it doesn't matter. 3968 */ 3969 static void bfq_update_idle_window(struct bfq_data *bfqd, 3970 struct bfq_queue *bfqq, 3971 struct bfq_io_cq *bic) 3972 { 3973 int enable_idle; 3974 3975 /* Don't idle for async or idle io prio class. */ 3976 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) 3977 return; 3978 3979 /* Idle window just restored, statistics are meaningless. */ 3980 if (time_is_after_eq_jiffies(bfqq->split_time + 3981 bfqd->bfq_wr_min_idle_time)) 3982 return; 3983 3984 enable_idle = bfq_bfqq_idle_window(bfqq); 3985 3986 if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 3987 bfqd->bfq_slice_idle == 0 || 3988 (bfqd->hw_tag && BFQQ_SEEKY(bfqq) && 3989 bfqq->wr_coeff == 1)) 3990 enable_idle = 0; 3991 else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { 3992 if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle && 3993 bfqq->wr_coeff == 1) 3994 enable_idle = 0; 3995 else 3996 enable_idle = 1; 3997 } 3998 bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", 3999 enable_idle); 4000 4001 if (enable_idle) 4002 bfq_mark_bfqq_idle_window(bfqq); 4003 else 4004 bfq_clear_bfqq_idle_window(bfqq); 4005 } 4006 4007 /* 4008 * Called when a new fs request (rq) is added to bfqq. Check if there's 4009 * something we should do about it. 4010 */ 4011 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 4012 struct request *rq) 4013 { 4014 struct bfq_io_cq *bic = RQ_BIC(rq); 4015 4016 if (rq->cmd_flags & REQ_META) 4017 bfqq->meta_pending++; 4018 4019 bfq_update_io_thinktime(bfqd, bfqq); 4020 bfq_update_io_seektime(bfqd, bfqq, rq); 4021 if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || 4022 !BFQQ_SEEKY(bfqq)) 4023 bfq_update_idle_window(bfqd, bfqq, bic); 4024 4025 bfq_log_bfqq(bfqd, bfqq, 4026 "rq_enqueued: idle_window=%d (seeky %d)", 4027 bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); 4028 4029 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4030 4031 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 4032 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 4033 blk_rq_sectors(rq) < 32; 4034 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 4035 4036 /* 4037 * There is just this request queued: if the request 4038 * is small and the queue is not to be expired, then 4039 * just exit. 4040 * 4041 * In this way, if the device is being idled to wait 4042 * for a new request from the in-service queue, we 4043 * avoid unplugging the device and committing the 4044 * device to serve just a small request. On the 4045 * contrary, we wait for the block layer to decide 4046 * when to unplug the device: hopefully, new requests 4047 * will be merged to this one quickly, then the device 4048 * will be unplugged and larger requests will be 4049 * dispatched. 4050 */ 4051 if (small_req && !budget_timeout) 4052 return; 4053 4054 /* 4055 * A large enough request arrived, or the queue is to 4056 * be expired: in both cases disk idling is to be 4057 * stopped, so clear wait_request flag and reset 4058 * timer. 4059 */ 4060 bfq_clear_bfqq_wait_request(bfqq); 4061 hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 4062 bfqg_stats_update_idle_time(bfqq_group(bfqq)); 4063 4064 /* 4065 * The queue is not empty, because a new request just 4066 * arrived. Hence we can safely expire the queue, in 4067 * case of budget timeout, without risking that the 4068 * timestamps of the queue are not updated correctly. 4069 * See [1] for more details. 4070 */ 4071 if (budget_timeout) 4072 bfq_bfqq_expire(bfqd, bfqq, false, 4073 BFQQE_BUDGET_TIMEOUT); 4074 } 4075 } 4076 4077 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 4078 { 4079 struct bfq_queue *bfqq = RQ_BFQQ(rq), 4080 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true); 4081 4082 if (new_bfqq) { 4083 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq) 4084 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1); 4085 /* 4086 * Release the request's reference to the old bfqq 4087 * and make sure one is taken to the shared queue. 4088 */ 4089 new_bfqq->allocated++; 4090 bfqq->allocated--; 4091 new_bfqq->ref++; 4092 bfq_clear_bfqq_just_created(bfqq); 4093 /* 4094 * If the bic associated with the process 4095 * issuing this request still points to bfqq 4096 * (and thus has not been already redirected 4097 * to new_bfqq or even some other bfq_queue), 4098 * then complete the merge and redirect it to 4099 * new_bfqq. 4100 */ 4101 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq) 4102 bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 4103 bfqq, new_bfqq); 4104 /* 4105 * rq is about to be enqueued into new_bfqq, 4106 * release rq reference on bfqq 4107 */ 4108 bfq_put_queue(bfqq); 4109 rq->elv.priv[1] = new_bfqq; 4110 bfqq = new_bfqq; 4111 } 4112 4113 bfq_add_request(rq); 4114 4115 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 4116 list_add_tail(&rq->queuelist, &bfqq->fifo); 4117 4118 bfq_rq_enqueued(bfqd, bfqq, rq); 4119 } 4120 4121 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 4122 bool at_head) 4123 { 4124 struct request_queue *q = hctx->queue; 4125 struct bfq_data *bfqd = q->elevator->elevator_data; 4126 4127 spin_lock_irq(&bfqd->lock); 4128 if (blk_mq_sched_try_insert_merge(q, rq)) { 4129 spin_unlock_irq(&bfqd->lock); 4130 return; 4131 } 4132 4133 spin_unlock_irq(&bfqd->lock); 4134 4135 blk_mq_sched_request_inserted(rq); 4136 4137 spin_lock_irq(&bfqd->lock); 4138 if (at_head || blk_rq_is_passthrough(rq)) { 4139 if (at_head) 4140 list_add(&rq->queuelist, &bfqd->dispatch); 4141 else 4142 list_add_tail(&rq->queuelist, &bfqd->dispatch); 4143 } else { 4144 __bfq_insert_request(bfqd, rq); 4145 4146 if (rq_mergeable(rq)) { 4147 elv_rqhash_add(q, rq); 4148 if (!q->last_merge) 4149 q->last_merge = rq; 4150 } 4151 } 4152 4153 spin_unlock_irq(&bfqd->lock); 4154 } 4155 4156 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 4157 struct list_head *list, bool at_head) 4158 { 4159 while (!list_empty(list)) { 4160 struct request *rq; 4161 4162 rq = list_first_entry(list, struct request, queuelist); 4163 list_del_init(&rq->queuelist); 4164 bfq_insert_request(hctx, rq, at_head); 4165 } 4166 } 4167 4168 static void bfq_update_hw_tag(struct bfq_data *bfqd) 4169 { 4170 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 4171 bfqd->rq_in_driver); 4172 4173 if (bfqd->hw_tag == 1) 4174 return; 4175 4176 /* 4177 * This sample is valid if the number of outstanding requests 4178 * is large enough to allow a queueing behavior. Note that the 4179 * sum is not exact, as it's not taking into account deactivated 4180 * requests. 4181 */ 4182 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) 4183 return; 4184 4185 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 4186 return; 4187 4188 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 4189 bfqd->max_rq_in_driver = 0; 4190 bfqd->hw_tag_samples = 0; 4191 } 4192 4193 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 4194 { 4195 u64 now_ns; 4196 u32 delta_us; 4197 4198 bfq_update_hw_tag(bfqd); 4199 4200 bfqd->rq_in_driver--; 4201 bfqq->dispatched--; 4202 4203 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 4204 /* 4205 * Set budget_timeout (which we overload to store the 4206 * time at which the queue remains with no backlog and 4207 * no outstanding request; used by the weight-raising 4208 * mechanism). 4209 */ 4210 bfqq->budget_timeout = jiffies; 4211 4212 bfq_weights_tree_remove(bfqd, &bfqq->entity, 4213 &bfqd->queue_weights_tree); 4214 } 4215 4216 now_ns = ktime_get_ns(); 4217 4218 bfqq->ttime.last_end_request = now_ns; 4219 4220 /* 4221 * Using us instead of ns, to get a reasonable precision in 4222 * computing rate in next check. 4223 */ 4224 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 4225 4226 /* 4227 * If the request took rather long to complete, and, according 4228 * to the maximum request size recorded, this completion latency 4229 * implies that the request was certainly served at a very low 4230 * rate (less than 1M sectors/sec), then the whole observation 4231 * interval that lasts up to this time instant cannot be a 4232 * valid time interval for computing a new peak rate. Invoke 4233 * bfq_update_rate_reset to have the following three steps 4234 * taken: 4235 * - close the observation interval at the last (previous) 4236 * request dispatch or completion 4237 * - compute rate, if possible, for that observation interval 4238 * - reset to zero samples, which will trigger a proper 4239 * re-initialization of the observation interval on next 4240 * dispatch 4241 */ 4242 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 4243 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 4244 1UL<<(BFQ_RATE_SHIFT - 10)) 4245 bfq_update_rate_reset(bfqd, NULL); 4246 bfqd->last_completion = now_ns; 4247 4248 /* 4249 * If we are waiting to discover whether the request pattern 4250 * of the task associated with the queue is actually 4251 * isochronous, and both requisites for this condition to hold 4252 * are now satisfied, then compute soft_rt_next_start (see the 4253 * comments on the function bfq_bfqq_softrt_next_start()). We 4254 * schedule this delayed check when bfqq expires, if it still 4255 * has in-flight requests. 4256 */ 4257 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 4258 RB_EMPTY_ROOT(&bfqq->sort_list)) 4259 bfqq->soft_rt_next_start = 4260 bfq_bfqq_softrt_next_start(bfqd, bfqq); 4261 4262 /* 4263 * If this is the in-service queue, check if it needs to be expired, 4264 * or if we want to idle in case it has no pending requests. 4265 */ 4266 if (bfqd->in_service_queue == bfqq) { 4267 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { 4268 bfq_arm_slice_timer(bfqd); 4269 return; 4270 } else if (bfq_may_expire_for_budg_timeout(bfqq)) 4271 bfq_bfqq_expire(bfqd, bfqq, false, 4272 BFQQE_BUDGET_TIMEOUT); 4273 else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 4274 (bfqq->dispatched == 0 || 4275 !bfq_bfqq_may_idle(bfqq))) 4276 bfq_bfqq_expire(bfqd, bfqq, false, 4277 BFQQE_NO_MORE_REQUESTS); 4278 } 4279 } 4280 4281 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) 4282 { 4283 bfqq->allocated--; 4284 4285 bfq_put_queue(bfqq); 4286 } 4287 4288 static void bfq_put_rq_private(struct request_queue *q, struct request *rq) 4289 { 4290 struct bfq_queue *bfqq = RQ_BFQQ(rq); 4291 struct bfq_data *bfqd = bfqq->bfqd; 4292 4293 if (rq->rq_flags & RQF_STARTED) 4294 bfqg_stats_update_completion(bfqq_group(bfqq), 4295 rq_start_time_ns(rq), 4296 rq_io_start_time_ns(rq), 4297 rq->cmd_flags); 4298 4299 if (likely(rq->rq_flags & RQF_STARTED)) { 4300 unsigned long flags; 4301 4302 spin_lock_irqsave(&bfqd->lock, flags); 4303 4304 bfq_completed_request(bfqq, bfqd); 4305 bfq_put_rq_priv_body(bfqq); 4306 4307 spin_unlock_irqrestore(&bfqd->lock, flags); 4308 } else { 4309 /* 4310 * Request rq may be still/already in the scheduler, 4311 * in which case we need to remove it. And we cannot 4312 * defer such a check and removal, to avoid 4313 * inconsistencies in the time interval from the end 4314 * of this function to the start of the deferred work. 4315 * This situation seems to occur only in process 4316 * context, as a consequence of a merge. In the 4317 * current version of the code, this implies that the 4318 * lock is held. 4319 */ 4320 4321 if (!RB_EMPTY_NODE(&rq->rb_node)) 4322 bfq_remove_request(q, rq); 4323 bfq_put_rq_priv_body(bfqq); 4324 } 4325 4326 rq->elv.priv[0] = NULL; 4327 rq->elv.priv[1] = NULL; 4328 } 4329 4330 /* 4331 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 4332 * was the last process referring to that bfqq. 4333 */ 4334 static struct bfq_queue * 4335 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 4336 { 4337 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 4338 4339 if (bfqq_process_refs(bfqq) == 1) { 4340 bfqq->pid = current->pid; 4341 bfq_clear_bfqq_coop(bfqq); 4342 bfq_clear_bfqq_split_coop(bfqq); 4343 return bfqq; 4344 } 4345 4346 bic_set_bfqq(bic, NULL, 1); 4347 4348 bfq_put_cooperator(bfqq); 4349 4350 bfq_put_queue(bfqq); 4351 return NULL; 4352 } 4353 4354 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 4355 struct bfq_io_cq *bic, 4356 struct bio *bio, 4357 bool split, bool is_sync, 4358 bool *new_queue) 4359 { 4360 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); 4361 4362 if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 4363 return bfqq; 4364 4365 if (new_queue) 4366 *new_queue = true; 4367 4368 if (bfqq) 4369 bfq_put_queue(bfqq); 4370 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); 4371 4372 bic_set_bfqq(bic, bfqq, is_sync); 4373 if (split && is_sync) { 4374 if ((bic->was_in_burst_list && bfqd->large_burst) || 4375 bic->saved_in_large_burst) 4376 bfq_mark_bfqq_in_large_burst(bfqq); 4377 else { 4378 bfq_clear_bfqq_in_large_burst(bfqq); 4379 if (bic->was_in_burst_list) 4380 hlist_add_head(&bfqq->burst_list_node, 4381 &bfqd->burst_list); 4382 } 4383 bfqq->split_time = jiffies; 4384 } 4385 4386 return bfqq; 4387 } 4388 4389 /* 4390 * Allocate bfq data structures associated with this request. 4391 */ 4392 static int bfq_get_rq_private(struct request_queue *q, struct request *rq, 4393 struct bio *bio) 4394 { 4395 struct bfq_data *bfqd = q->elevator->elevator_data; 4396 struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); 4397 const int is_sync = rq_is_sync(rq); 4398 struct bfq_queue *bfqq; 4399 bool new_queue = false; 4400 bool split = false; 4401 4402 spin_lock_irq(&bfqd->lock); 4403 4404 if (!bic) 4405 goto queue_fail; 4406 4407 bfq_check_ioprio_change(bic, bio); 4408 4409 bfq_bic_update_cgroup(bic, bio); 4410 4411 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 4412 &new_queue); 4413 4414 if (likely(!new_queue)) { 4415 /* If the queue was seeky for too long, break it apart. */ 4416 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) { 4417 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq"); 4418 4419 /* Update bic before losing reference to bfqq */ 4420 if (bfq_bfqq_in_large_burst(bfqq)) 4421 bic->saved_in_large_burst = true; 4422 4423 bfqq = bfq_split_bfqq(bic, bfqq); 4424 split = true; 4425 4426 if (!bfqq) 4427 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 4428 true, is_sync, 4429 NULL); 4430 } 4431 } 4432 4433 bfqq->allocated++; 4434 bfqq->ref++; 4435 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 4436 rq, bfqq, bfqq->ref); 4437 4438 rq->elv.priv[0] = bic; 4439 rq->elv.priv[1] = bfqq; 4440 4441 /* 4442 * If a bfq_queue has only one process reference, it is owned 4443 * by only this bic: we can then set bfqq->bic = bic. in 4444 * addition, if the queue has also just been split, we have to 4445 * resume its state. 4446 */ 4447 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 4448 bfqq->bic = bic; 4449 if (split) { 4450 /* 4451 * The queue has just been split from a shared 4452 * queue: restore the idle window and the 4453 * possible weight raising period. 4454 */ 4455 bfq_bfqq_resume_state(bfqq, bic); 4456 } 4457 } 4458 4459 if (unlikely(bfq_bfqq_just_created(bfqq))) 4460 bfq_handle_burst(bfqd, bfqq); 4461 4462 spin_unlock_irq(&bfqd->lock); 4463 4464 return 0; 4465 4466 queue_fail: 4467 spin_unlock_irq(&bfqd->lock); 4468 4469 return 1; 4470 } 4471 4472 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) 4473 { 4474 struct bfq_data *bfqd = bfqq->bfqd; 4475 enum bfqq_expiration reason; 4476 unsigned long flags; 4477 4478 spin_lock_irqsave(&bfqd->lock, flags); 4479 bfq_clear_bfqq_wait_request(bfqq); 4480 4481 if (bfqq != bfqd->in_service_queue) { 4482 spin_unlock_irqrestore(&bfqd->lock, flags); 4483 return; 4484 } 4485 4486 if (bfq_bfqq_budget_timeout(bfqq)) 4487 /* 4488 * Also here the queue can be safely expired 4489 * for budget timeout without wasting 4490 * guarantees 4491 */ 4492 reason = BFQQE_BUDGET_TIMEOUT; 4493 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 4494 /* 4495 * The queue may not be empty upon timer expiration, 4496 * because we may not disable the timer when the 4497 * first request of the in-service queue arrives 4498 * during disk idling. 4499 */ 4500 reason = BFQQE_TOO_IDLE; 4501 else 4502 goto schedule_dispatch; 4503 4504 bfq_bfqq_expire(bfqd, bfqq, true, reason); 4505 4506 schedule_dispatch: 4507 spin_unlock_irqrestore(&bfqd->lock, flags); 4508 bfq_schedule_dispatch(bfqd); 4509 } 4510 4511 /* 4512 * Handler of the expiration of the timer running if the in-service queue 4513 * is idling inside its time slice. 4514 */ 4515 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 4516 { 4517 struct bfq_data *bfqd = container_of(timer, struct bfq_data, 4518 idle_slice_timer); 4519 struct bfq_queue *bfqq = bfqd->in_service_queue; 4520 4521 /* 4522 * Theoretical race here: the in-service queue can be NULL or 4523 * different from the queue that was idling if a new request 4524 * arrives for the current queue and there is a full dispatch 4525 * cycle that changes the in-service queue. This can hardly 4526 * happen, but in the worst case we just expire a queue too 4527 * early. 4528 */ 4529 if (bfqq) 4530 bfq_idle_slice_timer_body(bfqq); 4531 4532 return HRTIMER_NORESTART; 4533 } 4534 4535 static void __bfq_put_async_bfqq(struct bfq_data *bfqd, 4536 struct bfq_queue **bfqq_ptr) 4537 { 4538 struct bfq_queue *bfqq = *bfqq_ptr; 4539 4540 bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 4541 if (bfqq) { 4542 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 4543 4544 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 4545 bfqq, bfqq->ref); 4546 bfq_put_queue(bfqq); 4547 *bfqq_ptr = NULL; 4548 } 4549 } 4550 4551 /* 4552 * Release all the bfqg references to its async queues. If we are 4553 * deallocating the group these queues may still contain requests, so 4554 * we reparent them to the root cgroup (i.e., the only one that will 4555 * exist for sure until all the requests on a device are gone). 4556 */ 4557 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 4558 { 4559 int i, j; 4560 4561 for (i = 0; i < 2; i++) 4562 for (j = 0; j < IOPRIO_BE_NR; j++) 4563 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); 4564 4565 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); 4566 } 4567 4568 static void bfq_exit_queue(struct elevator_queue *e) 4569 { 4570 struct bfq_data *bfqd = e->elevator_data; 4571 struct bfq_queue *bfqq, *n; 4572 4573 hrtimer_cancel(&bfqd->idle_slice_timer); 4574 4575 spin_lock_irq(&bfqd->lock); 4576 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 4577 bfq_deactivate_bfqq(bfqd, bfqq, false, false); 4578 spin_unlock_irq(&bfqd->lock); 4579 4580 hrtimer_cancel(&bfqd->idle_slice_timer); 4581 4582 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4583 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); 4584 #else 4585 spin_lock_irq(&bfqd->lock); 4586 bfq_put_async_queues(bfqd, bfqd->root_group); 4587 kfree(bfqd->root_group); 4588 spin_unlock_irq(&bfqd->lock); 4589 #endif 4590 4591 kfree(bfqd); 4592 } 4593 4594 static void bfq_init_root_group(struct bfq_group *root_group, 4595 struct bfq_data *bfqd) 4596 { 4597 int i; 4598 4599 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4600 root_group->entity.parent = NULL; 4601 root_group->my_entity = NULL; 4602 root_group->bfqd = bfqd; 4603 #endif 4604 root_group->rq_pos_tree = RB_ROOT; 4605 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 4606 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 4607 root_group->sched_data.bfq_class_idle_last_service = jiffies; 4608 } 4609 4610 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 4611 { 4612 struct bfq_data *bfqd; 4613 struct elevator_queue *eq; 4614 4615 eq = elevator_alloc(q, e); 4616 if (!eq) 4617 return -ENOMEM; 4618 4619 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 4620 if (!bfqd) { 4621 kobject_put(&eq->kobj); 4622 return -ENOMEM; 4623 } 4624 eq->elevator_data = bfqd; 4625 4626 spin_lock_irq(q->queue_lock); 4627 q->elevator = eq; 4628 spin_unlock_irq(q->queue_lock); 4629 4630 /* 4631 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 4632 * Grab a permanent reference to it, so that the normal code flow 4633 * will not attempt to free it. 4634 */ 4635 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); 4636 bfqd->oom_bfqq.ref++; 4637 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 4638 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 4639 bfqd->oom_bfqq.entity.new_weight = 4640 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 4641 4642 /* oom_bfqq does not participate to bursts */ 4643 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 4644 4645 /* 4646 * Trigger weight initialization, according to ioprio, at the 4647 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 4648 * class won't be changed any more. 4649 */ 4650 bfqd->oom_bfqq.entity.prio_changed = 1; 4651 4652 bfqd->queue = q; 4653 4654 INIT_LIST_HEAD(&bfqd->dispatch); 4655 4656 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 4657 HRTIMER_MODE_REL); 4658 bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 4659 4660 bfqd->queue_weights_tree = RB_ROOT; 4661 bfqd->group_weights_tree = RB_ROOT; 4662 4663 INIT_LIST_HEAD(&bfqd->active_list); 4664 INIT_LIST_HEAD(&bfqd->idle_list); 4665 INIT_HLIST_HEAD(&bfqd->burst_list); 4666 4667 bfqd->hw_tag = -1; 4668 4669 bfqd->bfq_max_budget = bfq_default_max_budget; 4670 4671 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 4672 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 4673 bfqd->bfq_back_max = bfq_back_max; 4674 bfqd->bfq_back_penalty = bfq_back_penalty; 4675 bfqd->bfq_slice_idle = bfq_slice_idle; 4676 bfqd->bfq_timeout = bfq_timeout; 4677 4678 bfqd->bfq_requests_within_timer = 120; 4679 4680 bfqd->bfq_large_burst_thresh = 8; 4681 bfqd->bfq_burst_interval = msecs_to_jiffies(180); 4682 4683 bfqd->low_latency = true; 4684 4685 /* 4686 * Trade-off between responsiveness and fairness. 4687 */ 4688 bfqd->bfq_wr_coeff = 30; 4689 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 4690 bfqd->bfq_wr_max_time = 0; 4691 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 4692 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 4693 bfqd->bfq_wr_max_softrt_rate = 7000; /* 4694 * Approximate rate required 4695 * to playback or record a 4696 * high-definition compressed 4697 * video. 4698 */ 4699 bfqd->wr_busy_queues = 0; 4700 4701 /* 4702 * Begin by assuming, optimistically, that the device is a 4703 * high-speed one, and that its peak rate is equal to 2/3 of 4704 * the highest reference rate. 4705 */ 4706 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * 4707 T_fast[blk_queue_nonrot(bfqd->queue)]; 4708 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 4709 bfqd->device_speed = BFQ_BFQD_FAST; 4710 4711 spin_lock_init(&bfqd->lock); 4712 4713 /* 4714 * The invocation of the next bfq_create_group_hierarchy 4715 * function is the head of a chain of function calls 4716 * (bfq_create_group_hierarchy->blkcg_activate_policy-> 4717 * blk_mq_freeze_queue) that may lead to the invocation of the 4718 * has_work hook function. For this reason, 4719 * bfq_create_group_hierarchy is invoked only after all 4720 * scheduler data has been initialized, apart from the fields 4721 * that can be initialized only after invoking 4722 * bfq_create_group_hierarchy. This, in particular, enables 4723 * has_work to correctly return false. Of course, to avoid 4724 * other inconsistencies, the blk-mq stack must then refrain 4725 * from invoking further scheduler hooks before this init 4726 * function is finished. 4727 */ 4728 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 4729 if (!bfqd->root_group) 4730 goto out_free; 4731 bfq_init_root_group(bfqd->root_group, bfqd); 4732 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 4733 4734 4735 return 0; 4736 4737 out_free: 4738 kfree(bfqd); 4739 kobject_put(&eq->kobj); 4740 return -ENOMEM; 4741 } 4742 4743 static void bfq_slab_kill(void) 4744 { 4745 kmem_cache_destroy(bfq_pool); 4746 } 4747 4748 static int __init bfq_slab_setup(void) 4749 { 4750 bfq_pool = KMEM_CACHE(bfq_queue, 0); 4751 if (!bfq_pool) 4752 return -ENOMEM; 4753 return 0; 4754 } 4755 4756 static ssize_t bfq_var_show(unsigned int var, char *page) 4757 { 4758 return sprintf(page, "%u\n", var); 4759 } 4760 4761 static ssize_t bfq_var_store(unsigned long *var, const char *page, 4762 size_t count) 4763 { 4764 unsigned long new_val; 4765 int ret = kstrtoul(page, 10, &new_val); 4766 4767 if (ret == 0) 4768 *var = new_val; 4769 4770 return count; 4771 } 4772 4773 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4774 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4775 { \ 4776 struct bfq_data *bfqd = e->elevator_data; \ 4777 u64 __data = __VAR; \ 4778 if (__CONV == 1) \ 4779 __data = jiffies_to_msecs(__data); \ 4780 else if (__CONV == 2) \ 4781 __data = div_u64(__data, NSEC_PER_MSEC); \ 4782 return bfq_var_show(__data, (page)); \ 4783 } 4784 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 4785 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 4786 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 4787 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 4788 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 4789 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 4790 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 4791 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 4792 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 4793 #undef SHOW_FUNCTION 4794 4795 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4796 static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4797 { \ 4798 struct bfq_data *bfqd = e->elevator_data; \ 4799 u64 __data = __VAR; \ 4800 __data = div_u64(__data, NSEC_PER_USEC); \ 4801 return bfq_var_show(__data, (page)); \ 4802 } 4803 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 4804 #undef USEC_SHOW_FUNCTION 4805 4806 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4807 static ssize_t \ 4808 __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4809 { \ 4810 struct bfq_data *bfqd = e->elevator_data; \ 4811 unsigned long uninitialized_var(__data); \ 4812 int ret = bfq_var_store(&__data, (page), count); \ 4813 if (__data < (MIN)) \ 4814 __data = (MIN); \ 4815 else if (__data > (MAX)) \ 4816 __data = (MAX); \ 4817 if (__CONV == 1) \ 4818 *(__PTR) = msecs_to_jiffies(__data); \ 4819 else if (__CONV == 2) \ 4820 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4821 else \ 4822 *(__PTR) = __data; \ 4823 return ret; \ 4824 } 4825 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 4826 INT_MAX, 2); 4827 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 4828 INT_MAX, 2); 4829 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 4830 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 4831 INT_MAX, 0); 4832 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 4833 #undef STORE_FUNCTION 4834 4835 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4836 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 4837 { \ 4838 struct bfq_data *bfqd = e->elevator_data; \ 4839 unsigned long uninitialized_var(__data); \ 4840 int ret = bfq_var_store(&__data, (page), count); \ 4841 if (__data < (MIN)) \ 4842 __data = (MIN); \ 4843 else if (__data > (MAX)) \ 4844 __data = (MAX); \ 4845 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4846 return ret; \ 4847 } 4848 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 4849 UINT_MAX); 4850 #undef USEC_STORE_FUNCTION 4851 4852 static ssize_t bfq_max_budget_store(struct elevator_queue *e, 4853 const char *page, size_t count) 4854 { 4855 struct bfq_data *bfqd = e->elevator_data; 4856 unsigned long uninitialized_var(__data); 4857 int ret = bfq_var_store(&__data, (page), count); 4858 4859 if (__data == 0) 4860 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4861 else { 4862 if (__data > INT_MAX) 4863 __data = INT_MAX; 4864 bfqd->bfq_max_budget = __data; 4865 } 4866 4867 bfqd->bfq_user_max_budget = __data; 4868 4869 return ret; 4870 } 4871 4872 /* 4873 * Leaving this name to preserve name compatibility with cfq 4874 * parameters, but this timeout is used for both sync and async. 4875 */ 4876 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 4877 const char *page, size_t count) 4878 { 4879 struct bfq_data *bfqd = e->elevator_data; 4880 unsigned long uninitialized_var(__data); 4881 int ret = bfq_var_store(&__data, (page), count); 4882 4883 if (__data < 1) 4884 __data = 1; 4885 else if (__data > INT_MAX) 4886 __data = INT_MAX; 4887 4888 bfqd->bfq_timeout = msecs_to_jiffies(__data); 4889 if (bfqd->bfq_user_max_budget == 0) 4890 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 4891 4892 return ret; 4893 } 4894 4895 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 4896 const char *page, size_t count) 4897 { 4898 struct bfq_data *bfqd = e->elevator_data; 4899 unsigned long uninitialized_var(__data); 4900 int ret = bfq_var_store(&__data, (page), count); 4901 4902 if (__data > 1) 4903 __data = 1; 4904 if (!bfqd->strict_guarantees && __data == 1 4905 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 4906 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 4907 4908 bfqd->strict_guarantees = __data; 4909 4910 return ret; 4911 } 4912 4913 static ssize_t bfq_low_latency_store(struct elevator_queue *e, 4914 const char *page, size_t count) 4915 { 4916 struct bfq_data *bfqd = e->elevator_data; 4917 unsigned long uninitialized_var(__data); 4918 int ret = bfq_var_store(&__data, (page), count); 4919 4920 if (__data > 1) 4921 __data = 1; 4922 if (__data == 0 && bfqd->low_latency != 0) 4923 bfq_end_wr(bfqd); 4924 bfqd->low_latency = __data; 4925 4926 return ret; 4927 } 4928 4929 #define BFQ_ATTR(name) \ 4930 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 4931 4932 static struct elv_fs_entry bfq_attrs[] = { 4933 BFQ_ATTR(fifo_expire_sync), 4934 BFQ_ATTR(fifo_expire_async), 4935 BFQ_ATTR(back_seek_max), 4936 BFQ_ATTR(back_seek_penalty), 4937 BFQ_ATTR(slice_idle), 4938 BFQ_ATTR(slice_idle_us), 4939 BFQ_ATTR(max_budget), 4940 BFQ_ATTR(timeout_sync), 4941 BFQ_ATTR(strict_guarantees), 4942 BFQ_ATTR(low_latency), 4943 __ATTR_NULL 4944 }; 4945 4946 static struct elevator_type iosched_bfq_mq = { 4947 .ops.mq = { 4948 .get_rq_priv = bfq_get_rq_private, 4949 .put_rq_priv = bfq_put_rq_private, 4950 .exit_icq = bfq_exit_icq, 4951 .insert_requests = bfq_insert_requests, 4952 .dispatch_request = bfq_dispatch_request, 4953 .next_request = elv_rb_latter_request, 4954 .former_request = elv_rb_former_request, 4955 .allow_merge = bfq_allow_bio_merge, 4956 .bio_merge = bfq_bio_merge, 4957 .request_merge = bfq_request_merge, 4958 .requests_merged = bfq_requests_merged, 4959 .request_merged = bfq_request_merged, 4960 .has_work = bfq_has_work, 4961 .init_sched = bfq_init_queue, 4962 .exit_sched = bfq_exit_queue, 4963 }, 4964 4965 .uses_mq = true, 4966 .icq_size = sizeof(struct bfq_io_cq), 4967 .icq_align = __alignof__(struct bfq_io_cq), 4968 .elevator_attrs = bfq_attrs, 4969 .elevator_name = "bfq", 4970 .elevator_owner = THIS_MODULE, 4971 }; 4972 4973 static int __init bfq_init(void) 4974 { 4975 int ret; 4976 4977 #ifdef CONFIG_BFQ_GROUP_IOSCHED 4978 ret = blkcg_policy_register(&blkcg_policy_bfq); 4979 if (ret) 4980 return ret; 4981 #endif 4982 4983 ret = -ENOMEM; 4984 if (bfq_slab_setup()) 4985 goto err_pol_unreg; 4986 4987 /* 4988 * Times to load large popular applications for the typical 4989 * systems installed on the reference devices (see the 4990 * comments before the definitions of the next two 4991 * arrays). Actually, we use slightly slower values, as the 4992 * estimated peak rate tends to be smaller than the actual 4993 * peak rate. The reason for this last fact is that estimates 4994 * are computed over much shorter time intervals than the long 4995 * intervals typically used for benchmarking. Why? First, to 4996 * adapt more quickly to variations. Second, because an I/O 4997 * scheduler cannot rely on a peak-rate-evaluation workload to 4998 * be run for a long time. 4999 */ 5000 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ 5001 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ 5002 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 5003 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 5004 5005 /* 5006 * Thresholds that determine the switch between speed classes 5007 * (see the comments before the definition of the array 5008 * device_speed_thresh). These thresholds are biased towards 5009 * transitions to the fast class. This is safer than the 5010 * opposite bias. In fact, a wrong transition to the slow 5011 * class results in short weight-raising periods, because the 5012 * speed of the device then tends to be higher that the 5013 * reference peak rate. On the opposite end, a wrong 5014 * transition to the fast class tends to increase 5015 * weight-raising periods, because of the opposite reason. 5016 */ 5017 device_speed_thresh[0] = (4 * R_slow[0]) / 3; 5018 device_speed_thresh[1] = (4 * R_slow[1]) / 3; 5019 5020 ret = elv_register(&iosched_bfq_mq); 5021 if (ret) 5022 goto err_pol_unreg; 5023 5024 return 0; 5025 5026 err_pol_unreg: 5027 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5028 blkcg_policy_unregister(&blkcg_policy_bfq); 5029 #endif 5030 return ret; 5031 } 5032 5033 static void __exit bfq_exit(void) 5034 { 5035 elv_unregister(&iosched_bfq_mq); 5036 #ifdef CONFIG_BFQ_GROUP_IOSCHED 5037 blkcg_policy_unregister(&blkcg_policy_bfq); 5038 #endif 5039 bfq_slab_kill(); 5040 } 5041 5042 module_init(bfq_init); 5043 module_exit(bfq_exit); 5044 5045 MODULE_AUTHOR("Paolo Valente"); 5046 MODULE_LICENSE("GPL"); 5047 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 5048