xref: /openbmc/linux/block/bfq-iosched.c (revision 1c2dd16a)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. This feature enables
53  * BFQ to provide applications in these classes with a very low
54  * latency. Finally, BFQ also features additional heuristics for
55  * preserving both a low latency and a high throughput on NCQ-capable,
56  * rotational or flash-based devices, and to get the job done quickly
57  * for applications consisting in many I/O-bound processes.
58  *
59  * BFQ is described in [1], where also a reference to the initial, more
60  * theoretical paper on BFQ can be found. The interested reader can find
61  * in the latter paper full details on the main algorithm, as well as
62  * formulas of the guarantees and formal proofs of all the properties.
63  * With respect to the version of BFQ presented in these papers, this
64  * implementation adds a few more heuristics, such as the one that
65  * guarantees a low latency to soft real-time applications, and a
66  * hierarchical extension based on H-WF2Q+.
67  *
68  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
69  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
70  * with O(log N) complexity derives from the one introduced with EEVDF
71  * in [3].
72  *
73  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
74  *     Scheduler", Proceedings of the First Workshop on Mobile System
75  *     Technologies (MST-2015), May 2015.
76  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
77  *
78  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
79  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
80  *     Oct 1997.
81  *
82  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
83  *
84  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
85  *     First: A Flexible and Accurate Mechanism for Proportional Share
86  *     Resource Allocation", technical report.
87  *
88  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
89  */
90 #include <linux/module.h>
91 #include <linux/slab.h>
92 #include <linux/blkdev.h>
93 #include <linux/cgroup.h>
94 #include <linux/elevator.h>
95 #include <linux/ktime.h>
96 #include <linux/rbtree.h>
97 #include <linux/ioprio.h>
98 #include <linux/sbitmap.h>
99 #include <linux/delay.h>
100 
101 #include "blk.h"
102 #include "blk-mq.h"
103 #include "blk-mq-tag.h"
104 #include "blk-mq-sched.h"
105 #include "bfq-iosched.h"
106 
107 #define BFQ_BFQQ_FNS(name)						\
108 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
109 {									\
110 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
111 }									\
112 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
113 {									\
114 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
115 }									\
116 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
117 {									\
118 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
119 }
120 
121 BFQ_BFQQ_FNS(just_created);
122 BFQ_BFQQ_FNS(busy);
123 BFQ_BFQQ_FNS(wait_request);
124 BFQ_BFQQ_FNS(non_blocking_wait_rq);
125 BFQ_BFQQ_FNS(fifo_expire);
126 BFQ_BFQQ_FNS(idle_window);
127 BFQ_BFQQ_FNS(sync);
128 BFQ_BFQQ_FNS(IO_bound);
129 BFQ_BFQQ_FNS(in_large_burst);
130 BFQ_BFQQ_FNS(coop);
131 BFQ_BFQQ_FNS(split_coop);
132 BFQ_BFQQ_FNS(softrt_update);
133 #undef BFQ_BFQQ_FNS						\
134 
135 /* Expiration time of sync (0) and async (1) requests, in ns. */
136 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
137 
138 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
139 static const int bfq_back_max = 16 * 1024;
140 
141 /* Penalty of a backwards seek, in number of sectors. */
142 static const int bfq_back_penalty = 2;
143 
144 /* Idling period duration, in ns. */
145 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
146 
147 /* Minimum number of assigned budgets for which stats are safe to compute. */
148 static const int bfq_stats_min_budgets = 194;
149 
150 /* Default maximum budget values, in sectors and number of requests. */
151 static const int bfq_default_max_budget = 16 * 1024;
152 
153 /*
154  * Async to sync throughput distribution is controlled as follows:
155  * when an async request is served, the entity is charged the number
156  * of sectors of the request, multiplied by the factor below
157  */
158 static const int bfq_async_charge_factor = 10;
159 
160 /* Default timeout values, in jiffies, approximating CFQ defaults. */
161 const int bfq_timeout = HZ / 8;
162 
163 static struct kmem_cache *bfq_pool;
164 
165 /* Below this threshold (in ns), we consider thinktime immediate. */
166 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
167 
168 /* hw_tag detection: parallel requests threshold and min samples needed. */
169 #define BFQ_HW_QUEUE_THRESHOLD	4
170 #define BFQ_HW_QUEUE_SAMPLES	32
171 
172 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
173 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
174 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
175 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 32/8)
176 
177 /* Min number of samples required to perform peak-rate update */
178 #define BFQ_RATE_MIN_SAMPLES	32
179 /* Min observation time interval required to perform a peak-rate update (ns) */
180 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
181 /* Target observation time interval for a peak-rate update (ns) */
182 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
183 
184 /* Shift used for peak rate fixed precision calculations. */
185 #define BFQ_RATE_SHIFT		16
186 
187 /*
188  * By default, BFQ computes the duration of the weight raising for
189  * interactive applications automatically, using the following formula:
190  * duration = (R / r) * T, where r is the peak rate of the device, and
191  * R and T are two reference parameters.
192  * In particular, R is the peak rate of the reference device (see below),
193  * and T is a reference time: given the systems that are likely to be
194  * installed on the reference device according to its speed class, T is
195  * about the maximum time needed, under BFQ and while reading two files in
196  * parallel, to load typical large applications on these systems.
197  * In practice, the slower/faster the device at hand is, the more/less it
198  * takes to load applications with respect to the reference device.
199  * Accordingly, the longer/shorter BFQ grants weight raising to interactive
200  * applications.
201  *
202  * BFQ uses four different reference pairs (R, T), depending on:
203  * . whether the device is rotational or non-rotational;
204  * . whether the device is slow, such as old or portable HDDs, as well as
205  *   SD cards, or fast, such as newer HDDs and SSDs.
206  *
207  * The device's speed class is dynamically (re)detected in
208  * bfq_update_peak_rate() every time the estimated peak rate is updated.
209  *
210  * In the following definitions, R_slow[0]/R_fast[0] and
211  * T_slow[0]/T_fast[0] are the reference values for a slow/fast
212  * rotational device, whereas R_slow[1]/R_fast[1] and
213  * T_slow[1]/T_fast[1] are the reference values for a slow/fast
214  * non-rotational device. Finally, device_speed_thresh are the
215  * thresholds used to switch between speed classes. The reference
216  * rates are not the actual peak rates of the devices used as a
217  * reference, but slightly lower values. The reason for using these
218  * slightly lower values is that the peak-rate estimator tends to
219  * yield slightly lower values than the actual peak rate (it can yield
220  * the actual peak rate only if there is only one process doing I/O,
221  * and the process does sequential I/O).
222  *
223  * Both the reference peak rates and the thresholds are measured in
224  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
225  */
226 static int R_slow[2] = {1000, 10700};
227 static int R_fast[2] = {14000, 33000};
228 /*
229  * To improve readability, a conversion function is used to initialize the
230  * following arrays, which entails that they can be initialized only in a
231  * function.
232  */
233 static int T_slow[2];
234 static int T_fast[2];
235 static int device_speed_thresh[2];
236 
237 #define RQ_BIC(rq)		((struct bfq_io_cq *) (rq)->elv.priv[0])
238 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
239 
240 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
241 {
242 	return bic->bfqq[is_sync];
243 }
244 
245 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
246 {
247 	bic->bfqq[is_sync] = bfqq;
248 }
249 
250 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
251 {
252 	return bic->icq.q->elevator->elevator_data;
253 }
254 
255 /**
256  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
257  * @icq: the iocontext queue.
258  */
259 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
260 {
261 	/* bic->icq is the first member, %NULL will convert to %NULL */
262 	return container_of(icq, struct bfq_io_cq, icq);
263 }
264 
265 /**
266  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
267  * @bfqd: the lookup key.
268  * @ioc: the io_context of the process doing I/O.
269  * @q: the request queue.
270  */
271 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
272 					struct io_context *ioc,
273 					struct request_queue *q)
274 {
275 	if (ioc) {
276 		unsigned long flags;
277 		struct bfq_io_cq *icq;
278 
279 		spin_lock_irqsave(q->queue_lock, flags);
280 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
281 		spin_unlock_irqrestore(q->queue_lock, flags);
282 
283 		return icq;
284 	}
285 
286 	return NULL;
287 }
288 
289 /*
290  * Scheduler run of queue, if there are requests pending and no one in the
291  * driver that will restart queueing.
292  */
293 void bfq_schedule_dispatch(struct bfq_data *bfqd)
294 {
295 	if (bfqd->queued != 0) {
296 		bfq_log(bfqd, "schedule dispatch");
297 		blk_mq_run_hw_queues(bfqd->queue, true);
298 	}
299 }
300 
301 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
302 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
303 
304 #define bfq_sample_valid(samples)	((samples) > 80)
305 
306 /*
307  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
308  * We choose the request that is closesr to the head right now.  Distance
309  * behind the head is penalized and only allowed to a certain extent.
310  */
311 static struct request *bfq_choose_req(struct bfq_data *bfqd,
312 				      struct request *rq1,
313 				      struct request *rq2,
314 				      sector_t last)
315 {
316 	sector_t s1, s2, d1 = 0, d2 = 0;
317 	unsigned long back_max;
318 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
319 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
320 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
321 
322 	if (!rq1 || rq1 == rq2)
323 		return rq2;
324 	if (!rq2)
325 		return rq1;
326 
327 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
328 		return rq1;
329 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
330 		return rq2;
331 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
332 		return rq1;
333 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
334 		return rq2;
335 
336 	s1 = blk_rq_pos(rq1);
337 	s2 = blk_rq_pos(rq2);
338 
339 	/*
340 	 * By definition, 1KiB is 2 sectors.
341 	 */
342 	back_max = bfqd->bfq_back_max * 2;
343 
344 	/*
345 	 * Strict one way elevator _except_ in the case where we allow
346 	 * short backward seeks which are biased as twice the cost of a
347 	 * similar forward seek.
348 	 */
349 	if (s1 >= last)
350 		d1 = s1 - last;
351 	else if (s1 + back_max >= last)
352 		d1 = (last - s1) * bfqd->bfq_back_penalty;
353 	else
354 		wrap |= BFQ_RQ1_WRAP;
355 
356 	if (s2 >= last)
357 		d2 = s2 - last;
358 	else if (s2 + back_max >= last)
359 		d2 = (last - s2) * bfqd->bfq_back_penalty;
360 	else
361 		wrap |= BFQ_RQ2_WRAP;
362 
363 	/* Found required data */
364 
365 	/*
366 	 * By doing switch() on the bit mask "wrap" we avoid having to
367 	 * check two variables for all permutations: --> faster!
368 	 */
369 	switch (wrap) {
370 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
371 		if (d1 < d2)
372 			return rq1;
373 		else if (d2 < d1)
374 			return rq2;
375 
376 		if (s1 >= s2)
377 			return rq1;
378 		else
379 			return rq2;
380 
381 	case BFQ_RQ2_WRAP:
382 		return rq1;
383 	case BFQ_RQ1_WRAP:
384 		return rq2;
385 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
386 	default:
387 		/*
388 		 * Since both rqs are wrapped,
389 		 * start with the one that's further behind head
390 		 * (--> only *one* back seek required),
391 		 * since back seek takes more time than forward.
392 		 */
393 		if (s1 <= s2)
394 			return rq1;
395 		else
396 			return rq2;
397 	}
398 }
399 
400 static struct bfq_queue *
401 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
402 		     sector_t sector, struct rb_node **ret_parent,
403 		     struct rb_node ***rb_link)
404 {
405 	struct rb_node **p, *parent;
406 	struct bfq_queue *bfqq = NULL;
407 
408 	parent = NULL;
409 	p = &root->rb_node;
410 	while (*p) {
411 		struct rb_node **n;
412 
413 		parent = *p;
414 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
415 
416 		/*
417 		 * Sort strictly based on sector. Smallest to the left,
418 		 * largest to the right.
419 		 */
420 		if (sector > blk_rq_pos(bfqq->next_rq))
421 			n = &(*p)->rb_right;
422 		else if (sector < blk_rq_pos(bfqq->next_rq))
423 			n = &(*p)->rb_left;
424 		else
425 			break;
426 		p = n;
427 		bfqq = NULL;
428 	}
429 
430 	*ret_parent = parent;
431 	if (rb_link)
432 		*rb_link = p;
433 
434 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
435 		(unsigned long long)sector,
436 		bfqq ? bfqq->pid : 0);
437 
438 	return bfqq;
439 }
440 
441 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
442 {
443 	struct rb_node **p, *parent;
444 	struct bfq_queue *__bfqq;
445 
446 	if (bfqq->pos_root) {
447 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
448 		bfqq->pos_root = NULL;
449 	}
450 
451 	if (bfq_class_idle(bfqq))
452 		return;
453 	if (!bfqq->next_rq)
454 		return;
455 
456 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
457 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
458 			blk_rq_pos(bfqq->next_rq), &parent, &p);
459 	if (!__bfqq) {
460 		rb_link_node(&bfqq->pos_node, parent, p);
461 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
462 	} else
463 		bfqq->pos_root = NULL;
464 }
465 
466 /*
467  * Tell whether there are active queues or groups with differentiated weights.
468  */
469 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
470 {
471 	/*
472 	 * For weights to differ, at least one of the trees must contain
473 	 * at least two nodes.
474 	 */
475 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
476 		(bfqd->queue_weights_tree.rb_node->rb_left ||
477 		 bfqd->queue_weights_tree.rb_node->rb_right)
478 #ifdef CONFIG_BFQ_GROUP_IOSCHED
479 	       ) ||
480 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
481 		(bfqd->group_weights_tree.rb_node->rb_left ||
482 		 bfqd->group_weights_tree.rb_node->rb_right)
483 #endif
484 	       );
485 }
486 
487 /*
488  * The following function returns true if every queue must receive the
489  * same share of the throughput (this condition is used when deciding
490  * whether idling may be disabled, see the comments in the function
491  * bfq_bfqq_may_idle()).
492  *
493  * Such a scenario occurs when:
494  * 1) all active queues have the same weight,
495  * 2) all active groups at the same level in the groups tree have the same
496  *    weight,
497  * 3) all active groups at the same level in the groups tree have the same
498  *    number of children.
499  *
500  * Unfortunately, keeping the necessary state for evaluating exactly the
501  * above symmetry conditions would be quite complex and time-consuming.
502  * Therefore this function evaluates, instead, the following stronger
503  * sub-conditions, for which it is much easier to maintain the needed
504  * state:
505  * 1) all active queues have the same weight,
506  * 2) all active groups have the same weight,
507  * 3) all active groups have at most one active child each.
508  * In particular, the last two conditions are always true if hierarchical
509  * support and the cgroups interface are not enabled, thus no state needs
510  * to be maintained in this case.
511  */
512 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
513 {
514 	return !bfq_differentiated_weights(bfqd);
515 }
516 
517 /*
518  * If the weight-counter tree passed as input contains no counter for
519  * the weight of the input entity, then add that counter; otherwise just
520  * increment the existing counter.
521  *
522  * Note that weight-counter trees contain few nodes in mostly symmetric
523  * scenarios. For example, if all queues have the same weight, then the
524  * weight-counter tree for the queues may contain at most one node.
525  * This holds even if low_latency is on, because weight-raised queues
526  * are not inserted in the tree.
527  * In most scenarios, the rate at which nodes are created/destroyed
528  * should be low too.
529  */
530 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
531 			  struct rb_root *root)
532 {
533 	struct rb_node **new = &(root->rb_node), *parent = NULL;
534 
535 	/*
536 	 * Do not insert if the entity is already associated with a
537 	 * counter, which happens if:
538 	 *   1) the entity is associated with a queue,
539 	 *   2) a request arrival has caused the queue to become both
540 	 *      non-weight-raised, and hence change its weight, and
541 	 *      backlogged; in this respect, each of the two events
542 	 *      causes an invocation of this function,
543 	 *   3) this is the invocation of this function caused by the
544 	 *      second event. This second invocation is actually useless,
545 	 *      and we handle this fact by exiting immediately. More
546 	 *      efficient or clearer solutions might possibly be adopted.
547 	 */
548 	if (entity->weight_counter)
549 		return;
550 
551 	while (*new) {
552 		struct bfq_weight_counter *__counter = container_of(*new,
553 						struct bfq_weight_counter,
554 						weights_node);
555 		parent = *new;
556 
557 		if (entity->weight == __counter->weight) {
558 			entity->weight_counter = __counter;
559 			goto inc_counter;
560 		}
561 		if (entity->weight < __counter->weight)
562 			new = &((*new)->rb_left);
563 		else
564 			new = &((*new)->rb_right);
565 	}
566 
567 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
568 					 GFP_ATOMIC);
569 
570 	/*
571 	 * In the unlucky event of an allocation failure, we just
572 	 * exit. This will cause the weight of entity to not be
573 	 * considered in bfq_differentiated_weights, which, in its
574 	 * turn, causes the scenario to be deemed wrongly symmetric in
575 	 * case entity's weight would have been the only weight making
576 	 * the scenario asymmetric. On the bright side, no unbalance
577 	 * will however occur when entity becomes inactive again (the
578 	 * invocation of this function is triggered by an activation
579 	 * of entity). In fact, bfq_weights_tree_remove does nothing
580 	 * if !entity->weight_counter.
581 	 */
582 	if (unlikely(!entity->weight_counter))
583 		return;
584 
585 	entity->weight_counter->weight = entity->weight;
586 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
587 	rb_insert_color(&entity->weight_counter->weights_node, root);
588 
589 inc_counter:
590 	entity->weight_counter->num_active++;
591 }
592 
593 /*
594  * Decrement the weight counter associated with the entity, and, if the
595  * counter reaches 0, remove the counter from the tree.
596  * See the comments to the function bfq_weights_tree_add() for considerations
597  * about overhead.
598  */
599 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
600 			     struct rb_root *root)
601 {
602 	if (!entity->weight_counter)
603 		return;
604 
605 	entity->weight_counter->num_active--;
606 	if (entity->weight_counter->num_active > 0)
607 		goto reset_entity_pointer;
608 
609 	rb_erase(&entity->weight_counter->weights_node, root);
610 	kfree(entity->weight_counter);
611 
612 reset_entity_pointer:
613 	entity->weight_counter = NULL;
614 }
615 
616 /*
617  * Return expired entry, or NULL to just start from scratch in rbtree.
618  */
619 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
620 				      struct request *last)
621 {
622 	struct request *rq;
623 
624 	if (bfq_bfqq_fifo_expire(bfqq))
625 		return NULL;
626 
627 	bfq_mark_bfqq_fifo_expire(bfqq);
628 
629 	rq = rq_entry_fifo(bfqq->fifo.next);
630 
631 	if (rq == last || ktime_get_ns() < rq->fifo_time)
632 		return NULL;
633 
634 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
635 	return rq;
636 }
637 
638 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
639 					struct bfq_queue *bfqq,
640 					struct request *last)
641 {
642 	struct rb_node *rbnext = rb_next(&last->rb_node);
643 	struct rb_node *rbprev = rb_prev(&last->rb_node);
644 	struct request *next, *prev = NULL;
645 
646 	/* Follow expired path, else get first next available. */
647 	next = bfq_check_fifo(bfqq, last);
648 	if (next)
649 		return next;
650 
651 	if (rbprev)
652 		prev = rb_entry_rq(rbprev);
653 
654 	if (rbnext)
655 		next = rb_entry_rq(rbnext);
656 	else {
657 		rbnext = rb_first(&bfqq->sort_list);
658 		if (rbnext && rbnext != &last->rb_node)
659 			next = rb_entry_rq(rbnext);
660 	}
661 
662 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
663 }
664 
665 /* see the definition of bfq_async_charge_factor for details */
666 static unsigned long bfq_serv_to_charge(struct request *rq,
667 					struct bfq_queue *bfqq)
668 {
669 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
670 		return blk_rq_sectors(rq);
671 
672 	/*
673 	 * If there are no weight-raised queues, then amplify service
674 	 * by just the async charge factor; otherwise amplify service
675 	 * by twice the async charge factor, to further reduce latency
676 	 * for weight-raised queues.
677 	 */
678 	if (bfqq->bfqd->wr_busy_queues == 0)
679 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
680 
681 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
682 }
683 
684 /**
685  * bfq_updated_next_req - update the queue after a new next_rq selection.
686  * @bfqd: the device data the queue belongs to.
687  * @bfqq: the queue to update.
688  *
689  * If the first request of a queue changes we make sure that the queue
690  * has enough budget to serve at least its first request (if the
691  * request has grown).  We do this because if the queue has not enough
692  * budget for its first request, it has to go through two dispatch
693  * rounds to actually get it dispatched.
694  */
695 static void bfq_updated_next_req(struct bfq_data *bfqd,
696 				 struct bfq_queue *bfqq)
697 {
698 	struct bfq_entity *entity = &bfqq->entity;
699 	struct request *next_rq = bfqq->next_rq;
700 	unsigned long new_budget;
701 
702 	if (!next_rq)
703 		return;
704 
705 	if (bfqq == bfqd->in_service_queue)
706 		/*
707 		 * In order not to break guarantees, budgets cannot be
708 		 * changed after an entity has been selected.
709 		 */
710 		return;
711 
712 	new_budget = max_t(unsigned long, bfqq->max_budget,
713 			   bfq_serv_to_charge(next_rq, bfqq));
714 	if (entity->budget != new_budget) {
715 		entity->budget = new_budget;
716 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
717 					 new_budget);
718 		bfq_requeue_bfqq(bfqd, bfqq);
719 	}
720 }
721 
722 static void
723 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
724 {
725 	if (bic->saved_idle_window)
726 		bfq_mark_bfqq_idle_window(bfqq);
727 	else
728 		bfq_clear_bfqq_idle_window(bfqq);
729 
730 	if (bic->saved_IO_bound)
731 		bfq_mark_bfqq_IO_bound(bfqq);
732 	else
733 		bfq_clear_bfqq_IO_bound(bfqq);
734 
735 	bfqq->ttime = bic->saved_ttime;
736 	bfqq->wr_coeff = bic->saved_wr_coeff;
737 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
738 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
739 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
740 
741 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
742 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
743 				   bfqq->wr_cur_max_time))) {
744 		bfq_log_bfqq(bfqq->bfqd, bfqq,
745 		    "resume state: switching off wr");
746 
747 		bfqq->wr_coeff = 1;
748 	}
749 
750 	/* make sure weight will be updated, however we got here */
751 	bfqq->entity.prio_changed = 1;
752 }
753 
754 static int bfqq_process_refs(struct bfq_queue *bfqq)
755 {
756 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
757 }
758 
759 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
760 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
761 {
762 	struct bfq_queue *item;
763 	struct hlist_node *n;
764 
765 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
766 		hlist_del_init(&item->burst_list_node);
767 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
768 	bfqd->burst_size = 1;
769 	bfqd->burst_parent_entity = bfqq->entity.parent;
770 }
771 
772 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
773 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
774 {
775 	/* Increment burst size to take into account also bfqq */
776 	bfqd->burst_size++;
777 
778 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
779 		struct bfq_queue *pos, *bfqq_item;
780 		struct hlist_node *n;
781 
782 		/*
783 		 * Enough queues have been activated shortly after each
784 		 * other to consider this burst as large.
785 		 */
786 		bfqd->large_burst = true;
787 
788 		/*
789 		 * We can now mark all queues in the burst list as
790 		 * belonging to a large burst.
791 		 */
792 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
793 				     burst_list_node)
794 			bfq_mark_bfqq_in_large_burst(bfqq_item);
795 		bfq_mark_bfqq_in_large_burst(bfqq);
796 
797 		/*
798 		 * From now on, and until the current burst finishes, any
799 		 * new queue being activated shortly after the last queue
800 		 * was inserted in the burst can be immediately marked as
801 		 * belonging to a large burst. So the burst list is not
802 		 * needed any more. Remove it.
803 		 */
804 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
805 					  burst_list_node)
806 			hlist_del_init(&pos->burst_list_node);
807 	} else /*
808 		* Burst not yet large: add bfqq to the burst list. Do
809 		* not increment the ref counter for bfqq, because bfqq
810 		* is removed from the burst list before freeing bfqq
811 		* in put_queue.
812 		*/
813 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
814 }
815 
816 /*
817  * If many queues belonging to the same group happen to be created
818  * shortly after each other, then the processes associated with these
819  * queues have typically a common goal. In particular, bursts of queue
820  * creations are usually caused by services or applications that spawn
821  * many parallel threads/processes. Examples are systemd during boot,
822  * or git grep. To help these processes get their job done as soon as
823  * possible, it is usually better to not grant either weight-raising
824  * or device idling to their queues.
825  *
826  * In this comment we describe, firstly, the reasons why this fact
827  * holds, and, secondly, the next function, which implements the main
828  * steps needed to properly mark these queues so that they can then be
829  * treated in a different way.
830  *
831  * The above services or applications benefit mostly from a high
832  * throughput: the quicker the requests of the activated queues are
833  * cumulatively served, the sooner the target job of these queues gets
834  * completed. As a consequence, weight-raising any of these queues,
835  * which also implies idling the device for it, is almost always
836  * counterproductive. In most cases it just lowers throughput.
837  *
838  * On the other hand, a burst of queue creations may be caused also by
839  * the start of an application that does not consist of a lot of
840  * parallel I/O-bound threads. In fact, with a complex application,
841  * several short processes may need to be executed to start-up the
842  * application. In this respect, to start an application as quickly as
843  * possible, the best thing to do is in any case to privilege the I/O
844  * related to the application with respect to all other
845  * I/O. Therefore, the best strategy to start as quickly as possible
846  * an application that causes a burst of queue creations is to
847  * weight-raise all the queues created during the burst. This is the
848  * exact opposite of the best strategy for the other type of bursts.
849  *
850  * In the end, to take the best action for each of the two cases, the
851  * two types of bursts need to be distinguished. Fortunately, this
852  * seems relatively easy, by looking at the sizes of the bursts. In
853  * particular, we found a threshold such that only bursts with a
854  * larger size than that threshold are apparently caused by
855  * services or commands such as systemd or git grep. For brevity,
856  * hereafter we call just 'large' these bursts. BFQ *does not*
857  * weight-raise queues whose creation occurs in a large burst. In
858  * addition, for each of these queues BFQ performs or does not perform
859  * idling depending on which choice boosts the throughput more. The
860  * exact choice depends on the device and request pattern at
861  * hand.
862  *
863  * Unfortunately, false positives may occur while an interactive task
864  * is starting (e.g., an application is being started). The
865  * consequence is that the queues associated with the task do not
866  * enjoy weight raising as expected. Fortunately these false positives
867  * are very rare. They typically occur if some service happens to
868  * start doing I/O exactly when the interactive task starts.
869  *
870  * Turning back to the next function, it implements all the steps
871  * needed to detect the occurrence of a large burst and to properly
872  * mark all the queues belonging to it (so that they can then be
873  * treated in a different way). This goal is achieved by maintaining a
874  * "burst list" that holds, temporarily, the queues that belong to the
875  * burst in progress. The list is then used to mark these queues as
876  * belonging to a large burst if the burst does become large. The main
877  * steps are the following.
878  *
879  * . when the very first queue is created, the queue is inserted into the
880  *   list (as it could be the first queue in a possible burst)
881  *
882  * . if the current burst has not yet become large, and a queue Q that does
883  *   not yet belong to the burst is activated shortly after the last time
884  *   at which a new queue entered the burst list, then the function appends
885  *   Q to the burst list
886  *
887  * . if, as a consequence of the previous step, the burst size reaches
888  *   the large-burst threshold, then
889  *
890  *     . all the queues in the burst list are marked as belonging to a
891  *       large burst
892  *
893  *     . the burst list is deleted; in fact, the burst list already served
894  *       its purpose (keeping temporarily track of the queues in a burst,
895  *       so as to be able to mark them as belonging to a large burst in the
896  *       previous sub-step), and now is not needed any more
897  *
898  *     . the device enters a large-burst mode
899  *
900  * . if a queue Q that does not belong to the burst is created while
901  *   the device is in large-burst mode and shortly after the last time
902  *   at which a queue either entered the burst list or was marked as
903  *   belonging to the current large burst, then Q is immediately marked
904  *   as belonging to a large burst.
905  *
906  * . if a queue Q that does not belong to the burst is created a while
907  *   later, i.e., not shortly after, than the last time at which a queue
908  *   either entered the burst list or was marked as belonging to the
909  *   current large burst, then the current burst is deemed as finished and:
910  *
911  *        . the large-burst mode is reset if set
912  *
913  *        . the burst list is emptied
914  *
915  *        . Q is inserted in the burst list, as Q may be the first queue
916  *          in a possible new burst (then the burst list contains just Q
917  *          after this step).
918  */
919 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
920 {
921 	/*
922 	 * If bfqq is already in the burst list or is part of a large
923 	 * burst, or finally has just been split, then there is
924 	 * nothing else to do.
925 	 */
926 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
927 	    bfq_bfqq_in_large_burst(bfqq) ||
928 	    time_is_after_eq_jiffies(bfqq->split_time +
929 				     msecs_to_jiffies(10)))
930 		return;
931 
932 	/*
933 	 * If bfqq's creation happens late enough, or bfqq belongs to
934 	 * a different group than the burst group, then the current
935 	 * burst is finished, and related data structures must be
936 	 * reset.
937 	 *
938 	 * In this respect, consider the special case where bfqq is
939 	 * the very first queue created after BFQ is selected for this
940 	 * device. In this case, last_ins_in_burst and
941 	 * burst_parent_entity are not yet significant when we get
942 	 * here. But it is easy to verify that, whether or not the
943 	 * following condition is true, bfqq will end up being
944 	 * inserted into the burst list. In particular the list will
945 	 * happen to contain only bfqq. And this is exactly what has
946 	 * to happen, as bfqq may be the first queue of the first
947 	 * burst.
948 	 */
949 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
950 	    bfqd->bfq_burst_interval) ||
951 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
952 		bfqd->large_burst = false;
953 		bfq_reset_burst_list(bfqd, bfqq);
954 		goto end;
955 	}
956 
957 	/*
958 	 * If we get here, then bfqq is being activated shortly after the
959 	 * last queue. So, if the current burst is also large, we can mark
960 	 * bfqq as belonging to this large burst immediately.
961 	 */
962 	if (bfqd->large_burst) {
963 		bfq_mark_bfqq_in_large_burst(bfqq);
964 		goto end;
965 	}
966 
967 	/*
968 	 * If we get here, then a large-burst state has not yet been
969 	 * reached, but bfqq is being activated shortly after the last
970 	 * queue. Then we add bfqq to the burst.
971 	 */
972 	bfq_add_to_burst(bfqd, bfqq);
973 end:
974 	/*
975 	 * At this point, bfqq either has been added to the current
976 	 * burst or has caused the current burst to terminate and a
977 	 * possible new burst to start. In particular, in the second
978 	 * case, bfqq has become the first queue in the possible new
979 	 * burst.  In both cases last_ins_in_burst needs to be moved
980 	 * forward.
981 	 */
982 	bfqd->last_ins_in_burst = jiffies;
983 }
984 
985 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
986 {
987 	struct bfq_entity *entity = &bfqq->entity;
988 
989 	return entity->budget - entity->service;
990 }
991 
992 /*
993  * If enough samples have been computed, return the current max budget
994  * stored in bfqd, which is dynamically updated according to the
995  * estimated disk peak rate; otherwise return the default max budget
996  */
997 static int bfq_max_budget(struct bfq_data *bfqd)
998 {
999 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1000 		return bfq_default_max_budget;
1001 	else
1002 		return bfqd->bfq_max_budget;
1003 }
1004 
1005 /*
1006  * Return min budget, which is a fraction of the current or default
1007  * max budget (trying with 1/32)
1008  */
1009 static int bfq_min_budget(struct bfq_data *bfqd)
1010 {
1011 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1012 		return bfq_default_max_budget / 32;
1013 	else
1014 		return bfqd->bfq_max_budget / 32;
1015 }
1016 
1017 /*
1018  * The next function, invoked after the input queue bfqq switches from
1019  * idle to busy, updates the budget of bfqq. The function also tells
1020  * whether the in-service queue should be expired, by returning
1021  * true. The purpose of expiring the in-service queue is to give bfqq
1022  * the chance to possibly preempt the in-service queue, and the reason
1023  * for preempting the in-service queue is to achieve one of the two
1024  * goals below.
1025  *
1026  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1027  * expired because it has remained idle. In particular, bfqq may have
1028  * expired for one of the following two reasons:
1029  *
1030  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1031  *   and did not make it to issue a new request before its last
1032  *   request was served;
1033  *
1034  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1035  *   a new request before the expiration of the idling-time.
1036  *
1037  * Even if bfqq has expired for one of the above reasons, the process
1038  * associated with the queue may be however issuing requests greedily,
1039  * and thus be sensitive to the bandwidth it receives (bfqq may have
1040  * remained idle for other reasons: CPU high load, bfqq not enjoying
1041  * idling, I/O throttling somewhere in the path from the process to
1042  * the I/O scheduler, ...). But if, after every expiration for one of
1043  * the above two reasons, bfqq has to wait for the service of at least
1044  * one full budget of another queue before being served again, then
1045  * bfqq is likely to get a much lower bandwidth or resource time than
1046  * its reserved ones. To address this issue, two countermeasures need
1047  * to be taken.
1048  *
1049  * First, the budget and the timestamps of bfqq need to be updated in
1050  * a special way on bfqq reactivation: they need to be updated as if
1051  * bfqq did not remain idle and did not expire. In fact, if they are
1052  * computed as if bfqq expired and remained idle until reactivation,
1053  * then the process associated with bfqq is treated as if, instead of
1054  * being greedy, it stopped issuing requests when bfqq remained idle,
1055  * and restarts issuing requests only on this reactivation. In other
1056  * words, the scheduler does not help the process recover the "service
1057  * hole" between bfqq expiration and reactivation. As a consequence,
1058  * the process receives a lower bandwidth than its reserved one. In
1059  * contrast, to recover this hole, the budget must be updated as if
1060  * bfqq was not expired at all before this reactivation, i.e., it must
1061  * be set to the value of the remaining budget when bfqq was
1062  * expired. Along the same line, timestamps need to be assigned the
1063  * value they had the last time bfqq was selected for service, i.e.,
1064  * before last expiration. Thus timestamps need to be back-shifted
1065  * with respect to their normal computation (see [1] for more details
1066  * on this tricky aspect).
1067  *
1068  * Secondly, to allow the process to recover the hole, the in-service
1069  * queue must be expired too, to give bfqq the chance to preempt it
1070  * immediately. In fact, if bfqq has to wait for a full budget of the
1071  * in-service queue to be completed, then it may become impossible to
1072  * let the process recover the hole, even if the back-shifted
1073  * timestamps of bfqq are lower than those of the in-service queue. If
1074  * this happens for most or all of the holes, then the process may not
1075  * receive its reserved bandwidth. In this respect, it is worth noting
1076  * that, being the service of outstanding requests unpreemptible, a
1077  * little fraction of the holes may however be unrecoverable, thereby
1078  * causing a little loss of bandwidth.
1079  *
1080  * The last important point is detecting whether bfqq does need this
1081  * bandwidth recovery. In this respect, the next function deems the
1082  * process associated with bfqq greedy, and thus allows it to recover
1083  * the hole, if: 1) the process is waiting for the arrival of a new
1084  * request (which implies that bfqq expired for one of the above two
1085  * reasons), and 2) such a request has arrived soon. The first
1086  * condition is controlled through the flag non_blocking_wait_rq,
1087  * while the second through the flag arrived_in_time. If both
1088  * conditions hold, then the function computes the budget in the
1089  * above-described special way, and signals that the in-service queue
1090  * should be expired. Timestamp back-shifting is done later in
1091  * __bfq_activate_entity.
1092  *
1093  * 2. Reduce latency. Even if timestamps are not backshifted to let
1094  * the process associated with bfqq recover a service hole, bfqq may
1095  * however happen to have, after being (re)activated, a lower finish
1096  * timestamp than the in-service queue.	 That is, the next budget of
1097  * bfqq may have to be completed before the one of the in-service
1098  * queue. If this is the case, then preempting the in-service queue
1099  * allows this goal to be achieved, apart from the unpreemptible,
1100  * outstanding requests mentioned above.
1101  *
1102  * Unfortunately, regardless of which of the above two goals one wants
1103  * to achieve, service trees need first to be updated to know whether
1104  * the in-service queue must be preempted. To have service trees
1105  * correctly updated, the in-service queue must be expired and
1106  * rescheduled, and bfqq must be scheduled too. This is one of the
1107  * most costly operations (in future versions, the scheduling
1108  * mechanism may be re-designed in such a way to make it possible to
1109  * know whether preemption is needed without needing to update service
1110  * trees). In addition, queue preemptions almost always cause random
1111  * I/O, and thus loss of throughput. Because of these facts, the next
1112  * function adopts the following simple scheme to avoid both costly
1113  * operations and too frequent preemptions: it requests the expiration
1114  * of the in-service queue (unconditionally) only for queues that need
1115  * to recover a hole, or that either are weight-raised or deserve to
1116  * be weight-raised.
1117  */
1118 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1119 						struct bfq_queue *bfqq,
1120 						bool arrived_in_time,
1121 						bool wr_or_deserves_wr)
1122 {
1123 	struct bfq_entity *entity = &bfqq->entity;
1124 
1125 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1126 		/*
1127 		 * We do not clear the flag non_blocking_wait_rq here, as
1128 		 * the latter is used in bfq_activate_bfqq to signal
1129 		 * that timestamps need to be back-shifted (and is
1130 		 * cleared right after).
1131 		 */
1132 
1133 		/*
1134 		 * In next assignment we rely on that either
1135 		 * entity->service or entity->budget are not updated
1136 		 * on expiration if bfqq is empty (see
1137 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1138 		 * remain unchanged after such an expiration, and the
1139 		 * following statement therefore assigns to
1140 		 * entity->budget the remaining budget on such an
1141 		 * expiration. For clarity, entity->service is not
1142 		 * updated on expiration in any case, and, in normal
1143 		 * operation, is reset only when bfqq is selected for
1144 		 * service (see bfq_get_next_queue).
1145 		 */
1146 		entity->budget = min_t(unsigned long,
1147 				       bfq_bfqq_budget_left(bfqq),
1148 				       bfqq->max_budget);
1149 
1150 		return true;
1151 	}
1152 
1153 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1154 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1155 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1156 	return wr_or_deserves_wr;
1157 }
1158 
1159 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1160 {
1161 	u64 dur;
1162 
1163 	if (bfqd->bfq_wr_max_time > 0)
1164 		return bfqd->bfq_wr_max_time;
1165 
1166 	dur = bfqd->RT_prod;
1167 	do_div(dur, bfqd->peak_rate);
1168 
1169 	/*
1170 	 * Limit duration between 3 and 13 seconds. Tests show that
1171 	 * higher values than 13 seconds often yield the opposite of
1172 	 * the desired result, i.e., worsen responsiveness by letting
1173 	 * non-interactive and non-soft-real-time applications
1174 	 * preserve weight raising for a too long time interval.
1175 	 *
1176 	 * On the other end, lower values than 3 seconds make it
1177 	 * difficult for most interactive tasks to complete their jobs
1178 	 * before weight-raising finishes.
1179 	 */
1180 	if (dur > msecs_to_jiffies(13000))
1181 		dur = msecs_to_jiffies(13000);
1182 	else if (dur < msecs_to_jiffies(3000))
1183 		dur = msecs_to_jiffies(3000);
1184 
1185 	return dur;
1186 }
1187 
1188 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1189 					     struct bfq_queue *bfqq,
1190 					     unsigned int old_wr_coeff,
1191 					     bool wr_or_deserves_wr,
1192 					     bool interactive,
1193 					     bool in_burst,
1194 					     bool soft_rt)
1195 {
1196 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1197 		/* start a weight-raising period */
1198 		if (interactive) {
1199 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1200 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1201 		} else {
1202 			bfqq->wr_start_at_switch_to_srt = jiffies;
1203 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1204 				BFQ_SOFTRT_WEIGHT_FACTOR;
1205 			bfqq->wr_cur_max_time =
1206 				bfqd->bfq_wr_rt_max_time;
1207 		}
1208 
1209 		/*
1210 		 * If needed, further reduce budget to make sure it is
1211 		 * close to bfqq's backlog, so as to reduce the
1212 		 * scheduling-error component due to a too large
1213 		 * budget. Do not care about throughput consequences,
1214 		 * but only about latency. Finally, do not assign a
1215 		 * too small budget either, to avoid increasing
1216 		 * latency by causing too frequent expirations.
1217 		 */
1218 		bfqq->entity.budget = min_t(unsigned long,
1219 					    bfqq->entity.budget,
1220 					    2 * bfq_min_budget(bfqd));
1221 	} else if (old_wr_coeff > 1) {
1222 		if (interactive) { /* update wr coeff and duration */
1223 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1224 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1225 		} else if (in_burst)
1226 			bfqq->wr_coeff = 1;
1227 		else if (soft_rt) {
1228 			/*
1229 			 * The application is now or still meeting the
1230 			 * requirements for being deemed soft rt.  We
1231 			 * can then correctly and safely (re)charge
1232 			 * the weight-raising duration for the
1233 			 * application with the weight-raising
1234 			 * duration for soft rt applications.
1235 			 *
1236 			 * In particular, doing this recharge now, i.e.,
1237 			 * before the weight-raising period for the
1238 			 * application finishes, reduces the probability
1239 			 * of the following negative scenario:
1240 			 * 1) the weight of a soft rt application is
1241 			 *    raised at startup (as for any newly
1242 			 *    created application),
1243 			 * 2) since the application is not interactive,
1244 			 *    at a certain time weight-raising is
1245 			 *    stopped for the application,
1246 			 * 3) at that time the application happens to
1247 			 *    still have pending requests, and hence
1248 			 *    is destined to not have a chance to be
1249 			 *    deemed soft rt before these requests are
1250 			 *    completed (see the comments to the
1251 			 *    function bfq_bfqq_softrt_next_start()
1252 			 *    for details on soft rt detection),
1253 			 * 4) these pending requests experience a high
1254 			 *    latency because the application is not
1255 			 *    weight-raised while they are pending.
1256 			 */
1257 			if (bfqq->wr_cur_max_time !=
1258 				bfqd->bfq_wr_rt_max_time) {
1259 				bfqq->wr_start_at_switch_to_srt =
1260 					bfqq->last_wr_start_finish;
1261 
1262 				bfqq->wr_cur_max_time =
1263 					bfqd->bfq_wr_rt_max_time;
1264 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1265 					BFQ_SOFTRT_WEIGHT_FACTOR;
1266 			}
1267 			bfqq->last_wr_start_finish = jiffies;
1268 		}
1269 	}
1270 }
1271 
1272 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1273 					struct bfq_queue *bfqq)
1274 {
1275 	return bfqq->dispatched == 0 &&
1276 		time_is_before_jiffies(
1277 			bfqq->budget_timeout +
1278 			bfqd->bfq_wr_min_idle_time);
1279 }
1280 
1281 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1282 					     struct bfq_queue *bfqq,
1283 					     int old_wr_coeff,
1284 					     struct request *rq,
1285 					     bool *interactive)
1286 {
1287 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1288 		bfqq_wants_to_preempt,
1289 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1290 		/*
1291 		 * See the comments on
1292 		 * bfq_bfqq_update_budg_for_activation for
1293 		 * details on the usage of the next variable.
1294 		 */
1295 		arrived_in_time =  ktime_get_ns() <=
1296 			bfqq->ttime.last_end_request +
1297 			bfqd->bfq_slice_idle * 3;
1298 
1299 	bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
1300 
1301 	/*
1302 	 * bfqq deserves to be weight-raised if:
1303 	 * - it is sync,
1304 	 * - it does not belong to a large burst,
1305 	 * - it has been idle for enough time or is soft real-time,
1306 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1307 	 */
1308 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1309 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1310 		!in_burst &&
1311 		time_is_before_jiffies(bfqq->soft_rt_next_start);
1312 	*interactive = !in_burst && idle_for_long_time;
1313 	wr_or_deserves_wr = bfqd->low_latency &&
1314 		(bfqq->wr_coeff > 1 ||
1315 		 (bfq_bfqq_sync(bfqq) &&
1316 		  bfqq->bic && (*interactive || soft_rt)));
1317 
1318 	/*
1319 	 * Using the last flag, update budget and check whether bfqq
1320 	 * may want to preempt the in-service queue.
1321 	 */
1322 	bfqq_wants_to_preempt =
1323 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1324 						    arrived_in_time,
1325 						    wr_or_deserves_wr);
1326 
1327 	/*
1328 	 * If bfqq happened to be activated in a burst, but has been
1329 	 * idle for much more than an interactive queue, then we
1330 	 * assume that, in the overall I/O initiated in the burst, the
1331 	 * I/O associated with bfqq is finished. So bfqq does not need
1332 	 * to be treated as a queue belonging to a burst
1333 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1334 	 * if set, and remove bfqq from the burst list if it's
1335 	 * there. We do not decrement burst_size, because the fact
1336 	 * that bfqq does not need to belong to the burst list any
1337 	 * more does not invalidate the fact that bfqq was created in
1338 	 * a burst.
1339 	 */
1340 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1341 	    idle_for_long_time &&
1342 	    time_is_before_jiffies(
1343 		    bfqq->budget_timeout +
1344 		    msecs_to_jiffies(10000))) {
1345 		hlist_del_init(&bfqq->burst_list_node);
1346 		bfq_clear_bfqq_in_large_burst(bfqq);
1347 	}
1348 
1349 	bfq_clear_bfqq_just_created(bfqq);
1350 
1351 
1352 	if (!bfq_bfqq_IO_bound(bfqq)) {
1353 		if (arrived_in_time) {
1354 			bfqq->requests_within_timer++;
1355 			if (bfqq->requests_within_timer >=
1356 			    bfqd->bfq_requests_within_timer)
1357 				bfq_mark_bfqq_IO_bound(bfqq);
1358 		} else
1359 			bfqq->requests_within_timer = 0;
1360 	}
1361 
1362 	if (bfqd->low_latency) {
1363 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1364 			/* wraparound */
1365 			bfqq->split_time =
1366 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1367 
1368 		if (time_is_before_jiffies(bfqq->split_time +
1369 					   bfqd->bfq_wr_min_idle_time)) {
1370 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1371 							 old_wr_coeff,
1372 							 wr_or_deserves_wr,
1373 							 *interactive,
1374 							 in_burst,
1375 							 soft_rt);
1376 
1377 			if (old_wr_coeff != bfqq->wr_coeff)
1378 				bfqq->entity.prio_changed = 1;
1379 		}
1380 	}
1381 
1382 	bfqq->last_idle_bklogged = jiffies;
1383 	bfqq->service_from_backlogged = 0;
1384 	bfq_clear_bfqq_softrt_update(bfqq);
1385 
1386 	bfq_add_bfqq_busy(bfqd, bfqq);
1387 
1388 	/*
1389 	 * Expire in-service queue only if preemption may be needed
1390 	 * for guarantees. In this respect, the function
1391 	 * next_queue_may_preempt just checks a simple, necessary
1392 	 * condition, and not a sufficient condition based on
1393 	 * timestamps. In fact, for the latter condition to be
1394 	 * evaluated, timestamps would need first to be updated, and
1395 	 * this operation is quite costly (see the comments on the
1396 	 * function bfq_bfqq_update_budg_for_activation).
1397 	 */
1398 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1399 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1400 	    next_queue_may_preempt(bfqd))
1401 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1402 				false, BFQQE_PREEMPTED);
1403 }
1404 
1405 static void bfq_add_request(struct request *rq)
1406 {
1407 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1408 	struct bfq_data *bfqd = bfqq->bfqd;
1409 	struct request *next_rq, *prev;
1410 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1411 	bool interactive = false;
1412 
1413 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1414 	bfqq->queued[rq_is_sync(rq)]++;
1415 	bfqd->queued++;
1416 
1417 	elv_rb_add(&bfqq->sort_list, rq);
1418 
1419 	/*
1420 	 * Check if this request is a better next-serve candidate.
1421 	 */
1422 	prev = bfqq->next_rq;
1423 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1424 	bfqq->next_rq = next_rq;
1425 
1426 	/*
1427 	 * Adjust priority tree position, if next_rq changes.
1428 	 */
1429 	if (prev != bfqq->next_rq)
1430 		bfq_pos_tree_add_move(bfqd, bfqq);
1431 
1432 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1433 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1434 						 rq, &interactive);
1435 	else {
1436 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1437 		    time_is_before_jiffies(
1438 				bfqq->last_wr_start_finish +
1439 				bfqd->bfq_wr_min_inter_arr_async)) {
1440 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1441 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1442 
1443 			bfqd->wr_busy_queues++;
1444 			bfqq->entity.prio_changed = 1;
1445 		}
1446 		if (prev != bfqq->next_rq)
1447 			bfq_updated_next_req(bfqd, bfqq);
1448 	}
1449 
1450 	/*
1451 	 * Assign jiffies to last_wr_start_finish in the following
1452 	 * cases:
1453 	 *
1454 	 * . if bfqq is not going to be weight-raised, because, for
1455 	 *   non weight-raised queues, last_wr_start_finish stores the
1456 	 *   arrival time of the last request; as of now, this piece
1457 	 *   of information is used only for deciding whether to
1458 	 *   weight-raise async queues
1459 	 *
1460 	 * . if bfqq is not weight-raised, because, if bfqq is now
1461 	 *   switching to weight-raised, then last_wr_start_finish
1462 	 *   stores the time when weight-raising starts
1463 	 *
1464 	 * . if bfqq is interactive, because, regardless of whether
1465 	 *   bfqq is currently weight-raised, the weight-raising
1466 	 *   period must start or restart (this case is considered
1467 	 *   separately because it is not detected by the above
1468 	 *   conditions, if bfqq is already weight-raised)
1469 	 *
1470 	 * last_wr_start_finish has to be updated also if bfqq is soft
1471 	 * real-time, because the weight-raising period is constantly
1472 	 * restarted on idle-to-busy transitions for these queues, but
1473 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1474 	 * needed.
1475 	 */
1476 	if (bfqd->low_latency &&
1477 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1478 		bfqq->last_wr_start_finish = jiffies;
1479 }
1480 
1481 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1482 					  struct bio *bio,
1483 					  struct request_queue *q)
1484 {
1485 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1486 
1487 
1488 	if (bfqq)
1489 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1490 
1491 	return NULL;
1492 }
1493 
1494 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1495 {
1496 	if (last_pos)
1497 		return abs(blk_rq_pos(rq) - last_pos);
1498 
1499 	return 0;
1500 }
1501 
1502 #if 0 /* Still not clear if we can do without next two functions */
1503 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1504 {
1505 	struct bfq_data *bfqd = q->elevator->elevator_data;
1506 
1507 	bfqd->rq_in_driver++;
1508 }
1509 
1510 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1511 {
1512 	struct bfq_data *bfqd = q->elevator->elevator_data;
1513 
1514 	bfqd->rq_in_driver--;
1515 }
1516 #endif
1517 
1518 static void bfq_remove_request(struct request_queue *q,
1519 			       struct request *rq)
1520 {
1521 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1522 	struct bfq_data *bfqd = bfqq->bfqd;
1523 	const int sync = rq_is_sync(rq);
1524 
1525 	if (bfqq->next_rq == rq) {
1526 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1527 		bfq_updated_next_req(bfqd, bfqq);
1528 	}
1529 
1530 	if (rq->queuelist.prev != &rq->queuelist)
1531 		list_del_init(&rq->queuelist);
1532 	bfqq->queued[sync]--;
1533 	bfqd->queued--;
1534 	elv_rb_del(&bfqq->sort_list, rq);
1535 
1536 	elv_rqhash_del(q, rq);
1537 	if (q->last_merge == rq)
1538 		q->last_merge = NULL;
1539 
1540 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1541 		bfqq->next_rq = NULL;
1542 
1543 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1544 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1545 			/*
1546 			 * bfqq emptied. In normal operation, when
1547 			 * bfqq is empty, bfqq->entity.service and
1548 			 * bfqq->entity.budget must contain,
1549 			 * respectively, the service received and the
1550 			 * budget used last time bfqq emptied. These
1551 			 * facts do not hold in this case, as at least
1552 			 * this last removal occurred while bfqq is
1553 			 * not in service. To avoid inconsistencies,
1554 			 * reset both bfqq->entity.service and
1555 			 * bfqq->entity.budget, if bfqq has still a
1556 			 * process that may issue I/O requests to it.
1557 			 */
1558 			bfqq->entity.budget = bfqq->entity.service = 0;
1559 		}
1560 
1561 		/*
1562 		 * Remove queue from request-position tree as it is empty.
1563 		 */
1564 		if (bfqq->pos_root) {
1565 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1566 			bfqq->pos_root = NULL;
1567 		}
1568 	}
1569 
1570 	if (rq->cmd_flags & REQ_META)
1571 		bfqq->meta_pending--;
1572 
1573 	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
1574 }
1575 
1576 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1577 {
1578 	struct request_queue *q = hctx->queue;
1579 	struct bfq_data *bfqd = q->elevator->elevator_data;
1580 	struct request *free = NULL;
1581 	/*
1582 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1583 	 * store its return value for later use, to avoid nesting
1584 	 * queue_lock inside the bfqd->lock. We assume that the bic
1585 	 * returned by bfq_bic_lookup does not go away before
1586 	 * bfqd->lock is taken.
1587 	 */
1588 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1589 	bool ret;
1590 
1591 	spin_lock_irq(&bfqd->lock);
1592 
1593 	if (bic)
1594 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1595 	else
1596 		bfqd->bio_bfqq = NULL;
1597 	bfqd->bio_bic = bic;
1598 
1599 	ret = blk_mq_sched_try_merge(q, bio, &free);
1600 
1601 	if (free)
1602 		blk_mq_free_request(free);
1603 	spin_unlock_irq(&bfqd->lock);
1604 
1605 	return ret;
1606 }
1607 
1608 static int bfq_request_merge(struct request_queue *q, struct request **req,
1609 			     struct bio *bio)
1610 {
1611 	struct bfq_data *bfqd = q->elevator->elevator_data;
1612 	struct request *__rq;
1613 
1614 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1615 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1616 		*req = __rq;
1617 		return ELEVATOR_FRONT_MERGE;
1618 	}
1619 
1620 	return ELEVATOR_NO_MERGE;
1621 }
1622 
1623 static void bfq_request_merged(struct request_queue *q, struct request *req,
1624 			       enum elv_merge type)
1625 {
1626 	if (type == ELEVATOR_FRONT_MERGE &&
1627 	    rb_prev(&req->rb_node) &&
1628 	    blk_rq_pos(req) <
1629 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1630 				    struct request, rb_node))) {
1631 		struct bfq_queue *bfqq = RQ_BFQQ(req);
1632 		struct bfq_data *bfqd = bfqq->bfqd;
1633 		struct request *prev, *next_rq;
1634 
1635 		/* Reposition request in its sort_list */
1636 		elv_rb_del(&bfqq->sort_list, req);
1637 		elv_rb_add(&bfqq->sort_list, req);
1638 
1639 		/* Choose next request to be served for bfqq */
1640 		prev = bfqq->next_rq;
1641 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1642 					 bfqd->last_position);
1643 		bfqq->next_rq = next_rq;
1644 		/*
1645 		 * If next_rq changes, update both the queue's budget to
1646 		 * fit the new request and the queue's position in its
1647 		 * rq_pos_tree.
1648 		 */
1649 		if (prev != bfqq->next_rq) {
1650 			bfq_updated_next_req(bfqd, bfqq);
1651 			bfq_pos_tree_add_move(bfqd, bfqq);
1652 		}
1653 	}
1654 }
1655 
1656 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1657 				struct request *next)
1658 {
1659 	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1660 
1661 	if (!RB_EMPTY_NODE(&rq->rb_node))
1662 		goto end;
1663 	spin_lock_irq(&bfqq->bfqd->lock);
1664 
1665 	/*
1666 	 * If next and rq belong to the same bfq_queue and next is older
1667 	 * than rq, then reposition rq in the fifo (by substituting next
1668 	 * with rq). Otherwise, if next and rq belong to different
1669 	 * bfq_queues, never reposition rq: in fact, we would have to
1670 	 * reposition it with respect to next's position in its own fifo,
1671 	 * which would most certainly be too expensive with respect to
1672 	 * the benefits.
1673 	 */
1674 	if (bfqq == next_bfqq &&
1675 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1676 	    next->fifo_time < rq->fifo_time) {
1677 		list_del_init(&rq->queuelist);
1678 		list_replace_init(&next->queuelist, &rq->queuelist);
1679 		rq->fifo_time = next->fifo_time;
1680 	}
1681 
1682 	if (bfqq->next_rq == next)
1683 		bfqq->next_rq = rq;
1684 
1685 	bfq_remove_request(q, next);
1686 
1687 	spin_unlock_irq(&bfqq->bfqd->lock);
1688 end:
1689 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1690 }
1691 
1692 /* Must be called with bfqq != NULL */
1693 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1694 {
1695 	if (bfq_bfqq_busy(bfqq))
1696 		bfqq->bfqd->wr_busy_queues--;
1697 	bfqq->wr_coeff = 1;
1698 	bfqq->wr_cur_max_time = 0;
1699 	bfqq->last_wr_start_finish = jiffies;
1700 	/*
1701 	 * Trigger a weight change on the next invocation of
1702 	 * __bfq_entity_update_weight_prio.
1703 	 */
1704 	bfqq->entity.prio_changed = 1;
1705 }
1706 
1707 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1708 			     struct bfq_group *bfqg)
1709 {
1710 	int i, j;
1711 
1712 	for (i = 0; i < 2; i++)
1713 		for (j = 0; j < IOPRIO_BE_NR; j++)
1714 			if (bfqg->async_bfqq[i][j])
1715 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1716 	if (bfqg->async_idle_bfqq)
1717 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1718 }
1719 
1720 static void bfq_end_wr(struct bfq_data *bfqd)
1721 {
1722 	struct bfq_queue *bfqq;
1723 
1724 	spin_lock_irq(&bfqd->lock);
1725 
1726 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1727 		bfq_bfqq_end_wr(bfqq);
1728 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1729 		bfq_bfqq_end_wr(bfqq);
1730 	bfq_end_wr_async(bfqd);
1731 
1732 	spin_unlock_irq(&bfqd->lock);
1733 }
1734 
1735 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1736 {
1737 	if (request)
1738 		return blk_rq_pos(io_struct);
1739 	else
1740 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1741 }
1742 
1743 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1744 				  sector_t sector)
1745 {
1746 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1747 	       BFQQ_CLOSE_THR;
1748 }
1749 
1750 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1751 					 struct bfq_queue *bfqq,
1752 					 sector_t sector)
1753 {
1754 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1755 	struct rb_node *parent, *node;
1756 	struct bfq_queue *__bfqq;
1757 
1758 	if (RB_EMPTY_ROOT(root))
1759 		return NULL;
1760 
1761 	/*
1762 	 * First, if we find a request starting at the end of the last
1763 	 * request, choose it.
1764 	 */
1765 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1766 	if (__bfqq)
1767 		return __bfqq;
1768 
1769 	/*
1770 	 * If the exact sector wasn't found, the parent of the NULL leaf
1771 	 * will contain the closest sector (rq_pos_tree sorted by
1772 	 * next_request position).
1773 	 */
1774 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1775 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1776 		return __bfqq;
1777 
1778 	if (blk_rq_pos(__bfqq->next_rq) < sector)
1779 		node = rb_next(&__bfqq->pos_node);
1780 	else
1781 		node = rb_prev(&__bfqq->pos_node);
1782 	if (!node)
1783 		return NULL;
1784 
1785 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
1786 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1787 		return __bfqq;
1788 
1789 	return NULL;
1790 }
1791 
1792 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1793 						   struct bfq_queue *cur_bfqq,
1794 						   sector_t sector)
1795 {
1796 	struct bfq_queue *bfqq;
1797 
1798 	/*
1799 	 * We shall notice if some of the queues are cooperating,
1800 	 * e.g., working closely on the same area of the device. In
1801 	 * that case, we can group them together and: 1) don't waste
1802 	 * time idling, and 2) serve the union of their requests in
1803 	 * the best possible order for throughput.
1804 	 */
1805 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1806 	if (!bfqq || bfqq == cur_bfqq)
1807 		return NULL;
1808 
1809 	return bfqq;
1810 }
1811 
1812 static struct bfq_queue *
1813 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1814 {
1815 	int process_refs, new_process_refs;
1816 	struct bfq_queue *__bfqq;
1817 
1818 	/*
1819 	 * If there are no process references on the new_bfqq, then it is
1820 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1821 	 * may have dropped their last reference (not just their last process
1822 	 * reference).
1823 	 */
1824 	if (!bfqq_process_refs(new_bfqq))
1825 		return NULL;
1826 
1827 	/* Avoid a circular list and skip interim queue merges. */
1828 	while ((__bfqq = new_bfqq->new_bfqq)) {
1829 		if (__bfqq == bfqq)
1830 			return NULL;
1831 		new_bfqq = __bfqq;
1832 	}
1833 
1834 	process_refs = bfqq_process_refs(bfqq);
1835 	new_process_refs = bfqq_process_refs(new_bfqq);
1836 	/*
1837 	 * If the process for the bfqq has gone away, there is no
1838 	 * sense in merging the queues.
1839 	 */
1840 	if (process_refs == 0 || new_process_refs == 0)
1841 		return NULL;
1842 
1843 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1844 		new_bfqq->pid);
1845 
1846 	/*
1847 	 * Merging is just a redirection: the requests of the process
1848 	 * owning one of the two queues are redirected to the other queue.
1849 	 * The latter queue, in its turn, is set as shared if this is the
1850 	 * first time that the requests of some process are redirected to
1851 	 * it.
1852 	 *
1853 	 * We redirect bfqq to new_bfqq and not the opposite, because
1854 	 * we are in the context of the process owning bfqq, thus we
1855 	 * have the io_cq of this process. So we can immediately
1856 	 * configure this io_cq to redirect the requests of the
1857 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1858 	 * not available any more (new_bfqq->bic == NULL).
1859 	 *
1860 	 * Anyway, even in case new_bfqq coincides with the in-service
1861 	 * queue, redirecting requests the in-service queue is the
1862 	 * best option, as we feed the in-service queue with new
1863 	 * requests close to the last request served and, by doing so,
1864 	 * are likely to increase the throughput.
1865 	 */
1866 	bfqq->new_bfqq = new_bfqq;
1867 	new_bfqq->ref += process_refs;
1868 	return new_bfqq;
1869 }
1870 
1871 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1872 					struct bfq_queue *new_bfqq)
1873 {
1874 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1875 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
1876 		return false;
1877 
1878 	/*
1879 	 * If either of the queues has already been detected as seeky,
1880 	 * then merging it with the other queue is unlikely to lead to
1881 	 * sequential I/O.
1882 	 */
1883 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1884 		return false;
1885 
1886 	/*
1887 	 * Interleaved I/O is known to be done by (some) applications
1888 	 * only for reads, so it does not make sense to merge async
1889 	 * queues.
1890 	 */
1891 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1892 		return false;
1893 
1894 	return true;
1895 }
1896 
1897 /*
1898  * If this function returns true, then bfqq cannot be merged. The idea
1899  * is that true cooperation happens very early after processes start
1900  * to do I/O. Usually, late cooperations are just accidental false
1901  * positives. In case bfqq is weight-raised, such false positives
1902  * would evidently degrade latency guarantees for bfqq.
1903  */
1904 static bool wr_from_too_long(struct bfq_queue *bfqq)
1905 {
1906 	return bfqq->wr_coeff > 1 &&
1907 		time_is_before_jiffies(bfqq->last_wr_start_finish +
1908 				       msecs_to_jiffies(100));
1909 }
1910 
1911 /*
1912  * Attempt to schedule a merge of bfqq with the currently in-service
1913  * queue or with a close queue among the scheduled queues.  Return
1914  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1915  * structure otherwise.
1916  *
1917  * The OOM queue is not allowed to participate to cooperation: in fact, since
1918  * the requests temporarily redirected to the OOM queue could be redirected
1919  * again to dedicated queues at any time, the state needed to correctly
1920  * handle merging with the OOM queue would be quite complex and expensive
1921  * to maintain. Besides, in such a critical condition as an out of memory,
1922  * the benefits of queue merging may be little relevant, or even negligible.
1923  *
1924  * Weight-raised queues can be merged only if their weight-raising
1925  * period has just started. In fact cooperating processes are usually
1926  * started together. Thus, with this filter we avoid false positives
1927  * that would jeopardize low-latency guarantees.
1928  *
1929  * WARNING: queue merging may impair fairness among non-weight raised
1930  * queues, for at least two reasons: 1) the original weight of a
1931  * merged queue may change during the merged state, 2) even being the
1932  * weight the same, a merged queue may be bloated with many more
1933  * requests than the ones produced by its originally-associated
1934  * process.
1935  */
1936 static struct bfq_queue *
1937 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1938 		     void *io_struct, bool request)
1939 {
1940 	struct bfq_queue *in_service_bfqq, *new_bfqq;
1941 
1942 	if (bfqq->new_bfqq)
1943 		return bfqq->new_bfqq;
1944 
1945 	if (!io_struct ||
1946 	    wr_from_too_long(bfqq) ||
1947 	    unlikely(bfqq == &bfqd->oom_bfqq))
1948 		return NULL;
1949 
1950 	/* If there is only one backlogged queue, don't search. */
1951 	if (bfqd->busy_queues == 1)
1952 		return NULL;
1953 
1954 	in_service_bfqq = bfqd->in_service_queue;
1955 
1956 	if (!in_service_bfqq || in_service_bfqq == bfqq
1957 	    || wr_from_too_long(in_service_bfqq) ||
1958 	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
1959 		goto check_scheduled;
1960 
1961 	if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
1962 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
1963 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
1964 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
1965 		if (new_bfqq)
1966 			return new_bfqq;
1967 	}
1968 	/*
1969 	 * Check whether there is a cooperator among currently scheduled
1970 	 * queues. The only thing we need is that the bio/request is not
1971 	 * NULL, as we need it to establish whether a cooperator exists.
1972 	 */
1973 check_scheduled:
1974 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
1975 			bfq_io_struct_pos(io_struct, request));
1976 
1977 	if (new_bfqq && !wr_from_too_long(new_bfqq) &&
1978 	    likely(new_bfqq != &bfqd->oom_bfqq) &&
1979 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
1980 		return bfq_setup_merge(bfqq, new_bfqq);
1981 
1982 	return NULL;
1983 }
1984 
1985 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
1986 {
1987 	struct bfq_io_cq *bic = bfqq->bic;
1988 
1989 	/*
1990 	 * If !bfqq->bic, the queue is already shared or its requests
1991 	 * have already been redirected to a shared queue; both idle window
1992 	 * and weight raising state have already been saved. Do nothing.
1993 	 */
1994 	if (!bic)
1995 		return;
1996 
1997 	bic->saved_ttime = bfqq->ttime;
1998 	bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
1999 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2000 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2001 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2002 	bic->saved_wr_coeff = bfqq->wr_coeff;
2003 	bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
2004 	bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2005 	bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2006 }
2007 
2008 static void
2009 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2010 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2011 {
2012 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2013 		(unsigned long)new_bfqq->pid);
2014 	/* Save weight raising and idle window of the merged queues */
2015 	bfq_bfqq_save_state(bfqq);
2016 	bfq_bfqq_save_state(new_bfqq);
2017 	if (bfq_bfqq_IO_bound(bfqq))
2018 		bfq_mark_bfqq_IO_bound(new_bfqq);
2019 	bfq_clear_bfqq_IO_bound(bfqq);
2020 
2021 	/*
2022 	 * If bfqq is weight-raised, then let new_bfqq inherit
2023 	 * weight-raising. To reduce false positives, neglect the case
2024 	 * where bfqq has just been created, but has not yet made it
2025 	 * to be weight-raised (which may happen because EQM may merge
2026 	 * bfqq even before bfq_add_request is executed for the first
2027 	 * time for bfqq). Handling this case would however be very
2028 	 * easy, thanks to the flag just_created.
2029 	 */
2030 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2031 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2032 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2033 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2034 		new_bfqq->wr_start_at_switch_to_srt =
2035 			bfqq->wr_start_at_switch_to_srt;
2036 		if (bfq_bfqq_busy(new_bfqq))
2037 			bfqd->wr_busy_queues++;
2038 		new_bfqq->entity.prio_changed = 1;
2039 	}
2040 
2041 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2042 		bfqq->wr_coeff = 1;
2043 		bfqq->entity.prio_changed = 1;
2044 		if (bfq_bfqq_busy(bfqq))
2045 			bfqd->wr_busy_queues--;
2046 	}
2047 
2048 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2049 		     bfqd->wr_busy_queues);
2050 
2051 	/*
2052 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2053 	 */
2054 	bic_set_bfqq(bic, new_bfqq, 1);
2055 	bfq_mark_bfqq_coop(new_bfqq);
2056 	/*
2057 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2058 	 * set new_bfqq->bic to NULL. bfqq either:
2059 	 * - does not belong to any bic any more, and hence bfqq->bic must
2060 	 *   be set to NULL, or
2061 	 * - is a queue whose owning bics have already been redirected to a
2062 	 *   different queue, hence the queue is destined to not belong to
2063 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2064 	 *   assignment causes no harm).
2065 	 */
2066 	new_bfqq->bic = NULL;
2067 	bfqq->bic = NULL;
2068 	/* release process reference to bfqq */
2069 	bfq_put_queue(bfqq);
2070 }
2071 
2072 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2073 				struct bio *bio)
2074 {
2075 	struct bfq_data *bfqd = q->elevator->elevator_data;
2076 	bool is_sync = op_is_sync(bio->bi_opf);
2077 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2078 
2079 	/*
2080 	 * Disallow merge of a sync bio into an async request.
2081 	 */
2082 	if (is_sync && !rq_is_sync(rq))
2083 		return false;
2084 
2085 	/*
2086 	 * Lookup the bfqq that this bio will be queued with. Allow
2087 	 * merge only if rq is queued there.
2088 	 */
2089 	if (!bfqq)
2090 		return false;
2091 
2092 	/*
2093 	 * We take advantage of this function to perform an early merge
2094 	 * of the queues of possible cooperating processes.
2095 	 */
2096 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2097 	if (new_bfqq) {
2098 		/*
2099 		 * bic still points to bfqq, then it has not yet been
2100 		 * redirected to some other bfq_queue, and a queue
2101 		 * merge beween bfqq and new_bfqq can be safely
2102 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2103 		 * and bfqq can be put.
2104 		 */
2105 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2106 				new_bfqq);
2107 		/*
2108 		 * If we get here, bio will be queued into new_queue,
2109 		 * so use new_bfqq to decide whether bio and rq can be
2110 		 * merged.
2111 		 */
2112 		bfqq = new_bfqq;
2113 
2114 		/*
2115 		 * Change also bqfd->bio_bfqq, as
2116 		 * bfqd->bio_bic now points to new_bfqq, and
2117 		 * this function may be invoked again (and then may
2118 		 * use again bqfd->bio_bfqq).
2119 		 */
2120 		bfqd->bio_bfqq = bfqq;
2121 	}
2122 
2123 	return bfqq == RQ_BFQQ(rq);
2124 }
2125 
2126 /*
2127  * Set the maximum time for the in-service queue to consume its
2128  * budget. This prevents seeky processes from lowering the throughput.
2129  * In practice, a time-slice service scheme is used with seeky
2130  * processes.
2131  */
2132 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2133 				   struct bfq_queue *bfqq)
2134 {
2135 	unsigned int timeout_coeff;
2136 
2137 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2138 		timeout_coeff = 1;
2139 	else
2140 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2141 
2142 	bfqd->last_budget_start = ktime_get();
2143 
2144 	bfqq->budget_timeout = jiffies +
2145 		bfqd->bfq_timeout * timeout_coeff;
2146 }
2147 
2148 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2149 				       struct bfq_queue *bfqq)
2150 {
2151 	if (bfqq) {
2152 		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
2153 		bfq_clear_bfqq_fifo_expire(bfqq);
2154 
2155 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2156 
2157 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2158 		    bfqq->wr_coeff > 1 &&
2159 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2160 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2161 			/*
2162 			 * For soft real-time queues, move the start
2163 			 * of the weight-raising period forward by the
2164 			 * time the queue has not received any
2165 			 * service. Otherwise, a relatively long
2166 			 * service delay is likely to cause the
2167 			 * weight-raising period of the queue to end,
2168 			 * because of the short duration of the
2169 			 * weight-raising period of a soft real-time
2170 			 * queue.  It is worth noting that this move
2171 			 * is not so dangerous for the other queues,
2172 			 * because soft real-time queues are not
2173 			 * greedy.
2174 			 *
2175 			 * To not add a further variable, we use the
2176 			 * overloaded field budget_timeout to
2177 			 * determine for how long the queue has not
2178 			 * received service, i.e., how much time has
2179 			 * elapsed since the queue expired. However,
2180 			 * this is a little imprecise, because
2181 			 * budget_timeout is set to jiffies if bfqq
2182 			 * not only expires, but also remains with no
2183 			 * request.
2184 			 */
2185 			if (time_after(bfqq->budget_timeout,
2186 				       bfqq->last_wr_start_finish))
2187 				bfqq->last_wr_start_finish +=
2188 					jiffies - bfqq->budget_timeout;
2189 			else
2190 				bfqq->last_wr_start_finish = jiffies;
2191 		}
2192 
2193 		bfq_set_budget_timeout(bfqd, bfqq);
2194 		bfq_log_bfqq(bfqd, bfqq,
2195 			     "set_in_service_queue, cur-budget = %d",
2196 			     bfqq->entity.budget);
2197 	}
2198 
2199 	bfqd->in_service_queue = bfqq;
2200 }
2201 
2202 /*
2203  * Get and set a new queue for service.
2204  */
2205 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2206 {
2207 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2208 
2209 	__bfq_set_in_service_queue(bfqd, bfqq);
2210 	return bfqq;
2211 }
2212 
2213 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2214 {
2215 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2216 	u32 sl;
2217 
2218 	bfq_mark_bfqq_wait_request(bfqq);
2219 
2220 	/*
2221 	 * We don't want to idle for seeks, but we do want to allow
2222 	 * fair distribution of slice time for a process doing back-to-back
2223 	 * seeks. So allow a little bit of time for him to submit a new rq.
2224 	 */
2225 	sl = bfqd->bfq_slice_idle;
2226 	/*
2227 	 * Unless the queue is being weight-raised or the scenario is
2228 	 * asymmetric, grant only minimum idle time if the queue
2229 	 * is seeky. A long idling is preserved for a weight-raised
2230 	 * queue, or, more in general, in an asymmetric scenario,
2231 	 * because a long idling is needed for guaranteeing to a queue
2232 	 * its reserved share of the throughput (in particular, it is
2233 	 * needed if the queue has a higher weight than some other
2234 	 * queue).
2235 	 */
2236 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2237 	    bfq_symmetric_scenario(bfqd))
2238 		sl = min_t(u64, sl, BFQ_MIN_TT);
2239 
2240 	bfqd->last_idling_start = ktime_get();
2241 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2242 		      HRTIMER_MODE_REL);
2243 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2244 }
2245 
2246 /*
2247  * In autotuning mode, max_budget is dynamically recomputed as the
2248  * amount of sectors transferred in timeout at the estimated peak
2249  * rate. This enables BFQ to utilize a full timeslice with a full
2250  * budget, even if the in-service queue is served at peak rate. And
2251  * this maximises throughput with sequential workloads.
2252  */
2253 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2254 {
2255 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2256 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2257 }
2258 
2259 /*
2260  * Update parameters related to throughput and responsiveness, as a
2261  * function of the estimated peak rate. See comments on
2262  * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2263  */
2264 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2265 {
2266 	int dev_type = blk_queue_nonrot(bfqd->queue);
2267 
2268 	if (bfqd->bfq_user_max_budget == 0)
2269 		bfqd->bfq_max_budget =
2270 			bfq_calc_max_budget(bfqd);
2271 
2272 	if (bfqd->device_speed == BFQ_BFQD_FAST &&
2273 	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
2274 		bfqd->device_speed = BFQ_BFQD_SLOW;
2275 		bfqd->RT_prod = R_slow[dev_type] *
2276 			T_slow[dev_type];
2277 	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2278 		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
2279 		bfqd->device_speed = BFQ_BFQD_FAST;
2280 		bfqd->RT_prod = R_fast[dev_type] *
2281 			T_fast[dev_type];
2282 	}
2283 
2284 	bfq_log(bfqd,
2285 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2286 		dev_type == 0 ? "ROT" : "NONROT",
2287 		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2288 		bfqd->device_speed == BFQ_BFQD_FAST ?
2289 		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2290 		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2291 		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2292 		BFQ_RATE_SHIFT);
2293 }
2294 
2295 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2296 				       struct request *rq)
2297 {
2298 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2299 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2300 		bfqd->peak_rate_samples = 1;
2301 		bfqd->sequential_samples = 0;
2302 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2303 			blk_rq_sectors(rq);
2304 	} else /* no new rq dispatched, just reset the number of samples */
2305 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2306 
2307 	bfq_log(bfqd,
2308 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2309 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2310 		bfqd->tot_sectors_dispatched);
2311 }
2312 
2313 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2314 {
2315 	u32 rate, weight, divisor;
2316 
2317 	/*
2318 	 * For the convergence property to hold (see comments on
2319 	 * bfq_update_peak_rate()) and for the assessment to be
2320 	 * reliable, a minimum number of samples must be present, and
2321 	 * a minimum amount of time must have elapsed. If not so, do
2322 	 * not compute new rate. Just reset parameters, to get ready
2323 	 * for a new evaluation attempt.
2324 	 */
2325 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2326 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2327 		goto reset_computation;
2328 
2329 	/*
2330 	 * If a new request completion has occurred after last
2331 	 * dispatch, then, to approximate the rate at which requests
2332 	 * have been served by the device, it is more precise to
2333 	 * extend the observation interval to the last completion.
2334 	 */
2335 	bfqd->delta_from_first =
2336 		max_t(u64, bfqd->delta_from_first,
2337 		      bfqd->last_completion - bfqd->first_dispatch);
2338 
2339 	/*
2340 	 * Rate computed in sects/usec, and not sects/nsec, for
2341 	 * precision issues.
2342 	 */
2343 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2344 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2345 
2346 	/*
2347 	 * Peak rate not updated if:
2348 	 * - the percentage of sequential dispatches is below 3/4 of the
2349 	 *   total, and rate is below the current estimated peak rate
2350 	 * - rate is unreasonably high (> 20M sectors/sec)
2351 	 */
2352 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2353 	     rate <= bfqd->peak_rate) ||
2354 		rate > 20<<BFQ_RATE_SHIFT)
2355 		goto reset_computation;
2356 
2357 	/*
2358 	 * We have to update the peak rate, at last! To this purpose,
2359 	 * we use a low-pass filter. We compute the smoothing constant
2360 	 * of the filter as a function of the 'weight' of the new
2361 	 * measured rate.
2362 	 *
2363 	 * As can be seen in next formulas, we define this weight as a
2364 	 * quantity proportional to how sequential the workload is,
2365 	 * and to how long the observation time interval is.
2366 	 *
2367 	 * The weight runs from 0 to 8. The maximum value of the
2368 	 * weight, 8, yields the minimum value for the smoothing
2369 	 * constant. At this minimum value for the smoothing constant,
2370 	 * the measured rate contributes for half of the next value of
2371 	 * the estimated peak rate.
2372 	 *
2373 	 * So, the first step is to compute the weight as a function
2374 	 * of how sequential the workload is. Note that the weight
2375 	 * cannot reach 9, because bfqd->sequential_samples cannot
2376 	 * become equal to bfqd->peak_rate_samples, which, in its
2377 	 * turn, holds true because bfqd->sequential_samples is not
2378 	 * incremented for the first sample.
2379 	 */
2380 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2381 
2382 	/*
2383 	 * Second step: further refine the weight as a function of the
2384 	 * duration of the observation interval.
2385 	 */
2386 	weight = min_t(u32, 8,
2387 		       div_u64(weight * bfqd->delta_from_first,
2388 			       BFQ_RATE_REF_INTERVAL));
2389 
2390 	/*
2391 	 * Divisor ranging from 10, for minimum weight, to 2, for
2392 	 * maximum weight.
2393 	 */
2394 	divisor = 10 - weight;
2395 
2396 	/*
2397 	 * Finally, update peak rate:
2398 	 *
2399 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2400 	 */
2401 	bfqd->peak_rate *= divisor-1;
2402 	bfqd->peak_rate /= divisor;
2403 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2404 
2405 	bfqd->peak_rate += rate;
2406 	update_thr_responsiveness_params(bfqd);
2407 
2408 reset_computation:
2409 	bfq_reset_rate_computation(bfqd, rq);
2410 }
2411 
2412 /*
2413  * Update the read/write peak rate (the main quantity used for
2414  * auto-tuning, see update_thr_responsiveness_params()).
2415  *
2416  * It is not trivial to estimate the peak rate (correctly): because of
2417  * the presence of sw and hw queues between the scheduler and the
2418  * device components that finally serve I/O requests, it is hard to
2419  * say exactly when a given dispatched request is served inside the
2420  * device, and for how long. As a consequence, it is hard to know
2421  * precisely at what rate a given set of requests is actually served
2422  * by the device.
2423  *
2424  * On the opposite end, the dispatch time of any request is trivially
2425  * available, and, from this piece of information, the "dispatch rate"
2426  * of requests can be immediately computed. So, the idea in the next
2427  * function is to use what is known, namely request dispatch times
2428  * (plus, when useful, request completion times), to estimate what is
2429  * unknown, namely in-device request service rate.
2430  *
2431  * The main issue is that, because of the above facts, the rate at
2432  * which a certain set of requests is dispatched over a certain time
2433  * interval can vary greatly with respect to the rate at which the
2434  * same requests are then served. But, since the size of any
2435  * intermediate queue is limited, and the service scheme is lossless
2436  * (no request is silently dropped), the following obvious convergence
2437  * property holds: the number of requests dispatched MUST become
2438  * closer and closer to the number of requests completed as the
2439  * observation interval grows. This is the key property used in
2440  * the next function to estimate the peak service rate as a function
2441  * of the observed dispatch rate. The function assumes to be invoked
2442  * on every request dispatch.
2443  */
2444 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2445 {
2446 	u64 now_ns = ktime_get_ns();
2447 
2448 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2449 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2450 			bfqd->peak_rate_samples);
2451 		bfq_reset_rate_computation(bfqd, rq);
2452 		goto update_last_values; /* will add one sample */
2453 	}
2454 
2455 	/*
2456 	 * Device idle for very long: the observation interval lasting
2457 	 * up to this dispatch cannot be a valid observation interval
2458 	 * for computing a new peak rate (similarly to the late-
2459 	 * completion event in bfq_completed_request()). Go to
2460 	 * update_rate_and_reset to have the following three steps
2461 	 * taken:
2462 	 * - close the observation interval at the last (previous)
2463 	 *   request dispatch or completion
2464 	 * - compute rate, if possible, for that observation interval
2465 	 * - start a new observation interval with this dispatch
2466 	 */
2467 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2468 	    bfqd->rq_in_driver == 0)
2469 		goto update_rate_and_reset;
2470 
2471 	/* Update sampling information */
2472 	bfqd->peak_rate_samples++;
2473 
2474 	if ((bfqd->rq_in_driver > 0 ||
2475 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2476 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2477 		bfqd->sequential_samples++;
2478 
2479 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2480 
2481 	/* Reset max observed rq size every 32 dispatches */
2482 	if (likely(bfqd->peak_rate_samples % 32))
2483 		bfqd->last_rq_max_size =
2484 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2485 	else
2486 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2487 
2488 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2489 
2490 	/* Target observation interval not yet reached, go on sampling */
2491 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2492 		goto update_last_values;
2493 
2494 update_rate_and_reset:
2495 	bfq_update_rate_reset(bfqd, rq);
2496 update_last_values:
2497 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2498 	bfqd->last_dispatch = now_ns;
2499 }
2500 
2501 /*
2502  * Remove request from internal lists.
2503  */
2504 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2505 {
2506 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2507 
2508 	/*
2509 	 * For consistency, the next instruction should have been
2510 	 * executed after removing the request from the queue and
2511 	 * dispatching it.  We execute instead this instruction before
2512 	 * bfq_remove_request() (and hence introduce a temporary
2513 	 * inconsistency), for efficiency.  In fact, should this
2514 	 * dispatch occur for a non in-service bfqq, this anticipated
2515 	 * increment prevents two counters related to bfqq->dispatched
2516 	 * from risking to be, first, uselessly decremented, and then
2517 	 * incremented again when the (new) value of bfqq->dispatched
2518 	 * happens to be taken into account.
2519 	 */
2520 	bfqq->dispatched++;
2521 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2522 
2523 	bfq_remove_request(q, rq);
2524 }
2525 
2526 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2527 {
2528 	/*
2529 	 * If this bfqq is shared between multiple processes, check
2530 	 * to make sure that those processes are still issuing I/Os
2531 	 * within the mean seek distance. If not, it may be time to
2532 	 * break the queues apart again.
2533 	 */
2534 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2535 		bfq_mark_bfqq_split_coop(bfqq);
2536 
2537 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2538 		if (bfqq->dispatched == 0)
2539 			/*
2540 			 * Overloading budget_timeout field to store
2541 			 * the time at which the queue remains with no
2542 			 * backlog and no outstanding request; used by
2543 			 * the weight-raising mechanism.
2544 			 */
2545 			bfqq->budget_timeout = jiffies;
2546 
2547 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2548 	} else {
2549 		bfq_requeue_bfqq(bfqd, bfqq);
2550 		/*
2551 		 * Resort priority tree of potential close cooperators.
2552 		 */
2553 		bfq_pos_tree_add_move(bfqd, bfqq);
2554 	}
2555 
2556 	/*
2557 	 * All in-service entities must have been properly deactivated
2558 	 * or requeued before executing the next function, which
2559 	 * resets all in-service entites as no more in service.
2560 	 */
2561 	__bfq_bfqd_reset_in_service(bfqd);
2562 }
2563 
2564 /**
2565  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2566  * @bfqd: device data.
2567  * @bfqq: queue to update.
2568  * @reason: reason for expiration.
2569  *
2570  * Handle the feedback on @bfqq budget at queue expiration.
2571  * See the body for detailed comments.
2572  */
2573 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2574 				     struct bfq_queue *bfqq,
2575 				     enum bfqq_expiration reason)
2576 {
2577 	struct request *next_rq;
2578 	int budget, min_budget;
2579 
2580 	min_budget = bfq_min_budget(bfqd);
2581 
2582 	if (bfqq->wr_coeff == 1)
2583 		budget = bfqq->max_budget;
2584 	else /*
2585 	      * Use a constant, low budget for weight-raised queues,
2586 	      * to help achieve a low latency. Keep it slightly higher
2587 	      * than the minimum possible budget, to cause a little
2588 	      * bit fewer expirations.
2589 	      */
2590 		budget = 2 * min_budget;
2591 
2592 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2593 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2594 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2595 		budget, bfq_min_budget(bfqd));
2596 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2597 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2598 
2599 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2600 		switch (reason) {
2601 		/*
2602 		 * Caveat: in all the following cases we trade latency
2603 		 * for throughput.
2604 		 */
2605 		case BFQQE_TOO_IDLE:
2606 			/*
2607 			 * This is the only case where we may reduce
2608 			 * the budget: if there is no request of the
2609 			 * process still waiting for completion, then
2610 			 * we assume (tentatively) that the timer has
2611 			 * expired because the batch of requests of
2612 			 * the process could have been served with a
2613 			 * smaller budget.  Hence, betting that
2614 			 * process will behave in the same way when it
2615 			 * becomes backlogged again, we reduce its
2616 			 * next budget.  As long as we guess right,
2617 			 * this budget cut reduces the latency
2618 			 * experienced by the process.
2619 			 *
2620 			 * However, if there are still outstanding
2621 			 * requests, then the process may have not yet
2622 			 * issued its next request just because it is
2623 			 * still waiting for the completion of some of
2624 			 * the still outstanding ones.  So in this
2625 			 * subcase we do not reduce its budget, on the
2626 			 * contrary we increase it to possibly boost
2627 			 * the throughput, as discussed in the
2628 			 * comments to the BUDGET_TIMEOUT case.
2629 			 */
2630 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2631 				budget = min(budget * 2, bfqd->bfq_max_budget);
2632 			else {
2633 				if (budget > 5 * min_budget)
2634 					budget -= 4 * min_budget;
2635 				else
2636 					budget = min_budget;
2637 			}
2638 			break;
2639 		case BFQQE_BUDGET_TIMEOUT:
2640 			/*
2641 			 * We double the budget here because it gives
2642 			 * the chance to boost the throughput if this
2643 			 * is not a seeky process (and has bumped into
2644 			 * this timeout because of, e.g., ZBR).
2645 			 */
2646 			budget = min(budget * 2, bfqd->bfq_max_budget);
2647 			break;
2648 		case BFQQE_BUDGET_EXHAUSTED:
2649 			/*
2650 			 * The process still has backlog, and did not
2651 			 * let either the budget timeout or the disk
2652 			 * idling timeout expire. Hence it is not
2653 			 * seeky, has a short thinktime and may be
2654 			 * happy with a higher budget too. So
2655 			 * definitely increase the budget of this good
2656 			 * candidate to boost the disk throughput.
2657 			 */
2658 			budget = min(budget * 4, bfqd->bfq_max_budget);
2659 			break;
2660 		case BFQQE_NO_MORE_REQUESTS:
2661 			/*
2662 			 * For queues that expire for this reason, it
2663 			 * is particularly important to keep the
2664 			 * budget close to the actual service they
2665 			 * need. Doing so reduces the timestamp
2666 			 * misalignment problem described in the
2667 			 * comments in the body of
2668 			 * __bfq_activate_entity. In fact, suppose
2669 			 * that a queue systematically expires for
2670 			 * BFQQE_NO_MORE_REQUESTS and presents a
2671 			 * new request in time to enjoy timestamp
2672 			 * back-shifting. The larger the budget of the
2673 			 * queue is with respect to the service the
2674 			 * queue actually requests in each service
2675 			 * slot, the more times the queue can be
2676 			 * reactivated with the same virtual finish
2677 			 * time. It follows that, even if this finish
2678 			 * time is pushed to the system virtual time
2679 			 * to reduce the consequent timestamp
2680 			 * misalignment, the queue unjustly enjoys for
2681 			 * many re-activations a lower finish time
2682 			 * than all newly activated queues.
2683 			 *
2684 			 * The service needed by bfqq is measured
2685 			 * quite precisely by bfqq->entity.service.
2686 			 * Since bfqq does not enjoy device idling,
2687 			 * bfqq->entity.service is equal to the number
2688 			 * of sectors that the process associated with
2689 			 * bfqq requested to read/write before waiting
2690 			 * for request completions, or blocking for
2691 			 * other reasons.
2692 			 */
2693 			budget = max_t(int, bfqq->entity.service, min_budget);
2694 			break;
2695 		default:
2696 			return;
2697 		}
2698 	} else if (!bfq_bfqq_sync(bfqq)) {
2699 		/*
2700 		 * Async queues get always the maximum possible
2701 		 * budget, as for them we do not care about latency
2702 		 * (in addition, their ability to dispatch is limited
2703 		 * by the charging factor).
2704 		 */
2705 		budget = bfqd->bfq_max_budget;
2706 	}
2707 
2708 	bfqq->max_budget = budget;
2709 
2710 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2711 	    !bfqd->bfq_user_max_budget)
2712 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2713 
2714 	/*
2715 	 * If there is still backlog, then assign a new budget, making
2716 	 * sure that it is large enough for the next request.  Since
2717 	 * the finish time of bfqq must be kept in sync with the
2718 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2719 	 * update.
2720 	 *
2721 	 * If there is no backlog, then no need to update the budget;
2722 	 * it will be updated on the arrival of a new request.
2723 	 */
2724 	next_rq = bfqq->next_rq;
2725 	if (next_rq)
2726 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2727 					    bfq_serv_to_charge(next_rq, bfqq));
2728 
2729 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2730 			next_rq ? blk_rq_sectors(next_rq) : 0,
2731 			bfqq->entity.budget);
2732 }
2733 
2734 /*
2735  * Return true if the process associated with bfqq is "slow". The slow
2736  * flag is used, in addition to the budget timeout, to reduce the
2737  * amount of service provided to seeky processes, and thus reduce
2738  * their chances to lower the throughput. More details in the comments
2739  * on the function bfq_bfqq_expire().
2740  *
2741  * An important observation is in order: as discussed in the comments
2742  * on the function bfq_update_peak_rate(), with devices with internal
2743  * queues, it is hard if ever possible to know when and for how long
2744  * an I/O request is processed by the device (apart from the trivial
2745  * I/O pattern where a new request is dispatched only after the
2746  * previous one has been completed). This makes it hard to evaluate
2747  * the real rate at which the I/O requests of each bfq_queue are
2748  * served.  In fact, for an I/O scheduler like BFQ, serving a
2749  * bfq_queue means just dispatching its requests during its service
2750  * slot (i.e., until the budget of the queue is exhausted, or the
2751  * queue remains idle, or, finally, a timeout fires). But, during the
2752  * service slot of a bfq_queue, around 100 ms at most, the device may
2753  * be even still processing requests of bfq_queues served in previous
2754  * service slots. On the opposite end, the requests of the in-service
2755  * bfq_queue may be completed after the service slot of the queue
2756  * finishes.
2757  *
2758  * Anyway, unless more sophisticated solutions are used
2759  * (where possible), the sum of the sizes of the requests dispatched
2760  * during the service slot of a bfq_queue is probably the only
2761  * approximation available for the service received by the bfq_queue
2762  * during its service slot. And this sum is the quantity used in this
2763  * function to evaluate the I/O speed of a process.
2764  */
2765 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2766 				 bool compensate, enum bfqq_expiration reason,
2767 				 unsigned long *delta_ms)
2768 {
2769 	ktime_t delta_ktime;
2770 	u32 delta_usecs;
2771 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
2772 
2773 	if (!bfq_bfqq_sync(bfqq))
2774 		return false;
2775 
2776 	if (compensate)
2777 		delta_ktime = bfqd->last_idling_start;
2778 	else
2779 		delta_ktime = ktime_get();
2780 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2781 	delta_usecs = ktime_to_us(delta_ktime);
2782 
2783 	/* don't use too short time intervals */
2784 	if (delta_usecs < 1000) {
2785 		if (blk_queue_nonrot(bfqd->queue))
2786 			 /*
2787 			  * give same worst-case guarantees as idling
2788 			  * for seeky
2789 			  */
2790 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2791 		else /* charge at least one seek */
2792 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2793 
2794 		return slow;
2795 	}
2796 
2797 	*delta_ms = delta_usecs / USEC_PER_MSEC;
2798 
2799 	/*
2800 	 * Use only long (> 20ms) intervals to filter out excessive
2801 	 * spikes in service rate estimation.
2802 	 */
2803 	if (delta_usecs > 20000) {
2804 		/*
2805 		 * Caveat for rotational devices: processes doing I/O
2806 		 * in the slower disk zones tend to be slow(er) even
2807 		 * if not seeky. In this respect, the estimated peak
2808 		 * rate is likely to be an average over the disk
2809 		 * surface. Accordingly, to not be too harsh with
2810 		 * unlucky processes, a process is deemed slow only if
2811 		 * its rate has been lower than half of the estimated
2812 		 * peak rate.
2813 		 */
2814 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
2815 	}
2816 
2817 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
2818 
2819 	return slow;
2820 }
2821 
2822 /*
2823  * To be deemed as soft real-time, an application must meet two
2824  * requirements. First, the application must not require an average
2825  * bandwidth higher than the approximate bandwidth required to playback or
2826  * record a compressed high-definition video.
2827  * The next function is invoked on the completion of the last request of a
2828  * batch, to compute the next-start time instant, soft_rt_next_start, such
2829  * that, if the next request of the application does not arrive before
2830  * soft_rt_next_start, then the above requirement on the bandwidth is met.
2831  *
2832  * The second requirement is that the request pattern of the application is
2833  * isochronous, i.e., that, after issuing a request or a batch of requests,
2834  * the application stops issuing new requests until all its pending requests
2835  * have been completed. After that, the application may issue a new batch,
2836  * and so on.
2837  * For this reason the next function is invoked to compute
2838  * soft_rt_next_start only for applications that meet this requirement,
2839  * whereas soft_rt_next_start is set to infinity for applications that do
2840  * not.
2841  *
2842  * Unfortunately, even a greedy application may happen to behave in an
2843  * isochronous way if the CPU load is high. In fact, the application may
2844  * stop issuing requests while the CPUs are busy serving other processes,
2845  * then restart, then stop again for a while, and so on. In addition, if
2846  * the disk achieves a low enough throughput with the request pattern
2847  * issued by the application (e.g., because the request pattern is random
2848  * and/or the device is slow), then the application may meet the above
2849  * bandwidth requirement too. To prevent such a greedy application to be
2850  * deemed as soft real-time, a further rule is used in the computation of
2851  * soft_rt_next_start: soft_rt_next_start must be higher than the current
2852  * time plus the maximum time for which the arrival of a request is waited
2853  * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2854  * This filters out greedy applications, as the latter issue instead their
2855  * next request as soon as possible after the last one has been completed
2856  * (in contrast, when a batch of requests is completed, a soft real-time
2857  * application spends some time processing data).
2858  *
2859  * Unfortunately, the last filter may easily generate false positives if
2860  * only bfqd->bfq_slice_idle is used as a reference time interval and one
2861  * or both the following cases occur:
2862  * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2863  *    than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2864  *    HZ=100.
2865  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2866  *    for a while, then suddenly 'jump' by several units to recover the lost
2867  *    increments. This seems to happen, e.g., inside virtual machines.
2868  * To address this issue, we do not use as a reference time interval just
2869  * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2870  * particular we add the minimum number of jiffies for which the filter
2871  * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2872  * machines.
2873  */
2874 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2875 						struct bfq_queue *bfqq)
2876 {
2877 	return max(bfqq->last_idle_bklogged +
2878 		   HZ * bfqq->service_from_backlogged /
2879 		   bfqd->bfq_wr_max_softrt_rate,
2880 		   jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2881 }
2882 
2883 /*
2884  * Return the farthest future time instant according to jiffies
2885  * macros.
2886  */
2887 static unsigned long bfq_greatest_from_now(void)
2888 {
2889 	return jiffies + MAX_JIFFY_OFFSET;
2890 }
2891 
2892 /*
2893  * Return the farthest past time instant according to jiffies
2894  * macros.
2895  */
2896 static unsigned long bfq_smallest_from_now(void)
2897 {
2898 	return jiffies - MAX_JIFFY_OFFSET;
2899 }
2900 
2901 /**
2902  * bfq_bfqq_expire - expire a queue.
2903  * @bfqd: device owning the queue.
2904  * @bfqq: the queue to expire.
2905  * @compensate: if true, compensate for the time spent idling.
2906  * @reason: the reason causing the expiration.
2907  *
2908  * If the process associated with bfqq does slow I/O (e.g., because it
2909  * issues random requests), we charge bfqq with the time it has been
2910  * in service instead of the service it has received (see
2911  * bfq_bfqq_charge_time for details on how this goal is achieved). As
2912  * a consequence, bfqq will typically get higher timestamps upon
2913  * reactivation, and hence it will be rescheduled as if it had
2914  * received more service than what it has actually received. In the
2915  * end, bfqq receives less service in proportion to how slowly its
2916  * associated process consumes its budgets (and hence how seriously it
2917  * tends to lower the throughput). In addition, this time-charging
2918  * strategy guarantees time fairness among slow processes. In
2919  * contrast, if the process associated with bfqq is not slow, we
2920  * charge bfqq exactly with the service it has received.
2921  *
2922  * Charging time to the first type of queues and the exact service to
2923  * the other has the effect of using the WF2Q+ policy to schedule the
2924  * former on a timeslice basis, without violating service domain
2925  * guarantees among the latter.
2926  */
2927 void bfq_bfqq_expire(struct bfq_data *bfqd,
2928 		     struct bfq_queue *bfqq,
2929 		     bool compensate,
2930 		     enum bfqq_expiration reason)
2931 {
2932 	bool slow;
2933 	unsigned long delta = 0;
2934 	struct bfq_entity *entity = &bfqq->entity;
2935 	int ref;
2936 
2937 	/*
2938 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
2939 	 */
2940 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
2941 
2942 	/*
2943 	 * Increase service_from_backlogged before next statement,
2944 	 * because the possible next invocation of
2945 	 * bfq_bfqq_charge_time would likely inflate
2946 	 * entity->service. In contrast, service_from_backlogged must
2947 	 * contain real service, to enable the soft real-time
2948 	 * heuristic to correctly compute the bandwidth consumed by
2949 	 * bfqq.
2950 	 */
2951 	bfqq->service_from_backlogged += entity->service;
2952 
2953 	/*
2954 	 * As above explained, charge slow (typically seeky) and
2955 	 * timed-out queues with the time and not the service
2956 	 * received, to favor sequential workloads.
2957 	 *
2958 	 * Processes doing I/O in the slower disk zones will tend to
2959 	 * be slow(er) even if not seeky. Therefore, since the
2960 	 * estimated peak rate is actually an average over the disk
2961 	 * surface, these processes may timeout just for bad luck. To
2962 	 * avoid punishing them, do not charge time to processes that
2963 	 * succeeded in consuming at least 2/3 of their budget. This
2964 	 * allows BFQ to preserve enough elasticity to still perform
2965 	 * bandwidth, and not time, distribution with little unlucky
2966 	 * or quasi-sequential processes.
2967 	 */
2968 	if (bfqq->wr_coeff == 1 &&
2969 	    (slow ||
2970 	     (reason == BFQQE_BUDGET_TIMEOUT &&
2971 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
2972 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
2973 
2974 	if (reason == BFQQE_TOO_IDLE &&
2975 	    entity->service <= 2 * entity->budget / 10)
2976 		bfq_clear_bfqq_IO_bound(bfqq);
2977 
2978 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
2979 		bfqq->last_wr_start_finish = jiffies;
2980 
2981 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
2982 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
2983 		/*
2984 		 * If we get here, and there are no outstanding
2985 		 * requests, then the request pattern is isochronous
2986 		 * (see the comments on the function
2987 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
2988 		 * soft_rt_next_start. If, instead, the queue still
2989 		 * has outstanding requests, then we have to wait for
2990 		 * the completion of all the outstanding requests to
2991 		 * discover whether the request pattern is actually
2992 		 * isochronous.
2993 		 */
2994 		if (bfqq->dispatched == 0)
2995 			bfqq->soft_rt_next_start =
2996 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
2997 		else {
2998 			/*
2999 			 * The application is still waiting for the
3000 			 * completion of one or more requests:
3001 			 * prevent it from possibly being incorrectly
3002 			 * deemed as soft real-time by setting its
3003 			 * soft_rt_next_start to infinity. In fact,
3004 			 * without this assignment, the application
3005 			 * would be incorrectly deemed as soft
3006 			 * real-time if:
3007 			 * 1) it issued a new request before the
3008 			 *    completion of all its in-flight
3009 			 *    requests, and
3010 			 * 2) at that time, its soft_rt_next_start
3011 			 *    happened to be in the past.
3012 			 */
3013 			bfqq->soft_rt_next_start =
3014 				bfq_greatest_from_now();
3015 			/*
3016 			 * Schedule an update of soft_rt_next_start to when
3017 			 * the task may be discovered to be isochronous.
3018 			 */
3019 			bfq_mark_bfqq_softrt_update(bfqq);
3020 		}
3021 	}
3022 
3023 	bfq_log_bfqq(bfqd, bfqq,
3024 		"expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
3025 		slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
3026 
3027 	/*
3028 	 * Increase, decrease or leave budget unchanged according to
3029 	 * reason.
3030 	 */
3031 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3032 	ref = bfqq->ref;
3033 	__bfq_bfqq_expire(bfqd, bfqq);
3034 
3035 	/* mark bfqq as waiting a request only if a bic still points to it */
3036 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3037 	    reason != BFQQE_BUDGET_TIMEOUT &&
3038 	    reason != BFQQE_BUDGET_EXHAUSTED)
3039 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3040 }
3041 
3042 /*
3043  * Budget timeout is not implemented through a dedicated timer, but
3044  * just checked on request arrivals and completions, as well as on
3045  * idle timer expirations.
3046  */
3047 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3048 {
3049 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3050 }
3051 
3052 /*
3053  * If we expire a queue that is actively waiting (i.e., with the
3054  * device idled) for the arrival of a new request, then we may incur
3055  * the timestamp misalignment problem described in the body of the
3056  * function __bfq_activate_entity. Hence we return true only if this
3057  * condition does not hold, or if the queue is slow enough to deserve
3058  * only to be kicked off for preserving a high throughput.
3059  */
3060 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3061 {
3062 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3063 		"may_budget_timeout: wait_request %d left %d timeout %d",
3064 		bfq_bfqq_wait_request(bfqq),
3065 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3066 		bfq_bfqq_budget_timeout(bfqq));
3067 
3068 	return (!bfq_bfqq_wait_request(bfqq) ||
3069 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3070 		&&
3071 		bfq_bfqq_budget_timeout(bfqq);
3072 }
3073 
3074 /*
3075  * For a queue that becomes empty, device idling is allowed only if
3076  * this function returns true for the queue. As a consequence, since
3077  * device idling plays a critical role in both throughput boosting and
3078  * service guarantees, the return value of this function plays a
3079  * critical role in both these aspects as well.
3080  *
3081  * In a nutshell, this function returns true only if idling is
3082  * beneficial for throughput or, even if detrimental for throughput,
3083  * idling is however necessary to preserve service guarantees (low
3084  * latency, desired throughput distribution, ...). In particular, on
3085  * NCQ-capable devices, this function tries to return false, so as to
3086  * help keep the drives' internal queues full, whenever this helps the
3087  * device boost the throughput without causing any service-guarantee
3088  * issue.
3089  *
3090  * In more detail, the return value of this function is obtained by,
3091  * first, computing a number of boolean variables that take into
3092  * account throughput and service-guarantee issues, and, then,
3093  * combining these variables in a logical expression. Most of the
3094  * issues taken into account are not trivial. We discuss these issues
3095  * individually while introducing the variables.
3096  */
3097 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3098 {
3099 	struct bfq_data *bfqd = bfqq->bfqd;
3100 	bool idling_boosts_thr, idling_boosts_thr_without_issues,
3101 		idling_needed_for_service_guarantees,
3102 		asymmetric_scenario;
3103 
3104 	if (bfqd->strict_guarantees)
3105 		return true;
3106 
3107 	/*
3108 	 * The next variable takes into account the cases where idling
3109 	 * boosts the throughput.
3110 	 *
3111 	 * The value of the variable is computed considering, first, that
3112 	 * idling is virtually always beneficial for the throughput if:
3113 	 * (a) the device is not NCQ-capable, or
3114 	 * (b) regardless of the presence of NCQ, the device is rotational
3115 	 *     and the request pattern for bfqq is I/O-bound and sequential.
3116 	 *
3117 	 * Secondly, and in contrast to the above item (b), idling an
3118 	 * NCQ-capable flash-based device would not boost the
3119 	 * throughput even with sequential I/O; rather it would lower
3120 	 * the throughput in proportion to how fast the device
3121 	 * is. Accordingly, the next variable is true if any of the
3122 	 * above conditions (a) and (b) is true, and, in particular,
3123 	 * happens to be false if bfqd is an NCQ-capable flash-based
3124 	 * device.
3125 	 */
3126 	idling_boosts_thr = !bfqd->hw_tag ||
3127 		(!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
3128 		 bfq_bfqq_idle_window(bfqq));
3129 
3130 	/*
3131 	 * The value of the next variable,
3132 	 * idling_boosts_thr_without_issues, is equal to that of
3133 	 * idling_boosts_thr, unless a special case holds. In this
3134 	 * special case, described below, idling may cause problems to
3135 	 * weight-raised queues.
3136 	 *
3137 	 * When the request pool is saturated (e.g., in the presence
3138 	 * of write hogs), if the processes associated with
3139 	 * non-weight-raised queues ask for requests at a lower rate,
3140 	 * then processes associated with weight-raised queues have a
3141 	 * higher probability to get a request from the pool
3142 	 * immediately (or at least soon) when they need one. Thus
3143 	 * they have a higher probability to actually get a fraction
3144 	 * of the device throughput proportional to their high
3145 	 * weight. This is especially true with NCQ-capable drives,
3146 	 * which enqueue several requests in advance, and further
3147 	 * reorder internally-queued requests.
3148 	 *
3149 	 * For this reason, we force to false the value of
3150 	 * idling_boosts_thr_without_issues if there are weight-raised
3151 	 * busy queues. In this case, and if bfqq is not weight-raised,
3152 	 * this guarantees that the device is not idled for bfqq (if,
3153 	 * instead, bfqq is weight-raised, then idling will be
3154 	 * guaranteed by another variable, see below). Combined with
3155 	 * the timestamping rules of BFQ (see [1] for details), this
3156 	 * behavior causes bfqq, and hence any sync non-weight-raised
3157 	 * queue, to get a lower number of requests served, and thus
3158 	 * to ask for a lower number of requests from the request
3159 	 * pool, before the busy weight-raised queues get served
3160 	 * again. This often mitigates starvation problems in the
3161 	 * presence of heavy write workloads and NCQ, thereby
3162 	 * guaranteeing a higher application and system responsiveness
3163 	 * in these hostile scenarios.
3164 	 */
3165 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3166 		bfqd->wr_busy_queues == 0;
3167 
3168 	/*
3169 	 * There is then a case where idling must be performed not
3170 	 * for throughput concerns, but to preserve service
3171 	 * guarantees.
3172 	 *
3173 	 * To introduce this case, we can note that allowing the drive
3174 	 * to enqueue more than one request at a time, and hence
3175 	 * delegating de facto final scheduling decisions to the
3176 	 * drive's internal scheduler, entails loss of control on the
3177 	 * actual request service order. In particular, the critical
3178 	 * situation is when requests from different processes happen
3179 	 * to be present, at the same time, in the internal queue(s)
3180 	 * of the drive. In such a situation, the drive, by deciding
3181 	 * the service order of the internally-queued requests, does
3182 	 * determine also the actual throughput distribution among
3183 	 * these processes. But the drive typically has no notion or
3184 	 * concern about per-process throughput distribution, and
3185 	 * makes its decisions only on a per-request basis. Therefore,
3186 	 * the service distribution enforced by the drive's internal
3187 	 * scheduler is likely to coincide with the desired
3188 	 * device-throughput distribution only in a completely
3189 	 * symmetric scenario where:
3190 	 * (i)  each of these processes must get the same throughput as
3191 	 *      the others;
3192 	 * (ii) all these processes have the same I/O pattern
3193 		(either sequential or random).
3194 	 * In fact, in such a scenario, the drive will tend to treat
3195 	 * the requests of each of these processes in about the same
3196 	 * way as the requests of the others, and thus to provide
3197 	 * each of these processes with about the same throughput
3198 	 * (which is exactly the desired throughput distribution). In
3199 	 * contrast, in any asymmetric scenario, device idling is
3200 	 * certainly needed to guarantee that bfqq receives its
3201 	 * assigned fraction of the device throughput (see [1] for
3202 	 * details).
3203 	 *
3204 	 * We address this issue by controlling, actually, only the
3205 	 * symmetry sub-condition (i), i.e., provided that
3206 	 * sub-condition (i) holds, idling is not performed,
3207 	 * regardless of whether sub-condition (ii) holds. In other
3208 	 * words, only if sub-condition (i) holds, then idling is
3209 	 * allowed, and the device tends to be prevented from queueing
3210 	 * many requests, possibly of several processes. The reason
3211 	 * for not controlling also sub-condition (ii) is that we
3212 	 * exploit preemption to preserve guarantees in case of
3213 	 * symmetric scenarios, even if (ii) does not hold, as
3214 	 * explained in the next two paragraphs.
3215 	 *
3216 	 * Even if a queue, say Q, is expired when it remains idle, Q
3217 	 * can still preempt the new in-service queue if the next
3218 	 * request of Q arrives soon (see the comments on
3219 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3220 	 * groups have the same weight, this form of preemption,
3221 	 * combined with the hole-recovery heuristic described in the
3222 	 * comments on function bfq_bfqq_update_budg_for_activation,
3223 	 * are enough to preserve a correct bandwidth distribution in
3224 	 * the mid term, even without idling. In fact, even if not
3225 	 * idling allows the internal queues of the device to contain
3226 	 * many requests, and thus to reorder requests, we can rather
3227 	 * safely assume that the internal scheduler still preserves a
3228 	 * minimum of mid-term fairness. The motivation for using
3229 	 * preemption instead of idling is that, by not idling,
3230 	 * service guarantees are preserved without minimally
3231 	 * sacrificing throughput. In other words, both a high
3232 	 * throughput and its desired distribution are obtained.
3233 	 *
3234 	 * More precisely, this preemption-based, idleless approach
3235 	 * provides fairness in terms of IOPS, and not sectors per
3236 	 * second. This can be seen with a simple example. Suppose
3237 	 * that there are two queues with the same weight, but that
3238 	 * the first queue receives requests of 8 sectors, while the
3239 	 * second queue receives requests of 1024 sectors. In
3240 	 * addition, suppose that each of the two queues contains at
3241 	 * most one request at a time, which implies that each queue
3242 	 * always remains idle after it is served. Finally, after
3243 	 * remaining idle, each queue receives very quickly a new
3244 	 * request. It follows that the two queues are served
3245 	 * alternatively, preempting each other if needed. This
3246 	 * implies that, although both queues have the same weight,
3247 	 * the queue with large requests receives a service that is
3248 	 * 1024/8 times as high as the service received by the other
3249 	 * queue.
3250 	 *
3251 	 * On the other hand, device idling is performed, and thus
3252 	 * pure sector-domain guarantees are provided, for the
3253 	 * following queues, which are likely to need stronger
3254 	 * throughput guarantees: weight-raised queues, and queues
3255 	 * with a higher weight than other queues. When such queues
3256 	 * are active, sub-condition (i) is false, which triggers
3257 	 * device idling.
3258 	 *
3259 	 * According to the above considerations, the next variable is
3260 	 * true (only) if sub-condition (i) holds. To compute the
3261 	 * value of this variable, we not only use the return value of
3262 	 * the function bfq_symmetric_scenario(), but also check
3263 	 * whether bfqq is being weight-raised, because
3264 	 * bfq_symmetric_scenario() does not take into account also
3265 	 * weight-raised queues (see comments on
3266 	 * bfq_weights_tree_add()).
3267 	 *
3268 	 * As a side note, it is worth considering that the above
3269 	 * device-idling countermeasures may however fail in the
3270 	 * following unlucky scenario: if idling is (correctly)
3271 	 * disabled in a time period during which all symmetry
3272 	 * sub-conditions hold, and hence the device is allowed to
3273 	 * enqueue many requests, but at some later point in time some
3274 	 * sub-condition stops to hold, then it may become impossible
3275 	 * to let requests be served in the desired order until all
3276 	 * the requests already queued in the device have been served.
3277 	 */
3278 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3279 		!bfq_symmetric_scenario(bfqd);
3280 
3281 	/*
3282 	 * Finally, there is a case where maximizing throughput is the
3283 	 * best choice even if it may cause unfairness toward
3284 	 * bfqq. Such a case is when bfqq became active in a burst of
3285 	 * queue activations. Queues that became active during a large
3286 	 * burst benefit only from throughput, as discussed in the
3287 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3288 	 * in a burst and not idling the device maximizes throughput,
3289 	 * then the device must no be idled, because not idling the
3290 	 * device provides bfqq and all other queues in the burst with
3291 	 * maximum benefit. Combining this and the above case, we can
3292 	 * now establish when idling is actually needed to preserve
3293 	 * service guarantees.
3294 	 */
3295 	idling_needed_for_service_guarantees =
3296 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3297 
3298 	/*
3299 	 * We have now all the components we need to compute the return
3300 	 * value of the function, which is true only if both the following
3301 	 * conditions hold:
3302 	 * 1) bfqq is sync, because idling make sense only for sync queues;
3303 	 * 2) idling either boosts the throughput (without issues), or
3304 	 *    is necessary to preserve service guarantees.
3305 	 */
3306 	return bfq_bfqq_sync(bfqq) &&
3307 		(idling_boosts_thr_without_issues ||
3308 		 idling_needed_for_service_guarantees);
3309 }
3310 
3311 /*
3312  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3313  * returns true, then:
3314  * 1) the queue must remain in service and cannot be expired, and
3315  * 2) the device must be idled to wait for the possible arrival of a new
3316  *    request for the queue.
3317  * See the comments on the function bfq_bfqq_may_idle for the reasons
3318  * why performing device idling is the best choice to boost the throughput
3319  * and preserve service guarantees when bfq_bfqq_may_idle itself
3320  * returns true.
3321  */
3322 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3323 {
3324 	struct bfq_data *bfqd = bfqq->bfqd;
3325 
3326 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
3327 	       bfq_bfqq_may_idle(bfqq);
3328 }
3329 
3330 /*
3331  * Select a queue for service.  If we have a current queue in service,
3332  * check whether to continue servicing it, or retrieve and set a new one.
3333  */
3334 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3335 {
3336 	struct bfq_queue *bfqq;
3337 	struct request *next_rq;
3338 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3339 
3340 	bfqq = bfqd->in_service_queue;
3341 	if (!bfqq)
3342 		goto new_queue;
3343 
3344 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3345 
3346 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3347 	    !bfq_bfqq_wait_request(bfqq) &&
3348 	    !bfq_bfqq_must_idle(bfqq))
3349 		goto expire;
3350 
3351 check_queue:
3352 	/*
3353 	 * This loop is rarely executed more than once. Even when it
3354 	 * happens, it is much more convenient to re-execute this loop
3355 	 * than to return NULL and trigger a new dispatch to get a
3356 	 * request served.
3357 	 */
3358 	next_rq = bfqq->next_rq;
3359 	/*
3360 	 * If bfqq has requests queued and it has enough budget left to
3361 	 * serve them, keep the queue, otherwise expire it.
3362 	 */
3363 	if (next_rq) {
3364 		if (bfq_serv_to_charge(next_rq, bfqq) >
3365 			bfq_bfqq_budget_left(bfqq)) {
3366 			/*
3367 			 * Expire the queue for budget exhaustion,
3368 			 * which makes sure that the next budget is
3369 			 * enough to serve the next request, even if
3370 			 * it comes from the fifo expired path.
3371 			 */
3372 			reason = BFQQE_BUDGET_EXHAUSTED;
3373 			goto expire;
3374 		} else {
3375 			/*
3376 			 * The idle timer may be pending because we may
3377 			 * not disable disk idling even when a new request
3378 			 * arrives.
3379 			 */
3380 			if (bfq_bfqq_wait_request(bfqq)) {
3381 				/*
3382 				 * If we get here: 1) at least a new request
3383 				 * has arrived but we have not disabled the
3384 				 * timer because the request was too small,
3385 				 * 2) then the block layer has unplugged
3386 				 * the device, causing the dispatch to be
3387 				 * invoked.
3388 				 *
3389 				 * Since the device is unplugged, now the
3390 				 * requests are probably large enough to
3391 				 * provide a reasonable throughput.
3392 				 * So we disable idling.
3393 				 */
3394 				bfq_clear_bfqq_wait_request(bfqq);
3395 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3396 				bfqg_stats_update_idle_time(bfqq_group(bfqq));
3397 			}
3398 			goto keep_queue;
3399 		}
3400 	}
3401 
3402 	/*
3403 	 * No requests pending. However, if the in-service queue is idling
3404 	 * for a new request, or has requests waiting for a completion and
3405 	 * may idle after their completion, then keep it anyway.
3406 	 */
3407 	if (bfq_bfqq_wait_request(bfqq) ||
3408 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3409 		bfqq = NULL;
3410 		goto keep_queue;
3411 	}
3412 
3413 	reason = BFQQE_NO_MORE_REQUESTS;
3414 expire:
3415 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3416 new_queue:
3417 	bfqq = bfq_set_in_service_queue(bfqd);
3418 	if (bfqq) {
3419 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3420 		goto check_queue;
3421 	}
3422 keep_queue:
3423 	if (bfqq)
3424 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3425 	else
3426 		bfq_log(bfqd, "select_queue: no queue returned");
3427 
3428 	return bfqq;
3429 }
3430 
3431 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3432 {
3433 	struct bfq_entity *entity = &bfqq->entity;
3434 
3435 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3436 		bfq_log_bfqq(bfqd, bfqq,
3437 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3438 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3439 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3440 			bfqq->wr_coeff,
3441 			bfqq->entity.weight, bfqq->entity.orig_weight);
3442 
3443 		if (entity->prio_changed)
3444 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3445 
3446 		/*
3447 		 * If the queue was activated in a burst, or too much
3448 		 * time has elapsed from the beginning of this
3449 		 * weight-raising period, then end weight raising.
3450 		 */
3451 		if (bfq_bfqq_in_large_burst(bfqq))
3452 			bfq_bfqq_end_wr(bfqq);
3453 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3454 						bfqq->wr_cur_max_time)) {
3455 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3456 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3457 					       bfq_wr_duration(bfqd)))
3458 				bfq_bfqq_end_wr(bfqq);
3459 			else {
3460 				/* switch back to interactive wr */
3461 				bfqq->wr_coeff = bfqd->bfq_wr_coeff;
3462 				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
3463 				bfqq->last_wr_start_finish =
3464 					bfqq->wr_start_at_switch_to_srt;
3465 				bfqq->entity.prio_changed = 1;
3466 			}
3467 		}
3468 	}
3469 	/* Update weight both if it must be raised and if it must be lowered */
3470 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3471 		__bfq_entity_update_weight_prio(
3472 			bfq_entity_service_tree(entity),
3473 			entity);
3474 }
3475 
3476 /*
3477  * Dispatch next request from bfqq.
3478  */
3479 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3480 						 struct bfq_queue *bfqq)
3481 {
3482 	struct request *rq = bfqq->next_rq;
3483 	unsigned long service_to_charge;
3484 
3485 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3486 
3487 	bfq_bfqq_served(bfqq, service_to_charge);
3488 
3489 	bfq_dispatch_remove(bfqd->queue, rq);
3490 
3491 	/*
3492 	 * If weight raising has to terminate for bfqq, then next
3493 	 * function causes an immediate update of bfqq's weight,
3494 	 * without waiting for next activation. As a consequence, on
3495 	 * expiration, bfqq will be timestamped as if has never been
3496 	 * weight-raised during this service slot, even if it has
3497 	 * received part or even most of the service as a
3498 	 * weight-raised queue. This inflates bfqq's timestamps, which
3499 	 * is beneficial, as bfqq is then more willing to leave the
3500 	 * device immediately to possible other weight-raised queues.
3501 	 */
3502 	bfq_update_wr_data(bfqd, bfqq);
3503 
3504 	/*
3505 	 * Expire bfqq, pretending that its budget expired, if bfqq
3506 	 * belongs to CLASS_IDLE and other queues are waiting for
3507 	 * service.
3508 	 */
3509 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3510 		goto expire;
3511 
3512 	return rq;
3513 
3514 expire:
3515 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3516 	return rq;
3517 }
3518 
3519 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3520 {
3521 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3522 
3523 	/*
3524 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3525 	 * most a call to dispatch for nothing
3526 	 */
3527 	return !list_empty_careful(&bfqd->dispatch) ||
3528 		bfqd->busy_queues > 0;
3529 }
3530 
3531 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3532 {
3533 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3534 	struct request *rq = NULL;
3535 	struct bfq_queue *bfqq = NULL;
3536 
3537 	if (!list_empty(&bfqd->dispatch)) {
3538 		rq = list_first_entry(&bfqd->dispatch, struct request,
3539 				      queuelist);
3540 		list_del_init(&rq->queuelist);
3541 
3542 		bfqq = RQ_BFQQ(rq);
3543 
3544 		if (bfqq) {
3545 			/*
3546 			 * Increment counters here, because this
3547 			 * dispatch does not follow the standard
3548 			 * dispatch flow (where counters are
3549 			 * incremented)
3550 			 */
3551 			bfqq->dispatched++;
3552 
3553 			goto inc_in_driver_start_rq;
3554 		}
3555 
3556 		/*
3557 		 * We exploit the put_rq_private hook to decrement
3558 		 * rq_in_driver, but put_rq_private will not be
3559 		 * invoked on this request. So, to avoid unbalance,
3560 		 * just start this request, without incrementing
3561 		 * rq_in_driver. As a negative consequence,
3562 		 * rq_in_driver is deceptively lower than it should be
3563 		 * while this request is in service. This may cause
3564 		 * bfq_schedule_dispatch to be invoked uselessly.
3565 		 *
3566 		 * As for implementing an exact solution, the
3567 		 * put_request hook, if defined, is probably invoked
3568 		 * also on this request. So, by exploiting this hook,
3569 		 * we could 1) increment rq_in_driver here, and 2)
3570 		 * decrement it in put_request. Such a solution would
3571 		 * let the value of the counter be always accurate,
3572 		 * but it would entail using an extra interface
3573 		 * function. This cost seems higher than the benefit,
3574 		 * being the frequency of non-elevator-private
3575 		 * requests very low.
3576 		 */
3577 		goto start_rq;
3578 	}
3579 
3580 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3581 
3582 	if (bfqd->busy_queues == 0)
3583 		goto exit;
3584 
3585 	/*
3586 	 * Force device to serve one request at a time if
3587 	 * strict_guarantees is true. Forcing this service scheme is
3588 	 * currently the ONLY way to guarantee that the request
3589 	 * service order enforced by the scheduler is respected by a
3590 	 * queueing device. Otherwise the device is free even to make
3591 	 * some unlucky request wait for as long as the device
3592 	 * wishes.
3593 	 *
3594 	 * Of course, serving one request at at time may cause loss of
3595 	 * throughput.
3596 	 */
3597 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3598 		goto exit;
3599 
3600 	bfqq = bfq_select_queue(bfqd);
3601 	if (!bfqq)
3602 		goto exit;
3603 
3604 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3605 
3606 	if (rq) {
3607 inc_in_driver_start_rq:
3608 		bfqd->rq_in_driver++;
3609 start_rq:
3610 		rq->rq_flags |= RQF_STARTED;
3611 	}
3612 exit:
3613 	return rq;
3614 }
3615 
3616 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3617 {
3618 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3619 	struct request *rq;
3620 
3621 	spin_lock_irq(&bfqd->lock);
3622 
3623 	rq = __bfq_dispatch_request(hctx);
3624 	spin_unlock_irq(&bfqd->lock);
3625 
3626 	return rq;
3627 }
3628 
3629 /*
3630  * Task holds one reference to the queue, dropped when task exits.  Each rq
3631  * in-flight on this queue also holds a reference, dropped when rq is freed.
3632  *
3633  * Scheduler lock must be held here. Recall not to use bfqq after calling
3634  * this function on it.
3635  */
3636 void bfq_put_queue(struct bfq_queue *bfqq)
3637 {
3638 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3639 	struct bfq_group *bfqg = bfqq_group(bfqq);
3640 #endif
3641 
3642 	if (bfqq->bfqd)
3643 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3644 			     bfqq, bfqq->ref);
3645 
3646 	bfqq->ref--;
3647 	if (bfqq->ref)
3648 		return;
3649 
3650 	if (bfq_bfqq_sync(bfqq))
3651 		/*
3652 		 * The fact that this queue is being destroyed does not
3653 		 * invalidate the fact that this queue may have been
3654 		 * activated during the current burst. As a consequence,
3655 		 * although the queue does not exist anymore, and hence
3656 		 * needs to be removed from the burst list if there,
3657 		 * the burst size has not to be decremented.
3658 		 */
3659 		hlist_del_init(&bfqq->burst_list_node);
3660 
3661 	kmem_cache_free(bfq_pool, bfqq);
3662 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3663 	bfqg_put(bfqg);
3664 #endif
3665 }
3666 
3667 static void bfq_put_cooperator(struct bfq_queue *bfqq)
3668 {
3669 	struct bfq_queue *__bfqq, *next;
3670 
3671 	/*
3672 	 * If this queue was scheduled to merge with another queue, be
3673 	 * sure to drop the reference taken on that queue (and others in
3674 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3675 	 */
3676 	__bfqq = bfqq->new_bfqq;
3677 	while (__bfqq) {
3678 		if (__bfqq == bfqq)
3679 			break;
3680 		next = __bfqq->new_bfqq;
3681 		bfq_put_queue(__bfqq);
3682 		__bfqq = next;
3683 	}
3684 }
3685 
3686 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3687 {
3688 	if (bfqq == bfqd->in_service_queue) {
3689 		__bfq_bfqq_expire(bfqd, bfqq);
3690 		bfq_schedule_dispatch(bfqd);
3691 	}
3692 
3693 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3694 
3695 	bfq_put_cooperator(bfqq);
3696 
3697 	bfq_put_queue(bfqq); /* release process reference */
3698 }
3699 
3700 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3701 {
3702 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3703 	struct bfq_data *bfqd;
3704 
3705 	if (bfqq)
3706 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3707 
3708 	if (bfqq && bfqd) {
3709 		unsigned long flags;
3710 
3711 		spin_lock_irqsave(&bfqd->lock, flags);
3712 		bfq_exit_bfqq(bfqd, bfqq);
3713 		bic_set_bfqq(bic, NULL, is_sync);
3714 		spin_unlock_irqrestore(&bfqd->lock, flags);
3715 	}
3716 }
3717 
3718 static void bfq_exit_icq(struct io_cq *icq)
3719 {
3720 	struct bfq_io_cq *bic = icq_to_bic(icq);
3721 
3722 	bfq_exit_icq_bfqq(bic, true);
3723 	bfq_exit_icq_bfqq(bic, false);
3724 }
3725 
3726 /*
3727  * Update the entity prio values; note that the new values will not
3728  * be used until the next (re)activation.
3729  */
3730 static void
3731 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3732 {
3733 	struct task_struct *tsk = current;
3734 	int ioprio_class;
3735 	struct bfq_data *bfqd = bfqq->bfqd;
3736 
3737 	if (!bfqd)
3738 		return;
3739 
3740 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3741 	switch (ioprio_class) {
3742 	default:
3743 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3744 			"bfq: bad prio class %d\n", ioprio_class);
3745 	case IOPRIO_CLASS_NONE:
3746 		/*
3747 		 * No prio set, inherit CPU scheduling settings.
3748 		 */
3749 		bfqq->new_ioprio = task_nice_ioprio(tsk);
3750 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3751 		break;
3752 	case IOPRIO_CLASS_RT:
3753 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3754 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3755 		break;
3756 	case IOPRIO_CLASS_BE:
3757 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3758 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3759 		break;
3760 	case IOPRIO_CLASS_IDLE:
3761 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3762 		bfqq->new_ioprio = 7;
3763 		bfq_clear_bfqq_idle_window(bfqq);
3764 		break;
3765 	}
3766 
3767 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3768 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3769 			bfqq->new_ioprio);
3770 		bfqq->new_ioprio = IOPRIO_BE_NR;
3771 	}
3772 
3773 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3774 	bfqq->entity.prio_changed = 1;
3775 }
3776 
3777 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3778 				       struct bio *bio, bool is_sync,
3779 				       struct bfq_io_cq *bic);
3780 
3781 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3782 {
3783 	struct bfq_data *bfqd = bic_to_bfqd(bic);
3784 	struct bfq_queue *bfqq;
3785 	int ioprio = bic->icq.ioc->ioprio;
3786 
3787 	/*
3788 	 * This condition may trigger on a newly created bic, be sure to
3789 	 * drop the lock before returning.
3790 	 */
3791 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3792 		return;
3793 
3794 	bic->ioprio = ioprio;
3795 
3796 	bfqq = bic_to_bfqq(bic, false);
3797 	if (bfqq) {
3798 		/* release process reference on this queue */
3799 		bfq_put_queue(bfqq);
3800 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3801 		bic_set_bfqq(bic, bfqq, false);
3802 	}
3803 
3804 	bfqq = bic_to_bfqq(bic, true);
3805 	if (bfqq)
3806 		bfq_set_next_ioprio_data(bfqq, bic);
3807 }
3808 
3809 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3810 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
3811 {
3812 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
3813 	INIT_LIST_HEAD(&bfqq->fifo);
3814 	INIT_HLIST_NODE(&bfqq->burst_list_node);
3815 
3816 	bfqq->ref = 0;
3817 	bfqq->bfqd = bfqd;
3818 
3819 	if (bic)
3820 		bfq_set_next_ioprio_data(bfqq, bic);
3821 
3822 	if (is_sync) {
3823 		if (!bfq_class_idle(bfqq))
3824 			bfq_mark_bfqq_idle_window(bfqq);
3825 		bfq_mark_bfqq_sync(bfqq);
3826 		bfq_mark_bfqq_just_created(bfqq);
3827 	} else
3828 		bfq_clear_bfqq_sync(bfqq);
3829 
3830 	/* set end request to minus infinity from now */
3831 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
3832 
3833 	bfq_mark_bfqq_IO_bound(bfqq);
3834 
3835 	bfqq->pid = pid;
3836 
3837 	/* Tentative initial value to trade off between thr and lat */
3838 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
3839 	bfqq->budget_timeout = bfq_smallest_from_now();
3840 
3841 	bfqq->wr_coeff = 1;
3842 	bfqq->last_wr_start_finish = jiffies;
3843 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
3844 	bfqq->split_time = bfq_smallest_from_now();
3845 
3846 	/*
3847 	 * Set to the value for which bfqq will not be deemed as
3848 	 * soft rt when it becomes backlogged.
3849 	 */
3850 	bfqq->soft_rt_next_start = bfq_greatest_from_now();
3851 
3852 	/* first request is almost certainly seeky */
3853 	bfqq->seek_history = 1;
3854 }
3855 
3856 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
3857 					       struct bfq_group *bfqg,
3858 					       int ioprio_class, int ioprio)
3859 {
3860 	switch (ioprio_class) {
3861 	case IOPRIO_CLASS_RT:
3862 		return &bfqg->async_bfqq[0][ioprio];
3863 	case IOPRIO_CLASS_NONE:
3864 		ioprio = IOPRIO_NORM;
3865 		/* fall through */
3866 	case IOPRIO_CLASS_BE:
3867 		return &bfqg->async_bfqq[1][ioprio];
3868 	case IOPRIO_CLASS_IDLE:
3869 		return &bfqg->async_idle_bfqq;
3870 	default:
3871 		return NULL;
3872 	}
3873 }
3874 
3875 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3876 				       struct bio *bio, bool is_sync,
3877 				       struct bfq_io_cq *bic)
3878 {
3879 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3880 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3881 	struct bfq_queue **async_bfqq = NULL;
3882 	struct bfq_queue *bfqq;
3883 	struct bfq_group *bfqg;
3884 
3885 	rcu_read_lock();
3886 
3887 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
3888 	if (!bfqg) {
3889 		bfqq = &bfqd->oom_bfqq;
3890 		goto out;
3891 	}
3892 
3893 	if (!is_sync) {
3894 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
3895 						  ioprio);
3896 		bfqq = *async_bfqq;
3897 		if (bfqq)
3898 			goto out;
3899 	}
3900 
3901 	bfqq = kmem_cache_alloc_node(bfq_pool,
3902 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3903 				     bfqd->queue->node);
3904 
3905 	if (bfqq) {
3906 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
3907 			      is_sync);
3908 		bfq_init_entity(&bfqq->entity, bfqg);
3909 		bfq_log_bfqq(bfqd, bfqq, "allocated");
3910 	} else {
3911 		bfqq = &bfqd->oom_bfqq;
3912 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
3913 		goto out;
3914 	}
3915 
3916 	/*
3917 	 * Pin the queue now that it's allocated, scheduler exit will
3918 	 * prune it.
3919 	 */
3920 	if (async_bfqq) {
3921 		bfqq->ref++; /*
3922 			      * Extra group reference, w.r.t. sync
3923 			      * queue. This extra reference is removed
3924 			      * only if bfqq->bfqg disappears, to
3925 			      * guarantee that this queue is not freed
3926 			      * until its group goes away.
3927 			      */
3928 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
3929 			     bfqq, bfqq->ref);
3930 		*async_bfqq = bfqq;
3931 	}
3932 
3933 out:
3934 	bfqq->ref++; /* get a process reference to this queue */
3935 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
3936 	rcu_read_unlock();
3937 	return bfqq;
3938 }
3939 
3940 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
3941 				    struct bfq_queue *bfqq)
3942 {
3943 	struct bfq_ttime *ttime = &bfqq->ttime;
3944 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
3945 
3946 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
3947 
3948 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
3949 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3950 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3951 				     ttime->ttime_samples);
3952 }
3953 
3954 static void
3955 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3956 		       struct request *rq)
3957 {
3958 	bfqq->seek_history <<= 1;
3959 	bfqq->seek_history |=
3960 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
3961 		(!blk_queue_nonrot(bfqd->queue) ||
3962 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
3963 }
3964 
3965 /*
3966  * Disable idle window if the process thinks too long or seeks so much that
3967  * it doesn't matter.
3968  */
3969 static void bfq_update_idle_window(struct bfq_data *bfqd,
3970 				   struct bfq_queue *bfqq,
3971 				   struct bfq_io_cq *bic)
3972 {
3973 	int enable_idle;
3974 
3975 	/* Don't idle for async or idle io prio class. */
3976 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
3977 		return;
3978 
3979 	/* Idle window just restored, statistics are meaningless. */
3980 	if (time_is_after_eq_jiffies(bfqq->split_time +
3981 				     bfqd->bfq_wr_min_idle_time))
3982 		return;
3983 
3984 	enable_idle = bfq_bfqq_idle_window(bfqq);
3985 
3986 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
3987 	    bfqd->bfq_slice_idle == 0 ||
3988 		(bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
3989 			bfqq->wr_coeff == 1))
3990 		enable_idle = 0;
3991 	else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) {
3992 		if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle &&
3993 			bfqq->wr_coeff == 1)
3994 			enable_idle = 0;
3995 		else
3996 			enable_idle = 1;
3997 	}
3998 	bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
3999 		enable_idle);
4000 
4001 	if (enable_idle)
4002 		bfq_mark_bfqq_idle_window(bfqq);
4003 	else
4004 		bfq_clear_bfqq_idle_window(bfqq);
4005 }
4006 
4007 /*
4008  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4009  * something we should do about it.
4010  */
4011 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4012 			    struct request *rq)
4013 {
4014 	struct bfq_io_cq *bic = RQ_BIC(rq);
4015 
4016 	if (rq->cmd_flags & REQ_META)
4017 		bfqq->meta_pending++;
4018 
4019 	bfq_update_io_thinktime(bfqd, bfqq);
4020 	bfq_update_io_seektime(bfqd, bfqq, rq);
4021 	if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
4022 	    !BFQQ_SEEKY(bfqq))
4023 		bfq_update_idle_window(bfqd, bfqq, bic);
4024 
4025 	bfq_log_bfqq(bfqd, bfqq,
4026 		     "rq_enqueued: idle_window=%d (seeky %d)",
4027 		     bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
4028 
4029 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4030 
4031 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4032 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4033 				 blk_rq_sectors(rq) < 32;
4034 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4035 
4036 		/*
4037 		 * There is just this request queued: if the request
4038 		 * is small and the queue is not to be expired, then
4039 		 * just exit.
4040 		 *
4041 		 * In this way, if the device is being idled to wait
4042 		 * for a new request from the in-service queue, we
4043 		 * avoid unplugging the device and committing the
4044 		 * device to serve just a small request. On the
4045 		 * contrary, we wait for the block layer to decide
4046 		 * when to unplug the device: hopefully, new requests
4047 		 * will be merged to this one quickly, then the device
4048 		 * will be unplugged and larger requests will be
4049 		 * dispatched.
4050 		 */
4051 		if (small_req && !budget_timeout)
4052 			return;
4053 
4054 		/*
4055 		 * A large enough request arrived, or the queue is to
4056 		 * be expired: in both cases disk idling is to be
4057 		 * stopped, so clear wait_request flag and reset
4058 		 * timer.
4059 		 */
4060 		bfq_clear_bfqq_wait_request(bfqq);
4061 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4062 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4063 
4064 		/*
4065 		 * The queue is not empty, because a new request just
4066 		 * arrived. Hence we can safely expire the queue, in
4067 		 * case of budget timeout, without risking that the
4068 		 * timestamps of the queue are not updated correctly.
4069 		 * See [1] for more details.
4070 		 */
4071 		if (budget_timeout)
4072 			bfq_bfqq_expire(bfqd, bfqq, false,
4073 					BFQQE_BUDGET_TIMEOUT);
4074 	}
4075 }
4076 
4077 static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4078 {
4079 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4080 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4081 
4082 	if (new_bfqq) {
4083 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4084 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4085 		/*
4086 		 * Release the request's reference to the old bfqq
4087 		 * and make sure one is taken to the shared queue.
4088 		 */
4089 		new_bfqq->allocated++;
4090 		bfqq->allocated--;
4091 		new_bfqq->ref++;
4092 		bfq_clear_bfqq_just_created(bfqq);
4093 		/*
4094 		 * If the bic associated with the process
4095 		 * issuing this request still points to bfqq
4096 		 * (and thus has not been already redirected
4097 		 * to new_bfqq or even some other bfq_queue),
4098 		 * then complete the merge and redirect it to
4099 		 * new_bfqq.
4100 		 */
4101 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4102 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4103 					bfqq, new_bfqq);
4104 		/*
4105 		 * rq is about to be enqueued into new_bfqq,
4106 		 * release rq reference on bfqq
4107 		 */
4108 		bfq_put_queue(bfqq);
4109 		rq->elv.priv[1] = new_bfqq;
4110 		bfqq = new_bfqq;
4111 	}
4112 
4113 	bfq_add_request(rq);
4114 
4115 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4116 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4117 
4118 	bfq_rq_enqueued(bfqd, bfqq, rq);
4119 }
4120 
4121 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4122 			       bool at_head)
4123 {
4124 	struct request_queue *q = hctx->queue;
4125 	struct bfq_data *bfqd = q->elevator->elevator_data;
4126 
4127 	spin_lock_irq(&bfqd->lock);
4128 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4129 		spin_unlock_irq(&bfqd->lock);
4130 		return;
4131 	}
4132 
4133 	spin_unlock_irq(&bfqd->lock);
4134 
4135 	blk_mq_sched_request_inserted(rq);
4136 
4137 	spin_lock_irq(&bfqd->lock);
4138 	if (at_head || blk_rq_is_passthrough(rq)) {
4139 		if (at_head)
4140 			list_add(&rq->queuelist, &bfqd->dispatch);
4141 		else
4142 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4143 	} else {
4144 		__bfq_insert_request(bfqd, rq);
4145 
4146 		if (rq_mergeable(rq)) {
4147 			elv_rqhash_add(q, rq);
4148 			if (!q->last_merge)
4149 				q->last_merge = rq;
4150 		}
4151 	}
4152 
4153 	spin_unlock_irq(&bfqd->lock);
4154 }
4155 
4156 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4157 				struct list_head *list, bool at_head)
4158 {
4159 	while (!list_empty(list)) {
4160 		struct request *rq;
4161 
4162 		rq = list_first_entry(list, struct request, queuelist);
4163 		list_del_init(&rq->queuelist);
4164 		bfq_insert_request(hctx, rq, at_head);
4165 	}
4166 }
4167 
4168 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4169 {
4170 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4171 				       bfqd->rq_in_driver);
4172 
4173 	if (bfqd->hw_tag == 1)
4174 		return;
4175 
4176 	/*
4177 	 * This sample is valid if the number of outstanding requests
4178 	 * is large enough to allow a queueing behavior.  Note that the
4179 	 * sum is not exact, as it's not taking into account deactivated
4180 	 * requests.
4181 	 */
4182 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4183 		return;
4184 
4185 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4186 		return;
4187 
4188 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4189 	bfqd->max_rq_in_driver = 0;
4190 	bfqd->hw_tag_samples = 0;
4191 }
4192 
4193 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4194 {
4195 	u64 now_ns;
4196 	u32 delta_us;
4197 
4198 	bfq_update_hw_tag(bfqd);
4199 
4200 	bfqd->rq_in_driver--;
4201 	bfqq->dispatched--;
4202 
4203 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4204 		/*
4205 		 * Set budget_timeout (which we overload to store the
4206 		 * time at which the queue remains with no backlog and
4207 		 * no outstanding request; used by the weight-raising
4208 		 * mechanism).
4209 		 */
4210 		bfqq->budget_timeout = jiffies;
4211 
4212 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4213 					&bfqd->queue_weights_tree);
4214 	}
4215 
4216 	now_ns = ktime_get_ns();
4217 
4218 	bfqq->ttime.last_end_request = now_ns;
4219 
4220 	/*
4221 	 * Using us instead of ns, to get a reasonable precision in
4222 	 * computing rate in next check.
4223 	 */
4224 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4225 
4226 	/*
4227 	 * If the request took rather long to complete, and, according
4228 	 * to the maximum request size recorded, this completion latency
4229 	 * implies that the request was certainly served at a very low
4230 	 * rate (less than 1M sectors/sec), then the whole observation
4231 	 * interval that lasts up to this time instant cannot be a
4232 	 * valid time interval for computing a new peak rate.  Invoke
4233 	 * bfq_update_rate_reset to have the following three steps
4234 	 * taken:
4235 	 * - close the observation interval at the last (previous)
4236 	 *   request dispatch or completion
4237 	 * - compute rate, if possible, for that observation interval
4238 	 * - reset to zero samples, which will trigger a proper
4239 	 *   re-initialization of the observation interval on next
4240 	 *   dispatch
4241 	 */
4242 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4243 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4244 			1UL<<(BFQ_RATE_SHIFT - 10))
4245 		bfq_update_rate_reset(bfqd, NULL);
4246 	bfqd->last_completion = now_ns;
4247 
4248 	/*
4249 	 * If we are waiting to discover whether the request pattern
4250 	 * of the task associated with the queue is actually
4251 	 * isochronous, and both requisites for this condition to hold
4252 	 * are now satisfied, then compute soft_rt_next_start (see the
4253 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4254 	 * schedule this delayed check when bfqq expires, if it still
4255 	 * has in-flight requests.
4256 	 */
4257 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4258 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4259 		bfqq->soft_rt_next_start =
4260 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4261 
4262 	/*
4263 	 * If this is the in-service queue, check if it needs to be expired,
4264 	 * or if we want to idle in case it has no pending requests.
4265 	 */
4266 	if (bfqd->in_service_queue == bfqq) {
4267 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4268 			bfq_arm_slice_timer(bfqd);
4269 			return;
4270 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4271 			bfq_bfqq_expire(bfqd, bfqq, false,
4272 					BFQQE_BUDGET_TIMEOUT);
4273 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4274 			 (bfqq->dispatched == 0 ||
4275 			  !bfq_bfqq_may_idle(bfqq)))
4276 			bfq_bfqq_expire(bfqd, bfqq, false,
4277 					BFQQE_NO_MORE_REQUESTS);
4278 	}
4279 }
4280 
4281 static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4282 {
4283 	bfqq->allocated--;
4284 
4285 	bfq_put_queue(bfqq);
4286 }
4287 
4288 static void bfq_put_rq_private(struct request_queue *q, struct request *rq)
4289 {
4290 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4291 	struct bfq_data *bfqd = bfqq->bfqd;
4292 
4293 	if (rq->rq_flags & RQF_STARTED)
4294 		bfqg_stats_update_completion(bfqq_group(bfqq),
4295 					     rq_start_time_ns(rq),
4296 					     rq_io_start_time_ns(rq),
4297 					     rq->cmd_flags);
4298 
4299 	if (likely(rq->rq_flags & RQF_STARTED)) {
4300 		unsigned long flags;
4301 
4302 		spin_lock_irqsave(&bfqd->lock, flags);
4303 
4304 		bfq_completed_request(bfqq, bfqd);
4305 		bfq_put_rq_priv_body(bfqq);
4306 
4307 		spin_unlock_irqrestore(&bfqd->lock, flags);
4308 	} else {
4309 		/*
4310 		 * Request rq may be still/already in the scheduler,
4311 		 * in which case we need to remove it. And we cannot
4312 		 * defer such a check and removal, to avoid
4313 		 * inconsistencies in the time interval from the end
4314 		 * of this function to the start of the deferred work.
4315 		 * This situation seems to occur only in process
4316 		 * context, as a consequence of a merge. In the
4317 		 * current version of the code, this implies that the
4318 		 * lock is held.
4319 		 */
4320 
4321 		if (!RB_EMPTY_NODE(&rq->rb_node))
4322 			bfq_remove_request(q, rq);
4323 		bfq_put_rq_priv_body(bfqq);
4324 	}
4325 
4326 	rq->elv.priv[0] = NULL;
4327 	rq->elv.priv[1] = NULL;
4328 }
4329 
4330 /*
4331  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4332  * was the last process referring to that bfqq.
4333  */
4334 static struct bfq_queue *
4335 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4336 {
4337 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4338 
4339 	if (bfqq_process_refs(bfqq) == 1) {
4340 		bfqq->pid = current->pid;
4341 		bfq_clear_bfqq_coop(bfqq);
4342 		bfq_clear_bfqq_split_coop(bfqq);
4343 		return bfqq;
4344 	}
4345 
4346 	bic_set_bfqq(bic, NULL, 1);
4347 
4348 	bfq_put_cooperator(bfqq);
4349 
4350 	bfq_put_queue(bfqq);
4351 	return NULL;
4352 }
4353 
4354 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4355 						   struct bfq_io_cq *bic,
4356 						   struct bio *bio,
4357 						   bool split, bool is_sync,
4358 						   bool *new_queue)
4359 {
4360 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4361 
4362 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4363 		return bfqq;
4364 
4365 	if (new_queue)
4366 		*new_queue = true;
4367 
4368 	if (bfqq)
4369 		bfq_put_queue(bfqq);
4370 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4371 
4372 	bic_set_bfqq(bic, bfqq, is_sync);
4373 	if (split && is_sync) {
4374 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4375 		    bic->saved_in_large_burst)
4376 			bfq_mark_bfqq_in_large_burst(bfqq);
4377 		else {
4378 			bfq_clear_bfqq_in_large_burst(bfqq);
4379 			if (bic->was_in_burst_list)
4380 				hlist_add_head(&bfqq->burst_list_node,
4381 					       &bfqd->burst_list);
4382 		}
4383 		bfqq->split_time = jiffies;
4384 	}
4385 
4386 	return bfqq;
4387 }
4388 
4389 /*
4390  * Allocate bfq data structures associated with this request.
4391  */
4392 static int bfq_get_rq_private(struct request_queue *q, struct request *rq,
4393 			      struct bio *bio)
4394 {
4395 	struct bfq_data *bfqd = q->elevator->elevator_data;
4396 	struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
4397 	const int is_sync = rq_is_sync(rq);
4398 	struct bfq_queue *bfqq;
4399 	bool new_queue = false;
4400 	bool split = false;
4401 
4402 	spin_lock_irq(&bfqd->lock);
4403 
4404 	if (!bic)
4405 		goto queue_fail;
4406 
4407 	bfq_check_ioprio_change(bic, bio);
4408 
4409 	bfq_bic_update_cgroup(bic, bio);
4410 
4411 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4412 					 &new_queue);
4413 
4414 	if (likely(!new_queue)) {
4415 		/* If the queue was seeky for too long, break it apart. */
4416 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4417 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4418 
4419 			/* Update bic before losing reference to bfqq */
4420 			if (bfq_bfqq_in_large_burst(bfqq))
4421 				bic->saved_in_large_burst = true;
4422 
4423 			bfqq = bfq_split_bfqq(bic, bfqq);
4424 			split = true;
4425 
4426 			if (!bfqq)
4427 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4428 								 true, is_sync,
4429 								 NULL);
4430 		}
4431 	}
4432 
4433 	bfqq->allocated++;
4434 	bfqq->ref++;
4435 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4436 		     rq, bfqq, bfqq->ref);
4437 
4438 	rq->elv.priv[0] = bic;
4439 	rq->elv.priv[1] = bfqq;
4440 
4441 	/*
4442 	 * If a bfq_queue has only one process reference, it is owned
4443 	 * by only this bic: we can then set bfqq->bic = bic. in
4444 	 * addition, if the queue has also just been split, we have to
4445 	 * resume its state.
4446 	 */
4447 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4448 		bfqq->bic = bic;
4449 		if (split) {
4450 			/*
4451 			 * The queue has just been split from a shared
4452 			 * queue: restore the idle window and the
4453 			 * possible weight raising period.
4454 			 */
4455 			bfq_bfqq_resume_state(bfqq, bic);
4456 		}
4457 	}
4458 
4459 	if (unlikely(bfq_bfqq_just_created(bfqq)))
4460 		bfq_handle_burst(bfqd, bfqq);
4461 
4462 	spin_unlock_irq(&bfqd->lock);
4463 
4464 	return 0;
4465 
4466 queue_fail:
4467 	spin_unlock_irq(&bfqd->lock);
4468 
4469 	return 1;
4470 }
4471 
4472 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4473 {
4474 	struct bfq_data *bfqd = bfqq->bfqd;
4475 	enum bfqq_expiration reason;
4476 	unsigned long flags;
4477 
4478 	spin_lock_irqsave(&bfqd->lock, flags);
4479 	bfq_clear_bfqq_wait_request(bfqq);
4480 
4481 	if (bfqq != bfqd->in_service_queue) {
4482 		spin_unlock_irqrestore(&bfqd->lock, flags);
4483 		return;
4484 	}
4485 
4486 	if (bfq_bfqq_budget_timeout(bfqq))
4487 		/*
4488 		 * Also here the queue can be safely expired
4489 		 * for budget timeout without wasting
4490 		 * guarantees
4491 		 */
4492 		reason = BFQQE_BUDGET_TIMEOUT;
4493 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4494 		/*
4495 		 * The queue may not be empty upon timer expiration,
4496 		 * because we may not disable the timer when the
4497 		 * first request of the in-service queue arrives
4498 		 * during disk idling.
4499 		 */
4500 		reason = BFQQE_TOO_IDLE;
4501 	else
4502 		goto schedule_dispatch;
4503 
4504 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
4505 
4506 schedule_dispatch:
4507 	spin_unlock_irqrestore(&bfqd->lock, flags);
4508 	bfq_schedule_dispatch(bfqd);
4509 }
4510 
4511 /*
4512  * Handler of the expiration of the timer running if the in-service queue
4513  * is idling inside its time slice.
4514  */
4515 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4516 {
4517 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4518 					     idle_slice_timer);
4519 	struct bfq_queue *bfqq = bfqd->in_service_queue;
4520 
4521 	/*
4522 	 * Theoretical race here: the in-service queue can be NULL or
4523 	 * different from the queue that was idling if a new request
4524 	 * arrives for the current queue and there is a full dispatch
4525 	 * cycle that changes the in-service queue.  This can hardly
4526 	 * happen, but in the worst case we just expire a queue too
4527 	 * early.
4528 	 */
4529 	if (bfqq)
4530 		bfq_idle_slice_timer_body(bfqq);
4531 
4532 	return HRTIMER_NORESTART;
4533 }
4534 
4535 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4536 				 struct bfq_queue **bfqq_ptr)
4537 {
4538 	struct bfq_queue *bfqq = *bfqq_ptr;
4539 
4540 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4541 	if (bfqq) {
4542 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4543 
4544 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4545 			     bfqq, bfqq->ref);
4546 		bfq_put_queue(bfqq);
4547 		*bfqq_ptr = NULL;
4548 	}
4549 }
4550 
4551 /*
4552  * Release all the bfqg references to its async queues.  If we are
4553  * deallocating the group these queues may still contain requests, so
4554  * we reparent them to the root cgroup (i.e., the only one that will
4555  * exist for sure until all the requests on a device are gone).
4556  */
4557 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
4558 {
4559 	int i, j;
4560 
4561 	for (i = 0; i < 2; i++)
4562 		for (j = 0; j < IOPRIO_BE_NR; j++)
4563 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
4564 
4565 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
4566 }
4567 
4568 static void bfq_exit_queue(struct elevator_queue *e)
4569 {
4570 	struct bfq_data *bfqd = e->elevator_data;
4571 	struct bfq_queue *bfqq, *n;
4572 
4573 	hrtimer_cancel(&bfqd->idle_slice_timer);
4574 
4575 	spin_lock_irq(&bfqd->lock);
4576 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
4577 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
4578 	spin_unlock_irq(&bfqd->lock);
4579 
4580 	hrtimer_cancel(&bfqd->idle_slice_timer);
4581 
4582 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4583 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4584 #else
4585 	spin_lock_irq(&bfqd->lock);
4586 	bfq_put_async_queues(bfqd, bfqd->root_group);
4587 	kfree(bfqd->root_group);
4588 	spin_unlock_irq(&bfqd->lock);
4589 #endif
4590 
4591 	kfree(bfqd);
4592 }
4593 
4594 static void bfq_init_root_group(struct bfq_group *root_group,
4595 				struct bfq_data *bfqd)
4596 {
4597 	int i;
4598 
4599 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4600 	root_group->entity.parent = NULL;
4601 	root_group->my_entity = NULL;
4602 	root_group->bfqd = bfqd;
4603 #endif
4604 	root_group->rq_pos_tree = RB_ROOT;
4605 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4606 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4607 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
4608 }
4609 
4610 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4611 {
4612 	struct bfq_data *bfqd;
4613 	struct elevator_queue *eq;
4614 
4615 	eq = elevator_alloc(q, e);
4616 	if (!eq)
4617 		return -ENOMEM;
4618 
4619 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4620 	if (!bfqd) {
4621 		kobject_put(&eq->kobj);
4622 		return -ENOMEM;
4623 	}
4624 	eq->elevator_data = bfqd;
4625 
4626 	spin_lock_irq(q->queue_lock);
4627 	q->elevator = eq;
4628 	spin_unlock_irq(q->queue_lock);
4629 
4630 	/*
4631 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4632 	 * Grab a permanent reference to it, so that the normal code flow
4633 	 * will not attempt to free it.
4634 	 */
4635 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4636 	bfqd->oom_bfqq.ref++;
4637 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4638 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4639 	bfqd->oom_bfqq.entity.new_weight =
4640 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
4641 
4642 	/* oom_bfqq does not participate to bursts */
4643 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4644 
4645 	/*
4646 	 * Trigger weight initialization, according to ioprio, at the
4647 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4648 	 * class won't be changed any more.
4649 	 */
4650 	bfqd->oom_bfqq.entity.prio_changed = 1;
4651 
4652 	bfqd->queue = q;
4653 
4654 	INIT_LIST_HEAD(&bfqd->dispatch);
4655 
4656 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4657 		     HRTIMER_MODE_REL);
4658 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4659 
4660 	bfqd->queue_weights_tree = RB_ROOT;
4661 	bfqd->group_weights_tree = RB_ROOT;
4662 
4663 	INIT_LIST_HEAD(&bfqd->active_list);
4664 	INIT_LIST_HEAD(&bfqd->idle_list);
4665 	INIT_HLIST_HEAD(&bfqd->burst_list);
4666 
4667 	bfqd->hw_tag = -1;
4668 
4669 	bfqd->bfq_max_budget = bfq_default_max_budget;
4670 
4671 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4672 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4673 	bfqd->bfq_back_max = bfq_back_max;
4674 	bfqd->bfq_back_penalty = bfq_back_penalty;
4675 	bfqd->bfq_slice_idle = bfq_slice_idle;
4676 	bfqd->bfq_timeout = bfq_timeout;
4677 
4678 	bfqd->bfq_requests_within_timer = 120;
4679 
4680 	bfqd->bfq_large_burst_thresh = 8;
4681 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4682 
4683 	bfqd->low_latency = true;
4684 
4685 	/*
4686 	 * Trade-off between responsiveness and fairness.
4687 	 */
4688 	bfqd->bfq_wr_coeff = 30;
4689 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
4690 	bfqd->bfq_wr_max_time = 0;
4691 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4692 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
4693 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
4694 					      * Approximate rate required
4695 					      * to playback or record a
4696 					      * high-definition compressed
4697 					      * video.
4698 					      */
4699 	bfqd->wr_busy_queues = 0;
4700 
4701 	/*
4702 	 * Begin by assuming, optimistically, that the device is a
4703 	 * high-speed one, and that its peak rate is equal to 2/3 of
4704 	 * the highest reference rate.
4705 	 */
4706 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4707 			T_fast[blk_queue_nonrot(bfqd->queue)];
4708 	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4709 	bfqd->device_speed = BFQ_BFQD_FAST;
4710 
4711 	spin_lock_init(&bfqd->lock);
4712 
4713 	/*
4714 	 * The invocation of the next bfq_create_group_hierarchy
4715 	 * function is the head of a chain of function calls
4716 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4717 	 * blk_mq_freeze_queue) that may lead to the invocation of the
4718 	 * has_work hook function. For this reason,
4719 	 * bfq_create_group_hierarchy is invoked only after all
4720 	 * scheduler data has been initialized, apart from the fields
4721 	 * that can be initialized only after invoking
4722 	 * bfq_create_group_hierarchy. This, in particular, enables
4723 	 * has_work to correctly return false. Of course, to avoid
4724 	 * other inconsistencies, the blk-mq stack must then refrain
4725 	 * from invoking further scheduler hooks before this init
4726 	 * function is finished.
4727 	 */
4728 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4729 	if (!bfqd->root_group)
4730 		goto out_free;
4731 	bfq_init_root_group(bfqd->root_group, bfqd);
4732 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4733 
4734 
4735 	return 0;
4736 
4737 out_free:
4738 	kfree(bfqd);
4739 	kobject_put(&eq->kobj);
4740 	return -ENOMEM;
4741 }
4742 
4743 static void bfq_slab_kill(void)
4744 {
4745 	kmem_cache_destroy(bfq_pool);
4746 }
4747 
4748 static int __init bfq_slab_setup(void)
4749 {
4750 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
4751 	if (!bfq_pool)
4752 		return -ENOMEM;
4753 	return 0;
4754 }
4755 
4756 static ssize_t bfq_var_show(unsigned int var, char *page)
4757 {
4758 	return sprintf(page, "%u\n", var);
4759 }
4760 
4761 static ssize_t bfq_var_store(unsigned long *var, const char *page,
4762 			     size_t count)
4763 {
4764 	unsigned long new_val;
4765 	int ret = kstrtoul(page, 10, &new_val);
4766 
4767 	if (ret == 0)
4768 		*var = new_val;
4769 
4770 	return count;
4771 }
4772 
4773 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4774 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4775 {									\
4776 	struct bfq_data *bfqd = e->elevator_data;			\
4777 	u64 __data = __VAR;						\
4778 	if (__CONV == 1)						\
4779 		__data = jiffies_to_msecs(__data);			\
4780 	else if (__CONV == 2)						\
4781 		__data = div_u64(__data, NSEC_PER_MSEC);		\
4782 	return bfq_var_show(__data, (page));				\
4783 }
4784 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
4785 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
4786 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
4787 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
4788 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
4789 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
4790 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
4791 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
4792 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
4793 #undef SHOW_FUNCTION
4794 
4795 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
4796 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4797 {									\
4798 	struct bfq_data *bfqd = e->elevator_data;			\
4799 	u64 __data = __VAR;						\
4800 	__data = div_u64(__data, NSEC_PER_USEC);			\
4801 	return bfq_var_show(__data, (page));				\
4802 }
4803 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
4804 #undef USEC_SHOW_FUNCTION
4805 
4806 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4807 static ssize_t								\
4808 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4809 {									\
4810 	struct bfq_data *bfqd = e->elevator_data;			\
4811 	unsigned long uninitialized_var(__data);			\
4812 	int ret = bfq_var_store(&__data, (page), count);		\
4813 	if (__data < (MIN))						\
4814 		__data = (MIN);						\
4815 	else if (__data > (MAX))					\
4816 		__data = (MAX);						\
4817 	if (__CONV == 1)						\
4818 		*(__PTR) = msecs_to_jiffies(__data);			\
4819 	else if (__CONV == 2)						\
4820 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
4821 	else								\
4822 		*(__PTR) = __data;					\
4823 	return ret;							\
4824 }
4825 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
4826 		INT_MAX, 2);
4827 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
4828 		INT_MAX, 2);
4829 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
4830 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
4831 		INT_MAX, 0);
4832 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
4833 #undef STORE_FUNCTION
4834 
4835 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
4836 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
4837 {									\
4838 	struct bfq_data *bfqd = e->elevator_data;			\
4839 	unsigned long uninitialized_var(__data);			\
4840 	int ret = bfq_var_store(&__data, (page), count);		\
4841 	if (__data < (MIN))						\
4842 		__data = (MIN);						\
4843 	else if (__data > (MAX))					\
4844 		__data = (MAX);						\
4845 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
4846 	return ret;							\
4847 }
4848 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
4849 		    UINT_MAX);
4850 #undef USEC_STORE_FUNCTION
4851 
4852 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
4853 				    const char *page, size_t count)
4854 {
4855 	struct bfq_data *bfqd = e->elevator_data;
4856 	unsigned long uninitialized_var(__data);
4857 	int ret = bfq_var_store(&__data, (page), count);
4858 
4859 	if (__data == 0)
4860 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4861 	else {
4862 		if (__data > INT_MAX)
4863 			__data = INT_MAX;
4864 		bfqd->bfq_max_budget = __data;
4865 	}
4866 
4867 	bfqd->bfq_user_max_budget = __data;
4868 
4869 	return ret;
4870 }
4871 
4872 /*
4873  * Leaving this name to preserve name compatibility with cfq
4874  * parameters, but this timeout is used for both sync and async.
4875  */
4876 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
4877 				      const char *page, size_t count)
4878 {
4879 	struct bfq_data *bfqd = e->elevator_data;
4880 	unsigned long uninitialized_var(__data);
4881 	int ret = bfq_var_store(&__data, (page), count);
4882 
4883 	if (__data < 1)
4884 		__data = 1;
4885 	else if (__data > INT_MAX)
4886 		__data = INT_MAX;
4887 
4888 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
4889 	if (bfqd->bfq_user_max_budget == 0)
4890 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
4891 
4892 	return ret;
4893 }
4894 
4895 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
4896 				     const char *page, size_t count)
4897 {
4898 	struct bfq_data *bfqd = e->elevator_data;
4899 	unsigned long uninitialized_var(__data);
4900 	int ret = bfq_var_store(&__data, (page), count);
4901 
4902 	if (__data > 1)
4903 		__data = 1;
4904 	if (!bfqd->strict_guarantees && __data == 1
4905 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
4906 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
4907 
4908 	bfqd->strict_guarantees = __data;
4909 
4910 	return ret;
4911 }
4912 
4913 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
4914 				     const char *page, size_t count)
4915 {
4916 	struct bfq_data *bfqd = e->elevator_data;
4917 	unsigned long uninitialized_var(__data);
4918 	int ret = bfq_var_store(&__data, (page), count);
4919 
4920 	if (__data > 1)
4921 		__data = 1;
4922 	if (__data == 0 && bfqd->low_latency != 0)
4923 		bfq_end_wr(bfqd);
4924 	bfqd->low_latency = __data;
4925 
4926 	return ret;
4927 }
4928 
4929 #define BFQ_ATTR(name) \
4930 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
4931 
4932 static struct elv_fs_entry bfq_attrs[] = {
4933 	BFQ_ATTR(fifo_expire_sync),
4934 	BFQ_ATTR(fifo_expire_async),
4935 	BFQ_ATTR(back_seek_max),
4936 	BFQ_ATTR(back_seek_penalty),
4937 	BFQ_ATTR(slice_idle),
4938 	BFQ_ATTR(slice_idle_us),
4939 	BFQ_ATTR(max_budget),
4940 	BFQ_ATTR(timeout_sync),
4941 	BFQ_ATTR(strict_guarantees),
4942 	BFQ_ATTR(low_latency),
4943 	__ATTR_NULL
4944 };
4945 
4946 static struct elevator_type iosched_bfq_mq = {
4947 	.ops.mq = {
4948 		.get_rq_priv		= bfq_get_rq_private,
4949 		.put_rq_priv		= bfq_put_rq_private,
4950 		.exit_icq		= bfq_exit_icq,
4951 		.insert_requests	= bfq_insert_requests,
4952 		.dispatch_request	= bfq_dispatch_request,
4953 		.next_request		= elv_rb_latter_request,
4954 		.former_request		= elv_rb_former_request,
4955 		.allow_merge		= bfq_allow_bio_merge,
4956 		.bio_merge		= bfq_bio_merge,
4957 		.request_merge		= bfq_request_merge,
4958 		.requests_merged	= bfq_requests_merged,
4959 		.request_merged		= bfq_request_merged,
4960 		.has_work		= bfq_has_work,
4961 		.init_sched		= bfq_init_queue,
4962 		.exit_sched		= bfq_exit_queue,
4963 	},
4964 
4965 	.uses_mq =		true,
4966 	.icq_size =		sizeof(struct bfq_io_cq),
4967 	.icq_align =		__alignof__(struct bfq_io_cq),
4968 	.elevator_attrs =	bfq_attrs,
4969 	.elevator_name =	"bfq",
4970 	.elevator_owner =	THIS_MODULE,
4971 };
4972 
4973 static int __init bfq_init(void)
4974 {
4975 	int ret;
4976 
4977 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4978 	ret = blkcg_policy_register(&blkcg_policy_bfq);
4979 	if (ret)
4980 		return ret;
4981 #endif
4982 
4983 	ret = -ENOMEM;
4984 	if (bfq_slab_setup())
4985 		goto err_pol_unreg;
4986 
4987 	/*
4988 	 * Times to load large popular applications for the typical
4989 	 * systems installed on the reference devices (see the
4990 	 * comments before the definitions of the next two
4991 	 * arrays). Actually, we use slightly slower values, as the
4992 	 * estimated peak rate tends to be smaller than the actual
4993 	 * peak rate.  The reason for this last fact is that estimates
4994 	 * are computed over much shorter time intervals than the long
4995 	 * intervals typically used for benchmarking. Why? First, to
4996 	 * adapt more quickly to variations. Second, because an I/O
4997 	 * scheduler cannot rely on a peak-rate-evaluation workload to
4998 	 * be run for a long time.
4999 	 */
5000 	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5001 	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5002 	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5003 	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5004 
5005 	/*
5006 	 * Thresholds that determine the switch between speed classes
5007 	 * (see the comments before the definition of the array
5008 	 * device_speed_thresh). These thresholds are biased towards
5009 	 * transitions to the fast class. This is safer than the
5010 	 * opposite bias. In fact, a wrong transition to the slow
5011 	 * class results in short weight-raising periods, because the
5012 	 * speed of the device then tends to be higher that the
5013 	 * reference peak rate. On the opposite end, a wrong
5014 	 * transition to the fast class tends to increase
5015 	 * weight-raising periods, because of the opposite reason.
5016 	 */
5017 	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5018 	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5019 
5020 	ret = elv_register(&iosched_bfq_mq);
5021 	if (ret)
5022 		goto err_pol_unreg;
5023 
5024 	return 0;
5025 
5026 err_pol_unreg:
5027 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5028 	blkcg_policy_unregister(&blkcg_policy_bfq);
5029 #endif
5030 	return ret;
5031 }
5032 
5033 static void __exit bfq_exit(void)
5034 {
5035 	elv_unregister(&iosched_bfq_mq);
5036 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5037 	blkcg_policy_unregister(&blkcg_policy_bfq);
5038 #endif
5039 	bfq_slab_kill();
5040 }
5041 
5042 module_init(bfq_init);
5043 module_exit(bfq_exit);
5044 
5045 MODULE_AUTHOR("Paolo Valente");
5046 MODULE_LICENSE("GPL");
5047 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5048