xref: /openbmc/linux/block/bfq-iosched.c (revision 141e5239)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-wbt.h"
136 
137 #define BFQ_BFQQ_FNS(name)						\
138 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
139 {									\
140 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
141 }									\
142 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
143 {									\
144 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
145 }									\
146 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
147 {									\
148 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
149 }
150 
151 BFQ_BFQQ_FNS(just_created);
152 BFQ_BFQQ_FNS(busy);
153 BFQ_BFQQ_FNS(wait_request);
154 BFQ_BFQQ_FNS(non_blocking_wait_rq);
155 BFQ_BFQQ_FNS(fifo_expire);
156 BFQ_BFQQ_FNS(has_short_ttime);
157 BFQ_BFQQ_FNS(sync);
158 BFQ_BFQQ_FNS(IO_bound);
159 BFQ_BFQQ_FNS(in_large_burst);
160 BFQ_BFQQ_FNS(coop);
161 BFQ_BFQQ_FNS(split_coop);
162 BFQ_BFQQ_FNS(softrt_update);
163 #undef BFQ_BFQQ_FNS						\
164 
165 /* Expiration time of async (0) and sync (1) requests, in ns. */
166 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
167 
168 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169 static const int bfq_back_max = 16 * 1024;
170 
171 /* Penalty of a backwards seek, in number of sectors. */
172 static const int bfq_back_penalty = 2;
173 
174 /* Idling period duration, in ns. */
175 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
176 
177 /* Minimum number of assigned budgets for which stats are safe to compute. */
178 static const int bfq_stats_min_budgets = 194;
179 
180 /* Default maximum budget values, in sectors and number of requests. */
181 static const int bfq_default_max_budget = 16 * 1024;
182 
183 /*
184  * When a sync request is dispatched, the queue that contains that
185  * request, and all the ancestor entities of that queue, are charged
186  * with the number of sectors of the request. In contrast, if the
187  * request is async, then the queue and its ancestor entities are
188  * charged with the number of sectors of the request, multiplied by
189  * the factor below. This throttles the bandwidth for async I/O,
190  * w.r.t. to sync I/O, and it is done to counter the tendency of async
191  * writes to steal I/O throughput to reads.
192  *
193  * The current value of this parameter is the result of a tuning with
194  * several hardware and software configurations. We tried to find the
195  * lowest value for which writes do not cause noticeable problems to
196  * reads. In fact, the lower this parameter, the stabler I/O control,
197  * in the following respect.  The lower this parameter is, the less
198  * the bandwidth enjoyed by a group decreases
199  * - when the group does writes, w.r.t. to when it does reads;
200  * - when other groups do reads, w.r.t. to when they do writes.
201  */
202 static const int bfq_async_charge_factor = 3;
203 
204 /* Default timeout values, in jiffies, approximating CFQ defaults. */
205 const int bfq_timeout = HZ / 8;
206 
207 /*
208  * Time limit for merging (see comments in bfq_setup_cooperator). Set
209  * to the slowest value that, in our tests, proved to be effective in
210  * removing false positives, while not causing true positives to miss
211  * queue merging.
212  *
213  * As can be deduced from the low time limit below, queue merging, if
214  * successful, happens at the very beginning of the I/O of the involved
215  * cooperating processes, as a consequence of the arrival of the very
216  * first requests from each cooperator.  After that, there is very
217  * little chance to find cooperators.
218  */
219 static const unsigned long bfq_merge_time_limit = HZ/10;
220 
221 static struct kmem_cache *bfq_pool;
222 
223 /* Below this threshold (in ns), we consider thinktime immediate. */
224 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
225 
226 /* hw_tag detection: parallel requests threshold and min samples needed. */
227 #define BFQ_HW_QUEUE_THRESHOLD	3
228 #define BFQ_HW_QUEUE_SAMPLES	32
229 
230 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
231 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
232 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 	(get_sdist(last_pos, rq) >			\
234 	 BFQQ_SEEK_THR &&				\
235 	 (!blk_queue_nonrot(bfqd->queue) ||		\
236 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
237 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
238 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
239 /*
240  * Sync random I/O is likely to be confused with soft real-time I/O,
241  * because it is characterized by limited throughput and apparently
242  * isochronous arrival pattern. To avoid false positives, queues
243  * containing only random (seeky) I/O are prevented from being tagged
244  * as soft real-time.
245  */
246 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
247 
248 /* Min number of samples required to perform peak-rate update */
249 #define BFQ_RATE_MIN_SAMPLES	32
250 /* Min observation time interval required to perform a peak-rate update (ns) */
251 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
252 /* Target observation time interval for a peak-rate update (ns) */
253 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
254 
255 /*
256  * Shift used for peak-rate fixed precision calculations.
257  * With
258  * - the current shift: 16 positions
259  * - the current type used to store rate: u32
260  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262  * the range of rates that can be stored is
263  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265  * [15, 65G] sectors/sec
266  * Which, assuming a sector size of 512B, corresponds to a range of
267  * [7.5K, 33T] B/sec
268  */
269 #define BFQ_RATE_SHIFT		16
270 
271 /*
272  * When configured for computing the duration of the weight-raising
273  * for interactive queues automatically (see the comments at the
274  * beginning of this file), BFQ does it using the following formula:
275  * duration = (ref_rate / r) * ref_wr_duration,
276  * where r is the peak rate of the device, and ref_rate and
277  * ref_wr_duration are two reference parameters.  In particular,
278  * ref_rate is the peak rate of the reference storage device (see
279  * below), and ref_wr_duration is about the maximum time needed, with
280  * BFQ and while reading two files in parallel, to load typical large
281  * applications on the reference device (see the comments on
282  * max_service_from_wr below, for more details on how ref_wr_duration
283  * is obtained).  In practice, the slower/faster the device at hand
284  * is, the more/less it takes to load applications with respect to the
285  * reference device.  Accordingly, the longer/shorter BFQ grants
286  * weight raising to interactive applications.
287  *
288  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289  * depending on whether the device is rotational or non-rotational.
290  *
291  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292  * are the reference values for a rotational device, whereas
293  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294  * non-rotational device. The reference rates are not the actual peak
295  * rates of the devices used as a reference, but slightly lower
296  * values. The reason for using slightly lower values is that the
297  * peak-rate estimator tends to yield slightly lower values than the
298  * actual peak rate (it can yield the actual peak rate only if there
299  * is only one process doing I/O, and the process does sequential
300  * I/O).
301  *
302  * The reference peak rates are measured in sectors/usec, left-shifted
303  * by BFQ_RATE_SHIFT.
304  */
305 static int ref_rate[2] = {14000, 33000};
306 /*
307  * To improve readability, a conversion function is used to initialize
308  * the following array, which entails that the array can be
309  * initialized only in a function.
310  */
311 static int ref_wr_duration[2];
312 
313 /*
314  * BFQ uses the above-detailed, time-based weight-raising mechanism to
315  * privilege interactive tasks. This mechanism is vulnerable to the
316  * following false positives: I/O-bound applications that will go on
317  * doing I/O for much longer than the duration of weight
318  * raising. These applications have basically no benefit from being
319  * weight-raised at the beginning of their I/O. On the opposite end,
320  * while being weight-raised, these applications
321  * a) unjustly steal throughput to applications that may actually need
322  * low latency;
323  * b) make BFQ uselessly perform device idling; device idling results
324  * in loss of device throughput with most flash-based storage, and may
325  * increase latencies when used purposelessly.
326  *
327  * BFQ tries to reduce these problems, by adopting the following
328  * countermeasure. To introduce this countermeasure, we need first to
329  * finish explaining how the duration of weight-raising for
330  * interactive tasks is computed.
331  *
332  * For a bfq_queue deemed as interactive, the duration of weight
333  * raising is dynamically adjusted, as a function of the estimated
334  * peak rate of the device, so as to be equal to the time needed to
335  * execute the 'largest' interactive task we benchmarked so far. By
336  * largest task, we mean the task for which each involved process has
337  * to do more I/O than for any of the other tasks we benchmarked. This
338  * reference interactive task is the start-up of LibreOffice Writer,
339  * and in this task each process/bfq_queue needs to have at most ~110K
340  * sectors transferred.
341  *
342  * This last piece of information enables BFQ to reduce the actual
343  * duration of weight-raising for at least one class of I/O-bound
344  * applications: those doing sequential or quasi-sequential I/O. An
345  * example is file copy. In fact, once started, the main I/O-bound
346  * processes of these applications usually consume the above 110K
347  * sectors in much less time than the processes of an application that
348  * is starting, because these I/O-bound processes will greedily devote
349  * almost all their CPU cycles only to their target,
350  * throughput-friendly I/O operations. This is even more true if BFQ
351  * happens to be underestimating the device peak rate, and thus
352  * overestimating the duration of weight raising. But, according to
353  * our measurements, once transferred 110K sectors, these processes
354  * have no right to be weight-raised any longer.
355  *
356  * Basing on the last consideration, BFQ ends weight-raising for a
357  * bfq_queue if the latter happens to have received an amount of
358  * service at least equal to the following constant. The constant is
359  * set to slightly more than 110K, to have a minimum safety margin.
360  *
361  * This early ending of weight-raising reduces the amount of time
362  * during which interactive false positives cause the two problems
363  * described at the beginning of these comments.
364  */
365 static const unsigned long max_service_from_wr = 120000;
366 
367 /*
368  * Maximum time between the creation of two queues, for stable merge
369  * to be activated (in ms)
370  */
371 static const unsigned long bfq_activation_stable_merging = 600;
372 /*
373  * Minimum time to be waited before evaluating delayed stable merge (in ms)
374  */
375 static const unsigned long bfq_late_stable_merging = 600;
376 
377 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
378 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
379 
380 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
381 {
382 	return bic->bfqq[is_sync];
383 }
384 
385 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
386 
387 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
388 {
389 	/*
390 	 * If bfqq != NULL, then a non-stable queue merge between
391 	 * bic->bfqq and bfqq is happening here. This causes troubles
392 	 * in the following case: bic->bfqq has also been scheduled
393 	 * for a possible stable merge with bic->stable_merge_bfqq,
394 	 * and bic->stable_merge_bfqq == bfqq happens to
395 	 * hold. Troubles occur because bfqq may then undergo a split,
396 	 * thereby becoming eligible for a stable merge. Yet, if
397 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
398 	 * would be stably merged with itself. To avoid this anomaly,
399 	 * we cancel the stable merge if
400 	 * bic->stable_merge_bfqq == bfqq.
401 	 */
402 	bic->bfqq[is_sync] = bfqq;
403 
404 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
405 		/*
406 		 * Actually, these same instructions are executed also
407 		 * in bfq_setup_cooperator, in case of abort or actual
408 		 * execution of a stable merge. We could avoid
409 		 * repeating these instructions there too, but if we
410 		 * did so, we would nest even more complexity in this
411 		 * function.
412 		 */
413 		bfq_put_stable_ref(bic->stable_merge_bfqq);
414 
415 		bic->stable_merge_bfqq = NULL;
416 	}
417 }
418 
419 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
420 {
421 	return bic->icq.q->elevator->elevator_data;
422 }
423 
424 /**
425  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
426  * @icq: the iocontext queue.
427  */
428 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
429 {
430 	/* bic->icq is the first member, %NULL will convert to %NULL */
431 	return container_of(icq, struct bfq_io_cq, icq);
432 }
433 
434 /**
435  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
436  * @q: the request queue.
437  */
438 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
439 {
440 	struct bfq_io_cq *icq;
441 	unsigned long flags;
442 
443 	if (!current->io_context)
444 		return NULL;
445 
446 	spin_lock_irqsave(&q->queue_lock, flags);
447 	icq = icq_to_bic(ioc_lookup_icq(q));
448 	spin_unlock_irqrestore(&q->queue_lock, flags);
449 
450 	return icq;
451 }
452 
453 /*
454  * Scheduler run of queue, if there are requests pending and no one in the
455  * driver that will restart queueing.
456  */
457 void bfq_schedule_dispatch(struct bfq_data *bfqd)
458 {
459 	if (bfqd->queued != 0) {
460 		bfq_log(bfqd, "schedule dispatch");
461 		blk_mq_run_hw_queues(bfqd->queue, true);
462 	}
463 }
464 
465 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
466 
467 #define bfq_sample_valid(samples)	((samples) > 80)
468 
469 /*
470  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
471  * We choose the request that is closer to the head right now.  Distance
472  * behind the head is penalized and only allowed to a certain extent.
473  */
474 static struct request *bfq_choose_req(struct bfq_data *bfqd,
475 				      struct request *rq1,
476 				      struct request *rq2,
477 				      sector_t last)
478 {
479 	sector_t s1, s2, d1 = 0, d2 = 0;
480 	unsigned long back_max;
481 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
482 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
483 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
484 
485 	if (!rq1 || rq1 == rq2)
486 		return rq2;
487 	if (!rq2)
488 		return rq1;
489 
490 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
491 		return rq1;
492 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
493 		return rq2;
494 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
495 		return rq1;
496 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
497 		return rq2;
498 
499 	s1 = blk_rq_pos(rq1);
500 	s2 = blk_rq_pos(rq2);
501 
502 	/*
503 	 * By definition, 1KiB is 2 sectors.
504 	 */
505 	back_max = bfqd->bfq_back_max * 2;
506 
507 	/*
508 	 * Strict one way elevator _except_ in the case where we allow
509 	 * short backward seeks which are biased as twice the cost of a
510 	 * similar forward seek.
511 	 */
512 	if (s1 >= last)
513 		d1 = s1 - last;
514 	else if (s1 + back_max >= last)
515 		d1 = (last - s1) * bfqd->bfq_back_penalty;
516 	else
517 		wrap |= BFQ_RQ1_WRAP;
518 
519 	if (s2 >= last)
520 		d2 = s2 - last;
521 	else if (s2 + back_max >= last)
522 		d2 = (last - s2) * bfqd->bfq_back_penalty;
523 	else
524 		wrap |= BFQ_RQ2_WRAP;
525 
526 	/* Found required data */
527 
528 	/*
529 	 * By doing switch() on the bit mask "wrap" we avoid having to
530 	 * check two variables for all permutations: --> faster!
531 	 */
532 	switch (wrap) {
533 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
534 		if (d1 < d2)
535 			return rq1;
536 		else if (d2 < d1)
537 			return rq2;
538 
539 		if (s1 >= s2)
540 			return rq1;
541 		else
542 			return rq2;
543 
544 	case BFQ_RQ2_WRAP:
545 		return rq1;
546 	case BFQ_RQ1_WRAP:
547 		return rq2;
548 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
549 	default:
550 		/*
551 		 * Since both rqs are wrapped,
552 		 * start with the one that's further behind head
553 		 * (--> only *one* back seek required),
554 		 * since back seek takes more time than forward.
555 		 */
556 		if (s1 <= s2)
557 			return rq1;
558 		else
559 			return rq2;
560 	}
561 }
562 
563 #define BFQ_LIMIT_INLINE_DEPTH 16
564 
565 #ifdef CONFIG_BFQ_GROUP_IOSCHED
566 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
567 {
568 	struct bfq_data *bfqd = bfqq->bfqd;
569 	struct bfq_entity *entity = &bfqq->entity;
570 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
571 	struct bfq_entity **entities = inline_entities;
572 	int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
573 	int class_idx = bfqq->ioprio_class - 1;
574 	struct bfq_sched_data *sched_data;
575 	unsigned long wsum;
576 	bool ret = false;
577 
578 	if (!entity->on_st_or_in_serv)
579 		return false;
580 
581 retry:
582 	spin_lock_irq(&bfqd->lock);
583 	/* +1 for bfqq entity, root cgroup not included */
584 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
585 	if (depth > alloc_depth) {
586 		spin_unlock_irq(&bfqd->lock);
587 		if (entities != inline_entities)
588 			kfree(entities);
589 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
590 		if (!entities)
591 			return false;
592 		alloc_depth = depth;
593 		goto retry;
594 	}
595 
596 	sched_data = entity->sched_data;
597 	/* Gather our ancestors as we need to traverse them in reverse order */
598 	level = 0;
599 	for_each_entity(entity) {
600 		/*
601 		 * If at some level entity is not even active, allow request
602 		 * queueing so that BFQ knows there's work to do and activate
603 		 * entities.
604 		 */
605 		if (!entity->on_st_or_in_serv)
606 			goto out;
607 		/* Uh, more parents than cgroup subsystem thinks? */
608 		if (WARN_ON_ONCE(level >= depth))
609 			break;
610 		entities[level++] = entity;
611 	}
612 	WARN_ON_ONCE(level != depth);
613 	for (level--; level >= 0; level--) {
614 		entity = entities[level];
615 		if (level > 0) {
616 			wsum = bfq_entity_service_tree(entity)->wsum;
617 		} else {
618 			int i;
619 			/*
620 			 * For bfqq itself we take into account service trees
621 			 * of all higher priority classes and multiply their
622 			 * weights so that low prio queue from higher class
623 			 * gets more requests than high prio queue from lower
624 			 * class.
625 			 */
626 			wsum = 0;
627 			for (i = 0; i <= class_idx; i++) {
628 				wsum = wsum * IOPRIO_BE_NR +
629 					sched_data->service_tree[i].wsum;
630 			}
631 		}
632 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
633 		if (entity->allocated >= limit) {
634 			bfq_log_bfqq(bfqq->bfqd, bfqq,
635 				"too many requests: allocated %d limit %d level %d",
636 				entity->allocated, limit, level);
637 			ret = true;
638 			break;
639 		}
640 	}
641 out:
642 	spin_unlock_irq(&bfqd->lock);
643 	if (entities != inline_entities)
644 		kfree(entities);
645 	return ret;
646 }
647 #else
648 static bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit)
649 {
650 	return false;
651 }
652 #endif
653 
654 /*
655  * Async I/O can easily starve sync I/O (both sync reads and sync
656  * writes), by consuming all tags. Similarly, storms of sync writes,
657  * such as those that sync(2) may trigger, can starve sync reads.
658  * Limit depths of async I/O and sync writes so as to counter both
659  * problems.
660  *
661  * Also if a bfq queue or its parent cgroup consume more tags than would be
662  * appropriate for their weight, we trim the available tag depth to 1. This
663  * avoids a situation where one cgroup can starve another cgroup from tags and
664  * thus block service differentiation among cgroups. Note that because the
665  * queue / cgroup already has many requests allocated and queued, this does not
666  * significantly affect service guarantees coming from the BFQ scheduling
667  * algorithm.
668  */
669 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
670 {
671 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
672 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
673 	struct bfq_queue *bfqq = bic ? bic_to_bfqq(bic, op_is_sync(op)) : NULL;
674 	int depth;
675 	unsigned limit = data->q->nr_requests;
676 
677 	/* Sync reads have full depth available */
678 	if (op_is_sync(op) && !op_is_write(op)) {
679 		depth = 0;
680 	} else {
681 		depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
682 		limit = (limit * depth) >> bfqd->full_depth_shift;
683 	}
684 
685 	/*
686 	 * Does queue (or any parent entity) exceed number of requests that
687 	 * should be available to it? Heavily limit depth so that it cannot
688 	 * consume more available requests and thus starve other entities.
689 	 */
690 	if (bfqq && bfqq_request_over_limit(bfqq, limit))
691 		depth = 1;
692 
693 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
694 		__func__, bfqd->wr_busy_queues, op_is_sync(op), depth);
695 	if (depth)
696 		data->shallow_depth = depth;
697 }
698 
699 static struct bfq_queue *
700 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
701 		     sector_t sector, struct rb_node **ret_parent,
702 		     struct rb_node ***rb_link)
703 {
704 	struct rb_node **p, *parent;
705 	struct bfq_queue *bfqq = NULL;
706 
707 	parent = NULL;
708 	p = &root->rb_node;
709 	while (*p) {
710 		struct rb_node **n;
711 
712 		parent = *p;
713 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
714 
715 		/*
716 		 * Sort strictly based on sector. Smallest to the left,
717 		 * largest to the right.
718 		 */
719 		if (sector > blk_rq_pos(bfqq->next_rq))
720 			n = &(*p)->rb_right;
721 		else if (sector < blk_rq_pos(bfqq->next_rq))
722 			n = &(*p)->rb_left;
723 		else
724 			break;
725 		p = n;
726 		bfqq = NULL;
727 	}
728 
729 	*ret_parent = parent;
730 	if (rb_link)
731 		*rb_link = p;
732 
733 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
734 		(unsigned long long)sector,
735 		bfqq ? bfqq->pid : 0);
736 
737 	return bfqq;
738 }
739 
740 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
741 {
742 	return bfqq->service_from_backlogged > 0 &&
743 		time_is_before_jiffies(bfqq->first_IO_time +
744 				       bfq_merge_time_limit);
745 }
746 
747 /*
748  * The following function is not marked as __cold because it is
749  * actually cold, but for the same performance goal described in the
750  * comments on the likely() at the beginning of
751  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
752  * execution time for the case where this function is not invoked, we
753  * had to add an unlikely() in each involved if().
754  */
755 void __cold
756 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
757 {
758 	struct rb_node **p, *parent;
759 	struct bfq_queue *__bfqq;
760 
761 	if (bfqq->pos_root) {
762 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
763 		bfqq->pos_root = NULL;
764 	}
765 
766 	/* oom_bfqq does not participate in queue merging */
767 	if (bfqq == &bfqd->oom_bfqq)
768 		return;
769 
770 	/*
771 	 * bfqq cannot be merged any longer (see comments in
772 	 * bfq_setup_cooperator): no point in adding bfqq into the
773 	 * position tree.
774 	 */
775 	if (bfq_too_late_for_merging(bfqq))
776 		return;
777 
778 	if (bfq_class_idle(bfqq))
779 		return;
780 	if (!bfqq->next_rq)
781 		return;
782 
783 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
784 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
785 			blk_rq_pos(bfqq->next_rq), &parent, &p);
786 	if (!__bfqq) {
787 		rb_link_node(&bfqq->pos_node, parent, p);
788 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
789 	} else
790 		bfqq->pos_root = NULL;
791 }
792 
793 /*
794  * The following function returns false either if every active queue
795  * must receive the same share of the throughput (symmetric scenario),
796  * or, as a special case, if bfqq must receive a share of the
797  * throughput lower than or equal to the share that every other active
798  * queue must receive.  If bfqq does sync I/O, then these are the only
799  * two cases where bfqq happens to be guaranteed its share of the
800  * throughput even if I/O dispatching is not plugged when bfqq remains
801  * temporarily empty (for more details, see the comments in the
802  * function bfq_better_to_idle()). For this reason, the return value
803  * of this function is used to check whether I/O-dispatch plugging can
804  * be avoided.
805  *
806  * The above first case (symmetric scenario) occurs when:
807  * 1) all active queues have the same weight,
808  * 2) all active queues belong to the same I/O-priority class,
809  * 3) all active groups at the same level in the groups tree have the same
810  *    weight,
811  * 4) all active groups at the same level in the groups tree have the same
812  *    number of children.
813  *
814  * Unfortunately, keeping the necessary state for evaluating exactly
815  * the last two symmetry sub-conditions above would be quite complex
816  * and time consuming. Therefore this function evaluates, instead,
817  * only the following stronger three sub-conditions, for which it is
818  * much easier to maintain the needed state:
819  * 1) all active queues have the same weight,
820  * 2) all active queues belong to the same I/O-priority class,
821  * 3) there are no active groups.
822  * In particular, the last condition is always true if hierarchical
823  * support or the cgroups interface are not enabled, thus no state
824  * needs to be maintained in this case.
825  */
826 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
827 				   struct bfq_queue *bfqq)
828 {
829 	bool smallest_weight = bfqq &&
830 		bfqq->weight_counter &&
831 		bfqq->weight_counter ==
832 		container_of(
833 			rb_first_cached(&bfqd->queue_weights_tree),
834 			struct bfq_weight_counter,
835 			weights_node);
836 
837 	/*
838 	 * For queue weights to differ, queue_weights_tree must contain
839 	 * at least two nodes.
840 	 */
841 	bool varied_queue_weights = !smallest_weight &&
842 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
843 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
844 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
845 
846 	bool multiple_classes_busy =
847 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
848 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
849 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
850 
851 	return varied_queue_weights || multiple_classes_busy
852 #ifdef CONFIG_BFQ_GROUP_IOSCHED
853 	       || bfqd->num_groups_with_pending_reqs > 0
854 #endif
855 		;
856 }
857 
858 /*
859  * If the weight-counter tree passed as input contains no counter for
860  * the weight of the input queue, then add that counter; otherwise just
861  * increment the existing counter.
862  *
863  * Note that weight-counter trees contain few nodes in mostly symmetric
864  * scenarios. For example, if all queues have the same weight, then the
865  * weight-counter tree for the queues may contain at most one node.
866  * This holds even if low_latency is on, because weight-raised queues
867  * are not inserted in the tree.
868  * In most scenarios, the rate at which nodes are created/destroyed
869  * should be low too.
870  */
871 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
872 			  struct rb_root_cached *root)
873 {
874 	struct bfq_entity *entity = &bfqq->entity;
875 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
876 	bool leftmost = true;
877 
878 	/*
879 	 * Do not insert if the queue is already associated with a
880 	 * counter, which happens if:
881 	 *   1) a request arrival has caused the queue to become both
882 	 *      non-weight-raised, and hence change its weight, and
883 	 *      backlogged; in this respect, each of the two events
884 	 *      causes an invocation of this function,
885 	 *   2) this is the invocation of this function caused by the
886 	 *      second event. This second invocation is actually useless,
887 	 *      and we handle this fact by exiting immediately. More
888 	 *      efficient or clearer solutions might possibly be adopted.
889 	 */
890 	if (bfqq->weight_counter)
891 		return;
892 
893 	while (*new) {
894 		struct bfq_weight_counter *__counter = container_of(*new,
895 						struct bfq_weight_counter,
896 						weights_node);
897 		parent = *new;
898 
899 		if (entity->weight == __counter->weight) {
900 			bfqq->weight_counter = __counter;
901 			goto inc_counter;
902 		}
903 		if (entity->weight < __counter->weight)
904 			new = &((*new)->rb_left);
905 		else {
906 			new = &((*new)->rb_right);
907 			leftmost = false;
908 		}
909 	}
910 
911 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
912 				       GFP_ATOMIC);
913 
914 	/*
915 	 * In the unlucky event of an allocation failure, we just
916 	 * exit. This will cause the weight of queue to not be
917 	 * considered in bfq_asymmetric_scenario, which, in its turn,
918 	 * causes the scenario to be deemed wrongly symmetric in case
919 	 * bfqq's weight would have been the only weight making the
920 	 * scenario asymmetric.  On the bright side, no unbalance will
921 	 * however occur when bfqq becomes inactive again (the
922 	 * invocation of this function is triggered by an activation
923 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
924 	 * if !bfqq->weight_counter.
925 	 */
926 	if (unlikely(!bfqq->weight_counter))
927 		return;
928 
929 	bfqq->weight_counter->weight = entity->weight;
930 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
931 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
932 				leftmost);
933 
934 inc_counter:
935 	bfqq->weight_counter->num_active++;
936 	bfqq->ref++;
937 }
938 
939 /*
940  * Decrement the weight counter associated with the queue, and, if the
941  * counter reaches 0, remove the counter from the tree.
942  * See the comments to the function bfq_weights_tree_add() for considerations
943  * about overhead.
944  */
945 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
946 			       struct bfq_queue *bfqq,
947 			       struct rb_root_cached *root)
948 {
949 	if (!bfqq->weight_counter)
950 		return;
951 
952 	bfqq->weight_counter->num_active--;
953 	if (bfqq->weight_counter->num_active > 0)
954 		goto reset_entity_pointer;
955 
956 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
957 	kfree(bfqq->weight_counter);
958 
959 reset_entity_pointer:
960 	bfqq->weight_counter = NULL;
961 	bfq_put_queue(bfqq);
962 }
963 
964 /*
965  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
966  * of active groups for each queue's inactive parent entity.
967  */
968 void bfq_weights_tree_remove(struct bfq_data *bfqd,
969 			     struct bfq_queue *bfqq)
970 {
971 	struct bfq_entity *entity = bfqq->entity.parent;
972 
973 	for_each_entity(entity) {
974 		struct bfq_sched_data *sd = entity->my_sched_data;
975 
976 		if (sd->next_in_service || sd->in_service_entity) {
977 			/*
978 			 * entity is still active, because either
979 			 * next_in_service or in_service_entity is not
980 			 * NULL (see the comments on the definition of
981 			 * next_in_service for details on why
982 			 * in_service_entity must be checked too).
983 			 *
984 			 * As a consequence, its parent entities are
985 			 * active as well, and thus this loop must
986 			 * stop here.
987 			 */
988 			break;
989 		}
990 
991 		/*
992 		 * The decrement of num_groups_with_pending_reqs is
993 		 * not performed immediately upon the deactivation of
994 		 * entity, but it is delayed to when it also happens
995 		 * that the first leaf descendant bfqq of entity gets
996 		 * all its pending requests completed. The following
997 		 * instructions perform this delayed decrement, if
998 		 * needed. See the comments on
999 		 * num_groups_with_pending_reqs for details.
1000 		 */
1001 		if (entity->in_groups_with_pending_reqs) {
1002 			entity->in_groups_with_pending_reqs = false;
1003 			bfqd->num_groups_with_pending_reqs--;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Next function is invoked last, because it causes bfqq to be
1009 	 * freed if the following holds: bfqq is not in service and
1010 	 * has no dispatched request. DO NOT use bfqq after the next
1011 	 * function invocation.
1012 	 */
1013 	__bfq_weights_tree_remove(bfqd, bfqq,
1014 				  &bfqd->queue_weights_tree);
1015 }
1016 
1017 /*
1018  * Return expired entry, or NULL to just start from scratch in rbtree.
1019  */
1020 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
1021 				      struct request *last)
1022 {
1023 	struct request *rq;
1024 
1025 	if (bfq_bfqq_fifo_expire(bfqq))
1026 		return NULL;
1027 
1028 	bfq_mark_bfqq_fifo_expire(bfqq);
1029 
1030 	rq = rq_entry_fifo(bfqq->fifo.next);
1031 
1032 	if (rq == last || ktime_get_ns() < rq->fifo_time)
1033 		return NULL;
1034 
1035 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1036 	return rq;
1037 }
1038 
1039 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1040 					struct bfq_queue *bfqq,
1041 					struct request *last)
1042 {
1043 	struct rb_node *rbnext = rb_next(&last->rb_node);
1044 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1045 	struct request *next, *prev = NULL;
1046 
1047 	/* Follow expired path, else get first next available. */
1048 	next = bfq_check_fifo(bfqq, last);
1049 	if (next)
1050 		return next;
1051 
1052 	if (rbprev)
1053 		prev = rb_entry_rq(rbprev);
1054 
1055 	if (rbnext)
1056 		next = rb_entry_rq(rbnext);
1057 	else {
1058 		rbnext = rb_first(&bfqq->sort_list);
1059 		if (rbnext && rbnext != &last->rb_node)
1060 			next = rb_entry_rq(rbnext);
1061 	}
1062 
1063 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1064 }
1065 
1066 /* see the definition of bfq_async_charge_factor for details */
1067 static unsigned long bfq_serv_to_charge(struct request *rq,
1068 					struct bfq_queue *bfqq)
1069 {
1070 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1071 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1072 		return blk_rq_sectors(rq);
1073 
1074 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1075 }
1076 
1077 /**
1078  * bfq_updated_next_req - update the queue after a new next_rq selection.
1079  * @bfqd: the device data the queue belongs to.
1080  * @bfqq: the queue to update.
1081  *
1082  * If the first request of a queue changes we make sure that the queue
1083  * has enough budget to serve at least its first request (if the
1084  * request has grown).  We do this because if the queue has not enough
1085  * budget for its first request, it has to go through two dispatch
1086  * rounds to actually get it dispatched.
1087  */
1088 static void bfq_updated_next_req(struct bfq_data *bfqd,
1089 				 struct bfq_queue *bfqq)
1090 {
1091 	struct bfq_entity *entity = &bfqq->entity;
1092 	struct request *next_rq = bfqq->next_rq;
1093 	unsigned long new_budget;
1094 
1095 	if (!next_rq)
1096 		return;
1097 
1098 	if (bfqq == bfqd->in_service_queue)
1099 		/*
1100 		 * In order not to break guarantees, budgets cannot be
1101 		 * changed after an entity has been selected.
1102 		 */
1103 		return;
1104 
1105 	new_budget = max_t(unsigned long,
1106 			   max_t(unsigned long, bfqq->max_budget,
1107 				 bfq_serv_to_charge(next_rq, bfqq)),
1108 			   entity->service);
1109 	if (entity->budget != new_budget) {
1110 		entity->budget = new_budget;
1111 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1112 					 new_budget);
1113 		bfq_requeue_bfqq(bfqd, bfqq, false);
1114 	}
1115 }
1116 
1117 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1118 {
1119 	u64 dur;
1120 
1121 	if (bfqd->bfq_wr_max_time > 0)
1122 		return bfqd->bfq_wr_max_time;
1123 
1124 	dur = bfqd->rate_dur_prod;
1125 	do_div(dur, bfqd->peak_rate);
1126 
1127 	/*
1128 	 * Limit duration between 3 and 25 seconds. The upper limit
1129 	 * has been conservatively set after the following worst case:
1130 	 * on a QEMU/KVM virtual machine
1131 	 * - running in a slow PC
1132 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1133 	 * - serving a heavy I/O workload, such as the sequential reading
1134 	 *   of several files
1135 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1136 	 *
1137 	 * As for higher values than that accommodating the above bad
1138 	 * scenario, tests show that higher values would often yield
1139 	 * the opposite of the desired result, i.e., would worsen
1140 	 * responsiveness by allowing non-interactive applications to
1141 	 * preserve weight raising for too long.
1142 	 *
1143 	 * On the other end, lower values than 3 seconds make it
1144 	 * difficult for most interactive tasks to complete their jobs
1145 	 * before weight-raising finishes.
1146 	 */
1147 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1148 }
1149 
1150 /* switch back from soft real-time to interactive weight raising */
1151 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1152 					  struct bfq_data *bfqd)
1153 {
1154 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1155 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1156 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1157 }
1158 
1159 static void
1160 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1161 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1162 {
1163 	unsigned int old_wr_coeff = 1;
1164 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1165 
1166 	if (bic->saved_has_short_ttime)
1167 		bfq_mark_bfqq_has_short_ttime(bfqq);
1168 	else
1169 		bfq_clear_bfqq_has_short_ttime(bfqq);
1170 
1171 	if (bic->saved_IO_bound)
1172 		bfq_mark_bfqq_IO_bound(bfqq);
1173 	else
1174 		bfq_clear_bfqq_IO_bound(bfqq);
1175 
1176 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1177 	bfqq->inject_limit = bic->saved_inject_limit;
1178 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1179 
1180 	bfqq->entity.new_weight = bic->saved_weight;
1181 	bfqq->ttime = bic->saved_ttime;
1182 	bfqq->io_start_time = bic->saved_io_start_time;
1183 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1184 	/*
1185 	 * Restore weight coefficient only if low_latency is on
1186 	 */
1187 	if (bfqd->low_latency) {
1188 		old_wr_coeff = bfqq->wr_coeff;
1189 		bfqq->wr_coeff = bic->saved_wr_coeff;
1190 	}
1191 	bfqq->service_from_wr = bic->saved_service_from_wr;
1192 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1193 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1194 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1195 
1196 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1197 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1198 				   bfqq->wr_cur_max_time))) {
1199 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1200 		    !bfq_bfqq_in_large_burst(bfqq) &&
1201 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1202 					     bfq_wr_duration(bfqd))) {
1203 			switch_back_to_interactive_wr(bfqq, bfqd);
1204 		} else {
1205 			bfqq->wr_coeff = 1;
1206 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1207 				     "resume state: switching off wr");
1208 		}
1209 	}
1210 
1211 	/* make sure weight will be updated, however we got here */
1212 	bfqq->entity.prio_changed = 1;
1213 
1214 	if (likely(!busy))
1215 		return;
1216 
1217 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1218 		bfqd->wr_busy_queues++;
1219 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1220 		bfqd->wr_busy_queues--;
1221 }
1222 
1223 static int bfqq_process_refs(struct bfq_queue *bfqq)
1224 {
1225 	return bfqq->ref - bfqq->entity.allocated -
1226 		bfqq->entity.on_st_or_in_serv -
1227 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1228 }
1229 
1230 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1231 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1232 {
1233 	struct bfq_queue *item;
1234 	struct hlist_node *n;
1235 
1236 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1237 		hlist_del_init(&item->burst_list_node);
1238 
1239 	/*
1240 	 * Start the creation of a new burst list only if there is no
1241 	 * active queue. See comments on the conditional invocation of
1242 	 * bfq_handle_burst().
1243 	 */
1244 	if (bfq_tot_busy_queues(bfqd) == 0) {
1245 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1246 		bfqd->burst_size = 1;
1247 	} else
1248 		bfqd->burst_size = 0;
1249 
1250 	bfqd->burst_parent_entity = bfqq->entity.parent;
1251 }
1252 
1253 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1254 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1255 {
1256 	/* Increment burst size to take into account also bfqq */
1257 	bfqd->burst_size++;
1258 
1259 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1260 		struct bfq_queue *pos, *bfqq_item;
1261 		struct hlist_node *n;
1262 
1263 		/*
1264 		 * Enough queues have been activated shortly after each
1265 		 * other to consider this burst as large.
1266 		 */
1267 		bfqd->large_burst = true;
1268 
1269 		/*
1270 		 * We can now mark all queues in the burst list as
1271 		 * belonging to a large burst.
1272 		 */
1273 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1274 				     burst_list_node)
1275 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1276 		bfq_mark_bfqq_in_large_burst(bfqq);
1277 
1278 		/*
1279 		 * From now on, and until the current burst finishes, any
1280 		 * new queue being activated shortly after the last queue
1281 		 * was inserted in the burst can be immediately marked as
1282 		 * belonging to a large burst. So the burst list is not
1283 		 * needed any more. Remove it.
1284 		 */
1285 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1286 					  burst_list_node)
1287 			hlist_del_init(&pos->burst_list_node);
1288 	} else /*
1289 		* Burst not yet large: add bfqq to the burst list. Do
1290 		* not increment the ref counter for bfqq, because bfqq
1291 		* is removed from the burst list before freeing bfqq
1292 		* in put_queue.
1293 		*/
1294 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1295 }
1296 
1297 /*
1298  * If many queues belonging to the same group happen to be created
1299  * shortly after each other, then the processes associated with these
1300  * queues have typically a common goal. In particular, bursts of queue
1301  * creations are usually caused by services or applications that spawn
1302  * many parallel threads/processes. Examples are systemd during boot,
1303  * or git grep. To help these processes get their job done as soon as
1304  * possible, it is usually better to not grant either weight-raising
1305  * or device idling to their queues, unless these queues must be
1306  * protected from the I/O flowing through other active queues.
1307  *
1308  * In this comment we describe, firstly, the reasons why this fact
1309  * holds, and, secondly, the next function, which implements the main
1310  * steps needed to properly mark these queues so that they can then be
1311  * treated in a different way.
1312  *
1313  * The above services or applications benefit mostly from a high
1314  * throughput: the quicker the requests of the activated queues are
1315  * cumulatively served, the sooner the target job of these queues gets
1316  * completed. As a consequence, weight-raising any of these queues,
1317  * which also implies idling the device for it, is almost always
1318  * counterproductive, unless there are other active queues to isolate
1319  * these new queues from. If there no other active queues, then
1320  * weight-raising these new queues just lowers throughput in most
1321  * cases.
1322  *
1323  * On the other hand, a burst of queue creations may be caused also by
1324  * the start of an application that does not consist of a lot of
1325  * parallel I/O-bound threads. In fact, with a complex application,
1326  * several short processes may need to be executed to start-up the
1327  * application. In this respect, to start an application as quickly as
1328  * possible, the best thing to do is in any case to privilege the I/O
1329  * related to the application with respect to all other
1330  * I/O. Therefore, the best strategy to start as quickly as possible
1331  * an application that causes a burst of queue creations is to
1332  * weight-raise all the queues created during the burst. This is the
1333  * exact opposite of the best strategy for the other type of bursts.
1334  *
1335  * In the end, to take the best action for each of the two cases, the
1336  * two types of bursts need to be distinguished. Fortunately, this
1337  * seems relatively easy, by looking at the sizes of the bursts. In
1338  * particular, we found a threshold such that only bursts with a
1339  * larger size than that threshold are apparently caused by
1340  * services or commands such as systemd or git grep. For brevity,
1341  * hereafter we call just 'large' these bursts. BFQ *does not*
1342  * weight-raise queues whose creation occurs in a large burst. In
1343  * addition, for each of these queues BFQ performs or does not perform
1344  * idling depending on which choice boosts the throughput more. The
1345  * exact choice depends on the device and request pattern at
1346  * hand.
1347  *
1348  * Unfortunately, false positives may occur while an interactive task
1349  * is starting (e.g., an application is being started). The
1350  * consequence is that the queues associated with the task do not
1351  * enjoy weight raising as expected. Fortunately these false positives
1352  * are very rare. They typically occur if some service happens to
1353  * start doing I/O exactly when the interactive task starts.
1354  *
1355  * Turning back to the next function, it is invoked only if there are
1356  * no active queues (apart from active queues that would belong to the
1357  * same, possible burst bfqq would belong to), and it implements all
1358  * the steps needed to detect the occurrence of a large burst and to
1359  * properly mark all the queues belonging to it (so that they can then
1360  * be treated in a different way). This goal is achieved by
1361  * maintaining a "burst list" that holds, temporarily, the queues that
1362  * belong to the burst in progress. The list is then used to mark
1363  * these queues as belonging to a large burst if the burst does become
1364  * large. The main steps are the following.
1365  *
1366  * . when the very first queue is created, the queue is inserted into the
1367  *   list (as it could be the first queue in a possible burst)
1368  *
1369  * . if the current burst has not yet become large, and a queue Q that does
1370  *   not yet belong to the burst is activated shortly after the last time
1371  *   at which a new queue entered the burst list, then the function appends
1372  *   Q to the burst list
1373  *
1374  * . if, as a consequence of the previous step, the burst size reaches
1375  *   the large-burst threshold, then
1376  *
1377  *     . all the queues in the burst list are marked as belonging to a
1378  *       large burst
1379  *
1380  *     . the burst list is deleted; in fact, the burst list already served
1381  *       its purpose (keeping temporarily track of the queues in a burst,
1382  *       so as to be able to mark them as belonging to a large burst in the
1383  *       previous sub-step), and now is not needed any more
1384  *
1385  *     . the device enters a large-burst mode
1386  *
1387  * . if a queue Q that does not belong to the burst is created while
1388  *   the device is in large-burst mode and shortly after the last time
1389  *   at which a queue either entered the burst list or was marked as
1390  *   belonging to the current large burst, then Q is immediately marked
1391  *   as belonging to a large burst.
1392  *
1393  * . if a queue Q that does not belong to the burst is created a while
1394  *   later, i.e., not shortly after, than the last time at which a queue
1395  *   either entered the burst list or was marked as belonging to the
1396  *   current large burst, then the current burst is deemed as finished and:
1397  *
1398  *        . the large-burst mode is reset if set
1399  *
1400  *        . the burst list is emptied
1401  *
1402  *        . Q is inserted in the burst list, as Q may be the first queue
1403  *          in a possible new burst (then the burst list contains just Q
1404  *          after this step).
1405  */
1406 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1407 {
1408 	/*
1409 	 * If bfqq is already in the burst list or is part of a large
1410 	 * burst, or finally has just been split, then there is
1411 	 * nothing else to do.
1412 	 */
1413 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1414 	    bfq_bfqq_in_large_burst(bfqq) ||
1415 	    time_is_after_eq_jiffies(bfqq->split_time +
1416 				     msecs_to_jiffies(10)))
1417 		return;
1418 
1419 	/*
1420 	 * If bfqq's creation happens late enough, or bfqq belongs to
1421 	 * a different group than the burst group, then the current
1422 	 * burst is finished, and related data structures must be
1423 	 * reset.
1424 	 *
1425 	 * In this respect, consider the special case where bfqq is
1426 	 * the very first queue created after BFQ is selected for this
1427 	 * device. In this case, last_ins_in_burst and
1428 	 * burst_parent_entity are not yet significant when we get
1429 	 * here. But it is easy to verify that, whether or not the
1430 	 * following condition is true, bfqq will end up being
1431 	 * inserted into the burst list. In particular the list will
1432 	 * happen to contain only bfqq. And this is exactly what has
1433 	 * to happen, as bfqq may be the first queue of the first
1434 	 * burst.
1435 	 */
1436 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1437 	    bfqd->bfq_burst_interval) ||
1438 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1439 		bfqd->large_burst = false;
1440 		bfq_reset_burst_list(bfqd, bfqq);
1441 		goto end;
1442 	}
1443 
1444 	/*
1445 	 * If we get here, then bfqq is being activated shortly after the
1446 	 * last queue. So, if the current burst is also large, we can mark
1447 	 * bfqq as belonging to this large burst immediately.
1448 	 */
1449 	if (bfqd->large_burst) {
1450 		bfq_mark_bfqq_in_large_burst(bfqq);
1451 		goto end;
1452 	}
1453 
1454 	/*
1455 	 * If we get here, then a large-burst state has not yet been
1456 	 * reached, but bfqq is being activated shortly after the last
1457 	 * queue. Then we add bfqq to the burst.
1458 	 */
1459 	bfq_add_to_burst(bfqd, bfqq);
1460 end:
1461 	/*
1462 	 * At this point, bfqq either has been added to the current
1463 	 * burst or has caused the current burst to terminate and a
1464 	 * possible new burst to start. In particular, in the second
1465 	 * case, bfqq has become the first queue in the possible new
1466 	 * burst.  In both cases last_ins_in_burst needs to be moved
1467 	 * forward.
1468 	 */
1469 	bfqd->last_ins_in_burst = jiffies;
1470 }
1471 
1472 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1473 {
1474 	struct bfq_entity *entity = &bfqq->entity;
1475 
1476 	return entity->budget - entity->service;
1477 }
1478 
1479 /*
1480  * If enough samples have been computed, return the current max budget
1481  * stored in bfqd, which is dynamically updated according to the
1482  * estimated disk peak rate; otherwise return the default max budget
1483  */
1484 static int bfq_max_budget(struct bfq_data *bfqd)
1485 {
1486 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1487 		return bfq_default_max_budget;
1488 	else
1489 		return bfqd->bfq_max_budget;
1490 }
1491 
1492 /*
1493  * Return min budget, which is a fraction of the current or default
1494  * max budget (trying with 1/32)
1495  */
1496 static int bfq_min_budget(struct bfq_data *bfqd)
1497 {
1498 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1499 		return bfq_default_max_budget / 32;
1500 	else
1501 		return bfqd->bfq_max_budget / 32;
1502 }
1503 
1504 /*
1505  * The next function, invoked after the input queue bfqq switches from
1506  * idle to busy, updates the budget of bfqq. The function also tells
1507  * whether the in-service queue should be expired, by returning
1508  * true. The purpose of expiring the in-service queue is to give bfqq
1509  * the chance to possibly preempt the in-service queue, and the reason
1510  * for preempting the in-service queue is to achieve one of the two
1511  * goals below.
1512  *
1513  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1514  * expired because it has remained idle. In particular, bfqq may have
1515  * expired for one of the following two reasons:
1516  *
1517  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1518  *   and did not make it to issue a new request before its last
1519  *   request was served;
1520  *
1521  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1522  *   a new request before the expiration of the idling-time.
1523  *
1524  * Even if bfqq has expired for one of the above reasons, the process
1525  * associated with the queue may be however issuing requests greedily,
1526  * and thus be sensitive to the bandwidth it receives (bfqq may have
1527  * remained idle for other reasons: CPU high load, bfqq not enjoying
1528  * idling, I/O throttling somewhere in the path from the process to
1529  * the I/O scheduler, ...). But if, after every expiration for one of
1530  * the above two reasons, bfqq has to wait for the service of at least
1531  * one full budget of another queue before being served again, then
1532  * bfqq is likely to get a much lower bandwidth or resource time than
1533  * its reserved ones. To address this issue, two countermeasures need
1534  * to be taken.
1535  *
1536  * First, the budget and the timestamps of bfqq need to be updated in
1537  * a special way on bfqq reactivation: they need to be updated as if
1538  * bfqq did not remain idle and did not expire. In fact, if they are
1539  * computed as if bfqq expired and remained idle until reactivation,
1540  * then the process associated with bfqq is treated as if, instead of
1541  * being greedy, it stopped issuing requests when bfqq remained idle,
1542  * and restarts issuing requests only on this reactivation. In other
1543  * words, the scheduler does not help the process recover the "service
1544  * hole" between bfqq expiration and reactivation. As a consequence,
1545  * the process receives a lower bandwidth than its reserved one. In
1546  * contrast, to recover this hole, the budget must be updated as if
1547  * bfqq was not expired at all before this reactivation, i.e., it must
1548  * be set to the value of the remaining budget when bfqq was
1549  * expired. Along the same line, timestamps need to be assigned the
1550  * value they had the last time bfqq was selected for service, i.e.,
1551  * before last expiration. Thus timestamps need to be back-shifted
1552  * with respect to their normal computation (see [1] for more details
1553  * on this tricky aspect).
1554  *
1555  * Secondly, to allow the process to recover the hole, the in-service
1556  * queue must be expired too, to give bfqq the chance to preempt it
1557  * immediately. In fact, if bfqq has to wait for a full budget of the
1558  * in-service queue to be completed, then it may become impossible to
1559  * let the process recover the hole, even if the back-shifted
1560  * timestamps of bfqq are lower than those of the in-service queue. If
1561  * this happens for most or all of the holes, then the process may not
1562  * receive its reserved bandwidth. In this respect, it is worth noting
1563  * that, being the service of outstanding requests unpreemptible, a
1564  * little fraction of the holes may however be unrecoverable, thereby
1565  * causing a little loss of bandwidth.
1566  *
1567  * The last important point is detecting whether bfqq does need this
1568  * bandwidth recovery. In this respect, the next function deems the
1569  * process associated with bfqq greedy, and thus allows it to recover
1570  * the hole, if: 1) the process is waiting for the arrival of a new
1571  * request (which implies that bfqq expired for one of the above two
1572  * reasons), and 2) such a request has arrived soon. The first
1573  * condition is controlled through the flag non_blocking_wait_rq,
1574  * while the second through the flag arrived_in_time. If both
1575  * conditions hold, then the function computes the budget in the
1576  * above-described special way, and signals that the in-service queue
1577  * should be expired. Timestamp back-shifting is done later in
1578  * __bfq_activate_entity.
1579  *
1580  * 2. Reduce latency. Even if timestamps are not backshifted to let
1581  * the process associated with bfqq recover a service hole, bfqq may
1582  * however happen to have, after being (re)activated, a lower finish
1583  * timestamp than the in-service queue.	 That is, the next budget of
1584  * bfqq may have to be completed before the one of the in-service
1585  * queue. If this is the case, then preempting the in-service queue
1586  * allows this goal to be achieved, apart from the unpreemptible,
1587  * outstanding requests mentioned above.
1588  *
1589  * Unfortunately, regardless of which of the above two goals one wants
1590  * to achieve, service trees need first to be updated to know whether
1591  * the in-service queue must be preempted. To have service trees
1592  * correctly updated, the in-service queue must be expired and
1593  * rescheduled, and bfqq must be scheduled too. This is one of the
1594  * most costly operations (in future versions, the scheduling
1595  * mechanism may be re-designed in such a way to make it possible to
1596  * know whether preemption is needed without needing to update service
1597  * trees). In addition, queue preemptions almost always cause random
1598  * I/O, which may in turn cause loss of throughput. Finally, there may
1599  * even be no in-service queue when the next function is invoked (so,
1600  * no queue to compare timestamps with). Because of these facts, the
1601  * next function adopts the following simple scheme to avoid costly
1602  * operations, too frequent preemptions and too many dependencies on
1603  * the state of the scheduler: it requests the expiration of the
1604  * in-service queue (unconditionally) only for queues that need to
1605  * recover a hole. Then it delegates to other parts of the code the
1606  * responsibility of handling the above case 2.
1607  */
1608 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1609 						struct bfq_queue *bfqq,
1610 						bool arrived_in_time)
1611 {
1612 	struct bfq_entity *entity = &bfqq->entity;
1613 
1614 	/*
1615 	 * In the next compound condition, we check also whether there
1616 	 * is some budget left, because otherwise there is no point in
1617 	 * trying to go on serving bfqq with this same budget: bfqq
1618 	 * would be expired immediately after being selected for
1619 	 * service. This would only cause useless overhead.
1620 	 */
1621 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1622 	    bfq_bfqq_budget_left(bfqq) > 0) {
1623 		/*
1624 		 * We do not clear the flag non_blocking_wait_rq here, as
1625 		 * the latter is used in bfq_activate_bfqq to signal
1626 		 * that timestamps need to be back-shifted (and is
1627 		 * cleared right after).
1628 		 */
1629 
1630 		/*
1631 		 * In next assignment we rely on that either
1632 		 * entity->service or entity->budget are not updated
1633 		 * on expiration if bfqq is empty (see
1634 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1635 		 * remain unchanged after such an expiration, and the
1636 		 * following statement therefore assigns to
1637 		 * entity->budget the remaining budget on such an
1638 		 * expiration.
1639 		 */
1640 		entity->budget = min_t(unsigned long,
1641 				       bfq_bfqq_budget_left(bfqq),
1642 				       bfqq->max_budget);
1643 
1644 		/*
1645 		 * At this point, we have used entity->service to get
1646 		 * the budget left (needed for updating
1647 		 * entity->budget). Thus we finally can, and have to,
1648 		 * reset entity->service. The latter must be reset
1649 		 * because bfqq would otherwise be charged again for
1650 		 * the service it has received during its previous
1651 		 * service slot(s).
1652 		 */
1653 		entity->service = 0;
1654 
1655 		return true;
1656 	}
1657 
1658 	/*
1659 	 * We can finally complete expiration, by setting service to 0.
1660 	 */
1661 	entity->service = 0;
1662 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1663 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1664 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1665 	return false;
1666 }
1667 
1668 /*
1669  * Return the farthest past time instant according to jiffies
1670  * macros.
1671  */
1672 static unsigned long bfq_smallest_from_now(void)
1673 {
1674 	return jiffies - MAX_JIFFY_OFFSET;
1675 }
1676 
1677 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1678 					     struct bfq_queue *bfqq,
1679 					     unsigned int old_wr_coeff,
1680 					     bool wr_or_deserves_wr,
1681 					     bool interactive,
1682 					     bool in_burst,
1683 					     bool soft_rt)
1684 {
1685 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1686 		/* start a weight-raising period */
1687 		if (interactive) {
1688 			bfqq->service_from_wr = 0;
1689 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1690 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1691 		} else {
1692 			/*
1693 			 * No interactive weight raising in progress
1694 			 * here: assign minus infinity to
1695 			 * wr_start_at_switch_to_srt, to make sure
1696 			 * that, at the end of the soft-real-time
1697 			 * weight raising periods that is starting
1698 			 * now, no interactive weight-raising period
1699 			 * may be wrongly considered as still in
1700 			 * progress (and thus actually started by
1701 			 * mistake).
1702 			 */
1703 			bfqq->wr_start_at_switch_to_srt =
1704 				bfq_smallest_from_now();
1705 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1706 				BFQ_SOFTRT_WEIGHT_FACTOR;
1707 			bfqq->wr_cur_max_time =
1708 				bfqd->bfq_wr_rt_max_time;
1709 		}
1710 
1711 		/*
1712 		 * If needed, further reduce budget to make sure it is
1713 		 * close to bfqq's backlog, so as to reduce the
1714 		 * scheduling-error component due to a too large
1715 		 * budget. Do not care about throughput consequences,
1716 		 * but only about latency. Finally, do not assign a
1717 		 * too small budget either, to avoid increasing
1718 		 * latency by causing too frequent expirations.
1719 		 */
1720 		bfqq->entity.budget = min_t(unsigned long,
1721 					    bfqq->entity.budget,
1722 					    2 * bfq_min_budget(bfqd));
1723 	} else if (old_wr_coeff > 1) {
1724 		if (interactive) { /* update wr coeff and duration */
1725 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1726 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1727 		} else if (in_burst)
1728 			bfqq->wr_coeff = 1;
1729 		else if (soft_rt) {
1730 			/*
1731 			 * The application is now or still meeting the
1732 			 * requirements for being deemed soft rt.  We
1733 			 * can then correctly and safely (re)charge
1734 			 * the weight-raising duration for the
1735 			 * application with the weight-raising
1736 			 * duration for soft rt applications.
1737 			 *
1738 			 * In particular, doing this recharge now, i.e.,
1739 			 * before the weight-raising period for the
1740 			 * application finishes, reduces the probability
1741 			 * of the following negative scenario:
1742 			 * 1) the weight of a soft rt application is
1743 			 *    raised at startup (as for any newly
1744 			 *    created application),
1745 			 * 2) since the application is not interactive,
1746 			 *    at a certain time weight-raising is
1747 			 *    stopped for the application,
1748 			 * 3) at that time the application happens to
1749 			 *    still have pending requests, and hence
1750 			 *    is destined to not have a chance to be
1751 			 *    deemed soft rt before these requests are
1752 			 *    completed (see the comments to the
1753 			 *    function bfq_bfqq_softrt_next_start()
1754 			 *    for details on soft rt detection),
1755 			 * 4) these pending requests experience a high
1756 			 *    latency because the application is not
1757 			 *    weight-raised while they are pending.
1758 			 */
1759 			if (bfqq->wr_cur_max_time !=
1760 				bfqd->bfq_wr_rt_max_time) {
1761 				bfqq->wr_start_at_switch_to_srt =
1762 					bfqq->last_wr_start_finish;
1763 
1764 				bfqq->wr_cur_max_time =
1765 					bfqd->bfq_wr_rt_max_time;
1766 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1767 					BFQ_SOFTRT_WEIGHT_FACTOR;
1768 			}
1769 			bfqq->last_wr_start_finish = jiffies;
1770 		}
1771 	}
1772 }
1773 
1774 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1775 					struct bfq_queue *bfqq)
1776 {
1777 	return bfqq->dispatched == 0 &&
1778 		time_is_before_jiffies(
1779 			bfqq->budget_timeout +
1780 			bfqd->bfq_wr_min_idle_time);
1781 }
1782 
1783 
1784 /*
1785  * Return true if bfqq is in a higher priority class, or has a higher
1786  * weight than the in-service queue.
1787  */
1788 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1789 					    struct bfq_queue *in_serv_bfqq)
1790 {
1791 	int bfqq_weight, in_serv_weight;
1792 
1793 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1794 		return true;
1795 
1796 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1797 		bfqq_weight = bfqq->entity.weight;
1798 		in_serv_weight = in_serv_bfqq->entity.weight;
1799 	} else {
1800 		if (bfqq->entity.parent)
1801 			bfqq_weight = bfqq->entity.parent->weight;
1802 		else
1803 			bfqq_weight = bfqq->entity.weight;
1804 		if (in_serv_bfqq->entity.parent)
1805 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1806 		else
1807 			in_serv_weight = in_serv_bfqq->entity.weight;
1808 	}
1809 
1810 	return bfqq_weight > in_serv_weight;
1811 }
1812 
1813 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1814 
1815 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1816 					     struct bfq_queue *bfqq,
1817 					     int old_wr_coeff,
1818 					     struct request *rq,
1819 					     bool *interactive)
1820 {
1821 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1822 		bfqq_wants_to_preempt,
1823 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1824 		/*
1825 		 * See the comments on
1826 		 * bfq_bfqq_update_budg_for_activation for
1827 		 * details on the usage of the next variable.
1828 		 */
1829 		arrived_in_time =  ktime_get_ns() <=
1830 			bfqq->ttime.last_end_request +
1831 			bfqd->bfq_slice_idle * 3;
1832 
1833 
1834 	/*
1835 	 * bfqq deserves to be weight-raised if:
1836 	 * - it is sync,
1837 	 * - it does not belong to a large burst,
1838 	 * - it has been idle for enough time or is soft real-time,
1839 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1840 	 * - has a default weight (otherwise we assume the user wanted
1841 	 *   to control its weight explicitly)
1842 	 */
1843 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1844 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1845 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1846 		!in_burst &&
1847 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1848 		bfqq->dispatched == 0 &&
1849 		bfqq->entity.new_weight == 40;
1850 	*interactive = !in_burst && idle_for_long_time &&
1851 		bfqq->entity.new_weight == 40;
1852 	/*
1853 	 * Merged bfq_queues are kept out of weight-raising
1854 	 * (low-latency) mechanisms. The reason is that these queues
1855 	 * are usually created for non-interactive and
1856 	 * non-soft-real-time tasks. Yet this is not the case for
1857 	 * stably-merged queues. These queues are merged just because
1858 	 * they are created shortly after each other. So they may
1859 	 * easily serve the I/O of an interactive or soft-real time
1860 	 * application, if the application happens to spawn multiple
1861 	 * processes. So let also stably-merged queued enjoy weight
1862 	 * raising.
1863 	 */
1864 	wr_or_deserves_wr = bfqd->low_latency &&
1865 		(bfqq->wr_coeff > 1 ||
1866 		 (bfq_bfqq_sync(bfqq) &&
1867 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1868 		   (*interactive || soft_rt)));
1869 
1870 	/*
1871 	 * Using the last flag, update budget and check whether bfqq
1872 	 * may want to preempt the in-service queue.
1873 	 */
1874 	bfqq_wants_to_preempt =
1875 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1876 						    arrived_in_time);
1877 
1878 	/*
1879 	 * If bfqq happened to be activated in a burst, but has been
1880 	 * idle for much more than an interactive queue, then we
1881 	 * assume that, in the overall I/O initiated in the burst, the
1882 	 * I/O associated with bfqq is finished. So bfqq does not need
1883 	 * to be treated as a queue belonging to a burst
1884 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1885 	 * if set, and remove bfqq from the burst list if it's
1886 	 * there. We do not decrement burst_size, because the fact
1887 	 * that bfqq does not need to belong to the burst list any
1888 	 * more does not invalidate the fact that bfqq was created in
1889 	 * a burst.
1890 	 */
1891 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1892 	    idle_for_long_time &&
1893 	    time_is_before_jiffies(
1894 		    bfqq->budget_timeout +
1895 		    msecs_to_jiffies(10000))) {
1896 		hlist_del_init(&bfqq->burst_list_node);
1897 		bfq_clear_bfqq_in_large_burst(bfqq);
1898 	}
1899 
1900 	bfq_clear_bfqq_just_created(bfqq);
1901 
1902 	if (bfqd->low_latency) {
1903 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1904 			/* wraparound */
1905 			bfqq->split_time =
1906 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1907 
1908 		if (time_is_before_jiffies(bfqq->split_time +
1909 					   bfqd->bfq_wr_min_idle_time)) {
1910 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1911 							 old_wr_coeff,
1912 							 wr_or_deserves_wr,
1913 							 *interactive,
1914 							 in_burst,
1915 							 soft_rt);
1916 
1917 			if (old_wr_coeff != bfqq->wr_coeff)
1918 				bfqq->entity.prio_changed = 1;
1919 		}
1920 	}
1921 
1922 	bfqq->last_idle_bklogged = jiffies;
1923 	bfqq->service_from_backlogged = 0;
1924 	bfq_clear_bfqq_softrt_update(bfqq);
1925 
1926 	bfq_add_bfqq_busy(bfqd, bfqq);
1927 
1928 	/*
1929 	 * Expire in-service queue if preemption may be needed for
1930 	 * guarantees or throughput. As for guarantees, we care
1931 	 * explicitly about two cases. The first is that bfqq has to
1932 	 * recover a service hole, as explained in the comments on
1933 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1934 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1935 	 * carry time-critical I/O, then bfqq's bandwidth is less
1936 	 * important than that of queues that carry time-critical I/O.
1937 	 * So, as a further constraint, we consider this case only if
1938 	 * bfqq is at least as weight-raised, i.e., at least as time
1939 	 * critical, as the in-service queue.
1940 	 *
1941 	 * The second case is that bfqq is in a higher priority class,
1942 	 * or has a higher weight than the in-service queue. If this
1943 	 * condition does not hold, we don't care because, even if
1944 	 * bfqq does not start to be served immediately, the resulting
1945 	 * delay for bfqq's I/O is however lower or much lower than
1946 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1947 	 *
1948 	 * In both cases, preemption is needed only if, according to
1949 	 * the timestamps of both bfqq and of the in-service queue,
1950 	 * bfqq actually is the next queue to serve. So, to reduce
1951 	 * useless preemptions, the return value of
1952 	 * next_queue_may_preempt() is considered in the next compound
1953 	 * condition too. Yet next_queue_may_preempt() just checks a
1954 	 * simple, necessary condition for bfqq to be the next queue
1955 	 * to serve. In fact, to evaluate a sufficient condition, the
1956 	 * timestamps of the in-service queue would need to be
1957 	 * updated, and this operation is quite costly (see the
1958 	 * comments on bfq_bfqq_update_budg_for_activation()).
1959 	 *
1960 	 * As for throughput, we ask bfq_better_to_idle() whether we
1961 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1962 	 * says no, then plugging is not needed any longer, either to
1963 	 * boost throughput or to perserve service guarantees. Then
1964 	 * the best option is to stop plugging I/O, as not doing so
1965 	 * would certainly lower throughput. We may end up in this
1966 	 * case if: (1) upon a dispatch attempt, we detected that it
1967 	 * was better to plug I/O dispatch, and to wait for a new
1968 	 * request to arrive for the currently in-service queue, but
1969 	 * (2) this switch of bfqq to busy changes the scenario.
1970 	 */
1971 	if (bfqd->in_service_queue &&
1972 	    ((bfqq_wants_to_preempt &&
1973 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1974 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1975 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1976 	    next_queue_may_preempt(bfqd))
1977 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1978 				false, BFQQE_PREEMPTED);
1979 }
1980 
1981 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1982 				   struct bfq_queue *bfqq)
1983 {
1984 	/* invalidate baseline total service time */
1985 	bfqq->last_serv_time_ns = 0;
1986 
1987 	/*
1988 	 * Reset pointer in case we are waiting for
1989 	 * some request completion.
1990 	 */
1991 	bfqd->waited_rq = NULL;
1992 
1993 	/*
1994 	 * If bfqq has a short think time, then start by setting the
1995 	 * inject limit to 0 prudentially, because the service time of
1996 	 * an injected I/O request may be higher than the think time
1997 	 * of bfqq, and therefore, if one request was injected when
1998 	 * bfqq remains empty, this injected request might delay the
1999 	 * service of the next I/O request for bfqq significantly. In
2000 	 * case bfqq can actually tolerate some injection, then the
2001 	 * adaptive update will however raise the limit soon. This
2002 	 * lucky circumstance holds exactly because bfqq has a short
2003 	 * think time, and thus, after remaining empty, is likely to
2004 	 * get new I/O enqueued---and then completed---before being
2005 	 * expired. This is the very pattern that gives the
2006 	 * limit-update algorithm the chance to measure the effect of
2007 	 * injection on request service times, and then to update the
2008 	 * limit accordingly.
2009 	 *
2010 	 * However, in the following special case, the inject limit is
2011 	 * left to 1 even if the think time is short: bfqq's I/O is
2012 	 * synchronized with that of some other queue, i.e., bfqq may
2013 	 * receive new I/O only after the I/O of the other queue is
2014 	 * completed. Keeping the inject limit to 1 allows the
2015 	 * blocking I/O to be served while bfqq is in service. And
2016 	 * this is very convenient both for bfqq and for overall
2017 	 * throughput, as explained in detail in the comments in
2018 	 * bfq_update_has_short_ttime().
2019 	 *
2020 	 * On the opposite end, if bfqq has a long think time, then
2021 	 * start directly by 1, because:
2022 	 * a) on the bright side, keeping at most one request in
2023 	 * service in the drive is unlikely to cause any harm to the
2024 	 * latency of bfqq's requests, as the service time of a single
2025 	 * request is likely to be lower than the think time of bfqq;
2026 	 * b) on the downside, after becoming empty, bfqq is likely to
2027 	 * expire before getting its next request. With this request
2028 	 * arrival pattern, it is very hard to sample total service
2029 	 * times and update the inject limit accordingly (see comments
2030 	 * on bfq_update_inject_limit()). So the limit is likely to be
2031 	 * never, or at least seldom, updated.  As a consequence, by
2032 	 * setting the limit to 1, we avoid that no injection ever
2033 	 * occurs with bfqq. On the downside, this proactive step
2034 	 * further reduces chances to actually compute the baseline
2035 	 * total service time. Thus it reduces chances to execute the
2036 	 * limit-update algorithm and possibly raise the limit to more
2037 	 * than 1.
2038 	 */
2039 	if (bfq_bfqq_has_short_ttime(bfqq))
2040 		bfqq->inject_limit = 0;
2041 	else
2042 		bfqq->inject_limit = 1;
2043 
2044 	bfqq->decrease_time_jif = jiffies;
2045 }
2046 
2047 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2048 {
2049 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2050 
2051 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2052 		bfqq->tot_idle_time +=
2053 			now_ns - bfqq->ttime.last_end_request;
2054 
2055 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2056 		return;
2057 
2058 	/*
2059 	 * Must be busy for at least about 80% of the time to be
2060 	 * considered I/O bound.
2061 	 */
2062 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2063 		bfq_clear_bfqq_IO_bound(bfqq);
2064 	else
2065 		bfq_mark_bfqq_IO_bound(bfqq);
2066 
2067 	/*
2068 	 * Keep an observation window of at most 200 ms in the past
2069 	 * from now.
2070 	 */
2071 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2072 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2073 		bfqq->tot_idle_time >>= 1;
2074 	}
2075 }
2076 
2077 /*
2078  * Detect whether bfqq's I/O seems synchronized with that of some
2079  * other queue, i.e., whether bfqq, after remaining empty, happens to
2080  * receive new I/O only right after some I/O request of the other
2081  * queue has been completed. We call waker queue the other queue, and
2082  * we assume, for simplicity, that bfqq may have at most one waker
2083  * queue.
2084  *
2085  * A remarkable throughput boost can be reached by unconditionally
2086  * injecting the I/O of the waker queue, every time a new
2087  * bfq_dispatch_request happens to be invoked while I/O is being
2088  * plugged for bfqq.  In addition to boosting throughput, this
2089  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2090  * bfqq. Note that these same results may be achieved with the general
2091  * injection mechanism, but less effectively. For details on this
2092  * aspect, see the comments on the choice of the queue for injection
2093  * in bfq_select_queue().
2094  *
2095  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2096  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2097  * non empty right after a request of Q has been completed within given
2098  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2099  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2100  * still being served by the drive, and may receive new I/O on the completion
2101  * of some of the in-flight requests. In particular, on the first time, Q is
2102  * tentatively set as a candidate waker queue, while on the third consecutive
2103  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2104  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2105  * has a long think time, so as to make it more likely that bfqq's I/O is
2106  * actually being blocked by a synchronization. This last filter, plus the
2107  * above three-times requirement and time limit for detection, make false
2108  * positives less likely.
2109  *
2110  * NOTE
2111  *
2112  * The sooner a waker queue is detected, the sooner throughput can be
2113  * boosted by injecting I/O from the waker queue. Fortunately,
2114  * detection is likely to be actually fast, for the following
2115  * reasons. While blocked by synchronization, bfqq has a long think
2116  * time. This implies that bfqq's inject limit is at least equal to 1
2117  * (see the comments in bfq_update_inject_limit()). So, thanks to
2118  * injection, the waker queue is likely to be served during the very
2119  * first I/O-plugging time interval for bfqq. This triggers the first
2120  * step of the detection mechanism. Thanks again to injection, the
2121  * candidate waker queue is then likely to be confirmed no later than
2122  * during the next I/O-plugging interval for bfqq.
2123  *
2124  * ISSUE
2125  *
2126  * On queue merging all waker information is lost.
2127  */
2128 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2129 			    u64 now_ns)
2130 {
2131 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2132 
2133 	if (!bfqd->last_completed_rq_bfqq ||
2134 	    bfqd->last_completed_rq_bfqq == bfqq ||
2135 	    bfq_bfqq_has_short_ttime(bfqq) ||
2136 	    bfqq->dispatched > 0 ||
2137 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2138 	    bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2139 		return;
2140 
2141 	/*
2142 	 * We reset waker detection logic also if too much time has passed
2143  	 * since the first detection. If wakeups are rare, pointless idling
2144 	 * doesn't hurt throughput that much. The condition below makes sure
2145 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2146 	 */
2147 	if (bfqd->last_completed_rq_bfqq !=
2148 	    bfqq->tentative_waker_bfqq ||
2149 	    now_ns > bfqq->waker_detection_started +
2150 					128 * (u64)bfqd->bfq_slice_idle) {
2151 		/*
2152 		 * First synchronization detected with a
2153 		 * candidate waker queue, or with a different
2154 		 * candidate waker queue from the current one.
2155 		 */
2156 		bfqq->tentative_waker_bfqq =
2157 			bfqd->last_completed_rq_bfqq;
2158 		bfqq->num_waker_detections = 1;
2159 		bfqq->waker_detection_started = now_ns;
2160 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2161 			      MAX_BFQQ_NAME_LENGTH);
2162 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2163 	} else /* Same tentative waker queue detected again */
2164 		bfqq->num_waker_detections++;
2165 
2166 	if (bfqq->num_waker_detections == 3) {
2167 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2168 		bfqq->tentative_waker_bfqq = NULL;
2169 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2170 			      MAX_BFQQ_NAME_LENGTH);
2171 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2172 
2173 		/*
2174 		 * If the waker queue disappears, then
2175 		 * bfqq->waker_bfqq must be reset. To
2176 		 * this goal, we maintain in each
2177 		 * waker queue a list, woken_list, of
2178 		 * all the queues that reference the
2179 		 * waker queue through their
2180 		 * waker_bfqq pointer. When the waker
2181 		 * queue exits, the waker_bfqq pointer
2182 		 * of all the queues in the woken_list
2183 		 * is reset.
2184 		 *
2185 		 * In addition, if bfqq is already in
2186 		 * the woken_list of a waker queue,
2187 		 * then, before being inserted into
2188 		 * the woken_list of a new waker
2189 		 * queue, bfqq must be removed from
2190 		 * the woken_list of the old waker
2191 		 * queue.
2192 		 */
2193 		if (!hlist_unhashed(&bfqq->woken_list_node))
2194 			hlist_del_init(&bfqq->woken_list_node);
2195 		hlist_add_head(&bfqq->woken_list_node,
2196 			       &bfqd->last_completed_rq_bfqq->woken_list);
2197 	}
2198 }
2199 
2200 static void bfq_add_request(struct request *rq)
2201 {
2202 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2203 	struct bfq_data *bfqd = bfqq->bfqd;
2204 	struct request *next_rq, *prev;
2205 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2206 	bool interactive = false;
2207 	u64 now_ns = ktime_get_ns();
2208 
2209 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2210 	bfqq->queued[rq_is_sync(rq)]++;
2211 	bfqd->queued++;
2212 
2213 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
2214 		bfq_check_waker(bfqd, bfqq, now_ns);
2215 
2216 		/*
2217 		 * Periodically reset inject limit, to make sure that
2218 		 * the latter eventually drops in case workload
2219 		 * changes, see step (3) in the comments on
2220 		 * bfq_update_inject_limit().
2221 		 */
2222 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2223 					     msecs_to_jiffies(1000)))
2224 			bfq_reset_inject_limit(bfqd, bfqq);
2225 
2226 		/*
2227 		 * The following conditions must hold to setup a new
2228 		 * sampling of total service time, and then a new
2229 		 * update of the inject limit:
2230 		 * - bfqq is in service, because the total service
2231 		 *   time is evaluated only for the I/O requests of
2232 		 *   the queues in service;
2233 		 * - this is the right occasion to compute or to
2234 		 *   lower the baseline total service time, because
2235 		 *   there are actually no requests in the drive,
2236 		 *   or
2237 		 *   the baseline total service time is available, and
2238 		 *   this is the right occasion to compute the other
2239 		 *   quantity needed to update the inject limit, i.e.,
2240 		 *   the total service time caused by the amount of
2241 		 *   injection allowed by the current value of the
2242 		 *   limit. It is the right occasion because injection
2243 		 *   has actually been performed during the service
2244 		 *   hole, and there are still in-flight requests,
2245 		 *   which are very likely to be exactly the injected
2246 		 *   requests, or part of them;
2247 		 * - the minimum interval for sampling the total
2248 		 *   service time and updating the inject limit has
2249 		 *   elapsed.
2250 		 */
2251 		if (bfqq == bfqd->in_service_queue &&
2252 		    (bfqd->rq_in_driver == 0 ||
2253 		     (bfqq->last_serv_time_ns > 0 &&
2254 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2255 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2256 					      msecs_to_jiffies(10))) {
2257 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2258 			/*
2259 			 * Start the state machine for measuring the
2260 			 * total service time of rq: setting
2261 			 * wait_dispatch will cause bfqd->waited_rq to
2262 			 * be set when rq will be dispatched.
2263 			 */
2264 			bfqd->wait_dispatch = true;
2265 			/*
2266 			 * If there is no I/O in service in the drive,
2267 			 * then possible injection occurred before the
2268 			 * arrival of rq will not affect the total
2269 			 * service time of rq. So the injection limit
2270 			 * must not be updated as a function of such
2271 			 * total service time, unless new injection
2272 			 * occurs before rq is completed. To have the
2273 			 * injection limit updated only in the latter
2274 			 * case, reset rqs_injected here (rqs_injected
2275 			 * will be set in case injection is performed
2276 			 * on bfqq before rq is completed).
2277 			 */
2278 			if (bfqd->rq_in_driver == 0)
2279 				bfqd->rqs_injected = false;
2280 		}
2281 	}
2282 
2283 	if (bfq_bfqq_sync(bfqq))
2284 		bfq_update_io_intensity(bfqq, now_ns);
2285 
2286 	elv_rb_add(&bfqq->sort_list, rq);
2287 
2288 	/*
2289 	 * Check if this request is a better next-serve candidate.
2290 	 */
2291 	prev = bfqq->next_rq;
2292 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2293 	bfqq->next_rq = next_rq;
2294 
2295 	/*
2296 	 * Adjust priority tree position, if next_rq changes.
2297 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2298 	 */
2299 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2300 		bfq_pos_tree_add_move(bfqd, bfqq);
2301 
2302 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2303 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2304 						 rq, &interactive);
2305 	else {
2306 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2307 		    time_is_before_jiffies(
2308 				bfqq->last_wr_start_finish +
2309 				bfqd->bfq_wr_min_inter_arr_async)) {
2310 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2311 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2312 
2313 			bfqd->wr_busy_queues++;
2314 			bfqq->entity.prio_changed = 1;
2315 		}
2316 		if (prev != bfqq->next_rq)
2317 			bfq_updated_next_req(bfqd, bfqq);
2318 	}
2319 
2320 	/*
2321 	 * Assign jiffies to last_wr_start_finish in the following
2322 	 * cases:
2323 	 *
2324 	 * . if bfqq is not going to be weight-raised, because, for
2325 	 *   non weight-raised queues, last_wr_start_finish stores the
2326 	 *   arrival time of the last request; as of now, this piece
2327 	 *   of information is used only for deciding whether to
2328 	 *   weight-raise async queues
2329 	 *
2330 	 * . if bfqq is not weight-raised, because, if bfqq is now
2331 	 *   switching to weight-raised, then last_wr_start_finish
2332 	 *   stores the time when weight-raising starts
2333 	 *
2334 	 * . if bfqq is interactive, because, regardless of whether
2335 	 *   bfqq is currently weight-raised, the weight-raising
2336 	 *   period must start or restart (this case is considered
2337 	 *   separately because it is not detected by the above
2338 	 *   conditions, if bfqq is already weight-raised)
2339 	 *
2340 	 * last_wr_start_finish has to be updated also if bfqq is soft
2341 	 * real-time, because the weight-raising period is constantly
2342 	 * restarted on idle-to-busy transitions for these queues, but
2343 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2344 	 * needed.
2345 	 */
2346 	if (bfqd->low_latency &&
2347 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2348 		bfqq->last_wr_start_finish = jiffies;
2349 }
2350 
2351 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2352 					  struct bio *bio,
2353 					  struct request_queue *q)
2354 {
2355 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2356 
2357 
2358 	if (bfqq)
2359 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2360 
2361 	return NULL;
2362 }
2363 
2364 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2365 {
2366 	if (last_pos)
2367 		return abs(blk_rq_pos(rq) - last_pos);
2368 
2369 	return 0;
2370 }
2371 
2372 #if 0 /* Still not clear if we can do without next two functions */
2373 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2374 {
2375 	struct bfq_data *bfqd = q->elevator->elevator_data;
2376 
2377 	bfqd->rq_in_driver++;
2378 }
2379 
2380 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2381 {
2382 	struct bfq_data *bfqd = q->elevator->elevator_data;
2383 
2384 	bfqd->rq_in_driver--;
2385 }
2386 #endif
2387 
2388 static void bfq_remove_request(struct request_queue *q,
2389 			       struct request *rq)
2390 {
2391 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2392 	struct bfq_data *bfqd = bfqq->bfqd;
2393 	const int sync = rq_is_sync(rq);
2394 
2395 	if (bfqq->next_rq == rq) {
2396 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2397 		bfq_updated_next_req(bfqd, bfqq);
2398 	}
2399 
2400 	if (rq->queuelist.prev != &rq->queuelist)
2401 		list_del_init(&rq->queuelist);
2402 	bfqq->queued[sync]--;
2403 	bfqd->queued--;
2404 	elv_rb_del(&bfqq->sort_list, rq);
2405 
2406 	elv_rqhash_del(q, rq);
2407 	if (q->last_merge == rq)
2408 		q->last_merge = NULL;
2409 
2410 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2411 		bfqq->next_rq = NULL;
2412 
2413 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2414 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2415 			/*
2416 			 * bfqq emptied. In normal operation, when
2417 			 * bfqq is empty, bfqq->entity.service and
2418 			 * bfqq->entity.budget must contain,
2419 			 * respectively, the service received and the
2420 			 * budget used last time bfqq emptied. These
2421 			 * facts do not hold in this case, as at least
2422 			 * this last removal occurred while bfqq is
2423 			 * not in service. To avoid inconsistencies,
2424 			 * reset both bfqq->entity.service and
2425 			 * bfqq->entity.budget, if bfqq has still a
2426 			 * process that may issue I/O requests to it.
2427 			 */
2428 			bfqq->entity.budget = bfqq->entity.service = 0;
2429 		}
2430 
2431 		/*
2432 		 * Remove queue from request-position tree as it is empty.
2433 		 */
2434 		if (bfqq->pos_root) {
2435 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2436 			bfqq->pos_root = NULL;
2437 		}
2438 	} else {
2439 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2440 		if (unlikely(!bfqd->nonrot_with_queueing))
2441 			bfq_pos_tree_add_move(bfqd, bfqq);
2442 	}
2443 
2444 	if (rq->cmd_flags & REQ_META)
2445 		bfqq->meta_pending--;
2446 
2447 }
2448 
2449 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2450 		unsigned int nr_segs)
2451 {
2452 	struct bfq_data *bfqd = q->elevator->elevator_data;
2453 	struct request *free = NULL;
2454 	/*
2455 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2456 	 * store its return value for later use, to avoid nesting
2457 	 * queue_lock inside the bfqd->lock. We assume that the bic
2458 	 * returned by bfq_bic_lookup does not go away before
2459 	 * bfqd->lock is taken.
2460 	 */
2461 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2462 	bool ret;
2463 
2464 	spin_lock_irq(&bfqd->lock);
2465 
2466 	if (bic)
2467 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2468 	else
2469 		bfqd->bio_bfqq = NULL;
2470 	bfqd->bio_bic = bic;
2471 
2472 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2473 
2474 	spin_unlock_irq(&bfqd->lock);
2475 	if (free)
2476 		blk_mq_free_request(free);
2477 
2478 	return ret;
2479 }
2480 
2481 static int bfq_request_merge(struct request_queue *q, struct request **req,
2482 			     struct bio *bio)
2483 {
2484 	struct bfq_data *bfqd = q->elevator->elevator_data;
2485 	struct request *__rq;
2486 
2487 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2488 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2489 		*req = __rq;
2490 
2491 		if (blk_discard_mergable(__rq))
2492 			return ELEVATOR_DISCARD_MERGE;
2493 		return ELEVATOR_FRONT_MERGE;
2494 	}
2495 
2496 	return ELEVATOR_NO_MERGE;
2497 }
2498 
2499 static struct bfq_queue *bfq_init_rq(struct request *rq);
2500 
2501 static void bfq_request_merged(struct request_queue *q, struct request *req,
2502 			       enum elv_merge type)
2503 {
2504 	if (type == ELEVATOR_FRONT_MERGE &&
2505 	    rb_prev(&req->rb_node) &&
2506 	    blk_rq_pos(req) <
2507 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2508 				    struct request, rb_node))) {
2509 		struct bfq_queue *bfqq = bfq_init_rq(req);
2510 		struct bfq_data *bfqd;
2511 		struct request *prev, *next_rq;
2512 
2513 		if (!bfqq)
2514 			return;
2515 
2516 		bfqd = bfqq->bfqd;
2517 
2518 		/* Reposition request in its sort_list */
2519 		elv_rb_del(&bfqq->sort_list, req);
2520 		elv_rb_add(&bfqq->sort_list, req);
2521 
2522 		/* Choose next request to be served for bfqq */
2523 		prev = bfqq->next_rq;
2524 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2525 					 bfqd->last_position);
2526 		bfqq->next_rq = next_rq;
2527 		/*
2528 		 * If next_rq changes, update both the queue's budget to
2529 		 * fit the new request and the queue's position in its
2530 		 * rq_pos_tree.
2531 		 */
2532 		if (prev != bfqq->next_rq) {
2533 			bfq_updated_next_req(bfqd, bfqq);
2534 			/*
2535 			 * See comments on bfq_pos_tree_add_move() for
2536 			 * the unlikely().
2537 			 */
2538 			if (unlikely(!bfqd->nonrot_with_queueing))
2539 				bfq_pos_tree_add_move(bfqd, bfqq);
2540 		}
2541 	}
2542 }
2543 
2544 /*
2545  * This function is called to notify the scheduler that the requests
2546  * rq and 'next' have been merged, with 'next' going away.  BFQ
2547  * exploits this hook to address the following issue: if 'next' has a
2548  * fifo_time lower that rq, then the fifo_time of rq must be set to
2549  * the value of 'next', to not forget the greater age of 'next'.
2550  *
2551  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2552  * on that rq is picked from the hash table q->elevator->hash, which,
2553  * in its turn, is filled only with I/O requests present in
2554  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2555  * the function that fills this hash table (elv_rqhash_add) is called
2556  * only by bfq_insert_request.
2557  */
2558 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2559 				struct request *next)
2560 {
2561 	struct bfq_queue *bfqq = bfq_init_rq(rq),
2562 		*next_bfqq = bfq_init_rq(next);
2563 
2564 	if (!bfqq)
2565 		goto remove;
2566 
2567 	/*
2568 	 * If next and rq belong to the same bfq_queue and next is older
2569 	 * than rq, then reposition rq in the fifo (by substituting next
2570 	 * with rq). Otherwise, if next and rq belong to different
2571 	 * bfq_queues, never reposition rq: in fact, we would have to
2572 	 * reposition it with respect to next's position in its own fifo,
2573 	 * which would most certainly be too expensive with respect to
2574 	 * the benefits.
2575 	 */
2576 	if (bfqq == next_bfqq &&
2577 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2578 	    next->fifo_time < rq->fifo_time) {
2579 		list_del_init(&rq->queuelist);
2580 		list_replace_init(&next->queuelist, &rq->queuelist);
2581 		rq->fifo_time = next->fifo_time;
2582 	}
2583 
2584 	if (bfqq->next_rq == next)
2585 		bfqq->next_rq = rq;
2586 
2587 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2588 remove:
2589 	/* Merged request may be in the IO scheduler. Remove it. */
2590 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2591 		bfq_remove_request(next->q, next);
2592 		if (next_bfqq)
2593 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2594 						    next->cmd_flags);
2595 	}
2596 }
2597 
2598 /* Must be called with bfqq != NULL */
2599 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2600 {
2601 	/*
2602 	 * If bfqq has been enjoying interactive weight-raising, then
2603 	 * reset soft_rt_next_start. We do it for the following
2604 	 * reason. bfqq may have been conveying the I/O needed to load
2605 	 * a soft real-time application. Such an application actually
2606 	 * exhibits a soft real-time I/O pattern after it finishes
2607 	 * loading, and finally starts doing its job. But, if bfqq has
2608 	 * been receiving a lot of bandwidth so far (likely to happen
2609 	 * on a fast device), then soft_rt_next_start now contains a
2610 	 * high value that. So, without this reset, bfqq would be
2611 	 * prevented from being possibly considered as soft_rt for a
2612 	 * very long time.
2613 	 */
2614 
2615 	if (bfqq->wr_cur_max_time !=
2616 	    bfqq->bfqd->bfq_wr_rt_max_time)
2617 		bfqq->soft_rt_next_start = jiffies;
2618 
2619 	if (bfq_bfqq_busy(bfqq))
2620 		bfqq->bfqd->wr_busy_queues--;
2621 	bfqq->wr_coeff = 1;
2622 	bfqq->wr_cur_max_time = 0;
2623 	bfqq->last_wr_start_finish = jiffies;
2624 	/*
2625 	 * Trigger a weight change on the next invocation of
2626 	 * __bfq_entity_update_weight_prio.
2627 	 */
2628 	bfqq->entity.prio_changed = 1;
2629 }
2630 
2631 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2632 			     struct bfq_group *bfqg)
2633 {
2634 	int i, j;
2635 
2636 	for (i = 0; i < 2; i++)
2637 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2638 			if (bfqg->async_bfqq[i][j])
2639 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2640 	if (bfqg->async_idle_bfqq)
2641 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2642 }
2643 
2644 static void bfq_end_wr(struct bfq_data *bfqd)
2645 {
2646 	struct bfq_queue *bfqq;
2647 
2648 	spin_lock_irq(&bfqd->lock);
2649 
2650 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2651 		bfq_bfqq_end_wr(bfqq);
2652 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2653 		bfq_bfqq_end_wr(bfqq);
2654 	bfq_end_wr_async(bfqd);
2655 
2656 	spin_unlock_irq(&bfqd->lock);
2657 }
2658 
2659 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2660 {
2661 	if (request)
2662 		return blk_rq_pos(io_struct);
2663 	else
2664 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2665 }
2666 
2667 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2668 				  sector_t sector)
2669 {
2670 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2671 	       BFQQ_CLOSE_THR;
2672 }
2673 
2674 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2675 					 struct bfq_queue *bfqq,
2676 					 sector_t sector)
2677 {
2678 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2679 	struct rb_node *parent, *node;
2680 	struct bfq_queue *__bfqq;
2681 
2682 	if (RB_EMPTY_ROOT(root))
2683 		return NULL;
2684 
2685 	/*
2686 	 * First, if we find a request starting at the end of the last
2687 	 * request, choose it.
2688 	 */
2689 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2690 	if (__bfqq)
2691 		return __bfqq;
2692 
2693 	/*
2694 	 * If the exact sector wasn't found, the parent of the NULL leaf
2695 	 * will contain the closest sector (rq_pos_tree sorted by
2696 	 * next_request position).
2697 	 */
2698 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2699 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2700 		return __bfqq;
2701 
2702 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2703 		node = rb_next(&__bfqq->pos_node);
2704 	else
2705 		node = rb_prev(&__bfqq->pos_node);
2706 	if (!node)
2707 		return NULL;
2708 
2709 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2710 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2711 		return __bfqq;
2712 
2713 	return NULL;
2714 }
2715 
2716 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2717 						   struct bfq_queue *cur_bfqq,
2718 						   sector_t sector)
2719 {
2720 	struct bfq_queue *bfqq;
2721 
2722 	/*
2723 	 * We shall notice if some of the queues are cooperating,
2724 	 * e.g., working closely on the same area of the device. In
2725 	 * that case, we can group them together and: 1) don't waste
2726 	 * time idling, and 2) serve the union of their requests in
2727 	 * the best possible order for throughput.
2728 	 */
2729 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2730 	if (!bfqq || bfqq == cur_bfqq)
2731 		return NULL;
2732 
2733 	return bfqq;
2734 }
2735 
2736 static struct bfq_queue *
2737 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2738 {
2739 	int process_refs, new_process_refs;
2740 	struct bfq_queue *__bfqq;
2741 
2742 	/*
2743 	 * If there are no process references on the new_bfqq, then it is
2744 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2745 	 * may have dropped their last reference (not just their last process
2746 	 * reference).
2747 	 */
2748 	if (!bfqq_process_refs(new_bfqq))
2749 		return NULL;
2750 
2751 	/* Avoid a circular list and skip interim queue merges. */
2752 	while ((__bfqq = new_bfqq->new_bfqq)) {
2753 		if (__bfqq == bfqq)
2754 			return NULL;
2755 		new_bfqq = __bfqq;
2756 	}
2757 
2758 	process_refs = bfqq_process_refs(bfqq);
2759 	new_process_refs = bfqq_process_refs(new_bfqq);
2760 	/*
2761 	 * If the process for the bfqq has gone away, there is no
2762 	 * sense in merging the queues.
2763 	 */
2764 	if (process_refs == 0 || new_process_refs == 0)
2765 		return NULL;
2766 
2767 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2768 		new_bfqq->pid);
2769 
2770 	/*
2771 	 * Merging is just a redirection: the requests of the process
2772 	 * owning one of the two queues are redirected to the other queue.
2773 	 * The latter queue, in its turn, is set as shared if this is the
2774 	 * first time that the requests of some process are redirected to
2775 	 * it.
2776 	 *
2777 	 * We redirect bfqq to new_bfqq and not the opposite, because
2778 	 * we are in the context of the process owning bfqq, thus we
2779 	 * have the io_cq of this process. So we can immediately
2780 	 * configure this io_cq to redirect the requests of the
2781 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2782 	 * not available any more (new_bfqq->bic == NULL).
2783 	 *
2784 	 * Anyway, even in case new_bfqq coincides with the in-service
2785 	 * queue, redirecting requests the in-service queue is the
2786 	 * best option, as we feed the in-service queue with new
2787 	 * requests close to the last request served and, by doing so,
2788 	 * are likely to increase the throughput.
2789 	 */
2790 	bfqq->new_bfqq = new_bfqq;
2791 	/*
2792 	 * The above assignment schedules the following redirections:
2793 	 * each time some I/O for bfqq arrives, the process that
2794 	 * generated that I/O is disassociated from bfqq and
2795 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2796 	 * in advance, adding the number of processes that are
2797 	 * expected to be associated with new_bfqq as they happen to
2798 	 * issue I/O.
2799 	 */
2800 	new_bfqq->ref += process_refs;
2801 	return new_bfqq;
2802 }
2803 
2804 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2805 					struct bfq_queue *new_bfqq)
2806 {
2807 	if (bfq_too_late_for_merging(new_bfqq))
2808 		return false;
2809 
2810 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2811 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2812 		return false;
2813 
2814 	/*
2815 	 * If either of the queues has already been detected as seeky,
2816 	 * then merging it with the other queue is unlikely to lead to
2817 	 * sequential I/O.
2818 	 */
2819 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2820 		return false;
2821 
2822 	/*
2823 	 * Interleaved I/O is known to be done by (some) applications
2824 	 * only for reads, so it does not make sense to merge async
2825 	 * queues.
2826 	 */
2827 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2828 		return false;
2829 
2830 	return true;
2831 }
2832 
2833 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2834 					     struct bfq_queue *bfqq);
2835 
2836 /*
2837  * Attempt to schedule a merge of bfqq with the currently in-service
2838  * queue or with a close queue among the scheduled queues.  Return
2839  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2840  * structure otherwise.
2841  *
2842  * The OOM queue is not allowed to participate to cooperation: in fact, since
2843  * the requests temporarily redirected to the OOM queue could be redirected
2844  * again to dedicated queues at any time, the state needed to correctly
2845  * handle merging with the OOM queue would be quite complex and expensive
2846  * to maintain. Besides, in such a critical condition as an out of memory,
2847  * the benefits of queue merging may be little relevant, or even negligible.
2848  *
2849  * WARNING: queue merging may impair fairness among non-weight raised
2850  * queues, for at least two reasons: 1) the original weight of a
2851  * merged queue may change during the merged state, 2) even being the
2852  * weight the same, a merged queue may be bloated with many more
2853  * requests than the ones produced by its originally-associated
2854  * process.
2855  */
2856 static struct bfq_queue *
2857 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2858 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2859 {
2860 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2861 
2862 	/* if a merge has already been setup, then proceed with that first */
2863 	if (bfqq->new_bfqq)
2864 		return bfqq->new_bfqq;
2865 
2866 	/*
2867 	 * Check delayed stable merge for rotational or non-queueing
2868 	 * devs. For this branch to be executed, bfqq must not be
2869 	 * currently merged with some other queue (i.e., bfqq->bic
2870 	 * must be non null). If we considered also merged queues,
2871 	 * then we should also check whether bfqq has already been
2872 	 * merged with bic->stable_merge_bfqq. But this would be
2873 	 * costly and complicated.
2874 	 */
2875 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2876 		/*
2877 		 * Make sure also that bfqq is sync, because
2878 		 * bic->stable_merge_bfqq may point to some queue (for
2879 		 * stable merging) also if bic is associated with a
2880 		 * sync queue, but this bfqq is async
2881 		 */
2882 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2883 		    !bfq_bfqq_just_created(bfqq) &&
2884 		    time_is_before_jiffies(bfqq->split_time +
2885 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2886 		    time_is_before_jiffies(bfqq->creation_time +
2887 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2888 			struct bfq_queue *stable_merge_bfqq =
2889 				bic->stable_merge_bfqq;
2890 			int proc_ref = min(bfqq_process_refs(bfqq),
2891 					   bfqq_process_refs(stable_merge_bfqq));
2892 
2893 			/* deschedule stable merge, because done or aborted here */
2894 			bfq_put_stable_ref(stable_merge_bfqq);
2895 
2896 			bic->stable_merge_bfqq = NULL;
2897 
2898 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2899 			    proc_ref > 0) {
2900 				/* next function will take at least one ref */
2901 				struct bfq_queue *new_bfqq =
2902 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2903 
2904 				bic->stably_merged = true;
2905 				if (new_bfqq && new_bfqq->bic)
2906 					new_bfqq->bic->stably_merged = true;
2907 				return new_bfqq;
2908 			} else
2909 				return NULL;
2910 		}
2911 	}
2912 
2913 	/*
2914 	 * Do not perform queue merging if the device is non
2915 	 * rotational and performs internal queueing. In fact, such a
2916 	 * device reaches a high speed through internal parallelism
2917 	 * and pipelining. This means that, to reach a high
2918 	 * throughput, it must have many requests enqueued at the same
2919 	 * time. But, in this configuration, the internal scheduling
2920 	 * algorithm of the device does exactly the job of queue
2921 	 * merging: it reorders requests so as to obtain as much as
2922 	 * possible a sequential I/O pattern. As a consequence, with
2923 	 * the workload generated by processes doing interleaved I/O,
2924 	 * the throughput reached by the device is likely to be the
2925 	 * same, with and without queue merging.
2926 	 *
2927 	 * Disabling merging also provides a remarkable benefit in
2928 	 * terms of throughput. Merging tends to make many workloads
2929 	 * artificially more uneven, because of shared queues
2930 	 * remaining non empty for incomparably more time than
2931 	 * non-merged queues. This may accentuate workload
2932 	 * asymmetries. For example, if one of the queues in a set of
2933 	 * merged queues has a higher weight than a normal queue, then
2934 	 * the shared queue may inherit such a high weight and, by
2935 	 * staying almost always active, may force BFQ to perform I/O
2936 	 * plugging most of the time. This evidently makes it harder
2937 	 * for BFQ to let the device reach a high throughput.
2938 	 *
2939 	 * Finally, the likely() macro below is not used because one
2940 	 * of the two branches is more likely than the other, but to
2941 	 * have the code path after the following if() executed as
2942 	 * fast as possible for the case of a non rotational device
2943 	 * with queueing. We want it because this is the fastest kind
2944 	 * of device. On the opposite end, the likely() may lengthen
2945 	 * the execution time of BFQ for the case of slower devices
2946 	 * (rotational or at least without queueing). But in this case
2947 	 * the execution time of BFQ matters very little, if not at
2948 	 * all.
2949 	 */
2950 	if (likely(bfqd->nonrot_with_queueing))
2951 		return NULL;
2952 
2953 	/*
2954 	 * Prevent bfqq from being merged if it has been created too
2955 	 * long ago. The idea is that true cooperating processes, and
2956 	 * thus their associated bfq_queues, are supposed to be
2957 	 * created shortly after each other. This is the case, e.g.,
2958 	 * for KVM/QEMU and dump I/O threads. Basing on this
2959 	 * assumption, the following filtering greatly reduces the
2960 	 * probability that two non-cooperating processes, which just
2961 	 * happen to do close I/O for some short time interval, have
2962 	 * their queues merged by mistake.
2963 	 */
2964 	if (bfq_too_late_for_merging(bfqq))
2965 		return NULL;
2966 
2967 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2968 		return NULL;
2969 
2970 	/* If there is only one backlogged queue, don't search. */
2971 	if (bfq_tot_busy_queues(bfqd) == 1)
2972 		return NULL;
2973 
2974 	in_service_bfqq = bfqd->in_service_queue;
2975 
2976 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2977 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2978 	    bfq_rq_close_to_sector(io_struct, request,
2979 				   bfqd->in_serv_last_pos) &&
2980 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2981 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2982 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2983 		if (new_bfqq)
2984 			return new_bfqq;
2985 	}
2986 	/*
2987 	 * Check whether there is a cooperator among currently scheduled
2988 	 * queues. The only thing we need is that the bio/request is not
2989 	 * NULL, as we need it to establish whether a cooperator exists.
2990 	 */
2991 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2992 			bfq_io_struct_pos(io_struct, request));
2993 
2994 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2995 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2996 		return bfq_setup_merge(bfqq, new_bfqq);
2997 
2998 	return NULL;
2999 }
3000 
3001 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
3002 {
3003 	struct bfq_io_cq *bic = bfqq->bic;
3004 
3005 	/*
3006 	 * If !bfqq->bic, the queue is already shared or its requests
3007 	 * have already been redirected to a shared queue; both idle window
3008 	 * and weight raising state have already been saved. Do nothing.
3009 	 */
3010 	if (!bic)
3011 		return;
3012 
3013 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3014 	bic->saved_inject_limit = bfqq->inject_limit;
3015 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
3016 
3017 	bic->saved_weight = bfqq->entity.orig_weight;
3018 	bic->saved_ttime = bfqq->ttime;
3019 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
3020 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3021 	bic->saved_io_start_time = bfqq->io_start_time;
3022 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
3023 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3024 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
3025 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3026 		     !bfq_bfqq_in_large_burst(bfqq) &&
3027 		     bfqq->bfqd->low_latency)) {
3028 		/*
3029 		 * bfqq being merged right after being created: bfqq
3030 		 * would have deserved interactive weight raising, but
3031 		 * did not make it to be set in a weight-raised state,
3032 		 * because of this early merge.	Store directly the
3033 		 * weight-raising state that would have been assigned
3034 		 * to bfqq, so that to avoid that bfqq unjustly fails
3035 		 * to enjoy weight raising if split soon.
3036 		 */
3037 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3038 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
3039 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
3040 		bic->saved_last_wr_start_finish = jiffies;
3041 	} else {
3042 		bic->saved_wr_coeff = bfqq->wr_coeff;
3043 		bic->saved_wr_start_at_switch_to_srt =
3044 			bfqq->wr_start_at_switch_to_srt;
3045 		bic->saved_service_from_wr = bfqq->service_from_wr;
3046 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
3047 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3048 	}
3049 }
3050 
3051 
3052 static void
3053 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
3054 {
3055 	if (cur_bfqq->entity.parent &&
3056 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3057 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3058 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3059 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3060 }
3061 
3062 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3063 {
3064 	/*
3065 	 * To prevent bfqq's service guarantees from being violated,
3066 	 * bfqq may be left busy, i.e., queued for service, even if
3067 	 * empty (see comments in __bfq_bfqq_expire() for
3068 	 * details). But, if no process will send requests to bfqq any
3069 	 * longer, then there is no point in keeping bfqq queued for
3070 	 * service. In addition, keeping bfqq queued for service, but
3071 	 * with no process ref any longer, may have caused bfqq to be
3072 	 * freed when dequeued from service. But this is assumed to
3073 	 * never happen.
3074 	 */
3075 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3076 	    bfqq != bfqd->in_service_queue)
3077 		bfq_del_bfqq_busy(bfqd, bfqq, false);
3078 
3079 	bfq_reassign_last_bfqq(bfqq, NULL);
3080 
3081 	bfq_put_queue(bfqq);
3082 }
3083 
3084 static void
3085 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
3086 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
3087 {
3088 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3089 		(unsigned long)new_bfqq->pid);
3090 	/* Save weight raising and idle window of the merged queues */
3091 	bfq_bfqq_save_state(bfqq);
3092 	bfq_bfqq_save_state(new_bfqq);
3093 	if (bfq_bfqq_IO_bound(bfqq))
3094 		bfq_mark_bfqq_IO_bound(new_bfqq);
3095 	bfq_clear_bfqq_IO_bound(bfqq);
3096 
3097 	/*
3098 	 * The processes associated with bfqq are cooperators of the
3099 	 * processes associated with new_bfqq. So, if bfqq has a
3100 	 * waker, then assume that all these processes will be happy
3101 	 * to let bfqq's waker freely inject I/O when they have no
3102 	 * I/O.
3103 	 */
3104 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3105 	    bfqq->waker_bfqq != new_bfqq) {
3106 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3107 		new_bfqq->tentative_waker_bfqq = NULL;
3108 
3109 		/*
3110 		 * If the waker queue disappears, then
3111 		 * new_bfqq->waker_bfqq must be reset. So insert
3112 		 * new_bfqq into the woken_list of the waker. See
3113 		 * bfq_check_waker for details.
3114 		 */
3115 		hlist_add_head(&new_bfqq->woken_list_node,
3116 			       &new_bfqq->waker_bfqq->woken_list);
3117 
3118 	}
3119 
3120 	/*
3121 	 * If bfqq is weight-raised, then let new_bfqq inherit
3122 	 * weight-raising. To reduce false positives, neglect the case
3123 	 * where bfqq has just been created, but has not yet made it
3124 	 * to be weight-raised (which may happen because EQM may merge
3125 	 * bfqq even before bfq_add_request is executed for the first
3126 	 * time for bfqq). Handling this case would however be very
3127 	 * easy, thanks to the flag just_created.
3128 	 */
3129 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3130 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3131 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3132 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3133 		new_bfqq->wr_start_at_switch_to_srt =
3134 			bfqq->wr_start_at_switch_to_srt;
3135 		if (bfq_bfqq_busy(new_bfqq))
3136 			bfqd->wr_busy_queues++;
3137 		new_bfqq->entity.prio_changed = 1;
3138 	}
3139 
3140 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3141 		bfqq->wr_coeff = 1;
3142 		bfqq->entity.prio_changed = 1;
3143 		if (bfq_bfqq_busy(bfqq))
3144 			bfqd->wr_busy_queues--;
3145 	}
3146 
3147 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3148 		     bfqd->wr_busy_queues);
3149 
3150 	/*
3151 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3152 	 */
3153 	bic_set_bfqq(bic, new_bfqq, 1);
3154 	bfq_mark_bfqq_coop(new_bfqq);
3155 	/*
3156 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3157 	 * set new_bfqq->bic to NULL. bfqq either:
3158 	 * - does not belong to any bic any more, and hence bfqq->bic must
3159 	 *   be set to NULL, or
3160 	 * - is a queue whose owning bics have already been redirected to a
3161 	 *   different queue, hence the queue is destined to not belong to
3162 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3163 	 *   assignment causes no harm).
3164 	 */
3165 	new_bfqq->bic = NULL;
3166 	/*
3167 	 * If the queue is shared, the pid is the pid of one of the associated
3168 	 * processes. Which pid depends on the exact sequence of merge events
3169 	 * the queue underwent. So printing such a pid is useless and confusing
3170 	 * because it reports a random pid between those of the associated
3171 	 * processes.
3172 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3173 	 * a pid in logging messages.
3174 	 */
3175 	new_bfqq->pid = -1;
3176 	bfqq->bic = NULL;
3177 
3178 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3179 
3180 	bfq_release_process_ref(bfqd, bfqq);
3181 }
3182 
3183 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3184 				struct bio *bio)
3185 {
3186 	struct bfq_data *bfqd = q->elevator->elevator_data;
3187 	bool is_sync = op_is_sync(bio->bi_opf);
3188 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3189 
3190 	/*
3191 	 * Disallow merge of a sync bio into an async request.
3192 	 */
3193 	if (is_sync && !rq_is_sync(rq))
3194 		return false;
3195 
3196 	/*
3197 	 * Lookup the bfqq that this bio will be queued with. Allow
3198 	 * merge only if rq is queued there.
3199 	 */
3200 	if (!bfqq)
3201 		return false;
3202 
3203 	/*
3204 	 * We take advantage of this function to perform an early merge
3205 	 * of the queues of possible cooperating processes.
3206 	 */
3207 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3208 	if (new_bfqq) {
3209 		/*
3210 		 * bic still points to bfqq, then it has not yet been
3211 		 * redirected to some other bfq_queue, and a queue
3212 		 * merge between bfqq and new_bfqq can be safely
3213 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3214 		 * and bfqq can be put.
3215 		 */
3216 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3217 				new_bfqq);
3218 		/*
3219 		 * If we get here, bio will be queued into new_queue,
3220 		 * so use new_bfqq to decide whether bio and rq can be
3221 		 * merged.
3222 		 */
3223 		bfqq = new_bfqq;
3224 
3225 		/*
3226 		 * Change also bqfd->bio_bfqq, as
3227 		 * bfqd->bio_bic now points to new_bfqq, and
3228 		 * this function may be invoked again (and then may
3229 		 * use again bqfd->bio_bfqq).
3230 		 */
3231 		bfqd->bio_bfqq = bfqq;
3232 	}
3233 
3234 	return bfqq == RQ_BFQQ(rq);
3235 }
3236 
3237 /*
3238  * Set the maximum time for the in-service queue to consume its
3239  * budget. This prevents seeky processes from lowering the throughput.
3240  * In practice, a time-slice service scheme is used with seeky
3241  * processes.
3242  */
3243 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3244 				   struct bfq_queue *bfqq)
3245 {
3246 	unsigned int timeout_coeff;
3247 
3248 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3249 		timeout_coeff = 1;
3250 	else
3251 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3252 
3253 	bfqd->last_budget_start = ktime_get();
3254 
3255 	bfqq->budget_timeout = jiffies +
3256 		bfqd->bfq_timeout * timeout_coeff;
3257 }
3258 
3259 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3260 				       struct bfq_queue *bfqq)
3261 {
3262 	if (bfqq) {
3263 		bfq_clear_bfqq_fifo_expire(bfqq);
3264 
3265 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3266 
3267 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3268 		    bfqq->wr_coeff > 1 &&
3269 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3270 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3271 			/*
3272 			 * For soft real-time queues, move the start
3273 			 * of the weight-raising period forward by the
3274 			 * time the queue has not received any
3275 			 * service. Otherwise, a relatively long
3276 			 * service delay is likely to cause the
3277 			 * weight-raising period of the queue to end,
3278 			 * because of the short duration of the
3279 			 * weight-raising period of a soft real-time
3280 			 * queue.  It is worth noting that this move
3281 			 * is not so dangerous for the other queues,
3282 			 * because soft real-time queues are not
3283 			 * greedy.
3284 			 *
3285 			 * To not add a further variable, we use the
3286 			 * overloaded field budget_timeout to
3287 			 * determine for how long the queue has not
3288 			 * received service, i.e., how much time has
3289 			 * elapsed since the queue expired. However,
3290 			 * this is a little imprecise, because
3291 			 * budget_timeout is set to jiffies if bfqq
3292 			 * not only expires, but also remains with no
3293 			 * request.
3294 			 */
3295 			if (time_after(bfqq->budget_timeout,
3296 				       bfqq->last_wr_start_finish))
3297 				bfqq->last_wr_start_finish +=
3298 					jiffies - bfqq->budget_timeout;
3299 			else
3300 				bfqq->last_wr_start_finish = jiffies;
3301 		}
3302 
3303 		bfq_set_budget_timeout(bfqd, bfqq);
3304 		bfq_log_bfqq(bfqd, bfqq,
3305 			     "set_in_service_queue, cur-budget = %d",
3306 			     bfqq->entity.budget);
3307 	}
3308 
3309 	bfqd->in_service_queue = bfqq;
3310 	bfqd->in_serv_last_pos = 0;
3311 }
3312 
3313 /*
3314  * Get and set a new queue for service.
3315  */
3316 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3317 {
3318 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3319 
3320 	__bfq_set_in_service_queue(bfqd, bfqq);
3321 	return bfqq;
3322 }
3323 
3324 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3325 {
3326 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3327 	u32 sl;
3328 
3329 	bfq_mark_bfqq_wait_request(bfqq);
3330 
3331 	/*
3332 	 * We don't want to idle for seeks, but we do want to allow
3333 	 * fair distribution of slice time for a process doing back-to-back
3334 	 * seeks. So allow a little bit of time for him to submit a new rq.
3335 	 */
3336 	sl = bfqd->bfq_slice_idle;
3337 	/*
3338 	 * Unless the queue is being weight-raised or the scenario is
3339 	 * asymmetric, grant only minimum idle time if the queue
3340 	 * is seeky. A long idling is preserved for a weight-raised
3341 	 * queue, or, more in general, in an asymmetric scenario,
3342 	 * because a long idling is needed for guaranteeing to a queue
3343 	 * its reserved share of the throughput (in particular, it is
3344 	 * needed if the queue has a higher weight than some other
3345 	 * queue).
3346 	 */
3347 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3348 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3349 		sl = min_t(u64, sl, BFQ_MIN_TT);
3350 	else if (bfqq->wr_coeff > 1)
3351 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3352 
3353 	bfqd->last_idling_start = ktime_get();
3354 	bfqd->last_idling_start_jiffies = jiffies;
3355 
3356 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3357 		      HRTIMER_MODE_REL);
3358 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3359 }
3360 
3361 /*
3362  * In autotuning mode, max_budget is dynamically recomputed as the
3363  * amount of sectors transferred in timeout at the estimated peak
3364  * rate. This enables BFQ to utilize a full timeslice with a full
3365  * budget, even if the in-service queue is served at peak rate. And
3366  * this maximises throughput with sequential workloads.
3367  */
3368 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3369 {
3370 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3371 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3372 }
3373 
3374 /*
3375  * Update parameters related to throughput and responsiveness, as a
3376  * function of the estimated peak rate. See comments on
3377  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3378  */
3379 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3380 {
3381 	if (bfqd->bfq_user_max_budget == 0) {
3382 		bfqd->bfq_max_budget =
3383 			bfq_calc_max_budget(bfqd);
3384 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3385 	}
3386 }
3387 
3388 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3389 				       struct request *rq)
3390 {
3391 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3392 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3393 		bfqd->peak_rate_samples = 1;
3394 		bfqd->sequential_samples = 0;
3395 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3396 			blk_rq_sectors(rq);
3397 	} else /* no new rq dispatched, just reset the number of samples */
3398 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3399 
3400 	bfq_log(bfqd,
3401 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3402 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3403 		bfqd->tot_sectors_dispatched);
3404 }
3405 
3406 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3407 {
3408 	u32 rate, weight, divisor;
3409 
3410 	/*
3411 	 * For the convergence property to hold (see comments on
3412 	 * bfq_update_peak_rate()) and for the assessment to be
3413 	 * reliable, a minimum number of samples must be present, and
3414 	 * a minimum amount of time must have elapsed. If not so, do
3415 	 * not compute new rate. Just reset parameters, to get ready
3416 	 * for a new evaluation attempt.
3417 	 */
3418 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3419 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3420 		goto reset_computation;
3421 
3422 	/*
3423 	 * If a new request completion has occurred after last
3424 	 * dispatch, then, to approximate the rate at which requests
3425 	 * have been served by the device, it is more precise to
3426 	 * extend the observation interval to the last completion.
3427 	 */
3428 	bfqd->delta_from_first =
3429 		max_t(u64, bfqd->delta_from_first,
3430 		      bfqd->last_completion - bfqd->first_dispatch);
3431 
3432 	/*
3433 	 * Rate computed in sects/usec, and not sects/nsec, for
3434 	 * precision issues.
3435 	 */
3436 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3437 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3438 
3439 	/*
3440 	 * Peak rate not updated if:
3441 	 * - the percentage of sequential dispatches is below 3/4 of the
3442 	 *   total, and rate is below the current estimated peak rate
3443 	 * - rate is unreasonably high (> 20M sectors/sec)
3444 	 */
3445 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3446 	     rate <= bfqd->peak_rate) ||
3447 		rate > 20<<BFQ_RATE_SHIFT)
3448 		goto reset_computation;
3449 
3450 	/*
3451 	 * We have to update the peak rate, at last! To this purpose,
3452 	 * we use a low-pass filter. We compute the smoothing constant
3453 	 * of the filter as a function of the 'weight' of the new
3454 	 * measured rate.
3455 	 *
3456 	 * As can be seen in next formulas, we define this weight as a
3457 	 * quantity proportional to how sequential the workload is,
3458 	 * and to how long the observation time interval is.
3459 	 *
3460 	 * The weight runs from 0 to 8. The maximum value of the
3461 	 * weight, 8, yields the minimum value for the smoothing
3462 	 * constant. At this minimum value for the smoothing constant,
3463 	 * the measured rate contributes for half of the next value of
3464 	 * the estimated peak rate.
3465 	 *
3466 	 * So, the first step is to compute the weight as a function
3467 	 * of how sequential the workload is. Note that the weight
3468 	 * cannot reach 9, because bfqd->sequential_samples cannot
3469 	 * become equal to bfqd->peak_rate_samples, which, in its
3470 	 * turn, holds true because bfqd->sequential_samples is not
3471 	 * incremented for the first sample.
3472 	 */
3473 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3474 
3475 	/*
3476 	 * Second step: further refine the weight as a function of the
3477 	 * duration of the observation interval.
3478 	 */
3479 	weight = min_t(u32, 8,
3480 		       div_u64(weight * bfqd->delta_from_first,
3481 			       BFQ_RATE_REF_INTERVAL));
3482 
3483 	/*
3484 	 * Divisor ranging from 10, for minimum weight, to 2, for
3485 	 * maximum weight.
3486 	 */
3487 	divisor = 10 - weight;
3488 
3489 	/*
3490 	 * Finally, update peak rate:
3491 	 *
3492 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3493 	 */
3494 	bfqd->peak_rate *= divisor-1;
3495 	bfqd->peak_rate /= divisor;
3496 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3497 
3498 	bfqd->peak_rate += rate;
3499 
3500 	/*
3501 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3502 	 * the minimum representable values reported in the comments
3503 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3504 	 * divisions by zero where bfqd->peak_rate is used as a
3505 	 * divisor.
3506 	 */
3507 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3508 
3509 	update_thr_responsiveness_params(bfqd);
3510 
3511 reset_computation:
3512 	bfq_reset_rate_computation(bfqd, rq);
3513 }
3514 
3515 /*
3516  * Update the read/write peak rate (the main quantity used for
3517  * auto-tuning, see update_thr_responsiveness_params()).
3518  *
3519  * It is not trivial to estimate the peak rate (correctly): because of
3520  * the presence of sw and hw queues between the scheduler and the
3521  * device components that finally serve I/O requests, it is hard to
3522  * say exactly when a given dispatched request is served inside the
3523  * device, and for how long. As a consequence, it is hard to know
3524  * precisely at what rate a given set of requests is actually served
3525  * by the device.
3526  *
3527  * On the opposite end, the dispatch time of any request is trivially
3528  * available, and, from this piece of information, the "dispatch rate"
3529  * of requests can be immediately computed. So, the idea in the next
3530  * function is to use what is known, namely request dispatch times
3531  * (plus, when useful, request completion times), to estimate what is
3532  * unknown, namely in-device request service rate.
3533  *
3534  * The main issue is that, because of the above facts, the rate at
3535  * which a certain set of requests is dispatched over a certain time
3536  * interval can vary greatly with respect to the rate at which the
3537  * same requests are then served. But, since the size of any
3538  * intermediate queue is limited, and the service scheme is lossless
3539  * (no request is silently dropped), the following obvious convergence
3540  * property holds: the number of requests dispatched MUST become
3541  * closer and closer to the number of requests completed as the
3542  * observation interval grows. This is the key property used in
3543  * the next function to estimate the peak service rate as a function
3544  * of the observed dispatch rate. The function assumes to be invoked
3545  * on every request dispatch.
3546  */
3547 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3548 {
3549 	u64 now_ns = ktime_get_ns();
3550 
3551 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3552 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3553 			bfqd->peak_rate_samples);
3554 		bfq_reset_rate_computation(bfqd, rq);
3555 		goto update_last_values; /* will add one sample */
3556 	}
3557 
3558 	/*
3559 	 * Device idle for very long: the observation interval lasting
3560 	 * up to this dispatch cannot be a valid observation interval
3561 	 * for computing a new peak rate (similarly to the late-
3562 	 * completion event in bfq_completed_request()). Go to
3563 	 * update_rate_and_reset to have the following three steps
3564 	 * taken:
3565 	 * - close the observation interval at the last (previous)
3566 	 *   request dispatch or completion
3567 	 * - compute rate, if possible, for that observation interval
3568 	 * - start a new observation interval with this dispatch
3569 	 */
3570 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3571 	    bfqd->rq_in_driver == 0)
3572 		goto update_rate_and_reset;
3573 
3574 	/* Update sampling information */
3575 	bfqd->peak_rate_samples++;
3576 
3577 	if ((bfqd->rq_in_driver > 0 ||
3578 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3579 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3580 		bfqd->sequential_samples++;
3581 
3582 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3583 
3584 	/* Reset max observed rq size every 32 dispatches */
3585 	if (likely(bfqd->peak_rate_samples % 32))
3586 		bfqd->last_rq_max_size =
3587 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3588 	else
3589 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3590 
3591 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3592 
3593 	/* Target observation interval not yet reached, go on sampling */
3594 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3595 		goto update_last_values;
3596 
3597 update_rate_and_reset:
3598 	bfq_update_rate_reset(bfqd, rq);
3599 update_last_values:
3600 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3601 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3602 		bfqd->in_serv_last_pos = bfqd->last_position;
3603 	bfqd->last_dispatch = now_ns;
3604 }
3605 
3606 /*
3607  * Remove request from internal lists.
3608  */
3609 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3610 {
3611 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3612 
3613 	/*
3614 	 * For consistency, the next instruction should have been
3615 	 * executed after removing the request from the queue and
3616 	 * dispatching it.  We execute instead this instruction before
3617 	 * bfq_remove_request() (and hence introduce a temporary
3618 	 * inconsistency), for efficiency.  In fact, should this
3619 	 * dispatch occur for a non in-service bfqq, this anticipated
3620 	 * increment prevents two counters related to bfqq->dispatched
3621 	 * from risking to be, first, uselessly decremented, and then
3622 	 * incremented again when the (new) value of bfqq->dispatched
3623 	 * happens to be taken into account.
3624 	 */
3625 	bfqq->dispatched++;
3626 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3627 
3628 	bfq_remove_request(q, rq);
3629 }
3630 
3631 /*
3632  * There is a case where idling does not have to be performed for
3633  * throughput concerns, but to preserve the throughput share of
3634  * the process associated with bfqq.
3635  *
3636  * To introduce this case, we can note that allowing the drive
3637  * to enqueue more than one request at a time, and hence
3638  * delegating de facto final scheduling decisions to the
3639  * drive's internal scheduler, entails loss of control on the
3640  * actual request service order. In particular, the critical
3641  * situation is when requests from different processes happen
3642  * to be present, at the same time, in the internal queue(s)
3643  * of the drive. In such a situation, the drive, by deciding
3644  * the service order of the internally-queued requests, does
3645  * determine also the actual throughput distribution among
3646  * these processes. But the drive typically has no notion or
3647  * concern about per-process throughput distribution, and
3648  * makes its decisions only on a per-request basis. Therefore,
3649  * the service distribution enforced by the drive's internal
3650  * scheduler is likely to coincide with the desired throughput
3651  * distribution only in a completely symmetric, or favorably
3652  * skewed scenario where:
3653  * (i-a) each of these processes must get the same throughput as
3654  *	 the others,
3655  * (i-b) in case (i-a) does not hold, it holds that the process
3656  *       associated with bfqq must receive a lower or equal
3657  *	 throughput than any of the other processes;
3658  * (ii)  the I/O of each process has the same properties, in
3659  *       terms of locality (sequential or random), direction
3660  *       (reads or writes), request sizes, greediness
3661  *       (from I/O-bound to sporadic), and so on;
3662 
3663  * In fact, in such a scenario, the drive tends to treat the requests
3664  * of each process in about the same way as the requests of the
3665  * others, and thus to provide each of these processes with about the
3666  * same throughput.  This is exactly the desired throughput
3667  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3668  * even more convenient distribution for (the process associated with)
3669  * bfqq.
3670  *
3671  * In contrast, in any asymmetric or unfavorable scenario, device
3672  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3673  * that bfqq receives its assigned fraction of the device throughput
3674  * (see [1] for details).
3675  *
3676  * The problem is that idling may significantly reduce throughput with
3677  * certain combinations of types of I/O and devices. An important
3678  * example is sync random I/O on flash storage with command
3679  * queueing. So, unless bfqq falls in cases where idling also boosts
3680  * throughput, it is important to check conditions (i-a), i(-b) and
3681  * (ii) accurately, so as to avoid idling when not strictly needed for
3682  * service guarantees.
3683  *
3684  * Unfortunately, it is extremely difficult to thoroughly check
3685  * condition (ii). And, in case there are active groups, it becomes
3686  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3687  * if there are active groups, then, for conditions (i-a) or (i-b) to
3688  * become false 'indirectly', it is enough that an active group
3689  * contains more active processes or sub-groups than some other active
3690  * group. More precisely, for conditions (i-a) or (i-b) to become
3691  * false because of such a group, it is not even necessary that the
3692  * group is (still) active: it is sufficient that, even if the group
3693  * has become inactive, some of its descendant processes still have
3694  * some request already dispatched but still waiting for
3695  * completion. In fact, requests have still to be guaranteed their
3696  * share of the throughput even after being dispatched. In this
3697  * respect, it is easy to show that, if a group frequently becomes
3698  * inactive while still having in-flight requests, and if, when this
3699  * happens, the group is not considered in the calculation of whether
3700  * the scenario is asymmetric, then the group may fail to be
3701  * guaranteed its fair share of the throughput (basically because
3702  * idling may not be performed for the descendant processes of the
3703  * group, but it had to be).  We address this issue with the following
3704  * bi-modal behavior, implemented in the function
3705  * bfq_asymmetric_scenario().
3706  *
3707  * If there are groups with requests waiting for completion
3708  * (as commented above, some of these groups may even be
3709  * already inactive), then the scenario is tagged as
3710  * asymmetric, conservatively, without checking any of the
3711  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3712  * This behavior matches also the fact that groups are created
3713  * exactly if controlling I/O is a primary concern (to
3714  * preserve bandwidth and latency guarantees).
3715  *
3716  * On the opposite end, if there are no groups with requests waiting
3717  * for completion, then only conditions (i-a) and (i-b) are actually
3718  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3719  * idling is not performed, regardless of whether condition (ii)
3720  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3721  * hold, then idling is allowed, and the device tends to be prevented
3722  * from queueing many requests, possibly of several processes. Since
3723  * there are no groups with requests waiting for completion, then, to
3724  * control conditions (i-a) and (i-b) it is enough to check just
3725  * whether all the queues with requests waiting for completion also
3726  * have the same weight.
3727  *
3728  * Not checking condition (ii) evidently exposes bfqq to the
3729  * risk of getting less throughput than its fair share.
3730  * However, for queues with the same weight, a further
3731  * mechanism, preemption, mitigates or even eliminates this
3732  * problem. And it does so without consequences on overall
3733  * throughput. This mechanism and its benefits are explained
3734  * in the next three paragraphs.
3735  *
3736  * Even if a queue, say Q, is expired when it remains idle, Q
3737  * can still preempt the new in-service queue if the next
3738  * request of Q arrives soon (see the comments on
3739  * bfq_bfqq_update_budg_for_activation). If all queues and
3740  * groups have the same weight, this form of preemption,
3741  * combined with the hole-recovery heuristic described in the
3742  * comments on function bfq_bfqq_update_budg_for_activation,
3743  * are enough to preserve a correct bandwidth distribution in
3744  * the mid term, even without idling. In fact, even if not
3745  * idling allows the internal queues of the device to contain
3746  * many requests, and thus to reorder requests, we can rather
3747  * safely assume that the internal scheduler still preserves a
3748  * minimum of mid-term fairness.
3749  *
3750  * More precisely, this preemption-based, idleless approach
3751  * provides fairness in terms of IOPS, and not sectors per
3752  * second. This can be seen with a simple example. Suppose
3753  * that there are two queues with the same weight, but that
3754  * the first queue receives requests of 8 sectors, while the
3755  * second queue receives requests of 1024 sectors. In
3756  * addition, suppose that each of the two queues contains at
3757  * most one request at a time, which implies that each queue
3758  * always remains idle after it is served. Finally, after
3759  * remaining idle, each queue receives very quickly a new
3760  * request. It follows that the two queues are served
3761  * alternatively, preempting each other if needed. This
3762  * implies that, although both queues have the same weight,
3763  * the queue with large requests receives a service that is
3764  * 1024/8 times as high as the service received by the other
3765  * queue.
3766  *
3767  * The motivation for using preemption instead of idling (for
3768  * queues with the same weight) is that, by not idling,
3769  * service guarantees are preserved (completely or at least in
3770  * part) without minimally sacrificing throughput. And, if
3771  * there is no active group, then the primary expectation for
3772  * this device is probably a high throughput.
3773  *
3774  * We are now left only with explaining the two sub-conditions in the
3775  * additional compound condition that is checked below for deciding
3776  * whether the scenario is asymmetric. To explain the first
3777  * sub-condition, we need to add that the function
3778  * bfq_asymmetric_scenario checks the weights of only
3779  * non-weight-raised queues, for efficiency reasons (see comments on
3780  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3781  * is checked explicitly here. More precisely, the compound condition
3782  * below takes into account also the fact that, even if bfqq is being
3783  * weight-raised, the scenario is still symmetric if all queues with
3784  * requests waiting for completion happen to be
3785  * weight-raised. Actually, we should be even more precise here, and
3786  * differentiate between interactive weight raising and soft real-time
3787  * weight raising.
3788  *
3789  * The second sub-condition checked in the compound condition is
3790  * whether there is a fair amount of already in-flight I/O not
3791  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3792  * following reason. The drive may decide to serve in-flight
3793  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3794  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3795  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3796  * basically uncontrolled amount of I/O from other queues may be
3797  * dispatched too, possibly causing the service of bfqq's I/O to be
3798  * delayed even longer in the drive. This problem gets more and more
3799  * serious as the speed and the queue depth of the drive grow,
3800  * because, as these two quantities grow, the probability to find no
3801  * queue busy but many requests in flight grows too. By contrast,
3802  * plugging I/O dispatching minimizes the delay induced by already
3803  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3804  * lose because of this delay.
3805  *
3806  * As a side note, it is worth considering that the above
3807  * device-idling countermeasures may however fail in the following
3808  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3809  * in a time period during which all symmetry sub-conditions hold, and
3810  * therefore the device is allowed to enqueue many requests, but at
3811  * some later point in time some sub-condition stops to hold, then it
3812  * may become impossible to make requests be served in the desired
3813  * order until all the requests already queued in the device have been
3814  * served. The last sub-condition commented above somewhat mitigates
3815  * this problem for weight-raised queues.
3816  *
3817  * However, as an additional mitigation for this problem, we preserve
3818  * plugging for a special symmetric case that may suddenly turn into
3819  * asymmetric: the case where only bfqq is busy. In this case, not
3820  * expiring bfqq does not cause any harm to any other queues in terms
3821  * of service guarantees. In contrast, it avoids the following unlucky
3822  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3823  * lower weight than bfqq becomes busy (or more queues), (3) the new
3824  * queue is served until a new request arrives for bfqq, (4) when bfqq
3825  * is finally served, there are so many requests of the new queue in
3826  * the drive that the pending requests for bfqq take a lot of time to
3827  * be served. In particular, event (2) may case even already
3828  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3829  * avoid this series of events, the scenario is preventively declared
3830  * as asymmetric also if bfqq is the only busy queues
3831  */
3832 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3833 						 struct bfq_queue *bfqq)
3834 {
3835 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3836 
3837 	/* No point in idling for bfqq if it won't get requests any longer */
3838 	if (unlikely(!bfqq_process_refs(bfqq)))
3839 		return false;
3840 
3841 	return (bfqq->wr_coeff > 1 &&
3842 		(bfqd->wr_busy_queues <
3843 		 tot_busy_queues ||
3844 		 bfqd->rq_in_driver >=
3845 		 bfqq->dispatched + 4)) ||
3846 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3847 		tot_busy_queues == 1;
3848 }
3849 
3850 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3851 			      enum bfqq_expiration reason)
3852 {
3853 	/*
3854 	 * If this bfqq is shared between multiple processes, check
3855 	 * to make sure that those processes are still issuing I/Os
3856 	 * within the mean seek distance. If not, it may be time to
3857 	 * break the queues apart again.
3858 	 */
3859 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3860 		bfq_mark_bfqq_split_coop(bfqq);
3861 
3862 	/*
3863 	 * Consider queues with a higher finish virtual time than
3864 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3865 	 * true, then bfqq's bandwidth would be violated if an
3866 	 * uncontrolled amount of I/O from these queues were
3867 	 * dispatched while bfqq is waiting for its new I/O to
3868 	 * arrive. This is exactly what may happen if this is a forced
3869 	 * expiration caused by a preemption attempt, and if bfqq is
3870 	 * not re-scheduled. To prevent this from happening, re-queue
3871 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3872 	 * empty. By doing so, bfqq is granted to be served before the
3873 	 * above queues (provided that bfqq is of course eligible).
3874 	 */
3875 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3876 	    !(reason == BFQQE_PREEMPTED &&
3877 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3878 		if (bfqq->dispatched == 0)
3879 			/*
3880 			 * Overloading budget_timeout field to store
3881 			 * the time at which the queue remains with no
3882 			 * backlog and no outstanding request; used by
3883 			 * the weight-raising mechanism.
3884 			 */
3885 			bfqq->budget_timeout = jiffies;
3886 
3887 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3888 	} else {
3889 		bfq_requeue_bfqq(bfqd, bfqq, true);
3890 		/*
3891 		 * Resort priority tree of potential close cooperators.
3892 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3893 		 */
3894 		if (unlikely(!bfqd->nonrot_with_queueing &&
3895 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3896 			bfq_pos_tree_add_move(bfqd, bfqq);
3897 	}
3898 
3899 	/*
3900 	 * All in-service entities must have been properly deactivated
3901 	 * or requeued before executing the next function, which
3902 	 * resets all in-service entities as no more in service. This
3903 	 * may cause bfqq to be freed. If this happens, the next
3904 	 * function returns true.
3905 	 */
3906 	return __bfq_bfqd_reset_in_service(bfqd);
3907 }
3908 
3909 /**
3910  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3911  * @bfqd: device data.
3912  * @bfqq: queue to update.
3913  * @reason: reason for expiration.
3914  *
3915  * Handle the feedback on @bfqq budget at queue expiration.
3916  * See the body for detailed comments.
3917  */
3918 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3919 				     struct bfq_queue *bfqq,
3920 				     enum bfqq_expiration reason)
3921 {
3922 	struct request *next_rq;
3923 	int budget, min_budget;
3924 
3925 	min_budget = bfq_min_budget(bfqd);
3926 
3927 	if (bfqq->wr_coeff == 1)
3928 		budget = bfqq->max_budget;
3929 	else /*
3930 	      * Use a constant, low budget for weight-raised queues,
3931 	      * to help achieve a low latency. Keep it slightly higher
3932 	      * than the minimum possible budget, to cause a little
3933 	      * bit fewer expirations.
3934 	      */
3935 		budget = 2 * min_budget;
3936 
3937 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3938 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3939 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3940 		budget, bfq_min_budget(bfqd));
3941 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3942 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3943 
3944 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3945 		switch (reason) {
3946 		/*
3947 		 * Caveat: in all the following cases we trade latency
3948 		 * for throughput.
3949 		 */
3950 		case BFQQE_TOO_IDLE:
3951 			/*
3952 			 * This is the only case where we may reduce
3953 			 * the budget: if there is no request of the
3954 			 * process still waiting for completion, then
3955 			 * we assume (tentatively) that the timer has
3956 			 * expired because the batch of requests of
3957 			 * the process could have been served with a
3958 			 * smaller budget.  Hence, betting that
3959 			 * process will behave in the same way when it
3960 			 * becomes backlogged again, we reduce its
3961 			 * next budget.  As long as we guess right,
3962 			 * this budget cut reduces the latency
3963 			 * experienced by the process.
3964 			 *
3965 			 * However, if there are still outstanding
3966 			 * requests, then the process may have not yet
3967 			 * issued its next request just because it is
3968 			 * still waiting for the completion of some of
3969 			 * the still outstanding ones.  So in this
3970 			 * subcase we do not reduce its budget, on the
3971 			 * contrary we increase it to possibly boost
3972 			 * the throughput, as discussed in the
3973 			 * comments to the BUDGET_TIMEOUT case.
3974 			 */
3975 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3976 				budget = min(budget * 2, bfqd->bfq_max_budget);
3977 			else {
3978 				if (budget > 5 * min_budget)
3979 					budget -= 4 * min_budget;
3980 				else
3981 					budget = min_budget;
3982 			}
3983 			break;
3984 		case BFQQE_BUDGET_TIMEOUT:
3985 			/*
3986 			 * We double the budget here because it gives
3987 			 * the chance to boost the throughput if this
3988 			 * is not a seeky process (and has bumped into
3989 			 * this timeout because of, e.g., ZBR).
3990 			 */
3991 			budget = min(budget * 2, bfqd->bfq_max_budget);
3992 			break;
3993 		case BFQQE_BUDGET_EXHAUSTED:
3994 			/*
3995 			 * The process still has backlog, and did not
3996 			 * let either the budget timeout or the disk
3997 			 * idling timeout expire. Hence it is not
3998 			 * seeky, has a short thinktime and may be
3999 			 * happy with a higher budget too. So
4000 			 * definitely increase the budget of this good
4001 			 * candidate to boost the disk throughput.
4002 			 */
4003 			budget = min(budget * 4, bfqd->bfq_max_budget);
4004 			break;
4005 		case BFQQE_NO_MORE_REQUESTS:
4006 			/*
4007 			 * For queues that expire for this reason, it
4008 			 * is particularly important to keep the
4009 			 * budget close to the actual service they
4010 			 * need. Doing so reduces the timestamp
4011 			 * misalignment problem described in the
4012 			 * comments in the body of
4013 			 * __bfq_activate_entity. In fact, suppose
4014 			 * that a queue systematically expires for
4015 			 * BFQQE_NO_MORE_REQUESTS and presents a
4016 			 * new request in time to enjoy timestamp
4017 			 * back-shifting. The larger the budget of the
4018 			 * queue is with respect to the service the
4019 			 * queue actually requests in each service
4020 			 * slot, the more times the queue can be
4021 			 * reactivated with the same virtual finish
4022 			 * time. It follows that, even if this finish
4023 			 * time is pushed to the system virtual time
4024 			 * to reduce the consequent timestamp
4025 			 * misalignment, the queue unjustly enjoys for
4026 			 * many re-activations a lower finish time
4027 			 * than all newly activated queues.
4028 			 *
4029 			 * The service needed by bfqq is measured
4030 			 * quite precisely by bfqq->entity.service.
4031 			 * Since bfqq does not enjoy device idling,
4032 			 * bfqq->entity.service is equal to the number
4033 			 * of sectors that the process associated with
4034 			 * bfqq requested to read/write before waiting
4035 			 * for request completions, or blocking for
4036 			 * other reasons.
4037 			 */
4038 			budget = max_t(int, bfqq->entity.service, min_budget);
4039 			break;
4040 		default:
4041 			return;
4042 		}
4043 	} else if (!bfq_bfqq_sync(bfqq)) {
4044 		/*
4045 		 * Async queues get always the maximum possible
4046 		 * budget, as for them we do not care about latency
4047 		 * (in addition, their ability to dispatch is limited
4048 		 * by the charging factor).
4049 		 */
4050 		budget = bfqd->bfq_max_budget;
4051 	}
4052 
4053 	bfqq->max_budget = budget;
4054 
4055 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4056 	    !bfqd->bfq_user_max_budget)
4057 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4058 
4059 	/*
4060 	 * If there is still backlog, then assign a new budget, making
4061 	 * sure that it is large enough for the next request.  Since
4062 	 * the finish time of bfqq must be kept in sync with the
4063 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4064 	 * update.
4065 	 *
4066 	 * If there is no backlog, then no need to update the budget;
4067 	 * it will be updated on the arrival of a new request.
4068 	 */
4069 	next_rq = bfqq->next_rq;
4070 	if (next_rq)
4071 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4072 					    bfq_serv_to_charge(next_rq, bfqq));
4073 
4074 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4075 			next_rq ? blk_rq_sectors(next_rq) : 0,
4076 			bfqq->entity.budget);
4077 }
4078 
4079 /*
4080  * Return true if the process associated with bfqq is "slow". The slow
4081  * flag is used, in addition to the budget timeout, to reduce the
4082  * amount of service provided to seeky processes, and thus reduce
4083  * their chances to lower the throughput. More details in the comments
4084  * on the function bfq_bfqq_expire().
4085  *
4086  * An important observation is in order: as discussed in the comments
4087  * on the function bfq_update_peak_rate(), with devices with internal
4088  * queues, it is hard if ever possible to know when and for how long
4089  * an I/O request is processed by the device (apart from the trivial
4090  * I/O pattern where a new request is dispatched only after the
4091  * previous one has been completed). This makes it hard to evaluate
4092  * the real rate at which the I/O requests of each bfq_queue are
4093  * served.  In fact, for an I/O scheduler like BFQ, serving a
4094  * bfq_queue means just dispatching its requests during its service
4095  * slot (i.e., until the budget of the queue is exhausted, or the
4096  * queue remains idle, or, finally, a timeout fires). But, during the
4097  * service slot of a bfq_queue, around 100 ms at most, the device may
4098  * be even still processing requests of bfq_queues served in previous
4099  * service slots. On the opposite end, the requests of the in-service
4100  * bfq_queue may be completed after the service slot of the queue
4101  * finishes.
4102  *
4103  * Anyway, unless more sophisticated solutions are used
4104  * (where possible), the sum of the sizes of the requests dispatched
4105  * during the service slot of a bfq_queue is probably the only
4106  * approximation available for the service received by the bfq_queue
4107  * during its service slot. And this sum is the quantity used in this
4108  * function to evaluate the I/O speed of a process.
4109  */
4110 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4111 				 bool compensate, enum bfqq_expiration reason,
4112 				 unsigned long *delta_ms)
4113 {
4114 	ktime_t delta_ktime;
4115 	u32 delta_usecs;
4116 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4117 
4118 	if (!bfq_bfqq_sync(bfqq))
4119 		return false;
4120 
4121 	if (compensate)
4122 		delta_ktime = bfqd->last_idling_start;
4123 	else
4124 		delta_ktime = ktime_get();
4125 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4126 	delta_usecs = ktime_to_us(delta_ktime);
4127 
4128 	/* don't use too short time intervals */
4129 	if (delta_usecs < 1000) {
4130 		if (blk_queue_nonrot(bfqd->queue))
4131 			 /*
4132 			  * give same worst-case guarantees as idling
4133 			  * for seeky
4134 			  */
4135 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4136 		else /* charge at least one seek */
4137 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4138 
4139 		return slow;
4140 	}
4141 
4142 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4143 
4144 	/*
4145 	 * Use only long (> 20ms) intervals to filter out excessive
4146 	 * spikes in service rate estimation.
4147 	 */
4148 	if (delta_usecs > 20000) {
4149 		/*
4150 		 * Caveat for rotational devices: processes doing I/O
4151 		 * in the slower disk zones tend to be slow(er) even
4152 		 * if not seeky. In this respect, the estimated peak
4153 		 * rate is likely to be an average over the disk
4154 		 * surface. Accordingly, to not be too harsh with
4155 		 * unlucky processes, a process is deemed slow only if
4156 		 * its rate has been lower than half of the estimated
4157 		 * peak rate.
4158 		 */
4159 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4160 	}
4161 
4162 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4163 
4164 	return slow;
4165 }
4166 
4167 /*
4168  * To be deemed as soft real-time, an application must meet two
4169  * requirements. First, the application must not require an average
4170  * bandwidth higher than the approximate bandwidth required to playback or
4171  * record a compressed high-definition video.
4172  * The next function is invoked on the completion of the last request of a
4173  * batch, to compute the next-start time instant, soft_rt_next_start, such
4174  * that, if the next request of the application does not arrive before
4175  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4176  *
4177  * The second requirement is that the request pattern of the application is
4178  * isochronous, i.e., that, after issuing a request or a batch of requests,
4179  * the application stops issuing new requests until all its pending requests
4180  * have been completed. After that, the application may issue a new batch,
4181  * and so on.
4182  * For this reason the next function is invoked to compute
4183  * soft_rt_next_start only for applications that meet this requirement,
4184  * whereas soft_rt_next_start is set to infinity for applications that do
4185  * not.
4186  *
4187  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4188  * happen to meet, occasionally or systematically, both the above
4189  * bandwidth and isochrony requirements. This may happen at least in
4190  * the following circumstances. First, if the CPU load is high. The
4191  * application may stop issuing requests while the CPUs are busy
4192  * serving other processes, then restart, then stop again for a while,
4193  * and so on. The other circumstances are related to the storage
4194  * device: the storage device is highly loaded or reaches a low-enough
4195  * throughput with the I/O of the application (e.g., because the I/O
4196  * is random and/or the device is slow). In all these cases, the
4197  * I/O of the application may be simply slowed down enough to meet
4198  * the bandwidth and isochrony requirements. To reduce the probability
4199  * that greedy applications are deemed as soft real-time in these
4200  * corner cases, a further rule is used in the computation of
4201  * soft_rt_next_start: the return value of this function is forced to
4202  * be higher than the maximum between the following two quantities.
4203  *
4204  * (a) Current time plus: (1) the maximum time for which the arrival
4205  *     of a request is waited for when a sync queue becomes idle,
4206  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4207  *     postpone for a moment the reason for adding a few extra
4208  *     jiffies; we get back to it after next item (b).  Lower-bounding
4209  *     the return value of this function with the current time plus
4210  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4211  *     because the latter issue their next request as soon as possible
4212  *     after the last one has been completed. In contrast, a soft
4213  *     real-time application spends some time processing data, after a
4214  *     batch of its requests has been completed.
4215  *
4216  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4217  *     above, greedy applications may happen to meet both the
4218  *     bandwidth and isochrony requirements under heavy CPU or
4219  *     storage-device load. In more detail, in these scenarios, these
4220  *     applications happen, only for limited time periods, to do I/O
4221  *     slowly enough to meet all the requirements described so far,
4222  *     including the filtering in above item (a). These slow-speed
4223  *     time intervals are usually interspersed between other time
4224  *     intervals during which these applications do I/O at a very high
4225  *     speed. Fortunately, exactly because of the high speed of the
4226  *     I/O in the high-speed intervals, the values returned by this
4227  *     function happen to be so high, near the end of any such
4228  *     high-speed interval, to be likely to fall *after* the end of
4229  *     the low-speed time interval that follows. These high values are
4230  *     stored in bfqq->soft_rt_next_start after each invocation of
4231  *     this function. As a consequence, if the last value of
4232  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4233  *     next value that this function may return, then, from the very
4234  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4235  *     likely to be constantly kept so high that any I/O request
4236  *     issued during the low-speed interval is considered as arriving
4237  *     to soon for the application to be deemed as soft
4238  *     real-time. Then, in the high-speed interval that follows, the
4239  *     application will not be deemed as soft real-time, just because
4240  *     it will do I/O at a high speed. And so on.
4241  *
4242  * Getting back to the filtering in item (a), in the following two
4243  * cases this filtering might be easily passed by a greedy
4244  * application, if the reference quantity was just
4245  * bfqd->bfq_slice_idle:
4246  * 1) HZ is so low that the duration of a jiffy is comparable to or
4247  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4248  *    devices with HZ=100. The time granularity may be so coarse
4249  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4250  *    is rather lower than the exact value.
4251  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4252  *    for a while, then suddenly 'jump' by several units to recover the lost
4253  *    increments. This seems to happen, e.g., inside virtual machines.
4254  * To address this issue, in the filtering in (a) we do not use as a
4255  * reference time interval just bfqd->bfq_slice_idle, but
4256  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4257  * minimum number of jiffies for which the filter seems to be quite
4258  * precise also in embedded systems and KVM/QEMU virtual machines.
4259  */
4260 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4261 						struct bfq_queue *bfqq)
4262 {
4263 	return max3(bfqq->soft_rt_next_start,
4264 		    bfqq->last_idle_bklogged +
4265 		    HZ * bfqq->service_from_backlogged /
4266 		    bfqd->bfq_wr_max_softrt_rate,
4267 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4268 }
4269 
4270 /**
4271  * bfq_bfqq_expire - expire a queue.
4272  * @bfqd: device owning the queue.
4273  * @bfqq: the queue to expire.
4274  * @compensate: if true, compensate for the time spent idling.
4275  * @reason: the reason causing the expiration.
4276  *
4277  * If the process associated with bfqq does slow I/O (e.g., because it
4278  * issues random requests), we charge bfqq with the time it has been
4279  * in service instead of the service it has received (see
4280  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4281  * a consequence, bfqq will typically get higher timestamps upon
4282  * reactivation, and hence it will be rescheduled as if it had
4283  * received more service than what it has actually received. In the
4284  * end, bfqq receives less service in proportion to how slowly its
4285  * associated process consumes its budgets (and hence how seriously it
4286  * tends to lower the throughput). In addition, this time-charging
4287  * strategy guarantees time fairness among slow processes. In
4288  * contrast, if the process associated with bfqq is not slow, we
4289  * charge bfqq exactly with the service it has received.
4290  *
4291  * Charging time to the first type of queues and the exact service to
4292  * the other has the effect of using the WF2Q+ policy to schedule the
4293  * former on a timeslice basis, without violating service domain
4294  * guarantees among the latter.
4295  */
4296 void bfq_bfqq_expire(struct bfq_data *bfqd,
4297 		     struct bfq_queue *bfqq,
4298 		     bool compensate,
4299 		     enum bfqq_expiration reason)
4300 {
4301 	bool slow;
4302 	unsigned long delta = 0;
4303 	struct bfq_entity *entity = &bfqq->entity;
4304 
4305 	/*
4306 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4307 	 */
4308 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4309 
4310 	/*
4311 	 * As above explained, charge slow (typically seeky) and
4312 	 * timed-out queues with the time and not the service
4313 	 * received, to favor sequential workloads.
4314 	 *
4315 	 * Processes doing I/O in the slower disk zones will tend to
4316 	 * be slow(er) even if not seeky. Therefore, since the
4317 	 * estimated peak rate is actually an average over the disk
4318 	 * surface, these processes may timeout just for bad luck. To
4319 	 * avoid punishing them, do not charge time to processes that
4320 	 * succeeded in consuming at least 2/3 of their budget. This
4321 	 * allows BFQ to preserve enough elasticity to still perform
4322 	 * bandwidth, and not time, distribution with little unlucky
4323 	 * or quasi-sequential processes.
4324 	 */
4325 	if (bfqq->wr_coeff == 1 &&
4326 	    (slow ||
4327 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4328 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4329 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4330 
4331 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4332 		bfqq->last_wr_start_finish = jiffies;
4333 
4334 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4335 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4336 		/*
4337 		 * If we get here, and there are no outstanding
4338 		 * requests, then the request pattern is isochronous
4339 		 * (see the comments on the function
4340 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4341 		 * compute soft_rt_next_start.
4342 		 *
4343 		 * If, instead, the queue still has outstanding
4344 		 * requests, then we have to wait for the completion
4345 		 * of all the outstanding requests to discover whether
4346 		 * the request pattern is actually isochronous.
4347 		 */
4348 		if (bfqq->dispatched == 0)
4349 			bfqq->soft_rt_next_start =
4350 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4351 		else if (bfqq->dispatched > 0) {
4352 			/*
4353 			 * Schedule an update of soft_rt_next_start to when
4354 			 * the task may be discovered to be isochronous.
4355 			 */
4356 			bfq_mark_bfqq_softrt_update(bfqq);
4357 		}
4358 	}
4359 
4360 	bfq_log_bfqq(bfqd, bfqq,
4361 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4362 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4363 
4364 	/*
4365 	 * bfqq expired, so no total service time needs to be computed
4366 	 * any longer: reset state machine for measuring total service
4367 	 * times.
4368 	 */
4369 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4370 	bfqd->waited_rq = NULL;
4371 
4372 	/*
4373 	 * Increase, decrease or leave budget unchanged according to
4374 	 * reason.
4375 	 */
4376 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4377 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4378 		/* bfqq is gone, no more actions on it */
4379 		return;
4380 
4381 	/* mark bfqq as waiting a request only if a bic still points to it */
4382 	if (!bfq_bfqq_busy(bfqq) &&
4383 	    reason != BFQQE_BUDGET_TIMEOUT &&
4384 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4385 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4386 		/*
4387 		 * Not setting service to 0, because, if the next rq
4388 		 * arrives in time, the queue will go on receiving
4389 		 * service with this same budget (as if it never expired)
4390 		 */
4391 	} else
4392 		entity->service = 0;
4393 
4394 	/*
4395 	 * Reset the received-service counter for every parent entity.
4396 	 * Differently from what happens with bfqq->entity.service,
4397 	 * the resetting of this counter never needs to be postponed
4398 	 * for parent entities. In fact, in case bfqq may have a
4399 	 * chance to go on being served using the last, partially
4400 	 * consumed budget, bfqq->entity.service needs to be kept,
4401 	 * because if bfqq then actually goes on being served using
4402 	 * the same budget, the last value of bfqq->entity.service is
4403 	 * needed to properly decrement bfqq->entity.budget by the
4404 	 * portion already consumed. In contrast, it is not necessary
4405 	 * to keep entity->service for parent entities too, because
4406 	 * the bubble up of the new value of bfqq->entity.budget will
4407 	 * make sure that the budgets of parent entities are correct,
4408 	 * even in case bfqq and thus parent entities go on receiving
4409 	 * service with the same budget.
4410 	 */
4411 	entity = entity->parent;
4412 	for_each_entity(entity)
4413 		entity->service = 0;
4414 }
4415 
4416 /*
4417  * Budget timeout is not implemented through a dedicated timer, but
4418  * just checked on request arrivals and completions, as well as on
4419  * idle timer expirations.
4420  */
4421 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4422 {
4423 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4424 }
4425 
4426 /*
4427  * If we expire a queue that is actively waiting (i.e., with the
4428  * device idled) for the arrival of a new request, then we may incur
4429  * the timestamp misalignment problem described in the body of the
4430  * function __bfq_activate_entity. Hence we return true only if this
4431  * condition does not hold, or if the queue is slow enough to deserve
4432  * only to be kicked off for preserving a high throughput.
4433  */
4434 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4435 {
4436 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4437 		"may_budget_timeout: wait_request %d left %d timeout %d",
4438 		bfq_bfqq_wait_request(bfqq),
4439 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4440 		bfq_bfqq_budget_timeout(bfqq));
4441 
4442 	return (!bfq_bfqq_wait_request(bfqq) ||
4443 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4444 		&&
4445 		bfq_bfqq_budget_timeout(bfqq);
4446 }
4447 
4448 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4449 					     struct bfq_queue *bfqq)
4450 {
4451 	bool rot_without_queueing =
4452 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4453 		bfqq_sequential_and_IO_bound,
4454 		idling_boosts_thr;
4455 
4456 	/* No point in idling for bfqq if it won't get requests any longer */
4457 	if (unlikely(!bfqq_process_refs(bfqq)))
4458 		return false;
4459 
4460 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4461 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4462 
4463 	/*
4464 	 * The next variable takes into account the cases where idling
4465 	 * boosts the throughput.
4466 	 *
4467 	 * The value of the variable is computed considering, first, that
4468 	 * idling is virtually always beneficial for the throughput if:
4469 	 * (a) the device is not NCQ-capable and rotational, or
4470 	 * (b) regardless of the presence of NCQ, the device is rotational and
4471 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4472 	 * (c) regardless of whether it is rotational, the device is
4473 	 *     not NCQ-capable and the request pattern for bfqq is
4474 	 *     I/O-bound and sequential.
4475 	 *
4476 	 * Secondly, and in contrast to the above item (b), idling an
4477 	 * NCQ-capable flash-based device would not boost the
4478 	 * throughput even with sequential I/O; rather it would lower
4479 	 * the throughput in proportion to how fast the device
4480 	 * is. Accordingly, the next variable is true if any of the
4481 	 * above conditions (a), (b) or (c) is true, and, in
4482 	 * particular, happens to be false if bfqd is an NCQ-capable
4483 	 * flash-based device.
4484 	 */
4485 	idling_boosts_thr = rot_without_queueing ||
4486 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4487 		 bfqq_sequential_and_IO_bound);
4488 
4489 	/*
4490 	 * The return value of this function is equal to that of
4491 	 * idling_boosts_thr, unless a special case holds. In this
4492 	 * special case, described below, idling may cause problems to
4493 	 * weight-raised queues.
4494 	 *
4495 	 * When the request pool is saturated (e.g., in the presence
4496 	 * of write hogs), if the processes associated with
4497 	 * non-weight-raised queues ask for requests at a lower rate,
4498 	 * then processes associated with weight-raised queues have a
4499 	 * higher probability to get a request from the pool
4500 	 * immediately (or at least soon) when they need one. Thus
4501 	 * they have a higher probability to actually get a fraction
4502 	 * of the device throughput proportional to their high
4503 	 * weight. This is especially true with NCQ-capable drives,
4504 	 * which enqueue several requests in advance, and further
4505 	 * reorder internally-queued requests.
4506 	 *
4507 	 * For this reason, we force to false the return value if
4508 	 * there are weight-raised busy queues. In this case, and if
4509 	 * bfqq is not weight-raised, this guarantees that the device
4510 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4511 	 * then idling will be guaranteed by another variable, see
4512 	 * below). Combined with the timestamping rules of BFQ (see
4513 	 * [1] for details), this behavior causes bfqq, and hence any
4514 	 * sync non-weight-raised queue, to get a lower number of
4515 	 * requests served, and thus to ask for a lower number of
4516 	 * requests from the request pool, before the busy
4517 	 * weight-raised queues get served again. This often mitigates
4518 	 * starvation problems in the presence of heavy write
4519 	 * workloads and NCQ, thereby guaranteeing a higher
4520 	 * application and system responsiveness in these hostile
4521 	 * scenarios.
4522 	 */
4523 	return idling_boosts_thr &&
4524 		bfqd->wr_busy_queues == 0;
4525 }
4526 
4527 /*
4528  * For a queue that becomes empty, device idling is allowed only if
4529  * this function returns true for that queue. As a consequence, since
4530  * device idling plays a critical role for both throughput boosting
4531  * and service guarantees, the return value of this function plays a
4532  * critical role as well.
4533  *
4534  * In a nutshell, this function returns true only if idling is
4535  * beneficial for throughput or, even if detrimental for throughput,
4536  * idling is however necessary to preserve service guarantees (low
4537  * latency, desired throughput distribution, ...). In particular, on
4538  * NCQ-capable devices, this function tries to return false, so as to
4539  * help keep the drives' internal queues full, whenever this helps the
4540  * device boost the throughput without causing any service-guarantee
4541  * issue.
4542  *
4543  * Most of the issues taken into account to get the return value of
4544  * this function are not trivial. We discuss these issues in the two
4545  * functions providing the main pieces of information needed by this
4546  * function.
4547  */
4548 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4549 {
4550 	struct bfq_data *bfqd = bfqq->bfqd;
4551 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4552 
4553 	/* No point in idling for bfqq if it won't get requests any longer */
4554 	if (unlikely(!bfqq_process_refs(bfqq)))
4555 		return false;
4556 
4557 	if (unlikely(bfqd->strict_guarantees))
4558 		return true;
4559 
4560 	/*
4561 	 * Idling is performed only if slice_idle > 0. In addition, we
4562 	 * do not idle if
4563 	 * (a) bfqq is async
4564 	 * (b) bfqq is in the idle io prio class: in this case we do
4565 	 * not idle because we want to minimize the bandwidth that
4566 	 * queues in this class can steal to higher-priority queues
4567 	 */
4568 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4569 	   bfq_class_idle(bfqq))
4570 		return false;
4571 
4572 	idling_boosts_thr_with_no_issue =
4573 		idling_boosts_thr_without_issues(bfqd, bfqq);
4574 
4575 	idling_needed_for_service_guar =
4576 		idling_needed_for_service_guarantees(bfqd, bfqq);
4577 
4578 	/*
4579 	 * We have now the two components we need to compute the
4580 	 * return value of the function, which is true only if idling
4581 	 * either boosts the throughput (without issues), or is
4582 	 * necessary to preserve service guarantees.
4583 	 */
4584 	return idling_boosts_thr_with_no_issue ||
4585 		idling_needed_for_service_guar;
4586 }
4587 
4588 /*
4589  * If the in-service queue is empty but the function bfq_better_to_idle
4590  * returns true, then:
4591  * 1) the queue must remain in service and cannot be expired, and
4592  * 2) the device must be idled to wait for the possible arrival of a new
4593  *    request for the queue.
4594  * See the comments on the function bfq_better_to_idle for the reasons
4595  * why performing device idling is the best choice to boost the throughput
4596  * and preserve service guarantees when bfq_better_to_idle itself
4597  * returns true.
4598  */
4599 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4600 {
4601 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4602 }
4603 
4604 /*
4605  * This function chooses the queue from which to pick the next extra
4606  * I/O request to inject, if it finds a compatible queue. See the
4607  * comments on bfq_update_inject_limit() for details on the injection
4608  * mechanism, and for the definitions of the quantities mentioned
4609  * below.
4610  */
4611 static struct bfq_queue *
4612 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4613 {
4614 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4615 	unsigned int limit = in_serv_bfqq->inject_limit;
4616 	/*
4617 	 * If
4618 	 * - bfqq is not weight-raised and therefore does not carry
4619 	 *   time-critical I/O,
4620 	 * or
4621 	 * - regardless of whether bfqq is weight-raised, bfqq has
4622 	 *   however a long think time, during which it can absorb the
4623 	 *   effect of an appropriate number of extra I/O requests
4624 	 *   from other queues (see bfq_update_inject_limit for
4625 	 *   details on the computation of this number);
4626 	 * then injection can be performed without restrictions.
4627 	 */
4628 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4629 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4630 
4631 	/*
4632 	 * If
4633 	 * - the baseline total service time could not be sampled yet,
4634 	 *   so the inject limit happens to be still 0, and
4635 	 * - a lot of time has elapsed since the plugging of I/O
4636 	 *   dispatching started, so drive speed is being wasted
4637 	 *   significantly;
4638 	 * then temporarily raise inject limit to one request.
4639 	 */
4640 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4641 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4642 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4643 				      bfqd->bfq_slice_idle)
4644 		)
4645 		limit = 1;
4646 
4647 	if (bfqd->rq_in_driver >= limit)
4648 		return NULL;
4649 
4650 	/*
4651 	 * Linear search of the source queue for injection; but, with
4652 	 * a high probability, very few steps are needed to find a
4653 	 * candidate queue, i.e., a queue with enough budget left for
4654 	 * its next request. In fact:
4655 	 * - BFQ dynamically updates the budget of every queue so as
4656 	 *   to accommodate the expected backlog of the queue;
4657 	 * - if a queue gets all its requests dispatched as injected
4658 	 *   service, then the queue is removed from the active list
4659 	 *   (and re-added only if it gets new requests, but then it
4660 	 *   is assigned again enough budget for its new backlog).
4661 	 */
4662 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4663 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4664 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4665 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4666 		    bfq_bfqq_budget_left(bfqq)) {
4667 			/*
4668 			 * Allow for only one large in-flight request
4669 			 * on non-rotational devices, for the
4670 			 * following reason. On non-rotationl drives,
4671 			 * large requests take much longer than
4672 			 * smaller requests to be served. In addition,
4673 			 * the drive prefers to serve large requests
4674 			 * w.r.t. to small ones, if it can choose. So,
4675 			 * having more than one large requests queued
4676 			 * in the drive may easily make the next first
4677 			 * request of the in-service queue wait for so
4678 			 * long to break bfqq's service guarantees. On
4679 			 * the bright side, large requests let the
4680 			 * drive reach a very high throughput, even if
4681 			 * there is only one in-flight large request
4682 			 * at a time.
4683 			 */
4684 			if (blk_queue_nonrot(bfqd->queue) &&
4685 			    blk_rq_sectors(bfqq->next_rq) >=
4686 			    BFQQ_SECT_THR_NONROT)
4687 				limit = min_t(unsigned int, 1, limit);
4688 			else
4689 				limit = in_serv_bfqq->inject_limit;
4690 
4691 			if (bfqd->rq_in_driver < limit) {
4692 				bfqd->rqs_injected = true;
4693 				return bfqq;
4694 			}
4695 		}
4696 
4697 	return NULL;
4698 }
4699 
4700 /*
4701  * Select a queue for service.  If we have a current queue in service,
4702  * check whether to continue servicing it, or retrieve and set a new one.
4703  */
4704 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4705 {
4706 	struct bfq_queue *bfqq;
4707 	struct request *next_rq;
4708 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4709 
4710 	bfqq = bfqd->in_service_queue;
4711 	if (!bfqq)
4712 		goto new_queue;
4713 
4714 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4715 
4716 	/*
4717 	 * Do not expire bfqq for budget timeout if bfqq may be about
4718 	 * to enjoy device idling. The reason why, in this case, we
4719 	 * prevent bfqq from expiring is the same as in the comments
4720 	 * on the case where bfq_bfqq_must_idle() returns true, in
4721 	 * bfq_completed_request().
4722 	 */
4723 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4724 	    !bfq_bfqq_must_idle(bfqq))
4725 		goto expire;
4726 
4727 check_queue:
4728 	/*
4729 	 * This loop is rarely executed more than once. Even when it
4730 	 * happens, it is much more convenient to re-execute this loop
4731 	 * than to return NULL and trigger a new dispatch to get a
4732 	 * request served.
4733 	 */
4734 	next_rq = bfqq->next_rq;
4735 	/*
4736 	 * If bfqq has requests queued and it has enough budget left to
4737 	 * serve them, keep the queue, otherwise expire it.
4738 	 */
4739 	if (next_rq) {
4740 		if (bfq_serv_to_charge(next_rq, bfqq) >
4741 			bfq_bfqq_budget_left(bfqq)) {
4742 			/*
4743 			 * Expire the queue for budget exhaustion,
4744 			 * which makes sure that the next budget is
4745 			 * enough to serve the next request, even if
4746 			 * it comes from the fifo expired path.
4747 			 */
4748 			reason = BFQQE_BUDGET_EXHAUSTED;
4749 			goto expire;
4750 		} else {
4751 			/*
4752 			 * The idle timer may be pending because we may
4753 			 * not disable disk idling even when a new request
4754 			 * arrives.
4755 			 */
4756 			if (bfq_bfqq_wait_request(bfqq)) {
4757 				/*
4758 				 * If we get here: 1) at least a new request
4759 				 * has arrived but we have not disabled the
4760 				 * timer because the request was too small,
4761 				 * 2) then the block layer has unplugged
4762 				 * the device, causing the dispatch to be
4763 				 * invoked.
4764 				 *
4765 				 * Since the device is unplugged, now the
4766 				 * requests are probably large enough to
4767 				 * provide a reasonable throughput.
4768 				 * So we disable idling.
4769 				 */
4770 				bfq_clear_bfqq_wait_request(bfqq);
4771 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4772 			}
4773 			goto keep_queue;
4774 		}
4775 	}
4776 
4777 	/*
4778 	 * No requests pending. However, if the in-service queue is idling
4779 	 * for a new request, or has requests waiting for a completion and
4780 	 * may idle after their completion, then keep it anyway.
4781 	 *
4782 	 * Yet, inject service from other queues if it boosts
4783 	 * throughput and is possible.
4784 	 */
4785 	if (bfq_bfqq_wait_request(bfqq) ||
4786 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4787 		struct bfq_queue *async_bfqq =
4788 			bfqq->bic && bfqq->bic->bfqq[0] &&
4789 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4790 			bfqq->bic->bfqq[0]->next_rq ?
4791 			bfqq->bic->bfqq[0] : NULL;
4792 		struct bfq_queue *blocked_bfqq =
4793 			!hlist_empty(&bfqq->woken_list) ?
4794 			container_of(bfqq->woken_list.first,
4795 				     struct bfq_queue,
4796 				     woken_list_node)
4797 			: NULL;
4798 
4799 		/*
4800 		 * The next four mutually-exclusive ifs decide
4801 		 * whether to try injection, and choose the queue to
4802 		 * pick an I/O request from.
4803 		 *
4804 		 * The first if checks whether the process associated
4805 		 * with bfqq has also async I/O pending. If so, it
4806 		 * injects such I/O unconditionally. Injecting async
4807 		 * I/O from the same process can cause no harm to the
4808 		 * process. On the contrary, it can only increase
4809 		 * bandwidth and reduce latency for the process.
4810 		 *
4811 		 * The second if checks whether there happens to be a
4812 		 * non-empty waker queue for bfqq, i.e., a queue whose
4813 		 * I/O needs to be completed for bfqq to receive new
4814 		 * I/O. This happens, e.g., if bfqq is associated with
4815 		 * a process that does some sync. A sync generates
4816 		 * extra blocking I/O, which must be completed before
4817 		 * the process associated with bfqq can go on with its
4818 		 * I/O. If the I/O of the waker queue is not served,
4819 		 * then bfqq remains empty, and no I/O is dispatched,
4820 		 * until the idle timeout fires for bfqq. This is
4821 		 * likely to result in lower bandwidth and higher
4822 		 * latencies for bfqq, and in a severe loss of total
4823 		 * throughput. The best action to take is therefore to
4824 		 * serve the waker queue as soon as possible. So do it
4825 		 * (without relying on the third alternative below for
4826 		 * eventually serving waker_bfqq's I/O; see the last
4827 		 * paragraph for further details). This systematic
4828 		 * injection of I/O from the waker queue does not
4829 		 * cause any delay to bfqq's I/O. On the contrary,
4830 		 * next bfqq's I/O is brought forward dramatically,
4831 		 * for it is not blocked for milliseconds.
4832 		 *
4833 		 * The third if checks whether there is a queue woken
4834 		 * by bfqq, and currently with pending I/O. Such a
4835 		 * woken queue does not steal bandwidth from bfqq,
4836 		 * because it remains soon without I/O if bfqq is not
4837 		 * served. So there is virtually no risk of loss of
4838 		 * bandwidth for bfqq if this woken queue has I/O
4839 		 * dispatched while bfqq is waiting for new I/O.
4840 		 *
4841 		 * The fourth if checks whether bfqq is a queue for
4842 		 * which it is better to avoid injection. It is so if
4843 		 * bfqq delivers more throughput when served without
4844 		 * any further I/O from other queues in the middle, or
4845 		 * if the service times of bfqq's I/O requests both
4846 		 * count more than overall throughput, and may be
4847 		 * easily increased by injection (this happens if bfqq
4848 		 * has a short think time). If none of these
4849 		 * conditions holds, then a candidate queue for
4850 		 * injection is looked for through
4851 		 * bfq_choose_bfqq_for_injection(). Note that the
4852 		 * latter may return NULL (for example if the inject
4853 		 * limit for bfqq is currently 0).
4854 		 *
4855 		 * NOTE: motivation for the second alternative
4856 		 *
4857 		 * Thanks to the way the inject limit is updated in
4858 		 * bfq_update_has_short_ttime(), it is rather likely
4859 		 * that, if I/O is being plugged for bfqq and the
4860 		 * waker queue has pending I/O requests that are
4861 		 * blocking bfqq's I/O, then the fourth alternative
4862 		 * above lets the waker queue get served before the
4863 		 * I/O-plugging timeout fires. So one may deem the
4864 		 * second alternative superfluous. It is not, because
4865 		 * the fourth alternative may be way less effective in
4866 		 * case of a synchronization. For two main
4867 		 * reasons. First, throughput may be low because the
4868 		 * inject limit may be too low to guarantee the same
4869 		 * amount of injected I/O, from the waker queue or
4870 		 * other queues, that the second alternative
4871 		 * guarantees (the second alternative unconditionally
4872 		 * injects a pending I/O request of the waker queue
4873 		 * for each bfq_dispatch_request()). Second, with the
4874 		 * fourth alternative, the duration of the plugging,
4875 		 * i.e., the time before bfqq finally receives new I/O,
4876 		 * may not be minimized, because the waker queue may
4877 		 * happen to be served only after other queues.
4878 		 */
4879 		if (async_bfqq &&
4880 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4881 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4882 		    bfq_bfqq_budget_left(async_bfqq))
4883 			bfqq = bfqq->bic->bfqq[0];
4884 		else if (bfqq->waker_bfqq &&
4885 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4886 			   bfqq->waker_bfqq->next_rq &&
4887 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4888 					      bfqq->waker_bfqq) <=
4889 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4890 			)
4891 			bfqq = bfqq->waker_bfqq;
4892 		else if (blocked_bfqq &&
4893 			   bfq_bfqq_busy(blocked_bfqq) &&
4894 			   blocked_bfqq->next_rq &&
4895 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4896 					      blocked_bfqq) <=
4897 			   bfq_bfqq_budget_left(blocked_bfqq)
4898 			)
4899 			bfqq = blocked_bfqq;
4900 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4901 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4902 			  !bfq_bfqq_has_short_ttime(bfqq)))
4903 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4904 		else
4905 			bfqq = NULL;
4906 
4907 		goto keep_queue;
4908 	}
4909 
4910 	reason = BFQQE_NO_MORE_REQUESTS;
4911 expire:
4912 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4913 new_queue:
4914 	bfqq = bfq_set_in_service_queue(bfqd);
4915 	if (bfqq) {
4916 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4917 		goto check_queue;
4918 	}
4919 keep_queue:
4920 	if (bfqq)
4921 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4922 	else
4923 		bfq_log(bfqd, "select_queue: no queue returned");
4924 
4925 	return bfqq;
4926 }
4927 
4928 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4929 {
4930 	struct bfq_entity *entity = &bfqq->entity;
4931 
4932 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4933 		bfq_log_bfqq(bfqd, bfqq,
4934 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4935 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4936 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4937 			bfqq->wr_coeff,
4938 			bfqq->entity.weight, bfqq->entity.orig_weight);
4939 
4940 		if (entity->prio_changed)
4941 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4942 
4943 		/*
4944 		 * If the queue was activated in a burst, or too much
4945 		 * time has elapsed from the beginning of this
4946 		 * weight-raising period, then end weight raising.
4947 		 */
4948 		if (bfq_bfqq_in_large_burst(bfqq))
4949 			bfq_bfqq_end_wr(bfqq);
4950 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4951 						bfqq->wr_cur_max_time)) {
4952 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4953 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4954 					       bfq_wr_duration(bfqd))) {
4955 				/*
4956 				 * Either in interactive weight
4957 				 * raising, or in soft_rt weight
4958 				 * raising with the
4959 				 * interactive-weight-raising period
4960 				 * elapsed (so no switch back to
4961 				 * interactive weight raising).
4962 				 */
4963 				bfq_bfqq_end_wr(bfqq);
4964 			} else { /*
4965 				  * soft_rt finishing while still in
4966 				  * interactive period, switch back to
4967 				  * interactive weight raising
4968 				  */
4969 				switch_back_to_interactive_wr(bfqq, bfqd);
4970 				bfqq->entity.prio_changed = 1;
4971 			}
4972 		}
4973 		if (bfqq->wr_coeff > 1 &&
4974 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4975 		    bfqq->service_from_wr > max_service_from_wr) {
4976 			/* see comments on max_service_from_wr */
4977 			bfq_bfqq_end_wr(bfqq);
4978 		}
4979 	}
4980 	/*
4981 	 * To improve latency (for this or other queues), immediately
4982 	 * update weight both if it must be raised and if it must be
4983 	 * lowered. Since, entity may be on some active tree here, and
4984 	 * might have a pending change of its ioprio class, invoke
4985 	 * next function with the last parameter unset (see the
4986 	 * comments on the function).
4987 	 */
4988 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4989 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4990 						entity, false);
4991 }
4992 
4993 /*
4994  * Dispatch next request from bfqq.
4995  */
4996 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4997 						 struct bfq_queue *bfqq)
4998 {
4999 	struct request *rq = bfqq->next_rq;
5000 	unsigned long service_to_charge;
5001 
5002 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
5003 
5004 	bfq_bfqq_served(bfqq, service_to_charge);
5005 
5006 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5007 		bfqd->wait_dispatch = false;
5008 		bfqd->waited_rq = rq;
5009 	}
5010 
5011 	bfq_dispatch_remove(bfqd->queue, rq);
5012 
5013 	if (bfqq != bfqd->in_service_queue)
5014 		goto return_rq;
5015 
5016 	/*
5017 	 * If weight raising has to terminate for bfqq, then next
5018 	 * function causes an immediate update of bfqq's weight,
5019 	 * without waiting for next activation. As a consequence, on
5020 	 * expiration, bfqq will be timestamped as if has never been
5021 	 * weight-raised during this service slot, even if it has
5022 	 * received part or even most of the service as a
5023 	 * weight-raised queue. This inflates bfqq's timestamps, which
5024 	 * is beneficial, as bfqq is then more willing to leave the
5025 	 * device immediately to possible other weight-raised queues.
5026 	 */
5027 	bfq_update_wr_data(bfqd, bfqq);
5028 
5029 	/*
5030 	 * Expire bfqq, pretending that its budget expired, if bfqq
5031 	 * belongs to CLASS_IDLE and other queues are waiting for
5032 	 * service.
5033 	 */
5034 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
5035 		goto return_rq;
5036 
5037 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5038 
5039 return_rq:
5040 	return rq;
5041 }
5042 
5043 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5044 {
5045 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5046 
5047 	/*
5048 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
5049 	 * most a call to dispatch for nothing
5050 	 */
5051 	return !list_empty_careful(&bfqd->dispatch) ||
5052 		bfq_tot_busy_queues(bfqd) > 0;
5053 }
5054 
5055 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5056 {
5057 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5058 	struct request *rq = NULL;
5059 	struct bfq_queue *bfqq = NULL;
5060 
5061 	if (!list_empty(&bfqd->dispatch)) {
5062 		rq = list_first_entry(&bfqd->dispatch, struct request,
5063 				      queuelist);
5064 		list_del_init(&rq->queuelist);
5065 
5066 		bfqq = RQ_BFQQ(rq);
5067 
5068 		if (bfqq) {
5069 			/*
5070 			 * Increment counters here, because this
5071 			 * dispatch does not follow the standard
5072 			 * dispatch flow (where counters are
5073 			 * incremented)
5074 			 */
5075 			bfqq->dispatched++;
5076 
5077 			goto inc_in_driver_start_rq;
5078 		}
5079 
5080 		/*
5081 		 * We exploit the bfq_finish_requeue_request hook to
5082 		 * decrement rq_in_driver, but
5083 		 * bfq_finish_requeue_request will not be invoked on
5084 		 * this request. So, to avoid unbalance, just start
5085 		 * this request, without incrementing rq_in_driver. As
5086 		 * a negative consequence, rq_in_driver is deceptively
5087 		 * lower than it should be while this request is in
5088 		 * service. This may cause bfq_schedule_dispatch to be
5089 		 * invoked uselessly.
5090 		 *
5091 		 * As for implementing an exact solution, the
5092 		 * bfq_finish_requeue_request hook, if defined, is
5093 		 * probably invoked also on this request. So, by
5094 		 * exploiting this hook, we could 1) increment
5095 		 * rq_in_driver here, and 2) decrement it in
5096 		 * bfq_finish_requeue_request. Such a solution would
5097 		 * let the value of the counter be always accurate,
5098 		 * but it would entail using an extra interface
5099 		 * function. This cost seems higher than the benefit,
5100 		 * being the frequency of non-elevator-private
5101 		 * requests very low.
5102 		 */
5103 		goto start_rq;
5104 	}
5105 
5106 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5107 		bfq_tot_busy_queues(bfqd));
5108 
5109 	if (bfq_tot_busy_queues(bfqd) == 0)
5110 		goto exit;
5111 
5112 	/*
5113 	 * Force device to serve one request at a time if
5114 	 * strict_guarantees is true. Forcing this service scheme is
5115 	 * currently the ONLY way to guarantee that the request
5116 	 * service order enforced by the scheduler is respected by a
5117 	 * queueing device. Otherwise the device is free even to make
5118 	 * some unlucky request wait for as long as the device
5119 	 * wishes.
5120 	 *
5121 	 * Of course, serving one request at a time may cause loss of
5122 	 * throughput.
5123 	 */
5124 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5125 		goto exit;
5126 
5127 	bfqq = bfq_select_queue(bfqd);
5128 	if (!bfqq)
5129 		goto exit;
5130 
5131 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5132 
5133 	if (rq) {
5134 inc_in_driver_start_rq:
5135 		bfqd->rq_in_driver++;
5136 start_rq:
5137 		rq->rq_flags |= RQF_STARTED;
5138 	}
5139 exit:
5140 	return rq;
5141 }
5142 
5143 #ifdef CONFIG_BFQ_CGROUP_DEBUG
5144 static void bfq_update_dispatch_stats(struct request_queue *q,
5145 				      struct request *rq,
5146 				      struct bfq_queue *in_serv_queue,
5147 				      bool idle_timer_disabled)
5148 {
5149 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5150 
5151 	if (!idle_timer_disabled && !bfqq)
5152 		return;
5153 
5154 	/*
5155 	 * rq and bfqq are guaranteed to exist until this function
5156 	 * ends, for the following reasons. First, rq can be
5157 	 * dispatched to the device, and then can be completed and
5158 	 * freed, only after this function ends. Second, rq cannot be
5159 	 * merged (and thus freed because of a merge) any longer,
5160 	 * because it has already started. Thus rq cannot be freed
5161 	 * before this function ends, and, since rq has a reference to
5162 	 * bfqq, the same guarantee holds for bfqq too.
5163 	 *
5164 	 * In addition, the following queue lock guarantees that
5165 	 * bfqq_group(bfqq) exists as well.
5166 	 */
5167 	spin_lock_irq(&q->queue_lock);
5168 	if (idle_timer_disabled)
5169 		/*
5170 		 * Since the idle timer has been disabled,
5171 		 * in_serv_queue contained some request when
5172 		 * __bfq_dispatch_request was invoked above, which
5173 		 * implies that rq was picked exactly from
5174 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5175 		 * therefore guaranteed to exist because of the above
5176 		 * arguments.
5177 		 */
5178 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5179 	if (bfqq) {
5180 		struct bfq_group *bfqg = bfqq_group(bfqq);
5181 
5182 		bfqg_stats_update_avg_queue_size(bfqg);
5183 		bfqg_stats_set_start_empty_time(bfqg);
5184 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5185 	}
5186 	spin_unlock_irq(&q->queue_lock);
5187 }
5188 #else
5189 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5190 					     struct request *rq,
5191 					     struct bfq_queue *in_serv_queue,
5192 					     bool idle_timer_disabled) {}
5193 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5194 
5195 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5196 {
5197 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5198 	struct request *rq;
5199 	struct bfq_queue *in_serv_queue;
5200 	bool waiting_rq, idle_timer_disabled = false;
5201 
5202 	spin_lock_irq(&bfqd->lock);
5203 
5204 	in_serv_queue = bfqd->in_service_queue;
5205 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5206 
5207 	rq = __bfq_dispatch_request(hctx);
5208 	if (in_serv_queue == bfqd->in_service_queue) {
5209 		idle_timer_disabled =
5210 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5211 	}
5212 
5213 	spin_unlock_irq(&bfqd->lock);
5214 	bfq_update_dispatch_stats(hctx->queue, rq,
5215 			idle_timer_disabled ? in_serv_queue : NULL,
5216 				idle_timer_disabled);
5217 
5218 	return rq;
5219 }
5220 
5221 /*
5222  * Task holds one reference to the queue, dropped when task exits.  Each rq
5223  * in-flight on this queue also holds a reference, dropped when rq is freed.
5224  *
5225  * Scheduler lock must be held here. Recall not to use bfqq after calling
5226  * this function on it.
5227  */
5228 void bfq_put_queue(struct bfq_queue *bfqq)
5229 {
5230 	struct bfq_queue *item;
5231 	struct hlist_node *n;
5232 	struct bfq_group *bfqg = bfqq_group(bfqq);
5233 
5234 	if (bfqq->bfqd)
5235 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5236 			     bfqq, bfqq->ref);
5237 
5238 	bfqq->ref--;
5239 	if (bfqq->ref)
5240 		return;
5241 
5242 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5243 		hlist_del_init(&bfqq->burst_list_node);
5244 		/*
5245 		 * Decrement also burst size after the removal, if the
5246 		 * process associated with bfqq is exiting, and thus
5247 		 * does not contribute to the burst any longer. This
5248 		 * decrement helps filter out false positives of large
5249 		 * bursts, when some short-lived process (often due to
5250 		 * the execution of commands by some service) happens
5251 		 * to start and exit while a complex application is
5252 		 * starting, and thus spawning several processes that
5253 		 * do I/O (and that *must not* be treated as a large
5254 		 * burst, see comments on bfq_handle_burst).
5255 		 *
5256 		 * In particular, the decrement is performed only if:
5257 		 * 1) bfqq is not a merged queue, because, if it is,
5258 		 * then this free of bfqq is not triggered by the exit
5259 		 * of the process bfqq is associated with, but exactly
5260 		 * by the fact that bfqq has just been merged.
5261 		 * 2) burst_size is greater than 0, to handle
5262 		 * unbalanced decrements. Unbalanced decrements may
5263 		 * happen in te following case: bfqq is inserted into
5264 		 * the current burst list--without incrementing
5265 		 * bust_size--because of a split, but the current
5266 		 * burst list is not the burst list bfqq belonged to
5267 		 * (see comments on the case of a split in
5268 		 * bfq_set_request).
5269 		 */
5270 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5271 			bfqq->bfqd->burst_size--;
5272 	}
5273 
5274 	/*
5275 	 * bfqq does not exist any longer, so it cannot be woken by
5276 	 * any other queue, and cannot wake any other queue. Then bfqq
5277 	 * must be removed from the woken list of its possible waker
5278 	 * queue, and all queues in the woken list of bfqq must stop
5279 	 * having a waker queue. Strictly speaking, these updates
5280 	 * should be performed when bfqq remains with no I/O source
5281 	 * attached to it, which happens before bfqq gets freed. In
5282 	 * particular, this happens when the last process associated
5283 	 * with bfqq exits or gets associated with a different
5284 	 * queue. However, both events lead to bfqq being freed soon,
5285 	 * and dangling references would come out only after bfqq gets
5286 	 * freed. So these updates are done here, as a simple and safe
5287 	 * way to handle all cases.
5288 	 */
5289 	/* remove bfqq from woken list */
5290 	if (!hlist_unhashed(&bfqq->woken_list_node))
5291 		hlist_del_init(&bfqq->woken_list_node);
5292 
5293 	/* reset waker for all queues in woken list */
5294 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5295 				  woken_list_node) {
5296 		item->waker_bfqq = NULL;
5297 		hlist_del_init(&item->woken_list_node);
5298 	}
5299 
5300 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5301 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5302 
5303 	kmem_cache_free(bfq_pool, bfqq);
5304 	bfqg_and_blkg_put(bfqg);
5305 }
5306 
5307 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5308 {
5309 	bfqq->stable_ref--;
5310 	bfq_put_queue(bfqq);
5311 }
5312 
5313 static void bfq_put_cooperator(struct bfq_queue *bfqq)
5314 {
5315 	struct bfq_queue *__bfqq, *next;
5316 
5317 	/*
5318 	 * If this queue was scheduled to merge with another queue, be
5319 	 * sure to drop the reference taken on that queue (and others in
5320 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5321 	 */
5322 	__bfqq = bfqq->new_bfqq;
5323 	while (__bfqq) {
5324 		if (__bfqq == bfqq)
5325 			break;
5326 		next = __bfqq->new_bfqq;
5327 		bfq_put_queue(__bfqq);
5328 		__bfqq = next;
5329 	}
5330 }
5331 
5332 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5333 {
5334 	if (bfqq == bfqd->in_service_queue) {
5335 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5336 		bfq_schedule_dispatch(bfqd);
5337 	}
5338 
5339 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5340 
5341 	bfq_put_cooperator(bfqq);
5342 
5343 	bfq_release_process_ref(bfqd, bfqq);
5344 }
5345 
5346 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5347 {
5348 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5349 	struct bfq_data *bfqd;
5350 
5351 	if (bfqq)
5352 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5353 
5354 	if (bfqq && bfqd) {
5355 		unsigned long flags;
5356 
5357 		spin_lock_irqsave(&bfqd->lock, flags);
5358 		bfqq->bic = NULL;
5359 		bfq_exit_bfqq(bfqd, bfqq);
5360 		bic_set_bfqq(bic, NULL, is_sync);
5361 		spin_unlock_irqrestore(&bfqd->lock, flags);
5362 	}
5363 }
5364 
5365 static void bfq_exit_icq(struct io_cq *icq)
5366 {
5367 	struct bfq_io_cq *bic = icq_to_bic(icq);
5368 
5369 	if (bic->stable_merge_bfqq) {
5370 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5371 
5372 		/*
5373 		 * bfqd is NULL if scheduler already exited, and in
5374 		 * that case this is the last time bfqq is accessed.
5375 		 */
5376 		if (bfqd) {
5377 			unsigned long flags;
5378 
5379 			spin_lock_irqsave(&bfqd->lock, flags);
5380 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5381 			spin_unlock_irqrestore(&bfqd->lock, flags);
5382 		} else {
5383 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5384 		}
5385 	}
5386 
5387 	bfq_exit_icq_bfqq(bic, true);
5388 	bfq_exit_icq_bfqq(bic, false);
5389 }
5390 
5391 /*
5392  * Update the entity prio values; note that the new values will not
5393  * be used until the next (re)activation.
5394  */
5395 static void
5396 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5397 {
5398 	struct task_struct *tsk = current;
5399 	int ioprio_class;
5400 	struct bfq_data *bfqd = bfqq->bfqd;
5401 
5402 	if (!bfqd)
5403 		return;
5404 
5405 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5406 	switch (ioprio_class) {
5407 	default:
5408 		pr_err("bdi %s: bfq: bad prio class %d\n",
5409 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5410 			ioprio_class);
5411 		fallthrough;
5412 	case IOPRIO_CLASS_NONE:
5413 		/*
5414 		 * No prio set, inherit CPU scheduling settings.
5415 		 */
5416 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5417 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5418 		break;
5419 	case IOPRIO_CLASS_RT:
5420 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5421 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5422 		break;
5423 	case IOPRIO_CLASS_BE:
5424 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5425 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5426 		break;
5427 	case IOPRIO_CLASS_IDLE:
5428 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5429 		bfqq->new_ioprio = 7;
5430 		break;
5431 	}
5432 
5433 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5434 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5435 			bfqq->new_ioprio);
5436 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5437 	}
5438 
5439 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5440 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5441 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5442 	bfqq->entity.prio_changed = 1;
5443 }
5444 
5445 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5446 				       struct bio *bio, bool is_sync,
5447 				       struct bfq_io_cq *bic,
5448 				       bool respawn);
5449 
5450 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5451 {
5452 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5453 	struct bfq_queue *bfqq;
5454 	int ioprio = bic->icq.ioc->ioprio;
5455 
5456 	/*
5457 	 * This condition may trigger on a newly created bic, be sure to
5458 	 * drop the lock before returning.
5459 	 */
5460 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5461 		return;
5462 
5463 	bic->ioprio = ioprio;
5464 
5465 	bfqq = bic_to_bfqq(bic, false);
5466 	if (bfqq) {
5467 		bfq_release_process_ref(bfqd, bfqq);
5468 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5469 		bic_set_bfqq(bic, bfqq, false);
5470 	}
5471 
5472 	bfqq = bic_to_bfqq(bic, true);
5473 	if (bfqq)
5474 		bfq_set_next_ioprio_data(bfqq, bic);
5475 }
5476 
5477 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5478 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5479 {
5480 	u64 now_ns = ktime_get_ns();
5481 
5482 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5483 	INIT_LIST_HEAD(&bfqq->fifo);
5484 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5485 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5486 	INIT_HLIST_HEAD(&bfqq->woken_list);
5487 
5488 	bfqq->ref = 0;
5489 	bfqq->bfqd = bfqd;
5490 
5491 	if (bic)
5492 		bfq_set_next_ioprio_data(bfqq, bic);
5493 
5494 	if (is_sync) {
5495 		/*
5496 		 * No need to mark as has_short_ttime if in
5497 		 * idle_class, because no device idling is performed
5498 		 * for queues in idle class
5499 		 */
5500 		if (!bfq_class_idle(bfqq))
5501 			/* tentatively mark as has_short_ttime */
5502 			bfq_mark_bfqq_has_short_ttime(bfqq);
5503 		bfq_mark_bfqq_sync(bfqq);
5504 		bfq_mark_bfqq_just_created(bfqq);
5505 	} else
5506 		bfq_clear_bfqq_sync(bfqq);
5507 
5508 	/* set end request to minus infinity from now */
5509 	bfqq->ttime.last_end_request = now_ns + 1;
5510 
5511 	bfqq->creation_time = jiffies;
5512 
5513 	bfqq->io_start_time = now_ns;
5514 
5515 	bfq_mark_bfqq_IO_bound(bfqq);
5516 
5517 	bfqq->pid = pid;
5518 
5519 	/* Tentative initial value to trade off between thr and lat */
5520 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5521 	bfqq->budget_timeout = bfq_smallest_from_now();
5522 
5523 	bfqq->wr_coeff = 1;
5524 	bfqq->last_wr_start_finish = jiffies;
5525 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5526 	bfqq->split_time = bfq_smallest_from_now();
5527 
5528 	/*
5529 	 * To not forget the possibly high bandwidth consumed by a
5530 	 * process/queue in the recent past,
5531 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5532 	 * to the current value of bfqq->soft_rt_next_start (see
5533 	 * comments on bfq_bfqq_softrt_next_start).  Set
5534 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5535 	 * no bandwidth so far.
5536 	 */
5537 	bfqq->soft_rt_next_start = jiffies;
5538 
5539 	/* first request is almost certainly seeky */
5540 	bfqq->seek_history = 1;
5541 }
5542 
5543 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5544 					       struct bfq_group *bfqg,
5545 					       int ioprio_class, int ioprio)
5546 {
5547 	switch (ioprio_class) {
5548 	case IOPRIO_CLASS_RT:
5549 		return &bfqg->async_bfqq[0][ioprio];
5550 	case IOPRIO_CLASS_NONE:
5551 		ioprio = IOPRIO_BE_NORM;
5552 		fallthrough;
5553 	case IOPRIO_CLASS_BE:
5554 		return &bfqg->async_bfqq[1][ioprio];
5555 	case IOPRIO_CLASS_IDLE:
5556 		return &bfqg->async_idle_bfqq;
5557 	default:
5558 		return NULL;
5559 	}
5560 }
5561 
5562 static struct bfq_queue *
5563 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5564 			  struct bfq_io_cq *bic,
5565 			  struct bfq_queue *last_bfqq_created)
5566 {
5567 	struct bfq_queue *new_bfqq =
5568 		bfq_setup_merge(bfqq, last_bfqq_created);
5569 
5570 	if (!new_bfqq)
5571 		return bfqq;
5572 
5573 	if (new_bfqq->bic)
5574 		new_bfqq->bic->stably_merged = true;
5575 	bic->stably_merged = true;
5576 
5577 	/*
5578 	 * Reusing merge functions. This implies that
5579 	 * bfqq->bic must be set too, for
5580 	 * bfq_merge_bfqqs to correctly save bfqq's
5581 	 * state before killing it.
5582 	 */
5583 	bfqq->bic = bic;
5584 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5585 
5586 	return new_bfqq;
5587 }
5588 
5589 /*
5590  * Many throughput-sensitive workloads are made of several parallel
5591  * I/O flows, with all flows generated by the same application, or
5592  * more generically by the same task (e.g., system boot). The most
5593  * counterproductive action with these workloads is plugging I/O
5594  * dispatch when one of the bfq_queues associated with these flows
5595  * remains temporarily empty.
5596  *
5597  * To avoid this plugging, BFQ has been using a burst-handling
5598  * mechanism for years now. This mechanism has proven effective for
5599  * throughput, and not detrimental for service guarantees. The
5600  * following function pushes this mechanism a little bit further,
5601  * basing on the following two facts.
5602  *
5603  * First, all the I/O flows of a the same application or task
5604  * contribute to the execution/completion of that common application
5605  * or task. So the performance figures that matter are total
5606  * throughput of the flows and task-wide I/O latency.  In particular,
5607  * these flows do not need to be protected from each other, in terms
5608  * of individual bandwidth or latency.
5609  *
5610  * Second, the above fact holds regardless of the number of flows.
5611  *
5612  * Putting these two facts together, this commits merges stably the
5613  * bfq_queues associated with these I/O flows, i.e., with the
5614  * processes that generate these IO/ flows, regardless of how many the
5615  * involved processes are.
5616  *
5617  * To decide whether a set of bfq_queues is actually associated with
5618  * the I/O flows of a common application or task, and to merge these
5619  * queues stably, this function operates as follows: given a bfq_queue,
5620  * say Q2, currently being created, and the last bfq_queue, say Q1,
5621  * created before Q2, Q2 is merged stably with Q1 if
5622  * - very little time has elapsed since when Q1 was created
5623  * - Q2 has the same ioprio as Q1
5624  * - Q2 belongs to the same group as Q1
5625  *
5626  * Merging bfq_queues also reduces scheduling overhead. A fio test
5627  * with ten random readers on /dev/nullb shows a throughput boost of
5628  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5629  * the total per-request processing time, the above throughput boost
5630  * implies that BFQ's overhead is reduced by more than 50%.
5631  *
5632  * This new mechanism most certainly obsoletes the current
5633  * burst-handling heuristics. We keep those heuristics for the moment.
5634  */
5635 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5636 						      struct bfq_queue *bfqq,
5637 						      struct bfq_io_cq *bic)
5638 {
5639 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5640 		&bfqq->entity.parent->last_bfqq_created :
5641 		&bfqd->last_bfqq_created;
5642 
5643 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5644 
5645 	/*
5646 	 * If last_bfqq_created has not been set yet, then init it. If
5647 	 * it has been set already, but too long ago, then move it
5648 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5649 	 * different group than last_bfqq_created, or if bfqq has a
5650 	 * different ioprio or ioprio_class. If none of these
5651 	 * conditions holds true, then try an early stable merge or
5652 	 * schedule a delayed stable merge.
5653 	 *
5654 	 * A delayed merge is scheduled (instead of performing an
5655 	 * early merge), in case bfqq might soon prove to be more
5656 	 * throughput-beneficial if not merged. Currently this is
5657 	 * possible only if bfqd is rotational with no queueing. For
5658 	 * such a drive, not merging bfqq is better for throughput if
5659 	 * bfqq happens to contain sequential I/O. So, we wait a
5660 	 * little bit for enough I/O to flow through bfqq. After that,
5661 	 * if such an I/O is sequential, then the merge is
5662 	 * canceled. Otherwise the merge is finally performed.
5663 	 */
5664 	if (!last_bfqq_created ||
5665 	    time_before(last_bfqq_created->creation_time +
5666 			msecs_to_jiffies(bfq_activation_stable_merging),
5667 			bfqq->creation_time) ||
5668 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5669 		bfqq->ioprio != last_bfqq_created->ioprio ||
5670 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5671 		*source_bfqq = bfqq;
5672 	else if (time_after_eq(last_bfqq_created->creation_time +
5673 				 bfqd->bfq_burst_interval,
5674 				 bfqq->creation_time)) {
5675 		if (likely(bfqd->nonrot_with_queueing))
5676 			/*
5677 			 * With this type of drive, leaving
5678 			 * bfqq alone may provide no
5679 			 * throughput benefits compared with
5680 			 * merging bfqq. So merge bfqq now.
5681 			 */
5682 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5683 							 bic,
5684 							 last_bfqq_created);
5685 		else { /* schedule tentative stable merge */
5686 			/*
5687 			 * get reference on last_bfqq_created,
5688 			 * to prevent it from being freed,
5689 			 * until we decide whether to merge
5690 			 */
5691 			last_bfqq_created->ref++;
5692 			/*
5693 			 * need to keep track of stable refs, to
5694 			 * compute process refs correctly
5695 			 */
5696 			last_bfqq_created->stable_ref++;
5697 			/*
5698 			 * Record the bfqq to merge to.
5699 			 */
5700 			bic->stable_merge_bfqq = last_bfqq_created;
5701 		}
5702 	}
5703 
5704 	return bfqq;
5705 }
5706 
5707 
5708 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5709 				       struct bio *bio, bool is_sync,
5710 				       struct bfq_io_cq *bic,
5711 				       bool respawn)
5712 {
5713 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5714 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5715 	struct bfq_queue **async_bfqq = NULL;
5716 	struct bfq_queue *bfqq;
5717 	struct bfq_group *bfqg;
5718 
5719 	rcu_read_lock();
5720 
5721 	bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
5722 	if (!bfqg) {
5723 		bfqq = &bfqd->oom_bfqq;
5724 		goto out;
5725 	}
5726 
5727 	if (!is_sync) {
5728 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5729 						  ioprio);
5730 		bfqq = *async_bfqq;
5731 		if (bfqq)
5732 			goto out;
5733 	}
5734 
5735 	bfqq = kmem_cache_alloc_node(bfq_pool,
5736 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5737 				     bfqd->queue->node);
5738 
5739 	if (bfqq) {
5740 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5741 			      is_sync);
5742 		bfq_init_entity(&bfqq->entity, bfqg);
5743 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5744 	} else {
5745 		bfqq = &bfqd->oom_bfqq;
5746 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5747 		goto out;
5748 	}
5749 
5750 	/*
5751 	 * Pin the queue now that it's allocated, scheduler exit will
5752 	 * prune it.
5753 	 */
5754 	if (async_bfqq) {
5755 		bfqq->ref++; /*
5756 			      * Extra group reference, w.r.t. sync
5757 			      * queue. This extra reference is removed
5758 			      * only if bfqq->bfqg disappears, to
5759 			      * guarantee that this queue is not freed
5760 			      * until its group goes away.
5761 			      */
5762 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5763 			     bfqq, bfqq->ref);
5764 		*async_bfqq = bfqq;
5765 	}
5766 
5767 out:
5768 	bfqq->ref++; /* get a process reference to this queue */
5769 
5770 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5771 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5772 
5773 	rcu_read_unlock();
5774 	return bfqq;
5775 }
5776 
5777 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5778 				    struct bfq_queue *bfqq)
5779 {
5780 	struct bfq_ttime *ttime = &bfqq->ttime;
5781 	u64 elapsed;
5782 
5783 	/*
5784 	 * We are really interested in how long it takes for the queue to
5785 	 * become busy when there is no outstanding IO for this queue. So
5786 	 * ignore cases when the bfq queue has already IO queued.
5787 	 */
5788 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5789 		return;
5790 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5791 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5792 
5793 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5794 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5795 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5796 				     ttime->ttime_samples);
5797 }
5798 
5799 static void
5800 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5801 		       struct request *rq)
5802 {
5803 	bfqq->seek_history <<= 1;
5804 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5805 
5806 	if (bfqq->wr_coeff > 1 &&
5807 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5808 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5809 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5810 					   bfq_wr_duration(bfqd))) {
5811 			/*
5812 			 * In soft_rt weight raising with the
5813 			 * interactive-weight-raising period
5814 			 * elapsed (so no switch back to
5815 			 * interactive weight raising).
5816 			 */
5817 			bfq_bfqq_end_wr(bfqq);
5818 		} else { /*
5819 			  * stopping soft_rt weight raising
5820 			  * while still in interactive period,
5821 			  * switch back to interactive weight
5822 			  * raising
5823 			  */
5824 			switch_back_to_interactive_wr(bfqq, bfqd);
5825 			bfqq->entity.prio_changed = 1;
5826 		}
5827 	}
5828 }
5829 
5830 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5831 				       struct bfq_queue *bfqq,
5832 				       struct bfq_io_cq *bic)
5833 {
5834 	bool has_short_ttime = true, state_changed;
5835 
5836 	/*
5837 	 * No need to update has_short_ttime if bfqq is async or in
5838 	 * idle io prio class, or if bfq_slice_idle is zero, because
5839 	 * no device idling is performed for bfqq in this case.
5840 	 */
5841 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5842 	    bfqd->bfq_slice_idle == 0)
5843 		return;
5844 
5845 	/* Idle window just restored, statistics are meaningless. */
5846 	if (time_is_after_eq_jiffies(bfqq->split_time +
5847 				     bfqd->bfq_wr_min_idle_time))
5848 		return;
5849 
5850 	/* Think time is infinite if no process is linked to
5851 	 * bfqq. Otherwise check average think time to decide whether
5852 	 * to mark as has_short_ttime. To this goal, compare average
5853 	 * think time with half the I/O-plugging timeout.
5854 	 */
5855 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5856 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5857 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5858 		has_short_ttime = false;
5859 
5860 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5861 
5862 	if (has_short_ttime)
5863 		bfq_mark_bfqq_has_short_ttime(bfqq);
5864 	else
5865 		bfq_clear_bfqq_has_short_ttime(bfqq);
5866 
5867 	/*
5868 	 * Until the base value for the total service time gets
5869 	 * finally computed for bfqq, the inject limit does depend on
5870 	 * the think-time state (short|long). In particular, the limit
5871 	 * is 0 or 1 if the think time is deemed, respectively, as
5872 	 * short or long (details in the comments in
5873 	 * bfq_update_inject_limit()). Accordingly, the next
5874 	 * instructions reset the inject limit if the think-time state
5875 	 * has changed and the above base value is still to be
5876 	 * computed.
5877 	 *
5878 	 * However, the reset is performed only if more than 100 ms
5879 	 * have elapsed since the last update of the inject limit, or
5880 	 * (inclusive) if the change is from short to long think
5881 	 * time. The reason for this waiting is as follows.
5882 	 *
5883 	 * bfqq may have a long think time because of a
5884 	 * synchronization with some other queue, i.e., because the
5885 	 * I/O of some other queue may need to be completed for bfqq
5886 	 * to receive new I/O. Details in the comments on the choice
5887 	 * of the queue for injection in bfq_select_queue().
5888 	 *
5889 	 * As stressed in those comments, if such a synchronization is
5890 	 * actually in place, then, without injection on bfqq, the
5891 	 * blocking I/O cannot happen to served while bfqq is in
5892 	 * service. As a consequence, if bfqq is granted
5893 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5894 	 * is dispatched, until the idle timeout fires. This is likely
5895 	 * to result in lower bandwidth and higher latencies for bfqq,
5896 	 * and in a severe loss of total throughput.
5897 	 *
5898 	 * On the opposite end, a non-zero inject limit may allow the
5899 	 * I/O that blocks bfqq to be executed soon, and therefore
5900 	 * bfqq to receive new I/O soon.
5901 	 *
5902 	 * But, if the blocking gets actually eliminated, then the
5903 	 * next think-time sample for bfqq may be very low. This in
5904 	 * turn may cause bfqq's think time to be deemed
5905 	 * short. Without the 100 ms barrier, this new state change
5906 	 * would cause the body of the next if to be executed
5907 	 * immediately. But this would set to 0 the inject
5908 	 * limit. Without injection, the blocking I/O would cause the
5909 	 * think time of bfqq to become long again, and therefore the
5910 	 * inject limit to be raised again, and so on. The only effect
5911 	 * of such a steady oscillation between the two think-time
5912 	 * states would be to prevent effective injection on bfqq.
5913 	 *
5914 	 * In contrast, if the inject limit is not reset during such a
5915 	 * long time interval as 100 ms, then the number of short
5916 	 * think time samples can grow significantly before the reset
5917 	 * is performed. As a consequence, the think time state can
5918 	 * become stable before the reset. Therefore there will be no
5919 	 * state change when the 100 ms elapse, and no reset of the
5920 	 * inject limit. The inject limit remains steadily equal to 1
5921 	 * both during and after the 100 ms. So injection can be
5922 	 * performed at all times, and throughput gets boosted.
5923 	 *
5924 	 * An inject limit equal to 1 is however in conflict, in
5925 	 * general, with the fact that the think time of bfqq is
5926 	 * short, because injection may be likely to delay bfqq's I/O
5927 	 * (as explained in the comments in
5928 	 * bfq_update_inject_limit()). But this does not happen in
5929 	 * this special case, because bfqq's low think time is due to
5930 	 * an effective handling of a synchronization, through
5931 	 * injection. In this special case, bfqq's I/O does not get
5932 	 * delayed by injection; on the contrary, bfqq's I/O is
5933 	 * brought forward, because it is not blocked for
5934 	 * milliseconds.
5935 	 *
5936 	 * In addition, serving the blocking I/O much sooner, and much
5937 	 * more frequently than once per I/O-plugging timeout, makes
5938 	 * it much quicker to detect a waker queue (the concept of
5939 	 * waker queue is defined in the comments in
5940 	 * bfq_add_request()). This makes it possible to start sooner
5941 	 * to boost throughput more effectively, by injecting the I/O
5942 	 * of the waker queue unconditionally on every
5943 	 * bfq_dispatch_request().
5944 	 *
5945 	 * One last, important benefit of not resetting the inject
5946 	 * limit before 100 ms is that, during this time interval, the
5947 	 * base value for the total service time is likely to get
5948 	 * finally computed for bfqq, freeing the inject limit from
5949 	 * its relation with the think time.
5950 	 */
5951 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5952 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5953 				      msecs_to_jiffies(100)) ||
5954 	     !has_short_ttime))
5955 		bfq_reset_inject_limit(bfqd, bfqq);
5956 }
5957 
5958 /*
5959  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5960  * something we should do about it.
5961  */
5962 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5963 			    struct request *rq)
5964 {
5965 	if (rq->cmd_flags & REQ_META)
5966 		bfqq->meta_pending++;
5967 
5968 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5969 
5970 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5971 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5972 				 blk_rq_sectors(rq) < 32;
5973 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5974 
5975 		/*
5976 		 * There is just this request queued: if
5977 		 * - the request is small, and
5978 		 * - we are idling to boost throughput, and
5979 		 * - the queue is not to be expired,
5980 		 * then just exit.
5981 		 *
5982 		 * In this way, if the device is being idled to wait
5983 		 * for a new request from the in-service queue, we
5984 		 * avoid unplugging the device and committing the
5985 		 * device to serve just a small request. In contrast
5986 		 * we wait for the block layer to decide when to
5987 		 * unplug the device: hopefully, new requests will be
5988 		 * merged to this one quickly, then the device will be
5989 		 * unplugged and larger requests will be dispatched.
5990 		 */
5991 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5992 		    !budget_timeout)
5993 			return;
5994 
5995 		/*
5996 		 * A large enough request arrived, or idling is being
5997 		 * performed to preserve service guarantees, or
5998 		 * finally the queue is to be expired: in all these
5999 		 * cases disk idling is to be stopped, so clear
6000 		 * wait_request flag and reset timer.
6001 		 */
6002 		bfq_clear_bfqq_wait_request(bfqq);
6003 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
6004 
6005 		/*
6006 		 * The queue is not empty, because a new request just
6007 		 * arrived. Hence we can safely expire the queue, in
6008 		 * case of budget timeout, without risking that the
6009 		 * timestamps of the queue are not updated correctly.
6010 		 * See [1] for more details.
6011 		 */
6012 		if (budget_timeout)
6013 			bfq_bfqq_expire(bfqd, bfqq, false,
6014 					BFQQE_BUDGET_TIMEOUT);
6015 	}
6016 }
6017 
6018 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6019 {
6020 	struct bfq_entity *entity = &bfqq->entity;
6021 
6022 	for_each_entity(entity)
6023 		entity->allocated++;
6024 }
6025 
6026 static void bfqq_request_freed(struct bfq_queue *bfqq)
6027 {
6028 	struct bfq_entity *entity = &bfqq->entity;
6029 
6030 	for_each_entity(entity)
6031 		entity->allocated--;
6032 }
6033 
6034 /* returns true if it causes the idle timer to be disabled */
6035 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6036 {
6037 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6038 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6039 						 RQ_BIC(rq));
6040 	bool waiting, idle_timer_disabled = false;
6041 
6042 	if (new_bfqq) {
6043 		/*
6044 		 * Release the request's reference to the old bfqq
6045 		 * and make sure one is taken to the shared queue.
6046 		 */
6047 		bfqq_request_allocated(new_bfqq);
6048 		bfqq_request_freed(bfqq);
6049 		new_bfqq->ref++;
6050 		/*
6051 		 * If the bic associated with the process
6052 		 * issuing this request still points to bfqq
6053 		 * (and thus has not been already redirected
6054 		 * to new_bfqq or even some other bfq_queue),
6055 		 * then complete the merge and redirect it to
6056 		 * new_bfqq.
6057 		 */
6058 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
6059 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
6060 					bfqq, new_bfqq);
6061 
6062 		bfq_clear_bfqq_just_created(bfqq);
6063 		/*
6064 		 * rq is about to be enqueued into new_bfqq,
6065 		 * release rq reference on bfqq
6066 		 */
6067 		bfq_put_queue(bfqq);
6068 		rq->elv.priv[1] = new_bfqq;
6069 		bfqq = new_bfqq;
6070 	}
6071 
6072 	bfq_update_io_thinktime(bfqd, bfqq);
6073 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6074 	bfq_update_io_seektime(bfqd, bfqq, rq);
6075 
6076 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6077 	bfq_add_request(rq);
6078 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6079 
6080 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6081 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6082 
6083 	bfq_rq_enqueued(bfqd, bfqq, rq);
6084 
6085 	return idle_timer_disabled;
6086 }
6087 
6088 #ifdef CONFIG_BFQ_CGROUP_DEBUG
6089 static void bfq_update_insert_stats(struct request_queue *q,
6090 				    struct bfq_queue *bfqq,
6091 				    bool idle_timer_disabled,
6092 				    unsigned int cmd_flags)
6093 {
6094 	if (!bfqq)
6095 		return;
6096 
6097 	/*
6098 	 * bfqq still exists, because it can disappear only after
6099 	 * either it is merged with another queue, or the process it
6100 	 * is associated with exits. But both actions must be taken by
6101 	 * the same process currently executing this flow of
6102 	 * instructions.
6103 	 *
6104 	 * In addition, the following queue lock guarantees that
6105 	 * bfqq_group(bfqq) exists as well.
6106 	 */
6107 	spin_lock_irq(&q->queue_lock);
6108 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6109 	if (idle_timer_disabled)
6110 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6111 	spin_unlock_irq(&q->queue_lock);
6112 }
6113 #else
6114 static inline void bfq_update_insert_stats(struct request_queue *q,
6115 					   struct bfq_queue *bfqq,
6116 					   bool idle_timer_disabled,
6117 					   unsigned int cmd_flags) {}
6118 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6119 
6120 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6121 			       bool at_head)
6122 {
6123 	struct request_queue *q = hctx->queue;
6124 	struct bfq_data *bfqd = q->elevator->elevator_data;
6125 	struct bfq_queue *bfqq;
6126 	bool idle_timer_disabled = false;
6127 	unsigned int cmd_flags;
6128 	LIST_HEAD(free);
6129 
6130 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6131 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6132 		bfqg_stats_update_legacy_io(q, rq);
6133 #endif
6134 	spin_lock_irq(&bfqd->lock);
6135 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6136 		spin_unlock_irq(&bfqd->lock);
6137 		blk_mq_free_requests(&free);
6138 		return;
6139 	}
6140 
6141 	spin_unlock_irq(&bfqd->lock);
6142 
6143 	trace_block_rq_insert(rq);
6144 
6145 	spin_lock_irq(&bfqd->lock);
6146 	bfqq = bfq_init_rq(rq);
6147 	if (!bfqq || at_head) {
6148 		if (at_head)
6149 			list_add(&rq->queuelist, &bfqd->dispatch);
6150 		else
6151 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6152 	} else {
6153 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6154 		/*
6155 		 * Update bfqq, because, if a queue merge has occurred
6156 		 * in __bfq_insert_request, then rq has been
6157 		 * redirected into a new queue.
6158 		 */
6159 		bfqq = RQ_BFQQ(rq);
6160 
6161 		if (rq_mergeable(rq)) {
6162 			elv_rqhash_add(q, rq);
6163 			if (!q->last_merge)
6164 				q->last_merge = rq;
6165 		}
6166 	}
6167 
6168 	/*
6169 	 * Cache cmd_flags before releasing scheduler lock, because rq
6170 	 * may disappear afterwards (for example, because of a request
6171 	 * merge).
6172 	 */
6173 	cmd_flags = rq->cmd_flags;
6174 	spin_unlock_irq(&bfqd->lock);
6175 
6176 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6177 				cmd_flags);
6178 }
6179 
6180 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6181 				struct list_head *list, bool at_head)
6182 {
6183 	while (!list_empty(list)) {
6184 		struct request *rq;
6185 
6186 		rq = list_first_entry(list, struct request, queuelist);
6187 		list_del_init(&rq->queuelist);
6188 		bfq_insert_request(hctx, rq, at_head);
6189 	}
6190 }
6191 
6192 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6193 {
6194 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6195 
6196 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6197 				       bfqd->rq_in_driver);
6198 
6199 	if (bfqd->hw_tag == 1)
6200 		return;
6201 
6202 	/*
6203 	 * This sample is valid if the number of outstanding requests
6204 	 * is large enough to allow a queueing behavior.  Note that the
6205 	 * sum is not exact, as it's not taking into account deactivated
6206 	 * requests.
6207 	 */
6208 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6209 		return;
6210 
6211 	/*
6212 	 * If active queue hasn't enough requests and can idle, bfq might not
6213 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6214 	 * case
6215 	 */
6216 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6217 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6218 	    BFQ_HW_QUEUE_THRESHOLD &&
6219 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6220 		return;
6221 
6222 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6223 		return;
6224 
6225 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6226 	bfqd->max_rq_in_driver = 0;
6227 	bfqd->hw_tag_samples = 0;
6228 
6229 	bfqd->nonrot_with_queueing =
6230 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6231 }
6232 
6233 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6234 {
6235 	u64 now_ns;
6236 	u32 delta_us;
6237 
6238 	bfq_update_hw_tag(bfqd);
6239 
6240 	bfqd->rq_in_driver--;
6241 	bfqq->dispatched--;
6242 
6243 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6244 		/*
6245 		 * Set budget_timeout (which we overload to store the
6246 		 * time at which the queue remains with no backlog and
6247 		 * no outstanding request; used by the weight-raising
6248 		 * mechanism).
6249 		 */
6250 		bfqq->budget_timeout = jiffies;
6251 
6252 		bfq_weights_tree_remove(bfqd, bfqq);
6253 	}
6254 
6255 	now_ns = ktime_get_ns();
6256 
6257 	bfqq->ttime.last_end_request = now_ns;
6258 
6259 	/*
6260 	 * Using us instead of ns, to get a reasonable precision in
6261 	 * computing rate in next check.
6262 	 */
6263 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6264 
6265 	/*
6266 	 * If the request took rather long to complete, and, according
6267 	 * to the maximum request size recorded, this completion latency
6268 	 * implies that the request was certainly served at a very low
6269 	 * rate (less than 1M sectors/sec), then the whole observation
6270 	 * interval that lasts up to this time instant cannot be a
6271 	 * valid time interval for computing a new peak rate.  Invoke
6272 	 * bfq_update_rate_reset to have the following three steps
6273 	 * taken:
6274 	 * - close the observation interval at the last (previous)
6275 	 *   request dispatch or completion
6276 	 * - compute rate, if possible, for that observation interval
6277 	 * - reset to zero samples, which will trigger a proper
6278 	 *   re-initialization of the observation interval on next
6279 	 *   dispatch
6280 	 */
6281 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6282 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6283 			1UL<<(BFQ_RATE_SHIFT - 10))
6284 		bfq_update_rate_reset(bfqd, NULL);
6285 	bfqd->last_completion = now_ns;
6286 	/*
6287 	 * Shared queues are likely to receive I/O at a high
6288 	 * rate. This may deceptively let them be considered as wakers
6289 	 * of other queues. But a false waker will unjustly steal
6290 	 * bandwidth to its supposedly woken queue. So considering
6291 	 * also shared queues in the waking mechanism may cause more
6292 	 * control troubles than throughput benefits. Then reset
6293 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6294 	 */
6295 	if (!bfq_bfqq_coop(bfqq))
6296 		bfqd->last_completed_rq_bfqq = bfqq;
6297 	else
6298 		bfqd->last_completed_rq_bfqq = NULL;
6299 
6300 	/*
6301 	 * If we are waiting to discover whether the request pattern
6302 	 * of the task associated with the queue is actually
6303 	 * isochronous, and both requisites for this condition to hold
6304 	 * are now satisfied, then compute soft_rt_next_start (see the
6305 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6306 	 * do not compute soft_rt_next_start if bfqq is in interactive
6307 	 * weight raising (see the comments in bfq_bfqq_expire() for
6308 	 * an explanation). We schedule this delayed update when bfqq
6309 	 * expires, if it still has in-flight requests.
6310 	 */
6311 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6312 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6313 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6314 		bfqq->soft_rt_next_start =
6315 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6316 
6317 	/*
6318 	 * If this is the in-service queue, check if it needs to be expired,
6319 	 * or if we want to idle in case it has no pending requests.
6320 	 */
6321 	if (bfqd->in_service_queue == bfqq) {
6322 		if (bfq_bfqq_must_idle(bfqq)) {
6323 			if (bfqq->dispatched == 0)
6324 				bfq_arm_slice_timer(bfqd);
6325 			/*
6326 			 * If we get here, we do not expire bfqq, even
6327 			 * if bfqq was in budget timeout or had no
6328 			 * more requests (as controlled in the next
6329 			 * conditional instructions). The reason for
6330 			 * not expiring bfqq is as follows.
6331 			 *
6332 			 * Here bfqq->dispatched > 0 holds, but
6333 			 * bfq_bfqq_must_idle() returned true. This
6334 			 * implies that, even if no request arrives
6335 			 * for bfqq before bfqq->dispatched reaches 0,
6336 			 * bfqq will, however, not be expired on the
6337 			 * completion event that causes bfqq->dispatch
6338 			 * to reach zero. In contrast, on this event,
6339 			 * bfqq will start enjoying device idling
6340 			 * (I/O-dispatch plugging).
6341 			 *
6342 			 * But, if we expired bfqq here, bfqq would
6343 			 * not have the chance to enjoy device idling
6344 			 * when bfqq->dispatched finally reaches
6345 			 * zero. This would expose bfqq to violation
6346 			 * of its reserved service guarantees.
6347 			 */
6348 			return;
6349 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6350 			bfq_bfqq_expire(bfqd, bfqq, false,
6351 					BFQQE_BUDGET_TIMEOUT);
6352 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6353 			 (bfqq->dispatched == 0 ||
6354 			  !bfq_better_to_idle(bfqq)))
6355 			bfq_bfqq_expire(bfqd, bfqq, false,
6356 					BFQQE_NO_MORE_REQUESTS);
6357 	}
6358 
6359 	if (!bfqd->rq_in_driver)
6360 		bfq_schedule_dispatch(bfqd);
6361 }
6362 
6363 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6364 {
6365 	bfqq_request_freed(bfqq);
6366 	bfq_put_queue(bfqq);
6367 }
6368 
6369 /*
6370  * The processes associated with bfqq may happen to generate their
6371  * cumulative I/O at a lower rate than the rate at which the device
6372  * could serve the same I/O. This is rather probable, e.g., if only
6373  * one process is associated with bfqq and the device is an SSD. It
6374  * results in bfqq becoming often empty while in service. In this
6375  * respect, if BFQ is allowed to switch to another queue when bfqq
6376  * remains empty, then the device goes on being fed with I/O requests,
6377  * and the throughput is not affected. In contrast, if BFQ is not
6378  * allowed to switch to another queue---because bfqq is sync and
6379  * I/O-dispatch needs to be plugged while bfqq is temporarily
6380  * empty---then, during the service of bfqq, there will be frequent
6381  * "service holes", i.e., time intervals during which bfqq gets empty
6382  * and the device can only consume the I/O already queued in its
6383  * hardware queues. During service holes, the device may even get to
6384  * remaining idle. In the end, during the service of bfqq, the device
6385  * is driven at a lower speed than the one it can reach with the kind
6386  * of I/O flowing through bfqq.
6387  *
6388  * To counter this loss of throughput, BFQ implements a "request
6389  * injection mechanism", which tries to fill the above service holes
6390  * with I/O requests taken from other queues. The hard part in this
6391  * mechanism is finding the right amount of I/O to inject, so as to
6392  * both boost throughput and not break bfqq's bandwidth and latency
6393  * guarantees. In this respect, the mechanism maintains a per-queue
6394  * inject limit, computed as below. While bfqq is empty, the injection
6395  * mechanism dispatches extra I/O requests only until the total number
6396  * of I/O requests in flight---i.e., already dispatched but not yet
6397  * completed---remains lower than this limit.
6398  *
6399  * A first definition comes in handy to introduce the algorithm by
6400  * which the inject limit is computed.  We define as first request for
6401  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6402  * service, and causes bfqq to switch from empty to non-empty. The
6403  * algorithm updates the limit as a function of the effect of
6404  * injection on the service times of only the first requests of
6405  * bfqq. The reason for this restriction is that these are the
6406  * requests whose service time is affected most, because they are the
6407  * first to arrive after injection possibly occurred.
6408  *
6409  * To evaluate the effect of injection, the algorithm measures the
6410  * "total service time" of first requests. We define as total service
6411  * time of an I/O request, the time that elapses since when the
6412  * request is enqueued into bfqq, to when it is completed. This
6413  * quantity allows the whole effect of injection to be measured. It is
6414  * easy to see why. Suppose that some requests of other queues are
6415  * actually injected while bfqq is empty, and that a new request R
6416  * then arrives for bfqq. If the device does start to serve all or
6417  * part of the injected requests during the service hole, then,
6418  * because of this extra service, it may delay the next invocation of
6419  * the dispatch hook of BFQ. Then, even after R gets eventually
6420  * dispatched, the device may delay the actual service of R if it is
6421  * still busy serving the extra requests, or if it decides to serve,
6422  * before R, some extra request still present in its queues. As a
6423  * conclusion, the cumulative extra delay caused by injection can be
6424  * easily evaluated by just comparing the total service time of first
6425  * requests with and without injection.
6426  *
6427  * The limit-update algorithm works as follows. On the arrival of a
6428  * first request of bfqq, the algorithm measures the total time of the
6429  * request only if one of the three cases below holds, and, for each
6430  * case, it updates the limit as described below:
6431  *
6432  * (1) If there is no in-flight request. This gives a baseline for the
6433  *     total service time of the requests of bfqq. If the baseline has
6434  *     not been computed yet, then, after computing it, the limit is
6435  *     set to 1, to start boosting throughput, and to prepare the
6436  *     ground for the next case. If the baseline has already been
6437  *     computed, then it is updated, in case it results to be lower
6438  *     than the previous value.
6439  *
6440  * (2) If the limit is higher than 0 and there are in-flight
6441  *     requests. By comparing the total service time in this case with
6442  *     the above baseline, it is possible to know at which extent the
6443  *     current value of the limit is inflating the total service
6444  *     time. If the inflation is below a certain threshold, then bfqq
6445  *     is assumed to be suffering from no perceivable loss of its
6446  *     service guarantees, and the limit is even tentatively
6447  *     increased. If the inflation is above the threshold, then the
6448  *     limit is decreased. Due to the lack of any hysteresis, this
6449  *     logic makes the limit oscillate even in steady workload
6450  *     conditions. Yet we opted for it, because it is fast in reaching
6451  *     the best value for the limit, as a function of the current I/O
6452  *     workload. To reduce oscillations, this step is disabled for a
6453  *     short time interval after the limit happens to be decreased.
6454  *
6455  * (3) Periodically, after resetting the limit, to make sure that the
6456  *     limit eventually drops in case the workload changes. This is
6457  *     needed because, after the limit has gone safely up for a
6458  *     certain workload, it is impossible to guess whether the
6459  *     baseline total service time may have changed, without measuring
6460  *     it again without injection. A more effective version of this
6461  *     step might be to just sample the baseline, by interrupting
6462  *     injection only once, and then to reset/lower the limit only if
6463  *     the total service time with the current limit does happen to be
6464  *     too large.
6465  *
6466  * More details on each step are provided in the comments on the
6467  * pieces of code that implement these steps: the branch handling the
6468  * transition from empty to non empty in bfq_add_request(), the branch
6469  * handling injection in bfq_select_queue(), and the function
6470  * bfq_choose_bfqq_for_injection(). These comments also explain some
6471  * exceptions, made by the injection mechanism in some special cases.
6472  */
6473 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6474 				    struct bfq_queue *bfqq)
6475 {
6476 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6477 	unsigned int old_limit = bfqq->inject_limit;
6478 
6479 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6480 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6481 
6482 		if (tot_time_ns >= threshold && old_limit > 0) {
6483 			bfqq->inject_limit--;
6484 			bfqq->decrease_time_jif = jiffies;
6485 		} else if (tot_time_ns < threshold &&
6486 			   old_limit <= bfqd->max_rq_in_driver)
6487 			bfqq->inject_limit++;
6488 	}
6489 
6490 	/*
6491 	 * Either we still have to compute the base value for the
6492 	 * total service time, and there seem to be the right
6493 	 * conditions to do it, or we can lower the last base value
6494 	 * computed.
6495 	 *
6496 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6497 	 * request in flight, because this function is in the code
6498 	 * path that handles the completion of a request of bfqq, and,
6499 	 * in particular, this function is executed before
6500 	 * bfqd->rq_in_driver is decremented in such a code path.
6501 	 */
6502 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6503 	    tot_time_ns < bfqq->last_serv_time_ns) {
6504 		if (bfqq->last_serv_time_ns == 0) {
6505 			/*
6506 			 * Now we certainly have a base value: make sure we
6507 			 * start trying injection.
6508 			 */
6509 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6510 		}
6511 		bfqq->last_serv_time_ns = tot_time_ns;
6512 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6513 		/*
6514 		 * No I/O injected and no request still in service in
6515 		 * the drive: these are the exact conditions for
6516 		 * computing the base value of the total service time
6517 		 * for bfqq. So let's update this value, because it is
6518 		 * rather variable. For example, it varies if the size
6519 		 * or the spatial locality of the I/O requests in bfqq
6520 		 * change.
6521 		 */
6522 		bfqq->last_serv_time_ns = tot_time_ns;
6523 
6524 
6525 	/* update complete, not waiting for any request completion any longer */
6526 	bfqd->waited_rq = NULL;
6527 	bfqd->rqs_injected = false;
6528 }
6529 
6530 /*
6531  * Handle either a requeue or a finish for rq. The things to do are
6532  * the same in both cases: all references to rq are to be dropped. In
6533  * particular, rq is considered completed from the point of view of
6534  * the scheduler.
6535  */
6536 static void bfq_finish_requeue_request(struct request *rq)
6537 {
6538 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6539 	struct bfq_data *bfqd;
6540 	unsigned long flags;
6541 
6542 	/*
6543 	 * rq either is not associated with any icq, or is an already
6544 	 * requeued request that has not (yet) been re-inserted into
6545 	 * a bfq_queue.
6546 	 */
6547 	if (!rq->elv.icq || !bfqq)
6548 		return;
6549 
6550 	bfqd = bfqq->bfqd;
6551 
6552 	if (rq->rq_flags & RQF_STARTED)
6553 		bfqg_stats_update_completion(bfqq_group(bfqq),
6554 					     rq->start_time_ns,
6555 					     rq->io_start_time_ns,
6556 					     rq->cmd_flags);
6557 
6558 	spin_lock_irqsave(&bfqd->lock, flags);
6559 	if (likely(rq->rq_flags & RQF_STARTED)) {
6560 		if (rq == bfqd->waited_rq)
6561 			bfq_update_inject_limit(bfqd, bfqq);
6562 
6563 		bfq_completed_request(bfqq, bfqd);
6564 	}
6565 	bfq_finish_requeue_request_body(bfqq);
6566 	spin_unlock_irqrestore(&bfqd->lock, flags);
6567 
6568 	/*
6569 	 * Reset private fields. In case of a requeue, this allows
6570 	 * this function to correctly do nothing if it is spuriously
6571 	 * invoked again on this same request (see the check at the
6572 	 * beginning of the function). Probably, a better general
6573 	 * design would be to prevent blk-mq from invoking the requeue
6574 	 * or finish hooks of an elevator, for a request that is not
6575 	 * referred by that elevator.
6576 	 *
6577 	 * Resetting the following fields would break the
6578 	 * request-insertion logic if rq is re-inserted into a bfq
6579 	 * internal queue, without a re-preparation. Here we assume
6580 	 * that re-insertions of requeued requests, without
6581 	 * re-preparation, can happen only for pass_through or at_head
6582 	 * requests (which are not re-inserted into bfq internal
6583 	 * queues).
6584 	 */
6585 	rq->elv.priv[0] = NULL;
6586 	rq->elv.priv[1] = NULL;
6587 }
6588 
6589 static void bfq_finish_request(struct request *rq)
6590 {
6591 	bfq_finish_requeue_request(rq);
6592 
6593 	if (rq->elv.icq) {
6594 		put_io_context(rq->elv.icq->ioc);
6595 		rq->elv.icq = NULL;
6596 	}
6597 }
6598 
6599 /*
6600  * Removes the association between the current task and bfqq, assuming
6601  * that bic points to the bfq iocontext of the task.
6602  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6603  * was the last process referring to that bfqq.
6604  */
6605 static struct bfq_queue *
6606 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6607 {
6608 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6609 
6610 	if (bfqq_process_refs(bfqq) == 1) {
6611 		bfqq->pid = current->pid;
6612 		bfq_clear_bfqq_coop(bfqq);
6613 		bfq_clear_bfqq_split_coop(bfqq);
6614 		return bfqq;
6615 	}
6616 
6617 	bic_set_bfqq(bic, NULL, 1);
6618 
6619 	bfq_put_cooperator(bfqq);
6620 
6621 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6622 	return NULL;
6623 }
6624 
6625 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6626 						   struct bfq_io_cq *bic,
6627 						   struct bio *bio,
6628 						   bool split, bool is_sync,
6629 						   bool *new_queue)
6630 {
6631 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6632 
6633 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6634 		return bfqq;
6635 
6636 	if (new_queue)
6637 		*new_queue = true;
6638 
6639 	if (bfqq)
6640 		bfq_put_queue(bfqq);
6641 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6642 
6643 	bic_set_bfqq(bic, bfqq, is_sync);
6644 	if (split && is_sync) {
6645 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6646 		    bic->saved_in_large_burst)
6647 			bfq_mark_bfqq_in_large_burst(bfqq);
6648 		else {
6649 			bfq_clear_bfqq_in_large_burst(bfqq);
6650 			if (bic->was_in_burst_list)
6651 				/*
6652 				 * If bfqq was in the current
6653 				 * burst list before being
6654 				 * merged, then we have to add
6655 				 * it back. And we do not need
6656 				 * to increase burst_size, as
6657 				 * we did not decrement
6658 				 * burst_size when we removed
6659 				 * bfqq from the burst list as
6660 				 * a consequence of a merge
6661 				 * (see comments in
6662 				 * bfq_put_queue). In this
6663 				 * respect, it would be rather
6664 				 * costly to know whether the
6665 				 * current burst list is still
6666 				 * the same burst list from
6667 				 * which bfqq was removed on
6668 				 * the merge. To avoid this
6669 				 * cost, if bfqq was in a
6670 				 * burst list, then we add
6671 				 * bfqq to the current burst
6672 				 * list without any further
6673 				 * check. This can cause
6674 				 * inappropriate insertions,
6675 				 * but rarely enough to not
6676 				 * harm the detection of large
6677 				 * bursts significantly.
6678 				 */
6679 				hlist_add_head(&bfqq->burst_list_node,
6680 					       &bfqd->burst_list);
6681 		}
6682 		bfqq->split_time = jiffies;
6683 	}
6684 
6685 	return bfqq;
6686 }
6687 
6688 /*
6689  * Only reset private fields. The actual request preparation will be
6690  * performed by bfq_init_rq, when rq is either inserted or merged. See
6691  * comments on bfq_init_rq for the reason behind this delayed
6692  * preparation.
6693  */
6694 static void bfq_prepare_request(struct request *rq)
6695 {
6696 	rq->elv.icq = ioc_find_get_icq(rq->q);
6697 
6698 	/*
6699 	 * Regardless of whether we have an icq attached, we have to
6700 	 * clear the scheduler pointers, as they might point to
6701 	 * previously allocated bic/bfqq structs.
6702 	 */
6703 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6704 }
6705 
6706 /*
6707  * If needed, init rq, allocate bfq data structures associated with
6708  * rq, and increment reference counters in the destination bfq_queue
6709  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6710  * not associated with any bfq_queue.
6711  *
6712  * This function is invoked by the functions that perform rq insertion
6713  * or merging. One may have expected the above preparation operations
6714  * to be performed in bfq_prepare_request, and not delayed to when rq
6715  * is inserted or merged. The rationale behind this delayed
6716  * preparation is that, after the prepare_request hook is invoked for
6717  * rq, rq may still be transformed into a request with no icq, i.e., a
6718  * request not associated with any queue. No bfq hook is invoked to
6719  * signal this transformation. As a consequence, should these
6720  * preparation operations be performed when the prepare_request hook
6721  * is invoked, and should rq be transformed one moment later, bfq
6722  * would end up in an inconsistent state, because it would have
6723  * incremented some queue counters for an rq destined to
6724  * transformation, without any chance to correctly lower these
6725  * counters back. In contrast, no transformation can still happen for
6726  * rq after rq has been inserted or merged. So, it is safe to execute
6727  * these preparation operations when rq is finally inserted or merged.
6728  */
6729 static struct bfq_queue *bfq_init_rq(struct request *rq)
6730 {
6731 	struct request_queue *q = rq->q;
6732 	struct bio *bio = rq->bio;
6733 	struct bfq_data *bfqd = q->elevator->elevator_data;
6734 	struct bfq_io_cq *bic;
6735 	const int is_sync = rq_is_sync(rq);
6736 	struct bfq_queue *bfqq;
6737 	bool new_queue = false;
6738 	bool bfqq_already_existing = false, split = false;
6739 
6740 	if (unlikely(!rq->elv.icq))
6741 		return NULL;
6742 
6743 	/*
6744 	 * Assuming that elv.priv[1] is set only if everything is set
6745 	 * for this rq. This holds true, because this function is
6746 	 * invoked only for insertion or merging, and, after such
6747 	 * events, a request cannot be manipulated any longer before
6748 	 * being removed from bfq.
6749 	 */
6750 	if (rq->elv.priv[1])
6751 		return rq->elv.priv[1];
6752 
6753 	bic = icq_to_bic(rq->elv.icq);
6754 
6755 	bfq_check_ioprio_change(bic, bio);
6756 
6757 	bfq_bic_update_cgroup(bic, bio);
6758 
6759 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6760 					 &new_queue);
6761 
6762 	if (likely(!new_queue)) {
6763 		/* If the queue was seeky for too long, break it apart. */
6764 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6765 			!bic->stably_merged) {
6766 			struct bfq_queue *old_bfqq = bfqq;
6767 
6768 			/* Update bic before losing reference to bfqq */
6769 			if (bfq_bfqq_in_large_burst(bfqq))
6770 				bic->saved_in_large_burst = true;
6771 
6772 			bfqq = bfq_split_bfqq(bic, bfqq);
6773 			split = true;
6774 
6775 			if (!bfqq) {
6776 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6777 								 true, is_sync,
6778 								 NULL);
6779 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6780 				bfqq->tentative_waker_bfqq = NULL;
6781 
6782 				/*
6783 				 * If the waker queue disappears, then
6784 				 * new_bfqq->waker_bfqq must be
6785 				 * reset. So insert new_bfqq into the
6786 				 * woken_list of the waker. See
6787 				 * bfq_check_waker for details.
6788 				 */
6789 				if (bfqq->waker_bfqq)
6790 					hlist_add_head(&bfqq->woken_list_node,
6791 						       &bfqq->waker_bfqq->woken_list);
6792 			} else
6793 				bfqq_already_existing = true;
6794 		}
6795 	}
6796 
6797 	bfqq_request_allocated(bfqq);
6798 	bfqq->ref++;
6799 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6800 		     rq, bfqq, bfqq->ref);
6801 
6802 	rq->elv.priv[0] = bic;
6803 	rq->elv.priv[1] = bfqq;
6804 
6805 	/*
6806 	 * If a bfq_queue has only one process reference, it is owned
6807 	 * by only this bic: we can then set bfqq->bic = bic. in
6808 	 * addition, if the queue has also just been split, we have to
6809 	 * resume its state.
6810 	 */
6811 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6812 		bfqq->bic = bic;
6813 		if (split) {
6814 			/*
6815 			 * The queue has just been split from a shared
6816 			 * queue: restore the idle window and the
6817 			 * possible weight raising period.
6818 			 */
6819 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6820 					      bfqq_already_existing);
6821 		}
6822 	}
6823 
6824 	/*
6825 	 * Consider bfqq as possibly belonging to a burst of newly
6826 	 * created queues only if:
6827 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6828 	 * or
6829 	 * 2) There is no other active queue. In fact, if, in
6830 	 *    contrast, there are active queues not belonging to the
6831 	 *    possible burst bfqq may belong to, then there is no gain
6832 	 *    in considering bfqq as belonging to a burst, and
6833 	 *    therefore in not weight-raising bfqq. See comments on
6834 	 *    bfq_handle_burst().
6835 	 *
6836 	 * This filtering also helps eliminating false positives,
6837 	 * occurring when bfqq does not belong to an actual large
6838 	 * burst, but some background task (e.g., a service) happens
6839 	 * to trigger the creation of new queues very close to when
6840 	 * bfqq and its possible companion queues are created. See
6841 	 * comments on bfq_handle_burst() for further details also on
6842 	 * this issue.
6843 	 */
6844 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6845 		     (bfqd->burst_size > 0 ||
6846 		      bfq_tot_busy_queues(bfqd) == 0)))
6847 		bfq_handle_burst(bfqd, bfqq);
6848 
6849 	return bfqq;
6850 }
6851 
6852 static void
6853 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6854 {
6855 	enum bfqq_expiration reason;
6856 	unsigned long flags;
6857 
6858 	spin_lock_irqsave(&bfqd->lock, flags);
6859 
6860 	/*
6861 	 * Considering that bfqq may be in race, we should firstly check
6862 	 * whether bfqq is in service before doing something on it. If
6863 	 * the bfqq in race is not in service, it has already been expired
6864 	 * through __bfq_bfqq_expire func and its wait_request flags has
6865 	 * been cleared in __bfq_bfqd_reset_in_service func.
6866 	 */
6867 	if (bfqq != bfqd->in_service_queue) {
6868 		spin_unlock_irqrestore(&bfqd->lock, flags);
6869 		return;
6870 	}
6871 
6872 	bfq_clear_bfqq_wait_request(bfqq);
6873 
6874 	if (bfq_bfqq_budget_timeout(bfqq))
6875 		/*
6876 		 * Also here the queue can be safely expired
6877 		 * for budget timeout without wasting
6878 		 * guarantees
6879 		 */
6880 		reason = BFQQE_BUDGET_TIMEOUT;
6881 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6882 		/*
6883 		 * The queue may not be empty upon timer expiration,
6884 		 * because we may not disable the timer when the
6885 		 * first request of the in-service queue arrives
6886 		 * during disk idling.
6887 		 */
6888 		reason = BFQQE_TOO_IDLE;
6889 	else
6890 		goto schedule_dispatch;
6891 
6892 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6893 
6894 schedule_dispatch:
6895 	spin_unlock_irqrestore(&bfqd->lock, flags);
6896 	bfq_schedule_dispatch(bfqd);
6897 }
6898 
6899 /*
6900  * Handler of the expiration of the timer running if the in-service queue
6901  * is idling inside its time slice.
6902  */
6903 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6904 {
6905 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6906 					     idle_slice_timer);
6907 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6908 
6909 	/*
6910 	 * Theoretical race here: the in-service queue can be NULL or
6911 	 * different from the queue that was idling if a new request
6912 	 * arrives for the current queue and there is a full dispatch
6913 	 * cycle that changes the in-service queue.  This can hardly
6914 	 * happen, but in the worst case we just expire a queue too
6915 	 * early.
6916 	 */
6917 	if (bfqq)
6918 		bfq_idle_slice_timer_body(bfqd, bfqq);
6919 
6920 	return HRTIMER_NORESTART;
6921 }
6922 
6923 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6924 				 struct bfq_queue **bfqq_ptr)
6925 {
6926 	struct bfq_queue *bfqq = *bfqq_ptr;
6927 
6928 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6929 	if (bfqq) {
6930 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6931 
6932 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6933 			     bfqq, bfqq->ref);
6934 		bfq_put_queue(bfqq);
6935 		*bfqq_ptr = NULL;
6936 	}
6937 }
6938 
6939 /*
6940  * Release all the bfqg references to its async queues.  If we are
6941  * deallocating the group these queues may still contain requests, so
6942  * we reparent them to the root cgroup (i.e., the only one that will
6943  * exist for sure until all the requests on a device are gone).
6944  */
6945 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6946 {
6947 	int i, j;
6948 
6949 	for (i = 0; i < 2; i++)
6950 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6951 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6952 
6953 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6954 }
6955 
6956 /*
6957  * See the comments on bfq_limit_depth for the purpose of
6958  * the depths set in the function. Return minimum shallow depth we'll use.
6959  */
6960 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
6961 {
6962 	unsigned int depth = 1U << bt->sb.shift;
6963 
6964 	bfqd->full_depth_shift = bt->sb.shift;
6965 	/*
6966 	 * In-word depths if no bfq_queue is being weight-raised:
6967 	 * leaving 25% of tags only for sync reads.
6968 	 *
6969 	 * In next formulas, right-shift the value
6970 	 * (1U<<bt->sb.shift), instead of computing directly
6971 	 * (1U<<(bt->sb.shift - something)), to be robust against
6972 	 * any possible value of bt->sb.shift, without having to
6973 	 * limit 'something'.
6974 	 */
6975 	/* no more than 50% of tags for async I/O */
6976 	bfqd->word_depths[0][0] = max(depth >> 1, 1U);
6977 	/*
6978 	 * no more than 75% of tags for sync writes (25% extra tags
6979 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6980 	 * writes)
6981 	 */
6982 	bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U);
6983 
6984 	/*
6985 	 * In-word depths in case some bfq_queue is being weight-
6986 	 * raised: leaving ~63% of tags for sync reads. This is the
6987 	 * highest percentage for which, in our tests, application
6988 	 * start-up times didn't suffer from any regression due to tag
6989 	 * shortage.
6990 	 */
6991 	/* no more than ~18% of tags for async I/O */
6992 	bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U);
6993 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6994 	bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U);
6995 }
6996 
6997 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6998 {
6999 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7000 	struct blk_mq_tags *tags = hctx->sched_tags;
7001 
7002 	bfq_update_depths(bfqd, &tags->bitmap_tags);
7003 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
7004 }
7005 
7006 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7007 {
7008 	bfq_depth_updated(hctx);
7009 	return 0;
7010 }
7011 
7012 static void bfq_exit_queue(struct elevator_queue *e)
7013 {
7014 	struct bfq_data *bfqd = e->elevator_data;
7015 	struct bfq_queue *bfqq, *n;
7016 
7017 	hrtimer_cancel(&bfqd->idle_slice_timer);
7018 
7019 	spin_lock_irq(&bfqd->lock);
7020 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7021 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7022 	spin_unlock_irq(&bfqd->lock);
7023 
7024 	hrtimer_cancel(&bfqd->idle_slice_timer);
7025 
7026 	/* release oom-queue reference to root group */
7027 	bfqg_and_blkg_put(bfqd->root_group);
7028 
7029 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7030 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
7031 #else
7032 	spin_lock_irq(&bfqd->lock);
7033 	bfq_put_async_queues(bfqd, bfqd->root_group);
7034 	kfree(bfqd->root_group);
7035 	spin_unlock_irq(&bfqd->lock);
7036 #endif
7037 
7038 	wbt_enable_default(bfqd->queue);
7039 
7040 	kfree(bfqd);
7041 }
7042 
7043 static void bfq_init_root_group(struct bfq_group *root_group,
7044 				struct bfq_data *bfqd)
7045 {
7046 	int i;
7047 
7048 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7049 	root_group->entity.parent = NULL;
7050 	root_group->my_entity = NULL;
7051 	root_group->bfqd = bfqd;
7052 #endif
7053 	root_group->rq_pos_tree = RB_ROOT;
7054 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7055 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7056 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7057 }
7058 
7059 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
7060 {
7061 	struct bfq_data *bfqd;
7062 	struct elevator_queue *eq;
7063 
7064 	eq = elevator_alloc(q, e);
7065 	if (!eq)
7066 		return -ENOMEM;
7067 
7068 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7069 	if (!bfqd) {
7070 		kobject_put(&eq->kobj);
7071 		return -ENOMEM;
7072 	}
7073 	eq->elevator_data = bfqd;
7074 
7075 	spin_lock_irq(&q->queue_lock);
7076 	q->elevator = eq;
7077 	spin_unlock_irq(&q->queue_lock);
7078 
7079 	/*
7080 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7081 	 * Grab a permanent reference to it, so that the normal code flow
7082 	 * will not attempt to free it.
7083 	 */
7084 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
7085 	bfqd->oom_bfqq.ref++;
7086 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7087 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7088 	bfqd->oom_bfqq.entity.new_weight =
7089 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7090 
7091 	/* oom_bfqq does not participate to bursts */
7092 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7093 
7094 	/*
7095 	 * Trigger weight initialization, according to ioprio, at the
7096 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7097 	 * class won't be changed any more.
7098 	 */
7099 	bfqd->oom_bfqq.entity.prio_changed = 1;
7100 
7101 	bfqd->queue = q;
7102 
7103 	INIT_LIST_HEAD(&bfqd->dispatch);
7104 
7105 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
7106 		     HRTIMER_MODE_REL);
7107 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
7108 
7109 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7110 	bfqd->num_groups_with_pending_reqs = 0;
7111 
7112 	INIT_LIST_HEAD(&bfqd->active_list);
7113 	INIT_LIST_HEAD(&bfqd->idle_list);
7114 	INIT_HLIST_HEAD(&bfqd->burst_list);
7115 
7116 	bfqd->hw_tag = -1;
7117 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7118 
7119 	bfqd->bfq_max_budget = bfq_default_max_budget;
7120 
7121 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7122 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7123 	bfqd->bfq_back_max = bfq_back_max;
7124 	bfqd->bfq_back_penalty = bfq_back_penalty;
7125 	bfqd->bfq_slice_idle = bfq_slice_idle;
7126 	bfqd->bfq_timeout = bfq_timeout;
7127 
7128 	bfqd->bfq_large_burst_thresh = 8;
7129 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7130 
7131 	bfqd->low_latency = true;
7132 
7133 	/*
7134 	 * Trade-off between responsiveness and fairness.
7135 	 */
7136 	bfqd->bfq_wr_coeff = 30;
7137 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7138 	bfqd->bfq_wr_max_time = 0;
7139 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7140 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7141 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7142 					      * Approximate rate required
7143 					      * to playback or record a
7144 					      * high-definition compressed
7145 					      * video.
7146 					      */
7147 	bfqd->wr_busy_queues = 0;
7148 
7149 	/*
7150 	 * Begin by assuming, optimistically, that the device peak
7151 	 * rate is equal to 2/3 of the highest reference rate.
7152 	 */
7153 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7154 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7155 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7156 
7157 	spin_lock_init(&bfqd->lock);
7158 
7159 	/*
7160 	 * The invocation of the next bfq_create_group_hierarchy
7161 	 * function is the head of a chain of function calls
7162 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7163 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7164 	 * has_work hook function. For this reason,
7165 	 * bfq_create_group_hierarchy is invoked only after all
7166 	 * scheduler data has been initialized, apart from the fields
7167 	 * that can be initialized only after invoking
7168 	 * bfq_create_group_hierarchy. This, in particular, enables
7169 	 * has_work to correctly return false. Of course, to avoid
7170 	 * other inconsistencies, the blk-mq stack must then refrain
7171 	 * from invoking further scheduler hooks before this init
7172 	 * function is finished.
7173 	 */
7174 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7175 	if (!bfqd->root_group)
7176 		goto out_free;
7177 	bfq_init_root_group(bfqd->root_group, bfqd);
7178 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7179 
7180 	wbt_disable_default(q);
7181 	return 0;
7182 
7183 out_free:
7184 	kfree(bfqd);
7185 	kobject_put(&eq->kobj);
7186 	return -ENOMEM;
7187 }
7188 
7189 static void bfq_slab_kill(void)
7190 {
7191 	kmem_cache_destroy(bfq_pool);
7192 }
7193 
7194 static int __init bfq_slab_setup(void)
7195 {
7196 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7197 	if (!bfq_pool)
7198 		return -ENOMEM;
7199 	return 0;
7200 }
7201 
7202 static ssize_t bfq_var_show(unsigned int var, char *page)
7203 {
7204 	return sprintf(page, "%u\n", var);
7205 }
7206 
7207 static int bfq_var_store(unsigned long *var, const char *page)
7208 {
7209 	unsigned long new_val;
7210 	int ret = kstrtoul(page, 10, &new_val);
7211 
7212 	if (ret)
7213 		return ret;
7214 	*var = new_val;
7215 	return 0;
7216 }
7217 
7218 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7219 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7220 {									\
7221 	struct bfq_data *bfqd = e->elevator_data;			\
7222 	u64 __data = __VAR;						\
7223 	if (__CONV == 1)						\
7224 		__data = jiffies_to_msecs(__data);			\
7225 	else if (__CONV == 2)						\
7226 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7227 	return bfq_var_show(__data, (page));				\
7228 }
7229 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7230 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7231 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7232 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7233 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7234 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7235 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7236 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7237 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7238 #undef SHOW_FUNCTION
7239 
7240 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7241 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7242 {									\
7243 	struct bfq_data *bfqd = e->elevator_data;			\
7244 	u64 __data = __VAR;						\
7245 	__data = div_u64(__data, NSEC_PER_USEC);			\
7246 	return bfq_var_show(__data, (page));				\
7247 }
7248 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7249 #undef USEC_SHOW_FUNCTION
7250 
7251 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7252 static ssize_t								\
7253 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7254 {									\
7255 	struct bfq_data *bfqd = e->elevator_data;			\
7256 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7257 	int ret;							\
7258 									\
7259 	ret = bfq_var_store(&__data, (page));				\
7260 	if (ret)							\
7261 		return ret;						\
7262 	if (__data < __min)						\
7263 		__data = __min;						\
7264 	else if (__data > __max)					\
7265 		__data = __max;						\
7266 	if (__CONV == 1)						\
7267 		*(__PTR) = msecs_to_jiffies(__data);			\
7268 	else if (__CONV == 2)						\
7269 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7270 	else								\
7271 		*(__PTR) = __data;					\
7272 	return count;							\
7273 }
7274 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7275 		INT_MAX, 2);
7276 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7277 		INT_MAX, 2);
7278 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7279 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7280 		INT_MAX, 0);
7281 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7282 #undef STORE_FUNCTION
7283 
7284 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7285 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7286 {									\
7287 	struct bfq_data *bfqd = e->elevator_data;			\
7288 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7289 	int ret;							\
7290 									\
7291 	ret = bfq_var_store(&__data, (page));				\
7292 	if (ret)							\
7293 		return ret;						\
7294 	if (__data < __min)						\
7295 		__data = __min;						\
7296 	else if (__data > __max)					\
7297 		__data = __max;						\
7298 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7299 	return count;							\
7300 }
7301 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7302 		    UINT_MAX);
7303 #undef USEC_STORE_FUNCTION
7304 
7305 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7306 				    const char *page, size_t count)
7307 {
7308 	struct bfq_data *bfqd = e->elevator_data;
7309 	unsigned long __data;
7310 	int ret;
7311 
7312 	ret = bfq_var_store(&__data, (page));
7313 	if (ret)
7314 		return ret;
7315 
7316 	if (__data == 0)
7317 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7318 	else {
7319 		if (__data > INT_MAX)
7320 			__data = INT_MAX;
7321 		bfqd->bfq_max_budget = __data;
7322 	}
7323 
7324 	bfqd->bfq_user_max_budget = __data;
7325 
7326 	return count;
7327 }
7328 
7329 /*
7330  * Leaving this name to preserve name compatibility with cfq
7331  * parameters, but this timeout is used for both sync and async.
7332  */
7333 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7334 				      const char *page, size_t count)
7335 {
7336 	struct bfq_data *bfqd = e->elevator_data;
7337 	unsigned long __data;
7338 	int ret;
7339 
7340 	ret = bfq_var_store(&__data, (page));
7341 	if (ret)
7342 		return ret;
7343 
7344 	if (__data < 1)
7345 		__data = 1;
7346 	else if (__data > INT_MAX)
7347 		__data = INT_MAX;
7348 
7349 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7350 	if (bfqd->bfq_user_max_budget == 0)
7351 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7352 
7353 	return count;
7354 }
7355 
7356 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7357 				     const char *page, size_t count)
7358 {
7359 	struct bfq_data *bfqd = e->elevator_data;
7360 	unsigned long __data;
7361 	int ret;
7362 
7363 	ret = bfq_var_store(&__data, (page));
7364 	if (ret)
7365 		return ret;
7366 
7367 	if (__data > 1)
7368 		__data = 1;
7369 	if (!bfqd->strict_guarantees && __data == 1
7370 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7371 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7372 
7373 	bfqd->strict_guarantees = __data;
7374 
7375 	return count;
7376 }
7377 
7378 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7379 				     const char *page, size_t count)
7380 {
7381 	struct bfq_data *bfqd = e->elevator_data;
7382 	unsigned long __data;
7383 	int ret;
7384 
7385 	ret = bfq_var_store(&__data, (page));
7386 	if (ret)
7387 		return ret;
7388 
7389 	if (__data > 1)
7390 		__data = 1;
7391 	if (__data == 0 && bfqd->low_latency != 0)
7392 		bfq_end_wr(bfqd);
7393 	bfqd->low_latency = __data;
7394 
7395 	return count;
7396 }
7397 
7398 #define BFQ_ATTR(name) \
7399 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7400 
7401 static struct elv_fs_entry bfq_attrs[] = {
7402 	BFQ_ATTR(fifo_expire_sync),
7403 	BFQ_ATTR(fifo_expire_async),
7404 	BFQ_ATTR(back_seek_max),
7405 	BFQ_ATTR(back_seek_penalty),
7406 	BFQ_ATTR(slice_idle),
7407 	BFQ_ATTR(slice_idle_us),
7408 	BFQ_ATTR(max_budget),
7409 	BFQ_ATTR(timeout_sync),
7410 	BFQ_ATTR(strict_guarantees),
7411 	BFQ_ATTR(low_latency),
7412 	__ATTR_NULL
7413 };
7414 
7415 static struct elevator_type iosched_bfq_mq = {
7416 	.ops = {
7417 		.limit_depth		= bfq_limit_depth,
7418 		.prepare_request	= bfq_prepare_request,
7419 		.requeue_request        = bfq_finish_requeue_request,
7420 		.finish_request		= bfq_finish_request,
7421 		.exit_icq		= bfq_exit_icq,
7422 		.insert_requests	= bfq_insert_requests,
7423 		.dispatch_request	= bfq_dispatch_request,
7424 		.next_request		= elv_rb_latter_request,
7425 		.former_request		= elv_rb_former_request,
7426 		.allow_merge		= bfq_allow_bio_merge,
7427 		.bio_merge		= bfq_bio_merge,
7428 		.request_merge		= bfq_request_merge,
7429 		.requests_merged	= bfq_requests_merged,
7430 		.request_merged		= bfq_request_merged,
7431 		.has_work		= bfq_has_work,
7432 		.depth_updated		= bfq_depth_updated,
7433 		.init_hctx		= bfq_init_hctx,
7434 		.init_sched		= bfq_init_queue,
7435 		.exit_sched		= bfq_exit_queue,
7436 	},
7437 
7438 	.icq_size =		sizeof(struct bfq_io_cq),
7439 	.icq_align =		__alignof__(struct bfq_io_cq),
7440 	.elevator_attrs =	bfq_attrs,
7441 	.elevator_name =	"bfq",
7442 	.elevator_owner =	THIS_MODULE,
7443 };
7444 MODULE_ALIAS("bfq-iosched");
7445 
7446 static int __init bfq_init(void)
7447 {
7448 	int ret;
7449 
7450 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7451 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7452 	if (ret)
7453 		return ret;
7454 #endif
7455 
7456 	ret = -ENOMEM;
7457 	if (bfq_slab_setup())
7458 		goto err_pol_unreg;
7459 
7460 	/*
7461 	 * Times to load large popular applications for the typical
7462 	 * systems installed on the reference devices (see the
7463 	 * comments before the definition of the next
7464 	 * array). Actually, we use slightly lower values, as the
7465 	 * estimated peak rate tends to be smaller than the actual
7466 	 * peak rate.  The reason for this last fact is that estimates
7467 	 * are computed over much shorter time intervals than the long
7468 	 * intervals typically used for benchmarking. Why? First, to
7469 	 * adapt more quickly to variations. Second, because an I/O
7470 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7471 	 * be run for a long time.
7472 	 */
7473 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7474 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7475 
7476 	ret = elv_register(&iosched_bfq_mq);
7477 	if (ret)
7478 		goto slab_kill;
7479 
7480 	return 0;
7481 
7482 slab_kill:
7483 	bfq_slab_kill();
7484 err_pol_unreg:
7485 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7486 	blkcg_policy_unregister(&blkcg_policy_bfq);
7487 #endif
7488 	return ret;
7489 }
7490 
7491 static void __exit bfq_exit(void)
7492 {
7493 	elv_unregister(&iosched_bfq_mq);
7494 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7495 	blkcg_policy_unregister(&blkcg_policy_bfq);
7496 #endif
7497 	bfq_slab_kill();
7498 }
7499 
7500 module_init(bfq_init);
7501 module_exit(bfq_exit);
7502 
7503 MODULE_AUTHOR("Paolo Valente");
7504 MODULE_LICENSE("GPL");
7505 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7506