xref: /openbmc/linux/block/bfq-iosched.c (revision 137c0118)
1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. This feature enables
53  * BFQ to provide applications in these classes with a very low
54  * latency. Finally, BFQ also features additional heuristics for
55  * preserving both a low latency and a high throughput on NCQ-capable,
56  * rotational or flash-based devices, and to get the job done quickly
57  * for applications consisting in many I/O-bound processes.
58  *
59  * NOTE: if the main or only goal, with a given device, is to achieve
60  * the maximum-possible throughput at all times, then do switch off
61  * all low-latency heuristics for that device, by setting low_latency
62  * to 0.
63  *
64  * BFQ is described in [1], where also a reference to the initial, more
65  * theoretical paper on BFQ can be found. The interested reader can find
66  * in the latter paper full details on the main algorithm, as well as
67  * formulas of the guarantees and formal proofs of all the properties.
68  * With respect to the version of BFQ presented in these papers, this
69  * implementation adds a few more heuristics, such as the one that
70  * guarantees a low latency to soft real-time applications, and a
71  * hierarchical extension based on H-WF2Q+.
72  *
73  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75  * with O(log N) complexity derives from the one introduced with EEVDF
76  * in [3].
77  *
78  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79  *     Scheduler", Proceedings of the First Workshop on Mobile System
80  *     Technologies (MST-2015), May 2015.
81  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82  *
83  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85  *     Oct 1997.
86  *
87  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88  *
89  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90  *     First: A Flexible and Accurate Mechanism for Proportional Share
91  *     Resource Allocation", technical report.
92  *
93  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94  */
95 #include <linux/module.h>
96 #include <linux/slab.h>
97 #include <linux/blkdev.h>
98 #include <linux/cgroup.h>
99 #include <linux/elevator.h>
100 #include <linux/ktime.h>
101 #include <linux/rbtree.h>
102 #include <linux/ioprio.h>
103 #include <linux/sbitmap.h>
104 #include <linux/delay.h>
105 
106 #include "blk.h"
107 #include "blk-mq.h"
108 #include "blk-mq-tag.h"
109 #include "blk-mq-sched.h"
110 #include "bfq-iosched.h"
111 #include "blk-wbt.h"
112 
113 #define BFQ_BFQQ_FNS(name)						\
114 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
115 {									\
116 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
117 }									\
118 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
119 {									\
120 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
121 }									\
122 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
123 {									\
124 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
125 }
126 
127 BFQ_BFQQ_FNS(just_created);
128 BFQ_BFQQ_FNS(busy);
129 BFQ_BFQQ_FNS(wait_request);
130 BFQ_BFQQ_FNS(non_blocking_wait_rq);
131 BFQ_BFQQ_FNS(fifo_expire);
132 BFQ_BFQQ_FNS(has_short_ttime);
133 BFQ_BFQQ_FNS(sync);
134 BFQ_BFQQ_FNS(IO_bound);
135 BFQ_BFQQ_FNS(in_large_burst);
136 BFQ_BFQQ_FNS(coop);
137 BFQ_BFQQ_FNS(split_coop);
138 BFQ_BFQQ_FNS(softrt_update);
139 #undef BFQ_BFQQ_FNS						\
140 
141 /* Expiration time of sync (0) and async (1) requests, in ns. */
142 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
143 
144 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145 static const int bfq_back_max = 16 * 1024;
146 
147 /* Penalty of a backwards seek, in number of sectors. */
148 static const int bfq_back_penalty = 2;
149 
150 /* Idling period duration, in ns. */
151 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
152 
153 /* Minimum number of assigned budgets for which stats are safe to compute. */
154 static const int bfq_stats_min_budgets = 194;
155 
156 /* Default maximum budget values, in sectors and number of requests. */
157 static const int bfq_default_max_budget = 16 * 1024;
158 
159 /*
160  * Async to sync throughput distribution is controlled as follows:
161  * when an async request is served, the entity is charged the number
162  * of sectors of the request, multiplied by the factor below
163  */
164 static const int bfq_async_charge_factor = 10;
165 
166 /* Default timeout values, in jiffies, approximating CFQ defaults. */
167 const int bfq_timeout = HZ / 8;
168 
169 /*
170  * Time limit for merging (see comments in bfq_setup_cooperator). Set
171  * to the slowest value that, in our tests, proved to be effective in
172  * removing false positives, while not causing true positives to miss
173  * queue merging.
174  *
175  * As can be deduced from the low time limit below, queue merging, if
176  * successful, happens at the very beggining of the I/O of the involved
177  * cooperating processes, as a consequence of the arrival of the very
178  * first requests from each cooperator.  After that, there is very
179  * little chance to find cooperators.
180  */
181 static const unsigned long bfq_merge_time_limit = HZ/10;
182 
183 static struct kmem_cache *bfq_pool;
184 
185 /* Below this threshold (in ns), we consider thinktime immediate. */
186 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
187 
188 /* hw_tag detection: parallel requests threshold and min samples needed. */
189 #define BFQ_HW_QUEUE_THRESHOLD	4
190 #define BFQ_HW_QUEUE_SAMPLES	32
191 
192 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
193 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
194 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
195 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
196 
197 /* Min number of samples required to perform peak-rate update */
198 #define BFQ_RATE_MIN_SAMPLES	32
199 /* Min observation time interval required to perform a peak-rate update (ns) */
200 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
201 /* Target observation time interval for a peak-rate update (ns) */
202 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
203 
204 /*
205  * Shift used for peak-rate fixed precision calculations.
206  * With
207  * - the current shift: 16 positions
208  * - the current type used to store rate: u32
209  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
210  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
211  * the range of rates that can be stored is
212  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
213  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
214  * [15, 65G] sectors/sec
215  * Which, assuming a sector size of 512B, corresponds to a range of
216  * [7.5K, 33T] B/sec
217  */
218 #define BFQ_RATE_SHIFT		16
219 
220 /*
221  * By default, BFQ computes the duration of the weight raising for
222  * interactive applications automatically, using the following formula:
223  * duration = (R / r) * T, where r is the peak rate of the device, and
224  * R and T are two reference parameters.
225  * In particular, R is the peak rate of the reference device (see
226  * below), and T is a reference time: given the systems that are
227  * likely to be installed on the reference device according to its
228  * speed class, T is about the maximum time needed, under BFQ and
229  * while reading two files in parallel, to load typical large
230  * applications on these systems (see the comments on
231  * max_service_from_wr below, for more details on how T is obtained).
232  * In practice, the slower/faster the device at hand is, the more/less
233  * it takes to load applications with respect to the reference device.
234  * Accordingly, the longer/shorter BFQ grants weight raising to
235  * interactive applications.
236  *
237  * BFQ uses four different reference pairs (R, T), depending on:
238  * . whether the device is rotational or non-rotational;
239  * . whether the device is slow, such as old or portable HDDs, as well as
240  *   SD cards, or fast, such as newer HDDs and SSDs.
241  *
242  * The device's speed class is dynamically (re)detected in
243  * bfq_update_peak_rate() every time the estimated peak rate is updated.
244  *
245  * In the following definitions, R_slow[0]/R_fast[0] and
246  * T_slow[0]/T_fast[0] are the reference values for a slow/fast
247  * rotational device, whereas R_slow[1]/R_fast[1] and
248  * T_slow[1]/T_fast[1] are the reference values for a slow/fast
249  * non-rotational device. Finally, device_speed_thresh are the
250  * thresholds used to switch between speed classes. The reference
251  * rates are not the actual peak rates of the devices used as a
252  * reference, but slightly lower values. The reason for using these
253  * slightly lower values is that the peak-rate estimator tends to
254  * yield slightly lower values than the actual peak rate (it can yield
255  * the actual peak rate only if there is only one process doing I/O,
256  * and the process does sequential I/O).
257  *
258  * Both the reference peak rates and the thresholds are measured in
259  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
260  */
261 static int R_slow[2] = {1000, 10700};
262 static int R_fast[2] = {14000, 33000};
263 /*
264  * To improve readability, a conversion function is used to initialize the
265  * following arrays, which entails that they can be initialized only in a
266  * function.
267  */
268 static int T_slow[2];
269 static int T_fast[2];
270 static int device_speed_thresh[2];
271 
272 /*
273  * BFQ uses the above-detailed, time-based weight-raising mechanism to
274  * privilege interactive tasks. This mechanism is vulnerable to the
275  * following false positives: I/O-bound applications that will go on
276  * doing I/O for much longer than the duration of weight
277  * raising. These applications have basically no benefit from being
278  * weight-raised at the beginning of their I/O. On the opposite end,
279  * while being weight-raised, these applications
280  * a) unjustly steal throughput to applications that may actually need
281  * low latency;
282  * b) make BFQ uselessly perform device idling; device idling results
283  * in loss of device throughput with most flash-based storage, and may
284  * increase latencies when used purposelessly.
285  *
286  * BFQ tries to reduce these problems, by adopting the following
287  * countermeasure. To introduce this countermeasure, we need first to
288  * finish explaining how the duration of weight-raising for
289  * interactive tasks is computed.
290  *
291  * For a bfq_queue deemed as interactive, the duration of weight
292  * raising is dynamically adjusted, as a function of the estimated
293  * peak rate of the device, so as to be equal to the time needed to
294  * execute the 'largest' interactive task we benchmarked so far. By
295  * largest task, we mean the task for which each involved process has
296  * to do more I/O than for any of the other tasks we benchmarked. This
297  * reference interactive task is the start-up of LibreOffice Writer,
298  * and in this task each process/bfq_queue needs to have at most ~110K
299  * sectors transferred.
300  *
301  * This last piece of information enables BFQ to reduce the actual
302  * duration of weight-raising for at least one class of I/O-bound
303  * applications: those doing sequential or quasi-sequential I/O. An
304  * example is file copy. In fact, once started, the main I/O-bound
305  * processes of these applications usually consume the above 110K
306  * sectors in much less time than the processes of an application that
307  * is starting, because these I/O-bound processes will greedily devote
308  * almost all their CPU cycles only to their target,
309  * throughput-friendly I/O operations. This is even more true if BFQ
310  * happens to be underestimating the device peak rate, and thus
311  * overestimating the duration of weight raising. But, according to
312  * our measurements, once transferred 110K sectors, these processes
313  * have no right to be weight-raised any longer.
314  *
315  * Basing on the last consideration, BFQ ends weight-raising for a
316  * bfq_queue if the latter happens to have received an amount of
317  * service at least equal to the following constant. The constant is
318  * set to slightly more than 110K, to have a minimum safety margin.
319  *
320  * This early ending of weight-raising reduces the amount of time
321  * during which interactive false positives cause the two problems
322  * described at the beginning of these comments.
323  */
324 static const unsigned long max_service_from_wr = 120000;
325 
326 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
327 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
328 
329 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
330 {
331 	return bic->bfqq[is_sync];
332 }
333 
334 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
335 {
336 	bic->bfqq[is_sync] = bfqq;
337 }
338 
339 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
340 {
341 	return bic->icq.q->elevator->elevator_data;
342 }
343 
344 /**
345  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
346  * @icq: the iocontext queue.
347  */
348 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
349 {
350 	/* bic->icq is the first member, %NULL will convert to %NULL */
351 	return container_of(icq, struct bfq_io_cq, icq);
352 }
353 
354 /**
355  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
356  * @bfqd: the lookup key.
357  * @ioc: the io_context of the process doing I/O.
358  * @q: the request queue.
359  */
360 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
361 					struct io_context *ioc,
362 					struct request_queue *q)
363 {
364 	if (ioc) {
365 		unsigned long flags;
366 		struct bfq_io_cq *icq;
367 
368 		spin_lock_irqsave(q->queue_lock, flags);
369 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
370 		spin_unlock_irqrestore(q->queue_lock, flags);
371 
372 		return icq;
373 	}
374 
375 	return NULL;
376 }
377 
378 /*
379  * Scheduler run of queue, if there are requests pending and no one in the
380  * driver that will restart queueing.
381  */
382 void bfq_schedule_dispatch(struct bfq_data *bfqd)
383 {
384 	if (bfqd->queued != 0) {
385 		bfq_log(bfqd, "schedule dispatch");
386 		blk_mq_run_hw_queues(bfqd->queue, true);
387 	}
388 }
389 
390 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
391 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
392 
393 #define bfq_sample_valid(samples)	((samples) > 80)
394 
395 /*
396  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
397  * We choose the request that is closesr to the head right now.  Distance
398  * behind the head is penalized and only allowed to a certain extent.
399  */
400 static struct request *bfq_choose_req(struct bfq_data *bfqd,
401 				      struct request *rq1,
402 				      struct request *rq2,
403 				      sector_t last)
404 {
405 	sector_t s1, s2, d1 = 0, d2 = 0;
406 	unsigned long back_max;
407 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
408 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
409 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
410 
411 	if (!rq1 || rq1 == rq2)
412 		return rq2;
413 	if (!rq2)
414 		return rq1;
415 
416 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
417 		return rq1;
418 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
419 		return rq2;
420 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
421 		return rq1;
422 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
423 		return rq2;
424 
425 	s1 = blk_rq_pos(rq1);
426 	s2 = blk_rq_pos(rq2);
427 
428 	/*
429 	 * By definition, 1KiB is 2 sectors.
430 	 */
431 	back_max = bfqd->bfq_back_max * 2;
432 
433 	/*
434 	 * Strict one way elevator _except_ in the case where we allow
435 	 * short backward seeks which are biased as twice the cost of a
436 	 * similar forward seek.
437 	 */
438 	if (s1 >= last)
439 		d1 = s1 - last;
440 	else if (s1 + back_max >= last)
441 		d1 = (last - s1) * bfqd->bfq_back_penalty;
442 	else
443 		wrap |= BFQ_RQ1_WRAP;
444 
445 	if (s2 >= last)
446 		d2 = s2 - last;
447 	else if (s2 + back_max >= last)
448 		d2 = (last - s2) * bfqd->bfq_back_penalty;
449 	else
450 		wrap |= BFQ_RQ2_WRAP;
451 
452 	/* Found required data */
453 
454 	/*
455 	 * By doing switch() on the bit mask "wrap" we avoid having to
456 	 * check two variables for all permutations: --> faster!
457 	 */
458 	switch (wrap) {
459 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
460 		if (d1 < d2)
461 			return rq1;
462 		else if (d2 < d1)
463 			return rq2;
464 
465 		if (s1 >= s2)
466 			return rq1;
467 		else
468 			return rq2;
469 
470 	case BFQ_RQ2_WRAP:
471 		return rq1;
472 	case BFQ_RQ1_WRAP:
473 		return rq2;
474 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
475 	default:
476 		/*
477 		 * Since both rqs are wrapped,
478 		 * start with the one that's further behind head
479 		 * (--> only *one* back seek required),
480 		 * since back seek takes more time than forward.
481 		 */
482 		if (s1 <= s2)
483 			return rq1;
484 		else
485 			return rq2;
486 	}
487 }
488 
489 /*
490  * See the comments on bfq_limit_depth for the purpose of
491  * the depths set in the function.
492  */
493 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
494 {
495 	bfqd->sb_shift = bt->sb.shift;
496 
497 	/*
498 	 * In-word depths if no bfq_queue is being weight-raised:
499 	 * leaving 25% of tags only for sync reads.
500 	 *
501 	 * In next formulas, right-shift the value
502 	 * (1U<<bfqd->sb_shift), instead of computing directly
503 	 * (1U<<(bfqd->sb_shift - something)), to be robust against
504 	 * any possible value of bfqd->sb_shift, without having to
505 	 * limit 'something'.
506 	 */
507 	/* no more than 50% of tags for async I/O */
508 	bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
509 	/*
510 	 * no more than 75% of tags for sync writes (25% extra tags
511 	 * w.r.t. async I/O, to prevent async I/O from starving sync
512 	 * writes)
513 	 */
514 	bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
515 
516 	/*
517 	 * In-word depths in case some bfq_queue is being weight-
518 	 * raised: leaving ~63% of tags for sync reads. This is the
519 	 * highest percentage for which, in our tests, application
520 	 * start-up times didn't suffer from any regression due to tag
521 	 * shortage.
522 	 */
523 	/* no more than ~18% of tags for async I/O */
524 	bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
525 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
526 	bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
527 }
528 
529 /*
530  * Async I/O can easily starve sync I/O (both sync reads and sync
531  * writes), by consuming all tags. Similarly, storms of sync writes,
532  * such as those that sync(2) may trigger, can starve sync reads.
533  * Limit depths of async I/O and sync writes so as to counter both
534  * problems.
535  */
536 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
537 {
538 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
539 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
540 	struct sbitmap_queue *bt;
541 
542 	if (op_is_sync(op) && !op_is_write(op))
543 		return;
544 
545 	if (data->flags & BLK_MQ_REQ_RESERVED) {
546 		if (unlikely(!tags->nr_reserved_tags)) {
547 			WARN_ON_ONCE(1);
548 			return;
549 		}
550 		bt = &tags->breserved_tags;
551 	} else
552 		bt = &tags->bitmap_tags;
553 
554 	if (unlikely(bfqd->sb_shift != bt->sb.shift))
555 		bfq_update_depths(bfqd, bt);
556 
557 	data->shallow_depth =
558 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
559 
560 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
561 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
562 			data->shallow_depth);
563 }
564 
565 static struct bfq_queue *
566 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
567 		     sector_t sector, struct rb_node **ret_parent,
568 		     struct rb_node ***rb_link)
569 {
570 	struct rb_node **p, *parent;
571 	struct bfq_queue *bfqq = NULL;
572 
573 	parent = NULL;
574 	p = &root->rb_node;
575 	while (*p) {
576 		struct rb_node **n;
577 
578 		parent = *p;
579 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
580 
581 		/*
582 		 * Sort strictly based on sector. Smallest to the left,
583 		 * largest to the right.
584 		 */
585 		if (sector > blk_rq_pos(bfqq->next_rq))
586 			n = &(*p)->rb_right;
587 		else if (sector < blk_rq_pos(bfqq->next_rq))
588 			n = &(*p)->rb_left;
589 		else
590 			break;
591 		p = n;
592 		bfqq = NULL;
593 	}
594 
595 	*ret_parent = parent;
596 	if (rb_link)
597 		*rb_link = p;
598 
599 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
600 		(unsigned long long)sector,
601 		bfqq ? bfqq->pid : 0);
602 
603 	return bfqq;
604 }
605 
606 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
607 {
608 	return bfqq->service_from_backlogged > 0 &&
609 		time_is_before_jiffies(bfqq->first_IO_time +
610 				       bfq_merge_time_limit);
611 }
612 
613 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
614 {
615 	struct rb_node **p, *parent;
616 	struct bfq_queue *__bfqq;
617 
618 	if (bfqq->pos_root) {
619 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
620 		bfqq->pos_root = NULL;
621 	}
622 
623 	/*
624 	 * bfqq cannot be merged any longer (see comments in
625 	 * bfq_setup_cooperator): no point in adding bfqq into the
626 	 * position tree.
627 	 */
628 	if (bfq_too_late_for_merging(bfqq))
629 		return;
630 
631 	if (bfq_class_idle(bfqq))
632 		return;
633 	if (!bfqq->next_rq)
634 		return;
635 
636 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
637 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
638 			blk_rq_pos(bfqq->next_rq), &parent, &p);
639 	if (!__bfqq) {
640 		rb_link_node(&bfqq->pos_node, parent, p);
641 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
642 	} else
643 		bfqq->pos_root = NULL;
644 }
645 
646 /*
647  * Tell whether there are active queues or groups with differentiated weights.
648  */
649 static bool bfq_differentiated_weights(struct bfq_data *bfqd)
650 {
651 	/*
652 	 * For weights to differ, at least one of the trees must contain
653 	 * at least two nodes.
654 	 */
655 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
656 		(bfqd->queue_weights_tree.rb_node->rb_left ||
657 		 bfqd->queue_weights_tree.rb_node->rb_right)
658 #ifdef CONFIG_BFQ_GROUP_IOSCHED
659 	       ) ||
660 	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
661 		(bfqd->group_weights_tree.rb_node->rb_left ||
662 		 bfqd->group_weights_tree.rb_node->rb_right)
663 #endif
664 	       );
665 }
666 
667 /*
668  * The following function returns true if every queue must receive the
669  * same share of the throughput (this condition is used when deciding
670  * whether idling may be disabled, see the comments in the function
671  * bfq_bfqq_may_idle()).
672  *
673  * Such a scenario occurs when:
674  * 1) all active queues have the same weight,
675  * 2) all active groups at the same level in the groups tree have the same
676  *    weight,
677  * 3) all active groups at the same level in the groups tree have the same
678  *    number of children.
679  *
680  * Unfortunately, keeping the necessary state for evaluating exactly the
681  * above symmetry conditions would be quite complex and time-consuming.
682  * Therefore this function evaluates, instead, the following stronger
683  * sub-conditions, for which it is much easier to maintain the needed
684  * state:
685  * 1) all active queues have the same weight,
686  * 2) all active groups have the same weight,
687  * 3) all active groups have at most one active child each.
688  * In particular, the last two conditions are always true if hierarchical
689  * support and the cgroups interface are not enabled, thus no state needs
690  * to be maintained in this case.
691  */
692 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
693 {
694 	return !bfq_differentiated_weights(bfqd);
695 }
696 
697 /*
698  * If the weight-counter tree passed as input contains no counter for
699  * the weight of the input entity, then add that counter; otherwise just
700  * increment the existing counter.
701  *
702  * Note that weight-counter trees contain few nodes in mostly symmetric
703  * scenarios. For example, if all queues have the same weight, then the
704  * weight-counter tree for the queues may contain at most one node.
705  * This holds even if low_latency is on, because weight-raised queues
706  * are not inserted in the tree.
707  * In most scenarios, the rate at which nodes are created/destroyed
708  * should be low too.
709  */
710 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
711 			  struct rb_root *root)
712 {
713 	struct rb_node **new = &(root->rb_node), *parent = NULL;
714 
715 	/*
716 	 * Do not insert if the entity is already associated with a
717 	 * counter, which happens if:
718 	 *   1) the entity is associated with a queue,
719 	 *   2) a request arrival has caused the queue to become both
720 	 *      non-weight-raised, and hence change its weight, and
721 	 *      backlogged; in this respect, each of the two events
722 	 *      causes an invocation of this function,
723 	 *   3) this is the invocation of this function caused by the
724 	 *      second event. This second invocation is actually useless,
725 	 *      and we handle this fact by exiting immediately. More
726 	 *      efficient or clearer solutions might possibly be adopted.
727 	 */
728 	if (entity->weight_counter)
729 		return;
730 
731 	while (*new) {
732 		struct bfq_weight_counter *__counter = container_of(*new,
733 						struct bfq_weight_counter,
734 						weights_node);
735 		parent = *new;
736 
737 		if (entity->weight == __counter->weight) {
738 			entity->weight_counter = __counter;
739 			goto inc_counter;
740 		}
741 		if (entity->weight < __counter->weight)
742 			new = &((*new)->rb_left);
743 		else
744 			new = &((*new)->rb_right);
745 	}
746 
747 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
748 					 GFP_ATOMIC);
749 
750 	/*
751 	 * In the unlucky event of an allocation failure, we just
752 	 * exit. This will cause the weight of entity to not be
753 	 * considered in bfq_differentiated_weights, which, in its
754 	 * turn, causes the scenario to be deemed wrongly symmetric in
755 	 * case entity's weight would have been the only weight making
756 	 * the scenario asymmetric. On the bright side, no unbalance
757 	 * will however occur when entity becomes inactive again (the
758 	 * invocation of this function is triggered by an activation
759 	 * of entity). In fact, bfq_weights_tree_remove does nothing
760 	 * if !entity->weight_counter.
761 	 */
762 	if (unlikely(!entity->weight_counter))
763 		return;
764 
765 	entity->weight_counter->weight = entity->weight;
766 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
767 	rb_insert_color(&entity->weight_counter->weights_node, root);
768 
769 inc_counter:
770 	entity->weight_counter->num_active++;
771 }
772 
773 /*
774  * Decrement the weight counter associated with the entity, and, if the
775  * counter reaches 0, remove the counter from the tree.
776  * See the comments to the function bfq_weights_tree_add() for considerations
777  * about overhead.
778  */
779 void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
780 			     struct rb_root *root)
781 {
782 	if (!entity->weight_counter)
783 		return;
784 
785 	entity->weight_counter->num_active--;
786 	if (entity->weight_counter->num_active > 0)
787 		goto reset_entity_pointer;
788 
789 	rb_erase(&entity->weight_counter->weights_node, root);
790 	kfree(entity->weight_counter);
791 
792 reset_entity_pointer:
793 	entity->weight_counter = NULL;
794 }
795 
796 /*
797  * Return expired entry, or NULL to just start from scratch in rbtree.
798  */
799 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
800 				      struct request *last)
801 {
802 	struct request *rq;
803 
804 	if (bfq_bfqq_fifo_expire(bfqq))
805 		return NULL;
806 
807 	bfq_mark_bfqq_fifo_expire(bfqq);
808 
809 	rq = rq_entry_fifo(bfqq->fifo.next);
810 
811 	if (rq == last || ktime_get_ns() < rq->fifo_time)
812 		return NULL;
813 
814 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
815 	return rq;
816 }
817 
818 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
819 					struct bfq_queue *bfqq,
820 					struct request *last)
821 {
822 	struct rb_node *rbnext = rb_next(&last->rb_node);
823 	struct rb_node *rbprev = rb_prev(&last->rb_node);
824 	struct request *next, *prev = NULL;
825 
826 	/* Follow expired path, else get first next available. */
827 	next = bfq_check_fifo(bfqq, last);
828 	if (next)
829 		return next;
830 
831 	if (rbprev)
832 		prev = rb_entry_rq(rbprev);
833 
834 	if (rbnext)
835 		next = rb_entry_rq(rbnext);
836 	else {
837 		rbnext = rb_first(&bfqq->sort_list);
838 		if (rbnext && rbnext != &last->rb_node)
839 			next = rb_entry_rq(rbnext);
840 	}
841 
842 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
843 }
844 
845 /* see the definition of bfq_async_charge_factor for details */
846 static unsigned long bfq_serv_to_charge(struct request *rq,
847 					struct bfq_queue *bfqq)
848 {
849 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
850 		return blk_rq_sectors(rq);
851 
852 	/*
853 	 * If there are no weight-raised queues, then amplify service
854 	 * by just the async charge factor; otherwise amplify service
855 	 * by twice the async charge factor, to further reduce latency
856 	 * for weight-raised queues.
857 	 */
858 	if (bfqq->bfqd->wr_busy_queues == 0)
859 		return blk_rq_sectors(rq) * bfq_async_charge_factor;
860 
861 	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
862 }
863 
864 /**
865  * bfq_updated_next_req - update the queue after a new next_rq selection.
866  * @bfqd: the device data the queue belongs to.
867  * @bfqq: the queue to update.
868  *
869  * If the first request of a queue changes we make sure that the queue
870  * has enough budget to serve at least its first request (if the
871  * request has grown).  We do this because if the queue has not enough
872  * budget for its first request, it has to go through two dispatch
873  * rounds to actually get it dispatched.
874  */
875 static void bfq_updated_next_req(struct bfq_data *bfqd,
876 				 struct bfq_queue *bfqq)
877 {
878 	struct bfq_entity *entity = &bfqq->entity;
879 	struct request *next_rq = bfqq->next_rq;
880 	unsigned long new_budget;
881 
882 	if (!next_rq)
883 		return;
884 
885 	if (bfqq == bfqd->in_service_queue)
886 		/*
887 		 * In order not to break guarantees, budgets cannot be
888 		 * changed after an entity has been selected.
889 		 */
890 		return;
891 
892 	new_budget = max_t(unsigned long, bfqq->max_budget,
893 			   bfq_serv_to_charge(next_rq, bfqq));
894 	if (entity->budget != new_budget) {
895 		entity->budget = new_budget;
896 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
897 					 new_budget);
898 		bfq_requeue_bfqq(bfqd, bfqq, false);
899 	}
900 }
901 
902 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
903 {
904 	u64 dur;
905 
906 	if (bfqd->bfq_wr_max_time > 0)
907 		return bfqd->bfq_wr_max_time;
908 
909 	dur = bfqd->RT_prod;
910 	do_div(dur, bfqd->peak_rate);
911 
912 	/*
913 	 * Limit duration between 3 and 13 seconds. Tests show that
914 	 * higher values than 13 seconds often yield the opposite of
915 	 * the desired result, i.e., worsen responsiveness by letting
916 	 * non-interactive and non-soft-real-time applications
917 	 * preserve weight raising for a too long time interval.
918 	 *
919 	 * On the other end, lower values than 3 seconds make it
920 	 * difficult for most interactive tasks to complete their jobs
921 	 * before weight-raising finishes.
922 	 */
923 	if (dur > msecs_to_jiffies(13000))
924 		dur = msecs_to_jiffies(13000);
925 	else if (dur < msecs_to_jiffies(3000))
926 		dur = msecs_to_jiffies(3000);
927 
928 	return dur;
929 }
930 
931 /* switch back from soft real-time to interactive weight raising */
932 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
933 					  struct bfq_data *bfqd)
934 {
935 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
936 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
937 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
938 }
939 
940 static void
941 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
942 		      struct bfq_io_cq *bic, bool bfq_already_existing)
943 {
944 	unsigned int old_wr_coeff = bfqq->wr_coeff;
945 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
946 
947 	if (bic->saved_has_short_ttime)
948 		bfq_mark_bfqq_has_short_ttime(bfqq);
949 	else
950 		bfq_clear_bfqq_has_short_ttime(bfqq);
951 
952 	if (bic->saved_IO_bound)
953 		bfq_mark_bfqq_IO_bound(bfqq);
954 	else
955 		bfq_clear_bfqq_IO_bound(bfqq);
956 
957 	bfqq->ttime = bic->saved_ttime;
958 	bfqq->wr_coeff = bic->saved_wr_coeff;
959 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
960 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
961 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
962 
963 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
964 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
965 				   bfqq->wr_cur_max_time))) {
966 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
967 		    !bfq_bfqq_in_large_burst(bfqq) &&
968 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
969 					     bfq_wr_duration(bfqd))) {
970 			switch_back_to_interactive_wr(bfqq, bfqd);
971 		} else {
972 			bfqq->wr_coeff = 1;
973 			bfq_log_bfqq(bfqq->bfqd, bfqq,
974 				     "resume state: switching off wr");
975 		}
976 	}
977 
978 	/* make sure weight will be updated, however we got here */
979 	bfqq->entity.prio_changed = 1;
980 
981 	if (likely(!busy))
982 		return;
983 
984 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
985 		bfqd->wr_busy_queues++;
986 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
987 		bfqd->wr_busy_queues--;
988 }
989 
990 static int bfqq_process_refs(struct bfq_queue *bfqq)
991 {
992 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
993 }
994 
995 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
996 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
997 {
998 	struct bfq_queue *item;
999 	struct hlist_node *n;
1000 
1001 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1002 		hlist_del_init(&item->burst_list_node);
1003 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1004 	bfqd->burst_size = 1;
1005 	bfqd->burst_parent_entity = bfqq->entity.parent;
1006 }
1007 
1008 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1009 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1010 {
1011 	/* Increment burst size to take into account also bfqq */
1012 	bfqd->burst_size++;
1013 
1014 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1015 		struct bfq_queue *pos, *bfqq_item;
1016 		struct hlist_node *n;
1017 
1018 		/*
1019 		 * Enough queues have been activated shortly after each
1020 		 * other to consider this burst as large.
1021 		 */
1022 		bfqd->large_burst = true;
1023 
1024 		/*
1025 		 * We can now mark all queues in the burst list as
1026 		 * belonging to a large burst.
1027 		 */
1028 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1029 				     burst_list_node)
1030 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1031 		bfq_mark_bfqq_in_large_burst(bfqq);
1032 
1033 		/*
1034 		 * From now on, and until the current burst finishes, any
1035 		 * new queue being activated shortly after the last queue
1036 		 * was inserted in the burst can be immediately marked as
1037 		 * belonging to a large burst. So the burst list is not
1038 		 * needed any more. Remove it.
1039 		 */
1040 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1041 					  burst_list_node)
1042 			hlist_del_init(&pos->burst_list_node);
1043 	} else /*
1044 		* Burst not yet large: add bfqq to the burst list. Do
1045 		* not increment the ref counter for bfqq, because bfqq
1046 		* is removed from the burst list before freeing bfqq
1047 		* in put_queue.
1048 		*/
1049 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1050 }
1051 
1052 /*
1053  * If many queues belonging to the same group happen to be created
1054  * shortly after each other, then the processes associated with these
1055  * queues have typically a common goal. In particular, bursts of queue
1056  * creations are usually caused by services or applications that spawn
1057  * many parallel threads/processes. Examples are systemd during boot,
1058  * or git grep. To help these processes get their job done as soon as
1059  * possible, it is usually better to not grant either weight-raising
1060  * or device idling to their queues.
1061  *
1062  * In this comment we describe, firstly, the reasons why this fact
1063  * holds, and, secondly, the next function, which implements the main
1064  * steps needed to properly mark these queues so that they can then be
1065  * treated in a different way.
1066  *
1067  * The above services or applications benefit mostly from a high
1068  * throughput: the quicker the requests of the activated queues are
1069  * cumulatively served, the sooner the target job of these queues gets
1070  * completed. As a consequence, weight-raising any of these queues,
1071  * which also implies idling the device for it, is almost always
1072  * counterproductive. In most cases it just lowers throughput.
1073  *
1074  * On the other hand, a burst of queue creations may be caused also by
1075  * the start of an application that does not consist of a lot of
1076  * parallel I/O-bound threads. In fact, with a complex application,
1077  * several short processes may need to be executed to start-up the
1078  * application. In this respect, to start an application as quickly as
1079  * possible, the best thing to do is in any case to privilege the I/O
1080  * related to the application with respect to all other
1081  * I/O. Therefore, the best strategy to start as quickly as possible
1082  * an application that causes a burst of queue creations is to
1083  * weight-raise all the queues created during the burst. This is the
1084  * exact opposite of the best strategy for the other type of bursts.
1085  *
1086  * In the end, to take the best action for each of the two cases, the
1087  * two types of bursts need to be distinguished. Fortunately, this
1088  * seems relatively easy, by looking at the sizes of the bursts. In
1089  * particular, we found a threshold such that only bursts with a
1090  * larger size than that threshold are apparently caused by
1091  * services or commands such as systemd or git grep. For brevity,
1092  * hereafter we call just 'large' these bursts. BFQ *does not*
1093  * weight-raise queues whose creation occurs in a large burst. In
1094  * addition, for each of these queues BFQ performs or does not perform
1095  * idling depending on which choice boosts the throughput more. The
1096  * exact choice depends on the device and request pattern at
1097  * hand.
1098  *
1099  * Unfortunately, false positives may occur while an interactive task
1100  * is starting (e.g., an application is being started). The
1101  * consequence is that the queues associated with the task do not
1102  * enjoy weight raising as expected. Fortunately these false positives
1103  * are very rare. They typically occur if some service happens to
1104  * start doing I/O exactly when the interactive task starts.
1105  *
1106  * Turning back to the next function, it implements all the steps
1107  * needed to detect the occurrence of a large burst and to properly
1108  * mark all the queues belonging to it (so that they can then be
1109  * treated in a different way). This goal is achieved by maintaining a
1110  * "burst list" that holds, temporarily, the queues that belong to the
1111  * burst in progress. The list is then used to mark these queues as
1112  * belonging to a large burst if the burst does become large. The main
1113  * steps are the following.
1114  *
1115  * . when the very first queue is created, the queue is inserted into the
1116  *   list (as it could be the first queue in a possible burst)
1117  *
1118  * . if the current burst has not yet become large, and a queue Q that does
1119  *   not yet belong to the burst is activated shortly after the last time
1120  *   at which a new queue entered the burst list, then the function appends
1121  *   Q to the burst list
1122  *
1123  * . if, as a consequence of the previous step, the burst size reaches
1124  *   the large-burst threshold, then
1125  *
1126  *     . all the queues in the burst list are marked as belonging to a
1127  *       large burst
1128  *
1129  *     . the burst list is deleted; in fact, the burst list already served
1130  *       its purpose (keeping temporarily track of the queues in a burst,
1131  *       so as to be able to mark them as belonging to a large burst in the
1132  *       previous sub-step), and now is not needed any more
1133  *
1134  *     . the device enters a large-burst mode
1135  *
1136  * . if a queue Q that does not belong to the burst is created while
1137  *   the device is in large-burst mode and shortly after the last time
1138  *   at which a queue either entered the burst list or was marked as
1139  *   belonging to the current large burst, then Q is immediately marked
1140  *   as belonging to a large burst.
1141  *
1142  * . if a queue Q that does not belong to the burst is created a while
1143  *   later, i.e., not shortly after, than the last time at which a queue
1144  *   either entered the burst list or was marked as belonging to the
1145  *   current large burst, then the current burst is deemed as finished and:
1146  *
1147  *        . the large-burst mode is reset if set
1148  *
1149  *        . the burst list is emptied
1150  *
1151  *        . Q is inserted in the burst list, as Q may be the first queue
1152  *          in a possible new burst (then the burst list contains just Q
1153  *          after this step).
1154  */
1155 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1156 {
1157 	/*
1158 	 * If bfqq is already in the burst list or is part of a large
1159 	 * burst, or finally has just been split, then there is
1160 	 * nothing else to do.
1161 	 */
1162 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1163 	    bfq_bfqq_in_large_burst(bfqq) ||
1164 	    time_is_after_eq_jiffies(bfqq->split_time +
1165 				     msecs_to_jiffies(10)))
1166 		return;
1167 
1168 	/*
1169 	 * If bfqq's creation happens late enough, or bfqq belongs to
1170 	 * a different group than the burst group, then the current
1171 	 * burst is finished, and related data structures must be
1172 	 * reset.
1173 	 *
1174 	 * In this respect, consider the special case where bfqq is
1175 	 * the very first queue created after BFQ is selected for this
1176 	 * device. In this case, last_ins_in_burst and
1177 	 * burst_parent_entity are not yet significant when we get
1178 	 * here. But it is easy to verify that, whether or not the
1179 	 * following condition is true, bfqq will end up being
1180 	 * inserted into the burst list. In particular the list will
1181 	 * happen to contain only bfqq. And this is exactly what has
1182 	 * to happen, as bfqq may be the first queue of the first
1183 	 * burst.
1184 	 */
1185 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1186 	    bfqd->bfq_burst_interval) ||
1187 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1188 		bfqd->large_burst = false;
1189 		bfq_reset_burst_list(bfqd, bfqq);
1190 		goto end;
1191 	}
1192 
1193 	/*
1194 	 * If we get here, then bfqq is being activated shortly after the
1195 	 * last queue. So, if the current burst is also large, we can mark
1196 	 * bfqq as belonging to this large burst immediately.
1197 	 */
1198 	if (bfqd->large_burst) {
1199 		bfq_mark_bfqq_in_large_burst(bfqq);
1200 		goto end;
1201 	}
1202 
1203 	/*
1204 	 * If we get here, then a large-burst state has not yet been
1205 	 * reached, but bfqq is being activated shortly after the last
1206 	 * queue. Then we add bfqq to the burst.
1207 	 */
1208 	bfq_add_to_burst(bfqd, bfqq);
1209 end:
1210 	/*
1211 	 * At this point, bfqq either has been added to the current
1212 	 * burst or has caused the current burst to terminate and a
1213 	 * possible new burst to start. In particular, in the second
1214 	 * case, bfqq has become the first queue in the possible new
1215 	 * burst.  In both cases last_ins_in_burst needs to be moved
1216 	 * forward.
1217 	 */
1218 	bfqd->last_ins_in_burst = jiffies;
1219 }
1220 
1221 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1222 {
1223 	struct bfq_entity *entity = &bfqq->entity;
1224 
1225 	return entity->budget - entity->service;
1226 }
1227 
1228 /*
1229  * If enough samples have been computed, return the current max budget
1230  * stored in bfqd, which is dynamically updated according to the
1231  * estimated disk peak rate; otherwise return the default max budget
1232  */
1233 static int bfq_max_budget(struct bfq_data *bfqd)
1234 {
1235 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1236 		return bfq_default_max_budget;
1237 	else
1238 		return bfqd->bfq_max_budget;
1239 }
1240 
1241 /*
1242  * Return min budget, which is a fraction of the current or default
1243  * max budget (trying with 1/32)
1244  */
1245 static int bfq_min_budget(struct bfq_data *bfqd)
1246 {
1247 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1248 		return bfq_default_max_budget / 32;
1249 	else
1250 		return bfqd->bfq_max_budget / 32;
1251 }
1252 
1253 /*
1254  * The next function, invoked after the input queue bfqq switches from
1255  * idle to busy, updates the budget of bfqq. The function also tells
1256  * whether the in-service queue should be expired, by returning
1257  * true. The purpose of expiring the in-service queue is to give bfqq
1258  * the chance to possibly preempt the in-service queue, and the reason
1259  * for preempting the in-service queue is to achieve one of the two
1260  * goals below.
1261  *
1262  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1263  * expired because it has remained idle. In particular, bfqq may have
1264  * expired for one of the following two reasons:
1265  *
1266  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1267  *   and did not make it to issue a new request before its last
1268  *   request was served;
1269  *
1270  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1271  *   a new request before the expiration of the idling-time.
1272  *
1273  * Even if bfqq has expired for one of the above reasons, the process
1274  * associated with the queue may be however issuing requests greedily,
1275  * and thus be sensitive to the bandwidth it receives (bfqq may have
1276  * remained idle for other reasons: CPU high load, bfqq not enjoying
1277  * idling, I/O throttling somewhere in the path from the process to
1278  * the I/O scheduler, ...). But if, after every expiration for one of
1279  * the above two reasons, bfqq has to wait for the service of at least
1280  * one full budget of another queue before being served again, then
1281  * bfqq is likely to get a much lower bandwidth or resource time than
1282  * its reserved ones. To address this issue, two countermeasures need
1283  * to be taken.
1284  *
1285  * First, the budget and the timestamps of bfqq need to be updated in
1286  * a special way on bfqq reactivation: they need to be updated as if
1287  * bfqq did not remain idle and did not expire. In fact, if they are
1288  * computed as if bfqq expired and remained idle until reactivation,
1289  * then the process associated with bfqq is treated as if, instead of
1290  * being greedy, it stopped issuing requests when bfqq remained idle,
1291  * and restarts issuing requests only on this reactivation. In other
1292  * words, the scheduler does not help the process recover the "service
1293  * hole" between bfqq expiration and reactivation. As a consequence,
1294  * the process receives a lower bandwidth than its reserved one. In
1295  * contrast, to recover this hole, the budget must be updated as if
1296  * bfqq was not expired at all before this reactivation, i.e., it must
1297  * be set to the value of the remaining budget when bfqq was
1298  * expired. Along the same line, timestamps need to be assigned the
1299  * value they had the last time bfqq was selected for service, i.e.,
1300  * before last expiration. Thus timestamps need to be back-shifted
1301  * with respect to their normal computation (see [1] for more details
1302  * on this tricky aspect).
1303  *
1304  * Secondly, to allow the process to recover the hole, the in-service
1305  * queue must be expired too, to give bfqq the chance to preempt it
1306  * immediately. In fact, if bfqq has to wait for a full budget of the
1307  * in-service queue to be completed, then it may become impossible to
1308  * let the process recover the hole, even if the back-shifted
1309  * timestamps of bfqq are lower than those of the in-service queue. If
1310  * this happens for most or all of the holes, then the process may not
1311  * receive its reserved bandwidth. In this respect, it is worth noting
1312  * that, being the service of outstanding requests unpreemptible, a
1313  * little fraction of the holes may however be unrecoverable, thereby
1314  * causing a little loss of bandwidth.
1315  *
1316  * The last important point is detecting whether bfqq does need this
1317  * bandwidth recovery. In this respect, the next function deems the
1318  * process associated with bfqq greedy, and thus allows it to recover
1319  * the hole, if: 1) the process is waiting for the arrival of a new
1320  * request (which implies that bfqq expired for one of the above two
1321  * reasons), and 2) such a request has arrived soon. The first
1322  * condition is controlled through the flag non_blocking_wait_rq,
1323  * while the second through the flag arrived_in_time. If both
1324  * conditions hold, then the function computes the budget in the
1325  * above-described special way, and signals that the in-service queue
1326  * should be expired. Timestamp back-shifting is done later in
1327  * __bfq_activate_entity.
1328  *
1329  * 2. Reduce latency. Even if timestamps are not backshifted to let
1330  * the process associated with bfqq recover a service hole, bfqq may
1331  * however happen to have, after being (re)activated, a lower finish
1332  * timestamp than the in-service queue.	 That is, the next budget of
1333  * bfqq may have to be completed before the one of the in-service
1334  * queue. If this is the case, then preempting the in-service queue
1335  * allows this goal to be achieved, apart from the unpreemptible,
1336  * outstanding requests mentioned above.
1337  *
1338  * Unfortunately, regardless of which of the above two goals one wants
1339  * to achieve, service trees need first to be updated to know whether
1340  * the in-service queue must be preempted. To have service trees
1341  * correctly updated, the in-service queue must be expired and
1342  * rescheduled, and bfqq must be scheduled too. This is one of the
1343  * most costly operations (in future versions, the scheduling
1344  * mechanism may be re-designed in such a way to make it possible to
1345  * know whether preemption is needed without needing to update service
1346  * trees). In addition, queue preemptions almost always cause random
1347  * I/O, and thus loss of throughput. Because of these facts, the next
1348  * function adopts the following simple scheme to avoid both costly
1349  * operations and too frequent preemptions: it requests the expiration
1350  * of the in-service queue (unconditionally) only for queues that need
1351  * to recover a hole, or that either are weight-raised or deserve to
1352  * be weight-raised.
1353  */
1354 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1355 						struct bfq_queue *bfqq,
1356 						bool arrived_in_time,
1357 						bool wr_or_deserves_wr)
1358 {
1359 	struct bfq_entity *entity = &bfqq->entity;
1360 
1361 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1362 		/*
1363 		 * We do not clear the flag non_blocking_wait_rq here, as
1364 		 * the latter is used in bfq_activate_bfqq to signal
1365 		 * that timestamps need to be back-shifted (and is
1366 		 * cleared right after).
1367 		 */
1368 
1369 		/*
1370 		 * In next assignment we rely on that either
1371 		 * entity->service or entity->budget are not updated
1372 		 * on expiration if bfqq is empty (see
1373 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1374 		 * remain unchanged after such an expiration, and the
1375 		 * following statement therefore assigns to
1376 		 * entity->budget the remaining budget on such an
1377 		 * expiration. For clarity, entity->service is not
1378 		 * updated on expiration in any case, and, in normal
1379 		 * operation, is reset only when bfqq is selected for
1380 		 * service (see bfq_get_next_queue).
1381 		 */
1382 		entity->budget = min_t(unsigned long,
1383 				       bfq_bfqq_budget_left(bfqq),
1384 				       bfqq->max_budget);
1385 
1386 		return true;
1387 	}
1388 
1389 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1390 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1391 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1392 	return wr_or_deserves_wr;
1393 }
1394 
1395 /*
1396  * Return the farthest future time instant according to jiffies
1397  * macros.
1398  */
1399 static unsigned long bfq_greatest_from_now(void)
1400 {
1401 	return jiffies + MAX_JIFFY_OFFSET;
1402 }
1403 
1404 /*
1405  * Return the farthest past time instant according to jiffies
1406  * macros.
1407  */
1408 static unsigned long bfq_smallest_from_now(void)
1409 {
1410 	return jiffies - MAX_JIFFY_OFFSET;
1411 }
1412 
1413 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1414 					     struct bfq_queue *bfqq,
1415 					     unsigned int old_wr_coeff,
1416 					     bool wr_or_deserves_wr,
1417 					     bool interactive,
1418 					     bool in_burst,
1419 					     bool soft_rt)
1420 {
1421 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1422 		/* start a weight-raising period */
1423 		if (interactive) {
1424 			bfqq->service_from_wr = 0;
1425 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1426 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1427 		} else {
1428 			/*
1429 			 * No interactive weight raising in progress
1430 			 * here: assign minus infinity to
1431 			 * wr_start_at_switch_to_srt, to make sure
1432 			 * that, at the end of the soft-real-time
1433 			 * weight raising periods that is starting
1434 			 * now, no interactive weight-raising period
1435 			 * may be wrongly considered as still in
1436 			 * progress (and thus actually started by
1437 			 * mistake).
1438 			 */
1439 			bfqq->wr_start_at_switch_to_srt =
1440 				bfq_smallest_from_now();
1441 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1442 				BFQ_SOFTRT_WEIGHT_FACTOR;
1443 			bfqq->wr_cur_max_time =
1444 				bfqd->bfq_wr_rt_max_time;
1445 		}
1446 
1447 		/*
1448 		 * If needed, further reduce budget to make sure it is
1449 		 * close to bfqq's backlog, so as to reduce the
1450 		 * scheduling-error component due to a too large
1451 		 * budget. Do not care about throughput consequences,
1452 		 * but only about latency. Finally, do not assign a
1453 		 * too small budget either, to avoid increasing
1454 		 * latency by causing too frequent expirations.
1455 		 */
1456 		bfqq->entity.budget = min_t(unsigned long,
1457 					    bfqq->entity.budget,
1458 					    2 * bfq_min_budget(bfqd));
1459 	} else if (old_wr_coeff > 1) {
1460 		if (interactive) { /* update wr coeff and duration */
1461 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1462 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1463 		} else if (in_burst)
1464 			bfqq->wr_coeff = 1;
1465 		else if (soft_rt) {
1466 			/*
1467 			 * The application is now or still meeting the
1468 			 * requirements for being deemed soft rt.  We
1469 			 * can then correctly and safely (re)charge
1470 			 * the weight-raising duration for the
1471 			 * application with the weight-raising
1472 			 * duration for soft rt applications.
1473 			 *
1474 			 * In particular, doing this recharge now, i.e.,
1475 			 * before the weight-raising period for the
1476 			 * application finishes, reduces the probability
1477 			 * of the following negative scenario:
1478 			 * 1) the weight of a soft rt application is
1479 			 *    raised at startup (as for any newly
1480 			 *    created application),
1481 			 * 2) since the application is not interactive,
1482 			 *    at a certain time weight-raising is
1483 			 *    stopped for the application,
1484 			 * 3) at that time the application happens to
1485 			 *    still have pending requests, and hence
1486 			 *    is destined to not have a chance to be
1487 			 *    deemed soft rt before these requests are
1488 			 *    completed (see the comments to the
1489 			 *    function bfq_bfqq_softrt_next_start()
1490 			 *    for details on soft rt detection),
1491 			 * 4) these pending requests experience a high
1492 			 *    latency because the application is not
1493 			 *    weight-raised while they are pending.
1494 			 */
1495 			if (bfqq->wr_cur_max_time !=
1496 				bfqd->bfq_wr_rt_max_time) {
1497 				bfqq->wr_start_at_switch_to_srt =
1498 					bfqq->last_wr_start_finish;
1499 
1500 				bfqq->wr_cur_max_time =
1501 					bfqd->bfq_wr_rt_max_time;
1502 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1503 					BFQ_SOFTRT_WEIGHT_FACTOR;
1504 			}
1505 			bfqq->last_wr_start_finish = jiffies;
1506 		}
1507 	}
1508 }
1509 
1510 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1511 					struct bfq_queue *bfqq)
1512 {
1513 	return bfqq->dispatched == 0 &&
1514 		time_is_before_jiffies(
1515 			bfqq->budget_timeout +
1516 			bfqd->bfq_wr_min_idle_time);
1517 }
1518 
1519 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1520 					     struct bfq_queue *bfqq,
1521 					     int old_wr_coeff,
1522 					     struct request *rq,
1523 					     bool *interactive)
1524 {
1525 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1526 		bfqq_wants_to_preempt,
1527 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1528 		/*
1529 		 * See the comments on
1530 		 * bfq_bfqq_update_budg_for_activation for
1531 		 * details on the usage of the next variable.
1532 		 */
1533 		arrived_in_time =  ktime_get_ns() <=
1534 			bfqq->ttime.last_end_request +
1535 			bfqd->bfq_slice_idle * 3;
1536 
1537 
1538 	/*
1539 	 * bfqq deserves to be weight-raised if:
1540 	 * - it is sync,
1541 	 * - it does not belong to a large burst,
1542 	 * - it has been idle for enough time or is soft real-time,
1543 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1544 	 */
1545 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1546 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1547 		!in_burst &&
1548 		time_is_before_jiffies(bfqq->soft_rt_next_start);
1549 	*interactive = !in_burst && idle_for_long_time;
1550 	wr_or_deserves_wr = bfqd->low_latency &&
1551 		(bfqq->wr_coeff > 1 ||
1552 		 (bfq_bfqq_sync(bfqq) &&
1553 		  bfqq->bic && (*interactive || soft_rt)));
1554 
1555 	/*
1556 	 * Using the last flag, update budget and check whether bfqq
1557 	 * may want to preempt the in-service queue.
1558 	 */
1559 	bfqq_wants_to_preempt =
1560 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1561 						    arrived_in_time,
1562 						    wr_or_deserves_wr);
1563 
1564 	/*
1565 	 * If bfqq happened to be activated in a burst, but has been
1566 	 * idle for much more than an interactive queue, then we
1567 	 * assume that, in the overall I/O initiated in the burst, the
1568 	 * I/O associated with bfqq is finished. So bfqq does not need
1569 	 * to be treated as a queue belonging to a burst
1570 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1571 	 * if set, and remove bfqq from the burst list if it's
1572 	 * there. We do not decrement burst_size, because the fact
1573 	 * that bfqq does not need to belong to the burst list any
1574 	 * more does not invalidate the fact that bfqq was created in
1575 	 * a burst.
1576 	 */
1577 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1578 	    idle_for_long_time &&
1579 	    time_is_before_jiffies(
1580 		    bfqq->budget_timeout +
1581 		    msecs_to_jiffies(10000))) {
1582 		hlist_del_init(&bfqq->burst_list_node);
1583 		bfq_clear_bfqq_in_large_burst(bfqq);
1584 	}
1585 
1586 	bfq_clear_bfqq_just_created(bfqq);
1587 
1588 
1589 	if (!bfq_bfqq_IO_bound(bfqq)) {
1590 		if (arrived_in_time) {
1591 			bfqq->requests_within_timer++;
1592 			if (bfqq->requests_within_timer >=
1593 			    bfqd->bfq_requests_within_timer)
1594 				bfq_mark_bfqq_IO_bound(bfqq);
1595 		} else
1596 			bfqq->requests_within_timer = 0;
1597 	}
1598 
1599 	if (bfqd->low_latency) {
1600 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1601 			/* wraparound */
1602 			bfqq->split_time =
1603 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1604 
1605 		if (time_is_before_jiffies(bfqq->split_time +
1606 					   bfqd->bfq_wr_min_idle_time)) {
1607 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1608 							 old_wr_coeff,
1609 							 wr_or_deserves_wr,
1610 							 *interactive,
1611 							 in_burst,
1612 							 soft_rt);
1613 
1614 			if (old_wr_coeff != bfqq->wr_coeff)
1615 				bfqq->entity.prio_changed = 1;
1616 		}
1617 	}
1618 
1619 	bfqq->last_idle_bklogged = jiffies;
1620 	bfqq->service_from_backlogged = 0;
1621 	bfq_clear_bfqq_softrt_update(bfqq);
1622 
1623 	bfq_add_bfqq_busy(bfqd, bfqq);
1624 
1625 	/*
1626 	 * Expire in-service queue only if preemption may be needed
1627 	 * for guarantees. In this respect, the function
1628 	 * next_queue_may_preempt just checks a simple, necessary
1629 	 * condition, and not a sufficient condition based on
1630 	 * timestamps. In fact, for the latter condition to be
1631 	 * evaluated, timestamps would need first to be updated, and
1632 	 * this operation is quite costly (see the comments on the
1633 	 * function bfq_bfqq_update_budg_for_activation).
1634 	 */
1635 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1636 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1637 	    next_queue_may_preempt(bfqd))
1638 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1639 				false, BFQQE_PREEMPTED);
1640 }
1641 
1642 static void bfq_add_request(struct request *rq)
1643 {
1644 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1645 	struct bfq_data *bfqd = bfqq->bfqd;
1646 	struct request *next_rq, *prev;
1647 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1648 	bool interactive = false;
1649 
1650 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1651 	bfqq->queued[rq_is_sync(rq)]++;
1652 	bfqd->queued++;
1653 
1654 	elv_rb_add(&bfqq->sort_list, rq);
1655 
1656 	/*
1657 	 * Check if this request is a better next-serve candidate.
1658 	 */
1659 	prev = bfqq->next_rq;
1660 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1661 	bfqq->next_rq = next_rq;
1662 
1663 	/*
1664 	 * Adjust priority tree position, if next_rq changes.
1665 	 */
1666 	if (prev != bfqq->next_rq)
1667 		bfq_pos_tree_add_move(bfqd, bfqq);
1668 
1669 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1670 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1671 						 rq, &interactive);
1672 	else {
1673 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1674 		    time_is_before_jiffies(
1675 				bfqq->last_wr_start_finish +
1676 				bfqd->bfq_wr_min_inter_arr_async)) {
1677 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1678 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1679 
1680 			bfqd->wr_busy_queues++;
1681 			bfqq->entity.prio_changed = 1;
1682 		}
1683 		if (prev != bfqq->next_rq)
1684 			bfq_updated_next_req(bfqd, bfqq);
1685 	}
1686 
1687 	/*
1688 	 * Assign jiffies to last_wr_start_finish in the following
1689 	 * cases:
1690 	 *
1691 	 * . if bfqq is not going to be weight-raised, because, for
1692 	 *   non weight-raised queues, last_wr_start_finish stores the
1693 	 *   arrival time of the last request; as of now, this piece
1694 	 *   of information is used only for deciding whether to
1695 	 *   weight-raise async queues
1696 	 *
1697 	 * . if bfqq is not weight-raised, because, if bfqq is now
1698 	 *   switching to weight-raised, then last_wr_start_finish
1699 	 *   stores the time when weight-raising starts
1700 	 *
1701 	 * . if bfqq is interactive, because, regardless of whether
1702 	 *   bfqq is currently weight-raised, the weight-raising
1703 	 *   period must start or restart (this case is considered
1704 	 *   separately because it is not detected by the above
1705 	 *   conditions, if bfqq is already weight-raised)
1706 	 *
1707 	 * last_wr_start_finish has to be updated also if bfqq is soft
1708 	 * real-time, because the weight-raising period is constantly
1709 	 * restarted on idle-to-busy transitions for these queues, but
1710 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1711 	 * needed.
1712 	 */
1713 	if (bfqd->low_latency &&
1714 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1715 		bfqq->last_wr_start_finish = jiffies;
1716 }
1717 
1718 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1719 					  struct bio *bio,
1720 					  struct request_queue *q)
1721 {
1722 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1723 
1724 
1725 	if (bfqq)
1726 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1727 
1728 	return NULL;
1729 }
1730 
1731 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1732 {
1733 	if (last_pos)
1734 		return abs(blk_rq_pos(rq) - last_pos);
1735 
1736 	return 0;
1737 }
1738 
1739 #if 0 /* Still not clear if we can do without next two functions */
1740 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1741 {
1742 	struct bfq_data *bfqd = q->elevator->elevator_data;
1743 
1744 	bfqd->rq_in_driver++;
1745 }
1746 
1747 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1748 {
1749 	struct bfq_data *bfqd = q->elevator->elevator_data;
1750 
1751 	bfqd->rq_in_driver--;
1752 }
1753 #endif
1754 
1755 static void bfq_remove_request(struct request_queue *q,
1756 			       struct request *rq)
1757 {
1758 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1759 	struct bfq_data *bfqd = bfqq->bfqd;
1760 	const int sync = rq_is_sync(rq);
1761 
1762 	if (bfqq->next_rq == rq) {
1763 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1764 		bfq_updated_next_req(bfqd, bfqq);
1765 	}
1766 
1767 	if (rq->queuelist.prev != &rq->queuelist)
1768 		list_del_init(&rq->queuelist);
1769 	bfqq->queued[sync]--;
1770 	bfqd->queued--;
1771 	elv_rb_del(&bfqq->sort_list, rq);
1772 
1773 	elv_rqhash_del(q, rq);
1774 	if (q->last_merge == rq)
1775 		q->last_merge = NULL;
1776 
1777 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1778 		bfqq->next_rq = NULL;
1779 
1780 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1781 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1782 			/*
1783 			 * bfqq emptied. In normal operation, when
1784 			 * bfqq is empty, bfqq->entity.service and
1785 			 * bfqq->entity.budget must contain,
1786 			 * respectively, the service received and the
1787 			 * budget used last time bfqq emptied. These
1788 			 * facts do not hold in this case, as at least
1789 			 * this last removal occurred while bfqq is
1790 			 * not in service. To avoid inconsistencies,
1791 			 * reset both bfqq->entity.service and
1792 			 * bfqq->entity.budget, if bfqq has still a
1793 			 * process that may issue I/O requests to it.
1794 			 */
1795 			bfqq->entity.budget = bfqq->entity.service = 0;
1796 		}
1797 
1798 		/*
1799 		 * Remove queue from request-position tree as it is empty.
1800 		 */
1801 		if (bfqq->pos_root) {
1802 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1803 			bfqq->pos_root = NULL;
1804 		}
1805 	} else {
1806 		bfq_pos_tree_add_move(bfqd, bfqq);
1807 	}
1808 
1809 	if (rq->cmd_flags & REQ_META)
1810 		bfqq->meta_pending--;
1811 
1812 }
1813 
1814 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1815 {
1816 	struct request_queue *q = hctx->queue;
1817 	struct bfq_data *bfqd = q->elevator->elevator_data;
1818 	struct request *free = NULL;
1819 	/*
1820 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1821 	 * store its return value for later use, to avoid nesting
1822 	 * queue_lock inside the bfqd->lock. We assume that the bic
1823 	 * returned by bfq_bic_lookup does not go away before
1824 	 * bfqd->lock is taken.
1825 	 */
1826 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1827 	bool ret;
1828 
1829 	spin_lock_irq(&bfqd->lock);
1830 
1831 	if (bic)
1832 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1833 	else
1834 		bfqd->bio_bfqq = NULL;
1835 	bfqd->bio_bic = bic;
1836 
1837 	ret = blk_mq_sched_try_merge(q, bio, &free);
1838 
1839 	if (free)
1840 		blk_mq_free_request(free);
1841 	spin_unlock_irq(&bfqd->lock);
1842 
1843 	return ret;
1844 }
1845 
1846 static int bfq_request_merge(struct request_queue *q, struct request **req,
1847 			     struct bio *bio)
1848 {
1849 	struct bfq_data *bfqd = q->elevator->elevator_data;
1850 	struct request *__rq;
1851 
1852 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1853 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1854 		*req = __rq;
1855 		return ELEVATOR_FRONT_MERGE;
1856 	}
1857 
1858 	return ELEVATOR_NO_MERGE;
1859 }
1860 
1861 static void bfq_request_merged(struct request_queue *q, struct request *req,
1862 			       enum elv_merge type)
1863 {
1864 	if (type == ELEVATOR_FRONT_MERGE &&
1865 	    rb_prev(&req->rb_node) &&
1866 	    blk_rq_pos(req) <
1867 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1868 				    struct request, rb_node))) {
1869 		struct bfq_queue *bfqq = RQ_BFQQ(req);
1870 		struct bfq_data *bfqd = bfqq->bfqd;
1871 		struct request *prev, *next_rq;
1872 
1873 		/* Reposition request in its sort_list */
1874 		elv_rb_del(&bfqq->sort_list, req);
1875 		elv_rb_add(&bfqq->sort_list, req);
1876 
1877 		/* Choose next request to be served for bfqq */
1878 		prev = bfqq->next_rq;
1879 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1880 					 bfqd->last_position);
1881 		bfqq->next_rq = next_rq;
1882 		/*
1883 		 * If next_rq changes, update both the queue's budget to
1884 		 * fit the new request and the queue's position in its
1885 		 * rq_pos_tree.
1886 		 */
1887 		if (prev != bfqq->next_rq) {
1888 			bfq_updated_next_req(bfqd, bfqq);
1889 			bfq_pos_tree_add_move(bfqd, bfqq);
1890 		}
1891 	}
1892 }
1893 
1894 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1895 				struct request *next)
1896 {
1897 	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1898 
1899 	if (!RB_EMPTY_NODE(&rq->rb_node))
1900 		goto end;
1901 	spin_lock_irq(&bfqq->bfqd->lock);
1902 
1903 	/*
1904 	 * If next and rq belong to the same bfq_queue and next is older
1905 	 * than rq, then reposition rq in the fifo (by substituting next
1906 	 * with rq). Otherwise, if next and rq belong to different
1907 	 * bfq_queues, never reposition rq: in fact, we would have to
1908 	 * reposition it with respect to next's position in its own fifo,
1909 	 * which would most certainly be too expensive with respect to
1910 	 * the benefits.
1911 	 */
1912 	if (bfqq == next_bfqq &&
1913 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1914 	    next->fifo_time < rq->fifo_time) {
1915 		list_del_init(&rq->queuelist);
1916 		list_replace_init(&next->queuelist, &rq->queuelist);
1917 		rq->fifo_time = next->fifo_time;
1918 	}
1919 
1920 	if (bfqq->next_rq == next)
1921 		bfqq->next_rq = rq;
1922 
1923 	bfq_remove_request(q, next);
1924 	bfqg_stats_update_io_remove(bfqq_group(bfqq), next->cmd_flags);
1925 
1926 	spin_unlock_irq(&bfqq->bfqd->lock);
1927 end:
1928 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1929 }
1930 
1931 /* Must be called with bfqq != NULL */
1932 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1933 {
1934 	if (bfq_bfqq_busy(bfqq))
1935 		bfqq->bfqd->wr_busy_queues--;
1936 	bfqq->wr_coeff = 1;
1937 	bfqq->wr_cur_max_time = 0;
1938 	bfqq->last_wr_start_finish = jiffies;
1939 	/*
1940 	 * Trigger a weight change on the next invocation of
1941 	 * __bfq_entity_update_weight_prio.
1942 	 */
1943 	bfqq->entity.prio_changed = 1;
1944 }
1945 
1946 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1947 			     struct bfq_group *bfqg)
1948 {
1949 	int i, j;
1950 
1951 	for (i = 0; i < 2; i++)
1952 		for (j = 0; j < IOPRIO_BE_NR; j++)
1953 			if (bfqg->async_bfqq[i][j])
1954 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1955 	if (bfqg->async_idle_bfqq)
1956 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1957 }
1958 
1959 static void bfq_end_wr(struct bfq_data *bfqd)
1960 {
1961 	struct bfq_queue *bfqq;
1962 
1963 	spin_lock_irq(&bfqd->lock);
1964 
1965 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1966 		bfq_bfqq_end_wr(bfqq);
1967 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1968 		bfq_bfqq_end_wr(bfqq);
1969 	bfq_end_wr_async(bfqd);
1970 
1971 	spin_unlock_irq(&bfqd->lock);
1972 }
1973 
1974 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1975 {
1976 	if (request)
1977 		return blk_rq_pos(io_struct);
1978 	else
1979 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
1980 }
1981 
1982 static int bfq_rq_close_to_sector(void *io_struct, bool request,
1983 				  sector_t sector)
1984 {
1985 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1986 	       BFQQ_CLOSE_THR;
1987 }
1988 
1989 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1990 					 struct bfq_queue *bfqq,
1991 					 sector_t sector)
1992 {
1993 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1994 	struct rb_node *parent, *node;
1995 	struct bfq_queue *__bfqq;
1996 
1997 	if (RB_EMPTY_ROOT(root))
1998 		return NULL;
1999 
2000 	/*
2001 	 * First, if we find a request starting at the end of the last
2002 	 * request, choose it.
2003 	 */
2004 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2005 	if (__bfqq)
2006 		return __bfqq;
2007 
2008 	/*
2009 	 * If the exact sector wasn't found, the parent of the NULL leaf
2010 	 * will contain the closest sector (rq_pos_tree sorted by
2011 	 * next_request position).
2012 	 */
2013 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2014 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2015 		return __bfqq;
2016 
2017 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2018 		node = rb_next(&__bfqq->pos_node);
2019 	else
2020 		node = rb_prev(&__bfqq->pos_node);
2021 	if (!node)
2022 		return NULL;
2023 
2024 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2025 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2026 		return __bfqq;
2027 
2028 	return NULL;
2029 }
2030 
2031 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2032 						   struct bfq_queue *cur_bfqq,
2033 						   sector_t sector)
2034 {
2035 	struct bfq_queue *bfqq;
2036 
2037 	/*
2038 	 * We shall notice if some of the queues are cooperating,
2039 	 * e.g., working closely on the same area of the device. In
2040 	 * that case, we can group them together and: 1) don't waste
2041 	 * time idling, and 2) serve the union of their requests in
2042 	 * the best possible order for throughput.
2043 	 */
2044 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2045 	if (!bfqq || bfqq == cur_bfqq)
2046 		return NULL;
2047 
2048 	return bfqq;
2049 }
2050 
2051 static struct bfq_queue *
2052 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2053 {
2054 	int process_refs, new_process_refs;
2055 	struct bfq_queue *__bfqq;
2056 
2057 	/*
2058 	 * If there are no process references on the new_bfqq, then it is
2059 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2060 	 * may have dropped their last reference (not just their last process
2061 	 * reference).
2062 	 */
2063 	if (!bfqq_process_refs(new_bfqq))
2064 		return NULL;
2065 
2066 	/* Avoid a circular list and skip interim queue merges. */
2067 	while ((__bfqq = new_bfqq->new_bfqq)) {
2068 		if (__bfqq == bfqq)
2069 			return NULL;
2070 		new_bfqq = __bfqq;
2071 	}
2072 
2073 	process_refs = bfqq_process_refs(bfqq);
2074 	new_process_refs = bfqq_process_refs(new_bfqq);
2075 	/*
2076 	 * If the process for the bfqq has gone away, there is no
2077 	 * sense in merging the queues.
2078 	 */
2079 	if (process_refs == 0 || new_process_refs == 0)
2080 		return NULL;
2081 
2082 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2083 		new_bfqq->pid);
2084 
2085 	/*
2086 	 * Merging is just a redirection: the requests of the process
2087 	 * owning one of the two queues are redirected to the other queue.
2088 	 * The latter queue, in its turn, is set as shared if this is the
2089 	 * first time that the requests of some process are redirected to
2090 	 * it.
2091 	 *
2092 	 * We redirect bfqq to new_bfqq and not the opposite, because
2093 	 * we are in the context of the process owning bfqq, thus we
2094 	 * have the io_cq of this process. So we can immediately
2095 	 * configure this io_cq to redirect the requests of the
2096 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2097 	 * not available any more (new_bfqq->bic == NULL).
2098 	 *
2099 	 * Anyway, even in case new_bfqq coincides with the in-service
2100 	 * queue, redirecting requests the in-service queue is the
2101 	 * best option, as we feed the in-service queue with new
2102 	 * requests close to the last request served and, by doing so,
2103 	 * are likely to increase the throughput.
2104 	 */
2105 	bfqq->new_bfqq = new_bfqq;
2106 	new_bfqq->ref += process_refs;
2107 	return new_bfqq;
2108 }
2109 
2110 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2111 					struct bfq_queue *new_bfqq)
2112 {
2113 	if (bfq_too_late_for_merging(new_bfqq))
2114 		return false;
2115 
2116 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2117 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2118 		return false;
2119 
2120 	/*
2121 	 * If either of the queues has already been detected as seeky,
2122 	 * then merging it with the other queue is unlikely to lead to
2123 	 * sequential I/O.
2124 	 */
2125 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2126 		return false;
2127 
2128 	/*
2129 	 * Interleaved I/O is known to be done by (some) applications
2130 	 * only for reads, so it does not make sense to merge async
2131 	 * queues.
2132 	 */
2133 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2134 		return false;
2135 
2136 	return true;
2137 }
2138 
2139 /*
2140  * Attempt to schedule a merge of bfqq with the currently in-service
2141  * queue or with a close queue among the scheduled queues.  Return
2142  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2143  * structure otherwise.
2144  *
2145  * The OOM queue is not allowed to participate to cooperation: in fact, since
2146  * the requests temporarily redirected to the OOM queue could be redirected
2147  * again to dedicated queues at any time, the state needed to correctly
2148  * handle merging with the OOM queue would be quite complex and expensive
2149  * to maintain. Besides, in such a critical condition as an out of memory,
2150  * the benefits of queue merging may be little relevant, or even negligible.
2151  *
2152  * WARNING: queue merging may impair fairness among non-weight raised
2153  * queues, for at least two reasons: 1) the original weight of a
2154  * merged queue may change during the merged state, 2) even being the
2155  * weight the same, a merged queue may be bloated with many more
2156  * requests than the ones produced by its originally-associated
2157  * process.
2158  */
2159 static struct bfq_queue *
2160 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2161 		     void *io_struct, bool request)
2162 {
2163 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2164 
2165 	/*
2166 	 * Prevent bfqq from being merged if it has been created too
2167 	 * long ago. The idea is that true cooperating processes, and
2168 	 * thus their associated bfq_queues, are supposed to be
2169 	 * created shortly after each other. This is the case, e.g.,
2170 	 * for KVM/QEMU and dump I/O threads. Basing on this
2171 	 * assumption, the following filtering greatly reduces the
2172 	 * probability that two non-cooperating processes, which just
2173 	 * happen to do close I/O for some short time interval, have
2174 	 * their queues merged by mistake.
2175 	 */
2176 	if (bfq_too_late_for_merging(bfqq))
2177 		return NULL;
2178 
2179 	if (bfqq->new_bfqq)
2180 		return bfqq->new_bfqq;
2181 
2182 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2183 		return NULL;
2184 
2185 	/* If there is only one backlogged queue, don't search. */
2186 	if (bfqd->busy_queues == 1)
2187 		return NULL;
2188 
2189 	in_service_bfqq = bfqd->in_service_queue;
2190 
2191 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2192 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2193 	    bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
2194 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2195 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2196 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2197 		if (new_bfqq)
2198 			return new_bfqq;
2199 	}
2200 	/*
2201 	 * Check whether there is a cooperator among currently scheduled
2202 	 * queues. The only thing we need is that the bio/request is not
2203 	 * NULL, as we need it to establish whether a cooperator exists.
2204 	 */
2205 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2206 			bfq_io_struct_pos(io_struct, request));
2207 
2208 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2209 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2210 		return bfq_setup_merge(bfqq, new_bfqq);
2211 
2212 	return NULL;
2213 }
2214 
2215 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2216 {
2217 	struct bfq_io_cq *bic = bfqq->bic;
2218 
2219 	/*
2220 	 * If !bfqq->bic, the queue is already shared or its requests
2221 	 * have already been redirected to a shared queue; both idle window
2222 	 * and weight raising state have already been saved. Do nothing.
2223 	 */
2224 	if (!bic)
2225 		return;
2226 
2227 	bic->saved_ttime = bfqq->ttime;
2228 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2229 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2230 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2231 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2232 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2233 		     !bfq_bfqq_in_large_burst(bfqq) &&
2234 		     bfqq->bfqd->low_latency)) {
2235 		/*
2236 		 * bfqq being merged right after being created: bfqq
2237 		 * would have deserved interactive weight raising, but
2238 		 * did not make it to be set in a weight-raised state,
2239 		 * because of this early merge.	Store directly the
2240 		 * weight-raising state that would have been assigned
2241 		 * to bfqq, so that to avoid that bfqq unjustly fails
2242 		 * to enjoy weight raising if split soon.
2243 		 */
2244 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2245 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2246 		bic->saved_last_wr_start_finish = jiffies;
2247 	} else {
2248 		bic->saved_wr_coeff = bfqq->wr_coeff;
2249 		bic->saved_wr_start_at_switch_to_srt =
2250 			bfqq->wr_start_at_switch_to_srt;
2251 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2252 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2253 	}
2254 }
2255 
2256 static void
2257 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2258 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2259 {
2260 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2261 		(unsigned long)new_bfqq->pid);
2262 	/* Save weight raising and idle window of the merged queues */
2263 	bfq_bfqq_save_state(bfqq);
2264 	bfq_bfqq_save_state(new_bfqq);
2265 	if (bfq_bfqq_IO_bound(bfqq))
2266 		bfq_mark_bfqq_IO_bound(new_bfqq);
2267 	bfq_clear_bfqq_IO_bound(bfqq);
2268 
2269 	/*
2270 	 * If bfqq is weight-raised, then let new_bfqq inherit
2271 	 * weight-raising. To reduce false positives, neglect the case
2272 	 * where bfqq has just been created, but has not yet made it
2273 	 * to be weight-raised (which may happen because EQM may merge
2274 	 * bfqq even before bfq_add_request is executed for the first
2275 	 * time for bfqq). Handling this case would however be very
2276 	 * easy, thanks to the flag just_created.
2277 	 */
2278 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2279 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2280 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2281 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2282 		new_bfqq->wr_start_at_switch_to_srt =
2283 			bfqq->wr_start_at_switch_to_srt;
2284 		if (bfq_bfqq_busy(new_bfqq))
2285 			bfqd->wr_busy_queues++;
2286 		new_bfqq->entity.prio_changed = 1;
2287 	}
2288 
2289 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2290 		bfqq->wr_coeff = 1;
2291 		bfqq->entity.prio_changed = 1;
2292 		if (bfq_bfqq_busy(bfqq))
2293 			bfqd->wr_busy_queues--;
2294 	}
2295 
2296 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2297 		     bfqd->wr_busy_queues);
2298 
2299 	/*
2300 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2301 	 */
2302 	bic_set_bfqq(bic, new_bfqq, 1);
2303 	bfq_mark_bfqq_coop(new_bfqq);
2304 	/*
2305 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2306 	 * set new_bfqq->bic to NULL. bfqq either:
2307 	 * - does not belong to any bic any more, and hence bfqq->bic must
2308 	 *   be set to NULL, or
2309 	 * - is a queue whose owning bics have already been redirected to a
2310 	 *   different queue, hence the queue is destined to not belong to
2311 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2312 	 *   assignment causes no harm).
2313 	 */
2314 	new_bfqq->bic = NULL;
2315 	bfqq->bic = NULL;
2316 	/* release process reference to bfqq */
2317 	bfq_put_queue(bfqq);
2318 }
2319 
2320 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2321 				struct bio *bio)
2322 {
2323 	struct bfq_data *bfqd = q->elevator->elevator_data;
2324 	bool is_sync = op_is_sync(bio->bi_opf);
2325 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2326 
2327 	/*
2328 	 * Disallow merge of a sync bio into an async request.
2329 	 */
2330 	if (is_sync && !rq_is_sync(rq))
2331 		return false;
2332 
2333 	/*
2334 	 * Lookup the bfqq that this bio will be queued with. Allow
2335 	 * merge only if rq is queued there.
2336 	 */
2337 	if (!bfqq)
2338 		return false;
2339 
2340 	/*
2341 	 * We take advantage of this function to perform an early merge
2342 	 * of the queues of possible cooperating processes.
2343 	 */
2344 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2345 	if (new_bfqq) {
2346 		/*
2347 		 * bic still points to bfqq, then it has not yet been
2348 		 * redirected to some other bfq_queue, and a queue
2349 		 * merge beween bfqq and new_bfqq can be safely
2350 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2351 		 * and bfqq can be put.
2352 		 */
2353 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2354 				new_bfqq);
2355 		/*
2356 		 * If we get here, bio will be queued into new_queue,
2357 		 * so use new_bfqq to decide whether bio and rq can be
2358 		 * merged.
2359 		 */
2360 		bfqq = new_bfqq;
2361 
2362 		/*
2363 		 * Change also bqfd->bio_bfqq, as
2364 		 * bfqd->bio_bic now points to new_bfqq, and
2365 		 * this function may be invoked again (and then may
2366 		 * use again bqfd->bio_bfqq).
2367 		 */
2368 		bfqd->bio_bfqq = bfqq;
2369 	}
2370 
2371 	return bfqq == RQ_BFQQ(rq);
2372 }
2373 
2374 /*
2375  * Set the maximum time for the in-service queue to consume its
2376  * budget. This prevents seeky processes from lowering the throughput.
2377  * In practice, a time-slice service scheme is used with seeky
2378  * processes.
2379  */
2380 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2381 				   struct bfq_queue *bfqq)
2382 {
2383 	unsigned int timeout_coeff;
2384 
2385 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2386 		timeout_coeff = 1;
2387 	else
2388 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2389 
2390 	bfqd->last_budget_start = ktime_get();
2391 
2392 	bfqq->budget_timeout = jiffies +
2393 		bfqd->bfq_timeout * timeout_coeff;
2394 }
2395 
2396 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2397 				       struct bfq_queue *bfqq)
2398 {
2399 	if (bfqq) {
2400 		bfq_clear_bfqq_fifo_expire(bfqq);
2401 
2402 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2403 
2404 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2405 		    bfqq->wr_coeff > 1 &&
2406 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2407 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2408 			/*
2409 			 * For soft real-time queues, move the start
2410 			 * of the weight-raising period forward by the
2411 			 * time the queue has not received any
2412 			 * service. Otherwise, a relatively long
2413 			 * service delay is likely to cause the
2414 			 * weight-raising period of the queue to end,
2415 			 * because of the short duration of the
2416 			 * weight-raising period of a soft real-time
2417 			 * queue.  It is worth noting that this move
2418 			 * is not so dangerous for the other queues,
2419 			 * because soft real-time queues are not
2420 			 * greedy.
2421 			 *
2422 			 * To not add a further variable, we use the
2423 			 * overloaded field budget_timeout to
2424 			 * determine for how long the queue has not
2425 			 * received service, i.e., how much time has
2426 			 * elapsed since the queue expired. However,
2427 			 * this is a little imprecise, because
2428 			 * budget_timeout is set to jiffies if bfqq
2429 			 * not only expires, but also remains with no
2430 			 * request.
2431 			 */
2432 			if (time_after(bfqq->budget_timeout,
2433 				       bfqq->last_wr_start_finish))
2434 				bfqq->last_wr_start_finish +=
2435 					jiffies - bfqq->budget_timeout;
2436 			else
2437 				bfqq->last_wr_start_finish = jiffies;
2438 		}
2439 
2440 		bfq_set_budget_timeout(bfqd, bfqq);
2441 		bfq_log_bfqq(bfqd, bfqq,
2442 			     "set_in_service_queue, cur-budget = %d",
2443 			     bfqq->entity.budget);
2444 	}
2445 
2446 	bfqd->in_service_queue = bfqq;
2447 }
2448 
2449 /*
2450  * Get and set a new queue for service.
2451  */
2452 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2453 {
2454 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2455 
2456 	__bfq_set_in_service_queue(bfqd, bfqq);
2457 	return bfqq;
2458 }
2459 
2460 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2461 {
2462 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2463 	u32 sl;
2464 
2465 	bfq_mark_bfqq_wait_request(bfqq);
2466 
2467 	/*
2468 	 * We don't want to idle for seeks, but we do want to allow
2469 	 * fair distribution of slice time for a process doing back-to-back
2470 	 * seeks. So allow a little bit of time for him to submit a new rq.
2471 	 */
2472 	sl = bfqd->bfq_slice_idle;
2473 	/*
2474 	 * Unless the queue is being weight-raised or the scenario is
2475 	 * asymmetric, grant only minimum idle time if the queue
2476 	 * is seeky. A long idling is preserved for a weight-raised
2477 	 * queue, or, more in general, in an asymmetric scenario,
2478 	 * because a long idling is needed for guaranteeing to a queue
2479 	 * its reserved share of the throughput (in particular, it is
2480 	 * needed if the queue has a higher weight than some other
2481 	 * queue).
2482 	 */
2483 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2484 	    bfq_symmetric_scenario(bfqd))
2485 		sl = min_t(u64, sl, BFQ_MIN_TT);
2486 
2487 	bfqd->last_idling_start = ktime_get();
2488 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2489 		      HRTIMER_MODE_REL);
2490 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2491 }
2492 
2493 /*
2494  * In autotuning mode, max_budget is dynamically recomputed as the
2495  * amount of sectors transferred in timeout at the estimated peak
2496  * rate. This enables BFQ to utilize a full timeslice with a full
2497  * budget, even if the in-service queue is served at peak rate. And
2498  * this maximises throughput with sequential workloads.
2499  */
2500 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2501 {
2502 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2503 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2504 }
2505 
2506 /*
2507  * Update parameters related to throughput and responsiveness, as a
2508  * function of the estimated peak rate. See comments on
2509  * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2510  */
2511 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2512 {
2513 	int dev_type = blk_queue_nonrot(bfqd->queue);
2514 
2515 	if (bfqd->bfq_user_max_budget == 0)
2516 		bfqd->bfq_max_budget =
2517 			bfq_calc_max_budget(bfqd);
2518 
2519 	if (bfqd->device_speed == BFQ_BFQD_FAST &&
2520 	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
2521 		bfqd->device_speed = BFQ_BFQD_SLOW;
2522 		bfqd->RT_prod = R_slow[dev_type] *
2523 			T_slow[dev_type];
2524 	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2525 		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
2526 		bfqd->device_speed = BFQ_BFQD_FAST;
2527 		bfqd->RT_prod = R_fast[dev_type] *
2528 			T_fast[dev_type];
2529 	}
2530 
2531 	bfq_log(bfqd,
2532 "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2533 		dev_type == 0 ? "ROT" : "NONROT",
2534 		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2535 		bfqd->device_speed == BFQ_BFQD_FAST ?
2536 		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2537 		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2538 		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2539 		BFQ_RATE_SHIFT);
2540 }
2541 
2542 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2543 				       struct request *rq)
2544 {
2545 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2546 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2547 		bfqd->peak_rate_samples = 1;
2548 		bfqd->sequential_samples = 0;
2549 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2550 			blk_rq_sectors(rq);
2551 	} else /* no new rq dispatched, just reset the number of samples */
2552 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2553 
2554 	bfq_log(bfqd,
2555 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2556 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2557 		bfqd->tot_sectors_dispatched);
2558 }
2559 
2560 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2561 {
2562 	u32 rate, weight, divisor;
2563 
2564 	/*
2565 	 * For the convergence property to hold (see comments on
2566 	 * bfq_update_peak_rate()) and for the assessment to be
2567 	 * reliable, a minimum number of samples must be present, and
2568 	 * a minimum amount of time must have elapsed. If not so, do
2569 	 * not compute new rate. Just reset parameters, to get ready
2570 	 * for a new evaluation attempt.
2571 	 */
2572 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2573 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2574 		goto reset_computation;
2575 
2576 	/*
2577 	 * If a new request completion has occurred after last
2578 	 * dispatch, then, to approximate the rate at which requests
2579 	 * have been served by the device, it is more precise to
2580 	 * extend the observation interval to the last completion.
2581 	 */
2582 	bfqd->delta_from_first =
2583 		max_t(u64, bfqd->delta_from_first,
2584 		      bfqd->last_completion - bfqd->first_dispatch);
2585 
2586 	/*
2587 	 * Rate computed in sects/usec, and not sects/nsec, for
2588 	 * precision issues.
2589 	 */
2590 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2591 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2592 
2593 	/*
2594 	 * Peak rate not updated if:
2595 	 * - the percentage of sequential dispatches is below 3/4 of the
2596 	 *   total, and rate is below the current estimated peak rate
2597 	 * - rate is unreasonably high (> 20M sectors/sec)
2598 	 */
2599 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2600 	     rate <= bfqd->peak_rate) ||
2601 		rate > 20<<BFQ_RATE_SHIFT)
2602 		goto reset_computation;
2603 
2604 	/*
2605 	 * We have to update the peak rate, at last! To this purpose,
2606 	 * we use a low-pass filter. We compute the smoothing constant
2607 	 * of the filter as a function of the 'weight' of the new
2608 	 * measured rate.
2609 	 *
2610 	 * As can be seen in next formulas, we define this weight as a
2611 	 * quantity proportional to how sequential the workload is,
2612 	 * and to how long the observation time interval is.
2613 	 *
2614 	 * The weight runs from 0 to 8. The maximum value of the
2615 	 * weight, 8, yields the minimum value for the smoothing
2616 	 * constant. At this minimum value for the smoothing constant,
2617 	 * the measured rate contributes for half of the next value of
2618 	 * the estimated peak rate.
2619 	 *
2620 	 * So, the first step is to compute the weight as a function
2621 	 * of how sequential the workload is. Note that the weight
2622 	 * cannot reach 9, because bfqd->sequential_samples cannot
2623 	 * become equal to bfqd->peak_rate_samples, which, in its
2624 	 * turn, holds true because bfqd->sequential_samples is not
2625 	 * incremented for the first sample.
2626 	 */
2627 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2628 
2629 	/*
2630 	 * Second step: further refine the weight as a function of the
2631 	 * duration of the observation interval.
2632 	 */
2633 	weight = min_t(u32, 8,
2634 		       div_u64(weight * bfqd->delta_from_first,
2635 			       BFQ_RATE_REF_INTERVAL));
2636 
2637 	/*
2638 	 * Divisor ranging from 10, for minimum weight, to 2, for
2639 	 * maximum weight.
2640 	 */
2641 	divisor = 10 - weight;
2642 
2643 	/*
2644 	 * Finally, update peak rate:
2645 	 *
2646 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2647 	 */
2648 	bfqd->peak_rate *= divisor-1;
2649 	bfqd->peak_rate /= divisor;
2650 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2651 
2652 	bfqd->peak_rate += rate;
2653 
2654 	/*
2655 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2656 	 * the minimum representable values reported in the comments
2657 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2658 	 * divisions by zero where bfqd->peak_rate is used as a
2659 	 * divisor.
2660 	 */
2661 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2662 
2663 	update_thr_responsiveness_params(bfqd);
2664 
2665 reset_computation:
2666 	bfq_reset_rate_computation(bfqd, rq);
2667 }
2668 
2669 /*
2670  * Update the read/write peak rate (the main quantity used for
2671  * auto-tuning, see update_thr_responsiveness_params()).
2672  *
2673  * It is not trivial to estimate the peak rate (correctly): because of
2674  * the presence of sw and hw queues between the scheduler and the
2675  * device components that finally serve I/O requests, it is hard to
2676  * say exactly when a given dispatched request is served inside the
2677  * device, and for how long. As a consequence, it is hard to know
2678  * precisely at what rate a given set of requests is actually served
2679  * by the device.
2680  *
2681  * On the opposite end, the dispatch time of any request is trivially
2682  * available, and, from this piece of information, the "dispatch rate"
2683  * of requests can be immediately computed. So, the idea in the next
2684  * function is to use what is known, namely request dispatch times
2685  * (plus, when useful, request completion times), to estimate what is
2686  * unknown, namely in-device request service rate.
2687  *
2688  * The main issue is that, because of the above facts, the rate at
2689  * which a certain set of requests is dispatched over a certain time
2690  * interval can vary greatly with respect to the rate at which the
2691  * same requests are then served. But, since the size of any
2692  * intermediate queue is limited, and the service scheme is lossless
2693  * (no request is silently dropped), the following obvious convergence
2694  * property holds: the number of requests dispatched MUST become
2695  * closer and closer to the number of requests completed as the
2696  * observation interval grows. This is the key property used in
2697  * the next function to estimate the peak service rate as a function
2698  * of the observed dispatch rate. The function assumes to be invoked
2699  * on every request dispatch.
2700  */
2701 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2702 {
2703 	u64 now_ns = ktime_get_ns();
2704 
2705 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2706 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2707 			bfqd->peak_rate_samples);
2708 		bfq_reset_rate_computation(bfqd, rq);
2709 		goto update_last_values; /* will add one sample */
2710 	}
2711 
2712 	/*
2713 	 * Device idle for very long: the observation interval lasting
2714 	 * up to this dispatch cannot be a valid observation interval
2715 	 * for computing a new peak rate (similarly to the late-
2716 	 * completion event in bfq_completed_request()). Go to
2717 	 * update_rate_and_reset to have the following three steps
2718 	 * taken:
2719 	 * - close the observation interval at the last (previous)
2720 	 *   request dispatch or completion
2721 	 * - compute rate, if possible, for that observation interval
2722 	 * - start a new observation interval with this dispatch
2723 	 */
2724 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2725 	    bfqd->rq_in_driver == 0)
2726 		goto update_rate_and_reset;
2727 
2728 	/* Update sampling information */
2729 	bfqd->peak_rate_samples++;
2730 
2731 	if ((bfqd->rq_in_driver > 0 ||
2732 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2733 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2734 		bfqd->sequential_samples++;
2735 
2736 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2737 
2738 	/* Reset max observed rq size every 32 dispatches */
2739 	if (likely(bfqd->peak_rate_samples % 32))
2740 		bfqd->last_rq_max_size =
2741 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2742 	else
2743 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2744 
2745 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2746 
2747 	/* Target observation interval not yet reached, go on sampling */
2748 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2749 		goto update_last_values;
2750 
2751 update_rate_and_reset:
2752 	bfq_update_rate_reset(bfqd, rq);
2753 update_last_values:
2754 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2755 	bfqd->last_dispatch = now_ns;
2756 }
2757 
2758 /*
2759  * Remove request from internal lists.
2760  */
2761 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2762 {
2763 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2764 
2765 	/*
2766 	 * For consistency, the next instruction should have been
2767 	 * executed after removing the request from the queue and
2768 	 * dispatching it.  We execute instead this instruction before
2769 	 * bfq_remove_request() (and hence introduce a temporary
2770 	 * inconsistency), for efficiency.  In fact, should this
2771 	 * dispatch occur for a non in-service bfqq, this anticipated
2772 	 * increment prevents two counters related to bfqq->dispatched
2773 	 * from risking to be, first, uselessly decremented, and then
2774 	 * incremented again when the (new) value of bfqq->dispatched
2775 	 * happens to be taken into account.
2776 	 */
2777 	bfqq->dispatched++;
2778 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2779 
2780 	bfq_remove_request(q, rq);
2781 }
2782 
2783 static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2784 {
2785 	/*
2786 	 * If this bfqq is shared between multiple processes, check
2787 	 * to make sure that those processes are still issuing I/Os
2788 	 * within the mean seek distance. If not, it may be time to
2789 	 * break the queues apart again.
2790 	 */
2791 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2792 		bfq_mark_bfqq_split_coop(bfqq);
2793 
2794 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2795 		if (bfqq->dispatched == 0)
2796 			/*
2797 			 * Overloading budget_timeout field to store
2798 			 * the time at which the queue remains with no
2799 			 * backlog and no outstanding request; used by
2800 			 * the weight-raising mechanism.
2801 			 */
2802 			bfqq->budget_timeout = jiffies;
2803 
2804 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2805 	} else {
2806 		bfq_requeue_bfqq(bfqd, bfqq, true);
2807 		/*
2808 		 * Resort priority tree of potential close cooperators.
2809 		 */
2810 		bfq_pos_tree_add_move(bfqd, bfqq);
2811 	}
2812 
2813 	/*
2814 	 * All in-service entities must have been properly deactivated
2815 	 * or requeued before executing the next function, which
2816 	 * resets all in-service entites as no more in service.
2817 	 */
2818 	__bfq_bfqd_reset_in_service(bfqd);
2819 }
2820 
2821 /**
2822  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2823  * @bfqd: device data.
2824  * @bfqq: queue to update.
2825  * @reason: reason for expiration.
2826  *
2827  * Handle the feedback on @bfqq budget at queue expiration.
2828  * See the body for detailed comments.
2829  */
2830 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2831 				     struct bfq_queue *bfqq,
2832 				     enum bfqq_expiration reason)
2833 {
2834 	struct request *next_rq;
2835 	int budget, min_budget;
2836 
2837 	min_budget = bfq_min_budget(bfqd);
2838 
2839 	if (bfqq->wr_coeff == 1)
2840 		budget = bfqq->max_budget;
2841 	else /*
2842 	      * Use a constant, low budget for weight-raised queues,
2843 	      * to help achieve a low latency. Keep it slightly higher
2844 	      * than the minimum possible budget, to cause a little
2845 	      * bit fewer expirations.
2846 	      */
2847 		budget = 2 * min_budget;
2848 
2849 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2850 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2851 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2852 		budget, bfq_min_budget(bfqd));
2853 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2854 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2855 
2856 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2857 		switch (reason) {
2858 		/*
2859 		 * Caveat: in all the following cases we trade latency
2860 		 * for throughput.
2861 		 */
2862 		case BFQQE_TOO_IDLE:
2863 			/*
2864 			 * This is the only case where we may reduce
2865 			 * the budget: if there is no request of the
2866 			 * process still waiting for completion, then
2867 			 * we assume (tentatively) that the timer has
2868 			 * expired because the batch of requests of
2869 			 * the process could have been served with a
2870 			 * smaller budget.  Hence, betting that
2871 			 * process will behave in the same way when it
2872 			 * becomes backlogged again, we reduce its
2873 			 * next budget.  As long as we guess right,
2874 			 * this budget cut reduces the latency
2875 			 * experienced by the process.
2876 			 *
2877 			 * However, if there are still outstanding
2878 			 * requests, then the process may have not yet
2879 			 * issued its next request just because it is
2880 			 * still waiting for the completion of some of
2881 			 * the still outstanding ones.  So in this
2882 			 * subcase we do not reduce its budget, on the
2883 			 * contrary we increase it to possibly boost
2884 			 * the throughput, as discussed in the
2885 			 * comments to the BUDGET_TIMEOUT case.
2886 			 */
2887 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2888 				budget = min(budget * 2, bfqd->bfq_max_budget);
2889 			else {
2890 				if (budget > 5 * min_budget)
2891 					budget -= 4 * min_budget;
2892 				else
2893 					budget = min_budget;
2894 			}
2895 			break;
2896 		case BFQQE_BUDGET_TIMEOUT:
2897 			/*
2898 			 * We double the budget here because it gives
2899 			 * the chance to boost the throughput if this
2900 			 * is not a seeky process (and has bumped into
2901 			 * this timeout because of, e.g., ZBR).
2902 			 */
2903 			budget = min(budget * 2, bfqd->bfq_max_budget);
2904 			break;
2905 		case BFQQE_BUDGET_EXHAUSTED:
2906 			/*
2907 			 * The process still has backlog, and did not
2908 			 * let either the budget timeout or the disk
2909 			 * idling timeout expire. Hence it is not
2910 			 * seeky, has a short thinktime and may be
2911 			 * happy with a higher budget too. So
2912 			 * definitely increase the budget of this good
2913 			 * candidate to boost the disk throughput.
2914 			 */
2915 			budget = min(budget * 4, bfqd->bfq_max_budget);
2916 			break;
2917 		case BFQQE_NO_MORE_REQUESTS:
2918 			/*
2919 			 * For queues that expire for this reason, it
2920 			 * is particularly important to keep the
2921 			 * budget close to the actual service they
2922 			 * need. Doing so reduces the timestamp
2923 			 * misalignment problem described in the
2924 			 * comments in the body of
2925 			 * __bfq_activate_entity. In fact, suppose
2926 			 * that a queue systematically expires for
2927 			 * BFQQE_NO_MORE_REQUESTS and presents a
2928 			 * new request in time to enjoy timestamp
2929 			 * back-shifting. The larger the budget of the
2930 			 * queue is with respect to the service the
2931 			 * queue actually requests in each service
2932 			 * slot, the more times the queue can be
2933 			 * reactivated with the same virtual finish
2934 			 * time. It follows that, even if this finish
2935 			 * time is pushed to the system virtual time
2936 			 * to reduce the consequent timestamp
2937 			 * misalignment, the queue unjustly enjoys for
2938 			 * many re-activations a lower finish time
2939 			 * than all newly activated queues.
2940 			 *
2941 			 * The service needed by bfqq is measured
2942 			 * quite precisely by bfqq->entity.service.
2943 			 * Since bfqq does not enjoy device idling,
2944 			 * bfqq->entity.service is equal to the number
2945 			 * of sectors that the process associated with
2946 			 * bfqq requested to read/write before waiting
2947 			 * for request completions, or blocking for
2948 			 * other reasons.
2949 			 */
2950 			budget = max_t(int, bfqq->entity.service, min_budget);
2951 			break;
2952 		default:
2953 			return;
2954 		}
2955 	} else if (!bfq_bfqq_sync(bfqq)) {
2956 		/*
2957 		 * Async queues get always the maximum possible
2958 		 * budget, as for them we do not care about latency
2959 		 * (in addition, their ability to dispatch is limited
2960 		 * by the charging factor).
2961 		 */
2962 		budget = bfqd->bfq_max_budget;
2963 	}
2964 
2965 	bfqq->max_budget = budget;
2966 
2967 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2968 	    !bfqd->bfq_user_max_budget)
2969 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2970 
2971 	/*
2972 	 * If there is still backlog, then assign a new budget, making
2973 	 * sure that it is large enough for the next request.  Since
2974 	 * the finish time of bfqq must be kept in sync with the
2975 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
2976 	 * update.
2977 	 *
2978 	 * If there is no backlog, then no need to update the budget;
2979 	 * it will be updated on the arrival of a new request.
2980 	 */
2981 	next_rq = bfqq->next_rq;
2982 	if (next_rq)
2983 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2984 					    bfq_serv_to_charge(next_rq, bfqq));
2985 
2986 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2987 			next_rq ? blk_rq_sectors(next_rq) : 0,
2988 			bfqq->entity.budget);
2989 }
2990 
2991 /*
2992  * Return true if the process associated with bfqq is "slow". The slow
2993  * flag is used, in addition to the budget timeout, to reduce the
2994  * amount of service provided to seeky processes, and thus reduce
2995  * their chances to lower the throughput. More details in the comments
2996  * on the function bfq_bfqq_expire().
2997  *
2998  * An important observation is in order: as discussed in the comments
2999  * on the function bfq_update_peak_rate(), with devices with internal
3000  * queues, it is hard if ever possible to know when and for how long
3001  * an I/O request is processed by the device (apart from the trivial
3002  * I/O pattern where a new request is dispatched only after the
3003  * previous one has been completed). This makes it hard to evaluate
3004  * the real rate at which the I/O requests of each bfq_queue are
3005  * served.  In fact, for an I/O scheduler like BFQ, serving a
3006  * bfq_queue means just dispatching its requests during its service
3007  * slot (i.e., until the budget of the queue is exhausted, or the
3008  * queue remains idle, or, finally, a timeout fires). But, during the
3009  * service slot of a bfq_queue, around 100 ms at most, the device may
3010  * be even still processing requests of bfq_queues served in previous
3011  * service slots. On the opposite end, the requests of the in-service
3012  * bfq_queue may be completed after the service slot of the queue
3013  * finishes.
3014  *
3015  * Anyway, unless more sophisticated solutions are used
3016  * (where possible), the sum of the sizes of the requests dispatched
3017  * during the service slot of a bfq_queue is probably the only
3018  * approximation available for the service received by the bfq_queue
3019  * during its service slot. And this sum is the quantity used in this
3020  * function to evaluate the I/O speed of a process.
3021  */
3022 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3023 				 bool compensate, enum bfqq_expiration reason,
3024 				 unsigned long *delta_ms)
3025 {
3026 	ktime_t delta_ktime;
3027 	u32 delta_usecs;
3028 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3029 
3030 	if (!bfq_bfqq_sync(bfqq))
3031 		return false;
3032 
3033 	if (compensate)
3034 		delta_ktime = bfqd->last_idling_start;
3035 	else
3036 		delta_ktime = ktime_get();
3037 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3038 	delta_usecs = ktime_to_us(delta_ktime);
3039 
3040 	/* don't use too short time intervals */
3041 	if (delta_usecs < 1000) {
3042 		if (blk_queue_nonrot(bfqd->queue))
3043 			 /*
3044 			  * give same worst-case guarantees as idling
3045 			  * for seeky
3046 			  */
3047 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3048 		else /* charge at least one seek */
3049 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3050 
3051 		return slow;
3052 	}
3053 
3054 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3055 
3056 	/*
3057 	 * Use only long (> 20ms) intervals to filter out excessive
3058 	 * spikes in service rate estimation.
3059 	 */
3060 	if (delta_usecs > 20000) {
3061 		/*
3062 		 * Caveat for rotational devices: processes doing I/O
3063 		 * in the slower disk zones tend to be slow(er) even
3064 		 * if not seeky. In this respect, the estimated peak
3065 		 * rate is likely to be an average over the disk
3066 		 * surface. Accordingly, to not be too harsh with
3067 		 * unlucky processes, a process is deemed slow only if
3068 		 * its rate has been lower than half of the estimated
3069 		 * peak rate.
3070 		 */
3071 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3072 	}
3073 
3074 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3075 
3076 	return slow;
3077 }
3078 
3079 /*
3080  * To be deemed as soft real-time, an application must meet two
3081  * requirements. First, the application must not require an average
3082  * bandwidth higher than the approximate bandwidth required to playback or
3083  * record a compressed high-definition video.
3084  * The next function is invoked on the completion of the last request of a
3085  * batch, to compute the next-start time instant, soft_rt_next_start, such
3086  * that, if the next request of the application does not arrive before
3087  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3088  *
3089  * The second requirement is that the request pattern of the application is
3090  * isochronous, i.e., that, after issuing a request or a batch of requests,
3091  * the application stops issuing new requests until all its pending requests
3092  * have been completed. After that, the application may issue a new batch,
3093  * and so on.
3094  * For this reason the next function is invoked to compute
3095  * soft_rt_next_start only for applications that meet this requirement,
3096  * whereas soft_rt_next_start is set to infinity for applications that do
3097  * not.
3098  *
3099  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3100  * happen to meet, occasionally or systematically, both the above
3101  * bandwidth and isochrony requirements. This may happen at least in
3102  * the following circumstances. First, if the CPU load is high. The
3103  * application may stop issuing requests while the CPUs are busy
3104  * serving other processes, then restart, then stop again for a while,
3105  * and so on. The other circumstances are related to the storage
3106  * device: the storage device is highly loaded or reaches a low-enough
3107  * throughput with the I/O of the application (e.g., because the I/O
3108  * is random and/or the device is slow). In all these cases, the
3109  * I/O of the application may be simply slowed down enough to meet
3110  * the bandwidth and isochrony requirements. To reduce the probability
3111  * that greedy applications are deemed as soft real-time in these
3112  * corner cases, a further rule is used in the computation of
3113  * soft_rt_next_start: the return value of this function is forced to
3114  * be higher than the maximum between the following two quantities.
3115  *
3116  * (a) Current time plus: (1) the maximum time for which the arrival
3117  *     of a request is waited for when a sync queue becomes idle,
3118  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3119  *     postpone for a moment the reason for adding a few extra
3120  *     jiffies; we get back to it after next item (b).  Lower-bounding
3121  *     the return value of this function with the current time plus
3122  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3123  *     because the latter issue their next request as soon as possible
3124  *     after the last one has been completed. In contrast, a soft
3125  *     real-time application spends some time processing data, after a
3126  *     batch of its requests has been completed.
3127  *
3128  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3129  *     above, greedy applications may happen to meet both the
3130  *     bandwidth and isochrony requirements under heavy CPU or
3131  *     storage-device load. In more detail, in these scenarios, these
3132  *     applications happen, only for limited time periods, to do I/O
3133  *     slowly enough to meet all the requirements described so far,
3134  *     including the filtering in above item (a). These slow-speed
3135  *     time intervals are usually interspersed between other time
3136  *     intervals during which these applications do I/O at a very high
3137  *     speed. Fortunately, exactly because of the high speed of the
3138  *     I/O in the high-speed intervals, the values returned by this
3139  *     function happen to be so high, near the end of any such
3140  *     high-speed interval, to be likely to fall *after* the end of
3141  *     the low-speed time interval that follows. These high values are
3142  *     stored in bfqq->soft_rt_next_start after each invocation of
3143  *     this function. As a consequence, if the last value of
3144  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3145  *     next value that this function may return, then, from the very
3146  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3147  *     likely to be constantly kept so high that any I/O request
3148  *     issued during the low-speed interval is considered as arriving
3149  *     to soon for the application to be deemed as soft
3150  *     real-time. Then, in the high-speed interval that follows, the
3151  *     application will not be deemed as soft real-time, just because
3152  *     it will do I/O at a high speed. And so on.
3153  *
3154  * Getting back to the filtering in item (a), in the following two
3155  * cases this filtering might be easily passed by a greedy
3156  * application, if the reference quantity was just
3157  * bfqd->bfq_slice_idle:
3158  * 1) HZ is so low that the duration of a jiffy is comparable to or
3159  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3160  *    devices with HZ=100. The time granularity may be so coarse
3161  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3162  *    is rather lower than the exact value.
3163  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3164  *    for a while, then suddenly 'jump' by several units to recover the lost
3165  *    increments. This seems to happen, e.g., inside virtual machines.
3166  * To address this issue, in the filtering in (a) we do not use as a
3167  * reference time interval just bfqd->bfq_slice_idle, but
3168  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3169  * minimum number of jiffies for which the filter seems to be quite
3170  * precise also in embedded systems and KVM/QEMU virtual machines.
3171  */
3172 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3173 						struct bfq_queue *bfqq)
3174 {
3175 	return max3(bfqq->soft_rt_next_start,
3176 		    bfqq->last_idle_bklogged +
3177 		    HZ * bfqq->service_from_backlogged /
3178 		    bfqd->bfq_wr_max_softrt_rate,
3179 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3180 }
3181 
3182 /**
3183  * bfq_bfqq_expire - expire a queue.
3184  * @bfqd: device owning the queue.
3185  * @bfqq: the queue to expire.
3186  * @compensate: if true, compensate for the time spent idling.
3187  * @reason: the reason causing the expiration.
3188  *
3189  * If the process associated with bfqq does slow I/O (e.g., because it
3190  * issues random requests), we charge bfqq with the time it has been
3191  * in service instead of the service it has received (see
3192  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3193  * a consequence, bfqq will typically get higher timestamps upon
3194  * reactivation, and hence it will be rescheduled as if it had
3195  * received more service than what it has actually received. In the
3196  * end, bfqq receives less service in proportion to how slowly its
3197  * associated process consumes its budgets (and hence how seriously it
3198  * tends to lower the throughput). In addition, this time-charging
3199  * strategy guarantees time fairness among slow processes. In
3200  * contrast, if the process associated with bfqq is not slow, we
3201  * charge bfqq exactly with the service it has received.
3202  *
3203  * Charging time to the first type of queues and the exact service to
3204  * the other has the effect of using the WF2Q+ policy to schedule the
3205  * former on a timeslice basis, without violating service domain
3206  * guarantees among the latter.
3207  */
3208 void bfq_bfqq_expire(struct bfq_data *bfqd,
3209 		     struct bfq_queue *bfqq,
3210 		     bool compensate,
3211 		     enum bfqq_expiration reason)
3212 {
3213 	bool slow;
3214 	unsigned long delta = 0;
3215 	struct bfq_entity *entity = &bfqq->entity;
3216 	int ref;
3217 
3218 	/*
3219 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3220 	 */
3221 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3222 
3223 	/*
3224 	 * As above explained, charge slow (typically seeky) and
3225 	 * timed-out queues with the time and not the service
3226 	 * received, to favor sequential workloads.
3227 	 *
3228 	 * Processes doing I/O in the slower disk zones will tend to
3229 	 * be slow(er) even if not seeky. Therefore, since the
3230 	 * estimated peak rate is actually an average over the disk
3231 	 * surface, these processes may timeout just for bad luck. To
3232 	 * avoid punishing them, do not charge time to processes that
3233 	 * succeeded in consuming at least 2/3 of their budget. This
3234 	 * allows BFQ to preserve enough elasticity to still perform
3235 	 * bandwidth, and not time, distribution with little unlucky
3236 	 * or quasi-sequential processes.
3237 	 */
3238 	if (bfqq->wr_coeff == 1 &&
3239 	    (slow ||
3240 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3241 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3242 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3243 
3244 	if (reason == BFQQE_TOO_IDLE &&
3245 	    entity->service <= 2 * entity->budget / 10)
3246 		bfq_clear_bfqq_IO_bound(bfqq);
3247 
3248 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3249 		bfqq->last_wr_start_finish = jiffies;
3250 
3251 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3252 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3253 		/*
3254 		 * If we get here, and there are no outstanding
3255 		 * requests, then the request pattern is isochronous
3256 		 * (see the comments on the function
3257 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3258 		 * soft_rt_next_start. If, instead, the queue still
3259 		 * has outstanding requests, then we have to wait for
3260 		 * the completion of all the outstanding requests to
3261 		 * discover whether the request pattern is actually
3262 		 * isochronous.
3263 		 */
3264 		if (bfqq->dispatched == 0)
3265 			bfqq->soft_rt_next_start =
3266 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3267 		else {
3268 			/*
3269 			 * The application is still waiting for the
3270 			 * completion of one or more requests:
3271 			 * prevent it from possibly being incorrectly
3272 			 * deemed as soft real-time by setting its
3273 			 * soft_rt_next_start to infinity. In fact,
3274 			 * without this assignment, the application
3275 			 * would be incorrectly deemed as soft
3276 			 * real-time if:
3277 			 * 1) it issued a new request before the
3278 			 *    completion of all its in-flight
3279 			 *    requests, and
3280 			 * 2) at that time, its soft_rt_next_start
3281 			 *    happened to be in the past.
3282 			 */
3283 			bfqq->soft_rt_next_start =
3284 				bfq_greatest_from_now();
3285 			/*
3286 			 * Schedule an update of soft_rt_next_start to when
3287 			 * the task may be discovered to be isochronous.
3288 			 */
3289 			bfq_mark_bfqq_softrt_update(bfqq);
3290 		}
3291 	}
3292 
3293 	bfq_log_bfqq(bfqd, bfqq,
3294 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3295 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3296 
3297 	/*
3298 	 * Increase, decrease or leave budget unchanged according to
3299 	 * reason.
3300 	 */
3301 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3302 	ref = bfqq->ref;
3303 	__bfq_bfqq_expire(bfqd, bfqq);
3304 
3305 	/* mark bfqq as waiting a request only if a bic still points to it */
3306 	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3307 	    reason != BFQQE_BUDGET_TIMEOUT &&
3308 	    reason != BFQQE_BUDGET_EXHAUSTED)
3309 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3310 }
3311 
3312 /*
3313  * Budget timeout is not implemented through a dedicated timer, but
3314  * just checked on request arrivals and completions, as well as on
3315  * idle timer expirations.
3316  */
3317 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3318 {
3319 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3320 }
3321 
3322 /*
3323  * If we expire a queue that is actively waiting (i.e., with the
3324  * device idled) for the arrival of a new request, then we may incur
3325  * the timestamp misalignment problem described in the body of the
3326  * function __bfq_activate_entity. Hence we return true only if this
3327  * condition does not hold, or if the queue is slow enough to deserve
3328  * only to be kicked off for preserving a high throughput.
3329  */
3330 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3331 {
3332 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3333 		"may_budget_timeout: wait_request %d left %d timeout %d",
3334 		bfq_bfqq_wait_request(bfqq),
3335 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3336 		bfq_bfqq_budget_timeout(bfqq));
3337 
3338 	return (!bfq_bfqq_wait_request(bfqq) ||
3339 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3340 		&&
3341 		bfq_bfqq_budget_timeout(bfqq);
3342 }
3343 
3344 /*
3345  * For a queue that becomes empty, device idling is allowed only if
3346  * this function returns true for the queue. As a consequence, since
3347  * device idling plays a critical role in both throughput boosting and
3348  * service guarantees, the return value of this function plays a
3349  * critical role in both these aspects as well.
3350  *
3351  * In a nutshell, this function returns true only if idling is
3352  * beneficial for throughput or, even if detrimental for throughput,
3353  * idling is however necessary to preserve service guarantees (low
3354  * latency, desired throughput distribution, ...). In particular, on
3355  * NCQ-capable devices, this function tries to return false, so as to
3356  * help keep the drives' internal queues full, whenever this helps the
3357  * device boost the throughput without causing any service-guarantee
3358  * issue.
3359  *
3360  * In more detail, the return value of this function is obtained by,
3361  * first, computing a number of boolean variables that take into
3362  * account throughput and service-guarantee issues, and, then,
3363  * combining these variables in a logical expression. Most of the
3364  * issues taken into account are not trivial. We discuss these issues
3365  * individually while introducing the variables.
3366  */
3367 static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3368 {
3369 	struct bfq_data *bfqd = bfqq->bfqd;
3370 	bool rot_without_queueing =
3371 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3372 		bfqq_sequential_and_IO_bound,
3373 		idling_boosts_thr, idling_boosts_thr_without_issues,
3374 		idling_needed_for_service_guarantees,
3375 		asymmetric_scenario;
3376 
3377 	if (bfqd->strict_guarantees)
3378 		return true;
3379 
3380 	/*
3381 	 * Idling is performed only if slice_idle > 0. In addition, we
3382 	 * do not idle if
3383 	 * (a) bfqq is async
3384 	 * (b) bfqq is in the idle io prio class: in this case we do
3385 	 * not idle because we want to minimize the bandwidth that
3386 	 * queues in this class can steal to higher-priority queues
3387 	 */
3388 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3389 	    bfq_class_idle(bfqq))
3390 		return false;
3391 
3392 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3393 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3394 
3395 	/*
3396 	 * The next variable takes into account the cases where idling
3397 	 * boosts the throughput.
3398 	 *
3399 	 * The value of the variable is computed considering, first, that
3400 	 * idling is virtually always beneficial for the throughput if:
3401 	 * (a) the device is not NCQ-capable and rotational, or
3402 	 * (b) regardless of the presence of NCQ, the device is rotational and
3403 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3404 	 * (c) regardless of whether it is rotational, the device is
3405 	 *     not NCQ-capable and the request pattern for bfqq is
3406 	 *     I/O-bound and sequential.
3407 	 *
3408 	 * Secondly, and in contrast to the above item (b), idling an
3409 	 * NCQ-capable flash-based device would not boost the
3410 	 * throughput even with sequential I/O; rather it would lower
3411 	 * the throughput in proportion to how fast the device
3412 	 * is. Accordingly, the next variable is true if any of the
3413 	 * above conditions (a), (b) or (c) is true, and, in
3414 	 * particular, happens to be false if bfqd is an NCQ-capable
3415 	 * flash-based device.
3416 	 */
3417 	idling_boosts_thr = rot_without_queueing ||
3418 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3419 		 bfqq_sequential_and_IO_bound);
3420 
3421 	/*
3422 	 * The value of the next variable,
3423 	 * idling_boosts_thr_without_issues, is equal to that of
3424 	 * idling_boosts_thr, unless a special case holds. In this
3425 	 * special case, described below, idling may cause problems to
3426 	 * weight-raised queues.
3427 	 *
3428 	 * When the request pool is saturated (e.g., in the presence
3429 	 * of write hogs), if the processes associated with
3430 	 * non-weight-raised queues ask for requests at a lower rate,
3431 	 * then processes associated with weight-raised queues have a
3432 	 * higher probability to get a request from the pool
3433 	 * immediately (or at least soon) when they need one. Thus
3434 	 * they have a higher probability to actually get a fraction
3435 	 * of the device throughput proportional to their high
3436 	 * weight. This is especially true with NCQ-capable drives,
3437 	 * which enqueue several requests in advance, and further
3438 	 * reorder internally-queued requests.
3439 	 *
3440 	 * For this reason, we force to false the value of
3441 	 * idling_boosts_thr_without_issues if there are weight-raised
3442 	 * busy queues. In this case, and if bfqq is not weight-raised,
3443 	 * this guarantees that the device is not idled for bfqq (if,
3444 	 * instead, bfqq is weight-raised, then idling will be
3445 	 * guaranteed by another variable, see below). Combined with
3446 	 * the timestamping rules of BFQ (see [1] for details), this
3447 	 * behavior causes bfqq, and hence any sync non-weight-raised
3448 	 * queue, to get a lower number of requests served, and thus
3449 	 * to ask for a lower number of requests from the request
3450 	 * pool, before the busy weight-raised queues get served
3451 	 * again. This often mitigates starvation problems in the
3452 	 * presence of heavy write workloads and NCQ, thereby
3453 	 * guaranteeing a higher application and system responsiveness
3454 	 * in these hostile scenarios.
3455 	 */
3456 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3457 		bfqd->wr_busy_queues == 0;
3458 
3459 	/*
3460 	 * There is then a case where idling must be performed not
3461 	 * for throughput concerns, but to preserve service
3462 	 * guarantees.
3463 	 *
3464 	 * To introduce this case, we can note that allowing the drive
3465 	 * to enqueue more than one request at a time, and hence
3466 	 * delegating de facto final scheduling decisions to the
3467 	 * drive's internal scheduler, entails loss of control on the
3468 	 * actual request service order. In particular, the critical
3469 	 * situation is when requests from different processes happen
3470 	 * to be present, at the same time, in the internal queue(s)
3471 	 * of the drive. In such a situation, the drive, by deciding
3472 	 * the service order of the internally-queued requests, does
3473 	 * determine also the actual throughput distribution among
3474 	 * these processes. But the drive typically has no notion or
3475 	 * concern about per-process throughput distribution, and
3476 	 * makes its decisions only on a per-request basis. Therefore,
3477 	 * the service distribution enforced by the drive's internal
3478 	 * scheduler is likely to coincide with the desired
3479 	 * device-throughput distribution only in a completely
3480 	 * symmetric scenario where:
3481 	 * (i)  each of these processes must get the same throughput as
3482 	 *      the others;
3483 	 * (ii) all these processes have the same I/O pattern
3484 		(either sequential or random).
3485 	 * In fact, in such a scenario, the drive will tend to treat
3486 	 * the requests of each of these processes in about the same
3487 	 * way as the requests of the others, and thus to provide
3488 	 * each of these processes with about the same throughput
3489 	 * (which is exactly the desired throughput distribution). In
3490 	 * contrast, in any asymmetric scenario, device idling is
3491 	 * certainly needed to guarantee that bfqq receives its
3492 	 * assigned fraction of the device throughput (see [1] for
3493 	 * details).
3494 	 *
3495 	 * We address this issue by controlling, actually, only the
3496 	 * symmetry sub-condition (i), i.e., provided that
3497 	 * sub-condition (i) holds, idling is not performed,
3498 	 * regardless of whether sub-condition (ii) holds. In other
3499 	 * words, only if sub-condition (i) holds, then idling is
3500 	 * allowed, and the device tends to be prevented from queueing
3501 	 * many requests, possibly of several processes. The reason
3502 	 * for not controlling also sub-condition (ii) is that we
3503 	 * exploit preemption to preserve guarantees in case of
3504 	 * symmetric scenarios, even if (ii) does not hold, as
3505 	 * explained in the next two paragraphs.
3506 	 *
3507 	 * Even if a queue, say Q, is expired when it remains idle, Q
3508 	 * can still preempt the new in-service queue if the next
3509 	 * request of Q arrives soon (see the comments on
3510 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3511 	 * groups have the same weight, this form of preemption,
3512 	 * combined with the hole-recovery heuristic described in the
3513 	 * comments on function bfq_bfqq_update_budg_for_activation,
3514 	 * are enough to preserve a correct bandwidth distribution in
3515 	 * the mid term, even without idling. In fact, even if not
3516 	 * idling allows the internal queues of the device to contain
3517 	 * many requests, and thus to reorder requests, we can rather
3518 	 * safely assume that the internal scheduler still preserves a
3519 	 * minimum of mid-term fairness. The motivation for using
3520 	 * preemption instead of idling is that, by not idling,
3521 	 * service guarantees are preserved without minimally
3522 	 * sacrificing throughput. In other words, both a high
3523 	 * throughput and its desired distribution are obtained.
3524 	 *
3525 	 * More precisely, this preemption-based, idleless approach
3526 	 * provides fairness in terms of IOPS, and not sectors per
3527 	 * second. This can be seen with a simple example. Suppose
3528 	 * that there are two queues with the same weight, but that
3529 	 * the first queue receives requests of 8 sectors, while the
3530 	 * second queue receives requests of 1024 sectors. In
3531 	 * addition, suppose that each of the two queues contains at
3532 	 * most one request at a time, which implies that each queue
3533 	 * always remains idle after it is served. Finally, after
3534 	 * remaining idle, each queue receives very quickly a new
3535 	 * request. It follows that the two queues are served
3536 	 * alternatively, preempting each other if needed. This
3537 	 * implies that, although both queues have the same weight,
3538 	 * the queue with large requests receives a service that is
3539 	 * 1024/8 times as high as the service received by the other
3540 	 * queue.
3541 	 *
3542 	 * On the other hand, device idling is performed, and thus
3543 	 * pure sector-domain guarantees are provided, for the
3544 	 * following queues, which are likely to need stronger
3545 	 * throughput guarantees: weight-raised queues, and queues
3546 	 * with a higher weight than other queues. When such queues
3547 	 * are active, sub-condition (i) is false, which triggers
3548 	 * device idling.
3549 	 *
3550 	 * According to the above considerations, the next variable is
3551 	 * true (only) if sub-condition (i) holds. To compute the
3552 	 * value of this variable, we not only use the return value of
3553 	 * the function bfq_symmetric_scenario(), but also check
3554 	 * whether bfqq is being weight-raised, because
3555 	 * bfq_symmetric_scenario() does not take into account also
3556 	 * weight-raised queues (see comments on
3557 	 * bfq_weights_tree_add()).
3558 	 *
3559 	 * As a side note, it is worth considering that the above
3560 	 * device-idling countermeasures may however fail in the
3561 	 * following unlucky scenario: if idling is (correctly)
3562 	 * disabled in a time period during which all symmetry
3563 	 * sub-conditions hold, and hence the device is allowed to
3564 	 * enqueue many requests, but at some later point in time some
3565 	 * sub-condition stops to hold, then it may become impossible
3566 	 * to let requests be served in the desired order until all
3567 	 * the requests already queued in the device have been served.
3568 	 */
3569 	asymmetric_scenario = bfqq->wr_coeff > 1 ||
3570 		!bfq_symmetric_scenario(bfqd);
3571 
3572 	/*
3573 	 * Finally, there is a case where maximizing throughput is the
3574 	 * best choice even if it may cause unfairness toward
3575 	 * bfqq. Such a case is when bfqq became active in a burst of
3576 	 * queue activations. Queues that became active during a large
3577 	 * burst benefit only from throughput, as discussed in the
3578 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3579 	 * in a burst and not idling the device maximizes throughput,
3580 	 * then the device must no be idled, because not idling the
3581 	 * device provides bfqq and all other queues in the burst with
3582 	 * maximum benefit. Combining this and the above case, we can
3583 	 * now establish when idling is actually needed to preserve
3584 	 * service guarantees.
3585 	 */
3586 	idling_needed_for_service_guarantees =
3587 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3588 
3589 	/*
3590 	 * We have now all the components we need to compute the
3591 	 * return value of the function, which is true only if idling
3592 	 * either boosts the throughput (without issues), or is
3593 	 * necessary to preserve service guarantees.
3594 	 */
3595 	return idling_boosts_thr_without_issues ||
3596 		idling_needed_for_service_guarantees;
3597 }
3598 
3599 /*
3600  * If the in-service queue is empty but the function bfq_bfqq_may_idle
3601  * returns true, then:
3602  * 1) the queue must remain in service and cannot be expired, and
3603  * 2) the device must be idled to wait for the possible arrival of a new
3604  *    request for the queue.
3605  * See the comments on the function bfq_bfqq_may_idle for the reasons
3606  * why performing device idling is the best choice to boost the throughput
3607  * and preserve service guarantees when bfq_bfqq_may_idle itself
3608  * returns true.
3609  */
3610 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3611 {
3612 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
3613 }
3614 
3615 /*
3616  * Select a queue for service.  If we have a current queue in service,
3617  * check whether to continue servicing it, or retrieve and set a new one.
3618  */
3619 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3620 {
3621 	struct bfq_queue *bfqq;
3622 	struct request *next_rq;
3623 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3624 
3625 	bfqq = bfqd->in_service_queue;
3626 	if (!bfqq)
3627 		goto new_queue;
3628 
3629 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3630 
3631 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3632 	    !bfq_bfqq_wait_request(bfqq) &&
3633 	    !bfq_bfqq_must_idle(bfqq))
3634 		goto expire;
3635 
3636 check_queue:
3637 	/*
3638 	 * This loop is rarely executed more than once. Even when it
3639 	 * happens, it is much more convenient to re-execute this loop
3640 	 * than to return NULL and trigger a new dispatch to get a
3641 	 * request served.
3642 	 */
3643 	next_rq = bfqq->next_rq;
3644 	/*
3645 	 * If bfqq has requests queued and it has enough budget left to
3646 	 * serve them, keep the queue, otherwise expire it.
3647 	 */
3648 	if (next_rq) {
3649 		if (bfq_serv_to_charge(next_rq, bfqq) >
3650 			bfq_bfqq_budget_left(bfqq)) {
3651 			/*
3652 			 * Expire the queue for budget exhaustion,
3653 			 * which makes sure that the next budget is
3654 			 * enough to serve the next request, even if
3655 			 * it comes from the fifo expired path.
3656 			 */
3657 			reason = BFQQE_BUDGET_EXHAUSTED;
3658 			goto expire;
3659 		} else {
3660 			/*
3661 			 * The idle timer may be pending because we may
3662 			 * not disable disk idling even when a new request
3663 			 * arrives.
3664 			 */
3665 			if (bfq_bfqq_wait_request(bfqq)) {
3666 				/*
3667 				 * If we get here: 1) at least a new request
3668 				 * has arrived but we have not disabled the
3669 				 * timer because the request was too small,
3670 				 * 2) then the block layer has unplugged
3671 				 * the device, causing the dispatch to be
3672 				 * invoked.
3673 				 *
3674 				 * Since the device is unplugged, now the
3675 				 * requests are probably large enough to
3676 				 * provide a reasonable throughput.
3677 				 * So we disable idling.
3678 				 */
3679 				bfq_clear_bfqq_wait_request(bfqq);
3680 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3681 			}
3682 			goto keep_queue;
3683 		}
3684 	}
3685 
3686 	/*
3687 	 * No requests pending. However, if the in-service queue is idling
3688 	 * for a new request, or has requests waiting for a completion and
3689 	 * may idle after their completion, then keep it anyway.
3690 	 */
3691 	if (bfq_bfqq_wait_request(bfqq) ||
3692 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3693 		bfqq = NULL;
3694 		goto keep_queue;
3695 	}
3696 
3697 	reason = BFQQE_NO_MORE_REQUESTS;
3698 expire:
3699 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3700 new_queue:
3701 	bfqq = bfq_set_in_service_queue(bfqd);
3702 	if (bfqq) {
3703 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3704 		goto check_queue;
3705 	}
3706 keep_queue:
3707 	if (bfqq)
3708 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3709 	else
3710 		bfq_log(bfqd, "select_queue: no queue returned");
3711 
3712 	return bfqq;
3713 }
3714 
3715 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3716 {
3717 	struct bfq_entity *entity = &bfqq->entity;
3718 
3719 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3720 		bfq_log_bfqq(bfqd, bfqq,
3721 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3722 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3723 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3724 			bfqq->wr_coeff,
3725 			bfqq->entity.weight, bfqq->entity.orig_weight);
3726 
3727 		if (entity->prio_changed)
3728 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3729 
3730 		/*
3731 		 * If the queue was activated in a burst, or too much
3732 		 * time has elapsed from the beginning of this
3733 		 * weight-raising period, then end weight raising.
3734 		 */
3735 		if (bfq_bfqq_in_large_burst(bfqq))
3736 			bfq_bfqq_end_wr(bfqq);
3737 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3738 						bfqq->wr_cur_max_time)) {
3739 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3740 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3741 					       bfq_wr_duration(bfqd)))
3742 				bfq_bfqq_end_wr(bfqq);
3743 			else {
3744 				switch_back_to_interactive_wr(bfqq, bfqd);
3745 				bfqq->entity.prio_changed = 1;
3746 			}
3747 		}
3748 		if (bfqq->wr_coeff > 1 &&
3749 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3750 		    bfqq->service_from_wr > max_service_from_wr) {
3751 			/* see comments on max_service_from_wr */
3752 			bfq_bfqq_end_wr(bfqq);
3753 		}
3754 	}
3755 	/*
3756 	 * To improve latency (for this or other queues), immediately
3757 	 * update weight both if it must be raised and if it must be
3758 	 * lowered. Since, entity may be on some active tree here, and
3759 	 * might have a pending change of its ioprio class, invoke
3760 	 * next function with the last parameter unset (see the
3761 	 * comments on the function).
3762 	 */
3763 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3764 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3765 						entity, false);
3766 }
3767 
3768 /*
3769  * Dispatch next request from bfqq.
3770  */
3771 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3772 						 struct bfq_queue *bfqq)
3773 {
3774 	struct request *rq = bfqq->next_rq;
3775 	unsigned long service_to_charge;
3776 
3777 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3778 
3779 	bfq_bfqq_served(bfqq, service_to_charge);
3780 
3781 	bfq_dispatch_remove(bfqd->queue, rq);
3782 
3783 	/*
3784 	 * If weight raising has to terminate for bfqq, then next
3785 	 * function causes an immediate update of bfqq's weight,
3786 	 * without waiting for next activation. As a consequence, on
3787 	 * expiration, bfqq will be timestamped as if has never been
3788 	 * weight-raised during this service slot, even if it has
3789 	 * received part or even most of the service as a
3790 	 * weight-raised queue. This inflates bfqq's timestamps, which
3791 	 * is beneficial, as bfqq is then more willing to leave the
3792 	 * device immediately to possible other weight-raised queues.
3793 	 */
3794 	bfq_update_wr_data(bfqd, bfqq);
3795 
3796 	/*
3797 	 * Expire bfqq, pretending that its budget expired, if bfqq
3798 	 * belongs to CLASS_IDLE and other queues are waiting for
3799 	 * service.
3800 	 */
3801 	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3802 		goto expire;
3803 
3804 	return rq;
3805 
3806 expire:
3807 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3808 	return rq;
3809 }
3810 
3811 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3812 {
3813 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3814 
3815 	/*
3816 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3817 	 * most a call to dispatch for nothing
3818 	 */
3819 	return !list_empty_careful(&bfqd->dispatch) ||
3820 		bfqd->busy_queues > 0;
3821 }
3822 
3823 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3824 {
3825 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3826 	struct request *rq = NULL;
3827 	struct bfq_queue *bfqq = NULL;
3828 
3829 	if (!list_empty(&bfqd->dispatch)) {
3830 		rq = list_first_entry(&bfqd->dispatch, struct request,
3831 				      queuelist);
3832 		list_del_init(&rq->queuelist);
3833 
3834 		bfqq = RQ_BFQQ(rq);
3835 
3836 		if (bfqq) {
3837 			/*
3838 			 * Increment counters here, because this
3839 			 * dispatch does not follow the standard
3840 			 * dispatch flow (where counters are
3841 			 * incremented)
3842 			 */
3843 			bfqq->dispatched++;
3844 
3845 			goto inc_in_driver_start_rq;
3846 		}
3847 
3848 		/*
3849 		 * We exploit the bfq_finish_requeue_request hook to
3850 		 * decrement rq_in_driver, but
3851 		 * bfq_finish_requeue_request will not be invoked on
3852 		 * this request. So, to avoid unbalance, just start
3853 		 * this request, without incrementing rq_in_driver. As
3854 		 * a negative consequence, rq_in_driver is deceptively
3855 		 * lower than it should be while this request is in
3856 		 * service. This may cause bfq_schedule_dispatch to be
3857 		 * invoked uselessly.
3858 		 *
3859 		 * As for implementing an exact solution, the
3860 		 * bfq_finish_requeue_request hook, if defined, is
3861 		 * probably invoked also on this request. So, by
3862 		 * exploiting this hook, we could 1) increment
3863 		 * rq_in_driver here, and 2) decrement it in
3864 		 * bfq_finish_requeue_request. Such a solution would
3865 		 * let the value of the counter be always accurate,
3866 		 * but it would entail using an extra interface
3867 		 * function. This cost seems higher than the benefit,
3868 		 * being the frequency of non-elevator-private
3869 		 * requests very low.
3870 		 */
3871 		goto start_rq;
3872 	}
3873 
3874 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3875 
3876 	if (bfqd->busy_queues == 0)
3877 		goto exit;
3878 
3879 	/*
3880 	 * Force device to serve one request at a time if
3881 	 * strict_guarantees is true. Forcing this service scheme is
3882 	 * currently the ONLY way to guarantee that the request
3883 	 * service order enforced by the scheduler is respected by a
3884 	 * queueing device. Otherwise the device is free even to make
3885 	 * some unlucky request wait for as long as the device
3886 	 * wishes.
3887 	 *
3888 	 * Of course, serving one request at at time may cause loss of
3889 	 * throughput.
3890 	 */
3891 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3892 		goto exit;
3893 
3894 	bfqq = bfq_select_queue(bfqd);
3895 	if (!bfqq)
3896 		goto exit;
3897 
3898 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3899 
3900 	if (rq) {
3901 inc_in_driver_start_rq:
3902 		bfqd->rq_in_driver++;
3903 start_rq:
3904 		rq->rq_flags |= RQF_STARTED;
3905 	}
3906 exit:
3907 	return rq;
3908 }
3909 
3910 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3911 static void bfq_update_dispatch_stats(struct request_queue *q,
3912 				      struct request *rq,
3913 				      struct bfq_queue *in_serv_queue,
3914 				      bool idle_timer_disabled)
3915 {
3916 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
3917 
3918 	if (!idle_timer_disabled && !bfqq)
3919 		return;
3920 
3921 	/*
3922 	 * rq and bfqq are guaranteed to exist until this function
3923 	 * ends, for the following reasons. First, rq can be
3924 	 * dispatched to the device, and then can be completed and
3925 	 * freed, only after this function ends. Second, rq cannot be
3926 	 * merged (and thus freed because of a merge) any longer,
3927 	 * because it has already started. Thus rq cannot be freed
3928 	 * before this function ends, and, since rq has a reference to
3929 	 * bfqq, the same guarantee holds for bfqq too.
3930 	 *
3931 	 * In addition, the following queue lock guarantees that
3932 	 * bfqq_group(bfqq) exists as well.
3933 	 */
3934 	spin_lock_irq(q->queue_lock);
3935 	if (idle_timer_disabled)
3936 		/*
3937 		 * Since the idle timer has been disabled,
3938 		 * in_serv_queue contained some request when
3939 		 * __bfq_dispatch_request was invoked above, which
3940 		 * implies that rq was picked exactly from
3941 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3942 		 * therefore guaranteed to exist because of the above
3943 		 * arguments.
3944 		 */
3945 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3946 	if (bfqq) {
3947 		struct bfq_group *bfqg = bfqq_group(bfqq);
3948 
3949 		bfqg_stats_update_avg_queue_size(bfqg);
3950 		bfqg_stats_set_start_empty_time(bfqg);
3951 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3952 	}
3953 	spin_unlock_irq(q->queue_lock);
3954 }
3955 #else
3956 static inline void bfq_update_dispatch_stats(struct request_queue *q,
3957 					     struct request *rq,
3958 					     struct bfq_queue *in_serv_queue,
3959 					     bool idle_timer_disabled) {}
3960 #endif
3961 
3962 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3963 {
3964 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3965 	struct request *rq;
3966 	struct bfq_queue *in_serv_queue;
3967 	bool waiting_rq, idle_timer_disabled;
3968 
3969 	spin_lock_irq(&bfqd->lock);
3970 
3971 	in_serv_queue = bfqd->in_service_queue;
3972 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3973 
3974 	rq = __bfq_dispatch_request(hctx);
3975 
3976 	idle_timer_disabled =
3977 		waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3978 
3979 	spin_unlock_irq(&bfqd->lock);
3980 
3981 	bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3982 				  idle_timer_disabled);
3983 
3984 	return rq;
3985 }
3986 
3987 /*
3988  * Task holds one reference to the queue, dropped when task exits.  Each rq
3989  * in-flight on this queue also holds a reference, dropped when rq is freed.
3990  *
3991  * Scheduler lock must be held here. Recall not to use bfqq after calling
3992  * this function on it.
3993  */
3994 void bfq_put_queue(struct bfq_queue *bfqq)
3995 {
3996 #ifdef CONFIG_BFQ_GROUP_IOSCHED
3997 	struct bfq_group *bfqg = bfqq_group(bfqq);
3998 #endif
3999 
4000 	if (bfqq->bfqd)
4001 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4002 			     bfqq, bfqq->ref);
4003 
4004 	bfqq->ref--;
4005 	if (bfqq->ref)
4006 		return;
4007 
4008 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4009 		hlist_del_init(&bfqq->burst_list_node);
4010 		/*
4011 		 * Decrement also burst size after the removal, if the
4012 		 * process associated with bfqq is exiting, and thus
4013 		 * does not contribute to the burst any longer. This
4014 		 * decrement helps filter out false positives of large
4015 		 * bursts, when some short-lived process (often due to
4016 		 * the execution of commands by some service) happens
4017 		 * to start and exit while a complex application is
4018 		 * starting, and thus spawning several processes that
4019 		 * do I/O (and that *must not* be treated as a large
4020 		 * burst, see comments on bfq_handle_burst).
4021 		 *
4022 		 * In particular, the decrement is performed only if:
4023 		 * 1) bfqq is not a merged queue, because, if it is,
4024 		 * then this free of bfqq is not triggered by the exit
4025 		 * of the process bfqq is associated with, but exactly
4026 		 * by the fact that bfqq has just been merged.
4027 		 * 2) burst_size is greater than 0, to handle
4028 		 * unbalanced decrements. Unbalanced decrements may
4029 		 * happen in te following case: bfqq is inserted into
4030 		 * the current burst list--without incrementing
4031 		 * bust_size--because of a split, but the current
4032 		 * burst list is not the burst list bfqq belonged to
4033 		 * (see comments on the case of a split in
4034 		 * bfq_set_request).
4035 		 */
4036 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4037 			bfqq->bfqd->burst_size--;
4038 	}
4039 
4040 	kmem_cache_free(bfq_pool, bfqq);
4041 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4042 	bfqg_and_blkg_put(bfqg);
4043 #endif
4044 }
4045 
4046 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4047 {
4048 	struct bfq_queue *__bfqq, *next;
4049 
4050 	/*
4051 	 * If this queue was scheduled to merge with another queue, be
4052 	 * sure to drop the reference taken on that queue (and others in
4053 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4054 	 */
4055 	__bfqq = bfqq->new_bfqq;
4056 	while (__bfqq) {
4057 		if (__bfqq == bfqq)
4058 			break;
4059 		next = __bfqq->new_bfqq;
4060 		bfq_put_queue(__bfqq);
4061 		__bfqq = next;
4062 	}
4063 }
4064 
4065 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4066 {
4067 	if (bfqq == bfqd->in_service_queue) {
4068 		__bfq_bfqq_expire(bfqd, bfqq);
4069 		bfq_schedule_dispatch(bfqd);
4070 	}
4071 
4072 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4073 
4074 	bfq_put_cooperator(bfqq);
4075 
4076 	bfq_put_queue(bfqq); /* release process reference */
4077 }
4078 
4079 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4080 {
4081 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4082 	struct bfq_data *bfqd;
4083 
4084 	if (bfqq)
4085 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4086 
4087 	if (bfqq && bfqd) {
4088 		unsigned long flags;
4089 
4090 		spin_lock_irqsave(&bfqd->lock, flags);
4091 		bfq_exit_bfqq(bfqd, bfqq);
4092 		bic_set_bfqq(bic, NULL, is_sync);
4093 		spin_unlock_irqrestore(&bfqd->lock, flags);
4094 	}
4095 }
4096 
4097 static void bfq_exit_icq(struct io_cq *icq)
4098 {
4099 	struct bfq_io_cq *bic = icq_to_bic(icq);
4100 
4101 	bfq_exit_icq_bfqq(bic, true);
4102 	bfq_exit_icq_bfqq(bic, false);
4103 }
4104 
4105 /*
4106  * Update the entity prio values; note that the new values will not
4107  * be used until the next (re)activation.
4108  */
4109 static void
4110 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4111 {
4112 	struct task_struct *tsk = current;
4113 	int ioprio_class;
4114 	struct bfq_data *bfqd = bfqq->bfqd;
4115 
4116 	if (!bfqd)
4117 		return;
4118 
4119 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4120 	switch (ioprio_class) {
4121 	default:
4122 		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4123 			"bfq: bad prio class %d\n", ioprio_class);
4124 		/* fall through */
4125 	case IOPRIO_CLASS_NONE:
4126 		/*
4127 		 * No prio set, inherit CPU scheduling settings.
4128 		 */
4129 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4130 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4131 		break;
4132 	case IOPRIO_CLASS_RT:
4133 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4134 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4135 		break;
4136 	case IOPRIO_CLASS_BE:
4137 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4138 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4139 		break;
4140 	case IOPRIO_CLASS_IDLE:
4141 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4142 		bfqq->new_ioprio = 7;
4143 		break;
4144 	}
4145 
4146 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4147 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4148 			bfqq->new_ioprio);
4149 		bfqq->new_ioprio = IOPRIO_BE_NR;
4150 	}
4151 
4152 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4153 	bfqq->entity.prio_changed = 1;
4154 }
4155 
4156 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4157 				       struct bio *bio, bool is_sync,
4158 				       struct bfq_io_cq *bic);
4159 
4160 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4161 {
4162 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4163 	struct bfq_queue *bfqq;
4164 	int ioprio = bic->icq.ioc->ioprio;
4165 
4166 	/*
4167 	 * This condition may trigger on a newly created bic, be sure to
4168 	 * drop the lock before returning.
4169 	 */
4170 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4171 		return;
4172 
4173 	bic->ioprio = ioprio;
4174 
4175 	bfqq = bic_to_bfqq(bic, false);
4176 	if (bfqq) {
4177 		/* release process reference on this queue */
4178 		bfq_put_queue(bfqq);
4179 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4180 		bic_set_bfqq(bic, bfqq, false);
4181 	}
4182 
4183 	bfqq = bic_to_bfqq(bic, true);
4184 	if (bfqq)
4185 		bfq_set_next_ioprio_data(bfqq, bic);
4186 }
4187 
4188 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4189 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4190 {
4191 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4192 	INIT_LIST_HEAD(&bfqq->fifo);
4193 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4194 
4195 	bfqq->ref = 0;
4196 	bfqq->bfqd = bfqd;
4197 
4198 	if (bic)
4199 		bfq_set_next_ioprio_data(bfqq, bic);
4200 
4201 	if (is_sync) {
4202 		/*
4203 		 * No need to mark as has_short_ttime if in
4204 		 * idle_class, because no device idling is performed
4205 		 * for queues in idle class
4206 		 */
4207 		if (!bfq_class_idle(bfqq))
4208 			/* tentatively mark as has_short_ttime */
4209 			bfq_mark_bfqq_has_short_ttime(bfqq);
4210 		bfq_mark_bfqq_sync(bfqq);
4211 		bfq_mark_bfqq_just_created(bfqq);
4212 	} else
4213 		bfq_clear_bfqq_sync(bfqq);
4214 
4215 	/* set end request to minus infinity from now */
4216 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4217 
4218 	bfq_mark_bfqq_IO_bound(bfqq);
4219 
4220 	bfqq->pid = pid;
4221 
4222 	/* Tentative initial value to trade off between thr and lat */
4223 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4224 	bfqq->budget_timeout = bfq_smallest_from_now();
4225 
4226 	bfqq->wr_coeff = 1;
4227 	bfqq->last_wr_start_finish = jiffies;
4228 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4229 	bfqq->split_time = bfq_smallest_from_now();
4230 
4231 	/*
4232 	 * To not forget the possibly high bandwidth consumed by a
4233 	 * process/queue in the recent past,
4234 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4235 	 * to the current value of bfqq->soft_rt_next_start (see
4236 	 * comments on bfq_bfqq_softrt_next_start).  Set
4237 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4238 	 * no bandwidth so far.
4239 	 */
4240 	bfqq->soft_rt_next_start = jiffies;
4241 
4242 	/* first request is almost certainly seeky */
4243 	bfqq->seek_history = 1;
4244 }
4245 
4246 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4247 					       struct bfq_group *bfqg,
4248 					       int ioprio_class, int ioprio)
4249 {
4250 	switch (ioprio_class) {
4251 	case IOPRIO_CLASS_RT:
4252 		return &bfqg->async_bfqq[0][ioprio];
4253 	case IOPRIO_CLASS_NONE:
4254 		ioprio = IOPRIO_NORM;
4255 		/* fall through */
4256 	case IOPRIO_CLASS_BE:
4257 		return &bfqg->async_bfqq[1][ioprio];
4258 	case IOPRIO_CLASS_IDLE:
4259 		return &bfqg->async_idle_bfqq;
4260 	default:
4261 		return NULL;
4262 	}
4263 }
4264 
4265 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4266 				       struct bio *bio, bool is_sync,
4267 				       struct bfq_io_cq *bic)
4268 {
4269 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4270 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4271 	struct bfq_queue **async_bfqq = NULL;
4272 	struct bfq_queue *bfqq;
4273 	struct bfq_group *bfqg;
4274 
4275 	rcu_read_lock();
4276 
4277 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4278 	if (!bfqg) {
4279 		bfqq = &bfqd->oom_bfqq;
4280 		goto out;
4281 	}
4282 
4283 	if (!is_sync) {
4284 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4285 						  ioprio);
4286 		bfqq = *async_bfqq;
4287 		if (bfqq)
4288 			goto out;
4289 	}
4290 
4291 	bfqq = kmem_cache_alloc_node(bfq_pool,
4292 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4293 				     bfqd->queue->node);
4294 
4295 	if (bfqq) {
4296 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4297 			      is_sync);
4298 		bfq_init_entity(&bfqq->entity, bfqg);
4299 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4300 	} else {
4301 		bfqq = &bfqd->oom_bfqq;
4302 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4303 		goto out;
4304 	}
4305 
4306 	/*
4307 	 * Pin the queue now that it's allocated, scheduler exit will
4308 	 * prune it.
4309 	 */
4310 	if (async_bfqq) {
4311 		bfqq->ref++; /*
4312 			      * Extra group reference, w.r.t. sync
4313 			      * queue. This extra reference is removed
4314 			      * only if bfqq->bfqg disappears, to
4315 			      * guarantee that this queue is not freed
4316 			      * until its group goes away.
4317 			      */
4318 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4319 			     bfqq, bfqq->ref);
4320 		*async_bfqq = bfqq;
4321 	}
4322 
4323 out:
4324 	bfqq->ref++; /* get a process reference to this queue */
4325 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4326 	rcu_read_unlock();
4327 	return bfqq;
4328 }
4329 
4330 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4331 				    struct bfq_queue *bfqq)
4332 {
4333 	struct bfq_ttime *ttime = &bfqq->ttime;
4334 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4335 
4336 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4337 
4338 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4339 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4340 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4341 				     ttime->ttime_samples);
4342 }
4343 
4344 static void
4345 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4346 		       struct request *rq)
4347 {
4348 	bfqq->seek_history <<= 1;
4349 	bfqq->seek_history |=
4350 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4351 		(!blk_queue_nonrot(bfqd->queue) ||
4352 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4353 }
4354 
4355 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4356 				       struct bfq_queue *bfqq,
4357 				       struct bfq_io_cq *bic)
4358 {
4359 	bool has_short_ttime = true;
4360 
4361 	/*
4362 	 * No need to update has_short_ttime if bfqq is async or in
4363 	 * idle io prio class, or if bfq_slice_idle is zero, because
4364 	 * no device idling is performed for bfqq in this case.
4365 	 */
4366 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4367 	    bfqd->bfq_slice_idle == 0)
4368 		return;
4369 
4370 	/* Idle window just restored, statistics are meaningless. */
4371 	if (time_is_after_eq_jiffies(bfqq->split_time +
4372 				     bfqd->bfq_wr_min_idle_time))
4373 		return;
4374 
4375 	/* Think time is infinite if no process is linked to
4376 	 * bfqq. Otherwise check average think time to
4377 	 * decide whether to mark as has_short_ttime
4378 	 */
4379 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4380 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4381 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4382 		has_short_ttime = false;
4383 
4384 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4385 		     has_short_ttime);
4386 
4387 	if (has_short_ttime)
4388 		bfq_mark_bfqq_has_short_ttime(bfqq);
4389 	else
4390 		bfq_clear_bfqq_has_short_ttime(bfqq);
4391 }
4392 
4393 /*
4394  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4395  * something we should do about it.
4396  */
4397 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4398 			    struct request *rq)
4399 {
4400 	struct bfq_io_cq *bic = RQ_BIC(rq);
4401 
4402 	if (rq->cmd_flags & REQ_META)
4403 		bfqq->meta_pending++;
4404 
4405 	bfq_update_io_thinktime(bfqd, bfqq);
4406 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4407 	bfq_update_io_seektime(bfqd, bfqq, rq);
4408 
4409 	bfq_log_bfqq(bfqd, bfqq,
4410 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4411 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4412 
4413 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4414 
4415 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4416 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4417 				 blk_rq_sectors(rq) < 32;
4418 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4419 
4420 		/*
4421 		 * There is just this request queued: if the request
4422 		 * is small and the queue is not to be expired, then
4423 		 * just exit.
4424 		 *
4425 		 * In this way, if the device is being idled to wait
4426 		 * for a new request from the in-service queue, we
4427 		 * avoid unplugging the device and committing the
4428 		 * device to serve just a small request. On the
4429 		 * contrary, we wait for the block layer to decide
4430 		 * when to unplug the device: hopefully, new requests
4431 		 * will be merged to this one quickly, then the device
4432 		 * will be unplugged and larger requests will be
4433 		 * dispatched.
4434 		 */
4435 		if (small_req && !budget_timeout)
4436 			return;
4437 
4438 		/*
4439 		 * A large enough request arrived, or the queue is to
4440 		 * be expired: in both cases disk idling is to be
4441 		 * stopped, so clear wait_request flag and reset
4442 		 * timer.
4443 		 */
4444 		bfq_clear_bfqq_wait_request(bfqq);
4445 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4446 
4447 		/*
4448 		 * The queue is not empty, because a new request just
4449 		 * arrived. Hence we can safely expire the queue, in
4450 		 * case of budget timeout, without risking that the
4451 		 * timestamps of the queue are not updated correctly.
4452 		 * See [1] for more details.
4453 		 */
4454 		if (budget_timeout)
4455 			bfq_bfqq_expire(bfqd, bfqq, false,
4456 					BFQQE_BUDGET_TIMEOUT);
4457 	}
4458 }
4459 
4460 /* returns true if it causes the idle timer to be disabled */
4461 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4462 {
4463 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4464 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4465 	bool waiting, idle_timer_disabled = false;
4466 
4467 	if (new_bfqq) {
4468 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4469 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4470 		/*
4471 		 * Release the request's reference to the old bfqq
4472 		 * and make sure one is taken to the shared queue.
4473 		 */
4474 		new_bfqq->allocated++;
4475 		bfqq->allocated--;
4476 		new_bfqq->ref++;
4477 		/*
4478 		 * If the bic associated with the process
4479 		 * issuing this request still points to bfqq
4480 		 * (and thus has not been already redirected
4481 		 * to new_bfqq or even some other bfq_queue),
4482 		 * then complete the merge and redirect it to
4483 		 * new_bfqq.
4484 		 */
4485 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4486 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4487 					bfqq, new_bfqq);
4488 
4489 		bfq_clear_bfqq_just_created(bfqq);
4490 		/*
4491 		 * rq is about to be enqueued into new_bfqq,
4492 		 * release rq reference on bfqq
4493 		 */
4494 		bfq_put_queue(bfqq);
4495 		rq->elv.priv[1] = new_bfqq;
4496 		bfqq = new_bfqq;
4497 	}
4498 
4499 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4500 	bfq_add_request(rq);
4501 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4502 
4503 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4504 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4505 
4506 	bfq_rq_enqueued(bfqd, bfqq, rq);
4507 
4508 	return idle_timer_disabled;
4509 }
4510 
4511 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4512 static void bfq_update_insert_stats(struct request_queue *q,
4513 				    struct bfq_queue *bfqq,
4514 				    bool idle_timer_disabled,
4515 				    unsigned int cmd_flags)
4516 {
4517 	if (!bfqq)
4518 		return;
4519 
4520 	/*
4521 	 * bfqq still exists, because it can disappear only after
4522 	 * either it is merged with another queue, or the process it
4523 	 * is associated with exits. But both actions must be taken by
4524 	 * the same process currently executing this flow of
4525 	 * instructions.
4526 	 *
4527 	 * In addition, the following queue lock guarantees that
4528 	 * bfqq_group(bfqq) exists as well.
4529 	 */
4530 	spin_lock_irq(q->queue_lock);
4531 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4532 	if (idle_timer_disabled)
4533 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4534 	spin_unlock_irq(q->queue_lock);
4535 }
4536 #else
4537 static inline void bfq_update_insert_stats(struct request_queue *q,
4538 					   struct bfq_queue *bfqq,
4539 					   bool idle_timer_disabled,
4540 					   unsigned int cmd_flags) {}
4541 #endif
4542 
4543 static void bfq_prepare_request(struct request *rq, struct bio *bio);
4544 
4545 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4546 			       bool at_head)
4547 {
4548 	struct request_queue *q = hctx->queue;
4549 	struct bfq_data *bfqd = q->elevator->elevator_data;
4550 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4551 	bool idle_timer_disabled = false;
4552 	unsigned int cmd_flags;
4553 
4554 	spin_lock_irq(&bfqd->lock);
4555 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4556 		spin_unlock_irq(&bfqd->lock);
4557 		return;
4558 	}
4559 
4560 	spin_unlock_irq(&bfqd->lock);
4561 
4562 	blk_mq_sched_request_inserted(rq);
4563 
4564 	spin_lock_irq(&bfqd->lock);
4565 	if (at_head || blk_rq_is_passthrough(rq)) {
4566 		if (at_head)
4567 			list_add(&rq->queuelist, &bfqd->dispatch);
4568 		else
4569 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4570 	} else {
4571 		if (WARN_ON_ONCE(!bfqq)) {
4572 			/*
4573 			 * This should never happen. Most likely rq is
4574 			 * a requeued regular request, being
4575 			 * re-inserted without being first
4576 			 * re-prepared. Do a prepare, to avoid
4577 			 * failure.
4578 			 */
4579 			bfq_prepare_request(rq, rq->bio);
4580 			bfqq = RQ_BFQQ(rq);
4581 		}
4582 
4583 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4584 		/*
4585 		 * Update bfqq, because, if a queue merge has occurred
4586 		 * in __bfq_insert_request, then rq has been
4587 		 * redirected into a new queue.
4588 		 */
4589 		bfqq = RQ_BFQQ(rq);
4590 
4591 		if (rq_mergeable(rq)) {
4592 			elv_rqhash_add(q, rq);
4593 			if (!q->last_merge)
4594 				q->last_merge = rq;
4595 		}
4596 	}
4597 
4598 	/*
4599 	 * Cache cmd_flags before releasing scheduler lock, because rq
4600 	 * may disappear afterwards (for example, because of a request
4601 	 * merge).
4602 	 */
4603 	cmd_flags = rq->cmd_flags;
4604 
4605 	spin_unlock_irq(&bfqd->lock);
4606 
4607 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4608 				cmd_flags);
4609 }
4610 
4611 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4612 				struct list_head *list, bool at_head)
4613 {
4614 	while (!list_empty(list)) {
4615 		struct request *rq;
4616 
4617 		rq = list_first_entry(list, struct request, queuelist);
4618 		list_del_init(&rq->queuelist);
4619 		bfq_insert_request(hctx, rq, at_head);
4620 	}
4621 }
4622 
4623 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4624 {
4625 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4626 				       bfqd->rq_in_driver);
4627 
4628 	if (bfqd->hw_tag == 1)
4629 		return;
4630 
4631 	/*
4632 	 * This sample is valid if the number of outstanding requests
4633 	 * is large enough to allow a queueing behavior.  Note that the
4634 	 * sum is not exact, as it's not taking into account deactivated
4635 	 * requests.
4636 	 */
4637 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4638 		return;
4639 
4640 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4641 		return;
4642 
4643 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4644 	bfqd->max_rq_in_driver = 0;
4645 	bfqd->hw_tag_samples = 0;
4646 }
4647 
4648 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4649 {
4650 	u64 now_ns;
4651 	u32 delta_us;
4652 
4653 	bfq_update_hw_tag(bfqd);
4654 
4655 	bfqd->rq_in_driver--;
4656 	bfqq->dispatched--;
4657 
4658 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4659 		/*
4660 		 * Set budget_timeout (which we overload to store the
4661 		 * time at which the queue remains with no backlog and
4662 		 * no outstanding request; used by the weight-raising
4663 		 * mechanism).
4664 		 */
4665 		bfqq->budget_timeout = jiffies;
4666 
4667 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
4668 					&bfqd->queue_weights_tree);
4669 	}
4670 
4671 	now_ns = ktime_get_ns();
4672 
4673 	bfqq->ttime.last_end_request = now_ns;
4674 
4675 	/*
4676 	 * Using us instead of ns, to get a reasonable precision in
4677 	 * computing rate in next check.
4678 	 */
4679 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4680 
4681 	/*
4682 	 * If the request took rather long to complete, and, according
4683 	 * to the maximum request size recorded, this completion latency
4684 	 * implies that the request was certainly served at a very low
4685 	 * rate (less than 1M sectors/sec), then the whole observation
4686 	 * interval that lasts up to this time instant cannot be a
4687 	 * valid time interval for computing a new peak rate.  Invoke
4688 	 * bfq_update_rate_reset to have the following three steps
4689 	 * taken:
4690 	 * - close the observation interval at the last (previous)
4691 	 *   request dispatch or completion
4692 	 * - compute rate, if possible, for that observation interval
4693 	 * - reset to zero samples, which will trigger a proper
4694 	 *   re-initialization of the observation interval on next
4695 	 *   dispatch
4696 	 */
4697 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4698 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4699 			1UL<<(BFQ_RATE_SHIFT - 10))
4700 		bfq_update_rate_reset(bfqd, NULL);
4701 	bfqd->last_completion = now_ns;
4702 
4703 	/*
4704 	 * If we are waiting to discover whether the request pattern
4705 	 * of the task associated with the queue is actually
4706 	 * isochronous, and both requisites for this condition to hold
4707 	 * are now satisfied, then compute soft_rt_next_start (see the
4708 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4709 	 * schedule this delayed check when bfqq expires, if it still
4710 	 * has in-flight requests.
4711 	 */
4712 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4713 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4714 		bfqq->soft_rt_next_start =
4715 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4716 
4717 	/*
4718 	 * If this is the in-service queue, check if it needs to be expired,
4719 	 * or if we want to idle in case it has no pending requests.
4720 	 */
4721 	if (bfqd->in_service_queue == bfqq) {
4722 		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
4723 			bfq_arm_slice_timer(bfqd);
4724 			return;
4725 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4726 			bfq_bfqq_expire(bfqd, bfqq, false,
4727 					BFQQE_BUDGET_TIMEOUT);
4728 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4729 			 (bfqq->dispatched == 0 ||
4730 			  !bfq_bfqq_may_idle(bfqq)))
4731 			bfq_bfqq_expire(bfqd, bfqq, false,
4732 					BFQQE_NO_MORE_REQUESTS);
4733 	}
4734 
4735 	if (!bfqd->rq_in_driver)
4736 		bfq_schedule_dispatch(bfqd);
4737 }
4738 
4739 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4740 {
4741 	bfqq->allocated--;
4742 
4743 	bfq_put_queue(bfqq);
4744 }
4745 
4746 /*
4747  * Handle either a requeue or a finish for rq. The things to do are
4748  * the same in both cases: all references to rq are to be dropped. In
4749  * particular, rq is considered completed from the point of view of
4750  * the scheduler.
4751  */
4752 static void bfq_finish_requeue_request(struct request *rq)
4753 {
4754 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4755 	struct bfq_data *bfqd;
4756 
4757 	/*
4758 	 * Requeue and finish hooks are invoked in blk-mq without
4759 	 * checking whether the involved request is actually still
4760 	 * referenced in the scheduler. To handle this fact, the
4761 	 * following two checks make this function exit in case of
4762 	 * spurious invocations, for which there is nothing to do.
4763 	 *
4764 	 * First, check whether rq has nothing to do with an elevator.
4765 	 */
4766 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4767 		return;
4768 
4769 	/*
4770 	 * rq either is not associated with any icq, or is an already
4771 	 * requeued request that has not (yet) been re-inserted into
4772 	 * a bfq_queue.
4773 	 */
4774 	if (!rq->elv.icq || !bfqq)
4775 		return;
4776 
4777 	bfqd = bfqq->bfqd;
4778 
4779 	if (rq->rq_flags & RQF_STARTED)
4780 		bfqg_stats_update_completion(bfqq_group(bfqq),
4781 					     rq_start_time_ns(rq),
4782 					     rq_io_start_time_ns(rq),
4783 					     rq->cmd_flags);
4784 
4785 	if (likely(rq->rq_flags & RQF_STARTED)) {
4786 		unsigned long flags;
4787 
4788 		spin_lock_irqsave(&bfqd->lock, flags);
4789 
4790 		bfq_completed_request(bfqq, bfqd);
4791 		bfq_finish_requeue_request_body(bfqq);
4792 
4793 		spin_unlock_irqrestore(&bfqd->lock, flags);
4794 	} else {
4795 		/*
4796 		 * Request rq may be still/already in the scheduler,
4797 		 * in which case we need to remove it (this should
4798 		 * never happen in case of requeue). And we cannot
4799 		 * defer such a check and removal, to avoid
4800 		 * inconsistencies in the time interval from the end
4801 		 * of this function to the start of the deferred work.
4802 		 * This situation seems to occur only in process
4803 		 * context, as a consequence of a merge. In the
4804 		 * current version of the code, this implies that the
4805 		 * lock is held.
4806 		 */
4807 
4808 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4809 			bfq_remove_request(rq->q, rq);
4810 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
4811 						    rq->cmd_flags);
4812 		}
4813 		bfq_finish_requeue_request_body(bfqq);
4814 	}
4815 
4816 	/*
4817 	 * Reset private fields. In case of a requeue, this allows
4818 	 * this function to correctly do nothing if it is spuriously
4819 	 * invoked again on this same request (see the check at the
4820 	 * beginning of the function). Probably, a better general
4821 	 * design would be to prevent blk-mq from invoking the requeue
4822 	 * or finish hooks of an elevator, for a request that is not
4823 	 * referred by that elevator.
4824 	 *
4825 	 * Resetting the following fields would break the
4826 	 * request-insertion logic if rq is re-inserted into a bfq
4827 	 * internal queue, without a re-preparation. Here we assume
4828 	 * that re-insertions of requeued requests, without
4829 	 * re-preparation, can happen only for pass_through or at_head
4830 	 * requests (which are not re-inserted into bfq internal
4831 	 * queues).
4832 	 */
4833 	rq->elv.priv[0] = NULL;
4834 	rq->elv.priv[1] = NULL;
4835 }
4836 
4837 /*
4838  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4839  * was the last process referring to that bfqq.
4840  */
4841 static struct bfq_queue *
4842 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4843 {
4844 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4845 
4846 	if (bfqq_process_refs(bfqq) == 1) {
4847 		bfqq->pid = current->pid;
4848 		bfq_clear_bfqq_coop(bfqq);
4849 		bfq_clear_bfqq_split_coop(bfqq);
4850 		return bfqq;
4851 	}
4852 
4853 	bic_set_bfqq(bic, NULL, 1);
4854 
4855 	bfq_put_cooperator(bfqq);
4856 
4857 	bfq_put_queue(bfqq);
4858 	return NULL;
4859 }
4860 
4861 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4862 						   struct bfq_io_cq *bic,
4863 						   struct bio *bio,
4864 						   bool split, bool is_sync,
4865 						   bool *new_queue)
4866 {
4867 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4868 
4869 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4870 		return bfqq;
4871 
4872 	if (new_queue)
4873 		*new_queue = true;
4874 
4875 	if (bfqq)
4876 		bfq_put_queue(bfqq);
4877 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4878 
4879 	bic_set_bfqq(bic, bfqq, is_sync);
4880 	if (split && is_sync) {
4881 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
4882 		    bic->saved_in_large_burst)
4883 			bfq_mark_bfqq_in_large_burst(bfqq);
4884 		else {
4885 			bfq_clear_bfqq_in_large_burst(bfqq);
4886 			if (bic->was_in_burst_list)
4887 				/*
4888 				 * If bfqq was in the current
4889 				 * burst list before being
4890 				 * merged, then we have to add
4891 				 * it back. And we do not need
4892 				 * to increase burst_size, as
4893 				 * we did not decrement
4894 				 * burst_size when we removed
4895 				 * bfqq from the burst list as
4896 				 * a consequence of a merge
4897 				 * (see comments in
4898 				 * bfq_put_queue). In this
4899 				 * respect, it would be rather
4900 				 * costly to know whether the
4901 				 * current burst list is still
4902 				 * the same burst list from
4903 				 * which bfqq was removed on
4904 				 * the merge. To avoid this
4905 				 * cost, if bfqq was in a
4906 				 * burst list, then we add
4907 				 * bfqq to the current burst
4908 				 * list without any further
4909 				 * check. This can cause
4910 				 * inappropriate insertions,
4911 				 * but rarely enough to not
4912 				 * harm the detection of large
4913 				 * bursts significantly.
4914 				 */
4915 				hlist_add_head(&bfqq->burst_list_node,
4916 					       &bfqd->burst_list);
4917 		}
4918 		bfqq->split_time = jiffies;
4919 	}
4920 
4921 	return bfqq;
4922 }
4923 
4924 /*
4925  * Allocate bfq data structures associated with this request.
4926  */
4927 static void bfq_prepare_request(struct request *rq, struct bio *bio)
4928 {
4929 	struct request_queue *q = rq->q;
4930 	struct bfq_data *bfqd = q->elevator->elevator_data;
4931 	struct bfq_io_cq *bic;
4932 	const int is_sync = rq_is_sync(rq);
4933 	struct bfq_queue *bfqq;
4934 	bool new_queue = false;
4935 	bool bfqq_already_existing = false, split = false;
4936 
4937 	/*
4938 	 * Even if we don't have an icq attached, we should still clear
4939 	 * the scheduler pointers, as they might point to previously
4940 	 * allocated bic/bfqq structs.
4941 	 */
4942 	if (!rq->elv.icq) {
4943 		rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4944 		return;
4945 	}
4946 
4947 	bic = icq_to_bic(rq->elv.icq);
4948 
4949 	spin_lock_irq(&bfqd->lock);
4950 
4951 	bfq_check_ioprio_change(bic, bio);
4952 
4953 	bfq_bic_update_cgroup(bic, bio);
4954 
4955 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4956 					 &new_queue);
4957 
4958 	if (likely(!new_queue)) {
4959 		/* If the queue was seeky for too long, break it apart. */
4960 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4961 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
4962 
4963 			/* Update bic before losing reference to bfqq */
4964 			if (bfq_bfqq_in_large_burst(bfqq))
4965 				bic->saved_in_large_burst = true;
4966 
4967 			bfqq = bfq_split_bfqq(bic, bfqq);
4968 			split = true;
4969 
4970 			if (!bfqq)
4971 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4972 								 true, is_sync,
4973 								 NULL);
4974 			else
4975 				bfqq_already_existing = true;
4976 		}
4977 	}
4978 
4979 	bfqq->allocated++;
4980 	bfqq->ref++;
4981 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4982 		     rq, bfqq, bfqq->ref);
4983 
4984 	rq->elv.priv[0] = bic;
4985 	rq->elv.priv[1] = bfqq;
4986 
4987 	/*
4988 	 * If a bfq_queue has only one process reference, it is owned
4989 	 * by only this bic: we can then set bfqq->bic = bic. in
4990 	 * addition, if the queue has also just been split, we have to
4991 	 * resume its state.
4992 	 */
4993 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4994 		bfqq->bic = bic;
4995 		if (split) {
4996 			/*
4997 			 * The queue has just been split from a shared
4998 			 * queue: restore the idle window and the
4999 			 * possible weight raising period.
5000 			 */
5001 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5002 					      bfqq_already_existing);
5003 		}
5004 	}
5005 
5006 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5007 		bfq_handle_burst(bfqd, bfqq);
5008 
5009 	spin_unlock_irq(&bfqd->lock);
5010 }
5011 
5012 static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5013 {
5014 	struct bfq_data *bfqd = bfqq->bfqd;
5015 	enum bfqq_expiration reason;
5016 	unsigned long flags;
5017 
5018 	spin_lock_irqsave(&bfqd->lock, flags);
5019 	bfq_clear_bfqq_wait_request(bfqq);
5020 
5021 	if (bfqq != bfqd->in_service_queue) {
5022 		spin_unlock_irqrestore(&bfqd->lock, flags);
5023 		return;
5024 	}
5025 
5026 	if (bfq_bfqq_budget_timeout(bfqq))
5027 		/*
5028 		 * Also here the queue can be safely expired
5029 		 * for budget timeout without wasting
5030 		 * guarantees
5031 		 */
5032 		reason = BFQQE_BUDGET_TIMEOUT;
5033 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5034 		/*
5035 		 * The queue may not be empty upon timer expiration,
5036 		 * because we may not disable the timer when the
5037 		 * first request of the in-service queue arrives
5038 		 * during disk idling.
5039 		 */
5040 		reason = BFQQE_TOO_IDLE;
5041 	else
5042 		goto schedule_dispatch;
5043 
5044 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5045 
5046 schedule_dispatch:
5047 	spin_unlock_irqrestore(&bfqd->lock, flags);
5048 	bfq_schedule_dispatch(bfqd);
5049 }
5050 
5051 /*
5052  * Handler of the expiration of the timer running if the in-service queue
5053  * is idling inside its time slice.
5054  */
5055 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5056 {
5057 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5058 					     idle_slice_timer);
5059 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5060 
5061 	/*
5062 	 * Theoretical race here: the in-service queue can be NULL or
5063 	 * different from the queue that was idling if a new request
5064 	 * arrives for the current queue and there is a full dispatch
5065 	 * cycle that changes the in-service queue.  This can hardly
5066 	 * happen, but in the worst case we just expire a queue too
5067 	 * early.
5068 	 */
5069 	if (bfqq)
5070 		bfq_idle_slice_timer_body(bfqq);
5071 
5072 	return HRTIMER_NORESTART;
5073 }
5074 
5075 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5076 				 struct bfq_queue **bfqq_ptr)
5077 {
5078 	struct bfq_queue *bfqq = *bfqq_ptr;
5079 
5080 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5081 	if (bfqq) {
5082 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5083 
5084 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5085 			     bfqq, bfqq->ref);
5086 		bfq_put_queue(bfqq);
5087 		*bfqq_ptr = NULL;
5088 	}
5089 }
5090 
5091 /*
5092  * Release all the bfqg references to its async queues.  If we are
5093  * deallocating the group these queues may still contain requests, so
5094  * we reparent them to the root cgroup (i.e., the only one that will
5095  * exist for sure until all the requests on a device are gone).
5096  */
5097 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5098 {
5099 	int i, j;
5100 
5101 	for (i = 0; i < 2; i++)
5102 		for (j = 0; j < IOPRIO_BE_NR; j++)
5103 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5104 
5105 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5106 }
5107 
5108 static void bfq_exit_queue(struct elevator_queue *e)
5109 {
5110 	struct bfq_data *bfqd = e->elevator_data;
5111 	struct bfq_queue *bfqq, *n;
5112 
5113 	hrtimer_cancel(&bfqd->idle_slice_timer);
5114 
5115 	spin_lock_irq(&bfqd->lock);
5116 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5117 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5118 	spin_unlock_irq(&bfqd->lock);
5119 
5120 	hrtimer_cancel(&bfqd->idle_slice_timer);
5121 
5122 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5123 	/* release oom-queue reference to root group */
5124 	bfqg_and_blkg_put(bfqd->root_group);
5125 
5126 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5127 #else
5128 	spin_lock_irq(&bfqd->lock);
5129 	bfq_put_async_queues(bfqd, bfqd->root_group);
5130 	kfree(bfqd->root_group);
5131 	spin_unlock_irq(&bfqd->lock);
5132 #endif
5133 
5134 	kfree(bfqd);
5135 }
5136 
5137 static void bfq_init_root_group(struct bfq_group *root_group,
5138 				struct bfq_data *bfqd)
5139 {
5140 	int i;
5141 
5142 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5143 	root_group->entity.parent = NULL;
5144 	root_group->my_entity = NULL;
5145 	root_group->bfqd = bfqd;
5146 #endif
5147 	root_group->rq_pos_tree = RB_ROOT;
5148 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5149 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5150 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5151 }
5152 
5153 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5154 {
5155 	struct bfq_data *bfqd;
5156 	struct elevator_queue *eq;
5157 
5158 	eq = elevator_alloc(q, e);
5159 	if (!eq)
5160 		return -ENOMEM;
5161 
5162 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5163 	if (!bfqd) {
5164 		kobject_put(&eq->kobj);
5165 		return -ENOMEM;
5166 	}
5167 	eq->elevator_data = bfqd;
5168 
5169 	spin_lock_irq(q->queue_lock);
5170 	q->elevator = eq;
5171 	spin_unlock_irq(q->queue_lock);
5172 
5173 	/*
5174 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5175 	 * Grab a permanent reference to it, so that the normal code flow
5176 	 * will not attempt to free it.
5177 	 */
5178 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5179 	bfqd->oom_bfqq.ref++;
5180 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5181 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5182 	bfqd->oom_bfqq.entity.new_weight =
5183 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5184 
5185 	/* oom_bfqq does not participate to bursts */
5186 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5187 
5188 	/*
5189 	 * Trigger weight initialization, according to ioprio, at the
5190 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5191 	 * class won't be changed any more.
5192 	 */
5193 	bfqd->oom_bfqq.entity.prio_changed = 1;
5194 
5195 	bfqd->queue = q;
5196 
5197 	INIT_LIST_HEAD(&bfqd->dispatch);
5198 
5199 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5200 		     HRTIMER_MODE_REL);
5201 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5202 
5203 	bfqd->queue_weights_tree = RB_ROOT;
5204 	bfqd->group_weights_tree = RB_ROOT;
5205 
5206 	INIT_LIST_HEAD(&bfqd->active_list);
5207 	INIT_LIST_HEAD(&bfqd->idle_list);
5208 	INIT_HLIST_HEAD(&bfqd->burst_list);
5209 
5210 	bfqd->hw_tag = -1;
5211 
5212 	bfqd->bfq_max_budget = bfq_default_max_budget;
5213 
5214 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5215 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5216 	bfqd->bfq_back_max = bfq_back_max;
5217 	bfqd->bfq_back_penalty = bfq_back_penalty;
5218 	bfqd->bfq_slice_idle = bfq_slice_idle;
5219 	bfqd->bfq_timeout = bfq_timeout;
5220 
5221 	bfqd->bfq_requests_within_timer = 120;
5222 
5223 	bfqd->bfq_large_burst_thresh = 8;
5224 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5225 
5226 	bfqd->low_latency = true;
5227 
5228 	/*
5229 	 * Trade-off between responsiveness and fairness.
5230 	 */
5231 	bfqd->bfq_wr_coeff = 30;
5232 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5233 	bfqd->bfq_wr_max_time = 0;
5234 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5235 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5236 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5237 					      * Approximate rate required
5238 					      * to playback or record a
5239 					      * high-definition compressed
5240 					      * video.
5241 					      */
5242 	bfqd->wr_busy_queues = 0;
5243 
5244 	/*
5245 	 * Begin by assuming, optimistically, that the device is a
5246 	 * high-speed one, and that its peak rate is equal to 2/3 of
5247 	 * the highest reference rate.
5248 	 */
5249 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
5250 			T_fast[blk_queue_nonrot(bfqd->queue)];
5251 	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5252 	bfqd->device_speed = BFQ_BFQD_FAST;
5253 
5254 	spin_lock_init(&bfqd->lock);
5255 
5256 	/*
5257 	 * The invocation of the next bfq_create_group_hierarchy
5258 	 * function is the head of a chain of function calls
5259 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5260 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5261 	 * has_work hook function. For this reason,
5262 	 * bfq_create_group_hierarchy is invoked only after all
5263 	 * scheduler data has been initialized, apart from the fields
5264 	 * that can be initialized only after invoking
5265 	 * bfq_create_group_hierarchy. This, in particular, enables
5266 	 * has_work to correctly return false. Of course, to avoid
5267 	 * other inconsistencies, the blk-mq stack must then refrain
5268 	 * from invoking further scheduler hooks before this init
5269 	 * function is finished.
5270 	 */
5271 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5272 	if (!bfqd->root_group)
5273 		goto out_free;
5274 	bfq_init_root_group(bfqd->root_group, bfqd);
5275 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5276 
5277 	wbt_disable_default(q);
5278 	return 0;
5279 
5280 out_free:
5281 	kfree(bfqd);
5282 	kobject_put(&eq->kobj);
5283 	return -ENOMEM;
5284 }
5285 
5286 static void bfq_slab_kill(void)
5287 {
5288 	kmem_cache_destroy(bfq_pool);
5289 }
5290 
5291 static int __init bfq_slab_setup(void)
5292 {
5293 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5294 	if (!bfq_pool)
5295 		return -ENOMEM;
5296 	return 0;
5297 }
5298 
5299 static ssize_t bfq_var_show(unsigned int var, char *page)
5300 {
5301 	return sprintf(page, "%u\n", var);
5302 }
5303 
5304 static int bfq_var_store(unsigned long *var, const char *page)
5305 {
5306 	unsigned long new_val;
5307 	int ret = kstrtoul(page, 10, &new_val);
5308 
5309 	if (ret)
5310 		return ret;
5311 	*var = new_val;
5312 	return 0;
5313 }
5314 
5315 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5316 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5317 {									\
5318 	struct bfq_data *bfqd = e->elevator_data;			\
5319 	u64 __data = __VAR;						\
5320 	if (__CONV == 1)						\
5321 		__data = jiffies_to_msecs(__data);			\
5322 	else if (__CONV == 2)						\
5323 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5324 	return bfq_var_show(__data, (page));				\
5325 }
5326 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5327 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5328 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5329 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5330 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5331 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5332 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5333 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5334 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5335 #undef SHOW_FUNCTION
5336 
5337 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5338 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5339 {									\
5340 	struct bfq_data *bfqd = e->elevator_data;			\
5341 	u64 __data = __VAR;						\
5342 	__data = div_u64(__data, NSEC_PER_USEC);			\
5343 	return bfq_var_show(__data, (page));				\
5344 }
5345 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5346 #undef USEC_SHOW_FUNCTION
5347 
5348 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5349 static ssize_t								\
5350 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5351 {									\
5352 	struct bfq_data *bfqd = e->elevator_data;			\
5353 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5354 	int ret;							\
5355 									\
5356 	ret = bfq_var_store(&__data, (page));				\
5357 	if (ret)							\
5358 		return ret;						\
5359 	if (__data < __min)						\
5360 		__data = __min;						\
5361 	else if (__data > __max)					\
5362 		__data = __max;						\
5363 	if (__CONV == 1)						\
5364 		*(__PTR) = msecs_to_jiffies(__data);			\
5365 	else if (__CONV == 2)						\
5366 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5367 	else								\
5368 		*(__PTR) = __data;					\
5369 	return count;							\
5370 }
5371 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5372 		INT_MAX, 2);
5373 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5374 		INT_MAX, 2);
5375 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5376 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5377 		INT_MAX, 0);
5378 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5379 #undef STORE_FUNCTION
5380 
5381 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5382 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5383 {									\
5384 	struct bfq_data *bfqd = e->elevator_data;			\
5385 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5386 	int ret;							\
5387 									\
5388 	ret = bfq_var_store(&__data, (page));				\
5389 	if (ret)							\
5390 		return ret;						\
5391 	if (__data < __min)						\
5392 		__data = __min;						\
5393 	else if (__data > __max)					\
5394 		__data = __max;						\
5395 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5396 	return count;							\
5397 }
5398 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5399 		    UINT_MAX);
5400 #undef USEC_STORE_FUNCTION
5401 
5402 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5403 				    const char *page, size_t count)
5404 {
5405 	struct bfq_data *bfqd = e->elevator_data;
5406 	unsigned long __data;
5407 	int ret;
5408 
5409 	ret = bfq_var_store(&__data, (page));
5410 	if (ret)
5411 		return ret;
5412 
5413 	if (__data == 0)
5414 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5415 	else {
5416 		if (__data > INT_MAX)
5417 			__data = INT_MAX;
5418 		bfqd->bfq_max_budget = __data;
5419 	}
5420 
5421 	bfqd->bfq_user_max_budget = __data;
5422 
5423 	return count;
5424 }
5425 
5426 /*
5427  * Leaving this name to preserve name compatibility with cfq
5428  * parameters, but this timeout is used for both sync and async.
5429  */
5430 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5431 				      const char *page, size_t count)
5432 {
5433 	struct bfq_data *bfqd = e->elevator_data;
5434 	unsigned long __data;
5435 	int ret;
5436 
5437 	ret = bfq_var_store(&__data, (page));
5438 	if (ret)
5439 		return ret;
5440 
5441 	if (__data < 1)
5442 		__data = 1;
5443 	else if (__data > INT_MAX)
5444 		__data = INT_MAX;
5445 
5446 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5447 	if (bfqd->bfq_user_max_budget == 0)
5448 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5449 
5450 	return count;
5451 }
5452 
5453 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5454 				     const char *page, size_t count)
5455 {
5456 	struct bfq_data *bfqd = e->elevator_data;
5457 	unsigned long __data;
5458 	int ret;
5459 
5460 	ret = bfq_var_store(&__data, (page));
5461 	if (ret)
5462 		return ret;
5463 
5464 	if (__data > 1)
5465 		__data = 1;
5466 	if (!bfqd->strict_guarantees && __data == 1
5467 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5468 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5469 
5470 	bfqd->strict_guarantees = __data;
5471 
5472 	return count;
5473 }
5474 
5475 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5476 				     const char *page, size_t count)
5477 {
5478 	struct bfq_data *bfqd = e->elevator_data;
5479 	unsigned long __data;
5480 	int ret;
5481 
5482 	ret = bfq_var_store(&__data, (page));
5483 	if (ret)
5484 		return ret;
5485 
5486 	if (__data > 1)
5487 		__data = 1;
5488 	if (__data == 0 && bfqd->low_latency != 0)
5489 		bfq_end_wr(bfqd);
5490 	bfqd->low_latency = __data;
5491 
5492 	return count;
5493 }
5494 
5495 #define BFQ_ATTR(name) \
5496 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5497 
5498 static struct elv_fs_entry bfq_attrs[] = {
5499 	BFQ_ATTR(fifo_expire_sync),
5500 	BFQ_ATTR(fifo_expire_async),
5501 	BFQ_ATTR(back_seek_max),
5502 	BFQ_ATTR(back_seek_penalty),
5503 	BFQ_ATTR(slice_idle),
5504 	BFQ_ATTR(slice_idle_us),
5505 	BFQ_ATTR(max_budget),
5506 	BFQ_ATTR(timeout_sync),
5507 	BFQ_ATTR(strict_guarantees),
5508 	BFQ_ATTR(low_latency),
5509 	__ATTR_NULL
5510 };
5511 
5512 static struct elevator_type iosched_bfq_mq = {
5513 	.ops.mq = {
5514 		.limit_depth		= bfq_limit_depth,
5515 		.prepare_request	= bfq_prepare_request,
5516 		.requeue_request        = bfq_finish_requeue_request,
5517 		.finish_request		= bfq_finish_requeue_request,
5518 		.exit_icq		= bfq_exit_icq,
5519 		.insert_requests	= bfq_insert_requests,
5520 		.dispatch_request	= bfq_dispatch_request,
5521 		.next_request		= elv_rb_latter_request,
5522 		.former_request		= elv_rb_former_request,
5523 		.allow_merge		= bfq_allow_bio_merge,
5524 		.bio_merge		= bfq_bio_merge,
5525 		.request_merge		= bfq_request_merge,
5526 		.requests_merged	= bfq_requests_merged,
5527 		.request_merged		= bfq_request_merged,
5528 		.has_work		= bfq_has_work,
5529 		.init_sched		= bfq_init_queue,
5530 		.exit_sched		= bfq_exit_queue,
5531 	},
5532 
5533 	.uses_mq =		true,
5534 	.icq_size =		sizeof(struct bfq_io_cq),
5535 	.icq_align =		__alignof__(struct bfq_io_cq),
5536 	.elevator_attrs =	bfq_attrs,
5537 	.elevator_name =	"bfq",
5538 	.elevator_owner =	THIS_MODULE,
5539 };
5540 MODULE_ALIAS("bfq-iosched");
5541 
5542 static int __init bfq_init(void)
5543 {
5544 	int ret;
5545 
5546 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5547 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5548 	if (ret)
5549 		return ret;
5550 #endif
5551 
5552 	ret = -ENOMEM;
5553 	if (bfq_slab_setup())
5554 		goto err_pol_unreg;
5555 
5556 	/*
5557 	 * Times to load large popular applications for the typical
5558 	 * systems installed on the reference devices (see the
5559 	 * comments before the definitions of the next two
5560 	 * arrays). Actually, we use slightly slower values, as the
5561 	 * estimated peak rate tends to be smaller than the actual
5562 	 * peak rate.  The reason for this last fact is that estimates
5563 	 * are computed over much shorter time intervals than the long
5564 	 * intervals typically used for benchmarking. Why? First, to
5565 	 * adapt more quickly to variations. Second, because an I/O
5566 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5567 	 * be run for a long time.
5568 	 */
5569 	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5570 	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5571 	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5572 	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5573 
5574 	/*
5575 	 * Thresholds that determine the switch between speed classes
5576 	 * (see the comments before the definition of the array
5577 	 * device_speed_thresh). These thresholds are biased towards
5578 	 * transitions to the fast class. This is safer than the
5579 	 * opposite bias. In fact, a wrong transition to the slow
5580 	 * class results in short weight-raising periods, because the
5581 	 * speed of the device then tends to be higher that the
5582 	 * reference peak rate. On the opposite end, a wrong
5583 	 * transition to the fast class tends to increase
5584 	 * weight-raising periods, because of the opposite reason.
5585 	 */
5586 	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5587 	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5588 
5589 	ret = elv_register(&iosched_bfq_mq);
5590 	if (ret)
5591 		goto slab_kill;
5592 
5593 	return 0;
5594 
5595 slab_kill:
5596 	bfq_slab_kill();
5597 err_pol_unreg:
5598 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5599 	blkcg_policy_unregister(&blkcg_policy_bfq);
5600 #endif
5601 	return ret;
5602 }
5603 
5604 static void __exit bfq_exit(void)
5605 {
5606 	elv_unregister(&iosched_bfq_mq);
5607 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5608 	blkcg_policy_unregister(&blkcg_policy_bfq);
5609 #endif
5610 	bfq_slab_kill();
5611 }
5612 
5613 module_init(bfq_init);
5614 module_exit(bfq_exit);
5615 
5616 MODULE_AUTHOR("Paolo Valente");
5617 MODULE_LICENSE("GPL");
5618 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5619