xref: /openbmc/linux/arch/xtensa/mm/init.c (revision 173d6681)
1 /*
2  * arch/xtensa/mm/init.c
3  *
4  * Derived from MIPS, PPC.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Chris Zankel	<chris@zankel.net>
13  * Joe Taylor	<joe@tensilica.com, joetylr@yahoo.com>
14  * Marc Gauthier
15  * Kevin Chea
16  */
17 
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/bootmem.h>
27 #include <linux/swap.h>
28 
29 #include <asm/pgtable.h>
30 #include <asm/bootparam.h>
31 #include <asm/mmu_context.h>
32 #include <asm/tlb.h>
33 #include <asm/tlbflush.h>
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/pgtable.h>
37 
38 
39 #define DEBUG 0
40 
41 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 //static DEFINE_SPINLOCK(tlb_lock);
43 
44 /*
45  * This flag is used to indicate that the page was mapped and modified in
46  * kernel space, so the cache is probably dirty at that address.
47  * If cache aliasing is enabled and the page color mismatches, update_mmu_cache
48  * synchronizes the caches if this bit is set.
49  */
50 
51 #define PG_cache_clean PG_arch_1
52 
53 /* References to section boundaries */
54 
55 extern char _ftext, _etext, _fdata, _edata, _rodata_end;
56 extern char __init_begin, __init_end;
57 
58 /*
59  * mem_reserve(start, end, must_exist)
60  *
61  * Reserve some memory from the memory pool.
62  *
63  * Parameters:
64  *  start	Start of region,
65  *  end		End of region,
66  *  must_exist	Must exist in memory pool.
67  *
68  * Returns:
69  *  0 (memory area couldn't be mapped)
70  * -1 (success)
71  */
72 
73 int __init mem_reserve(unsigned long start, unsigned long end, int must_exist)
74 {
75 	int i;
76 
77 	if (start == end)
78 		return 0;
79 
80 	start = start & PAGE_MASK;
81 	end = PAGE_ALIGN(end);
82 
83 	for (i = 0; i < sysmem.nr_banks; i++)
84 		if (start < sysmem.bank[i].end
85 		    && end >= sysmem.bank[i].start)
86 			break;
87 
88 	if (i == sysmem.nr_banks) {
89 		if (must_exist)
90 			printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) "
91 				"not in any region!\n", start, end);
92 		return 0;
93 	}
94 
95 	if (start > sysmem.bank[i].start) {
96 		if (end < sysmem.bank[i].end) {
97 			/* split entry */
98 			if (sysmem.nr_banks >= SYSMEM_BANKS_MAX)
99 				panic("meminfo overflow\n");
100 			sysmem.bank[sysmem.nr_banks].start = end;
101 			sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end;
102 			sysmem.nr_banks++;
103 		}
104 		sysmem.bank[i].end = start;
105 	} else {
106 		if (end < sysmem.bank[i].end)
107 			sysmem.bank[i].start = end;
108 		else {
109 			/* remove entry */
110 			sysmem.nr_banks--;
111 			sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start;
112 			sysmem.bank[i].end   = sysmem.bank[sysmem.nr_banks].end;
113 		}
114 	}
115 	return -1;
116 }
117 
118 
119 /*
120  * Initialize the bootmem system and give it all the memory we have available.
121  */
122 
123 void __init bootmem_init(void)
124 {
125 	unsigned long pfn;
126 	unsigned long bootmap_start, bootmap_size;
127 	int i;
128 
129 	max_low_pfn = max_pfn = 0;
130 	min_low_pfn = ~0;
131 
132 	for (i=0; i < sysmem.nr_banks; i++) {
133 		pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT;
134 		if (pfn < min_low_pfn)
135 			min_low_pfn = pfn;
136 		pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT;
137 		if (pfn > max_pfn)
138 			max_pfn = pfn;
139 	}
140 
141 	if (min_low_pfn > max_pfn)
142 		panic("No memory found!\n");
143 
144 	max_low_pfn = max_pfn < MAX_MEM_PFN >> PAGE_SHIFT ?
145 		max_pfn : MAX_MEM_PFN >> PAGE_SHIFT;
146 
147 	/* Find an area to use for the bootmem bitmap. */
148 
149 	bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT;
150 	bootmap_start = ~0;
151 
152 	for (i=0; i<sysmem.nr_banks; i++)
153 		if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) {
154 			bootmap_start = sysmem.bank[i].start;
155 			break;
156 		}
157 
158 	if (bootmap_start == ~0UL)
159 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
160 
161 	/* Reserve the bootmem bitmap area */
162 
163 	mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1);
164 	bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn,
165 					 bootmap_start >> PAGE_SHIFT,
166 					 max_low_pfn);
167 
168 	/* Add all remaining memory pieces into the bootmem map */
169 
170 	for (i=0; i<sysmem.nr_banks; i++)
171 		free_bootmem(sysmem.bank[i].start,
172 			     sysmem.bank[i].end - sysmem.bank[i].start);
173 
174 }
175 
176 
177 void __init paging_init(void)
178 {
179 	unsigned long zones_size[MAX_NR_ZONES];
180 	int i;
181 
182 	/* All pages are DMA-able, so we put them all in the DMA zone. */
183 
184 	zones_size[ZONE_DMA] = max_low_pfn;
185 	for (i = 1; i < MAX_NR_ZONES; i++)
186 		zones_size[i] = 0;
187 
188 #ifdef CONFIG_HIGHMEM
189 	zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn;
190 #endif
191 
192 	/* Initialize the kernel's page tables. */
193 
194 	memset(swapper_pg_dir, 0, PAGE_SIZE);
195 
196 	free_area_init(zones_size);
197 }
198 
199 /*
200  * Flush the mmu and reset associated register to default values.
201  */
202 
203 void __init init_mmu (void)
204 {
205 	/* Writing zeros to the <t>TLBCFG special registers ensure
206 	 * that valid values exist in the register.  For existing
207 	 * PGSZID<w> fields, zero selects the first element of the
208 	 * page-size array.  For nonexistant PGSZID<w> fields, zero is
209 	 * the best value to write.  Also, when changing PGSZID<w>
210 	 * fields, the corresponding TLB must be flushed.
211 	 */
212 	set_itlbcfg_register (0);
213 	set_dtlbcfg_register (0);
214 	flush_tlb_all ();
215 
216 	/* Set rasid register to a known value. */
217 
218 	set_rasid_register (ASID_USER_FIRST);
219 
220 	/* Set PTEVADDR special register to the start of the page
221 	 * table, which is in kernel mappable space (ie. not
222 	 * statically mapped).  This register's value is undefined on
223 	 * reset.
224 	 */
225 	set_ptevaddr_register (PGTABLE_START);
226 }
227 
228 /*
229  * Initialize memory pages.
230  */
231 
232 void __init mem_init(void)
233 {
234 	unsigned long codesize, reservedpages, datasize, initsize;
235 	unsigned long highmemsize, tmp, ram;
236 
237 	max_mapnr = num_physpages = max_low_pfn;
238 	high_memory = (void *) __va(max_mapnr << PAGE_SHIFT);
239 	highmemsize = 0;
240 
241 #ifdef CONFIG_HIGHMEM
242 #error HIGHGMEM not implemented in init.c
243 #endif
244 
245 	totalram_pages += free_all_bootmem();
246 
247 	reservedpages = ram = 0;
248 	for (tmp = 0; tmp < max_low_pfn; tmp++) {
249 		ram++;
250 		if (PageReserved(mem_map+tmp))
251 			reservedpages++;
252 	}
253 
254 	codesize =  (unsigned long) &_etext - (unsigned long) &_ftext;
255 	datasize =  (unsigned long) &_edata - (unsigned long) &_fdata;
256 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
257 
258 	printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, "
259 	       "%ldk data, %ldk init %ldk highmem)\n",
260 	       (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
261 	       ram << (PAGE_SHIFT-10),
262 	       codesize >> 10,
263 	       reservedpages << (PAGE_SHIFT-10),
264 	       datasize >> 10,
265 	       initsize >> 10,
266 	       highmemsize >> 10);
267 }
268 
269 void
270 free_reserved_mem(void *start, void *end)
271 {
272 	for (; start < end; start += PAGE_SIZE) {
273 		ClearPageReserved(virt_to_page(start));
274 		init_page_count(virt_to_page(start));
275 		free_page((unsigned long)start);
276 		totalram_pages++;
277 	}
278 }
279 
280 #ifdef CONFIG_BLK_DEV_INITRD
281 extern int initrd_is_mapped;
282 
283 void free_initrd_mem(unsigned long start, unsigned long end)
284 {
285 	if (initrd_is_mapped) {
286 		free_reserved_mem((void*)start, (void*)end);
287 		printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10);
288 	}
289 }
290 #endif
291 
292 void free_initmem(void)
293 {
294 	free_reserved_mem(&__init_begin, &__init_end);
295 	printk("Freeing unused kernel memory: %dk freed\n",
296 	       (&__init_end - &__init_begin) >> 10);
297 }
298 
299 void show_mem(void)
300 {
301 	int i, free = 0, total = 0, reserved = 0;
302 	int shared = 0, cached = 0;
303 
304 	printk("Mem-info:\n");
305 	show_free_areas();
306 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
307 	i = max_mapnr;
308 	while (i-- > 0) {
309 		total++;
310 		if (PageReserved(mem_map+i))
311 			reserved++;
312 		else if (PageSwapCache(mem_map+i))
313 			cached++;
314 		else if (!page_count(mem_map + i))
315 			free++;
316 		else
317 			shared += page_count(mem_map + i) - 1;
318 	}
319 	printk("%d pages of RAM\n", total);
320 	printk("%d reserved pages\n", reserved);
321 	printk("%d pages shared\n", shared);
322 	printk("%d pages swap cached\n",cached);
323 	printk("%d free pages\n", free);
324 }
325 
326 /* ------------------------------------------------------------------------- */
327 
328 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
329 
330 /*
331  * With cache aliasing, the page color of the page in kernel space and user
332  * space might mismatch. We temporarily map the page to a different virtual
333  * address with the same color and clear the page there.
334  */
335 
336 void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page)
337 {
338 
339   	/*  There shouldn't be any entries for this page. */
340 
341 	__flush_invalidate_dcache_page_phys(__pa(page_address(page)));
342 
343 	if (!PAGE_COLOR_EQ(vaddr, kaddr)) {
344 		unsigned long v, p;
345 
346 		/* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */
347 
348 		spin_lock(&tlb_lock);
349 
350 		p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL)));
351 		kaddr = (void*)PAGE_COLOR_MAP0(vaddr);
352 		v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0;
353 		__asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v));
354 
355 		clear_page(kaddr);
356 
357 		spin_unlock(&tlb_lock);
358 	} else {
359 		clear_page(kaddr);
360 	}
361 
362 	/* We need to make sure that i$ and d$ are coherent. */
363 
364 	clear_bit(PG_cache_clean, &page->flags);
365 }
366 
367 /*
368  * With cache aliasing, we have to make sure that the page color of the page
369  * in kernel space matches that of the virtual user address before we read
370  * the page. If the page color differ, we create a temporary DTLB entry with
371  * the corrent page color and use this 'temporary' address as the source.
372  * We then use the same approach as in clear_user_page and copy the data
373  * to the kernel space and clear the PG_cache_clean bit to synchronize caches
374  * later.
375  *
376  * Note:
377  * Instead of using another 'way' for the temporary DTLB entry, we could
378  * probably use the same entry that points to the kernel address (after
379  * saving the original value and restoring it when we are done).
380  */
381 
382 void copy_user_page(void* to, void* from, unsigned long vaddr,
383     		    struct page* to_page)
384 {
385 	/* There shouldn't be any entries for the new page. */
386 
387 	__flush_invalidate_dcache_page_phys(__pa(page_address(to_page)));
388 
389 	spin_lock(&tlb_lock);
390 
391 	if (!PAGE_COLOR_EQ(vaddr, from)) {
392 		unsigned long v, p, t;
393 
394 		__asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1"
395 				      : "=a"(p), "=a"(t) : "a"(from));
396 		from = (void*)PAGE_COLOR_MAP0(vaddr);
397 		v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0;
398 		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
399 	}
400 
401 	if (!PAGE_COLOR_EQ(vaddr, to)) {
402 		unsigned long v, p;
403 
404 		p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL)));
405 		to = (void*)PAGE_COLOR_MAP1(vaddr);
406 		v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1;
407 		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
408 	}
409 	copy_page(to, from);
410 
411 	spin_unlock(&tlb_lock);
412 
413 	/* We need to make sure that i$ and d$ are coherent. */
414 
415 	clear_bit(PG_cache_clean, &to_page->flags);
416 }
417 
418 
419 
420 /*
421  * Any time the kernel writes to a user page cache page, or it is about to
422  * read from a page cache page this routine is called.
423  *
424  * Note:
425  * The kernel currently only provides one architecture bit in the page
426  * flags that we use for I$/D$ coherency. Maybe, in future, we can
427  * use a sepearte bit for deferred dcache aliasing:
428  * If the page is not mapped yet, we only need to set a flag,
429  * if mapped, we need to invalidate the page.
430  */
431 // FIXME: we probably need this for WB caches not only for Page Coloring..
432 
433 void flush_dcache_page(struct page *page)
434 {
435 	unsigned long addr = __pa(page_address(page));
436 	struct address_space *mapping = page_mapping(page);
437 
438 	__flush_invalidate_dcache_page_phys(addr);
439 
440 	if (!test_bit(PG_cache_clean, &page->flags))
441 		return;
442 
443 	/* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/
444 #if 0
445 	if (mapping && !mapping_mapped(mapping))
446 		clear_bit(PG_cache_clean, &page->flags);
447 	else
448 #endif
449 		__invalidate_icache_page_phys(addr);
450 }
451 
452 void flush_cache_range(struct vm_area_struct* vma, unsigned long s,
453 		       unsigned long e)
454 {
455 	__flush_invalidate_cache_all();
456 }
457 
458 void flush_cache_page(struct vm_area_struct* vma, unsigned long address,
459     		      unsigned long pfn)
460 {
461 	struct page *page = pfn_to_page(pfn);
462 
463 	/* Remove any entry for the old mapping. */
464 
465 	if (current->active_mm == vma->vm_mm) {
466 		unsigned long addr = __pa(page_address(page));
467 		__flush_invalidate_dcache_page_phys(addr);
468 		if ((vma->vm_flags & VM_EXEC) != 0)
469 			__invalidate_icache_page_phys(addr);
470 	} else {
471 		BUG();
472 	}
473 }
474 
475 #endif	/* (DCACHE_WAY_SIZE > PAGE_SIZE) */
476 
477 
478 pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr)
479 {
480 	pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0);
481 	if (likely(pte)) {
482 	       	pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET);
483 		int i;
484 		for (i = 0; i < 1024; i++, ptep++)
485 			pte_clear(mm, addr, ptep);
486 	}
487 	return pte;
488 }
489 
490 struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr)
491 {
492 	struct page *page;
493 
494 	page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0);
495 
496 	if (likely(page)) {
497 		pte_t* ptep = kmap_atomic(page, KM_USER0);
498 		int i;
499 
500 		for (i = 0; i < 1024; i++, ptep++)
501 			pte_clear(mm, addr, ptep);
502 
503 		kunmap_atomic(ptep, KM_USER0);
504 	}
505 	return page;
506 }
507 
508 
509 /*
510  * Handle D$/I$ coherency.
511  *
512  * Note:
513  * We only have one architecture bit for the page flags, so we cannot handle
514  * cache aliasing, yet.
515  */
516 
517 void
518 update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte)
519 {
520 	unsigned long pfn = pte_pfn(pte);
521 	struct page *page;
522 	unsigned long vaddr = addr & PAGE_MASK;
523 
524 	if (!pfn_valid(pfn))
525 		return;
526 
527 	page = pfn_to_page(pfn);
528 
529 	invalidate_itlb_mapping(addr);
530 	invalidate_dtlb_mapping(addr);
531 
532 	/* We have a new mapping. Use it. */
533 
534 	write_dtlb_entry(pte, dtlb_probe(addr));
535 
536 	/* If the processor can execute from this page, synchronize D$/I$. */
537 
538 	if ((vma->vm_flags & VM_EXEC) != 0) {
539 
540 		write_itlb_entry(pte, itlb_probe(addr));
541 
542 		/* Synchronize caches, if not clean. */
543 
544 		if (!test_and_set_bit(PG_cache_clean, &page->flags)) {
545 			__flush_dcache_page(vaddr);
546 			__invalidate_icache_page(vaddr);
547 		}
548 	}
549 }
550 
551