xref: /openbmc/linux/arch/xtensa/kernel/vectors.S (revision d1538c46)
1/*
2 * arch/xtensa/kernel/vectors.S
3 *
4 * This file contains all exception vectors (user, kernel, and double),
5 * as well as the window vectors (overflow and underflow), and the debug
6 * vector. These are the primary vectors executed by the processor if an
7 * exception occurs.
8 *
9 * This file is subject to the terms and conditions of the GNU General
10 * Public License.  See the file "COPYING" in the main directory of
11 * this archive for more details.
12 *
13 * Copyright (C) 2005 Tensilica, Inc.
14 *
15 * Chris Zankel <chris@zankel.net>
16 *
17 */
18
19/*
20 * We use a two-level table approach. The user and kernel exception vectors
21 * use a first-level dispatch table to dispatch the exception to a registered
22 * fast handler or the default handler, if no fast handler was registered.
23 * The default handler sets up a C-stack and dispatches the exception to a
24 * registerd C handler in the second-level dispatch table.
25 *
26 * Fast handler entry condition:
27 *
28 *   a0:	trashed, original value saved on stack (PT_AREG0)
29 *   a1:	a1
30 *   a2:	new stack pointer, original value in depc
31 *   a3:	dispatch table
32 *   depc:	a2, original value saved on stack (PT_DEPC)
33 *   excsave_1:	a3
34 *
35 * The value for PT_DEPC saved to stack also functions as a boolean to
36 * indicate that the exception is either a double or a regular exception:
37 *
38 *   PT_DEPC	>= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
39 *		<  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
40 *
41 * Note:  Neither the kernel nor the user exception handler generate literals.
42 *
43 */
44
45#include <linux/linkage.h>
46#include <asm/ptrace.h>
47#include <asm/current.h>
48#include <asm/asm-offsets.h>
49#include <asm/pgtable.h>
50#include <asm/processor.h>
51#include <asm/page.h>
52#include <asm/thread_info.h>
53
54#define WINDOW_VECTORS_SIZE   0x180
55
56
57/*
58 * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
59 *
60 * We get here when an exception occurred while we were in userland.
61 * We switch to the kernel stack and jump to the first level handler
62 * associated to the exception cause.
63 *
64 * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
65 *       decremented by PT_USER_SIZE.
66 */
67
68	.section .UserExceptionVector.text, "ax"
69
70ENTRY(_UserExceptionVector)
71
72	xsr	a3, excsave1		# save a3 and get dispatch table
73	wsr	a2, depc		# save a2
74	l32i	a2, a3, EXC_TABLE_KSTK	# load kernel stack to a2
75	s32i	a0, a2, PT_AREG0	# save a0 to ESF
76	rsr	a0, exccause		# retrieve exception cause
77	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
78	addx4	a0, a0, a3		# find entry in table
79	l32i	a0, a0, EXC_TABLE_FAST_USER	# load handler
80	jx	a0
81
82ENDPROC(_UserExceptionVector)
83
84/*
85 * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
86 *
87 * We get this exception when we were already in kernel space.
88 * We decrement the current stack pointer (kernel) by PT_SIZE and
89 * jump to the first-level handler associated with the exception cause.
90 *
91 * Note: we need to preserve space for the spill region.
92 */
93
94	.section .KernelExceptionVector.text, "ax"
95
96ENTRY(_KernelExceptionVector)
97
98	xsr	a3, excsave1		# save a3, and get dispatch table
99	wsr	a2, depc		# save a2
100	addi	a2, a1, -16-PT_SIZE	# adjust stack pointer
101	s32i	a0, a2, PT_AREG0	# save a0 to ESF
102	rsr	a0, exccause		# retrieve exception cause
103	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
104	addx4	a0, a0, a3		# find entry in table
105	l32i	a0, a0, EXC_TABLE_FAST_KERNEL	# load handler address
106	jx	a0
107
108ENDPROC(_KernelExceptionVector)
109
110/*
111 * Double exception vector (Exceptions with PS.EXCM == 1)
112 * We get this exception when another exception occurs while were are
113 * already in an exception, such as window overflow/underflow exception,
114 * or 'expected' exceptions, for example memory exception when we were trying
115 * to read data from an invalid address in user space.
116 *
117 * Note that this vector is never invoked for level-1 interrupts, because such
118 * interrupts are disabled (masked) when PS.EXCM is set.
119 *
120 * We decode the exception and take the appropriate action.  However, the
121 * double exception vector is much more careful, because a lot more error
122 * cases go through the double exception vector than through the user and
123 * kernel exception vectors.
124 *
125 * Occasionally, the kernel expects a double exception to occur.  This usually
126 * happens when accessing user-space memory with the user's permissions
127 * (l32e/s32e instructions).  The kernel state, though, is not always suitable
128 * for immediate transfer of control to handle_double, where "normal" exception
129 * processing occurs. Also in kernel mode, TLB misses can occur if accessing
130 * vmalloc memory, possibly requiring repair in a double exception handler.
131 *
132 * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
133 * a boolean variable and a pointer to a fixup routine. If the variable
134 * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
135 * zero indicates to use the default kernel/user exception handler.
136 * There is only one exception, when the value is identical to the exc_table
137 * label, the kernel is in trouble. This mechanism is used to protect critical
138 * sections, mainly when the handler writes to the stack to assert the stack
139 * pointer is valid. Once the fixup/default handler leaves that area, the
140 * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
141 *
142 * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
143 * nonzero address of a fixup routine before it could cause a double exception
144 * and reset it before it returns.
145 *
146 * Some other things to take care of when a fast exception handler doesn't
147 * specify a particular fixup handler but wants to use the default handlers:
148 *
149 *  - The original stack pointer (in a1) must not be modified. The fast
150 *    exception handler should only use a2 as the stack pointer.
151 *
152 *  - If the fast handler manipulates the stack pointer (in a2), it has to
153 *    register a valid fixup handler and cannot use the default handlers.
154 *
155 *  - The handler can use any other generic register from a3 to a15, but it
156 *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
157 *
158 *  - These registers must be saved before a double exception can occur.
159 *
160 *  - If we ever implement handling signals while in double exceptions, the
161 *    number of registers a fast handler has saved (excluding a0 and a1) must
162 *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
163 *
164 * The fixup handlers are special handlers:
165 *
166 *  - Fixup entry conditions differ from regular exceptions:
167 *
168 *	a0:	   DEPC
169 *	a1: 	   a1
170 *	a2:	   trashed, original value in EXC_TABLE_DOUBLE_A2
171 *	a3:	   exctable
172 *	depc:	   a0
173 *	excsave_1: a3
174 *
175 *  - When the kernel enters the fixup handler, it still assumes it is in a
176 *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
177 *    The fixup handler, therefore, has to re-register itself as the fixup
178 *    handler before it returns from the double exception.
179 *
180 *  - Fixup handler can share the same exception frame with the fast handler.
181 *    The kernel stack pointer is not changed when entering the fixup handler.
182 *
183 *  - Fixup handlers can jump to the default kernel and user exception
184 *    handlers. Before it jumps, though, it has to setup a exception frame
185 *    on stack. Because the default handler resets the register fixup handler
186 *    the fixup handler must make sure that the default handler returns to
187 *    it instead of the exception address, so it can re-register itself as
188 *    the fixup handler.
189 *
190 * In case of a critical condition where the kernel cannot recover, we jump
191 * to unrecoverable_exception with the following entry conditions.
192 * All registers a0...a15 are unchanged from the last exception, except:
193 *
194 *	a0:	   last address before we jumped to the unrecoverable_exception.
195 *	excsave_1: a0
196 *
197 *
198 * See the handle_alloca_user and spill_registers routines for example clients.
199 *
200 * FIXME: Note: we currently don't allow signal handling coming from a double
201 *        exception, so the item markt with (*) is not required.
202 */
203
204	.section .DoubleExceptionVector.text, "ax"
205	.begin literal_prefix .DoubleExceptionVector
206
207ENTRY(_DoubleExceptionVector)
208
209	/* Deliberately destroy excsave (don't assume it's value was valid). */
210
211	wsr	a3, excsave1		# save a3
212
213	/* Check for kernel double exception (usually fatal). */
214
215	rsr	a3, ps
216	_bbci.l	a3, PS_UM_BIT, .Lksp
217
218	/* Check if we are currently handling a window exception. */
219	/* Note: We don't need to indicate that we enter a critical section. */
220
221	xsr	a0, depc		# get DEPC, save a0
222
223	movi	a3, XCHAL_WINDOW_VECTORS_VADDR
224	_bltu	a0, a3, .Lfixup
225	addi	a3, a3, WINDOW_VECTORS_SIZE
226	_bgeu	a0, a3, .Lfixup
227
228	/* Window overflow/underflow exception. Get stack pointer. */
229
230	mov	a3, a2
231	/* This explicit literal and the following references to it are made
232	 * in order to fit DoubleExceptionVector.literals into the available
233	 * 16-byte gap before DoubleExceptionVector.text in the absence of
234	 * link time relaxation. See kernel/vmlinux.lds.S
235	 */
236	.literal .Lexc_table, exc_table
237	l32r	a2, .Lexc_table
238	l32i	a2, a2, EXC_TABLE_KSTK
239
240	/* Check for overflow/underflow exception, jump if overflow. */
241
242	_bbci.l	a0, 6, .Lovfl
243
244	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3  */
245
246	/* Restart window underflow exception.
247	 * We return to the instruction in user space that caused the window
248	 * underflow exception. Therefore, we change window base to the value
249	 * before we entered the window underflow exception and prepare the
250	 * registers to return as if we were coming from a regular exception
251	 * by changing depc (in a0).
252	 * Note: We can trash the current window frame (a0...a3) and depc!
253	 */
254
255	wsr	a2, depc		# save stack pointer temporarily
256	rsr	a0, ps
257	extui	a0, a0, PS_OWB_SHIFT, 4
258	wsr	a0, windowbase
259	rsync
260
261	/* We are now in the previous window frame. Save registers again. */
262
263	xsr	a2, depc		# save a2 and get stack pointer
264	s32i	a0, a2, PT_AREG0
265
266	wsr	a3, excsave1		# save a3
267	l32r	a3, .Lexc_table
268
269	rsr	a0, exccause
270	s32i	a0, a2, PT_DEPC		# mark it as a regular exception
271	addx4	a0, a0, a3
272	l32i	a0, a0, EXC_TABLE_FAST_USER
273	jx	a0
274
275.Lfixup:/* Check for a fixup handler or if we were in a critical section. */
276
277	/* a0: depc, a1: a1, a2: a2, a3: trashed, depc: a0, excsave1: a3 */
278
279	l32r	a3, .Lexc_table
280	s32i	a2, a3, EXC_TABLE_DOUBLE_SAVE	# temporary variable
281
282	/* Enter critical section. */
283
284	l32i	a2, a3, EXC_TABLE_FIXUP
285	s32i	a3, a3, EXC_TABLE_FIXUP
286	beq	a2, a3, .Lunrecoverable_fixup	# critical!
287	beqz	a2, .Ldflt			# no handler was registered
288
289	/* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
290
291	jx	a2
292
293.Ldflt:	/* Get stack pointer. */
294
295	l32i	a3, a3, EXC_TABLE_DOUBLE_SAVE
296	addi	a2, a3, -PT_USER_SIZE
297
298.Lovfl:	/* Jump to default handlers. */
299
300	/* a0: depc, a1: a1, a2: kstk, a3: a2, depc: a0, excsave: a3 */
301
302	xsr	a3, depc
303	s32i	a0, a2, PT_DEPC
304	s32i	a3, a2, PT_AREG0
305
306	/* a0: avail, a1: a1, a2: kstk, a3: avail, depc: a2, excsave: a3 */
307
308	l32r	a3, .Lexc_table
309	rsr	a0, exccause
310	addx4	a0, a0, a3
311	l32i	a0, a0, EXC_TABLE_FAST_USER
312	jx	a0
313
314	/*
315	 * We only allow the ITLB miss exception if we are in kernel space.
316	 * All other exceptions are unexpected and thus unrecoverable!
317	 */
318
319#ifdef CONFIG_MMU
320	.extern fast_second_level_miss_double_kernel
321
322.Lksp:	/* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
323
324	rsr	a3, exccause
325	beqi	a3, EXCCAUSE_ITLB_MISS, 1f
326	addi	a3, a3, -EXCCAUSE_DTLB_MISS
327	bnez	a3, .Lunrecoverable
3281:	movi	a3, fast_second_level_miss_double_kernel
329	jx	a3
330#else
331.equ	.Lksp,	.Lunrecoverable
332#endif
333
334	/* Critical! We can't handle this situation. PANIC! */
335
336	.extern unrecoverable_exception
337
338.Lunrecoverable_fixup:
339	l32i	a2, a3, EXC_TABLE_DOUBLE_SAVE
340	xsr	a0, depc
341
342.Lunrecoverable:
343	rsr	a3, excsave1
344	wsr	a0, excsave1
345	movi	a0, unrecoverable_exception
346	callx0	a0
347
348	.end literal_prefix
349
350ENDPROC(_DoubleExceptionVector)
351
352/*
353 * Debug interrupt vector
354 *
355 * There is not much space here, so simply jump to another handler.
356 * EXCSAVE[DEBUGLEVEL] has been set to that handler.
357 */
358
359	.section .DebugInterruptVector.text, "ax"
360
361ENTRY(_DebugInterruptVector)
362
363	xsr	a0, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
364	jx	a0
365
366ENDPROC(_DebugInterruptVector)
367
368
369/* Window overflow and underflow handlers.
370 * The handlers must be 64 bytes apart, first starting with the underflow
371 * handlers underflow-4 to underflow-12, then the overflow handlers
372 * overflow-4 to overflow-12.
373 *
374 * Note: We rerun the underflow handlers if we hit an exception, so
375 *	 we try to access any page that would cause a page fault early.
376 */
377
378#define ENTRY_ALIGN64(name)	\
379	.globl name;		\
380	.align 64;		\
381	name:
382
383	.section		.WindowVectors.text, "ax"
384
385
386/* 4-Register Window Overflow Vector (Handler) */
387
388ENTRY_ALIGN64(_WindowOverflow4)
389
390	s32e	a0, a5, -16
391	s32e	a1, a5, -12
392	s32e	a2, a5,  -8
393	s32e	a3, a5,  -4
394	rfwo
395
396ENDPROC(_WindowOverflow4)
397
398
399/* 4-Register Window Underflow Vector (Handler) */
400
401ENTRY_ALIGN64(_WindowUnderflow4)
402
403	l32e	a0, a5, -16
404	l32e	a1, a5, -12
405	l32e	a2, a5,  -8
406	l32e	a3, a5,  -4
407	rfwu
408
409ENDPROC(_WindowUnderflow4)
410
411/* 8-Register Window Overflow Vector (Handler) */
412
413ENTRY_ALIGN64(_WindowOverflow8)
414
415	s32e	a0, a9, -16
416	l32e	a0, a1, -12
417	s32e	a2, a9,  -8
418	s32e	a1, a9, -12
419	s32e	a3, a9,  -4
420	s32e	a4, a0, -32
421	s32e	a5, a0, -28
422	s32e	a6, a0, -24
423	s32e	a7, a0, -20
424	rfwo
425
426ENDPROC(_WindowOverflow8)
427
428/* 8-Register Window Underflow Vector (Handler) */
429
430ENTRY_ALIGN64(_WindowUnderflow8)
431
432	l32e	a1, a9, -12
433	l32e	a0, a9, -16
434	l32e	a7, a1, -12
435	l32e	a2, a9,  -8
436	l32e	a4, a7, -32
437	l32e	a3, a9,  -4
438	l32e	a5, a7, -28
439	l32e	a6, a7, -24
440	l32e	a7, a7, -20
441	rfwu
442
443ENDPROC(_WindowUnderflow8)
444
445/* 12-Register Window Overflow Vector (Handler) */
446
447ENTRY_ALIGN64(_WindowOverflow12)
448
449	s32e	a0,  a13, -16
450	l32e	a0,  a1,  -12
451	s32e	a1,  a13, -12
452	s32e	a2,  a13,  -8
453	s32e	a3,  a13,  -4
454	s32e	a4,  a0,  -48
455	s32e	a5,  a0,  -44
456	s32e	a6,  a0,  -40
457	s32e	a7,  a0,  -36
458	s32e	a8,  a0,  -32
459	s32e	a9,  a0,  -28
460	s32e	a10, a0,  -24
461	s32e	a11, a0,  -20
462	rfwo
463
464ENDPROC(_WindowOverflow12)
465
466/* 12-Register Window Underflow Vector (Handler) */
467
468ENTRY_ALIGN64(_WindowUnderflow12)
469
470	l32e	a1,  a13, -12
471	l32e	a0,  a13, -16
472	l32e	a11, a1,  -12
473	l32e	a2,  a13,  -8
474	l32e	a4,  a11, -48
475	l32e	a8,  a11, -32
476	l32e	a3,  a13,  -4
477	l32e	a5,  a11, -44
478	l32e	a6,  a11, -40
479	l32e	a7,  a11, -36
480	l32e	a9,  a11, -28
481	l32e	a10, a11, -24
482	l32e	a11, a11, -20
483	rfwu
484
485ENDPROC(_WindowUnderflow12)
486
487	.text
488
489
490