xref: /openbmc/linux/arch/xtensa/kernel/traps.c (revision 2a598d0b)
1 /*
2  * arch/xtensa/kernel/traps.c
3  *
4  * Exception handling.
5  *
6  * Derived from code with the following copyrights:
7  * Copyright (C) 1994 - 1999 by Ralf Baechle
8  * Modified for R3000 by Paul M. Antoine, 1995, 1996
9  * Complete output from die() by Ulf Carlsson, 1998
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  *
12  * Essentially rewritten for the Xtensa architecture port.
13  *
14  * Copyright (C) 2001 - 2013 Tensilica Inc.
15  *
16  * Joe Taylor	<joe@tensilica.com, joetylr@yahoo.com>
17  * Chris Zankel	<chris@zankel.net>
18  * Marc Gauthier<marc@tensilica.com, marc@alumni.uwaterloo.ca>
19  * Kevin Chea
20  *
21  * This file is subject to the terms and conditions of the GNU General Public
22  * License.  See the file "COPYING" in the main directory of this archive
23  * for more details.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/debug.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/stringify.h>
33 #include <linux/kallsyms.h>
34 #include <linux/delay.h>
35 #include <linux/hardirq.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pgtable.h>
38 
39 #include <asm/stacktrace.h>
40 #include <asm/ptrace.h>
41 #include <asm/timex.h>
42 #include <linux/uaccess.h>
43 #include <asm/processor.h>
44 #include <asm/traps.h>
45 #include <asm/hw_breakpoint.h>
46 
47 /*
48  * Machine specific interrupt handlers
49  */
50 
51 static void do_illegal_instruction(struct pt_regs *regs);
52 static void do_div0(struct pt_regs *regs);
53 static void do_interrupt(struct pt_regs *regs);
54 #if XTENSA_FAKE_NMI
55 static void do_nmi(struct pt_regs *regs);
56 #endif
57 #ifdef CONFIG_XTENSA_LOAD_STORE
58 static void do_load_store(struct pt_regs *regs);
59 #endif
60 static void do_unaligned_user(struct pt_regs *regs);
61 static void do_multihit(struct pt_regs *regs);
62 #if XTENSA_HAVE_COPROCESSORS
63 static void do_coprocessor(struct pt_regs *regs);
64 #endif
65 static void do_debug(struct pt_regs *regs);
66 
67 /*
68  * The vector table must be preceded by a save area (which
69  * implies it must be in RAM, unless one places RAM immediately
70  * before a ROM and puts the vector at the start of the ROM (!))
71  */
72 
73 #define KRNL		0x01
74 #define USER		0x02
75 
76 #define COPROCESSOR(x)							\
77 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, USER|KRNL, fast_coprocessor },\
78 { EXCCAUSE_COPROCESSOR ## x ## _DISABLED, 0, do_coprocessor }
79 
80 typedef struct {
81 	int cause;
82 	int fast;
83 	void* handler;
84 } dispatch_init_table_t;
85 
86 static dispatch_init_table_t __initdata dispatch_init_table[] = {
87 
88 #ifdef CONFIG_USER_ABI_CALL0_PROBE
89 { EXCCAUSE_ILLEGAL_INSTRUCTION,	USER,	   fast_illegal_instruction_user },
90 #endif
91 { EXCCAUSE_ILLEGAL_INSTRUCTION,	0,	   do_illegal_instruction},
92 { EXCCAUSE_SYSTEM_CALL,		USER,	   fast_syscall_user },
93 { EXCCAUSE_SYSTEM_CALL,		0,	   system_call },
94 /* EXCCAUSE_INSTRUCTION_FETCH unhandled */
95 #ifdef CONFIG_XTENSA_LOAD_STORE
96 { EXCCAUSE_LOAD_STORE_ERROR,	USER|KRNL, fast_load_store },
97 { EXCCAUSE_LOAD_STORE_ERROR,	0,	   do_load_store },
98 #endif
99 { EXCCAUSE_LEVEL1_INTERRUPT,	0,	   do_interrupt },
100 #ifdef SUPPORT_WINDOWED
101 { EXCCAUSE_ALLOCA,		USER|KRNL, fast_alloca },
102 #endif
103 { EXCCAUSE_INTEGER_DIVIDE_BY_ZERO, 0,	   do_div0 },
104 /* EXCCAUSE_PRIVILEGED unhandled */
105 #if XCHAL_UNALIGNED_LOAD_EXCEPTION || XCHAL_UNALIGNED_STORE_EXCEPTION
106 #ifdef CONFIG_XTENSA_UNALIGNED_USER
107 { EXCCAUSE_UNALIGNED,		USER,	   fast_unaligned },
108 #endif
109 { EXCCAUSE_UNALIGNED,		KRNL,	   fast_unaligned },
110 #endif
111 { EXCCAUSE_UNALIGNED,		0,	   do_unaligned_user },
112 #ifdef CONFIG_MMU
113 { EXCCAUSE_ITLB_MISS,			0,	   do_page_fault },
114 { EXCCAUSE_ITLB_MISS,			USER|KRNL, fast_second_level_miss},
115 { EXCCAUSE_DTLB_MISS,			USER|KRNL, fast_second_level_miss},
116 { EXCCAUSE_DTLB_MISS,			0,	   do_page_fault },
117 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,	USER|KRNL, fast_store_prohibited },
118 #endif /* CONFIG_MMU */
119 #ifdef CONFIG_PFAULT
120 { EXCCAUSE_ITLB_MULTIHIT,		0,	   do_multihit },
121 { EXCCAUSE_ITLB_PRIVILEGE,		0,	   do_page_fault },
122 { EXCCAUSE_FETCH_CACHE_ATTRIBUTE,	0,	   do_page_fault },
123 { EXCCAUSE_DTLB_MULTIHIT,		0,	   do_multihit },
124 { EXCCAUSE_DTLB_PRIVILEGE,		0,	   do_page_fault },
125 { EXCCAUSE_STORE_CACHE_ATTRIBUTE,	0,	   do_page_fault },
126 { EXCCAUSE_LOAD_CACHE_ATTRIBUTE,	0,	   do_page_fault },
127 #endif
128 /* XCCHAL_EXCCAUSE_FLOATING_POINT unhandled */
129 #if XTENSA_HAVE_COPROCESSOR(0)
130 COPROCESSOR(0),
131 #endif
132 #if XTENSA_HAVE_COPROCESSOR(1)
133 COPROCESSOR(1),
134 #endif
135 #if XTENSA_HAVE_COPROCESSOR(2)
136 COPROCESSOR(2),
137 #endif
138 #if XTENSA_HAVE_COPROCESSOR(3)
139 COPROCESSOR(3),
140 #endif
141 #if XTENSA_HAVE_COPROCESSOR(4)
142 COPROCESSOR(4),
143 #endif
144 #if XTENSA_HAVE_COPROCESSOR(5)
145 COPROCESSOR(5),
146 #endif
147 #if XTENSA_HAVE_COPROCESSOR(6)
148 COPROCESSOR(6),
149 #endif
150 #if XTENSA_HAVE_COPROCESSOR(7)
151 COPROCESSOR(7),
152 #endif
153 #if XTENSA_FAKE_NMI
154 { EXCCAUSE_MAPPED_NMI,			0,		do_nmi },
155 #endif
156 { EXCCAUSE_MAPPED_DEBUG,		0,		do_debug },
157 { -1, -1, 0 }
158 
159 };
160 
161 /* The exception table <exc_table> serves two functions:
162  * 1. it contains three dispatch tables (fast_user, fast_kernel, default-c)
163  * 2. it is a temporary memory buffer for the exception handlers.
164  */
165 
166 DEFINE_PER_CPU(struct exc_table, exc_table);
167 DEFINE_PER_CPU(struct debug_table, debug_table);
168 
169 void die(const char*, struct pt_regs*, long);
170 
171 static inline void
172 __die_if_kernel(const char *str, struct pt_regs *regs, long err)
173 {
174 	if (!user_mode(regs))
175 		die(str, regs, err);
176 }
177 
178 #ifdef CONFIG_PRINT_USER_CODE_ON_UNHANDLED_EXCEPTION
179 static inline void dump_user_code(struct pt_regs *regs)
180 {
181 	char buf[32];
182 
183 	if (copy_from_user(buf, (void __user *)(regs->pc & -16), sizeof(buf)) == 0) {
184 		print_hex_dump(KERN_INFO, " ", DUMP_PREFIX_NONE,
185 			       32, 1, buf, sizeof(buf), false);
186 
187 	}
188 }
189 #else
190 static inline void dump_user_code(struct pt_regs *regs)
191 {
192 }
193 #endif
194 
195 /*
196  * Unhandled Exceptions. Kill user task or panic if in kernel space.
197  */
198 
199 void do_unhandled(struct pt_regs *regs)
200 {
201 	__die_if_kernel("Caught unhandled exception - should not happen",
202 			regs, SIGKILL);
203 
204 	/* If in user mode, send SIGILL signal to current process */
205 	pr_info_ratelimited("Caught unhandled exception in '%s' "
206 			    "(pid = %d, pc = %#010lx) - should not happen\n"
207 			    "\tEXCCAUSE is %ld\n",
208 			    current->comm, task_pid_nr(current), regs->pc,
209 			    regs->exccause);
210 	dump_user_code(regs);
211 	force_sig(SIGILL);
212 }
213 
214 /*
215  * Multi-hit exception. This if fatal!
216  */
217 
218 static void do_multihit(struct pt_regs *regs)
219 {
220 	die("Caught multihit exception", regs, SIGKILL);
221 }
222 
223 /*
224  * IRQ handler.
225  */
226 
227 #if XTENSA_FAKE_NMI
228 
229 #define IS_POW2(v) (((v) & ((v) - 1)) == 0)
230 
231 #if !(PROFILING_INTLEVEL == XCHAL_EXCM_LEVEL && \
232       IS_POW2(XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL)))
233 #warning "Fake NMI is requested for PMM, but there are other IRQs at or above its level."
234 #warning "Fake NMI will be used, but there will be a bugcheck if one of those IRQs fire."
235 
236 static inline void check_valid_nmi(void)
237 {
238 	unsigned intread = xtensa_get_sr(interrupt);
239 	unsigned intenable = xtensa_get_sr(intenable);
240 
241 	BUG_ON(intread & intenable &
242 	       ~(XTENSA_INTLEVEL_ANDBELOW_MASK(PROFILING_INTLEVEL) ^
243 		 XTENSA_INTLEVEL_MASK(PROFILING_INTLEVEL) ^
244 		 BIT(XCHAL_PROFILING_INTERRUPT)));
245 }
246 
247 #else
248 
249 static inline void check_valid_nmi(void)
250 {
251 }
252 
253 #endif
254 
255 irqreturn_t xtensa_pmu_irq_handler(int irq, void *dev_id);
256 
257 DEFINE_PER_CPU(unsigned long, nmi_count);
258 
259 static void do_nmi(struct pt_regs *regs)
260 {
261 	struct pt_regs *old_regs = set_irq_regs(regs);
262 
263 	nmi_enter();
264 	++*this_cpu_ptr(&nmi_count);
265 	check_valid_nmi();
266 	xtensa_pmu_irq_handler(0, NULL);
267 	nmi_exit();
268 	set_irq_regs(old_regs);
269 }
270 #endif
271 
272 static void do_interrupt(struct pt_regs *regs)
273 {
274 	static const unsigned int_level_mask[] = {
275 		0,
276 		XCHAL_INTLEVEL1_MASK,
277 		XCHAL_INTLEVEL2_MASK,
278 		XCHAL_INTLEVEL3_MASK,
279 		XCHAL_INTLEVEL4_MASK,
280 		XCHAL_INTLEVEL5_MASK,
281 		XCHAL_INTLEVEL6_MASK,
282 		XCHAL_INTLEVEL7_MASK,
283 	};
284 	struct pt_regs *old_regs = set_irq_regs(regs);
285 	unsigned unhandled = ~0u;
286 
287 	irq_enter();
288 
289 	for (;;) {
290 		unsigned intread = xtensa_get_sr(interrupt);
291 		unsigned intenable = xtensa_get_sr(intenable);
292 		unsigned int_at_level = intread & intenable;
293 		unsigned level;
294 
295 		for (level = LOCKLEVEL; level > 0; --level) {
296 			if (int_at_level & int_level_mask[level]) {
297 				int_at_level &= int_level_mask[level];
298 				if (int_at_level & unhandled)
299 					int_at_level &= unhandled;
300 				else
301 					unhandled |= int_level_mask[level];
302 				break;
303 			}
304 		}
305 
306 		if (level == 0)
307 			break;
308 
309 		/* clear lowest pending irq in the unhandled mask */
310 		unhandled ^= (int_at_level & -int_at_level);
311 		do_IRQ(__ffs(int_at_level), regs);
312 	}
313 
314 	irq_exit();
315 	set_irq_regs(old_regs);
316 }
317 
318 static bool check_div0(struct pt_regs *regs)
319 {
320 	static const u8 pattern[] = {'D', 'I', 'V', '0'};
321 	const u8 *p;
322 	u8 buf[5];
323 
324 	if (user_mode(regs)) {
325 		if (copy_from_user(buf, (void __user *)regs->pc + 2, 5))
326 			return false;
327 		p = buf;
328 	} else {
329 		p = (const u8 *)regs->pc + 2;
330 	}
331 
332 	return memcmp(p, pattern, sizeof(pattern)) == 0 ||
333 		memcmp(p + 1, pattern, sizeof(pattern)) == 0;
334 }
335 
336 /*
337  * Illegal instruction. Fatal if in kernel space.
338  */
339 
340 static void do_illegal_instruction(struct pt_regs *regs)
341 {
342 #ifdef CONFIG_USER_ABI_CALL0_PROBE
343 	/*
344 	 * When call0 application encounters an illegal instruction fast
345 	 * exception handler will attempt to set PS.WOE and retry failing
346 	 * instruction.
347 	 * If we get here we know that that instruction is also illegal
348 	 * with PS.WOE set, so it's not related to the windowed option
349 	 * hence PS.WOE may be cleared.
350 	 */
351 	if (regs->pc == current_thread_info()->ps_woe_fix_addr)
352 		regs->ps &= ~PS_WOE_MASK;
353 #endif
354 	if (check_div0(regs)) {
355 		do_div0(regs);
356 		return;
357 	}
358 
359 	__die_if_kernel("Illegal instruction in kernel", regs, SIGKILL);
360 
361 	/* If in user mode, send SIGILL signal to current process. */
362 
363 	pr_info_ratelimited("Illegal Instruction in '%s' (pid = %d, pc = %#010lx)\n",
364 			    current->comm, task_pid_nr(current), regs->pc);
365 	force_sig(SIGILL);
366 }
367 
368 static void do_div0(struct pt_regs *regs)
369 {
370 	__die_if_kernel("Unhandled division by 0 in kernel", regs, SIGKILL);
371 	force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->pc);
372 }
373 
374 #ifdef CONFIG_XTENSA_LOAD_STORE
375 static void do_load_store(struct pt_regs *regs)
376 {
377 	__die_if_kernel("Unhandled load/store exception in kernel",
378 			regs, SIGKILL);
379 
380 	pr_info_ratelimited("Load/store error to %08lx in '%s' (pid = %d, pc = %#010lx)\n",
381 			    regs->excvaddr, current->comm,
382 			    task_pid_nr(current), regs->pc);
383 	force_sig_fault(SIGBUS, BUS_ADRERR, (void *)regs->excvaddr);
384 }
385 #endif
386 
387 /*
388  * Handle unaligned memory accesses from user space. Kill task.
389  *
390  * If CONFIG_UNALIGNED_USER is not set, we don't allow unaligned memory
391  * accesses causes from user space.
392  */
393 
394 static void do_unaligned_user(struct pt_regs *regs)
395 {
396 	__die_if_kernel("Unhandled unaligned exception in kernel",
397 			regs, SIGKILL);
398 
399 	pr_info_ratelimited("Unaligned memory access to %08lx in '%s' "
400 			    "(pid = %d, pc = %#010lx)\n",
401 			    regs->excvaddr, current->comm,
402 			    task_pid_nr(current), regs->pc);
403 	force_sig_fault(SIGBUS, BUS_ADRALN, (void *) regs->excvaddr);
404 }
405 
406 #if XTENSA_HAVE_COPROCESSORS
407 static void do_coprocessor(struct pt_regs *regs)
408 {
409 	coprocessor_flush_release_all(current_thread_info());
410 }
411 #endif
412 
413 /* Handle debug events.
414  * When CONFIG_HAVE_HW_BREAKPOINT is on this handler is called with
415  * preemption disabled to avoid rescheduling and keep mapping of hardware
416  * breakpoint structures to debug registers intact, so that
417  * DEBUGCAUSE.DBNUM could be used in case of data breakpoint hit.
418  */
419 static void do_debug(struct pt_regs *regs)
420 {
421 #ifdef CONFIG_HAVE_HW_BREAKPOINT
422 	int ret = check_hw_breakpoint(regs);
423 
424 	preempt_enable();
425 	if (ret == 0)
426 		return;
427 #endif
428 	__die_if_kernel("Breakpoint in kernel", regs, SIGKILL);
429 
430 	/* If in user mode, send SIGTRAP signal to current process */
431 
432 	force_sig(SIGTRAP);
433 }
434 
435 
436 #define set_handler(type, cause, handler)				\
437 	do {								\
438 		unsigned int cpu;					\
439 									\
440 		for_each_possible_cpu(cpu)				\
441 			per_cpu(exc_table, cpu).type[cause] = (handler);\
442 	} while (0)
443 
444 /* Set exception C handler - for temporary use when probing exceptions */
445 
446 xtensa_exception_handler *
447 __init trap_set_handler(int cause, xtensa_exception_handler *handler)
448 {
449 	void *previous = per_cpu(exc_table, 0).default_handler[cause];
450 
451 	set_handler(default_handler, cause, handler);
452 	return previous;
453 }
454 
455 
456 static void trap_init_excsave(void)
457 {
458 	xtensa_set_sr(this_cpu_ptr(&exc_table), excsave1);
459 }
460 
461 static void trap_init_debug(void)
462 {
463 	unsigned long debugsave = (unsigned long)this_cpu_ptr(&debug_table);
464 
465 	this_cpu_ptr(&debug_table)->debug_exception = debug_exception;
466 	__asm__ __volatile__("wsr %0, excsave" __stringify(XCHAL_DEBUGLEVEL)
467 			     :: "a"(debugsave));
468 }
469 
470 /*
471  * Initialize dispatch tables.
472  *
473  * The exception vectors are stored compressed the __init section in the
474  * dispatch_init_table. This function initializes the following three tables
475  * from that compressed table:
476  * - fast user		first dispatch table for user exceptions
477  * - fast kernel	first dispatch table for kernel exceptions
478  * - default C-handler	C-handler called by the default fast handler.
479  *
480  * See vectors.S for more details.
481  */
482 
483 void __init trap_init(void)
484 {
485 	int i;
486 
487 	/* Setup default vectors. */
488 
489 	for (i = 0; i < EXCCAUSE_N; i++) {
490 		set_handler(fast_user_handler, i, user_exception);
491 		set_handler(fast_kernel_handler, i, kernel_exception);
492 		set_handler(default_handler, i, do_unhandled);
493 	}
494 
495 	/* Setup specific handlers. */
496 
497 	for(i = 0; dispatch_init_table[i].cause >= 0; i++) {
498 		int fast = dispatch_init_table[i].fast;
499 		int cause = dispatch_init_table[i].cause;
500 		void *handler = dispatch_init_table[i].handler;
501 
502 		if (fast == 0)
503 			set_handler(default_handler, cause, handler);
504 		if ((fast & USER) != 0)
505 			set_handler(fast_user_handler, cause, handler);
506 		if ((fast & KRNL) != 0)
507 			set_handler(fast_kernel_handler, cause, handler);
508 	}
509 
510 	/* Initialize EXCSAVE_1 to hold the address of the exception table. */
511 	trap_init_excsave();
512 	trap_init_debug();
513 }
514 
515 #ifdef CONFIG_SMP
516 void secondary_trap_init(void)
517 {
518 	trap_init_excsave();
519 	trap_init_debug();
520 }
521 #endif
522 
523 /*
524  * This function dumps the current valid window frame and other base registers.
525  */
526 
527 void show_regs(struct pt_regs * regs)
528 {
529 	int i;
530 
531 	show_regs_print_info(KERN_DEFAULT);
532 
533 	for (i = 0; i < 16; i++) {
534 		if ((i % 8) == 0)
535 			pr_info("a%02d:", i);
536 		pr_cont(" %08lx", regs->areg[i]);
537 	}
538 	pr_cont("\n");
539 	pr_info("pc: %08lx, ps: %08lx, depc: %08lx, excvaddr: %08lx\n",
540 		regs->pc, regs->ps, regs->depc, regs->excvaddr);
541 	pr_info("lbeg: %08lx, lend: %08lx lcount: %08lx, sar: %08lx\n",
542 		regs->lbeg, regs->lend, regs->lcount, regs->sar);
543 	if (user_mode(regs))
544 		pr_cont("wb: %08lx, ws: %08lx, wmask: %08lx, syscall: %ld\n",
545 			regs->windowbase, regs->windowstart, regs->wmask,
546 			regs->syscall);
547 }
548 
549 static int show_trace_cb(struct stackframe *frame, void *data)
550 {
551 	const char *loglvl = data;
552 
553 	if (kernel_text_address(frame->pc))
554 		printk("%s [<%08lx>] %pB\n",
555 			loglvl, frame->pc, (void *)frame->pc);
556 	return 0;
557 }
558 
559 static void show_trace(struct task_struct *task, unsigned long *sp,
560 		       const char *loglvl)
561 {
562 	if (!sp)
563 		sp = stack_pointer(task);
564 
565 	printk("%sCall Trace:\n", loglvl);
566 	walk_stackframe(sp, show_trace_cb, (void *)loglvl);
567 }
568 
569 #define STACK_DUMP_ENTRY_SIZE 4
570 #define STACK_DUMP_LINE_SIZE 16
571 static size_t kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
572 
573 struct stack_fragment
574 {
575 	size_t len;
576 	size_t off;
577 	u8 *sp;
578 	const char *loglvl;
579 };
580 
581 static int show_stack_fragment_cb(struct stackframe *frame, void *data)
582 {
583 	struct stack_fragment *sf = data;
584 
585 	while (sf->off < sf->len) {
586 		u8 line[STACK_DUMP_LINE_SIZE];
587 		size_t line_len = sf->len - sf->off > STACK_DUMP_LINE_SIZE ?
588 			STACK_DUMP_LINE_SIZE : sf->len - sf->off;
589 		bool arrow = sf->off == 0;
590 
591 		if (frame && frame->sp == (unsigned long)(sf->sp + sf->off))
592 			arrow = true;
593 
594 		__memcpy(line, sf->sp + sf->off, line_len);
595 		print_hex_dump(sf->loglvl, arrow ? "> " : "  ", DUMP_PREFIX_NONE,
596 			       STACK_DUMP_LINE_SIZE, STACK_DUMP_ENTRY_SIZE,
597 			       line, line_len, false);
598 		sf->off += STACK_DUMP_LINE_SIZE;
599 		if (arrow)
600 			return 0;
601 	}
602 	return 1;
603 }
604 
605 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
606 {
607 	struct stack_fragment sf;
608 
609 	if (!sp)
610 		sp = stack_pointer(task);
611 
612 	sf.len = min((-(size_t)sp) & (THREAD_SIZE - STACK_DUMP_ENTRY_SIZE),
613 		     kstack_depth_to_print * STACK_DUMP_ENTRY_SIZE);
614 	sf.off = 0;
615 	sf.sp = (u8 *)sp;
616 	sf.loglvl = loglvl;
617 
618 	printk("%sStack:\n", loglvl);
619 	walk_stackframe(sp, show_stack_fragment_cb, &sf);
620 	while (sf.off < sf.len)
621 		show_stack_fragment_cb(NULL, &sf);
622 	show_trace(task, sp, loglvl);
623 }
624 
625 DEFINE_SPINLOCK(die_lock);
626 
627 void __noreturn die(const char * str, struct pt_regs * regs, long err)
628 {
629 	static int die_counter;
630 	const char *pr = "";
631 
632 	if (IS_ENABLED(CONFIG_PREEMPTION))
633 		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
634 
635 	console_verbose();
636 	spin_lock_irq(&die_lock);
637 
638 	pr_info("%s: sig: %ld [#%d]%s\n", str, err, ++die_counter, pr);
639 	show_regs(regs);
640 	if (!user_mode(regs))
641 		show_stack(NULL, (unsigned long *)regs->areg[1], KERN_INFO);
642 
643 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
644 	spin_unlock_irq(&die_lock);
645 
646 	if (in_interrupt())
647 		panic("Fatal exception in interrupt");
648 
649 	if (panic_on_oops)
650 		panic("Fatal exception");
651 
652 	make_task_dead(err);
653 }
654