xref: /openbmc/linux/arch/xtensa/kernel/smp.c (revision c4c3c32d)
1 /*
2  * Xtensa SMP support functions.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2008 - 2013 Tensilica Inc.
9  *
10  * Chris Zankel <chris@zankel.net>
11  * Joe Taylor <joe@tensilica.com>
12  * Pete Delaney <piet@tensilica.com
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/irqdomain.h>
21 #include <linux/irq.h>
22 #include <linux/kdebug.h>
23 #include <linux/module.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/reboot.h>
28 #include <linux/seq_file.h>
29 #include <linux/smp.h>
30 #include <linux/thread_info.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/coprocessor.h>
34 #include <asm/kdebug.h>
35 #include <asm/mmu_context.h>
36 #include <asm/mxregs.h>
37 #include <asm/platform.h>
38 #include <asm/tlbflush.h>
39 #include <asm/traps.h>
40 
41 #ifdef CONFIG_SMP
42 # if XCHAL_HAVE_S32C1I == 0
43 #  error "The S32C1I option is required for SMP."
44 # endif
45 #endif
46 
47 static void system_invalidate_dcache_range(unsigned long start,
48 		unsigned long size);
49 static void system_flush_invalidate_dcache_range(unsigned long start,
50 		unsigned long size);
51 
52 /* IPI (Inter Process Interrupt) */
53 
54 #define IPI_IRQ	0
55 
56 static irqreturn_t ipi_interrupt(int irq, void *dev_id);
57 
58 void ipi_init(void)
59 {
60 	unsigned irq = irq_create_mapping(NULL, IPI_IRQ);
61 	if (request_irq(irq, ipi_interrupt, IRQF_PERCPU, "ipi", NULL))
62 		pr_err("Failed to request irq %u (ipi)\n", irq);
63 }
64 
65 static inline unsigned int get_core_count(void)
66 {
67 	/* Bits 18..21 of SYSCFGID contain the core count minus 1. */
68 	unsigned int syscfgid = get_er(SYSCFGID);
69 	return ((syscfgid >> 18) & 0xf) + 1;
70 }
71 
72 static inline int get_core_id(void)
73 {
74 	/* Bits 0...18 of SYSCFGID contain the core id  */
75 	unsigned int core_id = get_er(SYSCFGID);
76 	return core_id & 0x3fff;
77 }
78 
79 void __init smp_prepare_cpus(unsigned int max_cpus)
80 {
81 	unsigned i;
82 
83 	for_each_possible_cpu(i)
84 		set_cpu_present(i, true);
85 }
86 
87 void __init smp_init_cpus(void)
88 {
89 	unsigned i;
90 	unsigned int ncpus = get_core_count();
91 	unsigned int core_id = get_core_id();
92 
93 	pr_info("%s: Core Count = %d\n", __func__, ncpus);
94 	pr_info("%s: Core Id = %d\n", __func__, core_id);
95 
96 	if (ncpus > NR_CPUS) {
97 		ncpus = NR_CPUS;
98 		pr_info("%s: limiting core count by %d\n", __func__, ncpus);
99 	}
100 
101 	for (i = 0; i < ncpus; ++i)
102 		set_cpu_possible(i, true);
103 }
104 
105 void __init smp_prepare_boot_cpu(void)
106 {
107 	unsigned int cpu = smp_processor_id();
108 	BUG_ON(cpu != 0);
109 	cpu_asid_cache(cpu) = ASID_USER_FIRST;
110 }
111 
112 void __init smp_cpus_done(unsigned int max_cpus)
113 {
114 }
115 
116 static int boot_secondary_processors = 1; /* Set with xt-gdb via .xt-gdb */
117 static DECLARE_COMPLETION(cpu_running);
118 
119 void secondary_start_kernel(void)
120 {
121 	struct mm_struct *mm = &init_mm;
122 	unsigned int cpu = smp_processor_id();
123 
124 	init_mmu();
125 
126 #ifdef CONFIG_DEBUG_MISC
127 	if (boot_secondary_processors == 0) {
128 		pr_debug("%s: boot_secondary_processors:%d; Hanging cpu:%d\n",
129 			__func__, boot_secondary_processors, cpu);
130 		for (;;)
131 			__asm__ __volatile__ ("waiti " __stringify(LOCKLEVEL));
132 	}
133 
134 	pr_debug("%s: boot_secondary_processors:%d; Booting cpu:%d\n",
135 		__func__, boot_secondary_processors, cpu);
136 #endif
137 	/* Init EXCSAVE1 */
138 
139 	secondary_trap_init();
140 
141 	/* All kernel threads share the same mm context. */
142 
143 	mmget(mm);
144 	mmgrab(mm);
145 	current->active_mm = mm;
146 	cpumask_set_cpu(cpu, mm_cpumask(mm));
147 	enter_lazy_tlb(mm, current);
148 
149 	trace_hardirqs_off();
150 
151 	calibrate_delay();
152 
153 	notify_cpu_starting(cpu);
154 
155 	secondary_init_irq();
156 	local_timer_setup(cpu);
157 
158 	set_cpu_online(cpu, true);
159 
160 	local_irq_enable();
161 
162 	complete(&cpu_running);
163 
164 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
165 }
166 
167 static void mx_cpu_start(void *p)
168 {
169 	unsigned cpu = (unsigned)p;
170 	unsigned long run_stall_mask = get_er(MPSCORE);
171 
172 	set_er(run_stall_mask & ~(1u << cpu), MPSCORE);
173 	pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n",
174 			__func__, cpu, run_stall_mask, get_er(MPSCORE));
175 }
176 
177 static void mx_cpu_stop(void *p)
178 {
179 	unsigned cpu = (unsigned)p;
180 	unsigned long run_stall_mask = get_er(MPSCORE);
181 
182 	set_er(run_stall_mask | (1u << cpu), MPSCORE);
183 	pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n",
184 			__func__, cpu, run_stall_mask, get_er(MPSCORE));
185 }
186 
187 #ifdef CONFIG_HOTPLUG_CPU
188 unsigned long cpu_start_id __cacheline_aligned;
189 #endif
190 unsigned long cpu_start_ccount;
191 
192 static int boot_secondary(unsigned int cpu, struct task_struct *ts)
193 {
194 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
195 	unsigned long ccount;
196 	int i;
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 	WRITE_ONCE(cpu_start_id, cpu);
200 	/* Pairs with the third memw in the cpu_restart */
201 	mb();
202 	system_flush_invalidate_dcache_range((unsigned long)&cpu_start_id,
203 					     sizeof(cpu_start_id));
204 #endif
205 	smp_call_function_single(0, mx_cpu_start, (void *)cpu, 1);
206 
207 	for (i = 0; i < 2; ++i) {
208 		do
209 			ccount = get_ccount();
210 		while (!ccount);
211 
212 		WRITE_ONCE(cpu_start_ccount, ccount);
213 
214 		do {
215 			/*
216 			 * Pairs with the first two memws in the
217 			 * .Lboot_secondary.
218 			 */
219 			mb();
220 			ccount = READ_ONCE(cpu_start_ccount);
221 		} while (ccount && time_before(jiffies, timeout));
222 
223 		if (ccount) {
224 			smp_call_function_single(0, mx_cpu_stop,
225 						 (void *)cpu, 1);
226 			WRITE_ONCE(cpu_start_ccount, 0);
227 			return -EIO;
228 		}
229 	}
230 	return 0;
231 }
232 
233 int __cpu_up(unsigned int cpu, struct task_struct *idle)
234 {
235 	int ret = 0;
236 
237 	if (cpu_asid_cache(cpu) == 0)
238 		cpu_asid_cache(cpu) = ASID_USER_FIRST;
239 
240 	start_info.stack = (unsigned long)task_pt_regs(idle);
241 	wmb();
242 
243 	pr_debug("%s: Calling wakeup_secondary(cpu:%d, idle:%p, sp: %08lx)\n",
244 			__func__, cpu, idle, start_info.stack);
245 
246 	init_completion(&cpu_running);
247 	ret = boot_secondary(cpu, idle);
248 	if (ret == 0) {
249 		wait_for_completion_timeout(&cpu_running,
250 				msecs_to_jiffies(1000));
251 		if (!cpu_online(cpu))
252 			ret = -EIO;
253 	}
254 
255 	if (ret)
256 		pr_err("CPU %u failed to boot\n", cpu);
257 
258 	return ret;
259 }
260 
261 #ifdef CONFIG_HOTPLUG_CPU
262 
263 /*
264  * __cpu_disable runs on the processor to be shutdown.
265  */
266 int __cpu_disable(void)
267 {
268 	unsigned int cpu = smp_processor_id();
269 
270 	/*
271 	 * Take this CPU offline.  Once we clear this, we can't return,
272 	 * and we must not schedule until we're ready to give up the cpu.
273 	 */
274 	set_cpu_online(cpu, false);
275 
276 #if XTENSA_HAVE_COPROCESSORS
277 	/*
278 	 * Flush coprocessor contexts that are active on the current CPU.
279 	 */
280 	local_coprocessors_flush_release_all();
281 #endif
282 	/*
283 	 * OK - migrate IRQs away from this CPU
284 	 */
285 	migrate_irqs();
286 
287 	/*
288 	 * Flush user cache and TLB mappings, and then remove this CPU
289 	 * from the vm mask set of all processes.
290 	 */
291 	local_flush_cache_all();
292 	local_flush_tlb_all();
293 	invalidate_page_directory();
294 
295 	clear_tasks_mm_cpumask(cpu);
296 
297 	return 0;
298 }
299 
300 static void platform_cpu_kill(unsigned int cpu)
301 {
302 	smp_call_function_single(0, mx_cpu_stop, (void *)cpu, true);
303 }
304 
305 /*
306  * called on the thread which is asking for a CPU to be shutdown -
307  * waits until shutdown has completed, or it is timed out.
308  */
309 void __cpu_die(unsigned int cpu)
310 {
311 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
312 	while (time_before(jiffies, timeout)) {
313 		system_invalidate_dcache_range((unsigned long)&cpu_start_id,
314 					       sizeof(cpu_start_id));
315 		/* Pairs with the second memw in the cpu_restart */
316 		mb();
317 		if (READ_ONCE(cpu_start_id) == -cpu) {
318 			platform_cpu_kill(cpu);
319 			return;
320 		}
321 	}
322 	pr_err("CPU%u: unable to kill\n", cpu);
323 }
324 
325 void __noreturn arch_cpu_idle_dead(void)
326 {
327 	cpu_die();
328 }
329 /*
330  * Called from the idle thread for the CPU which has been shutdown.
331  *
332  * Note that we disable IRQs here, but do not re-enable them
333  * before returning to the caller. This is also the behaviour
334  * of the other hotplug-cpu capable cores, so presumably coming
335  * out of idle fixes this.
336  */
337 void __ref cpu_die(void)
338 {
339 	idle_task_exit();
340 	local_irq_disable();
341 	__asm__ __volatile__(
342 			"	movi	a2, cpu_restart\n"
343 			"	jx	a2\n");
344 
345 	BUG();
346 }
347 
348 #endif /* CONFIG_HOTPLUG_CPU */
349 
350 enum ipi_msg_type {
351 	IPI_RESCHEDULE = 0,
352 	IPI_CALL_FUNC,
353 	IPI_CPU_STOP,
354 	IPI_MAX
355 };
356 
357 static const struct {
358 	const char *short_text;
359 	const char *long_text;
360 } ipi_text[] = {
361 	{ .short_text = "RES", .long_text = "Rescheduling interrupts" },
362 	{ .short_text = "CAL", .long_text = "Function call interrupts" },
363 	{ .short_text = "DIE", .long_text = "CPU shutdown interrupts" },
364 };
365 
366 struct ipi_data {
367 	unsigned long ipi_count[IPI_MAX];
368 };
369 
370 static DEFINE_PER_CPU(struct ipi_data, ipi_data);
371 
372 static void send_ipi_message(const struct cpumask *callmask,
373 		enum ipi_msg_type msg_id)
374 {
375 	int index;
376 	unsigned long mask = 0;
377 
378 	for_each_cpu(index, callmask)
379 		mask |= 1 << index;
380 
381 	set_er(mask, MIPISET(msg_id));
382 }
383 
384 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
385 {
386 	send_ipi_message(mask, IPI_CALL_FUNC);
387 }
388 
389 void arch_send_call_function_single_ipi(int cpu)
390 {
391 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
392 }
393 
394 void arch_smp_send_reschedule(int cpu)
395 {
396 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
397 }
398 
399 void smp_send_stop(void)
400 {
401 	struct cpumask targets;
402 
403 	cpumask_copy(&targets, cpu_online_mask);
404 	cpumask_clear_cpu(smp_processor_id(), &targets);
405 	send_ipi_message(&targets, IPI_CPU_STOP);
406 }
407 
408 static void ipi_cpu_stop(unsigned int cpu)
409 {
410 	set_cpu_online(cpu, false);
411 	machine_halt();
412 }
413 
414 irqreturn_t ipi_interrupt(int irq, void *dev_id)
415 {
416 	unsigned int cpu = smp_processor_id();
417 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
418 
419 	for (;;) {
420 		unsigned int msg;
421 
422 		msg = get_er(MIPICAUSE(cpu));
423 		set_er(msg, MIPICAUSE(cpu));
424 
425 		if (!msg)
426 			break;
427 
428 		if (msg & (1 << IPI_CALL_FUNC)) {
429 			++ipi->ipi_count[IPI_CALL_FUNC];
430 			generic_smp_call_function_interrupt();
431 		}
432 
433 		if (msg & (1 << IPI_RESCHEDULE)) {
434 			++ipi->ipi_count[IPI_RESCHEDULE];
435 			scheduler_ipi();
436 		}
437 
438 		if (msg & (1 << IPI_CPU_STOP)) {
439 			++ipi->ipi_count[IPI_CPU_STOP];
440 			ipi_cpu_stop(cpu);
441 		}
442 	}
443 
444 	return IRQ_HANDLED;
445 }
446 
447 void show_ipi_list(struct seq_file *p, int prec)
448 {
449 	unsigned int cpu;
450 	unsigned i;
451 
452 	for (i = 0; i < IPI_MAX; ++i) {
453 		seq_printf(p, "%*s:", prec, ipi_text[i].short_text);
454 		for_each_online_cpu(cpu)
455 			seq_printf(p, " %10lu",
456 					per_cpu(ipi_data, cpu).ipi_count[i]);
457 		seq_printf(p, "   %s\n", ipi_text[i].long_text);
458 	}
459 }
460 
461 int setup_profiling_timer(unsigned int multiplier)
462 {
463 	pr_debug("setup_profiling_timer %d\n", multiplier);
464 	return 0;
465 }
466 
467 /* TLB flush functions */
468 
469 struct flush_data {
470 	struct vm_area_struct *vma;
471 	unsigned long addr1;
472 	unsigned long addr2;
473 };
474 
475 static void ipi_flush_tlb_all(void *arg)
476 {
477 	local_flush_tlb_all();
478 }
479 
480 void flush_tlb_all(void)
481 {
482 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
483 }
484 
485 static void ipi_flush_tlb_mm(void *arg)
486 {
487 	local_flush_tlb_mm(arg);
488 }
489 
490 void flush_tlb_mm(struct mm_struct *mm)
491 {
492 	on_each_cpu(ipi_flush_tlb_mm, mm, 1);
493 }
494 
495 static void ipi_flush_tlb_page(void *arg)
496 {
497 	struct flush_data *fd = arg;
498 	local_flush_tlb_page(fd->vma, fd->addr1);
499 }
500 
501 void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
502 {
503 	struct flush_data fd = {
504 		.vma = vma,
505 		.addr1 = addr,
506 	};
507 	on_each_cpu(ipi_flush_tlb_page, &fd, 1);
508 }
509 
510 static void ipi_flush_tlb_range(void *arg)
511 {
512 	struct flush_data *fd = arg;
513 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
514 }
515 
516 void flush_tlb_range(struct vm_area_struct *vma,
517 		     unsigned long start, unsigned long end)
518 {
519 	struct flush_data fd = {
520 		.vma = vma,
521 		.addr1 = start,
522 		.addr2 = end,
523 	};
524 	on_each_cpu(ipi_flush_tlb_range, &fd, 1);
525 }
526 
527 static void ipi_flush_tlb_kernel_range(void *arg)
528 {
529 	struct flush_data *fd = arg;
530 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
531 }
532 
533 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
534 {
535 	struct flush_data fd = {
536 		.addr1 = start,
537 		.addr2 = end,
538 	};
539 	on_each_cpu(ipi_flush_tlb_kernel_range, &fd, 1);
540 }
541 
542 /* Cache flush functions */
543 
544 static void ipi_flush_cache_all(void *arg)
545 {
546 	local_flush_cache_all();
547 }
548 
549 void flush_cache_all(void)
550 {
551 	on_each_cpu(ipi_flush_cache_all, NULL, 1);
552 }
553 
554 static void ipi_flush_cache_page(void *arg)
555 {
556 	struct flush_data *fd = arg;
557 	local_flush_cache_page(fd->vma, fd->addr1, fd->addr2);
558 }
559 
560 void flush_cache_page(struct vm_area_struct *vma,
561 		     unsigned long address, unsigned long pfn)
562 {
563 	struct flush_data fd = {
564 		.vma = vma,
565 		.addr1 = address,
566 		.addr2 = pfn,
567 	};
568 	on_each_cpu(ipi_flush_cache_page, &fd, 1);
569 }
570 
571 static void ipi_flush_cache_range(void *arg)
572 {
573 	struct flush_data *fd = arg;
574 	local_flush_cache_range(fd->vma, fd->addr1, fd->addr2);
575 }
576 
577 void flush_cache_range(struct vm_area_struct *vma,
578 		     unsigned long start, unsigned long end)
579 {
580 	struct flush_data fd = {
581 		.vma = vma,
582 		.addr1 = start,
583 		.addr2 = end,
584 	};
585 	on_each_cpu(ipi_flush_cache_range, &fd, 1);
586 }
587 
588 static void ipi_flush_icache_range(void *arg)
589 {
590 	struct flush_data *fd = arg;
591 	local_flush_icache_range(fd->addr1, fd->addr2);
592 }
593 
594 void flush_icache_range(unsigned long start, unsigned long end)
595 {
596 	struct flush_data fd = {
597 		.addr1 = start,
598 		.addr2 = end,
599 	};
600 	on_each_cpu(ipi_flush_icache_range, &fd, 1);
601 }
602 EXPORT_SYMBOL(flush_icache_range);
603 
604 /* ------------------------------------------------------------------------- */
605 
606 static void ipi_invalidate_dcache_range(void *arg)
607 {
608 	struct flush_data *fd = arg;
609 	__invalidate_dcache_range(fd->addr1, fd->addr2);
610 }
611 
612 static void system_invalidate_dcache_range(unsigned long start,
613 		unsigned long size)
614 {
615 	struct flush_data fd = {
616 		.addr1 = start,
617 		.addr2 = size,
618 	};
619 	on_each_cpu(ipi_invalidate_dcache_range, &fd, 1);
620 }
621 
622 static void ipi_flush_invalidate_dcache_range(void *arg)
623 {
624 	struct flush_data *fd = arg;
625 	__flush_invalidate_dcache_range(fd->addr1, fd->addr2);
626 }
627 
628 static void system_flush_invalidate_dcache_range(unsigned long start,
629 		unsigned long size)
630 {
631 	struct flush_data fd = {
632 		.addr1 = start,
633 		.addr2 = size,
634 	};
635 	on_each_cpu(ipi_flush_invalidate_dcache_range, &fd, 1);
636 }
637