xref: /openbmc/linux/arch/xtensa/kernel/smp.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /*
2  * Xtensa SMP support functions.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2008 - 2013 Tensilica Inc.
9  *
10  * Chris Zankel <chris@zankel.net>
11  * Joe Taylor <joe@tensilica.com>
12  * Pete Delaney <piet@tensilica.com
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/irqdomain.h>
21 #include <linux/irq.h>
22 #include <linux/kdebug.h>
23 #include <linux/module.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/reboot.h>
28 #include <linux/seq_file.h>
29 #include <linux/smp.h>
30 #include <linux/thread_info.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/coprocessor.h>
34 #include <asm/kdebug.h>
35 #include <asm/mmu_context.h>
36 #include <asm/mxregs.h>
37 #include <asm/platform.h>
38 #include <asm/tlbflush.h>
39 #include <asm/traps.h>
40 
41 #ifdef CONFIG_SMP
42 # if XCHAL_HAVE_S32C1I == 0
43 #  error "The S32C1I option is required for SMP."
44 # endif
45 #endif
46 
47 static void system_invalidate_dcache_range(unsigned long start,
48 		unsigned long size);
49 static void system_flush_invalidate_dcache_range(unsigned long start,
50 		unsigned long size);
51 
52 /* IPI (Inter Process Interrupt) */
53 
54 #define IPI_IRQ	0
55 
56 static irqreturn_t ipi_interrupt(int irq, void *dev_id);
57 
58 void ipi_init(void)
59 {
60 	unsigned irq = irq_create_mapping(NULL, IPI_IRQ);
61 	if (request_irq(irq, ipi_interrupt, IRQF_PERCPU, "ipi", NULL))
62 		pr_err("Failed to request irq %u (ipi)\n", irq);
63 }
64 
65 static inline unsigned int get_core_count(void)
66 {
67 	/* Bits 18..21 of SYSCFGID contain the core count minus 1. */
68 	unsigned int syscfgid = get_er(SYSCFGID);
69 	return ((syscfgid >> 18) & 0xf) + 1;
70 }
71 
72 static inline int get_core_id(void)
73 {
74 	/* Bits 0...18 of SYSCFGID contain the core id  */
75 	unsigned int core_id = get_er(SYSCFGID);
76 	return core_id & 0x3fff;
77 }
78 
79 void __init smp_prepare_cpus(unsigned int max_cpus)
80 {
81 	unsigned i;
82 
83 	for_each_possible_cpu(i)
84 		set_cpu_present(i, true);
85 }
86 
87 void __init smp_init_cpus(void)
88 {
89 	unsigned i;
90 	unsigned int ncpus = get_core_count();
91 	unsigned int core_id = get_core_id();
92 
93 	pr_info("%s: Core Count = %d\n", __func__, ncpus);
94 	pr_info("%s: Core Id = %d\n", __func__, core_id);
95 
96 	if (ncpus > NR_CPUS) {
97 		ncpus = NR_CPUS;
98 		pr_info("%s: limiting core count by %d\n", __func__, ncpus);
99 	}
100 
101 	for (i = 0; i < ncpus; ++i)
102 		set_cpu_possible(i, true);
103 }
104 
105 void __init smp_prepare_boot_cpu(void)
106 {
107 	unsigned int cpu = smp_processor_id();
108 	BUG_ON(cpu != 0);
109 	cpu_asid_cache(cpu) = ASID_USER_FIRST;
110 }
111 
112 void __init smp_cpus_done(unsigned int max_cpus)
113 {
114 }
115 
116 static int boot_secondary_processors = 1; /* Set with xt-gdb via .xt-gdb */
117 static DECLARE_COMPLETION(cpu_running);
118 
119 void secondary_start_kernel(void)
120 {
121 	struct mm_struct *mm = &init_mm;
122 	unsigned int cpu = smp_processor_id();
123 
124 	init_mmu();
125 
126 #ifdef CONFIG_DEBUG_MISC
127 	if (boot_secondary_processors == 0) {
128 		pr_debug("%s: boot_secondary_processors:%d; Hanging cpu:%d\n",
129 			__func__, boot_secondary_processors, cpu);
130 		for (;;)
131 			__asm__ __volatile__ ("waiti " __stringify(LOCKLEVEL));
132 	}
133 
134 	pr_debug("%s: boot_secondary_processors:%d; Booting cpu:%d\n",
135 		__func__, boot_secondary_processors, cpu);
136 #endif
137 	/* Init EXCSAVE1 */
138 
139 	secondary_trap_init();
140 
141 	/* All kernel threads share the same mm context. */
142 
143 	mmget(mm);
144 	mmgrab(mm);
145 	current->active_mm = mm;
146 	cpumask_set_cpu(cpu, mm_cpumask(mm));
147 	enter_lazy_tlb(mm, current);
148 
149 	trace_hardirqs_off();
150 
151 	calibrate_delay();
152 
153 	notify_cpu_starting(cpu);
154 
155 	secondary_init_irq();
156 	local_timer_setup(cpu);
157 
158 	set_cpu_online(cpu, true);
159 
160 	local_irq_enable();
161 
162 	complete(&cpu_running);
163 
164 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
165 }
166 
167 static void mx_cpu_start(void *p)
168 {
169 	unsigned cpu = (unsigned)p;
170 	unsigned long run_stall_mask = get_er(MPSCORE);
171 
172 	set_er(run_stall_mask & ~(1u << cpu), MPSCORE);
173 	pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n",
174 			__func__, cpu, run_stall_mask, get_er(MPSCORE));
175 }
176 
177 static void mx_cpu_stop(void *p)
178 {
179 	unsigned cpu = (unsigned)p;
180 	unsigned long run_stall_mask = get_er(MPSCORE);
181 
182 	set_er(run_stall_mask | (1u << cpu), MPSCORE);
183 	pr_debug("%s: cpu: %d, run_stall_mask: %lx ---> %lx\n",
184 			__func__, cpu, run_stall_mask, get_er(MPSCORE));
185 }
186 
187 #ifdef CONFIG_HOTPLUG_CPU
188 unsigned long cpu_start_id __cacheline_aligned;
189 #endif
190 unsigned long cpu_start_ccount;
191 
192 static int boot_secondary(unsigned int cpu, struct task_struct *ts)
193 {
194 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
195 	unsigned long ccount;
196 	int i;
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 	WRITE_ONCE(cpu_start_id, cpu);
200 	/* Pairs with the third memw in the cpu_restart */
201 	mb();
202 	system_flush_invalidate_dcache_range((unsigned long)&cpu_start_id,
203 					     sizeof(cpu_start_id));
204 #endif
205 	smp_call_function_single(0, mx_cpu_start, (void *)cpu, 1);
206 
207 	for (i = 0; i < 2; ++i) {
208 		do
209 			ccount = get_ccount();
210 		while (!ccount);
211 
212 		WRITE_ONCE(cpu_start_ccount, ccount);
213 
214 		do {
215 			/*
216 			 * Pairs with the first two memws in the
217 			 * .Lboot_secondary.
218 			 */
219 			mb();
220 			ccount = READ_ONCE(cpu_start_ccount);
221 		} while (ccount && time_before(jiffies, timeout));
222 
223 		if (ccount) {
224 			smp_call_function_single(0, mx_cpu_stop,
225 						 (void *)cpu, 1);
226 			WRITE_ONCE(cpu_start_ccount, 0);
227 			return -EIO;
228 		}
229 	}
230 	return 0;
231 }
232 
233 int __cpu_up(unsigned int cpu, struct task_struct *idle)
234 {
235 	int ret = 0;
236 
237 	if (cpu_asid_cache(cpu) == 0)
238 		cpu_asid_cache(cpu) = ASID_USER_FIRST;
239 
240 	start_info.stack = (unsigned long)task_pt_regs(idle);
241 	wmb();
242 
243 	pr_debug("%s: Calling wakeup_secondary(cpu:%d, idle:%p, sp: %08lx)\n",
244 			__func__, cpu, idle, start_info.stack);
245 
246 	init_completion(&cpu_running);
247 	ret = boot_secondary(cpu, idle);
248 	if (ret == 0) {
249 		wait_for_completion_timeout(&cpu_running,
250 				msecs_to_jiffies(1000));
251 		if (!cpu_online(cpu))
252 			ret = -EIO;
253 	}
254 
255 	if (ret)
256 		pr_err("CPU %u failed to boot\n", cpu);
257 
258 	return ret;
259 }
260 
261 #ifdef CONFIG_HOTPLUG_CPU
262 
263 /*
264  * __cpu_disable runs on the processor to be shutdown.
265  */
266 int __cpu_disable(void)
267 {
268 	unsigned int cpu = smp_processor_id();
269 
270 	/*
271 	 * Take this CPU offline.  Once we clear this, we can't return,
272 	 * and we must not schedule until we're ready to give up the cpu.
273 	 */
274 	set_cpu_online(cpu, false);
275 
276 #if XTENSA_HAVE_COPROCESSORS
277 	/*
278 	 * Flush coprocessor contexts that are active on the current CPU.
279 	 */
280 	local_coprocessors_flush_release_all();
281 #endif
282 	/*
283 	 * OK - migrate IRQs away from this CPU
284 	 */
285 	migrate_irqs();
286 
287 	/*
288 	 * Flush user cache and TLB mappings, and then remove this CPU
289 	 * from the vm mask set of all processes.
290 	 */
291 	local_flush_cache_all();
292 	local_flush_tlb_all();
293 	invalidate_page_directory();
294 
295 	clear_tasks_mm_cpumask(cpu);
296 
297 	return 0;
298 }
299 
300 static void platform_cpu_kill(unsigned int cpu)
301 {
302 	smp_call_function_single(0, mx_cpu_stop, (void *)cpu, true);
303 }
304 
305 /*
306  * called on the thread which is asking for a CPU to be shutdown -
307  * waits until shutdown has completed, or it is timed out.
308  */
309 void __cpu_die(unsigned int cpu)
310 {
311 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
312 	while (time_before(jiffies, timeout)) {
313 		system_invalidate_dcache_range((unsigned long)&cpu_start_id,
314 					       sizeof(cpu_start_id));
315 		/* Pairs with the second memw in the cpu_restart */
316 		mb();
317 		if (READ_ONCE(cpu_start_id) == -cpu) {
318 			platform_cpu_kill(cpu);
319 			return;
320 		}
321 	}
322 	pr_err("CPU%u: unable to kill\n", cpu);
323 }
324 
325 void arch_cpu_idle_dead(void)
326 {
327 	cpu_die();
328 }
329 /*
330  * Called from the idle thread for the CPU which has been shutdown.
331  *
332  * Note that we disable IRQs here, but do not re-enable them
333  * before returning to the caller. This is also the behaviour
334  * of the other hotplug-cpu capable cores, so presumably coming
335  * out of idle fixes this.
336  */
337 void __ref cpu_die(void)
338 {
339 	idle_task_exit();
340 	local_irq_disable();
341 	__asm__ __volatile__(
342 			"	movi	a2, cpu_restart\n"
343 			"	jx	a2\n");
344 }
345 
346 #endif /* CONFIG_HOTPLUG_CPU */
347 
348 enum ipi_msg_type {
349 	IPI_RESCHEDULE = 0,
350 	IPI_CALL_FUNC,
351 	IPI_CPU_STOP,
352 	IPI_MAX
353 };
354 
355 static const struct {
356 	const char *short_text;
357 	const char *long_text;
358 } ipi_text[] = {
359 	{ .short_text = "RES", .long_text = "Rescheduling interrupts" },
360 	{ .short_text = "CAL", .long_text = "Function call interrupts" },
361 	{ .short_text = "DIE", .long_text = "CPU shutdown interrupts" },
362 };
363 
364 struct ipi_data {
365 	unsigned long ipi_count[IPI_MAX];
366 };
367 
368 static DEFINE_PER_CPU(struct ipi_data, ipi_data);
369 
370 static void send_ipi_message(const struct cpumask *callmask,
371 		enum ipi_msg_type msg_id)
372 {
373 	int index;
374 	unsigned long mask = 0;
375 
376 	for_each_cpu(index, callmask)
377 		mask |= 1 << index;
378 
379 	set_er(mask, MIPISET(msg_id));
380 }
381 
382 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
383 {
384 	send_ipi_message(mask, IPI_CALL_FUNC);
385 }
386 
387 void arch_send_call_function_single_ipi(int cpu)
388 {
389 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
390 }
391 
392 void smp_send_reschedule(int cpu)
393 {
394 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
395 }
396 
397 void smp_send_stop(void)
398 {
399 	struct cpumask targets;
400 
401 	cpumask_copy(&targets, cpu_online_mask);
402 	cpumask_clear_cpu(smp_processor_id(), &targets);
403 	send_ipi_message(&targets, IPI_CPU_STOP);
404 }
405 
406 static void ipi_cpu_stop(unsigned int cpu)
407 {
408 	set_cpu_online(cpu, false);
409 	machine_halt();
410 }
411 
412 irqreturn_t ipi_interrupt(int irq, void *dev_id)
413 {
414 	unsigned int cpu = smp_processor_id();
415 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
416 
417 	for (;;) {
418 		unsigned int msg;
419 
420 		msg = get_er(MIPICAUSE(cpu));
421 		set_er(msg, MIPICAUSE(cpu));
422 
423 		if (!msg)
424 			break;
425 
426 		if (msg & (1 << IPI_CALL_FUNC)) {
427 			++ipi->ipi_count[IPI_CALL_FUNC];
428 			generic_smp_call_function_interrupt();
429 		}
430 
431 		if (msg & (1 << IPI_RESCHEDULE)) {
432 			++ipi->ipi_count[IPI_RESCHEDULE];
433 			scheduler_ipi();
434 		}
435 
436 		if (msg & (1 << IPI_CPU_STOP)) {
437 			++ipi->ipi_count[IPI_CPU_STOP];
438 			ipi_cpu_stop(cpu);
439 		}
440 	}
441 
442 	return IRQ_HANDLED;
443 }
444 
445 void show_ipi_list(struct seq_file *p, int prec)
446 {
447 	unsigned int cpu;
448 	unsigned i;
449 
450 	for (i = 0; i < IPI_MAX; ++i) {
451 		seq_printf(p, "%*s:", prec, ipi_text[i].short_text);
452 		for_each_online_cpu(cpu)
453 			seq_printf(p, " %10lu",
454 					per_cpu(ipi_data, cpu).ipi_count[i]);
455 		seq_printf(p, "   %s\n", ipi_text[i].long_text);
456 	}
457 }
458 
459 int setup_profiling_timer(unsigned int multiplier)
460 {
461 	pr_debug("setup_profiling_timer %d\n", multiplier);
462 	return 0;
463 }
464 
465 /* TLB flush functions */
466 
467 struct flush_data {
468 	struct vm_area_struct *vma;
469 	unsigned long addr1;
470 	unsigned long addr2;
471 };
472 
473 static void ipi_flush_tlb_all(void *arg)
474 {
475 	local_flush_tlb_all();
476 }
477 
478 void flush_tlb_all(void)
479 {
480 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
481 }
482 
483 static void ipi_flush_tlb_mm(void *arg)
484 {
485 	local_flush_tlb_mm(arg);
486 }
487 
488 void flush_tlb_mm(struct mm_struct *mm)
489 {
490 	on_each_cpu(ipi_flush_tlb_mm, mm, 1);
491 }
492 
493 static void ipi_flush_tlb_page(void *arg)
494 {
495 	struct flush_data *fd = arg;
496 	local_flush_tlb_page(fd->vma, fd->addr1);
497 }
498 
499 void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
500 {
501 	struct flush_data fd = {
502 		.vma = vma,
503 		.addr1 = addr,
504 	};
505 	on_each_cpu(ipi_flush_tlb_page, &fd, 1);
506 }
507 
508 static void ipi_flush_tlb_range(void *arg)
509 {
510 	struct flush_data *fd = arg;
511 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
512 }
513 
514 void flush_tlb_range(struct vm_area_struct *vma,
515 		     unsigned long start, unsigned long end)
516 {
517 	struct flush_data fd = {
518 		.vma = vma,
519 		.addr1 = start,
520 		.addr2 = end,
521 	};
522 	on_each_cpu(ipi_flush_tlb_range, &fd, 1);
523 }
524 
525 static void ipi_flush_tlb_kernel_range(void *arg)
526 {
527 	struct flush_data *fd = arg;
528 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
529 }
530 
531 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
532 {
533 	struct flush_data fd = {
534 		.addr1 = start,
535 		.addr2 = end,
536 	};
537 	on_each_cpu(ipi_flush_tlb_kernel_range, &fd, 1);
538 }
539 
540 /* Cache flush functions */
541 
542 static void ipi_flush_cache_all(void *arg)
543 {
544 	local_flush_cache_all();
545 }
546 
547 void flush_cache_all(void)
548 {
549 	on_each_cpu(ipi_flush_cache_all, NULL, 1);
550 }
551 
552 static void ipi_flush_cache_page(void *arg)
553 {
554 	struct flush_data *fd = arg;
555 	local_flush_cache_page(fd->vma, fd->addr1, fd->addr2);
556 }
557 
558 void flush_cache_page(struct vm_area_struct *vma,
559 		     unsigned long address, unsigned long pfn)
560 {
561 	struct flush_data fd = {
562 		.vma = vma,
563 		.addr1 = address,
564 		.addr2 = pfn,
565 	};
566 	on_each_cpu(ipi_flush_cache_page, &fd, 1);
567 }
568 
569 static void ipi_flush_cache_range(void *arg)
570 {
571 	struct flush_data *fd = arg;
572 	local_flush_cache_range(fd->vma, fd->addr1, fd->addr2);
573 }
574 
575 void flush_cache_range(struct vm_area_struct *vma,
576 		     unsigned long start, unsigned long end)
577 {
578 	struct flush_data fd = {
579 		.vma = vma,
580 		.addr1 = start,
581 		.addr2 = end,
582 	};
583 	on_each_cpu(ipi_flush_cache_range, &fd, 1);
584 }
585 
586 static void ipi_flush_icache_range(void *arg)
587 {
588 	struct flush_data *fd = arg;
589 	local_flush_icache_range(fd->addr1, fd->addr2);
590 }
591 
592 void flush_icache_range(unsigned long start, unsigned long end)
593 {
594 	struct flush_data fd = {
595 		.addr1 = start,
596 		.addr2 = end,
597 	};
598 	on_each_cpu(ipi_flush_icache_range, &fd, 1);
599 }
600 EXPORT_SYMBOL(flush_icache_range);
601 
602 /* ------------------------------------------------------------------------- */
603 
604 static void ipi_invalidate_dcache_range(void *arg)
605 {
606 	struct flush_data *fd = arg;
607 	__invalidate_dcache_range(fd->addr1, fd->addr2);
608 }
609 
610 static void system_invalidate_dcache_range(unsigned long start,
611 		unsigned long size)
612 {
613 	struct flush_data fd = {
614 		.addr1 = start,
615 		.addr2 = size,
616 	};
617 	on_each_cpu(ipi_invalidate_dcache_range, &fd, 1);
618 }
619 
620 static void ipi_flush_invalidate_dcache_range(void *arg)
621 {
622 	struct flush_data *fd = arg;
623 	__flush_invalidate_dcache_range(fd->addr1, fd->addr2);
624 }
625 
626 static void system_flush_invalidate_dcache_range(unsigned long start,
627 		unsigned long size)
628 {
629 	struct flush_data fd = {
630 		.addr1 = start,
631 		.addr2 = size,
632 	};
633 	on_each_cpu(ipi_flush_invalidate_dcache_range, &fd, 1);
634 }
635