1 /* 2 * arch/xtensa/kernel/process.c 3 * 4 * Xtensa Processor version. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 * 10 * Copyright (C) 2001 - 2005 Tensilica Inc. 11 * 12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> 13 * Chris Zankel <chris@zankel.net> 14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca> 15 * Kevin Chea 16 */ 17 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/stddef.h> 24 #include <linux/unistd.h> 25 #include <linux/ptrace.h> 26 #include <linux/elf.h> 27 #include <linux/init.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/module.h> 31 #include <linux/mqueue.h> 32 #include <linux/fs.h> 33 #include <linux/slab.h> 34 #include <linux/rcupdate.h> 35 36 #include <asm/pgtable.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/processor.h> 40 #include <asm/platform.h> 41 #include <asm/mmu.h> 42 #include <asm/irq.h> 43 #include <linux/atomic.h> 44 #include <asm/asm-offsets.h> 45 #include <asm/regs.h> 46 47 extern void ret_from_fork(void); 48 extern void ret_from_kernel_thread(void); 49 50 struct task_struct *current_set[NR_CPUS] = {&init_task, }; 51 52 void (*pm_power_off)(void) = NULL; 53 EXPORT_SYMBOL(pm_power_off); 54 55 56 #if XTENSA_HAVE_COPROCESSORS 57 58 void coprocessor_release_all(struct thread_info *ti) 59 { 60 unsigned long cpenable; 61 int i; 62 63 /* Make sure we don't switch tasks during this operation. */ 64 65 preempt_disable(); 66 67 /* Walk through all cp owners and release it for the requested one. */ 68 69 cpenable = ti->cpenable; 70 71 for (i = 0; i < XCHAL_CP_MAX; i++) { 72 if (coprocessor_owner[i] == ti) { 73 coprocessor_owner[i] = 0; 74 cpenable &= ~(1 << i); 75 } 76 } 77 78 ti->cpenable = cpenable; 79 coprocessor_clear_cpenable(); 80 81 preempt_enable(); 82 } 83 84 void coprocessor_flush_all(struct thread_info *ti) 85 { 86 unsigned long cpenable; 87 int i; 88 89 preempt_disable(); 90 91 cpenable = ti->cpenable; 92 93 for (i = 0; i < XCHAL_CP_MAX; i++) { 94 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti) 95 coprocessor_flush(ti, i); 96 cpenable >>= 1; 97 } 98 99 preempt_enable(); 100 } 101 102 #endif 103 104 105 /* 106 * Powermanagement idle function, if any is provided by the platform. 107 */ 108 void arch_cpu_idle(void) 109 { 110 platform_idle(); 111 } 112 113 /* 114 * This is called when the thread calls exit(). 115 */ 116 void exit_thread(void) 117 { 118 #if XTENSA_HAVE_COPROCESSORS 119 coprocessor_release_all(current_thread_info()); 120 #endif 121 } 122 123 /* 124 * Flush thread state. This is called when a thread does an execve() 125 * Note that we flush coprocessor registers for the case execve fails. 126 */ 127 void flush_thread(void) 128 { 129 #if XTENSA_HAVE_COPROCESSORS 130 struct thread_info *ti = current_thread_info(); 131 coprocessor_flush_all(ti); 132 coprocessor_release_all(ti); 133 #endif 134 } 135 136 /* 137 * this gets called so that we can store coprocessor state into memory and 138 * copy the current task into the new thread. 139 */ 140 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 141 { 142 #if XTENSA_HAVE_COPROCESSORS 143 coprocessor_flush_all(task_thread_info(src)); 144 #endif 145 *dst = *src; 146 return 0; 147 } 148 149 /* 150 * Copy thread. 151 * 152 * There are two modes in which this function is called: 153 * 1) Userspace thread creation, 154 * regs != NULL, usp_thread_fn is userspace stack pointer. 155 * It is expected to copy parent regs (in case CLONE_VM is not set 156 * in the clone_flags) and set up passed usp in the childregs. 157 * 2) Kernel thread creation, 158 * regs == NULL, usp_thread_fn is the function to run in the new thread 159 * and thread_fn_arg is its parameter. 160 * childregs are not used for the kernel threads. 161 * 162 * The stack layout for the new thread looks like this: 163 * 164 * +------------------------+ 165 * | childregs | 166 * +------------------------+ <- thread.sp = sp in dummy-frame 167 * | dummy-frame | (saved in dummy-frame spill-area) 168 * +------------------------+ 169 * 170 * We create a dummy frame to return to either ret_from_fork or 171 * ret_from_kernel_thread: 172 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4) 173 * sp points to itself (thread.sp) 174 * a2, a3 are unused for userspace threads, 175 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads. 176 * 177 * Note: This is a pristine frame, so we don't need any spill region on top of 178 * childregs. 179 * 180 * The fun part: if we're keeping the same VM (i.e. cloning a thread, 181 * not an entire process), we're normally given a new usp, and we CANNOT share 182 * any live address register windows. If we just copy those live frames over, 183 * the two threads (parent and child) will overflow the same frames onto the 184 * parent stack at different times, likely corrupting the parent stack (esp. 185 * if the parent returns from functions that called clone() and calls new 186 * ones, before the child overflows its now old copies of its parent windows). 187 * One solution is to spill windows to the parent stack, but that's fairly 188 * involved. Much simpler to just not copy those live frames across. 189 */ 190 191 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn, 192 unsigned long thread_fn_arg, struct task_struct *p) 193 { 194 struct pt_regs *childregs = task_pt_regs(p); 195 196 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) 197 struct thread_info *ti; 198 #endif 199 200 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */ 201 *((int*)childregs - 3) = (unsigned long)childregs; 202 *((int*)childregs - 4) = 0; 203 204 p->thread.sp = (unsigned long)childregs; 205 206 if (!(p->flags & PF_KTHREAD)) { 207 struct pt_regs *regs = current_pt_regs(); 208 unsigned long usp = usp_thread_fn ? 209 usp_thread_fn : regs->areg[1]; 210 211 p->thread.ra = MAKE_RA_FOR_CALL( 212 (unsigned long)ret_from_fork, 0x1); 213 214 /* This does not copy all the regs. 215 * In a bout of brilliance or madness, 216 * ARs beyond a0-a15 exist past the end of the struct. 217 */ 218 *childregs = *regs; 219 childregs->areg[1] = usp; 220 childregs->areg[2] = 0; 221 222 /* When sharing memory with the parent thread, the child 223 usually starts on a pristine stack, so we have to reset 224 windowbase, windowstart and wmask. 225 (Note that such a new thread is required to always create 226 an initial call4 frame) 227 The exception is vfork, where the new thread continues to 228 run on the parent's stack until it calls execve. This could 229 be a call8 or call12, which requires a legal stack frame 230 of the previous caller for the overflow handlers to work. 231 (Note that it's always legal to overflow live registers). 232 In this case, ensure to spill at least the stack pointer 233 of that frame. */ 234 235 if (clone_flags & CLONE_VM) { 236 /* check that caller window is live and same stack */ 237 int len = childregs->wmask & ~0xf; 238 if (regs->areg[1] == usp && len != 0) { 239 int callinc = (regs->areg[0] >> 30) & 3; 240 int caller_ars = XCHAL_NUM_AREGS - callinc * 4; 241 put_user(regs->areg[caller_ars+1], 242 (unsigned __user*)(usp - 12)); 243 } 244 childregs->wmask = 1; 245 childregs->windowstart = 1; 246 childregs->windowbase = 0; 247 } else { 248 int len = childregs->wmask & ~0xf; 249 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4], 250 ®s->areg[XCHAL_NUM_AREGS - len/4], len); 251 } 252 253 /* The thread pointer is passed in the '4th argument' (= a5) */ 254 if (clone_flags & CLONE_SETTLS) 255 childregs->threadptr = childregs->areg[5]; 256 } else { 257 p->thread.ra = MAKE_RA_FOR_CALL( 258 (unsigned long)ret_from_kernel_thread, 1); 259 260 /* pass parameters to ret_from_kernel_thread: 261 * a2 = thread_fn, a3 = thread_fn arg 262 */ 263 *((int *)childregs - 1) = thread_fn_arg; 264 *((int *)childregs - 2) = usp_thread_fn; 265 266 /* Childregs are only used when we're going to userspace 267 * in which case start_thread will set them up. 268 */ 269 } 270 271 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) 272 ti = task_thread_info(p); 273 ti->cpenable = 0; 274 #endif 275 276 return 0; 277 } 278 279 280 /* 281 * These bracket the sleeping functions.. 282 */ 283 284 unsigned long get_wchan(struct task_struct *p) 285 { 286 unsigned long sp, pc; 287 unsigned long stack_page = (unsigned long) task_stack_page(p); 288 int count = 0; 289 290 if (!p || p == current || p->state == TASK_RUNNING) 291 return 0; 292 293 sp = p->thread.sp; 294 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp); 295 296 do { 297 if (sp < stack_page + sizeof(struct task_struct) || 298 sp >= (stack_page + THREAD_SIZE) || 299 pc == 0) 300 return 0; 301 if (!in_sched_functions(pc)) 302 return pc; 303 304 /* Stack layout: sp-4: ra, sp-3: sp' */ 305 306 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp); 307 sp = *(unsigned long *)sp - 3; 308 } while (count++ < 16); 309 return 0; 310 } 311 312 /* 313 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats 314 * of processor registers. Besides different ordering, 315 * xtensa_gregset_t contains non-live register information that 316 * 'struct pt_regs' does not. Exception handling (primarily) uses 317 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t. 318 * 319 */ 320 321 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs) 322 { 323 unsigned long wb, ws, wm; 324 int live, last; 325 326 wb = regs->windowbase; 327 ws = regs->windowstart; 328 wm = regs->wmask; 329 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1); 330 331 /* Don't leak any random bits. */ 332 333 memset(elfregs, 0, sizeof(*elfregs)); 334 335 /* Note: PS.EXCM is not set while user task is running; its 336 * being set in regs->ps is for exception handling convenience. 337 */ 338 339 elfregs->pc = regs->pc; 340 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT)); 341 elfregs->lbeg = regs->lbeg; 342 elfregs->lend = regs->lend; 343 elfregs->lcount = regs->lcount; 344 elfregs->sar = regs->sar; 345 elfregs->windowstart = ws; 346 347 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16; 348 last = XCHAL_NUM_AREGS - (wm >> 4) * 4; 349 memcpy(elfregs->a, regs->areg, live * 4); 350 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16); 351 } 352 353 int dump_fpu(void) 354 { 355 return 0; 356 } 357