xref: /openbmc/linux/arch/xtensa/kernel/process.c (revision c819e2cf)
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
32 #include <linux/fs.h>
33 #include <linux/slab.h>
34 #include <linux/rcupdate.h>
35 
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
41 #include <asm/mmu.h>
42 #include <asm/irq.h>
43 #include <linux/atomic.h>
44 #include <asm/asm-offsets.h>
45 #include <asm/regs.h>
46 
47 extern void ret_from_fork(void);
48 extern void ret_from_kernel_thread(void);
49 
50 struct task_struct *current_set[NR_CPUS] = {&init_task, };
51 
52 void (*pm_power_off)(void) = NULL;
53 EXPORT_SYMBOL(pm_power_off);
54 
55 
56 #if XTENSA_HAVE_COPROCESSORS
57 
58 void coprocessor_release_all(struct thread_info *ti)
59 {
60 	unsigned long cpenable;
61 	int i;
62 
63 	/* Make sure we don't switch tasks during this operation. */
64 
65 	preempt_disable();
66 
67 	/* Walk through all cp owners and release it for the requested one. */
68 
69 	cpenable = ti->cpenable;
70 
71 	for (i = 0; i < XCHAL_CP_MAX; i++) {
72 		if (coprocessor_owner[i] == ti) {
73 			coprocessor_owner[i] = 0;
74 			cpenable &= ~(1 << i);
75 		}
76 	}
77 
78 	ti->cpenable = cpenable;
79 	coprocessor_clear_cpenable();
80 
81 	preempt_enable();
82 }
83 
84 void coprocessor_flush_all(struct thread_info *ti)
85 {
86 	unsigned long cpenable;
87 	int i;
88 
89 	preempt_disable();
90 
91 	cpenable = ti->cpenable;
92 
93 	for (i = 0; i < XCHAL_CP_MAX; i++) {
94 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
95 			coprocessor_flush(ti, i);
96 		cpenable >>= 1;
97 	}
98 
99 	preempt_enable();
100 }
101 
102 #endif
103 
104 
105 /*
106  * Powermanagement idle function, if any is provided by the platform.
107  */
108 void arch_cpu_idle(void)
109 {
110 	platform_idle();
111 }
112 
113 /*
114  * This is called when the thread calls exit().
115  */
116 void exit_thread(void)
117 {
118 #if XTENSA_HAVE_COPROCESSORS
119 	coprocessor_release_all(current_thread_info());
120 #endif
121 }
122 
123 /*
124  * Flush thread state. This is called when a thread does an execve()
125  * Note that we flush coprocessor registers for the case execve fails.
126  */
127 void flush_thread(void)
128 {
129 #if XTENSA_HAVE_COPROCESSORS
130 	struct thread_info *ti = current_thread_info();
131 	coprocessor_flush_all(ti);
132 	coprocessor_release_all(ti);
133 #endif
134 }
135 
136 /*
137  * this gets called so that we can store coprocessor state into memory and
138  * copy the current task into the new thread.
139  */
140 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
141 {
142 #if XTENSA_HAVE_COPROCESSORS
143 	coprocessor_flush_all(task_thread_info(src));
144 #endif
145 	*dst = *src;
146 	return 0;
147 }
148 
149 /*
150  * Copy thread.
151  *
152  * There are two modes in which this function is called:
153  * 1) Userspace thread creation,
154  *    regs != NULL, usp_thread_fn is userspace stack pointer.
155  *    It is expected to copy parent regs (in case CLONE_VM is not set
156  *    in the clone_flags) and set up passed usp in the childregs.
157  * 2) Kernel thread creation,
158  *    regs == NULL, usp_thread_fn is the function to run in the new thread
159  *    and thread_fn_arg is its parameter.
160  *    childregs are not used for the kernel threads.
161  *
162  * The stack layout for the new thread looks like this:
163  *
164  *	+------------------------+
165  *	|       childregs        |
166  *	+------------------------+ <- thread.sp = sp in dummy-frame
167  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
168  *	+------------------------+
169  *
170  * We create a dummy frame to return to either ret_from_fork or
171  *   ret_from_kernel_thread:
172  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
173  *   sp points to itself (thread.sp)
174  *   a2, a3 are unused for userspace threads,
175  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
176  *
177  * Note: This is a pristine frame, so we don't need any spill region on top of
178  *       childregs.
179  *
180  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
181  * not an entire process), we're normally given a new usp, and we CANNOT share
182  * any live address register windows.  If we just copy those live frames over,
183  * the two threads (parent and child) will overflow the same frames onto the
184  * parent stack at different times, likely corrupting the parent stack (esp.
185  * if the parent returns from functions that called clone() and calls new
186  * ones, before the child overflows its now old copies of its parent windows).
187  * One solution is to spill windows to the parent stack, but that's fairly
188  * involved.  Much simpler to just not copy those live frames across.
189  */
190 
191 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
192 		unsigned long thread_fn_arg, struct task_struct *p)
193 {
194 	struct pt_regs *childregs = task_pt_regs(p);
195 
196 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
197 	struct thread_info *ti;
198 #endif
199 
200 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
201 	*((int*)childregs - 3) = (unsigned long)childregs;
202 	*((int*)childregs - 4) = 0;
203 
204 	p->thread.sp = (unsigned long)childregs;
205 
206 	if (!(p->flags & PF_KTHREAD)) {
207 		struct pt_regs *regs = current_pt_regs();
208 		unsigned long usp = usp_thread_fn ?
209 			usp_thread_fn : regs->areg[1];
210 
211 		p->thread.ra = MAKE_RA_FOR_CALL(
212 				(unsigned long)ret_from_fork, 0x1);
213 
214 		/* This does not copy all the regs.
215 		 * In a bout of brilliance or madness,
216 		 * ARs beyond a0-a15 exist past the end of the struct.
217 		 */
218 		*childregs = *regs;
219 		childregs->areg[1] = usp;
220 		childregs->areg[2] = 0;
221 
222 		/* When sharing memory with the parent thread, the child
223 		   usually starts on a pristine stack, so we have to reset
224 		   windowbase, windowstart and wmask.
225 		   (Note that such a new thread is required to always create
226 		   an initial call4 frame)
227 		   The exception is vfork, where the new thread continues to
228 		   run on the parent's stack until it calls execve. This could
229 		   be a call8 or call12, which requires a legal stack frame
230 		   of the previous caller for the overflow handlers to work.
231 		   (Note that it's always legal to overflow live registers).
232 		   In this case, ensure to spill at least the stack pointer
233 		   of that frame. */
234 
235 		if (clone_flags & CLONE_VM) {
236 			/* check that caller window is live and same stack */
237 			int len = childregs->wmask & ~0xf;
238 			if (regs->areg[1] == usp && len != 0) {
239 				int callinc = (regs->areg[0] >> 30) & 3;
240 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
241 				put_user(regs->areg[caller_ars+1],
242 					 (unsigned __user*)(usp - 12));
243 			}
244 			childregs->wmask = 1;
245 			childregs->windowstart = 1;
246 			childregs->windowbase = 0;
247 		} else {
248 			int len = childregs->wmask & ~0xf;
249 			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
250 			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
251 		}
252 
253 		/* The thread pointer is passed in the '4th argument' (= a5) */
254 		if (clone_flags & CLONE_SETTLS)
255 			childregs->threadptr = childregs->areg[5];
256 	} else {
257 		p->thread.ra = MAKE_RA_FOR_CALL(
258 				(unsigned long)ret_from_kernel_thread, 1);
259 
260 		/* pass parameters to ret_from_kernel_thread:
261 		 * a2 = thread_fn, a3 = thread_fn arg
262 		 */
263 		*((int *)childregs - 1) = thread_fn_arg;
264 		*((int *)childregs - 2) = usp_thread_fn;
265 
266 		/* Childregs are only used when we're going to userspace
267 		 * in which case start_thread will set them up.
268 		 */
269 	}
270 
271 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
272 	ti = task_thread_info(p);
273 	ti->cpenable = 0;
274 #endif
275 
276 	return 0;
277 }
278 
279 
280 /*
281  * These bracket the sleeping functions..
282  */
283 
284 unsigned long get_wchan(struct task_struct *p)
285 {
286 	unsigned long sp, pc;
287 	unsigned long stack_page = (unsigned long) task_stack_page(p);
288 	int count = 0;
289 
290 	if (!p || p == current || p->state == TASK_RUNNING)
291 		return 0;
292 
293 	sp = p->thread.sp;
294 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
295 
296 	do {
297 		if (sp < stack_page + sizeof(struct task_struct) ||
298 		    sp >= (stack_page + THREAD_SIZE) ||
299 		    pc == 0)
300 			return 0;
301 		if (!in_sched_functions(pc))
302 			return pc;
303 
304 		/* Stack layout: sp-4: ra, sp-3: sp' */
305 
306 		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
307 		sp = *(unsigned long *)sp - 3;
308 	} while (count++ < 16);
309 	return 0;
310 }
311 
312 /*
313  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
314  * of processor registers.  Besides different ordering,
315  * xtensa_gregset_t contains non-live register information that
316  * 'struct pt_regs' does not.  Exception handling (primarily) uses
317  * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
318  *
319  */
320 
321 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
322 {
323 	unsigned long wb, ws, wm;
324 	int live, last;
325 
326 	wb = regs->windowbase;
327 	ws = regs->windowstart;
328 	wm = regs->wmask;
329 	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
330 
331 	/* Don't leak any random bits. */
332 
333 	memset(elfregs, 0, sizeof(*elfregs));
334 
335 	/* Note:  PS.EXCM is not set while user task is running; its
336 	 * being set in regs->ps is for exception handling convenience.
337 	 */
338 
339 	elfregs->pc		= regs->pc;
340 	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
341 	elfregs->lbeg		= regs->lbeg;
342 	elfregs->lend		= regs->lend;
343 	elfregs->lcount		= regs->lcount;
344 	elfregs->sar		= regs->sar;
345 	elfregs->windowstart	= ws;
346 
347 	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
348 	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
349 	memcpy(elfregs->a, regs->areg, live * 4);
350 	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
351 }
352 
353 int dump_fpu(void)
354 {
355 	return 0;
356 }
357