xref: /openbmc/linux/arch/xtensa/kernel/process.c (revision a16be368)
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/elf.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/init.h>
32 #include <linux/prctl.h>
33 #include <linux/init_task.h>
34 #include <linux/module.h>
35 #include <linux/mqueue.h>
36 #include <linux/fs.h>
37 #include <linux/slab.h>
38 #include <linux/rcupdate.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/platform.h>
44 #include <asm/mmu.h>
45 #include <asm/irq.h>
46 #include <linux/atomic.h>
47 #include <asm/asm-offsets.h>
48 #include <asm/regs.h>
49 #include <asm/hw_breakpoint.h>
50 
51 extern void ret_from_fork(void);
52 extern void ret_from_kernel_thread(void);
53 
54 void (*pm_power_off)(void) = NULL;
55 EXPORT_SYMBOL(pm_power_off);
56 
57 
58 #ifdef CONFIG_STACKPROTECTOR
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __read_mostly;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63 
64 #if XTENSA_HAVE_COPROCESSORS
65 
66 void coprocessor_release_all(struct thread_info *ti)
67 {
68 	unsigned long cpenable;
69 	int i;
70 
71 	/* Make sure we don't switch tasks during this operation. */
72 
73 	preempt_disable();
74 
75 	/* Walk through all cp owners and release it for the requested one. */
76 
77 	cpenable = ti->cpenable;
78 
79 	for (i = 0; i < XCHAL_CP_MAX; i++) {
80 		if (coprocessor_owner[i] == ti) {
81 			coprocessor_owner[i] = 0;
82 			cpenable &= ~(1 << i);
83 		}
84 	}
85 
86 	ti->cpenable = cpenable;
87 	if (ti == current_thread_info())
88 		xtensa_set_sr(0, cpenable);
89 
90 	preempt_enable();
91 }
92 
93 void coprocessor_flush_all(struct thread_info *ti)
94 {
95 	unsigned long cpenable, old_cpenable;
96 	int i;
97 
98 	preempt_disable();
99 
100 	old_cpenable = xtensa_get_sr(cpenable);
101 	cpenable = ti->cpenable;
102 	xtensa_set_sr(cpenable, cpenable);
103 
104 	for (i = 0; i < XCHAL_CP_MAX; i++) {
105 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
106 			coprocessor_flush(ti, i);
107 		cpenable >>= 1;
108 	}
109 	xtensa_set_sr(old_cpenable, cpenable);
110 
111 	preempt_enable();
112 }
113 
114 #endif
115 
116 
117 /*
118  * Powermanagement idle function, if any is provided by the platform.
119  */
120 void arch_cpu_idle(void)
121 {
122 	platform_idle();
123 }
124 
125 /*
126  * This is called when the thread calls exit().
127  */
128 void exit_thread(struct task_struct *tsk)
129 {
130 #if XTENSA_HAVE_COPROCESSORS
131 	coprocessor_release_all(task_thread_info(tsk));
132 #endif
133 }
134 
135 /*
136  * Flush thread state. This is called when a thread does an execve()
137  * Note that we flush coprocessor registers for the case execve fails.
138  */
139 void flush_thread(void)
140 {
141 #if XTENSA_HAVE_COPROCESSORS
142 	struct thread_info *ti = current_thread_info();
143 	coprocessor_flush_all(ti);
144 	coprocessor_release_all(ti);
145 #endif
146 	flush_ptrace_hw_breakpoint(current);
147 }
148 
149 /*
150  * this gets called so that we can store coprocessor state into memory and
151  * copy the current task into the new thread.
152  */
153 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
154 {
155 #if XTENSA_HAVE_COPROCESSORS
156 	coprocessor_flush_all(task_thread_info(src));
157 #endif
158 	*dst = *src;
159 	return 0;
160 }
161 
162 /*
163  * Copy thread.
164  *
165  * There are two modes in which this function is called:
166  * 1) Userspace thread creation,
167  *    regs != NULL, usp_thread_fn is userspace stack pointer.
168  *    It is expected to copy parent regs (in case CLONE_VM is not set
169  *    in the clone_flags) and set up passed usp in the childregs.
170  * 2) Kernel thread creation,
171  *    regs == NULL, usp_thread_fn is the function to run in the new thread
172  *    and thread_fn_arg is its parameter.
173  *    childregs are not used for the kernel threads.
174  *
175  * The stack layout for the new thread looks like this:
176  *
177  *	+------------------------+
178  *	|       childregs        |
179  *	+------------------------+ <- thread.sp = sp in dummy-frame
180  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
181  *	+------------------------+
182  *
183  * We create a dummy frame to return to either ret_from_fork or
184  *   ret_from_kernel_thread:
185  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
186  *   sp points to itself (thread.sp)
187  *   a2, a3 are unused for userspace threads,
188  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
189  *
190  * Note: This is a pristine frame, so we don't need any spill region on top of
191  *       childregs.
192  *
193  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
194  * not an entire process), we're normally given a new usp, and we CANNOT share
195  * any live address register windows.  If we just copy those live frames over,
196  * the two threads (parent and child) will overflow the same frames onto the
197  * parent stack at different times, likely corrupting the parent stack (esp.
198  * if the parent returns from functions that called clone() and calls new
199  * ones, before the child overflows its now old copies of its parent windows).
200  * One solution is to spill windows to the parent stack, but that's fairly
201  * involved.  Much simpler to just not copy those live frames across.
202  */
203 
204 int copy_thread_tls(unsigned long clone_flags, unsigned long usp_thread_fn,
205 		unsigned long thread_fn_arg, struct task_struct *p,
206 		unsigned long tls)
207 {
208 	struct pt_regs *childregs = task_pt_regs(p);
209 
210 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
211 	struct thread_info *ti;
212 #endif
213 
214 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
215 	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
216 	SPILL_SLOT(childregs, 0) = 0;
217 
218 	p->thread.sp = (unsigned long)childregs;
219 
220 	if (!(p->flags & PF_KTHREAD)) {
221 		struct pt_regs *regs = current_pt_regs();
222 		unsigned long usp = usp_thread_fn ?
223 			usp_thread_fn : regs->areg[1];
224 
225 		p->thread.ra = MAKE_RA_FOR_CALL(
226 				(unsigned long)ret_from_fork, 0x1);
227 
228 		/* This does not copy all the regs.
229 		 * In a bout of brilliance or madness,
230 		 * ARs beyond a0-a15 exist past the end of the struct.
231 		 */
232 		*childregs = *regs;
233 		childregs->areg[1] = usp;
234 		childregs->areg[2] = 0;
235 
236 		/* When sharing memory with the parent thread, the child
237 		   usually starts on a pristine stack, so we have to reset
238 		   windowbase, windowstart and wmask.
239 		   (Note that such a new thread is required to always create
240 		   an initial call4 frame)
241 		   The exception is vfork, where the new thread continues to
242 		   run on the parent's stack until it calls execve. This could
243 		   be a call8 or call12, which requires a legal stack frame
244 		   of the previous caller for the overflow handlers to work.
245 		   (Note that it's always legal to overflow live registers).
246 		   In this case, ensure to spill at least the stack pointer
247 		   of that frame. */
248 
249 		if (clone_flags & CLONE_VM) {
250 			/* check that caller window is live and same stack */
251 			int len = childregs->wmask & ~0xf;
252 			if (regs->areg[1] == usp && len != 0) {
253 				int callinc = (regs->areg[0] >> 30) & 3;
254 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
255 				put_user(regs->areg[caller_ars+1],
256 					 (unsigned __user*)(usp - 12));
257 			}
258 			childregs->wmask = 1;
259 			childregs->windowstart = 1;
260 			childregs->windowbase = 0;
261 		} else {
262 			int len = childregs->wmask & ~0xf;
263 			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
264 			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
265 		}
266 
267 		childregs->syscall = regs->syscall;
268 
269 		if (clone_flags & CLONE_SETTLS)
270 			childregs->threadptr = tls;
271 	} else {
272 		p->thread.ra = MAKE_RA_FOR_CALL(
273 				(unsigned long)ret_from_kernel_thread, 1);
274 
275 		/* pass parameters to ret_from_kernel_thread:
276 		 * a2 = thread_fn, a3 = thread_fn arg
277 		 */
278 		SPILL_SLOT(childregs, 3) = thread_fn_arg;
279 		SPILL_SLOT(childregs, 2) = usp_thread_fn;
280 
281 		/* Childregs are only used when we're going to userspace
282 		 * in which case start_thread will set them up.
283 		 */
284 	}
285 
286 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
287 	ti = task_thread_info(p);
288 	ti->cpenable = 0;
289 #endif
290 
291 	clear_ptrace_hw_breakpoint(p);
292 
293 	return 0;
294 }
295 
296 
297 /*
298  * These bracket the sleeping functions..
299  */
300 
301 unsigned long get_wchan(struct task_struct *p)
302 {
303 	unsigned long sp, pc;
304 	unsigned long stack_page = (unsigned long) task_stack_page(p);
305 	int count = 0;
306 
307 	if (!p || p == current || p->state == TASK_RUNNING)
308 		return 0;
309 
310 	sp = p->thread.sp;
311 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
312 
313 	do {
314 		if (sp < stack_page + sizeof(struct task_struct) ||
315 		    sp >= (stack_page + THREAD_SIZE) ||
316 		    pc == 0)
317 			return 0;
318 		if (!in_sched_functions(pc))
319 			return pc;
320 
321 		/* Stack layout: sp-4: ra, sp-3: sp' */
322 
323 		pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
324 		sp = SPILL_SLOT(sp, 1);
325 	} while (count++ < 16);
326 	return 0;
327 }
328