xref: /openbmc/linux/arch/xtensa/kernel/process.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/elf.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/init.h>
32 #include <linux/prctl.h>
33 #include <linux/init_task.h>
34 #include <linux/module.h>
35 #include <linux/mqueue.h>
36 #include <linux/fs.h>
37 #include <linux/slab.h>
38 #include <linux/rcupdate.h>
39 
40 #include <asm/pgtable.h>
41 #include <linux/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/processor.h>
44 #include <asm/platform.h>
45 #include <asm/mmu.h>
46 #include <asm/irq.h>
47 #include <linux/atomic.h>
48 #include <asm/asm-offsets.h>
49 #include <asm/regs.h>
50 #include <asm/hw_breakpoint.h>
51 
52 extern void ret_from_fork(void);
53 extern void ret_from_kernel_thread(void);
54 
55 void (*pm_power_off)(void) = NULL;
56 EXPORT_SYMBOL(pm_power_off);
57 
58 
59 #ifdef CONFIG_STACKPROTECTOR
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64 
65 #if XTENSA_HAVE_COPROCESSORS
66 
67 void coprocessor_release_all(struct thread_info *ti)
68 {
69 	unsigned long cpenable;
70 	int i;
71 
72 	/* Make sure we don't switch tasks during this operation. */
73 
74 	preempt_disable();
75 
76 	/* Walk through all cp owners and release it for the requested one. */
77 
78 	cpenable = ti->cpenable;
79 
80 	for (i = 0; i < XCHAL_CP_MAX; i++) {
81 		if (coprocessor_owner[i] == ti) {
82 			coprocessor_owner[i] = 0;
83 			cpenable &= ~(1 << i);
84 		}
85 	}
86 
87 	ti->cpenable = cpenable;
88 	if (ti == current_thread_info())
89 		xtensa_set_sr(0, cpenable);
90 
91 	preempt_enable();
92 }
93 
94 void coprocessor_flush_all(struct thread_info *ti)
95 {
96 	unsigned long cpenable, old_cpenable;
97 	int i;
98 
99 	preempt_disable();
100 
101 	old_cpenable = xtensa_get_sr(cpenable);
102 	cpenable = ti->cpenable;
103 	xtensa_set_sr(cpenable, cpenable);
104 
105 	for (i = 0; i < XCHAL_CP_MAX; i++) {
106 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
107 			coprocessor_flush(ti, i);
108 		cpenable >>= 1;
109 	}
110 	xtensa_set_sr(old_cpenable, cpenable);
111 
112 	preempt_enable();
113 }
114 
115 #endif
116 
117 
118 /*
119  * Powermanagement idle function, if any is provided by the platform.
120  */
121 void arch_cpu_idle(void)
122 {
123 	platform_idle();
124 }
125 
126 /*
127  * This is called when the thread calls exit().
128  */
129 void exit_thread(struct task_struct *tsk)
130 {
131 #if XTENSA_HAVE_COPROCESSORS
132 	coprocessor_release_all(task_thread_info(tsk));
133 #endif
134 }
135 
136 /*
137  * Flush thread state. This is called when a thread does an execve()
138  * Note that we flush coprocessor registers for the case execve fails.
139  */
140 void flush_thread(void)
141 {
142 #if XTENSA_HAVE_COPROCESSORS
143 	struct thread_info *ti = current_thread_info();
144 	coprocessor_flush_all(ti);
145 	coprocessor_release_all(ti);
146 #endif
147 	flush_ptrace_hw_breakpoint(current);
148 }
149 
150 /*
151  * this gets called so that we can store coprocessor state into memory and
152  * copy the current task into the new thread.
153  */
154 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
155 {
156 #if XTENSA_HAVE_COPROCESSORS
157 	coprocessor_flush_all(task_thread_info(src));
158 #endif
159 	*dst = *src;
160 	return 0;
161 }
162 
163 /*
164  * Copy thread.
165  *
166  * There are two modes in which this function is called:
167  * 1) Userspace thread creation,
168  *    regs != NULL, usp_thread_fn is userspace stack pointer.
169  *    It is expected to copy parent regs (in case CLONE_VM is not set
170  *    in the clone_flags) and set up passed usp in the childregs.
171  * 2) Kernel thread creation,
172  *    regs == NULL, usp_thread_fn is the function to run in the new thread
173  *    and thread_fn_arg is its parameter.
174  *    childregs are not used for the kernel threads.
175  *
176  * The stack layout for the new thread looks like this:
177  *
178  *	+------------------------+
179  *	|       childregs        |
180  *	+------------------------+ <- thread.sp = sp in dummy-frame
181  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
182  *	+------------------------+
183  *
184  * We create a dummy frame to return to either ret_from_fork or
185  *   ret_from_kernel_thread:
186  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
187  *   sp points to itself (thread.sp)
188  *   a2, a3 are unused for userspace threads,
189  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
190  *
191  * Note: This is a pristine frame, so we don't need any spill region on top of
192  *       childregs.
193  *
194  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
195  * not an entire process), we're normally given a new usp, and we CANNOT share
196  * any live address register windows.  If we just copy those live frames over,
197  * the two threads (parent and child) will overflow the same frames onto the
198  * parent stack at different times, likely corrupting the parent stack (esp.
199  * if the parent returns from functions that called clone() and calls new
200  * ones, before the child overflows its now old copies of its parent windows).
201  * One solution is to spill windows to the parent stack, but that's fairly
202  * involved.  Much simpler to just not copy those live frames across.
203  */
204 
205 int copy_thread_tls(unsigned long clone_flags, unsigned long usp_thread_fn,
206 		unsigned long thread_fn_arg, struct task_struct *p,
207 		unsigned long tls)
208 {
209 	struct pt_regs *childregs = task_pt_regs(p);
210 
211 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
212 	struct thread_info *ti;
213 #endif
214 
215 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
216 	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
217 	SPILL_SLOT(childregs, 0) = 0;
218 
219 	p->thread.sp = (unsigned long)childregs;
220 
221 	if (!(p->flags & PF_KTHREAD)) {
222 		struct pt_regs *regs = current_pt_regs();
223 		unsigned long usp = usp_thread_fn ?
224 			usp_thread_fn : regs->areg[1];
225 
226 		p->thread.ra = MAKE_RA_FOR_CALL(
227 				(unsigned long)ret_from_fork, 0x1);
228 
229 		/* This does not copy all the regs.
230 		 * In a bout of brilliance or madness,
231 		 * ARs beyond a0-a15 exist past the end of the struct.
232 		 */
233 		*childregs = *regs;
234 		childregs->areg[1] = usp;
235 		childregs->areg[2] = 0;
236 
237 		/* When sharing memory with the parent thread, the child
238 		   usually starts on a pristine stack, so we have to reset
239 		   windowbase, windowstart and wmask.
240 		   (Note that such a new thread is required to always create
241 		   an initial call4 frame)
242 		   The exception is vfork, where the new thread continues to
243 		   run on the parent's stack until it calls execve. This could
244 		   be a call8 or call12, which requires a legal stack frame
245 		   of the previous caller for the overflow handlers to work.
246 		   (Note that it's always legal to overflow live registers).
247 		   In this case, ensure to spill at least the stack pointer
248 		   of that frame. */
249 
250 		if (clone_flags & CLONE_VM) {
251 			/* check that caller window is live and same stack */
252 			int len = childregs->wmask & ~0xf;
253 			if (regs->areg[1] == usp && len != 0) {
254 				int callinc = (regs->areg[0] >> 30) & 3;
255 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
256 				put_user(regs->areg[caller_ars+1],
257 					 (unsigned __user*)(usp - 12));
258 			}
259 			childregs->wmask = 1;
260 			childregs->windowstart = 1;
261 			childregs->windowbase = 0;
262 		} else {
263 			int len = childregs->wmask & ~0xf;
264 			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
265 			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
266 		}
267 
268 		childregs->syscall = regs->syscall;
269 
270 		if (clone_flags & CLONE_SETTLS)
271 			childregs->threadptr = tls;
272 	} else {
273 		p->thread.ra = MAKE_RA_FOR_CALL(
274 				(unsigned long)ret_from_kernel_thread, 1);
275 
276 		/* pass parameters to ret_from_kernel_thread:
277 		 * a2 = thread_fn, a3 = thread_fn arg
278 		 */
279 		SPILL_SLOT(childregs, 3) = thread_fn_arg;
280 		SPILL_SLOT(childregs, 2) = usp_thread_fn;
281 
282 		/* Childregs are only used when we're going to userspace
283 		 * in which case start_thread will set them up.
284 		 */
285 	}
286 
287 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
288 	ti = task_thread_info(p);
289 	ti->cpenable = 0;
290 #endif
291 
292 	clear_ptrace_hw_breakpoint(p);
293 
294 	return 0;
295 }
296 
297 
298 /*
299  * These bracket the sleeping functions..
300  */
301 
302 unsigned long get_wchan(struct task_struct *p)
303 {
304 	unsigned long sp, pc;
305 	unsigned long stack_page = (unsigned long) task_stack_page(p);
306 	int count = 0;
307 
308 	if (!p || p == current || p->state == TASK_RUNNING)
309 		return 0;
310 
311 	sp = p->thread.sp;
312 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
313 
314 	do {
315 		if (sp < stack_page + sizeof(struct task_struct) ||
316 		    sp >= (stack_page + THREAD_SIZE) ||
317 		    pc == 0)
318 			return 0;
319 		if (!in_sched_functions(pc))
320 			return pc;
321 
322 		/* Stack layout: sp-4: ra, sp-3: sp' */
323 
324 		pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
325 		sp = SPILL_SLOT(sp, 1);
326 	} while (count++ < 16);
327 	return 0;
328 }
329