xref: /openbmc/linux/arch/xtensa/kernel/process.c (revision 6548d543)
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/elf.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/init.h>
32 #include <linux/prctl.h>
33 #include <linux/init_task.h>
34 #include <linux/module.h>
35 #include <linux/mqueue.h>
36 #include <linux/fs.h>
37 #include <linux/slab.h>
38 #include <linux/rcupdate.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/platform.h>
44 #include <asm/mmu.h>
45 #include <asm/irq.h>
46 #include <linux/atomic.h>
47 #include <asm/asm-offsets.h>
48 #include <asm/regs.h>
49 #include <asm/hw_breakpoint.h>
50 #include <asm/sections.h>
51 #include <asm/traps.h>
52 
53 extern void ret_from_fork(void);
54 extern void ret_from_kernel_thread(void);
55 
56 void (*pm_power_off)(void) = NULL;
57 EXPORT_SYMBOL(pm_power_off);
58 
59 
60 #ifdef CONFIG_STACKPROTECTOR
61 #include <linux/stackprotector.h>
62 unsigned long __stack_chk_guard __read_mostly;
63 EXPORT_SYMBOL(__stack_chk_guard);
64 #endif
65 
66 #if XTENSA_HAVE_COPROCESSORS
67 
68 void local_coprocessors_flush_release_all(void)
69 {
70 	struct thread_info **coprocessor_owner;
71 	struct thread_info *unique_owner[XCHAL_CP_MAX];
72 	int n = 0;
73 	int i, j;
74 
75 	coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
76 	xtensa_set_sr(XCHAL_CP_MASK, cpenable);
77 
78 	for (i = 0; i < XCHAL_CP_MAX; i++) {
79 		struct thread_info *ti = coprocessor_owner[i];
80 
81 		if (ti) {
82 			coprocessor_flush(ti, i);
83 
84 			for (j = 0; j < n; j++)
85 				if (unique_owner[j] == ti)
86 					break;
87 			if (j == n)
88 				unique_owner[n++] = ti;
89 
90 			coprocessor_owner[i] = NULL;
91 		}
92 	}
93 	for (i = 0; i < n; i++) {
94 		/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
95 		smp_wmb();
96 		unique_owner[i]->cpenable = 0;
97 	}
98 	xtensa_set_sr(0, cpenable);
99 }
100 
101 static void local_coprocessor_release_all(void *info)
102 {
103 	struct thread_info *ti = info;
104 	struct thread_info **coprocessor_owner;
105 	int i;
106 
107 	coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
108 
109 	/* Walk through all cp owners and release it for the requested one. */
110 
111 	for (i = 0; i < XCHAL_CP_MAX; i++) {
112 		if (coprocessor_owner[i] == ti)
113 			coprocessor_owner[i] = NULL;
114 	}
115 	/* pairs with memw (1) in fast_coprocessor and memw in switch_to */
116 	smp_wmb();
117 	ti->cpenable = 0;
118 	if (ti == current_thread_info())
119 		xtensa_set_sr(0, cpenable);
120 }
121 
122 void coprocessor_release_all(struct thread_info *ti)
123 {
124 	if (ti->cpenable) {
125 		/* pairs with memw (2) in fast_coprocessor */
126 		smp_rmb();
127 		smp_call_function_single(ti->cp_owner_cpu,
128 					 local_coprocessor_release_all,
129 					 ti, true);
130 	}
131 }
132 
133 static void local_coprocessor_flush_all(void *info)
134 {
135 	struct thread_info *ti = info;
136 	struct thread_info **coprocessor_owner;
137 	unsigned long old_cpenable;
138 	int i;
139 
140 	coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
141 	old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
142 
143 	for (i = 0; i < XCHAL_CP_MAX; i++) {
144 		if (coprocessor_owner[i] == ti)
145 			coprocessor_flush(ti, i);
146 	}
147 	xtensa_set_sr(old_cpenable, cpenable);
148 }
149 
150 void coprocessor_flush_all(struct thread_info *ti)
151 {
152 	if (ti->cpenable) {
153 		/* pairs with memw (2) in fast_coprocessor */
154 		smp_rmb();
155 		smp_call_function_single(ti->cp_owner_cpu,
156 					 local_coprocessor_flush_all,
157 					 ti, true);
158 	}
159 }
160 
161 static void local_coprocessor_flush_release_all(void *info)
162 {
163 	local_coprocessor_flush_all(info);
164 	local_coprocessor_release_all(info);
165 }
166 
167 void coprocessor_flush_release_all(struct thread_info *ti)
168 {
169 	if (ti->cpenable) {
170 		/* pairs with memw (2) in fast_coprocessor */
171 		smp_rmb();
172 		smp_call_function_single(ti->cp_owner_cpu,
173 					 local_coprocessor_flush_release_all,
174 					 ti, true);
175 	}
176 }
177 
178 #endif
179 
180 
181 /*
182  * Powermanagement idle function, if any is provided by the platform.
183  */
184 void arch_cpu_idle(void)
185 {
186 	platform_idle();
187 	raw_local_irq_disable();
188 }
189 
190 /*
191  * This is called when the thread calls exit().
192  */
193 void exit_thread(struct task_struct *tsk)
194 {
195 #if XTENSA_HAVE_COPROCESSORS
196 	coprocessor_release_all(task_thread_info(tsk));
197 #endif
198 }
199 
200 /*
201  * Flush thread state. This is called when a thread does an execve()
202  * Note that we flush coprocessor registers for the case execve fails.
203  */
204 void flush_thread(void)
205 {
206 #if XTENSA_HAVE_COPROCESSORS
207 	struct thread_info *ti = current_thread_info();
208 	coprocessor_flush_release_all(ti);
209 #endif
210 	flush_ptrace_hw_breakpoint(current);
211 }
212 
213 /*
214  * this gets called so that we can store coprocessor state into memory and
215  * copy the current task into the new thread.
216  */
217 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
218 {
219 #if XTENSA_HAVE_COPROCESSORS
220 	coprocessor_flush_all(task_thread_info(src));
221 #endif
222 	*dst = *src;
223 	return 0;
224 }
225 
226 /*
227  * Copy thread.
228  *
229  * There are two modes in which this function is called:
230  * 1) Userspace thread creation,
231  *    regs != NULL, usp_thread_fn is userspace stack pointer.
232  *    It is expected to copy parent regs (in case CLONE_VM is not set
233  *    in the clone_flags) and set up passed usp in the childregs.
234  * 2) Kernel thread creation,
235  *    regs == NULL, usp_thread_fn is the function to run in the new thread
236  *    and thread_fn_arg is its parameter.
237  *    childregs are not used for the kernel threads.
238  *
239  * The stack layout for the new thread looks like this:
240  *
241  *	+------------------------+
242  *	|       childregs        |
243  *	+------------------------+ <- thread.sp = sp in dummy-frame
244  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
245  *	+------------------------+
246  *
247  * We create a dummy frame to return to either ret_from_fork or
248  *   ret_from_kernel_thread:
249  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
250  *   sp points to itself (thread.sp)
251  *   a2, a3 are unused for userspace threads,
252  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
253  *
254  * Note: This is a pristine frame, so we don't need any spill region on top of
255  *       childregs.
256  *
257  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
258  * not an entire process), we're normally given a new usp, and we CANNOT share
259  * any live address register windows.  If we just copy those live frames over,
260  * the two threads (parent and child) will overflow the same frames onto the
261  * parent stack at different times, likely corrupting the parent stack (esp.
262  * if the parent returns from functions that called clone() and calls new
263  * ones, before the child overflows its now old copies of its parent windows).
264  * One solution is to spill windows to the parent stack, but that's fairly
265  * involved.  Much simpler to just not copy those live frames across.
266  */
267 
268 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
269 {
270 	unsigned long clone_flags = args->flags;
271 	unsigned long usp_thread_fn = args->stack;
272 	unsigned long tls = args->tls;
273 	struct pt_regs *childregs = task_pt_regs(p);
274 
275 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
276 	struct thread_info *ti;
277 #endif
278 
279 #if defined(__XTENSA_WINDOWED_ABI__)
280 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
281 	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
282 	SPILL_SLOT(childregs, 0) = 0;
283 
284 	p->thread.sp = (unsigned long)childregs;
285 #elif defined(__XTENSA_CALL0_ABI__)
286 	/* Reserve 16 bytes for the _switch_to stack frame. */
287 	p->thread.sp = (unsigned long)childregs - 16;
288 #else
289 #error Unsupported Xtensa ABI
290 #endif
291 
292 	if (!args->fn) {
293 		struct pt_regs *regs = current_pt_regs();
294 		unsigned long usp = usp_thread_fn ?
295 			usp_thread_fn : regs->areg[1];
296 
297 		p->thread.ra = MAKE_RA_FOR_CALL(
298 				(unsigned long)ret_from_fork, 0x1);
299 
300 		*childregs = *regs;
301 		childregs->areg[1] = usp;
302 		childregs->areg[2] = 0;
303 
304 		/* When sharing memory with the parent thread, the child
305 		   usually starts on a pristine stack, so we have to reset
306 		   windowbase, windowstart and wmask.
307 		   (Note that such a new thread is required to always create
308 		   an initial call4 frame)
309 		   The exception is vfork, where the new thread continues to
310 		   run on the parent's stack until it calls execve. This could
311 		   be a call8 or call12, which requires a legal stack frame
312 		   of the previous caller for the overflow handlers to work.
313 		   (Note that it's always legal to overflow live registers).
314 		   In this case, ensure to spill at least the stack pointer
315 		   of that frame. */
316 
317 		if (clone_flags & CLONE_VM) {
318 			/* check that caller window is live and same stack */
319 			int len = childregs->wmask & ~0xf;
320 			if (regs->areg[1] == usp && len != 0) {
321 				int callinc = (regs->areg[0] >> 30) & 3;
322 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
323 				put_user(regs->areg[caller_ars+1],
324 					 (unsigned __user*)(usp - 12));
325 			}
326 			childregs->wmask = 1;
327 			childregs->windowstart = 1;
328 			childregs->windowbase = 0;
329 		}
330 
331 		if (clone_flags & CLONE_SETTLS)
332 			childregs->threadptr = tls;
333 	} else {
334 		p->thread.ra = MAKE_RA_FOR_CALL(
335 				(unsigned long)ret_from_kernel_thread, 1);
336 
337 		/* pass parameters to ret_from_kernel_thread: */
338 #if defined(__XTENSA_WINDOWED_ABI__)
339 		/*
340 		 * a2 = thread_fn, a3 = thread_fn arg.
341 		 * Window underflow will load registers from the
342 		 * spill slots on the stack on return from _switch_to.
343 		 */
344 		SPILL_SLOT(childregs, 2) = (unsigned long)args->fn;
345 		SPILL_SLOT(childregs, 3) = (unsigned long)args->fn_arg;
346 #elif defined(__XTENSA_CALL0_ABI__)
347 		/*
348 		 * a12 = thread_fn, a13 = thread_fn arg.
349 		 * _switch_to epilogue will load registers from the stack.
350 		 */
351 		((unsigned long *)p->thread.sp)[0] = (unsigned long)args->fn;
352 		((unsigned long *)p->thread.sp)[1] = (unsigned long)args->fn_arg;
353 #else
354 #error Unsupported Xtensa ABI
355 #endif
356 
357 		/* Childregs are only used when we're going to userspace
358 		 * in which case start_thread will set them up.
359 		 */
360 	}
361 
362 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
363 	ti = task_thread_info(p);
364 	ti->cpenable = 0;
365 #endif
366 
367 	clear_ptrace_hw_breakpoint(p);
368 
369 	return 0;
370 }
371 
372 
373 /*
374  * These bracket the sleeping functions..
375  */
376 
377 unsigned long __get_wchan(struct task_struct *p)
378 {
379 	unsigned long sp, pc;
380 	unsigned long stack_page = (unsigned long) task_stack_page(p);
381 	int count = 0;
382 
383 	sp = p->thread.sp;
384 	pc = MAKE_PC_FROM_RA(p->thread.ra, _text);
385 
386 	do {
387 		if (sp < stack_page + sizeof(struct task_struct) ||
388 		    sp >= (stack_page + THREAD_SIZE) ||
389 		    pc == 0)
390 			return 0;
391 		if (!in_sched_functions(pc))
392 			return pc;
393 
394 		/* Stack layout: sp-4: ra, sp-3: sp' */
395 
396 		pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), _text);
397 		sp = SPILL_SLOT(sp, 1);
398 	} while (count++ < 16);
399 	return 0;
400 }
401