1 /* 2 * arch/xtensa/kernel/process.c 3 * 4 * Xtensa Processor version. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 * 10 * Copyright (C) 2001 - 2005 Tensilica Inc. 11 * 12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com> 13 * Chris Zankel <chris@zankel.net> 14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca> 15 * Kevin Chea 16 */ 17 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/stddef.h> 24 #include <linux/unistd.h> 25 #include <linux/ptrace.h> 26 #include <linux/elf.h> 27 #include <linux/hw_breakpoint.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/mqueue.h> 33 #include <linux/fs.h> 34 #include <linux/slab.h> 35 #include <linux/rcupdate.h> 36 37 #include <asm/pgtable.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/processor.h> 41 #include <asm/platform.h> 42 #include <asm/mmu.h> 43 #include <asm/irq.h> 44 #include <linux/atomic.h> 45 #include <asm/asm-offsets.h> 46 #include <asm/regs.h> 47 #include <asm/hw_breakpoint.h> 48 49 extern void ret_from_fork(void); 50 extern void ret_from_kernel_thread(void); 51 52 struct task_struct *current_set[NR_CPUS] = {&init_task, }; 53 54 void (*pm_power_off)(void) = NULL; 55 EXPORT_SYMBOL(pm_power_off); 56 57 58 #if XTENSA_HAVE_COPROCESSORS 59 60 void coprocessor_release_all(struct thread_info *ti) 61 { 62 unsigned long cpenable; 63 int i; 64 65 /* Make sure we don't switch tasks during this operation. */ 66 67 preempt_disable(); 68 69 /* Walk through all cp owners and release it for the requested one. */ 70 71 cpenable = ti->cpenable; 72 73 for (i = 0; i < XCHAL_CP_MAX; i++) { 74 if (coprocessor_owner[i] == ti) { 75 coprocessor_owner[i] = 0; 76 cpenable &= ~(1 << i); 77 } 78 } 79 80 ti->cpenable = cpenable; 81 coprocessor_clear_cpenable(); 82 83 preempt_enable(); 84 } 85 86 void coprocessor_flush_all(struct thread_info *ti) 87 { 88 unsigned long cpenable; 89 int i; 90 91 preempt_disable(); 92 93 cpenable = ti->cpenable; 94 95 for (i = 0; i < XCHAL_CP_MAX; i++) { 96 if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti) 97 coprocessor_flush(ti, i); 98 cpenable >>= 1; 99 } 100 101 preempt_enable(); 102 } 103 104 #endif 105 106 107 /* 108 * Powermanagement idle function, if any is provided by the platform. 109 */ 110 void arch_cpu_idle(void) 111 { 112 platform_idle(); 113 } 114 115 /* 116 * This is called when the thread calls exit(). 117 */ 118 void exit_thread(struct task_struct *tsk) 119 { 120 #if XTENSA_HAVE_COPROCESSORS 121 coprocessor_release_all(task_thread_info(tsk)); 122 #endif 123 } 124 125 /* 126 * Flush thread state. This is called when a thread does an execve() 127 * Note that we flush coprocessor registers for the case execve fails. 128 */ 129 void flush_thread(void) 130 { 131 #if XTENSA_HAVE_COPROCESSORS 132 struct thread_info *ti = current_thread_info(); 133 coprocessor_flush_all(ti); 134 coprocessor_release_all(ti); 135 #endif 136 flush_ptrace_hw_breakpoint(current); 137 } 138 139 /* 140 * this gets called so that we can store coprocessor state into memory and 141 * copy the current task into the new thread. 142 */ 143 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 144 { 145 #if XTENSA_HAVE_COPROCESSORS 146 coprocessor_flush_all(task_thread_info(src)); 147 #endif 148 *dst = *src; 149 return 0; 150 } 151 152 /* 153 * Copy thread. 154 * 155 * There are two modes in which this function is called: 156 * 1) Userspace thread creation, 157 * regs != NULL, usp_thread_fn is userspace stack pointer. 158 * It is expected to copy parent regs (in case CLONE_VM is not set 159 * in the clone_flags) and set up passed usp in the childregs. 160 * 2) Kernel thread creation, 161 * regs == NULL, usp_thread_fn is the function to run in the new thread 162 * and thread_fn_arg is its parameter. 163 * childregs are not used for the kernel threads. 164 * 165 * The stack layout for the new thread looks like this: 166 * 167 * +------------------------+ 168 * | childregs | 169 * +------------------------+ <- thread.sp = sp in dummy-frame 170 * | dummy-frame | (saved in dummy-frame spill-area) 171 * +------------------------+ 172 * 173 * We create a dummy frame to return to either ret_from_fork or 174 * ret_from_kernel_thread: 175 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4) 176 * sp points to itself (thread.sp) 177 * a2, a3 are unused for userspace threads, 178 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads. 179 * 180 * Note: This is a pristine frame, so we don't need any spill region on top of 181 * childregs. 182 * 183 * The fun part: if we're keeping the same VM (i.e. cloning a thread, 184 * not an entire process), we're normally given a new usp, and we CANNOT share 185 * any live address register windows. If we just copy those live frames over, 186 * the two threads (parent and child) will overflow the same frames onto the 187 * parent stack at different times, likely corrupting the parent stack (esp. 188 * if the parent returns from functions that called clone() and calls new 189 * ones, before the child overflows its now old copies of its parent windows). 190 * One solution is to spill windows to the parent stack, but that's fairly 191 * involved. Much simpler to just not copy those live frames across. 192 */ 193 194 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn, 195 unsigned long thread_fn_arg, struct task_struct *p) 196 { 197 struct pt_regs *childregs = task_pt_regs(p); 198 199 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) 200 struct thread_info *ti; 201 #endif 202 203 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */ 204 *((int*)childregs - 3) = (unsigned long)childregs; 205 *((int*)childregs - 4) = 0; 206 207 p->thread.sp = (unsigned long)childregs; 208 209 if (!(p->flags & PF_KTHREAD)) { 210 struct pt_regs *regs = current_pt_regs(); 211 unsigned long usp = usp_thread_fn ? 212 usp_thread_fn : regs->areg[1]; 213 214 p->thread.ra = MAKE_RA_FOR_CALL( 215 (unsigned long)ret_from_fork, 0x1); 216 217 /* This does not copy all the regs. 218 * In a bout of brilliance or madness, 219 * ARs beyond a0-a15 exist past the end of the struct. 220 */ 221 *childregs = *regs; 222 childregs->areg[1] = usp; 223 childregs->areg[2] = 0; 224 225 /* When sharing memory with the parent thread, the child 226 usually starts on a pristine stack, so we have to reset 227 windowbase, windowstart and wmask. 228 (Note that such a new thread is required to always create 229 an initial call4 frame) 230 The exception is vfork, where the new thread continues to 231 run on the parent's stack until it calls execve. This could 232 be a call8 or call12, which requires a legal stack frame 233 of the previous caller for the overflow handlers to work. 234 (Note that it's always legal to overflow live registers). 235 In this case, ensure to spill at least the stack pointer 236 of that frame. */ 237 238 if (clone_flags & CLONE_VM) { 239 /* check that caller window is live and same stack */ 240 int len = childregs->wmask & ~0xf; 241 if (regs->areg[1] == usp && len != 0) { 242 int callinc = (regs->areg[0] >> 30) & 3; 243 int caller_ars = XCHAL_NUM_AREGS - callinc * 4; 244 put_user(regs->areg[caller_ars+1], 245 (unsigned __user*)(usp - 12)); 246 } 247 childregs->wmask = 1; 248 childregs->windowstart = 1; 249 childregs->windowbase = 0; 250 } else { 251 int len = childregs->wmask & ~0xf; 252 memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4], 253 ®s->areg[XCHAL_NUM_AREGS - len/4], len); 254 } 255 256 /* The thread pointer is passed in the '4th argument' (= a5) */ 257 if (clone_flags & CLONE_SETTLS) 258 childregs->threadptr = childregs->areg[5]; 259 } else { 260 p->thread.ra = MAKE_RA_FOR_CALL( 261 (unsigned long)ret_from_kernel_thread, 1); 262 263 /* pass parameters to ret_from_kernel_thread: 264 * a2 = thread_fn, a3 = thread_fn arg 265 */ 266 *((int *)childregs - 1) = thread_fn_arg; 267 *((int *)childregs - 2) = usp_thread_fn; 268 269 /* Childregs are only used when we're going to userspace 270 * in which case start_thread will set them up. 271 */ 272 } 273 274 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS) 275 ti = task_thread_info(p); 276 ti->cpenable = 0; 277 #endif 278 279 clear_ptrace_hw_breakpoint(p); 280 281 return 0; 282 } 283 284 285 /* 286 * These bracket the sleeping functions.. 287 */ 288 289 unsigned long get_wchan(struct task_struct *p) 290 { 291 unsigned long sp, pc; 292 unsigned long stack_page = (unsigned long) task_stack_page(p); 293 int count = 0; 294 295 if (!p || p == current || p->state == TASK_RUNNING) 296 return 0; 297 298 sp = p->thread.sp; 299 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp); 300 301 do { 302 if (sp < stack_page + sizeof(struct task_struct) || 303 sp >= (stack_page + THREAD_SIZE) || 304 pc == 0) 305 return 0; 306 if (!in_sched_functions(pc)) 307 return pc; 308 309 /* Stack layout: sp-4: ra, sp-3: sp' */ 310 311 pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp); 312 sp = *(unsigned long *)sp - 3; 313 } while (count++ < 16); 314 return 0; 315 } 316 317 /* 318 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats 319 * of processor registers. Besides different ordering, 320 * xtensa_gregset_t contains non-live register information that 321 * 'struct pt_regs' does not. Exception handling (primarily) uses 322 * 'struct pt_regs'. Core files and ptrace use xtensa_gregset_t. 323 * 324 */ 325 326 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs) 327 { 328 unsigned long wb, ws, wm; 329 int live, last; 330 331 wb = regs->windowbase; 332 ws = regs->windowstart; 333 wm = regs->wmask; 334 ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1); 335 336 /* Don't leak any random bits. */ 337 338 memset(elfregs, 0, sizeof(*elfregs)); 339 340 /* Note: PS.EXCM is not set while user task is running; its 341 * being set in regs->ps is for exception handling convenience. 342 */ 343 344 elfregs->pc = regs->pc; 345 elfregs->ps = (regs->ps & ~(1 << PS_EXCM_BIT)); 346 elfregs->lbeg = regs->lbeg; 347 elfregs->lend = regs->lend; 348 elfregs->lcount = regs->lcount; 349 elfregs->sar = regs->sar; 350 elfregs->windowstart = ws; 351 352 live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16; 353 last = XCHAL_NUM_AREGS - (wm >> 4) * 4; 354 memcpy(elfregs->a, regs->areg, live * 4); 355 memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16); 356 } 357 358 int dump_fpu(void) 359 { 360 return 0; 361 } 362