xref: /openbmc/linux/arch/xtensa/kernel/process.c (revision 0d456bad)
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/elf.h>
27 #include <linux/init.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/module.h>
31 #include <linux/mqueue.h>
32 #include <linux/fs.h>
33 #include <linux/slab.h>
34 #include <linux/rcupdate.h>
35 
36 #include <asm/pgtable.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/processor.h>
40 #include <asm/platform.h>
41 #include <asm/mmu.h>
42 #include <asm/irq.h>
43 #include <linux/atomic.h>
44 #include <asm/asm-offsets.h>
45 #include <asm/regs.h>
46 
47 extern void ret_from_fork(void);
48 extern void ret_from_kernel_thread(void);
49 
50 struct task_struct *current_set[NR_CPUS] = {&init_task, };
51 
52 void (*pm_power_off)(void) = NULL;
53 EXPORT_SYMBOL(pm_power_off);
54 
55 
56 #if XTENSA_HAVE_COPROCESSORS
57 
58 void coprocessor_release_all(struct thread_info *ti)
59 {
60 	unsigned long cpenable;
61 	int i;
62 
63 	/* Make sure we don't switch tasks during this operation. */
64 
65 	preempt_disable();
66 
67 	/* Walk through all cp owners and release it for the requested one. */
68 
69 	cpenable = ti->cpenable;
70 
71 	for (i = 0; i < XCHAL_CP_MAX; i++) {
72 		if (coprocessor_owner[i] == ti) {
73 			coprocessor_owner[i] = 0;
74 			cpenable &= ~(1 << i);
75 		}
76 	}
77 
78 	ti->cpenable = cpenable;
79 	coprocessor_clear_cpenable();
80 
81 	preempt_enable();
82 }
83 
84 void coprocessor_flush_all(struct thread_info *ti)
85 {
86 	unsigned long cpenable;
87 	int i;
88 
89 	preempt_disable();
90 
91 	cpenable = ti->cpenable;
92 
93 	for (i = 0; i < XCHAL_CP_MAX; i++) {
94 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
95 			coprocessor_flush(ti, i);
96 		cpenable >>= 1;
97 	}
98 
99 	preempt_enable();
100 }
101 
102 #endif
103 
104 
105 /*
106  * Powermanagement idle function, if any is provided by the platform.
107  */
108 
109 void cpu_idle(void)
110 {
111   	local_irq_enable();
112 
113 	/* endless idle loop with no priority at all */
114 	while (1) {
115 		rcu_idle_enter();
116 		while (!need_resched())
117 			platform_idle();
118 		rcu_idle_exit();
119 		schedule_preempt_disabled();
120 	}
121 }
122 
123 /*
124  * This is called when the thread calls exit().
125  */
126 void exit_thread(void)
127 {
128 #if XTENSA_HAVE_COPROCESSORS
129 	coprocessor_release_all(current_thread_info());
130 #endif
131 }
132 
133 /*
134  * Flush thread state. This is called when a thread does an execve()
135  * Note that we flush coprocessor registers for the case execve fails.
136  */
137 void flush_thread(void)
138 {
139 #if XTENSA_HAVE_COPROCESSORS
140 	struct thread_info *ti = current_thread_info();
141 	coprocessor_flush_all(ti);
142 	coprocessor_release_all(ti);
143 #endif
144 }
145 
146 /*
147  * this gets called so that we can store coprocessor state into memory and
148  * copy the current task into the new thread.
149  */
150 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
151 {
152 #if XTENSA_HAVE_COPROCESSORS
153 	coprocessor_flush_all(task_thread_info(src));
154 #endif
155 	*dst = *src;
156 	return 0;
157 }
158 
159 /*
160  * Copy thread.
161  *
162  * There are two modes in which this function is called:
163  * 1) Userspace thread creation,
164  *    regs != NULL, usp_thread_fn is userspace stack pointer.
165  *    It is expected to copy parent regs (in case CLONE_VM is not set
166  *    in the clone_flags) and set up passed usp in the childregs.
167  * 2) Kernel thread creation,
168  *    regs == NULL, usp_thread_fn is the function to run in the new thread
169  *    and thread_fn_arg is its parameter.
170  *    childregs are not used for the kernel threads.
171  *
172  * The stack layout for the new thread looks like this:
173  *
174  *	+------------------------+
175  *	|       childregs        |
176  *	+------------------------+ <- thread.sp = sp in dummy-frame
177  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
178  *	+------------------------+
179  *
180  * We create a dummy frame to return to either ret_from_fork or
181  *   ret_from_kernel_thread:
182  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
183  *   sp points to itself (thread.sp)
184  *   a2, a3 are unused for userspace threads,
185  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
186  *
187  * Note: This is a pristine frame, so we don't need any spill region on top of
188  *       childregs.
189  *
190  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
191  * not an entire process), we're normally given a new usp, and we CANNOT share
192  * any live address register windows.  If we just copy those live frames over,
193  * the two threads (parent and child) will overflow the same frames onto the
194  * parent stack at different times, likely corrupting the parent stack (esp.
195  * if the parent returns from functions that called clone() and calls new
196  * ones, before the child overflows its now old copies of its parent windows).
197  * One solution is to spill windows to the parent stack, but that's fairly
198  * involved.  Much simpler to just not copy those live frames across.
199  */
200 
201 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
202 		unsigned long thread_fn_arg, struct task_struct *p)
203 {
204 	struct pt_regs *childregs = task_pt_regs(p);
205 
206 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
207 	struct thread_info *ti;
208 #endif
209 
210 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
211 	*((int*)childregs - 3) = (unsigned long)childregs;
212 	*((int*)childregs - 4) = 0;
213 
214 	p->thread.sp = (unsigned long)childregs;
215 
216 	if (!(p->flags & PF_KTHREAD)) {
217 		struct pt_regs *regs = current_pt_regs();
218 		unsigned long usp = usp_thread_fn ?
219 			usp_thread_fn : regs->areg[1];
220 
221 		p->thread.ra = MAKE_RA_FOR_CALL(
222 				(unsigned long)ret_from_fork, 0x1);
223 
224 		/* This does not copy all the regs.
225 		 * In a bout of brilliance or madness,
226 		 * ARs beyond a0-a15 exist past the end of the struct.
227 		 */
228 		*childregs = *regs;
229 		childregs->areg[1] = usp;
230 		childregs->areg[2] = 0;
231 
232 		/* When sharing memory with the parent thread, the child
233 		   usually starts on a pristine stack, so we have to reset
234 		   windowbase, windowstart and wmask.
235 		   (Note that such a new thread is required to always create
236 		   an initial call4 frame)
237 		   The exception is vfork, where the new thread continues to
238 		   run on the parent's stack until it calls execve. This could
239 		   be a call8 or call12, which requires a legal stack frame
240 		   of the previous caller for the overflow handlers to work.
241 		   (Note that it's always legal to overflow live registers).
242 		   In this case, ensure to spill at least the stack pointer
243 		   of that frame. */
244 
245 		if (clone_flags & CLONE_VM) {
246 			/* check that caller window is live and same stack */
247 			int len = childregs->wmask & ~0xf;
248 			if (regs->areg[1] == usp && len != 0) {
249 				int callinc = (regs->areg[0] >> 30) & 3;
250 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
251 				put_user(regs->areg[caller_ars+1],
252 					 (unsigned __user*)(usp - 12));
253 			}
254 			childregs->wmask = 1;
255 			childregs->windowstart = 1;
256 			childregs->windowbase = 0;
257 		} else {
258 			int len = childregs->wmask & ~0xf;
259 			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
260 			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
261 		}
262 // FIXME: we need to set THREADPTR in thread_info...
263 		if (clone_flags & CLONE_SETTLS)
264 			childregs->areg[2] = childregs->areg[6];
265 	} else {
266 		p->thread.ra = MAKE_RA_FOR_CALL(
267 				(unsigned long)ret_from_kernel_thread, 1);
268 
269 		/* pass parameters to ret_from_kernel_thread:
270 		 * a2 = thread_fn, a3 = thread_fn arg
271 		 */
272 		*((int *)childregs - 1) = thread_fn_arg;
273 		*((int *)childregs - 2) = usp_thread_fn;
274 
275 		/* Childregs are only used when we're going to userspace
276 		 * in which case start_thread will set them up.
277 		 */
278 	}
279 
280 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
281 	ti = task_thread_info(p);
282 	ti->cpenable = 0;
283 #endif
284 
285 	return 0;
286 }
287 
288 
289 /*
290  * These bracket the sleeping functions..
291  */
292 
293 unsigned long get_wchan(struct task_struct *p)
294 {
295 	unsigned long sp, pc;
296 	unsigned long stack_page = (unsigned long) task_stack_page(p);
297 	int count = 0;
298 
299 	if (!p || p == current || p->state == TASK_RUNNING)
300 		return 0;
301 
302 	sp = p->thread.sp;
303 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
304 
305 	do {
306 		if (sp < stack_page + sizeof(struct task_struct) ||
307 		    sp >= (stack_page + THREAD_SIZE) ||
308 		    pc == 0)
309 			return 0;
310 		if (!in_sched_functions(pc))
311 			return pc;
312 
313 		/* Stack layout: sp-4: ra, sp-3: sp' */
314 
315 		pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
316 		sp = *(unsigned long *)sp - 3;
317 	} while (count++ < 16);
318 	return 0;
319 }
320 
321 /*
322  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
323  * of processor registers.  Besides different ordering,
324  * xtensa_gregset_t contains non-live register information that
325  * 'struct pt_regs' does not.  Exception handling (primarily) uses
326  * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
327  *
328  */
329 
330 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
331 {
332 	unsigned long wb, ws, wm;
333 	int live, last;
334 
335 	wb = regs->windowbase;
336 	ws = regs->windowstart;
337 	wm = regs->wmask;
338 	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
339 
340 	/* Don't leak any random bits. */
341 
342 	memset(elfregs, 0, sizeof(*elfregs));
343 
344 	/* Note:  PS.EXCM is not set while user task is running; its
345 	 * being set in regs->ps is for exception handling convenience.
346 	 */
347 
348 	elfregs->pc		= regs->pc;
349 	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
350 	elfregs->lbeg		= regs->lbeg;
351 	elfregs->lend		= regs->lend;
352 	elfregs->lcount		= regs->lcount;
353 	elfregs->sar		= regs->sar;
354 	elfregs->windowstart	= ws;
355 
356 	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
357 	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
358 	memcpy(elfregs->a, regs->areg, live * 4);
359 	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
360 }
361 
362 int dump_fpu(void)
363 {
364 	return 0;
365 }
366