xref: /openbmc/linux/arch/xtensa/kernel/pci-dma.c (revision ba61bb17)
1 /*
2  * DMA coherent memory allocation.
3  *
4  * This program is free software; you can redistribute  it and/or modify it
5  * under  the terms of  the GNU General  Public License as published by the
6  * Free Software Foundation;  either version 2 of the  License, or (at your
7  * option) any later version.
8  *
9  * Copyright (C) 2002 - 2005 Tensilica Inc.
10  * Copyright (C) 2015 Cadence Design Systems Inc.
11  *
12  * Based on version for i386.
13  *
14  * Chris Zankel <chris@zankel.net>
15  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
16  */
17 
18 #include <linux/dma-contiguous.h>
19 #include <linux/dma-direct.h>
20 #include <linux/gfp.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <asm/cacheflush.h>
28 #include <asm/io.h>
29 
30 static void do_cache_op(dma_addr_t dma_handle, size_t size,
31 			void (*fn)(unsigned long, unsigned long))
32 {
33 	unsigned long off = dma_handle & (PAGE_SIZE - 1);
34 	unsigned long pfn = PFN_DOWN(dma_handle);
35 	struct page *page = pfn_to_page(pfn);
36 
37 	if (!PageHighMem(page))
38 		fn((unsigned long)bus_to_virt(dma_handle), size);
39 	else
40 		while (size > 0) {
41 			size_t sz = min_t(size_t, size, PAGE_SIZE - off);
42 			void *vaddr = kmap_atomic(page);
43 
44 			fn((unsigned long)vaddr + off, sz);
45 			kunmap_atomic(vaddr);
46 			off = 0;
47 			++page;
48 			size -= sz;
49 		}
50 }
51 
52 static void xtensa_sync_single_for_cpu(struct device *dev,
53 				       dma_addr_t dma_handle, size_t size,
54 				       enum dma_data_direction dir)
55 {
56 	switch (dir) {
57 	case DMA_BIDIRECTIONAL:
58 	case DMA_FROM_DEVICE:
59 		do_cache_op(dma_handle, size, __invalidate_dcache_range);
60 		break;
61 
62 	case DMA_NONE:
63 		BUG();
64 		break;
65 
66 	default:
67 		break;
68 	}
69 }
70 
71 static void xtensa_sync_single_for_device(struct device *dev,
72 					  dma_addr_t dma_handle, size_t size,
73 					  enum dma_data_direction dir)
74 {
75 	switch (dir) {
76 	case DMA_BIDIRECTIONAL:
77 	case DMA_TO_DEVICE:
78 		if (XCHAL_DCACHE_IS_WRITEBACK)
79 			do_cache_op(dma_handle, size, __flush_dcache_range);
80 		break;
81 
82 	case DMA_NONE:
83 		BUG();
84 		break;
85 
86 	default:
87 		break;
88 	}
89 }
90 
91 static void xtensa_sync_sg_for_cpu(struct device *dev,
92 				   struct scatterlist *sg, int nents,
93 				   enum dma_data_direction dir)
94 {
95 	struct scatterlist *s;
96 	int i;
97 
98 	for_each_sg(sg, s, nents, i) {
99 		xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
100 					   sg_dma_len(s), dir);
101 	}
102 }
103 
104 static void xtensa_sync_sg_for_device(struct device *dev,
105 				      struct scatterlist *sg, int nents,
106 				      enum dma_data_direction dir)
107 {
108 	struct scatterlist *s;
109 	int i;
110 
111 	for_each_sg(sg, s, nents, i) {
112 		xtensa_sync_single_for_device(dev, sg_dma_address(s),
113 					      sg_dma_len(s), dir);
114 	}
115 }
116 
117 /*
118  * Note: We assume that the full memory space is always mapped to 'kseg'
119  *	 Otherwise we have to use page attributes (not implemented).
120  */
121 
122 static void *xtensa_dma_alloc(struct device *dev, size_t size,
123 			      dma_addr_t *handle, gfp_t flag,
124 			      unsigned long attrs)
125 {
126 	unsigned long ret;
127 	unsigned long uncached;
128 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
129 	struct page *page = NULL;
130 
131 	/* ignore region speicifiers */
132 
133 	flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
134 
135 	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
136 		flag |= GFP_DMA;
137 
138 	if (gfpflags_allow_blocking(flag))
139 		page = dma_alloc_from_contiguous(dev, count, get_order(size),
140 						 flag);
141 
142 	if (!page)
143 		page = alloc_pages(flag, get_order(size));
144 
145 	if (!page)
146 		return NULL;
147 
148 	*handle = phys_to_dma(dev, page_to_phys(page));
149 
150 #ifdef CONFIG_MMU
151 	if (PageHighMem(page)) {
152 		void *p;
153 
154 		p = dma_common_contiguous_remap(page, size, VM_MAP,
155 						pgprot_noncached(PAGE_KERNEL),
156 						__builtin_return_address(0));
157 		if (!p) {
158 			if (!dma_release_from_contiguous(dev, page, count))
159 				__free_pages(page, get_order(size));
160 		}
161 		return p;
162 	}
163 #endif
164 	ret = (unsigned long)page_address(page);
165 	BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
166 	       ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
167 
168 	uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
169 	__invalidate_dcache_range(ret, size);
170 
171 	return (void *)uncached;
172 }
173 
174 static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
175 			    dma_addr_t dma_handle, unsigned long attrs)
176 {
177 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
178 	unsigned long addr = (unsigned long)vaddr;
179 	struct page *page;
180 
181 	if (addr >= XCHAL_KSEG_BYPASS_VADDR &&
182 	    addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE) {
183 		addr += XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
184 		page = virt_to_page(addr);
185 	} else {
186 #ifdef CONFIG_MMU
187 		dma_common_free_remap(vaddr, size, VM_MAP);
188 #endif
189 		page = pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_handle)));
190 	}
191 
192 	if (!dma_release_from_contiguous(dev, page, count))
193 		__free_pages(page, get_order(size));
194 }
195 
196 static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
197 				  unsigned long offset, size_t size,
198 				  enum dma_data_direction dir,
199 				  unsigned long attrs)
200 {
201 	dma_addr_t dma_handle = page_to_phys(page) + offset;
202 
203 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
204 		xtensa_sync_single_for_device(dev, dma_handle, size, dir);
205 
206 	return dma_handle;
207 }
208 
209 static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
210 			      size_t size, enum dma_data_direction dir,
211 			      unsigned long attrs)
212 {
213 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
214 		xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
215 }
216 
217 static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
218 			 int nents, enum dma_data_direction dir,
219 			 unsigned long attrs)
220 {
221 	struct scatterlist *s;
222 	int i;
223 
224 	for_each_sg(sg, s, nents, i) {
225 		s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
226 						 s->length, dir, attrs);
227 	}
228 	return nents;
229 }
230 
231 static void xtensa_unmap_sg(struct device *dev,
232 			    struct scatterlist *sg, int nents,
233 			    enum dma_data_direction dir,
234 			    unsigned long attrs)
235 {
236 	struct scatterlist *s;
237 	int i;
238 
239 	for_each_sg(sg, s, nents, i) {
240 		xtensa_unmap_page(dev, sg_dma_address(s),
241 				  sg_dma_len(s), dir, attrs);
242 	}
243 }
244 
245 int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
246 {
247 	return 0;
248 }
249 
250 const struct dma_map_ops xtensa_dma_map_ops = {
251 	.alloc = xtensa_dma_alloc,
252 	.free = xtensa_dma_free,
253 	.map_page = xtensa_map_page,
254 	.unmap_page = xtensa_unmap_page,
255 	.map_sg = xtensa_map_sg,
256 	.unmap_sg = xtensa_unmap_sg,
257 	.sync_single_for_cpu = xtensa_sync_single_for_cpu,
258 	.sync_single_for_device = xtensa_sync_single_for_device,
259 	.sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
260 	.sync_sg_for_device = xtensa_sync_sg_for_device,
261 	.mapping_error = xtensa_dma_mapping_error,
262 };
263 EXPORT_SYMBOL(xtensa_dma_map_ops);
264